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1. Ent roduc t ion

Finite source queueing models (machine repair models) (see [ 4 ] ,

pp.  118—125) can be useful  for a variety of applications . One area of

a p p l i c a t i o n  is in spares provisioning, where , for  a given population of

opera t ing  uni ts  ( fo r  example , a i r c ra f t  engines , computer control  modules ,

or la thes)  which stochastically fail  and are repairable , it is desired to
* know how many spare units  to have on hand as well  as the capacity of the

repai r  f a c i l i t y  in order to guarantee a certain service level. Gross,

Kahn , and Marsh (5] treat such an application in detail.

Tn t he  Gross et al stud y [5 ] ,  where it was desired to de termine
the spares i nventory and repair capacity over a changing multi—year planning

horizon , three key assumptions were necessary in order to apply the classi-

cal qucueing theoretic solutions. These assumptions are (1) all units in

t i l t .’ popu lation are identical , (ii) units and repair facilities operate

continuously, and (iii) the system is always in stead y s t a t e .  In a d d i t i o n ,
Ill) i t S  ar e  assumed to f a i l  according to a Poisson process and repai r  t imes
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are assumed to be exponentially distributed random variables. Since these

la t te r  two assumptions were considered to be f a i r l y  real is t ic  in a variety

of situations, it  is the three assumptions enumerated above which are

investigated here.

2. Populations with Unequal Failure Rates

When app lying the classic machine repair theory , one mus t assume

all units are identical in order to obtain the steady—state system size

probabilities required for determining the system service level for  a

given number of spares and repair channels. The question naturally arises ,

is this an adequate assumption? Steady—state probabilities obtained by

makirg this simplifying assumption approximate the true probabilities.

It is conceptually poss ible to model a f inite source queue with spares
having different failure rates for the calling units , but for a sys tem of
any reasonable size the equations become unwieldy.

In this section we study a f inite source machine repa ir model
having one machine and one spare. Here we allow the calling units to have

differen t failure rates. in particular , the effect of approximating the

stead y—state probabilities by assuming that all units have failure rates
equal to the average failure rate of the calling units is investigated .

In general, letting M denote the population size , y the number

of spares , and c the number of repair channels at the repair facility,

the model we work out in detail here is for M y = c = 1 . Unit 1 has
a Poisson failure rate A ..~ and Unit 2 1

2 
. It is assumed that service

times are independent exponentially distributed random variables with

me~an l/~j , and that if Unit i (i=l ,2) is operating at time t , the

probab ility it w ill have failed by time t + ~t is X 1At + o(t ~t) . The

following states may be defined for the system .

— 2 —
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State  Unit  1 UnIt 2

0 Operating Spare
1. Operating Repair
2 Spare Operating
3 Repair Operating
4 Queue Repair
5 Repair Queue

The steady— state probabilities must satisfy the following balance equations :

1
1p0 

= Tip 1

X
2
p~ + u p 5

12p 2 
= pp

3

(X 2+p)p3 
= Tip4 

+ 1
1
p
0 

(1)

