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SOME PRACTICAL CONSIDERATIONS IN THE APPLICATION
OF FINITE SOURCE QUEUEING MODELS

by

Zeev Barzily
Donald Gross
Henry D. Kahn

This paper considers some practical aspects of an application of
finite source (machine repair) queueing models. Exact models for small
calling populations are developed to investigate (a) transient effects;
(b) the effect of assuming population items operate continuously, when
in fact they may be idle a portion of the time; and (c) the effect of
having population items with unequal failure rates, but assuming all
items fail at the population average values. Implications from these
small population models and from models which bound and approximate
larger population sizes are discussed.
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1. Introduction

Finite source queueing models (machine repair models) (see [4],
pp. 118-125) can be useful for a variety of applications. One area of
application is in spares provisioning, where, for a given population of
operating units (for example, aircraft engines, computer control modules,
or lathes) which stochastically fail and are repairable, it is desired to
know how many spare units to have on hand as well as the capacity of the
repair facility in order to guarantee a certain service level. Gross,

Kahn, and Marsh {5] treat such an application in detail.

In the Gross et al study [5], where it was desired to determine
the spares inventory and repair capacity over a changing multi-year planning
horizon, three key assumptions were necessary in order to apply the classi-
cal queueing theoretic solutions. These assumptions are (i) all units in
the population are identical, (ii) units and repair facilities operate
continuously, and (iii) the system is always in steady state. In addition,

units are assumed to fail according to a Poisson process and repair times
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are assumed to be exponentially distributed random variables. Since these
latter two assumptions were considered to be fairly realistic in a variety

of situations, it is the three assumptions enumerated above which are

investigated here.

2. Populations with Unequal Failure Rates

When applying the classic machine repair theory, one must assume
all units are identical in order to obtain the steady-state system size
probabilities required for determining the system service level for a
given number of spares and repair channels. The question naturally arises,
is this an adequate assumption? Steady-state probabilities obtained by
making this simplifying assumption approximate the true probabilities.

It is conceptually possible to model a finite source queue with spares
having different failure rates for the calling units, but for a system of

any reasonable size the equations become unwieldy.

In this section we study a finite source machine repair model
having one machine and one spare. Here we allow the calling units to have
different failure rates. In particular, the effect of approximating the
steady-state probabilities by assuming that all units have failure rates

equal to the average failure rate of the calling units is investigated.

In general, letting M denote the population size, y the number
of spares, and c¢ the number of repair channels at the repair facility,
the model we work out in detail here is for M=y = ¢ =1 . Unit 1 has

a Poisson failure rate Al and Unit 2 AZ . It is assumed that service

times are independent exponentially distributed random variables with
mean 1/p , and that if Unit i (i=1,2) is operating at time ¢t , the
probability it will have failed by time t + At is AiAt + o(At) . The

following states may be defined for the system.
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State Unit 1 Unit 2
0 Operating Spare
1 Operating Repair
2 Spare Operating
3 Repair Operating
4 Queue Repair
5 Repair Queue

The steady-state probabilities must satisfy the following balance equations:
AjPg = ¥y

(A H)p; = A,p, + Upg

APy = P,
A, H)p, = Mp, + AP, 1
up, = Alpl
Wpg = A,P,
2
iéo NE

where Py is the steady-state probability that the system is in state i ,

i=0,1,...,5 . Solution of the system of Equations (1) yields

A

Sl & 2
e Al(Al+u) ) e Alxz (A1+u) 3
2 Xz(A2+u) 0°? 5 U2 A2+u 0°

3 Al(kl+u) 2)
Py HOLHD Py

2

o u Az(xz+u)
Po

= 2 2
WA + W (AT + 2300, (A, A 4 A,)

-G
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The measure of system performance that we use here is the steady-
state probability that a request for a spare unit is met without delay,
and is equivalent to the steady~state probability that a failed unit en-
counters less than y wunits in repair or waiting for repair. The prob~-
ability that a failed unit finds the system in a particular state is dif-
ferent from the arbitrary time probabilities given by Equation Set (2).

In common queueing terminology these are termed "arriving customer' prob-

abilities, but in this paper they will be designated "failure point"

probabilities since they correspond to the occurrence of component failures.

For a finite source-no spares queue (see, e.g., Cooper [3], pp. 82 ff), the
"failure point" probabilities are equivalent to the general time prob-
abilities for a finite calling population of one less, but this relation-
ship does not hold for the spares case.

