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ABSTRACT

Formulas for computing the gravitational effect of some simple two-
and three-dimensional geometric figures are presented in forms suitable
for use with digital computers and in many cases, programmable desk
calculators. Basic computation schemes are presented for complex °
two- and three-dimensional bodies of arbitrary shape. Some simple
inversion rules or techniques are presented which yield approximations
of depth based on simple geometric figures. Such inversion techniques
are particularly applicable where gravity measurements and/or other
geophysical data are sparse. These techniques yield first approximetions
of the depth, size, and shape of the mass or masses causing a given
residual gravity anomaly. Density or density contrast is independent
of depth, size and shape and is discussed separately. Density and
porosity are defined by appropriate equations. Generalized density
relationships, based on rock types are discussed. Equations for
determination of effective density from gravity measurements are
presented. The concluding remarks cover some general aspects of
gravitational modeling.
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LIST OF NOTATIONS

The notation is uniform insofar as possible. Any chaﬁge in the notation
listed below is specifically noted. The notation is generally based
on the following definitions:

X, ¥, 2 = Define the three coordinate axes of a left-handed
Cartesian coordinate system in three-dimensional
models.

tal

™

N
]

Define the two coordinate axes in two-dimensional
models.

X = The horizontal ground distance along the X-axis,
usually from a point above the center of the body
to the computation point.

y = The horizontal ground distance along the Y-axis,
usually from a point above the center of the
body to the computation point.

a function of x, z.

z = The depth from the surface, usually the X, Y plane,
to the center of the body.
:
‘ : = The distance from the center of the body to the
' computation point.

R = The radius of the body.

Ax, Ay, Az = Thickness of laminar bodies.

K = Universal constant of gravitation = 6.673 x 10~%
E | em®/(grams) (sec)?.
3 : &, = Calculated gravitational effect, usually the vertical
| component of the acceleration of gravity (in milligals)
E_ U = Gravitational potential
I
| p = Volume density or density contrast as a function
; of X, ¥y G
.
| M = Surface density or density contrast as a function
i of x, z.
i As = Cross-sectional area of two-dimensional bodies as
|

A = Volume.

& =
% M Mass. ix
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GRAVITATIONAL MODELING




1. INTRODUCTION

The purpose of this publication is to present a unified discussion
of several widely accepted analytical techniques of gravitational
modeling along with some elementary techniques of interpretation in
the form of a reference manual. The formulation of these techniques
is oriented towards applications compatible with programmable desk 3
calculators and digital computers.

Gravitational modeling refers to the direct problem o determining
the mass attraction of a geologic body or structure of known snape,
depth, size, and density or density contrast. The reliability of the
solution depends on how well the shape of th~ body or structure is
known and how closely it can be approximatecd by analytical expressions.

Thus, the direct problem can be sqQlved only when specific relatively
homogeneous geologic bodies or structures can be identified as the
gravitating masses.

Such detailed knowledge of geologic structure is limited to features
in the upper portion of the earth's crust. The attraction of such
bodies is assumed to be an approximation of the local or residual com-
ponent of the observed gravity anomaly field.

Some common structures which significantly influence_the residual.
gravity anomaly field are: well defined topographic features, sedi-
mentary basins, faults, anticlines, synclines and intrusive bodies of

discernible shape.
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Gravimetric interpretation refers to the inverse gravimetric problem.
The solution to the inverse problem has as its objecfive the deter-
mination of the unknown parameters (i.e., shape, depth, and density %
or density contrast) from a known residual gravity anomaly field. A
unique solution to the inverse problem is theoretically impossible
because a given residual gravity anomaly field can be produced by an
infinite number of mass configurations.

However, reliable first approximations of the unknown parameters E
can often be obtained from the shape and magnitude of residual gravity i

anomaly profiles as well as from various other sources of geologic dnd

geophysical data. Such sources include: field maps, electric logs,
seismic profiles, and borehole information. The first approximations
of the unknown parameters can then be used in an iterative inversion
procedure. In such a procedure, the unknown parameters are then suc-
cessively adjusted until an observed residual gravity anomaly field
is approximated within some predetermined tolerances. The adjusted
unknown parameters must then be examined within the context of geologic
and geophysical realism. It is often necessary to further constrain
the ‘allowable range of any or all of the unknown parameters in suc-
cessive models.

The inversion of residual gravity anomalies can yield no better
results than the residual gravity anomalies themselves. There are
certain inherent ambiguities in the separation techniques for computing

residual gravity anomalies. The ambiguities are due to the fact that

e S



measuring techniques depict the influences of all the masses within

the measuring range of the instruments. Thus, it is impossible to
completely separate the regional and residual anomaly fields. Therefore,
care must be taken to minimize observational errors and provide the
best possible observed data.

This report contains a relatively complete list of the formulas
and computing schemes which form the basis for the solution of the
direct problem. However, there is only a partial list of formulas
for depth and density determination. Such formilas yield realistic
ranges of depth and density and do nct consticute a solution of the
inverse problem. However, they cen yicld valid first avproximations
of depth and density for use in gravitational modeling. Detailed
approaches to the solution of the inverse problem are beyond the purposce
and scope of this publiication and can be fouud in many of Lhe cited
references.

The two-dimcnsional and three-dimessicnal formulas ave prescnted
in the general formats used by Heiland (1968) and Talwani (1973). The
functional notation used with the three-dimensional formulas is identi-
cal with that presented by Talwani (1973).

1.1 Mathematical Development

1.1.1 The Three-Dimensiocnal Casc

Based on Newton's inverse souare lew, the pgravitational
potential U of a gravitating body of Volume V (Figure 1-1) is given

by:

BT AVALIBLE OO

e Y A P PN S




(1-1)
where:
r= (x2 +y2 + zz)x/z

{1-2)
av

dx dy dz (volume element, Figure 1-2)

Expressed in rectangular coordinates, the gravitational

potential of V becomes:

U=Kp JVJ I x2 +d$zdy+ g%)l/z (1-3)

In spherical coordinates, r, ¢, a (Figure 1-3), the gravi-

tational potential is then expressed by:
U=Kp f J J r dr cos¢ d¢ da (1-4)
v

Equation 1-4 is derived by making the following substitutions
in equation 1-3:
r= (x2 +y2+ zz)l/z (183 b
r? cos¢ dr d¢ da = dx dy dz (volume element (Figure 1=2))
r sing = z
The gravitational attraction, 8,s of a gravitating body
of volume V is the partial derivative of the potential U with respect

to z, and is defined as follows:

o xfi-xe[[] e o
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Figure 1-1

Gravitating Body of Volume,V
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Figures 1-2
Volume Elements

Cartesian Coordinates du
dz
y
Spherical Coordinates: #
rdo :
rcos¢ * da
5
Cylindrical Coordinates : dR’
|
|
!
o
ol T \
\\ dz
L ]




3 i Figure 1-3

Coordinate Systems

<

1
Z

Coordinates:
Cartesian: x,y,z
Spherical: ¢, r, «
Cylindrical: R’,z,
Conical: R', ¢, a
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Expressed in rectangular coordinates, Figure 1-1, equation

1-6 becomes:

&, £p IVI J (x% + y‘z,._ 22) 7% dx dy dz (1-7)

In a spherical coordinate system, r, ¢, o (Figure 1-3),

the gravitational attraction is given by:

g, =kKop j J J sin¢ cos¢ dr d¢ da (1-8)
v

Equation 1-8 is derived from equation 1-T7 by making the

following substitutions:
rd = (x2 + y? + 22)%2
r? cosd dr d¢ 4o = dx dy dz (Figure 1-2) (1-9)

r sin$ = z

Expressed in a cylindrical coordinate system, R', Z, O

Figure 1-3, the gravitational attraction is given by equation 1-10:

[ ] R” z dz @R~ 4o

& (1-10)

B = Kop I

\'

where, equation 1-10 is derived from equation 1-T by the following

substitutions.

(R*2 + 22) 2= (x? + y2 + 22)¥/? (1-11)

Rz dz dR” do = z dx dy dz (Figure 1-2)

In a conical coordinate system R',¢ ,0 (Figure 1-3), the




gravitational attraction is then given by equation 1-12.

g "Kp J I J sing dR” d¢ da (1-12) ;
v

Equation 1-12 is derived from equation 1-T by making the
following substitutions:
R*® 3(x? #y? + 228)%/? (1-13)
R“2 R” d¢ da = dx dy dz
R” sin¢ = z

1.1.2 The Two-Dimensional Case

Many topograph’c and geologic rtructures are elongated along

their strike. Such structures can often bte modeled by two-dimensional

approximations. The following paragraphs present the basic mathematical
development of the two-dimensional approach.

Two-dimensional structures are modeled by positioning the
coordinate axes such that the Y-axis is infinite in extent and is
parallel to the strike length, or elongated dimension, of the structure
to be modeled. The shape of the structure is then defined by a vertical
cross-section of area, A_, Figure 1-k.