pp4 
= 1

1
p
1

5

pp 5 = X 2p
3

~ 
= 1 ,

1=0

where p .  is the s teady—state  probability that  the system is in state

Solution of the system of Equations (1) y ields

11 2
= 

~r ~o ‘ P4 
= 

~~2’~~ 
P0

11(1
1

-I-p ) 11A 2 (A 1+~\
= 

12~~~2
4
~~ 

~0 ‘ 

~~~~ 

‘

P3 T ) ~~~) P 0 
(2)

p0 
= 

2 

p2
~~2 (A 2+p)

~j (A
1+A 2

) + p (1
1
+12) + 2A

1
A 2
(p~2+pA 1+A 1

A
2
)
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The measure of system performance that we use here is the steady—

state probability that a request for a spare unit is met without delay ,

and is equivalent to the steady—state probability that a failed unit en-

counters less than y units  in repair or waiting for repair . The prob-

ability that a failed unit finds the system in a particular state is dif-

ferent from the arbitrary time probabilities given by Equation Set (2).

In common queueing terminology these are termed “arriving customer” prob-
abili ties , but in this paper they will be designated “failure point”

probabilities since they correspond to the occurrence of component failures.

For a finite source—no spares queue (see, e.g., Cooper [3], pp. 82 ff), the

“fai lure  point ” probabilities are equivalent to the general time prob-

abilities for a finite calling population of one less, but this relation-

ship does not hold for the spares case.

The appropriate failure point probabilities denoted by q , as

ontrasted to the general time probabilities denoted by p , may be de-

lved as follows .

Using Bayes’ Theorem,

q = Pr{system is in state n f  failure about to occur }

= 
Pr{system is in state n }Pr {failure about to occur~ system in state a)

~ Pr{system is in state n}Pr{failure about to occur~ system in state n)

The queueing system considered here may be modeled as a birth—death process

with

Pr{failure in t , t+At } = A~~~t + o(~ t)

where

, n 0 ,l

= 12 , n 2 ,3

0 , n 4 ,5

Thus , for  n 0

p
0

[A
1
t~t4.o(At)]

q0 
= 

~~~~~ (p
0
4-p
1

) [A
1~
t+o(~ t)] + (p 2~~~3

) [ A
2~~t+o(~~t ) )

— 4 —  
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Dividing the numerator and denominator by At and taking the limit yields

A
lp

0
= 11 (p 0+p 1) + 12(p2+p3) 

‘

where the p are given by Equation Set ( 2 ) .  Similarly ,
I 

— 

x
— 
1
1
(p
0
+p
1
) + 12(p2+p3)

— 

1
2
p
2

— 
1
1
(p
0
+p
1
) + 1

2
(p
2
+p

3
)

— 

12p3q 3 
— 

1
1

(p
0
+p
1
) + A( p +p )

The availability , or the probability that a failed unit encounters less

than y l  units in the system, is therefore

A = q
0 + q 2

p(1
1+12+2p) (3)

— 

2(p
2+11p+12p+1112)

For purposes of comparison, consider the M 1  , y 1  , c 1  queue
with exponential service, mean 1/p . It is assumed that the two units

in the system have failure rates and 12 , but that both units oper-

ate with the average failure rate (1
1+12)/2 . Thus the probability that

a unit operating at time t fails by time t + At is assumed to be
[(1

1+A 2)/2]At + o(At) . The approximate general time probabilities are

then (see [4], p. 123),

,_ 
1
1 + 12

~
‘l 2p ~O ’

(A l+12\
2

2p / P 0

— 5 —



~
-,—

~
-.- ~~ -_—~~~~~~,-- ~~ 

, ..-~~~~~~ .-. -.-~~~—.- -— —-_

T— 360

2
p

2 2 2
p + p(1

1
+1
2
)/2 + (A

l
+21

1
12+12)/4

where

= approximate steady—state probability
of 1. units in the system, i~ 0,1,2

and the approximate “failure point” probabilities are

~o (1l~~2 ) /2
= 

~o (h1+12 ) I2 + 
~l

(X l+A2 ) I2 ‘

/2
= 

~o
(A
l
+A

2
)/2 + 

~l
(h
1~~2

)/2 ‘

where the are defined above and

= approximate probability that a failed
unit f inds i units in the system,
1=0,1

It follows that the availability for this system, or the failure point

probability of zero units in the system, assuming an average failure rate

for both units , is

=

or

A- ~
- (4)

2p + A
l 

+ 1
2

The approximate availability given by A always underestimates

the exact availability A . That is,

A > A

with equality holding only when A
l 

= 1
2 

. This may be shown as follows:

rewriting Equations (3) and (4) in terms of p
1 

1
1
/p and p

2 
= 1

2
/p yields

2 + p  + p
2

A — 2(l+p
1
+p

2
+p
1
p
2)

A 2A -  .2 + p  + p 2

— 6 —  
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It is easy to see that A > A since

2
(p —p )

A - A = 
2(1+p1+p 2+p1

p 2 )(2+p
1+p2 ) -~~ 0 - (5)

The expression (5) is zero only when p
1 

= p
2 

or , eq uivalently, when

A
l 

= 1
2 

. Therefore, the ap- roximate A is a lower bound on the exact

avai lab i l i ty .