The appropriate failure point probabilities denoted by qn ,» as
contrasted to the general time probabilities denoted by pn , may be de-

.ved as follows.
Using Bayes' Theorem,

Pr{system is in state n[failure about to occur}

il
]

Pr{system is in state n}Pr{failure about to occur]system in state n}

} Pr{system is in state n}Pr{failure about to occur [system in state n}
n

The queueing system considered here may be modeled as a birth-death process

with
Pr{failure in t,t+At} = AnAt + o(At) ,

where

Al s n=0,1

An = Az 5 n=2,3

o , n=4,5
Thus, for n=0 ,

pO[XlAt+o(At)]

45 = itzo (PO+P1)[A1At+o(At)] + (P24‘P3)[>\2At+o(At)]

- Y -
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Dividing the numerator and denominator by At and taking the limit yields

*1Po
G = H

where the p, are given by Equation Set (2). Similarly,

APy
q =
1 Xl(P0+P1) + X2(92+P3)

9Py
q =
2 Al(p0+pl) + Az(p2+p3)

AsPs
A (ote) + A, (%))

93 =

The availability, or the probability that a failed unit encounters less

than y=1 wunits in the system, is therefore
A= qO + q2

u(Al+A2+2u) 3)

2
2(u +A1u+X2u+A1X2)

For purposes of comparison, consider the M=1 , y=1 , c=1 queue
with exponential service, mean 1/u . It is assumed that the two units

in the system have failure rates Al and AZ s

ate with the average failure rate (Al+k2)/2 . Thus the probability that

but that both units oper-

a unit operating at time t fails by time t + At is assumed to be

[(A1+X2)/2]At + o(At) . The approximate general time probabilities are

then (see [4], p. 123),

R R
2
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2
Py = 3 pz 2
0
o+ p(A1+A2)/2 + (A1+2A1AZ+A2)/4

where

A

Py

approximate steady-state probability
of i wunits in the system, 1i=0,1,2 ;

and the approximate '"failure point' probabilities are

; ﬁO(A1+A2)/2
qdn = = = ’
0 pO(A1+X2)/2 + pl(A1+A2)/2

! B (A #2,) /2
q == o ’
1 po(A1+A2)/2 + pl(A1+A2)/2

where the ﬁi are defined above and

ai = approximate probability that a failed
unit finds i wunits in the system,
i=0,1 .
It follows that the availability for this system, or the failure point

probability of zero units in the system, assuming an average failure rate

for both units, is

A= ao
or
i 4 2
. Bow ot (4)
2u + Xl + AZ

The approximate availability given by A always underestimates

the exact availability A . That is,

A>R,
with equality holding only when Al = AZ . This may be shown as follows:
rewriting Equations (3) and (4) in terms of p = Xl/u and p, = Az/u yields
2 + pl + p2

A=
2(1+p 0,40, 0,)

A £
B e
2 + p1 + p2

= 15 =
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It is easy to see that A > A since

2
(py=Py)

A= B0, (5)
2(14p;+0,+p,0,) (240, +0,)

~

A -

The expression (5) is zero only when 01 = pz or, equivalently, when
Al = AZ . Therefore, the aprroximate A is a lower bound on the exact

availability.

Some calculations for A and A are shown in Table I for differ-

ent values of p1 and p2 . In most cases the percent difference between

A and A is small even though there is a large difference between pl

and P The greatest difference is 27.227 for p] = .1 and p2 = 2.5 .
For cases where both oy and p, are less than one, the largest differ-
ence is 7.11% for Py = .1 and Py = .9 . These results suggest that A

is a reasonable approximation for the true availability, particularly as
the differences in the failure rates will probably be small for most prac-

tical cases.

It seems reasonable to assume that the approximate availability,

based on using the arithmetic mean of the failure rates, will always be

a lower bound on the actual availability for systems involving larger num-
bers of calling units and more than two failure rates. This is intuitively
appealing since it would be expected that, with unequal failure rates, the
less reliable units are "down" (i.e., in the service facility) more fre-
quently than the more reliable units. Thus the units that are "up'" at a
given time tend to be better than average, so that the effective aggregate
failure rate for the units in the system is less than the arithmetic

average of the failure rates of the units.

3. Noncontinuous Operation

Classical finite source queueing theory assumes the units in the

operating population operate continuously (along with the repair facilities/ 4
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repairmen). In practice, this often is not the case. For example, if
we are concerned with provisioning spares for engines belonging to a fleet
of aircraft, not all aircraft are always operating. Thus any engine (pop-

ulation component) may operate only a fraction of the time, say o .