The formula for computing the gravitational attraction of
two-dimensional bodies is derived by integrating equatioﬁ 1-T with

i limits from -« to +» in Y.

“? gv = K (o) J J z dx dz Jr: —(x*z + ygy.’_ 2“1)3/2 (l-lh)

The integral to be evaluated is then rearranged and becomes:

L BESTAVAUBIE COPY

S Es







+0 dy
iy =J Ty (1-15)
Jw(xz & z2)3/2 (1 + ;!_E_;z) /
The following substitutions are made:
2 au' o dy
tan u = Xz + 2 and coszu = (xz T zz)llz (1"’16)
Then, equation 1-15 becomes:
T= 3 /2 cosu du (1-17)
(x% + z2) | -n/2

H
»
+]N
N

Equation 1-17 is substituted into equation 1-1L and the

resultant formula is:

Equation 1-18 expressed in polar coordinates r, ¢ becomes,

(Figure 1-k4):

g, =2Kp J J sin¢ dr d¢ (1-19)
A

Two-dimensional formulas can be made to closely approXimate
bodies of finite extent by making "end corrections" for the finite
strike length, y (Figure 1-4). The "end correction" for an elongated
body of finite strike length is defined by the following integral

equation:
z dx dz

va =2Kpy LJ (x? + 22) /;z—;—zz—:—yr (1-20)




which is given in polar coordinates by:

A RZ + Y! :

Equations 1-20 and 1-21 cannot be integrated in closed form
and must be evaluated numerically. The vertical component of the
attraction (i.e., gravitational attraction) of the bodies discussed

in following sections will be referred to as "gravitational effect."
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2. THREE~DIMENSIONAL ATTRACTION FORMULAS

2.1 Some Simple Three-Dimensional Formulas

All the formulas presented in this section are derived from equa-
tion 1-6 of the preceeding section on mathematical development.
Talwani (1973) shows that many of the formulas can be expressed in

functional form as follows:
g, =Kp £(x,¥y,2) F(x/2) (2-1)

where f(x,y,z) is a variable function of x, y, or z and F(x/z) is a
dimensionless scaling function. The function F(x/z) is dependent on
the variation of x/z from zero to one. Iherefore, the evaluation of.
the formulas can be greatly ~implified usi « vlots of F(x/z) against
the ratios x/z and z/x.

2.1.1 Rectangular Volume Element

The dimensions of the volume elcniont are given as Ax, Ay,
and Az as shown in Figure 2-1. The gravitational effect of the volume

element is given by equation 2-2.

7

8y * K p Ax 4y Az xZ + yz'+ 22)37?
1 (2-2)
=K p Ax Ay Az z r;z—:—;7737r
where:
r= (x*+ y2)1/2
The function Fi(r/z) is then defined as:
Fi(r/z) = (1 + r?/22)=%/2 (2-3)

and is plotted in Figure 2-2.
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Figure 2-1

Rectangular Volume Element




Function F1




The volume element is not very useful in modeling real
geologic bodies or structures. It is included in this discussion for
the sake of completeness.

2.1.2 Sphere

The gravitational effect of a solid sphere is derived by
substituting the mass of a sphere for the mass of a volume element in
equation 2-1. Equation 2-4 gives the gravitational effect of a solid

sphere as shown in Figure 2-3.

%-n K pz (R/r)?d

%—n K p (R¥/2%) Fi(ri/z)

ry = (x2 + y2)1/2

The function Fl(rl/z) is given in Figure 2-2.

The mass of a solid homogeneous sphere is distributed
symmetrically about the center. Thus, the total and horizontal components
of the gravitational attraction are easily computed as shown in equations
2-6 and 2-T7.

& Total
&p = &, (r/z)

&y







—-v kbl

Horizontal Component

2]
==}
n

gp (ry/r) ' (2-7)

&n sin®

The equation for the gravitational effect of a sphere is
identical with that of an equivalent point mass concentrated at the
center of the sphere. The spherical model can be used to .wodel masses
of simple geometry or masses in which the geometry is poorly defined.
Equation 2-4 is the basis of depth range determination as will be dis-
cussed later. Equation 2-4 also forms the basis of the so-called
"point mass" approach to gravity field modeling.

2.1.3 Horizontal Line Element

The horizontal line element with a cross-sectional area MA
is parallel to the Y-axis and extends from y, to y, as shown in Figure

2-4. Equation 2-8 then gives the gravitational effect.

S LA 3y gyey TE i i

&y il Z (1+x /z ) \rz r,

(2-8)
o AA Y2 Y
=Kp Z F2 (x/2) s -;T
where:
ry = (x2 +y,2 + 22)1/2
ry = (x2 + y,2 + z2)1/2 (2-9)

Fa(x/z) = (1 + x2/2%)-?

The function Fz(x/z) is plotted in Figure 2-5.
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Figure 2-4
Horizontal Line Element
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The problem becomes a two-dimensional problem when the
line element is infinite in length (i.e., extending from y = == to

y = +©). Equation 2-8 is then reduced to:

g

L = 2K -A—i‘ F, (x/z) (2-10)

Equation 2-10 also applies to an infinite horizontal cylinder of cross-
sectional area AA.

The horizontal line element is used mainly to determine the
two-dimensional criterion'as will be shown in'later sections.

2.1.4 Vertical Line Element

The vertical line element of cross-sectional area M is
oriented parallel to the z-axis and extends from z; to z, as shown in

Figure 2-6. The gravitational effect is given by equation 2-11.

1 1 ,
KpM [(xz raEm AP R 7L Sl ZZZ)ITI]

g,

1

K p AA [{;2";7;:7717!‘- =z + 212)1/2] (2-11)

IL%AA- (cosB; - cosBy)

where:
r=(x*+ y2)1/2

Z1

0, = tan~! — (2-12)

i

z2
o S
r

02 = tan

If z; = 0, then equation 2-11 simplifies to:
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Figure 2-6

Vertical Line Element
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1 T
SR TR (2-13)

e = K p o [

= K—'}-A—A (1 - cosB,)

If z, = », then equation 2-11 becomes:
n

(2-1k)
¥ -K—%Aﬁ cos0,
If z, = 0 and z; = », equation 2-11 is further simplified to:
g = K—Lé& (2_15)

v x
The equations for the gravitational effect of a vertical line element
can be used to approximate the attraction of right vertical prisms
and cylinders (i.e., volcanic plugs and salt domes), as long as the
cross-sectional areas, AA, are small compared to the other dimensions
of the feature.

2.1.5 Vertical Rectangular Lamina

In Figure 2-7, the vertical lamina ab is defined by the
opposite corners a(x,0,0) and b(x,y,z;). Lamina ab is oriented parallel
to the YZ plane with dimensions y, z; and Ax. The gravitational effect

of lamina ab is given by equation 2-16.

Ax 1u2+ﬁ+zfvh-y}Uf+yHV2+ﬂ]
g, =Kp=ln T+ + 077+ 3T (& + ¥y T - y)

(2-16)

{(xz + zl)x/z {y + (x® + yz)l/z}]
ot oy ol TG R L R T M

~

The natural logarithm function can be expressed as follows:
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Figure 2 -7

Vertical Rectangular Lamina
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(1 + 2,2/x2) Y2 {1 + (1 + x2/y2)1/2}
G(y/x,z1/x) = 1n [ T+ (1+x2/y2+ 2,2y 172 ] (2-17)
then:
g, = K p & G(y/x,21/x) (2-18)

The function G(y/x,z,/x) is plotted in Figure 2-8.