Some calculations for A and A are shown in Table I for differ-

ent values of p
1 

and p
2 

. In most cases the percent difference between

A and A is small even though there is a large difference between p
1

and p2 
. The greatest difference is 27.22% for p

3 
= .1 and p

2 
= 2.5

For cases where both p
1 

and p
2 

are less than one , the largest differ-

ence is 7.11% for p
1 

= .1 and p
2 

= .9 . These results suggest that A

is a reasonable approximation for the true availability, particularly as

the d i f fe rences  in the failure rates will probably be small for most prac-

tical cases.

It seems reasonable to assume that the approximate availability ,

based on using the arithmetic mean of the failure rates, will always be
a lowe r bound on the actual availabili ty for systems involving larger num-
bers of calling units and more than two failure rates. This is intuitively

appeal ing since it would be expected that , with unequal failure rates , the

less reliable units are “down” (i.e., in the service facility) more fre-
quently than the more reliable units. Thus the units that are “up” at a

given time tend to be better than average, so that the effective aggregate

failure rate for the units in the system is less than the arithmetic

average of the failure rates of the units.

3. Noncontinuous Operation

Classical finite source queueing theory assumes the units in the

operating population operate continuously (along with the repair facilities/

— 7 —
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repairmea). In practice , this often is not the case. For exau~ple, if

we are concerned with provisioning spares for engines belonging to a fleet

of aircraf t, not all aircraft are always operating. Thus any engine (pop—

• ulation component) may operate only a fract ion of the time, say a -

There are two possible ways to account for this. One way is to

decrease the failure rate appropriately ; that is, if A is the actual

failure rate for continuously operating units and each unit operates, on

the average, a fraction a , then we use an adjusted fai lure rate A’  = aX
For example , if a unit has a mean time between failures (MTBF 1/A) of

1000 hours and operates only half the time on the average, we would assume

its MTBF to be 2000 hours.

A second way to account for noncontinuous operations is to adju....

the population size; that is, use an effective population size of M’ aM

In many cases this may actually he closer to reality, as exemp lified

by the aircraft engine problem. In reality, the situation more closely

resembles a population of size aM where each unit operates at full failure

rate A , rather than a population of M where each unit operates at a

reduced failure rate ciA -

When applied to .i fleet of gas—turbine engine ships where provi-

sioning for the gas generator component of the engine is desired , both ad—

justment procedures were compared based on absolute and percentage differ-

ences in availability (this example is detailed in Gross, et al [51). The

results given in Tabl.e II show that there is very litt le difference between

the methods, even for small M , a , and low availabilities. Even though

the population size adjustment may more closely reflect the real situation ,

the advantage to adjusting the failure rate is that no round off difficulties

are met , since failure rate is a continuous quantity while population size

is discrete.

4• Transient Effects

In order to account for population and reliability growth over a

multi—year p lanning horizon while utilizing classical steady—state theory , 

~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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TABLE II

ADJUSTMENT OF POPULATION SIZE VERSUS ADJUSTMENT OF FAILURE RATE

M a c y A( aA) A(cd4) Ii

10 .8 3 3 •~~55 .956 .001 0.04
• 2 2 .802 .805 .003 0.36 

*

.6 2 2 .878 .881 .003 0.37

.4 2 2 .94 0 •942 .002 0 .22
1 1 .637 .660 .023 3.51

.2 1 1 .813 .827 .014 1.69

50 .8 8 8 .971 .972 .001 0.02
6 7 .904 •905 .001 0.12
5 5 .655 .661 .006 0.81

. 6 5 5 .855 .858 .003 0.36
4 3 .473 .485 .012 2.51

.4 3 5 .895 .901 .006 0.72
4 4 .886 .890 .004 0.39
3 3 .683 .698 .015 2.20

182 .8 10 10 .849 .847 — .002 —0.15
8 11 .757 .756 — .001 —0.05
11 8 .667 .665 — .002 —0.24

.6 6 9 .727 .740 .043 1.78
7 7 .71i .718 .007 0.92
9 6 .633 .637 .004 0.64

.4 5 10 .965 .966 .001 0.05
7 7 .945 .945 .000 0.00
10 5 .771 .772 .001 0.04

5 5 .702 .707 .005 0 .75
7 4 .589 .591 .002 0.33
5 3 .33 9 .346 .005 2 .02

— 10 —

~ 
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it was necessary to assume the population reached new steady—state levels

instantaneously each year in the planning horizon. For this approximation

to be valid , the transient effects must be small after a relatively short

period , say three months.