There are two possible ways to account for this. One way is to
decrease the failure rate appropriately; that is, if A 1is the actual
failure rate for continuously operating units and each unit operates, on
the average, a fraction « , then we use an adjusted failure rate X' = a) .
For example, if a unit has a mean time between failures (MIBF = 1/)) of
1000 hours and operates only half the time on the average, we would assume
its MIBF to be 2000 hours.

A second way to account for noncontinuous operations is to adju..
the population size; that is, use an effective population size of M' = aM .
In many cases this may actually be closer to reality, as exemplified
by the aircraft engine problem. In reality, the situation more closely
resembles a population of size oM where each unit operates at full failure
rate A , rather than a population of M where each unit operates at a

reduced failure rate oA .

When applied to a fleet of gas-turbine engine ships where provi-
sioning for the gas generator component of the engine is desired, both ad-
justment procedures were compared based on absolute and percentage differ-
ences in availability (this example is detailed in Gross, et al [5]). The
results given in Table II show that there is very little difference between
the methods, even for small M, o , and low availabilities. Even though
the population size adjustment may more closely reflect the real situation,
the advantage to adjusting the failure rate is that no round off difficulties
are met, since failure rate is a continuous quantity while population size

is discrete.

4. Transient Effects

In order to account for population and reliability growth over a

multi-year planning horizon while utilizing classical steady-state theory,

- g =
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TABLE II

ADJUSTMENT OF POPULATION SIZE VERSUS ADJUSTMENT OF FAILURE RATE

M o c y A(ad) A(aM) A %0

10 8 3 3 .955 .956 .001 0.04
2 2 .802 .805 .003 0.36
.6 2 2 .878 .881 .003 0.37
4 2 2 .940 .942 .002 0.22
1 1 .637 .660 .023 3.51
o2 1 1 .813 .827 .014 1.69
50 .8 8 8 .971 .972 .001 0.02
6 7 .904 .905 .001 0.12
5 5 .655 .661 .006 0.81
.6 5 5 .855 .858 .003 0.36
4 3 473 .485 .012 2.51
.4 3 5 .895 .901 .006 0.72
4 4 .886 .890 .004 0.39
3 3 .683 .698 .015 2.20
182 .8 10 10 .849 .847 -.002 -0.15
8 11 .157 .756 -.001 -0.05
11 8 .667 .665 -.002 -0.24
.6 6 9 . 727 .740 .043 1.78
7 7 <711 .718 .007 0.92
9 6 .633 .637 .004 0.64
4 5 10 . 965 .966 .001 0.05
7 7 . 945 <945 .000 0.00
10 5 771 772 .001 0.04
5 5 .702 .707 .005 0.75
7 4 .589 .591 .002 0.33
5 3 .339 . 346 .005 2.02
= g0 -
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it was necessary to assume the population reached new steady-state levels
instantaneously each year in the planning horizon. For this approximation
to be valid, the transient effects must be small after a relatively short

period, say three months.

Again, for a small size model (M =y = ¢ = 1) we can analytically

work out transient solutions in closed form. The derivation follows.

Assuming both units fail at Poisson rate A and are repaired ex-
ponentially at mean rate u , the diffe.ential difference equations result-

ing from a birth-death analysis are

Pp(E) = =Ap((e) + wp, (©)

pi(t) —(A+u)pl(t) + Apo(t) + upz(t) (6)
pé(t) = -upz(t) & >\pl(t)

Taking Laplace transforms (LT), we get

sPo(s) = pa(0) = =Xpy(s) + up, (s)
spy(s) = p (0) = =(xH)p (s) + Apy(s) + up,(s)
sp,(s) = p,(0) = -up,(s) + Ap (s) ,

or the following three equations in three unknowns to be solved,

(s+A)p(s) = wpy(s) + Opy(s) = p,(0)
“Xpo(s) + (s¥MHp, (s) = up,(s) = p, (0) )
Opg(s) = Ap;(s) + (st)p,(s) = p,(0)

To solve these, we can use Cramer's rule. Thus it is first necessary to

evaluate the determinant of the denominator,

s+A -u 0
D = =X s+A+u -u
0 =-A s+u

L}

(s+)) (s+A+u) (s+u) = Au(s+A) = Au(s+u)

- 1 =
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Expanding and cancelling yields

D = 53 + ZSZA + Zszu + sAy + sAz + suz
(8)
= s(s2 + 2sA + 2sp + Ap + Az + uz)
In order to invert the LT, we would like D to be of the form
D = (s+a)(s+b)(s+c) ,
which we obtain by letting
a=20
b=X+u+ /Au
c=X+u-/Au;
that is, (8) is equivalent to
D=s(s +A+u+ A +r+u-", 9

which can be verified by expanding and cancelling.