The gravitational effect of an arbitrary rectangular lamina
gd with a top edge at z; and bottom edge at z, is given as:

g, = Kop i [G(y/x,22/x) - G(y/x,2,/x)] (2-19)

For a vertical lamina of infinite extent in y and ranging

in vertical extent from z = 0 to z = z,, equation 2-16 is simplified

to:
x2 + le
g, =Ko Ax In =7
|
=K op Ax In (1 + z,%2/x2?) (2-20) -
=K p Ax Fy(z,/x)
where:
Fa(z,/x) = In (1 + 2,2/x?) (2-21)

The function Fj3(z/x) is plotted in Figure 2-9.
If the infinite vertical lamina ranges in vertical extent

from z = 2z, to z = z2, the gravitational effect is given as:

g, = Ko Ax [Fy(z2/x) = F3(z1/x)]

ot & 222\ (2-22)

=K p Ax 1n ;2—;ji;r:

The vertical rectangular lamina is best used to model vertical or near

vertical dikes. Functions G and F3 are unsuitable for small values of x.
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Figure 2-9 {cont'd)

F3(z/x) (cont'd)




Figure 2-10

Horizontal Rectangular Lamina
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2.1.6 Horizontal Rectangular Lamina

The horizontal lamina ah in Figure 2-10 is oriented parallel
to the XY plane with dimensions x, ¥, and Az. Equation 2-23 then gives

the gravitational effect of lamina ah.

m Ct] VA I
g, =Kp & |5 -sin™! mronyTr a7 TRARTE:

]

Y12 3 Xz
7 2y gZ0Z T R ) z AR VA
x (x5 *7; z L il T o

Xy
=i
K p Az {tan z (XX +y,2 + zz)lrr]

Then the function in brackets in equation 2-23 can be expressed

follows:

Xy
Gy (xy,/xy,2) = tan~! z (Z+y,2 + z2)1/2

Therefore the gravitational effect of lamina ah is given as:

g, = Kplz Ga(xy1/xy12) (2-25)

The gravitational effect of an arbitrary horizontal lamina such as cf

is then given as:

g, =Kp bz [Gy(xy2/xy2z) = Ga(xy1/xy12) + Ga(xyy1/x1y12) = Ga(xyy2/x1y22)]
... (2-26)

where G;” = (n/2) - G, is plotted in Figure 2-11. The horizontal rec-

tangular lamina is used to approximate sills or layered sedimentary

features.
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Figure 2-11
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Figure 2-12

Thin Circular Horizontal
Disk Point On

The Axis Through The Center
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Figure 2-13
Thin Circular Horizontal Disk,
? General Expression
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2.1.7 Thin Circular Horizontal Disk, Points on the Axis Through

the Center

The disk is defined in a cylindrical coordinate system as shown
in Figure 2-12. The gravitational effect of the disk is given by equation

2"27.

0
[

. ]
s 2K p Az [l - Zzu-;-§17177J (2-27)

2 1K p Az (1-sin®)

2.1.8 Thin Circular Horizontal Disk, General Expression

Again the disk is defined in a cylindrical coordinate system,
see Figure 2-13. The gravitational effect of the disk is given by equation

2-280

g, =Koz uw (2-28)

The parameter () is defined as the solid angle subtended by the median plane
of the disk at the computation point P. The solid angle w has been deter-
mined empirically and published in template form by & number of investiga-
tors: Nettleton (1971) and Talwani (1973). The solid angle template in
Figure 2-1L4 is reproduced from Talwani (1973) with the permission of the
author and publisher. The template gives solid angles for solid circular
disks and cylinders as a function of the ratios x/R and R/z.

Equation 2-27 is an approximation based on the assumption that
all mass of the disk or cylinder is concentrated on the median plane.
Nettleton (1971) shows the approximation to be in error by -2% for
Az < (1/2) z and R/z = 1.

The thin disk has the same application as the horizontal rectangular

lamina with the added advantage of computational ease.
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Figure 2-15

Vertical Right Circular Cylinder of
Finite Depth, Point on the Axis

~3
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2.1.9 Vertical Right Circular Cylinder of Finite Depth, Point on

the Axis

The right circular cylinder in Figure 2-15 is defined in a

cylindrical coordinate system. Equation 2-29 then gives the gravitational

effect of the cylinder:
g, = 2 K p [(z2 = 21) = (222 #+ R})Y/2 + (2,2 + R?)Y/2]  (2-29)

2n7Kp(h-a+h)

h = (z - 2;)
a= (z,2+ Rz)x/z
b (zlz+R2)1/2
If z, = 0, then equation 2-29 is simplified to:
g, =27Kp[R+ 2z - (R? + z,2)1/2] (2-31)

For z; = o, equation 2-29 then becomes:

g, =2mKp[(R? + 212)Y/2 - z,] (2-32)

Then, for z, = 0, 2z, = «, equation 2-29 further reduces to:
g,=2mKpR (2-33)

2.1.10 Vertical Right Circular Cylinder, General Expression

The coordinate system used to define the cylinder is shown in
Figure 2-16. The gravitational effect of the cylinder is then given by
equation 2-~3k.
8, *KpRGs (2-34)
The function Gg is a very compléx hyperbolic sine function which is
impractical to evaluate.

Figure 2-1T7 gives Gs in template form as a function of the
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Figure 2-16

Vertical Right Circular Cylinder,
General Expression
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s oo iz

ratios x/R and R/z. The template is taken from Talwani (1973), and is
reproduced with the permission of the author and publisher.

The function Gs is given for an outcropping vertical circular
cylinder of radius R, depth z; with a vertical axis at distance x away
from the computation point. The effect of a cylinder lying between

depth z; and z; is then obtained by subtraction.

gvx,z ¥ sz % ng (2-35)
where:
8, = The gravitational effect of a cylinder between z, and iz.
1,2
&y = The gravitational effect of an outcropping cylinder of depth
2
zzo
gvl = The gravitational effect of an outcropping cylinder of depth
Z]_'

2.1.11 Right Circular Cone, Point on the Axis
Figure 2-18 shows the right circular cone and the coordinate

system in which it is defined. Equation 2-36 then gives the gravitational

effect of a right circular cone.

g, =2mKop (zp -2 - cos?B [(z,2 + R,2)1/2 o z01 -

5 (2,2 + 322)1/2 + (25 = zo) secB + z  cosB
z, cosf sin“f 1n z {1+ cosp) (2-36)

If zo = 0, equation 2-36 is simplified as follows:

Lo




Figure 2-18

Right Circular Cone, Point on

the AXxis
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z
o
SV =2n7Kop z2 [l - (er“' Rzzplz]
(2-37)
=27mKpz, (1 - cosB)
where:
R; = (Zl o~ ZO) tanf
(2-38)
Ry, = (Zz - Zo) tanf

Equation 2-39 gives the effect of a conical section between z; and z,.
'
g,=2TmK pyz; -2, - cos2B [(z,2% + R,2)1/2 Ba* * R12)1/2]
A
L
+ (R, cos?B sinB - z, cosB sinB) (2-39)

x - -
A {z,% + R,2)1/2 cosB + z; + R, sinB cosB - z, sin?g

[ (222 + Ry2)1/2 cosB + z, + R, sinB cosB - z, sinzs].}

2.1.12 Cylindrical Sectors and Compartments

The cylindrical sector or compartment is defined in a rectan-
gular coordinate system as shown in Figure 2-19. The gravitational effect
of cylindrical sectors and compartments are given by equations 2=40 and

2-41 respectively.

g, = Kup[h-(ry-rs)] (Sector) (2-40)

g, =Kap (rg +rp =1y = 1y) (Compartment ) (2-L1)
where:

d4; = (x,? + y,2)/2

dz = (x22 + y,2)1/2 (2-k2)

ry = (4,2 + 2?)1/2

L2




Figure 2-19

Cylindrical Sectors and
Compartments
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rp = rs = (4% + 22)1/2

[d;2 + (b + 2)2]1/2 (2-42)

[dzz b 2)2]1/2 cont.

rs

Ty

Right circular cylinders are used to model igneous plugs and
intrusions of finite cross-sectional areas, whereas, right circular cones
can be used to model topographic features. Conical sections, and cylin—v
drical sectors and compartments form the basis of some computation schemes
for terrain corrections.

2.2 Computation Schemes for Three-Dimensional Bodies of Arbitrary Shape

The computation schemes discussed in this section are based on
equations 1-7, 1-8, 1-10, and 1-12 in the section on mathematical devel-
opment. These equations define the triple integration in various coordinate
systems, as restated in equations 2-L3 to 2-U6:

Cartesian Coordinates (x,y,z):

- z dx dz
g, =Kp JVJ J W—%zj?ﬂ (2-43)
Spherical Coordinates (r,$,0):
f
g = K J J sing cos¢ dr d¢ do (2=L4k)
i v
Cylindrical Coordinates (R,z,0):

(R 2 dz dR du '
S U ) @ e i

Conical Coordinates (R,$,a):

g.=Kop f J f sind dR d¢ do (2-k6)
& v




e —

where the parameters x, y, z, r, R, ¢, and a are defined in Figure 1-3.
The triple integration can be carried out in several Vays.

The most obvious computation schemes involve summations over volume
elements, horizontal line elements,or vertical line elements. The
summation over the volume elements is a triple numerical integration
based on equation 2-2, whereas, the summation over the horizontal or
vertical line elements involves a single analytical integration based
on either equation 2-8 or equation 2-11 and a double numerical
integration. Though such computation schemes are arithmetically
simple, they suffer from two disadvantages. First, the schemes require
the body be divided into a large number of volume or line elements.
Second, the effect of a unit volume or line element is inversely pro-
portional to its distance from the origin. Therefore, the volume
or line elements must be of variable size in different parts of the body
to maintain a uniform degree of accuracy. The numerical integrations
in volume or line element computation schemes may be improved by replac-
ing the simple summation with some numerical quadrature technique such
as Simpson's Rule.