Again, for a small size model (M = y = c = 1) we can analytically
work out transient solutions in closed form. The derivation follows.

Assuming both units fail at Poisson rate A and are repaired ex-

ponentially at mean rate p , the diffe .ential difference equations result-

ing from a birth—death analysis are

p~ (t) = —Ap0
(t) + pp

1
(t)

= —(X+ii)p
1
(t) + Xp0(t) + pp

2
(t )  (6)

p~ (t) = pp
2

(t) + Ap1(t) -

Taking Laplace transforms (LT), we get

sp0(s) 
— p0

(O) = — A p 0 (s) + pp
1

(s)

sp1
(s) — 

i~
0
~ 

= —(A+p)~ 1
(s) + A~0(s) + pp2(s)

sp2
(s) — = —pp

2
(s) +

or the following three equations in three unknowns to be solved ,

(s+A)p0
(s) — pp

0
(s) + Op0(s) = p

0
(O)

—A p0(s) + (s+A+p)p1
(s) — pp

2
(s) = p

1
(O) (7)

Op0(s) 
— Ap 1(s) + (s+p)p2(s) 

= p 2 (O) -

To solve these , we can use Cramer ’s rule . Thus it is f i r s t  necessary to

evaluate the determinant of the denominator ,

s+A —p 0

D = —A s+A+p —p

0 —A s+p

= (s+X)(s+A+p)(s+p ) — Ap (s+A) — Ap (s+p)

— 11 —
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Expanding and cancelling yields

D = ~3 + 2s2A + 2s 2p + sAp + sA 2 + sp 2

(8)
= s(5 2 

+ 2sA + 2sp + Ap + A 2 
+ p2) -

In order to invert the LT, we would like D to be of the form

D = (s+a)(s+b)(s+c)

which we obtain by letting

a 0

b = A + p +

c = A + p — ;

that  is , (8) is equivalent to

D s(s + A + p + ~~~ ) (s  + A + p — 
~~~~~~~) , (9)

which can be verified by expanding and cancelling.

Now if we use the initial condition p
0

(O) = 1 , p
1

(O) = p
2

(O) = 0 ,

that is, if all units are “up,” the right—hand side of (7) becomes 1,0,0

and

s+X -p 1
—A s+X+p 0 2

— 0 —A 0 Ap 2 (s) = 
D ~~~~~~~~ 

. (10)

From a table of LT inverses (see, for example, Abromowltz and Stegun [11),

f(s) = ( s + a ) ( s+ b ) ( s~~ ) (a ~ b # c)

yields

f ( t ) — 
(b_c)e~~

t 
+ (c_ a)e~~

t + (a_b) e~~
t

( a— b ) ( b — c ) ( c — a )
so that

p ( t )  + (A+p_ v )e ’.
~~~ 

)t  
— (A+p+/~~ )e~~~~~~ ”~~~~ j

2 
2V ( A 2+Ap+p 2 )

and
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l s+A 1 0
—A 0 —p

— 

(s) j__p_ 0 S+1.I 
= 

A(s+p) =~~!+~~~D D D D

Using (9) for D and (10) gives

—
I’ — _ _ _ _ _ _ _ _ _ _ _ _ _p ¶‘.S)  — + — p (s

(s+A+p+v~~7) (s+A+p- V~~ )

Inversion gives [f = l I (s+a)(s +b)  > f = ~~~~~~~~ (e at 
— e~~

t )]

p ( t )  = 
_a_ 

[e
_
~~~~

_
~
’
~~
)t 

— e
_
~~~~~~

’
~~) t]  + A1 2/Ap

Rather than solving for p0
(s) and inverting, it is easier to use

p
0
(t) = 1 — p

2
(
~~ 

— p
1
(t)

Now since availability at time t is the conditional probability

that a f~illng unit finds the repair system empty , that is, 
the other unit

“up,” we have

p
0

(t) 1 — p 2
(t )  — p

1
(t)

A(t) — 
p (t) + p

1
(t) 

— 

1 — p 2 (t )  
(11)