Now if we use the initial condition pO(O) =1, pl(O) = pz(O) =0,

that is, if all units are "up," the right-hand side of (7) becomes 1,0,0

and
s+tA  -u 1
=X s+A+u O 2
= _ 10 -2 0] _ A~
Py(s) = 5 =5 ° (10)

From a table of LT inverses (see, for example, Abromowitz and Stegun [1]),

£ 1
. (s+a) (s+b) (s+c) ° (a#b#c)
yields
f(t) = = (b-c)e-at + (c—a)e—bt + (a_b)e-Ct
(a-b) (b~c) (c-a) >
so that
p,(t) = A2/ + Otp=yiye” A (A+u+./m)e'0+u-/x_u)c]
z 2/ (A 2 apud)
and

- 17 =
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s+tA 1 0
-A 0 -p
~ _ Lo 0 sl _AGH) _sA, pA
Using (9) for D and (10) gives
EI(S) = A + % ;2(3) :
(sFAHH/AD) (s+A+u-VAN)
Inversion gives [f = 1/(s+a)(s+b) => f = S%; (e™3t - oPtyy |
p () = A [e'O‘J"“"'/XE)t - e'(A+“+/iﬁ)t] &5 ey

Rather than solving for ;O(S) and inverting, it is easier to use
Pp(t) = 1 - p,(t) - p,(t) .

Now since availability at time t is the conditional probability

that a failing unit finds the repair system empty, that is, the other unit

"up," we have

po(E) 1= p,(t) = py(£)
MO = T e T T I o

Results can be obtained for an initial condition with both units "down'" in

a similar fashion and are given by

P2/ + Qe e FHE Gy D]

pn(t) =
0 22 )
and
p,(£) = -f} py(t) + = [e-(xw—/;\'ﬁ)t z e‘(>\+u+/5\_].l—)t] .
2/Au

These results were used to produce Figures 1 and 2. Figure 1 shows
convergence to steady state for two cases yielding the same steady-state
availability, one with large X and U and the other with small X and

U .! We note that the large A,y case converges much faster, although both

converge quite quickly for the "both up" initial condition. This illustrates

"X\, are given in units per day.

1y -
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the two factors affecting convergence to steady state, which are (i) the
role of decay of the exponential term and (ii) how far the initial avail-
ability is from the steady-state value. For Condition (i) we desire A

- +
and yu large since the transient terms are e ehuz/Ri ¢ , while for

Condition (ii) A(0) = 1 is much closer to A(®) = .9 than is A(0) = 0 .

Figure 2 shows isopercent error at t=3 months on the A-u plane.
The shapes of the curves also illustrate the two effects described above,
namely, small percentage error for A and 1 both large, and the effect
of initial condition closeness to steady state, since each point on an iso-
percent error curve has a different A(®) = p/(A+u) . The dashed line
shows all A-p combinations for A(®) = .9 and we see the percentage

errors even for small A,u , when A(0) = 1 , are small.

To obtain similar results for larger population sizes is alge-
braically untenable. For transient analysis, unlike the unequal failure
rate problem, making inferences based on the small model is not intuitively
as comfortable. Thus we take a different approach to transient analysis

for large populations ~- that of the imbedded Markov chain.

The analysis of the convergence to steady state in Markovian queues
can be carried out either through a numerical procedure, as described by
Cohen (2], or through an imbedded Markov chain approach, in which the
system is observed upon failures of machines. We preferred the imbedded
Markov chain approach here because we are interested in the state of the
system upon failures of machines, and because by this procedure we are

able to obtain some results which we cannot obtain using the other approach.

Let An and Un denote the arrival and service rates, respectively,

when there are n machines in the system. Thus,

MA g n < y-1
A= 3= (n=y)Ik v ¥y XM= My
0 5 otherwise,
and
- 15 =
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Figure 2.--Isopercent error map, A=y plane at t=3 months,.
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ng, 0<n<ec

cU , e <£n .

Denote by N(m) the state of the system upon the mth failure,
where {N(m)=n} , n=0,1,2,... , means that the mth failure sees n

failed machines in the system. Let

Pn, i = P[N(m)=j | N(m~1)=n] ,

and denote by An and Sn the interfailure time and the time to the
completion of the first service, respectively, given that {N(m)=n} .

As both service times and interarrival times are exponential, we note

that for j < n ,

Pr{n-j+1 service completions before the
next arrival | system is in state n}

pn,j

"

Pr{l service completion before the next
arrival | system is in state n} -
Pr{n-j service completions before the
next arrival | system is in state n-1}

oo

tio P[An>t] dFSn(t) pn_l’j .