The most commonly used computation schemes for three-dimensional
bodies involve various combinations of analytical and nugerical inte-
grations to compute the combined effects of horizontal laminae, vertical
laminae, cylindrical wedges, or vertical prisms.

2.2.1 Schemes Based on Rectangular Vertical Laminae

The three-dimensional body is divided into a suitable
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Figure 2- 20

Verticall Lamina, YZ Plane
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number of vertical laminae. Then, each lamina in the plane x = xJ |

is approximated by a suitable polygon ABC...A with rectangular corners
and thickness Ax, Figure 2-20. The gravitational effect of lamina
ABC...A is then stated in terms of G(y/x, z/x), as given in equation
2-L47.

g, = Kp x [Gly;/xys a,/x,) = Gly; /%, 25, /%) +

g ' (2-47)
G(yi+2/xJ, Zi+2/xj)"""']

Thus, the analytical surface integration is carried out in y and z
with the numerical integration carried out along x. The vertical
lamina method is applicable to horizontally elongated bodies, but
it should not be used to bodies outcropping near the computation point. |

2.2.2 Schemes Based on Rectangular Horizontal Laminae

: The three-dimensional body is divided into a suitable
number of horizontal laminae. Then, an arbitrary lamina in the z = zJ |
plane is approximated by the polygon ABC...A with rectangular corners
and thickness Az, Figure 2-21. The gravitational effect of lamina ABC...A
is then stated in terms of G2 (xy/xyz) as given in equation 2-u8.

g, = Ko Az [Gz(xiyi/xiyizj) - Gz(x.+lyi+l/xi+lyi+lzj) |

1
(2-18) |
4 GZ(xi+2yi+2/xi+2yi+ezJ)""'] : |

The analytical surface integration is carried out in x and y and the
numerical integration carried out over depth z. 1

2.2.3 Schemes Based on Arbitrary Horizontal Polygonal Laminae 1

The equations presented in this section are based on the i

U7




Figure 2-21
Horizontal Lamina, XY Plane
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Figure 2-22

Arbitrary Horizontal
Polygonal Lamina
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original derivations by Talwani and Ewing (1960). The complete
step-by-step derivation is also given by Clermont (1967).

The body is approximated by a suitable number of polygonal
laminae. A given lamina in the z = z'j plane is approximated by the
polygon ABC...A of thickness Az, Figure 2-22.

The gravitational effect of the lamina ABC...A is first
expressed as a surface integral in cylindrical coordinates. The surface
integral is then transformed into a line integral over the polygonal
lamina boundary.

The gravitational effect of the triangular lamina P “BC

in Figure 2-22 is given by equation 2-49.

o z
L5 1 B
&, =50t [0 |3 - e | e

1

) J

The parameter r is given by equation 2-50:

Py

“Ssin (m-v, -0
sin ( s

(2-50)
a1 * )

The integral in equation 2-49 is solved to give the gravitational effect
of the triangular lamina P BC. The gravitational effect of the entire
polygonal lamina ABC...A is obtained by a summation over all the sides

of the n-sided polygon as given in equation 2-51.

n %, cosl,
Bl

. B R
g,=Kp Az Zl [ai+l a, - sin 75:111—2—17772

i= i h

; zZ COSYi
* gin” (p.! + gz !51 7!}

i ¢




Equation 2-51 is rewritten in terms of Xi5 ¥y and X410 V41 for

convenience in computer application, as shown in equation 2-52.

n
Kpk J [s cos™! t; - sin”! 0
i+l

Z . 8
q'l

e 2

1 J

2.8
sin=! z = 2)1/2]
+
(p; * + 24

(xiz + yiz)x/z
= 2 2y1/2
(x4 * ¥ oun )

= 2 L 2112
M T LR - PP

X, Xy TV V4

r, r,
. S .

1 (g = X)) +vi U5 - vy,)

Tgea FL, 102

i - >
+1 if sin (ai ai) 0

+1

-1 if sin (o

- <
ey = %) <O

The total gravitational effect is again obtained by numerical

integration along the z axis. This numerical integration can be performed
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using quadratic fitting techniques or Lagrange interpolation. Clermont

(196T7) gives a fully documented FORTRAN computer proéram based on

equation 2-49.

P S

Horizontal laminae are particularly applicable to modeling
three-dimensional bodies due to the fact that the gravitational effect
of a horizontal lamina changes quite slowly as the distance from the
computation point increases.

2.2.4 Schemes Based on Cylindrical Wedges

The three-dimensional body is divided into cylindrical

sectors or compartments. Each compartment intersects the RZ plane in

the rectangular cross-section ABCD and subtends the angle Aq at the Z-axis 3
as shown in cylindrical coordinates in Figure 2-23.
The gravitational effects of cylindrical sectors and compart-
ments are given by equations 2-40 and 2-41, respectively. Equations
2-40 and 2-41 are restated in cylindrical coordinates in equafions 2-5k
and 2-55.

g, = baKop [(R,2 + 2,2)Y/2 2y - (Rp2 + 2,2)1/2 + 2,)] (Sector)

ceese (2=5h)
and,

g, = Ao K p [(Rp2 + z12)1/2 - (Ry2 + zz2)1/2 - (R,2 + 212)1/2
+ (R;2 + 2,2)'/2] (Compartment) : (2=55)
The numerical integration through the total angle o around the z-axis

is best performed by some numerical technique of quadrature such as

Simpson's Rule.




Figure 2-23

Cylindrical Wedge
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Figure 2-24

Arbitrary Cylindrical Wedge
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Figure 2-25
Cross — Section of Arbitrary
Cylindrical Wedge
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An arbitrary wedge-shaped compartment is shown in Figure
2-24 subtending the angle Ao at the z-axis. The compartment intersects
the RZ plane in the n-sided polygon A“B“C”D” as shown in Figure 2-25.

Talwani (1973) suggests such wedge-shaped compartments be
modeled using a variation of equation 2-39 which gives the gravitational
effect of a conical section. The analytical integrations are performed
by applying equation 2-39 over all n-sides of the polygon A“B“C’D”,
summing, and then multiplying by Ao in place of 2m. The result is an

equation of the form of equation 2-56.

5 .
= N . 3 2 2 + 212 e 24+ R 2)1/2
g M K p 5‘1 Ziyq = %y ~ COS%R [(zi+l Ri+l ) (zi Ri ) ]

3=

+ (R, .2 sinB. - z. cosB. sin?2g,
(Rl COSBJ. By it 8; Bl)

2 2y1/2 % + ; M s 2
& [(zi+1 + R0 ) cosB, + z,,, * R, sinp, cosg, - z, sin Bi] e
2 2Y 1/ 2 . = 2 -
(zi + Ry )1/ cosB, + z; + R, sing, cosp, - z; sin?g,
where:
Ul ome) (2, - 2)
i o g
2 i+l
R e B Sl e o
AR Mt
B3 By

The numerical integration over the angle o is again best performed
by a numerical quadrature.
Cylindrical sectors and compartments and wedge-shaped compart-

ments are well suited to terrain correction computations as described

56

i
'
%




by Takin and Talwani (1966).

2.2.5 Schemes Based on Right Rectangular Prisms

The three-dimensional body is divided into a suitable number
of rectangular parallelopipeds or prisms. The gravitational effect
of each prism is computed by an exact expression such as equation 2-58.
The total gravitational effect of the three-dimensional body is then
the algebraic sum of the prisms making up the body.

The prism Po, in Figure 2-26 is defined by opposite corners
P (0,0,0) and o (x;y;z?. The gravitational effect of Po is given by

equation 2-58, expressed in rectangular coordinates.

z21 Y1
i ) S
B FRlaige S B RS WIE G v T

A Z1 X1
- gin (le + Z;Z)llz (x1['+ y1£j1[2

[; [(xlz + ylz ¥ zl2)1/2 = yl] [(xlz % yl2)1/2 + YI]
F W IZ+ y2 * 2,072 * 3,0 (%2 + 712072 - 71

* X1

1 [(xlz + YIZ 1 212)1/2 o x1] [(xlz > y12)1/2 + xl]
ty (51n (52 712 * 2072 + x1] L(x:Z + v )77 < x1] (2-58)

The complex functions in brackets are rewritten in functional notation

as follows:
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Figure 2-26

Rectangular Parallelopiped ( Prism)
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Z, Y.

-
| o
Gg(yi/xi, zi/xi) = L - gin™?! (xng+lz YT/ Tx +1y
i i (x.2 ) 1]7

T 5l

Z, X.
- sin-! .2 +lz yI7Z (%2 +1y LARYA
al i i ot

2 gei2 g or2Nan 2 g 289
y o 0" sy z; ) 7] (=, +9,2)
2

> 1n R V172 7 7V1/Z
W, 5 435 5.2 ¥l Hx, &y, 500

- [(xiz + yiz + ziZ)l/Z b2 xi] [(xiz + in)l/z
g5 of 7 7T YARYLA 7 V172

+ + + + =
2 [(x,* + ¥y, 2,000+ x, ] [k, Forl

Then equation 2-58 is simplified to the form of equation 2-60:

g, = Kpz Gi(yi/x1, 21/%1) (2-60)

where the function Gj; is evaluated directly from Figure 2-27 for given
ratios of x, y and z.