Results can be obtained for an initial condition with both units “down” in

a similar fashion and are given by

p ( t )  = 
p [2v’~~ + (A+p_ ~~~ )e +~

1
~~)t - (A+p+V~ )e~~~~~~~ t1

0 2,,~~ (A 2+Xp+p2)
and

p ( t )  = p (t) + —u—— [e
)
~~~~~~~~

t 
— e~~~~~

4
~’~~~ t] -

1 P 0 2y~ ji~~-

These results were used to produce Figures 1 and 2. Figure 1 shows

convergence to s teady s ta te  for two cases yielding the same steady—sta te

availabili ty, one with large A and p and the other with small A and

p . We note tha t the large A ,p  case converges much faster , although both

converge quite quickly for the “both up” initial condition . This illustrates

),p arc given in units per day .

— I- I — 
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the two factors affecting convergence to steady state, which are (i) the

role of deciy of the exponential term and (ii) how far the initial avail-

a b i l i t y  is from the steady—state value. For Condition (i) we desire A

—(X+p±v’X~i)tand p large since the transient terms are e , while for
Condition ( ii )  A ( 0 )  = 1 is much closer to A(~~) = .9 than is A(0) 0

Figure 2 shows isopercent error at t=3 months on the A—p plane.

The shapes of the curves also illustrate the two effects described above,

name l y ,  small percentage error for A and p both large, and the effect

of initial condition closeness to steady state , since each poin t on an iso—

percent error curve has a di f ferent  A(c0) = p f(A+p ) . The dashed line
shows all A—p combinations for A(°°) = .9 and we see the percentage
errors even for small A ,p , when A(0) *0 1 , are small.

To obtain similar results for larger population sizes is alge—

braically untenable. For transient analysis, unlike the unequal failure

rate problem , making inferences based on the small model is not intuitively

as comfortable. Thus we take a different approach to transient analysis

for large populations —— that of the imbedded Markov chain.

The analysis of the convergence to steady state in Markovian queues
can be carried out either through a numer ical procedure , as described by
Cohen 121, or thr ough an imbedded Markov chain approach , in which the
system is observed upon fai lures of machines. We preferred the imbedded

Markov chain approach here because we are interested In the state of the

system upon failures of machines, and because by this procedure we are

able to obtain some results which we cannot obtain using the other approach.

Let A and p denote the arrival and service rates, respectively,n n

when there are n machines in the system . Thus,

MA , n < y - l

A [M- (n-y)]X , y < n < M+y

0 , otherwise ,

and

— 15 —
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Figure  2. —— Isopercent error map , pIan ~ at = 1 months.
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np , 0< n < c

n cj ~~, c < n .

Denote by N(m) the state of the system upon the mth failure,

where {N(m)~’n} , n 0 ,1,2,... , means that the mth failure sees n

failed machines in the system. Let

= P[N(m)=J N(m—l)=n]

and denote by A and S the interfailure time and the time to then n

completion of the first service, respectively, given that {N(m) n}

As both service times and interarrival times are exponential , we note

that  for j < n

p - = Pr{n—j+l service comp letions before the
next arrival system is in state n}

= Pr{1 service completion before the next
ar rival system is in state n}
Pr{n— j service completions before the
next arrival system is in state n—I )

= 

t~O 
P[A~>tI dF5

(t) 
~n-l , j  -

For j = n+l , there must be an arrival before a service completion .

Thus we have ,

I PIA >tldF s (t)p —l ~ j=l,2,. . - ,n , n=O ,l,2,... ,M+y—2
t=0 n n ,j

(12)
I PES >tldFA ( t )  , j=n+1 , n 0 ,1,2,. - - ,M+y—2
t=0

0 , j > n + l .

The probabi lities 
~M + y l j  

j=l,. - - ,M+y — l , that were not specIfied in

(12), are equa l to 
~~~~~~~ 

since at least one completion of service

should take place be fore any arrival can occur. We use now the fact that

the parameters of A and S are X~~1 and p~~1 , respectively ,  and

* ) l ) t ~ I i ll from (12) that

— 17 —
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~n,n+1 A +1
+p

+1 
, n=0 ,1,... ,M~~ —2 . (13)

Expression (13) can now be used to establish that , for j n  in (12),

- ~n+l n
— 

~n+l 
+ A

÷i 
A~ + 

~n 
-

Applying the recursive relation in (12) for j < a yields

n-fl 1-’ . A.
= 

i=~~i ~~ 
~ A1 

, j=O ,l,. - - ,n . (14)