For j = ntl , there must be an arrival before a service completion.

Thus we have,

{ P[An>t]dFS (t)pn—l,j s j=1,2,...,n , n=0,1,2,... ,Mty-2
t=0 n
pn L= [>s] (12)
»J S P[S_>t]ldF, (t) ,  j=n+l , n=0,1,2,...,M+y-2
t=0 = n
0 : j > ntl .

The probabilities , j=1,...,M+y-1 , that were not specified in

PMty~1, j

(12), are equal to since at least one completion of service

Prty-2, j
should take place before any arrival can occur. We use now the fact that

the parameters of An and Sn are An+1 and un+1 , respectively, and

obtain from (12) that
S A
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An+1

, n=0,1,...,Méy-2 . (13)
o+l * Ynel

pn.n+l by A

Expression (13) can now be used to establish that, for j=n 1in (12),

b = un+1 An
B0 LIn+l 4 An+1 >‘1:1 s pn

Applying the recursive relation in (12) for j < n vyields

n+l U, Al

- i s ¥4 I
g .= & PUREAT Ty S e (14)
+ ¥
™I e My A Aj Hy

Now let N(O) denote the initial state of the system and let

qm(i) = P[N(m)=1i] , m=0,1,2,... , i=0,1,...,M+y-1 .

Denoting by
q = (a,00),q_(1),...,q_(My-1)) , (15)
we obtain
Akt ™ GE »
where P is the transition matrix {pi,j} . It is well known then that
q; has a limit as m > ® |, and let q' = lim q; . Denote

m®

j
Q (3) = Eo q (1) , w0,1,2,... , 3=0,1,...,Mty-1 ,
i=

and

j
Q) = _Z q(i) .

i=1

A natural initial situation is, of course, all machines up, and
one would like to know how this situation would affect the future state

vectors. This leads us to the lemma below.

Lemma 1: If Qm(j) > Q(j) for all j=1,2,...,Mty-1 , then

Q (1) 2 Q1) for all j=0,1,...,Mby=-1 .

m+1

- 18 =
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Proof: Let
2.
j,0
L.
i1
L, = : : (16)
3
L.
JoMiy-1
where
g [ (8|
£ = H
J,i 6
hence
i) = q" L, . 17
Q (1) 5 17)
Using (15) and the fact that q'P = q' , we obtain
. = . = '- 1]
Q4 () - Qi) (q_-q )PLJ. ’ (18)
where PLj is a column vector whose ith element equals
)
F.(j) = P . (19)
i emy 1ok
" "
From (14) we can see that pn+1,j pn’j so therefore
F,(3) 2 F (1) . (20)

Thus the right-hand side of (18) is nonnegative since the elements in the

column vector PLj are decreasing and the sum of the first k elements
of (q; - q') 1is always nonnegative and larger than the magnitude of the

k+lst element from the hypothesis of the lemma, Qm > Q'

Since the measure of the system's performance -- the availability --

was defined as

A(m) ey Qm(Y‘l) s

we may conclude from Lemma 1 that if the initial vector satisfies

- 19 =
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QI 2Q3) ,  I=1,...,My ,

then

A(m) > Q(y-1) = A(«®) , m=1,2,3,... . (21)
The lemma cannot be extended to include A(m) > A(mtl) . This is because

A M+y-1
A(m) - A(m+l) = q' (I- = q (y-1) —L— - -1) ;
(m) (wHl) = qi (I-P)L__, = q (y-1) e L (F -1 ; (22)
¥ k=y
hence, the lemma's conditions can be met while Expression (22) is negative.
Thus we can only state that the steady-state availability is always less

than the transient availabilities.

The decision to purchase spares or to add servers is often made
periodically; so it is important to study the relation between time and

number of arrivals. It is clear that as An < My then the time to the

kth arrival is stochastically smaller than an Erlang random variable with
parameters MA and k (F(MA.k)) . Furthermore, as the system stays mainly

in the states in which An = MA , it is obvious that the use of T (MXA,k)

as the distribution of the time to the kth arrival is highly justified.
Nevertheless, if one desires more accurate results for the relations be-

tween time and number of arrivals, the results of the following discus-

sion may be applied.

Let Tn(k) denote the time to the kth arrival given {N(0)=n} .