The gravitational effect of an arbitrary rectangular prism
oh is computed by adding and subtracting the gravitational effects of

eight prisms as shown by equation 2-61.

= < + - * + - +
€n - 8pn ~ Bpr * 8po ~ Bpy " Epe * Epy, ~ Bpy * Epy (2-61)

The subscripts denote opposite corners of the prisms in Figure 2-26.
Nagy (1966) presented refined versions of equation 2-58
suitable for modeling and terrain effect computations. Ihese equations
are advantageous because they contain none of the inherent errors asso-
ciated with approximate formulas. Also, the Nagy equations are readily

adaptable to computer applications.
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3. TWO-DIMENSIONAL ATTRACTION FORMULAS

3.1 Some Simple Two-Dimensional Attraction Formulas . i

The equations presented in this section are derived from equation |
1-1L4 in the section on mathematical development. The two-dimensional
bodies are defined in a rectangular coordinate system in x and z.

The angles ¢h are measured clockwise from the x-axis.

3.1.1 Infinite Horizontal Rectangular Prism

Figure 3-1 gives the geometrical and angular relationships
of an infinite horizontal rectangular prism. The gravitational effect

is then given by equation 3-1.

r P, r |
‘ 4 2 p
= ; —_ - — + - - - -
g, =2Kp sz In o7 - X In 7=+ 2, (2 = ¢4) - 2, (¢, ¢3)] (3-1)
where:
r, = (x,2+ Z!Z)l/z
r, = (x,2+ Zz2)1/2
ry = (x,% + z,2)Y/2 :
|
Ty = (122 + 222)1/2 (3"2) ;
2Ei
i I -
¢1 =75 - tan”! z
E 4
E i 1 X1 p
i P2 = g BRSO ]
- 2
i ,
) X i
i = )
= v w PR - 3
: ¢3 2 Zy
X2
; s 4 B
A P o z2
61
1
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Figure 3-1

Infinite Horizontal
Rectangular Prism
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When the pri

ent is close

&, *®

The right re

sm becomes thin (i.e., h <<< z,; = z,), the vertical compon-

ly approximated by:

2K ph [¢; - ¢3l (3-3)

ctangular prism can be used to model vertical dikes which

meet the two-dimensional criterion.

3.1.2 Infinite Horizontal Right Triangular Prism

The geometrical and angular relationships are defined in

Equation 3-4 then gives the gravitational effect.

Figure 3-2.
: T
g, = 2K p (- [x;sin i+ 2z, cos i] [sin i 1n T +cos i (¢ =¢,)]
Ty
+ X, 1In 5 + 2, (¢2 = ¢u) . S
J ;
where:
Rigass (Xzz + le)l'/z
r, = (x,2 + ZZz)x/z
Ty = (x22 + 2,2)Y/2
X2
R QRIPRNE = i
¢, 5 tan Z1
i =,
. ot e
b2 5 tan "
X2
S R (3-5)
b > tan 22
v a
cos i = T;r1;7;317r
sin i = -

(aZ + n2)1/7 63




Figure 3-2

Infinite Horizontal Right
Rectangular Prism




The infinite right triangular prism is used to model bodies which are
generally asymmetrical in cross-section.

3.1.3 Symmetrical Anticline of Infinite Extent

The symmetrical anticline is formed by the sum of two right
triangular prisms of infinite extent as shown in Figure 3-3. The

gravitational effect is given by equation 3-6.

Ea
gv=2K p (- [x, sin i] [siniln;;+ cos i (¢, + ¢3-2¢1)]

rz r's
cos i [sin i kn T2 +cos i (0, = ¢3)| * 22 (¢ = ¢3)

(x,2+ 2,2) 1/ 2
[(x, -a)2+ zz2]1/2

[(x,+a)2+ z22]1/2

X,
I . tan-! —
2 Z,




Figure 3-3

Symmetrical Anticline of
Infinite Extent
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3.1.4 Vertical Offset of Infinite Extent

The geometrical and angular relationships are given in

Figure 3-4. Equation 3-8 gives the gravitational effect.

g, =2Kp (z2 ¢2 -2, ¢, - %, 1n ;% ] (3-8)
where:
r;= (x,2+ zl2)1/2
r,= (x,2+ 2,2) 12
Ly 5" ey % .(3—9)
£

e -1 ==
¢2 ) tan Zy

For an h <<< z, = z,, equation 3-8 becomes:

g, =2Kop h[¢] (3-10)
where:
T 1 *1
=~ tan~! =~ (3-11)

3.1.5 Inclined Offset of Infinite Extent

Figure 3-5 gives the geometrical and angular relationships.

The gravitational effect is given by equation 3-12.

ra ,
g, = 2Kop (- [x; sin i + z; cos i] [sin i In T oos i (62 = ¢1)] ]
+ 22 ¢2 = z1 $1 (3-12)
where:
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Vertical Offset of Infinite Extent
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Figure 3-4
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(L -1
$2 = 5 - tan ¥

Geldart, Gill, and Sharma (1966) give an excellent discussion of gravity

anomalies of two-dimensional faults.

3.1.6 Inclined Prism of Infinite Extent

The inclined bed of infinite extent is formed by the dif-
ference of two offset slopes as shown in Figure 3-6. Equation 3-1k

gives the gravitational effect.

ra2 rj

2 e B g Bl
g, =2kKp [x; sin i + 2z, cos i] [sin i 1n e

Ty
+cos i (92 - 91 + ¢3 = ¢y)] +asin i [ln;;+ cos i (¢y - 93)]

+ 22 (02 = 04) = 21 (1 - b3)

where:




Figure 3-5

Inclined Offset of Infinite Extent




ry = (x,2 + 2,°

5o o A TR

ds

rs = [(x; - ¢)? + zz2]1/2

+

¥y ®Flx

a)? + Zl2]1/2

ry = [(x; +a-¢)+ 222]1/2

b'd
el G
¢1 > tan 1
Xy = €
= TR -1 i
$2 = 5 - tan o (3-15)
Xy + a
sl 2 =1
Ps = 3 = tan o
X3 + g = C
i) =
¢y =7 - tan™! %
cos i = =
3 [e® + (22 - 2,)%]%/%
29 = Zj

sin i = (C‘

% (22 a ZI)Z]I[Z

The infinite inclined prism is used to model inclined dikes or similar

structures.

3.1.7 Two-Dimensional Criterion

There are no geologic or geophysical structures that are

truly two-dimensional. However, structures do exist that are sufficiently

elongated in a single horizontal direction to be considered two-dimensional.

The use of two-dimensional approximations in modeling and interpretation

T




Figure 3-6

Inclined Prism of Infinite Extent
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is based on the fact that the gravitational effect of more distant
masses becomes negligible. It is important to estimate the error
resulting from making the assumption of two-dimensionality.

The maximum error resulting from a two-dimensional assump=
tion can be estimated by substituting a finite horizontal line element
for the two-dimensional body as shown in Figure 3-7. The distance r
is measured, in the xz plane, from the computation point or origin to
the point on the cross-section of the two-dimensional body farthest from
the origin.

£ = [(x+ Mx)?2 + (2 + 0z)2]/2 (3-16)

If the cross-sectional area of the body is small, 8x and 8y will be
negligible. Then,.r becomes the distance in the xz plane from the

origin to the line element and is computed from equation 3-1T.

r= (x2 + z2)1/? (3-17)

Then, for a given point on the X-axis, r is dependent on z and the
maximum percentage error p, in making the two~-dimensional assumption

is then estimated by equation 3-18:

p=(1-e) 100% (3-18)

where:
e = z;z-:f§77177 (3-19)

Table 3-1 gives the values of p for various ratios of yand r.
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Figure 3-7

Two — Dimensional Criterion




TABLE 3-1

Two-Dimensional Criterion

y 0 .51 r 1.5r or 3r br-{ Sr | 10r
p% | 100 } 55.3 ] 29.3 | 16.8 1 10.6 | 51 | 3.0 | 1.9} 0.5

3.2 Computation Schemes for Two-Dimensional Bodies of Arbitrary Shape

The equ&tions presented in this section form the basis for many
automated modeling and inversion schemes. Such schemes are used to
model two-dimensional bodies of arbitrary shapes and variable density
contrast.

3.2.1 Equations for Surface Integration;

The gravitational effect of a two-dimensional body of arbi-
trary cross-sectional area AS is obtained by integrating the effects
of infinite horizontal line elements of area dA over As, Figure 3-8.