Now let N(0) denote the initial state of the system and let

q~ ( i )  = P [ N ( m ) = i ]  , m O ,l ,2 , ...  , i 0 ,l,. * . ,M+y—l -

Denoting by

= (~~~(0)~ q~ (1),.. - ,q~ (M+y_l)) , (15)

we ob tain

q~~ 1 
= q’P

where P is the transition matrix {p
11
} - It is well known then that

q’ has a l imit as m -
~~ ~ , and let q’ = lim q’ - Denote

3
= ~~ , m 0 ,l , 2 ,. - . , j’~0,l,. - . ,M+y— l

i=0

and

3
Q(j) = ~ q(i)

1=1

A natural initial situation is, of course, all machines up, and

one would  l ike to know how this s i tuat ion would a f f e c t  the future state

vectors. This leads us to the leimna below.

Lemma 1: Ii 
~~~~~ 

> Q(j) for  all j 1 , 2 ,. - - ,M+y—1 , then

( j) Q (j) for all j 0 ,1 , . . . ,M+y— l -

— 18 — 
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Proof: Let

,~ 
£

j c ~

I ~j , l
= : ‘ 

(16)

,~~~y—1

where

1 , i < j
2~. - =

0 , i > j

hence

= q ’ L. - (17)

Using (15) and the fact that q’P = q’ , we obtain

Q~~1
(j) — Q ( j )  = (q ’—q ’) P L . , (18)

where PL . is a column vector whose ith element equals

3
F1

(j )  ~ k - (19)
k= 1

From (14) we can see that p - < p - so therefore
n+1,j  n , j

F
1
(j) > F~~~1(i) - (20)

Thus the r i g ht—hand side of (18) is nonnegative since the elements in the

column vector PL are decreasing and the sum of the first k elements

of (q’ — q ’) is always nonnegative and larger than the magnitude of the

k+lst element from the nypothesis of the lemma, 
~~ 

~~~ ~~
‘ 

-

Since the measure of the system’s performance —— the a v a i l a b i l i t y  ——
was de [ned as

A( m ) = Q (y-l)

we may concLude from Lemma 1 that if the initial vector satisfies

— 19 —
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Q0
(j) > Q(j) , j=l , . . .  ,M+y

t tie n

A(m) > Q(y—1) = A(co) , m 1 ,2,3 . (21)

The lemma cannot be extended to include A(m) > A(m+l) - This is because

A 14+y-1.
A( m ) — A( m+l) q ’ ( I — P ) L

1 
= ~~~(Y_ l )  

~—~i — ~ ~~~O ) ~’~~(Y_ 1) ; (22)
y Py k=y

hence , the lemma ’s conditions can be met while Expression (22) is negative .

Thus we can only state that the steady—state availability is always less

than  the t r ans i en t  avai labi l it ies .

The decision to purchase spares or to add servers is o f t e n  made

periodic ally ; so it is important to s tudy the relat ion between time and

number of arrivals. It is clear that as A < Mp then the time to the

kth arrival is stochastically smaller tha n an Erlang rando m var iable with
parameters MA and k (F(MA ,k ))  - Furthermore , as the system stays mainly

in  tlu states in which A = M A , it is obvious that  the use of F(M A ,k)
n

as the distribution of the time to the kth arr ival Is hi ghly justified.

Nevertheless , if one desires more accurate results for the re la t ions  be-

Iween time and number of arrivals , the results of the following discus-

sion may be applied .

Let T (k) denote the time to the kth arrival given tN(0) n}

TIi Cfl

t
P[ T 0 (k )  t J  = I A 0 e P[T (k— l)  < t—y l dy ,

0 1

—p
1y —A

1y t— y —A
0uPFT

1
(k) t J .1 p

1 
e e I A~ e P[T

1
(k—1) < t—y—u}dud y

(I u O
(23)

t —X
1
y —p

1
y

+ f e P [ T 2 ( k— l )  < t yJdy
0

Ifl (I r p I w.’ oh t a i n

— 2 0 —
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t ~~; y  — X y
P [T ( k )  t J  = f ~j  e ‘~ P[T 1(k) < t—y ]dy