Then
t —Aoy
PIT. (k) < £E] =/ A. @& P[T, (k-1) < t-yldy ,
0 - 0 0 i —
t “hy -Aly t-y -Aou
PIT (k) < t) =S yu, e e X e P[T, (k-1) < t-y-u]dudy
1 1 0 1 —
0 u=0
(23)
t —le “HyY
+/ XA, e e P[T,(k-1) < t-y]dy ,
1 2 -
0
and tor n - 1 we obtain
= 00 -
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PIT (k) <tl =/ u e e " PIT _;(k) < t-yldy

r n n
SN B e P[Tn+1(k 1) £ t=yldy .
Denoting

PE L (s) = t£0 et dP[T_(K) < t]

yields after applying Liebnitz's rule, changing order, and evaluating

integrals,

AO
I, o i
A +s Pl,k-l(s) 5 =10
0
Lll AO Al
S ol . 2 g
AL Lo te ats 1 ® T B ® s n=1, (29)
B e 1
k=1.2 4
Mo A
B e a1, s e B e ) gy e
n n n n
where P¥ ,(s) =1, i=1,2,... . From (24) we obtain
1
-+ E[T (k-1)] s n =0
L
0
u
1 1 (1
e — + E[T (k-l)])
At At \Ay 1
dP: k(s) Al b
E[T (k)] = —2—— = + E[T,(k-1)] A o o ¥
n ds | e Al+u1 2
(25)
u
1 n
&
H_+A u_+A E[Tn-l(k)]
n n n n
)\n
* BET oa (R=13F , o> 1
An+un n+l

- 9] =




T-360

We illustrate the convergence to steady state with data from the
machine repair problem given in Gross et al [5]. 1In that study it is
assumed that all changes in the parameters of the system occur simultane-
ously once a year. These changes include the addition of new machines,
spares, and servers; an increase in the service rate; and a decrease in the
failure rates of all units. Both the units added and the spares added are

assumed to be up. Let

J(i,T) = min{k : E[Ti(k) P (26)

As we observe the system upon failures of machines, we desire to associate

the annual points of change in the system's parameters to cumulative counts

of failures. We chose J(0,365) to represent the annual number of failures.

This assumption and the data from Figure 2 in [5] is presented in Table III.

TABLE III

THE PARAMETERS FOR FIGURE 3

s — == I —
Steady Cumulative
a a State Count of
L i & y 4 1/u Avail- J(0,365) Failures
ability TJ(0,365)
75 10 3 3 | 0.0015 65.0 0.920 5 5
76 28 5 6 | 0.0015 62.5 0.920 15 20
77 50 8 8 | 0.0015 60.0 0.915 26 46
| 78 82 10 10 | 0.0013 57.5 0.913 37 73
79 121 12 11 | 0.0010 { 55.0 0.905 46 119
X and u are shown in units per day.

Figure 3 shows the availability versus time for the data of Table
[TI, assuming an initial condition of all units up, using Equations (13)

and (14) to calculate the pij and then performing successive multiplica-

tion with the P matrix; thus yielding q"'s , Q's and A's . From

R
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Figure 3 we can see that when the number of calling machines is small
Q (and therefore J(0,365) is small) then the system's situation is quite
far from steady state even after J(0,365) failures. As the number of

calling units increases, the availability after J(0,365) failures ap-

proaches the steady-state availability.

To obtain some feeling about the sensitivity of the rate of conver-

gence to steady state as a function of A and . , we calculate the value of

Qm(y-l) - Q(y-1)
Q(y-1)

A(m) = . 100.0 ,

for N(O) =0, m=J(0,90) , M=10, and c¢c =y =3 . Table IV gives
A, J , and selected steady-state availabilities for a variety of M\
versus clU cases. The display of the table is similar to that of Figure
2 in that small values of M\ are at the bottom and small values of cu
ar» at the left. We can see the same type of effect as caused by the

A(0) = 1 curve of Figure 2, although the "belly'" is reached for much
higher MA ; that is, for fixed cu , the errors increase up to a certain
value of MA and then start to decrease. Again we see the same two
effects as in Figure 2; namely, the influence of the proximity of the
starting availability to the steady-state value, and the damping effect

of large MM and cp on the transient terms (hence the "belly'" situa-~
tion). Selected steady-state availabilities are shown which point out
that in the realistic availability range (greater than 0.8 , for example)
the percent errors from steady state after three months are quite small

unless both MA and cu are very low.