The general form of the integral is restated in equation 3-20.

gv=2KpJAJGT-377dA (3-20)

s
Equation 3-20 is expressed in different coordinate systems as follows:

Cartesian Coordinates, (x, z):
. 2 dx dz
g, =2 K p JA J Z + 22
s

Polar Coordinates, (r,0):

g =2Kp J J sinb d6 dr
N A

S




Figure 3-8 .
Two — Dimensional Body of Cross — |
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Angular Coordinates, (x,0):

g =2Kop J J tan® d6 dx
N A

S

Angular Coordinates, (z,0):

8v=2KpJJd6dz (3-24)
As
The above equations can be evaluated by a simple summation of the effects
of individual horizontal line elements over the area As' However, the
gravitational effect of a line element increases very rapidly as its
distance from the origin decreases.
3.2.2 Eguations in Terms of Line Integrals
It is more practical and convenient to solve the two-dimen-

sional problem in terms of line integrals rather than surface integrals,
Hubbert (1948). Equations 3-22, 3-23 and 3-24 are rewritten as line
integrals in equations 3-25 through 3-28 where the line integral L
is in the cross-sectional plane of the body.

For the polar coordinates, (r,0) figure 3-9:

2 K p Ar J sin® 4o
L

2 Kp Ar [(cosBz - cosB;) + (cosBy = cosO3) + ...
s

n
2 Kp Ar : (cosei+

- cosei)
i=1

il




Figure 3-9

Polar Coordinates r, e
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For the angular coordinates, (x,0) figure 3-10:

g, 2KprItaned6
L

2 K p A 1n [

cosf, cosfy,
+ 1n e eTe
cos0, cos0,

n cos0. :
2K p & § [ln -——'—cosel+l] (3-26)
i=1 i

Equation 3-24 is the simplest and most convenient to use.
The integral can be expressed in terms of Az or A9 as is shown in equa~-
tions 3-27 and 3-28.
For the angular coordinates, (z,0) figures (3-11) and (3-12):
8, 2 K p Az J de
L
2Kop bz [(8, - 0,) + (6, - 63) +...]

2 K p Az

Or, by changing the order of integration, equation 3-24 becomes:
2 K p A6 J dz
L
2K p A8 [(22 = 21) + (24 = 23) + ...]

n
2Kpae } (
i=1

Zie1 - zi) (3-28)

Any of the integration schemes defined by equations 3-25

through 3-28 can be used to numerically evaluate the line integral L.
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Figure 3-11

Angular Coordinates 6, Z
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However, the most commonly used schemes are based on the approach of‘
Talwani, Worzel and Landisman, (1959). It is a practical and convenient
approach in which the two-dimensional cross-section is approximated by
an n-sided polygon.

3.2.3 Gravitational Effect of an n-Sided Polygon

The gravitational effect of an arbitrary two-dimensional body

of triangular cross-section PCD, Figure 3-13, is given by equation 3-29.

0.
gv =2Kop f - z d6 (3—29)
0

i
The gravitational effect of the polygon ABCD...A is obtained by inte-

grating equation 3-29 for each triangular cross-section and summing the

results, as in equation 3-30.

7

N X7 - zZ. X,
Sl Eata Il ARG Al
g =2Kp [ ¢ — > - -
- fog |1 S g R, =)
Fie1 :
= — - - -
[(244q = 2;) In T (g = %03} By =001y (3-30)
i
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Figure 3-13

Arbitrary n— Sided Polygon
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4. DENSITY DETERMINATION

4.1 Density and Porosity Defined

Density is defined as the ratio of mass to volume. If a given rock
sample is 100% solid state rock material, density is defined by equation
L-1:

(4-1)

<|=

o=
In reality, rock specimens are composed of solid state rock material,
and liquid, and/or air filled pore space. Therefore, equation L4-1 must
be rewritten as:

(M} + M, + My)

O, +V, + V,) (4-2)

where:
M;, My, M; = The masses of the solid state, liquid, and air spaces,

respectively.

Vis Vas ¥y The volumes of the solid state, liquid, and air spaces,
respectively.

Equation !i-2 points out the inherent ambiguity in density determination.
Therefore, in practice it is necessary to define density in terms of
some limiting relationships.

Precise laboratory measurements yield accurate values of the dry

and saturated densities Py and ps as defined in equations 4-3 and U-k:

Ml " M3

=T AV, g
My + M,

(=)

Ps ® V3 + Vo
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Porosity p is the ratio of the volume of liquid and air space in a given
rock sample to the total volume as given in equation L4-5.

Vo + V,

p% = ST (100) (4=5)

The true rock sample density oy depends on mineralogic composition,
porosity and degree of saturation and is defined by the following
range:

By B (4-6)
Ideally, large numbers of rock samples are measured and processed statis-
tically to yield a best estimate of the trve density of the rock sambles.

4.2 Generalized Density Eelstionships

Generalized density 1clationships are hest discussed in terms
of rock types (i.e., igneous, metamorphic and sedimentary). The density
of igneous and metamorphic rocks depends mainly on mineralogic composi-
tion because the porosity of these rocks is usually less than 2% - U4%.

The density relationships in sedimentary rocks are highly variable.
Carbonate rocks containing few or no solution cavities are the only
sedimentary rocks in which mineralogic composition is generally more
important than porosity. Pick, Picha and Vysko@il (1973) estimate the
following porosity ranges of sedimentary rocks, based on the degree of
consolidation. Unconsolidated sedimentary rocks have porosities ranging
from 25% to 90%. Sedimentary rocks consolidated by diagenesis (i.e.,
static processes of lithification) have porosities tending towards 18%,

whereas, sedimentary rocks consolidated by severe orogenesis (i.e.,
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dynamic processes of lithification) have porosities averaging about L4%.
In general, the density of sedimentary rocks increases with depth of
burial. However, this general relationship is variable and must be

determined locally.

Residual gravity anomalies are caused by lateral density or mass
variations in the earth's crust and upper mantle. If the earth were :
composed of material in layers of laterally uniform mass, there would

be no residual gravity anomalies no matter what the vertical variation.

Many gravimetric investigations are primarily dependent on a knowledge
of mass distribution and/or local isostatic conditions. However, mass
distributions may be difficult to determine and express due to some
inherent ambiguities. Regional-residual seperation techniques may not
realistically separate the regional and resicdual fields. Also, mass
distributions may be subtle continuous functions of position rather than
clearly defined discrete functions of position. Such ambiguities can
significantly affect the results of gravitational modeling and interpre-
tation.

An examination of the general integral equations for the gravita-

tional effect of two or three-dimensional bodies shows that density is

independent of the geometry of the body. In fact, the other unknown
parameters, depth and size are indirectly dependent on the initial density
assumptions. Therefore, the initial density approximations must be %

determined by methods independent of geometry such as the laboratory ﬂ

methods already mentioned. However, densities determined in the laboratory
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may not be representative of large masses of rocks in situ.

4.3 Nettleton's Method of Density Profiling

Nettleton (1939) describes a method of determining "effective"
densities from gravity measurements. The effective density is the
in situ density of large topographic masses due to a variety of influ-
ences such as: mineralogic composition, porosity changes in rock type,
and degree of isostatic compensation.

Gravity and elevation measurements are made along a profile usually
perpendicular to the topographic structure. Free-air gravity anomalies

are then computed at n observation points j=1, n,using equation 4-T:"

T et e } + =
le.| 18obs Yy * g, b, (4=T7)
d i} -J |
where:
3 . th .
’Agf‘ = Free-air gravity anomaly at j ~ point
; J
5 th 2
‘g ) = Observed gravity at the j  point
obs 3
i 4 th
Yj = Theoretical gravity at the J point
th
hj = Elevation at the j =~ point
6gf = Free-air reduction (0.3086 mgals/meter, elevation in meters)

A geophysically realistic range of densities is chosen, p,; to Pm? and
a Bouguer gravity anomaly profile is computed for each density using

equation L4-8.

o] e :'Agf)‘, Avevatt Py Gni)
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where:

21 K Py hJ = The Bouguer reduction for the ith density at the Jth
observation point, i=1, m.
If the elevation range is large, the Free-air gravity anomalies should
be terrain corrected for the surrounding topography. The resulting Bouguer
gravity anamaly profiles are plotted against distance and compared with
elevation, as in Figure L4-1.

Equation L4-8 shows the Bouguer gravity anomalies to be directly
proportional to elevation for all densities less than the true density
(i.e., p; < p,) and the inverse holds for (pi > p,). Thus, the Bouguer
gravity anomaly profile for the correct density is the one reflecting
the least dependency on elevation (i.e., the profile should be nearly
flat directly over the topographic feature).