~ t ~
_A
~ t 

e

_

~ n
t 

P [T
~+i

(k_ 1) < t—y)dy -

Denoting

P
~~k

(s) = e
_ S t  

dP1T~(k) ~ t}

yields after app lying Liebnitz’s rule , changing order , and evaluat ing

integrals ,

A 0
~~~~ 

P~~1~~1
(s) ~ n *0 0

p
1 

A 0 A 1P
~~k

(s) = - 
p +A +s ~~~~ ~~~~~~~~ 

+ A + p +s P~~k_l
(s) n = 1 • ( 2 4 )

k=l ,2,...
p A

p +A ~~i~ ~~~~~~~~~ 
+ p + ~~+s P~÷l k....l

(s) . n > 1

where P~~ 0(s) = 1 1=1 ,2 From (24) we obtain

+ E[T1(k—l)] , n = 0

+ A 1
-I-p1 

(f— + E[T1(k_l)])

(jP* (s) A
1

EI’I 1~(k)1 
s0 

+ A 1+p 1 
E [T 2 ( k — l ) J  1

(25)

p +A 
+ 

p + A  
E[T~~ 1

(k)1

+ A ~p E[T
~+1

( k_ l ) ]  n > I -

n f l

— 21 —
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We illustrate the convergence to steady state with data from the

machine repair  problem given in Cross et al [5]. In that study it is

assumed that  all  changes in the parameters of the system occur simultane-

ousl y once a year .  These changes include the add ition of new mach ines,
spares , and servers ; an increase in the service rate; and a decrease in the

failure rates of all units. Both the units added and the spares added are

assumed tc be up. Let

J(i,T) *0 min{k : E[T.(k) > T} . (26)

As we observe the sys tem upon f ailures of mach ines , we desire to associate

the annual points of change in the system’s parameters to cumulative counts

of failures. We chose J(0,365) to represent the annual number of failures.

This ass~1mption and the data from Figure 2 in [5] is presented in Table III.

TABLE III

THE PARAMETERS FOR FIGURE 3

Steady Cumula tive
I a a State Count of

Year M C y A 1/p - J (O,365)
Avail— Failures
ability TJ (O ,365)

75 10 3 3 0.0015 65.0 0 920 5 5

76 28 5 6 0.0015 62.5 0.920 15 20

77 50 8 8 0.0015 60.0 0.915 26 46

78 82 10 10 0.0013 57.5 0.913 37 73

79 121 12 11 0.0010 55.0 0.905 46 119

and p are shown in units per day .

Fi gur e 3 shows the ava ilab ility versus time for the da ta of Tabl e
[I t , assuming an initial condition of all units up, using Equations (13)

and (1.4) to calculate the p .. and then performing successive multiplica-

tion with the P matrix; thus yielding q ’s , Q’s and A ’s - From

— 22 —
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Figure 3 we can see that when the number of calling machines is small

(and therefore J(0,365) is small) then the system ’s situa tion is qui te

far from steady state even after J(O,365) failures. As the number of

calling units increases, the availability after J(0,365) failures ap-

proaches the steady—s tate availability.

To obtain some feeling about the sensitivity of the rate of conver-

gence to steady state as a function of A and ~ , we calculate the value of

Q (y—l) — Q(y—l)
A (m) = 

15 
Q (y—l) 

l0O•0

for N(O) = 0 , tn = J(0 ,90) , M = 10 , and c = y = 3 . ‘table IV gives

A , J , and selected steady—state availabilities for a variety of MA

versus cii cases. The display of the table is similar to that of Figure

2 in tha t small values of MA are at the bottom and small values of cp

ar~ at the left. We can see the same type of effect as caused by the

A(O) = 1 curve of Figure 2, al though the “belly” is reached for much

higher MA ; that is, for fixed cp , the errors increase up to a certain

value of MA and then start to decrease. Again we see the same two

effects as in Figure 2; namely,  the influence of the proximity of the

starting availability to the steady—state value, and the damping e f fec t

of large MA and cp on the transient terms (hence the “belly” situa-

tion). Selected steady—state availabilities are shown which point out

that in the realistic availability range (greater than 0.8 , for exampl e)

the percent errors from steady state after three months are quite small

unless both MA and cp are very low.

— 24 —
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