- Dl -




Al d79VL

788" 0s8° L08" LoL”
T 11 11 11 11 11 0t 0T ot 13
otr* 61" 6€ " vg* 88T 15y z8° 1 90°2Y 0°LST T2 ¥4 STT*0
o
%
! N 508" €6L"
= Z1 z1 Z1 Al A A 1 1 11 01
yT* £ %g* 91°1 5"z 66°6 88° %1 8L°0S S*9LT “9%6T 0€T°0
908" LSL®
€T €1 €T €T €1 €T €T Z1 1 0r
81" 9¢ * 2L 51 1€°€ 8y°L 78°L1 16°LS A T4 1692 %170
I
0€ 62 Lz 94 L4 74 0z 8T 91 71
€1 £2°2 vEY 018 89°11 z€°02 Z6°SE 0%°59 £ 6T “hyy SZY0°0
z€ o€ 62 LT 4 €2 12 61 L1 vl
€5°1 0L°Z 99°¢ 68°6 61°6 01" %1 CL*12 65" € L°6S *68€ $7S0°0
— 1
g zZ€ o€ Lz 4 €2 12 61 L1 ST !
: LT°1 g8*1 6L°C 62°6 £L°L Pl 1 SL*9T 01°92 8 %Y "v6 | ST90°0 |
%
m 0€°0 Lz°0 %2°0 12°0 8T1°0 510 rARd1) 60°0 90°0 m
£ )V
3 1> gNV YW J0 NOILONAJ V SV (06‘0)r J0 s4n1va
(Co6‘0)r)V

23 =




T~360

1 T T I 1 I I I [ 1 .
z0* z0° €0" 70" L0 T 7z 6y ) 6 010°0 %
et
Sv6° 58" 80S* |
€ € € € € € € € € € |
50" L0 i h 62 nG TI7L 972 €6 . 14 $20°0 |
S16° 9€8" <€9°
Y v y y " y v v 5 y
80" 21 61 ze 8s* Gl 6°C 959 02 "GET 0%0°0
1€6° €68° cz8° 889°
S S S S S S S S S <
ot (1 8z* 00s* 76 26°T AR T2 2l 9Ly “99¢ €50°0
|
ST6° 88" 818" yIL:
L L L L L L L L L L
90° 1% 0z ov* €8 68°T 78y 6L %1 229 1L 0L0°0
106" 998" €18° 0EL"
8 8 8 8 8 8 8 8 8 8
%0 91" 0€* 09° 62°1 16°C €9°L 20°€2 %6 “880T | S80°0
c16° 168" 158" 018" ovL “ W
6 6 6 6 6 6 6 6 6 8 | ﬁ
A €2 £y L8 88°1 €€y £0°TT W% Zk 0°821 “v€0Z | 001°0 |
|
0€°0 270 720 12°0 81°0 ST0 210 60°0 900 €00

panurijuod--A1 JT14dVL

26 -




(1]

(2]

(3]

[4]

(5]

T-360

REFERENCES

ABROMOWITZ, M. and I. A. STEGUN (1964). Handbook of Mathematical

Functions. National Bureau of Standards, Applied Mathematics

Series 55.

COHEN, J. W. (1969). The Single Server Queue. North-Holland Pub-

lishing Company, Amsterdam, London; Wiley Interscience Division,
John Wiley and Sons, Inc., New York.

COOPER, R. B. (1972). Introduction to Queueing Theory. Macmillan,

New York.

GROSS, D. and C. M. HARRIS (1974). Fundamentals of Queueing Theory.

John Wiley and Sons, Inc., New York.

GROSS, D., H. D. KAHN and J. D. MARSH (1975). Queueing models for
spares provisioning, Technical Paper Serial T-322, Program in
Logistics, The George Washington University; and to appear in

the Naval Res. Logist. Quart., %& (4).

SRS




THE GEORGE WASHINGTON UNIVERSITY

Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebowitz
Mr. J. Frank Doubleday

ONR
Chief of Naval Research
(Codes 200, 430D, 1021P)
Resident Representative
OPNAV

OP-40

DCNO, Logistics
Navy Dept Library
OP-911

OP-964

Naval Aviation Integrated Log Support

NAVCOSSACT

Naval Cmd Sys Sup Activity Tech Library

Naval Electronics Lab Library

Naval Facilities Eng Cmd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Sys Cmd Library

Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco
Naval Research 1.ab
Tech Info Div
Library, Code 2029 (ONRL)

Naval Ship Engng Center
Philadelphia, Pa.
Hyattsville, Md.