Figure L-1 illustrates the method as applied over a hypothetical
seamount. Bouguer gravity anomaly profiles are plotted for four densities.
The profiles for p = 1.7 gm/cm?® and p = 2.2 gm/em?® clearly show a direct
relationship with elevation, whereas the profile for p = 2.k gn/cm?
shows an inverse relationship with elevation. Thus, the effective density
is pv = 2.3 gm/cm3 which agrees with the density used in constructing
the hypothetical seamount model.

b.4 Jung's Method of Density Determination

Jung (1943) expresses the Nettleton method in mathematical terms

that can be applied to surface distributions of points as well as profiles.

Gravity and elevation measurements are made over the area under study.
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Equation 4-T is then used to compute Free-air gravity anomalies at the
n-observation points and the Bouguer gravity anomalies are computed for
one of the densities p; (i=1, m) in the range of geophysically realistic
densities.

The method of least squares regression analysis is used to determine
effective density. The Bouguer gravity anomalies for each of the given
densities can be expressed as a function of elevation in the form of a
regression line by equation 4-9:

5,

1

= ai + bi h,j (h—9)

3

The Bouguer gravity anomaly for the ith density pi at
the Jth point

The intercept of the regression line for the ith density pi

The slope constant of the regression line for the 1th

density pi

First, the correlation coefficient, s is computed for each regression

line using equation L4-10:




1 (4-11)

e
n

If the correlation coefficient, ri is equal to zero, the anomalies ‘Agb)
ij

are uncorrelated for a given density pi. Thus, the density Di is the

real effective density of the topographic mass.

If the correlation coefficient is not equal to or sufficiently close

to zero, the density pi is not the effective density. Then, for ri # o,

the slope constant of the regression line bi is computed by equation L4~12.

Equation L4-9

where:

| )

+J

3

), - ),y -E

b, (4-12)
i n gk
Y [hJ - h)?
J=1
is then rewritten in the following form:
= | + 21K h - P 4-13
{ !td :Agb}iJ 3 oy = py) (4-13)

The Bouguer gravity anomaly computed using the true effec-

tive density pf at the Jig'computation point

The true effective density.
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The slope constant b, in equation 4-13 is defined by the following

equation:
b, =2m K P, - pi) (4-14)

Then, the correct value of the effective density pt is computed by

equation 4-15:

By i
= Di = (4=15,

P oTK

t
where, b, has been computed by equation L-12.

The Nettleton and Jung methods both give the effective densities
of the topographic structures or masses between the highest and lowest
elevations over the profile or area. The methods do not work well in

areas of low relief, areas of complex lateral density variations or areas

of considerable basement relief underlying the sedimentary layers.
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5. SOME SIMPLE TECHNIQUES FOR DEPTH DETERMINATION

The purpose of this section is to present some simple techniques and
formulas for the determination of depth and possible shapes and sizes.
There is no unique mathematical solution to the determination of the
mass distribution of the source of a residual gravity anomaly field.
Therefore, some realistic assumptions and/or estimations must be made
regarding the unknown parameters: depth, size and shape. Such assump-
tions are generalizations but yield realistic first approximations when
detailed knowledge of structure is lacking.

Cone of Solutions Defined

Nettleton (1971) suggests the "Cone of Solutions" as an initial
approach to the inverse problem. The "Cone of Solutions" states that
the spherical or point mass of given density is the deepest possible
singular mass configuration that can cause a given residual gravity
anomaly field. However, other lenticular or rectangular mass configura-
tions with that density are possible at shallower depths, as shown in
Figure 5-1. All possibilities in the "Cone of Solutions" should preserve
mass (i.e., the product of volume and density contrast must be the same).
The following paragraphs describe some inversion techniques based on
some possible simple mass configurations in the "Cone of Solutions." ﬁ
Each technique is then illustrated using the hypothetical residual gravity
anomaly profile shown in Figure 5-2.

Skeels (1963) shows that the deepest geophysically feasible mass

configuration must be a "vertical-sided mass" (i.e., infinite prism
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Figure 5-1
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or right circular cylinder for two- and three-dimensional cases, respec-

tively). He presents empirical charts for the rapid determination of

depths and widths of prisms or cylinders for a given density contrast.

5.2 Spherical Mass Configuration

The gravitational effect of the spherical mass, shown in cross-

section in Figure 5-3, is given by equation 5-1:

Sl RS
gl= 3T K pz Ty (5-1)

The depth to the center of mass, z, and radius of the sphere, R, are
determined by the procedure outlined below.

A profile of &, versus X is constructed through the maximum residual
gravity anomaly, as shown in Figure 5-3. The points A and A” on the x-axis
correspond to gv = 1/2 gv s Where gv is the maximum value on the residual

o o

gravity anomaly profile; and the distances |OA| = |0A”]| = X1/2. Then,

the depth to the center of mass is given by equation 5-2:

X1/2

b A T Ve
= 1.305 x1/2 (5-2)

If the density or density contrast is known, the radius R is given by
] equation 5-3.

: ta 2 1/3
1 32 gv /
& o)

: W X p

(5-3)

v

v

4 The "equivalent sphere" of a given density or density contrast is

g the spherical mass at depth z which will most nearly approximate the
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residual gravity anomaly profile. In the model illustrated in Figure 5-3,
the density p_ is assumed to be 0.5 gn/cm®. The "half-width”, X172, and
maximum residual gravity anomaly, g, » are measured from the profile:

Xy1/2 = 3.07 km and g % T mgals. E:uations 5-2 and 5-3 yield the follow-

o
ing values for z and Rt =z = 4.00 km, R = 2.00 km.

5.3 Mass Distributed Along an Infinite Horizontal Cylinder:

The gravitational effect of the infinite horizontal cylinder shown

in cross-section in Figure 5~4 is given by equation 5-k.

2

g=2‘n’KQzR (5-4)

v b el
The profile of g _versus x is constructed such that loa| = |oA”| = x,/,.
Then, the depth to the center of mass is given by equation 5-5:

z = X1/2 (5-5)
The density or density contrast is then used to compute the radius by

equation 5-6:

1/2
g, /

S WL - P
B = | o (5-6)

With the same values for P, X3 2 and g, equations 5-5 end 5-6 yield
the following values of z and R for theoequivalent infinite horizontal
cylinder: z = 3.07 km and R = 1.01 km.
5.4 Mass Distributed Over an Infinite Horizontal Plane:

The infinite horizontal plane may be substituted fo£ a very thin
two-dimensional rectangular prism as shown in Figure 5-5. The approxima-
tion is valid provided the thickness of the prism t is small compared

with its width w (i.e., t<<w).
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The surface density constant, p, of the infinite plane is defined in

terms of the surface density of the two-dimensional prism by equation 5-T.

H= p (Zz = zl) (5-7)

The gravitational effect of the infinite plane is defined by equation 5-8:

g

o= ey foat (S22 o )]

2Ky ¢ (5-8)
where x is the distance from the computation point to the near edge of
the infinite plane.

The points A, A“, and B and B” on the x-axis correspond to g, =‘Q/a

o
X,/ and [OB| = |0B”| = x,/,. The depth to the infinite plane is then

g, eand g_= (1/4%) gvo, respectively. Then, the distances [0A| = |0A“| =

given by equation 5~9:

' (xf/“ i x%/z)

z = (5-9)
2x1/2 5 9
Then, the width, W, of the plane is determined by equation 5-10.
We=2 (x3/, - 22)1/2 (5-10)

Equation 5-T7 can be used to compute u only if values are known for z,; and
z,. However, if z; and z; aren't known, u, can be evaluated from equation

5-8 using z and g, 8as shown in equation 5-10:

(5-11)
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&y

o)
= (5-11)
4 K tan™!? (5%) (cont.)

With Xy/p = 3.07 km and gv = T mgals, equations 5-9, 5-10 and 5-11

o
yield the following values for z, W and y for the equivalent horizontal
infinite plane: 2z = 2.53 km, W = 3.L449 km, p= .43973 gm/cm?® (km).

The spherical mass and infinite plane are the two limiting cases

in the "Cone of Solutions", whereas the infinite horizontal cylinder

is an intermediate case for an assumed density or density contrast.

Thus the center of mass of the mass configuration causing the residual
gravity anomaly profile in Figure 5-2 must be at a depth between 2.53 km
and 4 km.

The methods just discussed apply to symmetrical residual gravity
anomaly profiles caused by either spherical or two-dimensional mass
distributions. Asymmetrical residual gravity anomaly profiles must be
handled by more refined techniques such as the characteristic curve
method described by Grant and West (1965).

5.5 Mass Distributed Over an Infinite Horizontal Half-Plane:

The infinite horizontal half-plane may be used to approximate a
vertical fault as shown in Figure 5-6. The thickness of the half-plane,
is then the vertiecal displacement along the fault. The one-limbed
residual gravity anomaly profile shown in Figure 5-T7 is characteristic
of a vertical fault.

The surface density constant is again defined by equation 5-T.

The gravitational effect of the infinite half-plane is given by equation 5-12.
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=2Kp-;-'-tan-1§ (5-12)

€y

where x is the distance from the computation point to the edge of the

infinite half-plane.

The point O on the x-axis must be determined graphically because

T T VD

it corresponds to the inflection point on the 8, profile directly above

the edge of the half-plane. The points A and B on the x~axis correspond

; to gv

A
is given by equation 5-13.

=(l/2)gv and ng = (3/2) &, » respectively, and the depth z
o o

E |0A| = |OB| =z

1

‘ (5-13)
Equation 5-12 is then evaluated at the inflection point to compute a

value for U, as shown in equation 5~1bL:

123

] 7
3 M= (5-14)

Equation 5-13 and 5-1k4 yield the following values of z and p for the
residual gravity anomaly profile in Figure 5-7: 2z = 1 km, u = .14906 x

10°% gm/cm2.
5.6 Estimation of the Depth to the Upper Boundary of a Body of Arbitrary

Shape:
‘ The general solutions to the problem along with complete derivations

are given by Bott and Smith (1958). The equations they derived are

valid in a general sense and are applied to the hypothetical residual

gravity anomaly profile.
The residual gravity anomaly profile referenced is given in Figure 5-2.

e ——————
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Two points g, and &y » with corresponding x. and x, on the x-axis,

1 > il 2
are chosen such that &, > 8, Then, A is defined by equation 5-15
1 2
(A >1):
gv;
X B S—— (5-15)
v,

The maximum possible depth to the upper boundary of the body is given

z 5_-11;47;-{‘1-{- AAE (5-16)

Equation 5~1T7 gives z for m > 1 where m is given by equation 5-18:

by equation 5-16:

< mZ7 s ‘: 1) 177 (5-17)

L

The parameter w is an arbitrary interval on the x-axis.

2gv(x)
= (5-18)
o [gv(x+w) ki sv(x—w)]

If the maximum values of the residual gravity anomaly and horizontal

gradient are known, the depth z is given by equation 5-19:

.86 gV max

% (5-19)

x| max

N
ia

The same derivations yield the corresponding equations for two-

dimensional bodies, with m and A already defined.

2 ¢ Bzl /e (5-20)

W

2 & D) 1/T (5-21)
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g
z < .65 T2 (5-22)
£
ox | max

Equations 5-15 and 5-16 yield a value of z < 5.1 km for the residual

gravity anomaly profile in Figure 5-2, where [x; - X,| = 5 km.

5.7 Depth to a Density Interface Along a Profile With Gravity and

Borehole Information:

The density interface and associated residual gravity anomaly
are shown in Figure 5-8. There are boreholes along the profile at x,,
X, and xn, and the interface outcrops at x,,such that the depths of the
interface z(x,), z(x;) ... z(xn) are known.

The interface is then expressed in the form of a series as in

equation 5-23.
a(x) = A+ A(g) + Ay(g )2 + . . . + A (g)" (5-23)

The equations are set up as in equation 5-2k.

)i

+ + LR SR
2y = A Al(svl) A%(gvl) +Ai(gv]l

N
()
I

sl g A1(8v2) + Az(gvz)2 %l a® Ai(gvz)i (5-24)

. . . . .

)i

N
n

. . - 2 .
A+ Ailg, )+ Azlg, )2+ . . . +A (g, .
n n n

The solution of the set of equations yields the coefficients A;, A2 ... Ai'
The solution is unique when the number of coefficients equals the number

of observation points (i.e., i = n) and can be solved as simultaneous

equations.




Figure 5-8

Density Interface With Boreholes
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However, the solution is not unique when the number of observation points
is greater than the number of coefficients (i.e., n > i). The best
fit solution is then obtained by the method of least squares.

If the depth is known at many points along the profile, it may
suffice to graphically interpolate the shape between the known depths,
using the residual gravity anomaly profile as control. Both the graphical
and analytical methods are independent of density.

5.8 Depth to a Density Interface Along a Profile From Residual Gravity

Anomalies Alone:

The residual gravity ancmaly profile and density interface are shown
in Figure 5-9. The method requires that the densities p,; and p, be
known or reasonably approximated. The density contrast is defined by
equation 5-25:

p. T pg = P2 (5-25)

(o
For basin structures, p, > p; and Pe is negative.

The first approximation to the shape of the interface is determined
by computing depths zg at n-observation points along the x-axis by
equation 5-26:

&y

i

I c—— { G
i 2o 0o (5-26)

Z

The theoretical gravity anomalies lgv ) are computed for the current
kli

depths using appropriate equations, i.e., Talwani's equation for the

gravitational effect of two-dimensional n-sided polygon, equation 3-31.




Figure 5-9

Density Interface With
Gravity Data Alone
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The theoretical and observed residual gravity anomalies are compared

and differences computed using equation 5-2T.

e = 50, = 5],

Difference between the observed and computed residual

. . Jth 5 . th
gravity anomalies at the 1 observation point for k
iteration.
Observed residual gravity anomaly at the ith observation
point.

(gv ) Computed residual gravity anomaly at the ith observation
kil
point for the kth iteration.

Updated values for the depths are then computed using the gravity

differences as shown in equation 5-28.

vk)i

Tt T Aemiye T 9w K oo

(58

Zies = The updated depth at the ith observation point for the kth
iteration.
The procedure is iterated until the gravity differences meet some
minimum criterion. Qureshi and Mula (1971) present a coﬁplete derivation

and discussion of the method based on algorithms suitable for use with

digital computers.
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5.9 Calculation of Excess Mass:

The excess mass, M, is computed using the integral equation 5-29

which is based on Causs' theorem.
o] o0
J J g, (xo¥) ax dy = 2 m KM (5~29)
-0 -0

Equation 5-29 is entirely independent of shape and density.
In theory the integrations must be carried over the entire XY plane.
However, the actual ranges of integrations are -X to X and -Y to Y
when the origin is placed near the center of the residual gravity anomaly
in the XY plane. The ranges in X and Y represent the limits of data
or the distances at which the residual gravity anomalies become negligible.
Equation 5-29 is rewritten with a remainder term.
X X
enkn=[ | & o) ey +r xR (5-30)
=X /-
If the center of mass of M is at (X,y,z), the remainder term is approx-
imated by equation 5-31, provided that [x| << X and I;W << Y:

XY
-Z- (xz + Y2)1/2

R(X,Y) =2 mKM- 4 GM tan—} (5-31)

Equation 5-32 is then derived by substituting equation 5-31 into equation
5-30:

Y
J sv(x.y) dx dy
=Y 2
M= T (5-32)

L K tan~! TREr IO T

The value for Z is estimated by the half-width method from equation

i
ta] >

5-2 for three-dimensional bodies (i.e., z = 1.305X1/2). Equation 5-5

is used to compute z for two-dimensional bodies, z = X;/z and equation

11k
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5-32 becomes:

: x i
3 &, (x) ax :
: %n 1;&____f:___ (5-33) 1

4L K tan

N[ [

Simpson's Rule or some similar numerical quadrature method is used
to evaluate the integrals in equations 5-32 and 5-33 if the observed data
points are evenly distributed. If the observed data points are not evenly
distributed, a template method must be used as described by Grant and
West (1965).

The inversion methods discussed in this section are used to compute

first approximations to the unknown parameter controlling depth, size
and shape.
More complex techniques are beyond the scope and purpose of this

report. The reader interested in such techniques is referred to the

bibliography.

i
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6. CONCLUDING REMARKS

The formulas and techniques presented in this publication form the
analytical basis of gravitational modeling and interpretation. In appli-
cation, several theoretical and practical aspects must be considered.

The theoretical aspects refer to the inherent ambiguities due to
the assumptions regarding density or mass distributions as well as
size and shape. Practical aspects to be considered are: the amount
and accuracy of the gravity data; the resolving power of regional-
residual separation techniques; the amount of time and manpower available;
the kinds of available digitizing and computer equipment; the availa-
bility and amount of the other geophysical data which can be used as
control; and most important, the purpose of the investigation.

Most systems of gravitational analysis involve iterative combinations
of gravitational modeling and interpretation. First approximations
of the unknown parameters are made using gravity and other available
geophysical data. The first approximations are then used as input in
appropriate two- or three-dimensional attraction equations and the gravi-
tational effects are computed over a profile or area.

The computed gravitational effects are compared with the observed
residual gravity anomalies and adjusted at each computation point by
some appropriate mathematical technique (i.e., analysis of Fourier
components, Fourier convolution, method of least squares minimization

or non-linear optimization). The updated model, based on the adjusted

unknown parameters, is then analyzed in terms of geological and geophysical
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possibilities. It is often necessary and useful to compute and analyze

several possible models. Thus, the analytical techniques of gravitational
analysis provide generalized schematic mcdels. Detailed structure
must then be hypothesized on the basis of experience and intuitive

Judgment.
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