Naval Ship Res & Dev Center

Naval Sea Systems Command
Tech Library
Code 073

Naval Supply Systems Command
Library
Capt W, T. Nash

Naval War College Library
Newport

BUPERS Tech Library
FMSO

Integrated Sea Lift Study
USN Ammo Depot Earle

USN Postgrad School Monterey
Library
Dr. Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer

Armed Forces Industrial College
Armed Forces Staff College

Army War College Library
Carlisle Barracks

Army Cmd & Gen Staff College

US Army HOQ
LTC George L. Slyman
Army Trans Mat Command

Program in Logistics

Army Logistics Mgmt Center
Fort Lee

Commanding Officer, USALDSRA
New Cumberland Army Depot

US Army Inventory Res Ofc
Philadelphia

HQ, US Air Force
AFADS-3

Griffiss Air Force Base
Reliability Analysis Center

Maxwell Air Force Base Library

Wright-Patterson Air Force Base
HQ, AF Log Command
Research Sch Log

Defense Documentation Center

National Academy of Science
Maritime Transportation Res Board Library

National Bureau of Standards
Dr E. W. Cannon
Dr Joan Rosenblatt

National Science Foundation
National Security Agency
WSEG

British Navy Staff

Logistics, OR Analysis Establishment
National Defense Hdqtrs, Ottawa

American Power Jet Co
George Chernowitz

ARCON Corp
General Dynamics, Pomona

General Research Corp
Dr Hugh Cole
Library

Planning Research Corp
Los Angeles

Rand Corporation
Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof John R. Isbell
Prof M. Mesarovic
Prof S. Zacks

Cornell University
Prof R. E. Bechhofer
Prof R. W. Conway
Prof J. Kiefer
Prof Andrew Schultz, Jr.

Cowles Foundation for Research
Library
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof R. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schleifer, Jr.

New York University
Prof O. Morgenstern

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson




Purdue University
Prof S. S. Gupts
Prof H. Rubin
Prof Andrew Whinston

Stanford
Prof T. W. Anderson
Prof G. B. Dantzig
Prof F. S. Hillier
Prof D. L. Iglehart
Prof Samuel Karlin
Prof G. J. Lieberman
Prof Herbert Solomon
Prof A. F. Veinott, Jr.

University of Californis, Berkeley
Prof R. E. Barlow
Prof D. Gale
Prof Rosedith Sitgreaves
Prof L. M. Tichvinsky

University of Californis, Los Angeles
Prof J. R. Jackson
Prof Jacob Marschak
Prof R. R. O'Neill
Numerical Analysis Res Librarian

University of North Carolina
Prof W. L. Smith
Prof M. R. Leadbetter

University of Pennsylvania
Prof Russell Ackoff
Prof Thomas L. Saaty

University of Texas
Prof A. Charnes

Yale University
Prof F. J. Anscombe
Prof 1. R. Savage
Prof M. J. Sobel
Dept of Admin Sciences

Prof Z. W. Birnbaum
University of Washington

Prof B. H. Bissinger

The Pennsylvania State University
Prof Seth Bonder

University of Michigan

Prof G. E. P. Box

University of Wisconsin

Dr. Jerome Bracken

Institute for Defense Analyses
Prof H. Chernoff

MIT

Prof Arthur Cohen 4

Rutgers — The State University

Mr Wallace M. Cohen
US General Accounting Office

Prof C. Derman
Columbia University
Prof Paul S. Dwyer
Mackinaw City, Michigan
Prof Saul 1. Gass
University of Maryland

Dr Donald P. Gaver
Carmel, California

Dr Murray A. Geisler
Logistics Mgmt Institute

Prof J. F. Hannan
Michigan State University

Prof H. O. Hartley
Texas A & M Foundation

Mr Gerald F. Hein
NASA, Lewis Research Center

Prof W. M. Hirsch
Courant Institute

Dr Alan J. Hoffman
1BM, Yorktown Heights

Dr Rudolf Husser
University of Bern, Switzerland

Prof J. H. K. Kao

Polytech Institute of New York
Prof W. Kruskal

University of Chicago

Prof C. E. Lemke

Rensselaer Polytech Institute
Prof Loynes

University of Sheffield, England
Prof Steven, Nahmias

University of Pittsburgh

Prof D. B. Owen

Southern Methodist University
Prof E. Parzen

State University New York, Buffalo
Prof H. O. Posten

University of Connecticut

Prof R. Remage, Jr.
University of Delaware

Dr Fred Rigby

Texas Tech College

Mr David Rosenblatt

Washington, D. C.

Prof M. Rosenblatt

University of Californis, San Diego
Prof Alan J. Rowe

University of Southern Cslifornia
Prof A. H. Rubenstein
Northwestern University

Dr M. E. Salveson
West Los Angeles

Prof Edward A. Silver
University of Waterloo, Canads

Prof R. M. Thrall
Rice University

Dr S. Vajda
University of Sussex, England

Prof T. M. Whitin
Wesleyan University
Prof Jacob Wolfowitz
University of Illinois

Mr Marshall K. Wood
National Planning Association

Prof Max A. Woodbury
Duke University

May 1976

— 4




