Stanford Artificial Intelligence Laboratory

Memo AIM-296
N gomputer Science Department /) £y, / = (/
eport No. STAN-CS-77-592 : ' - - 7.
b
ql‘ Lé/.} A BRACTICAL,F ORMAL SEMANTIC DEFINITION :
O § AND VERIF ICATION SYSTEM FOR TYPED I:I_S_g P et
T ' b Sy
C<: / } L\ | RobertFartwright, Jro~
: “ |
(7 Dockeral th |
N < TAN-¢5-7]-594, /
LT I
. AT M=~ (()
. 3 o 9 s
T L c A ” ey
,? N\b H { ¥ / A& PH (S8 oot N Q-qq \ VJ_Q,,_.
g™ Research sponsored by '

National Science Foundation 0CT 28 1977

and
Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University

- n..q"
)

///f)

 a e e e — —

SN

Stanford Artificial Intelligence Laboratory r/ December 1976
Memo AIM-296

Computer Science Department /
Report No. STAN-CS-77-592

A PRACTICAL FORMAL SEMANTIC DEFINITION
AND VERIFICATION SYSTEM FOR TYPED LISP

by
Robert Cartwright, Jr.

ABSTRACT

N

Despite the fact that computer scientists have developed a variety of formal methods for proving
computer programs correct, the formal verification of a non-trivial program is still a formidable
task. Moreover, the notion of proof is so imprecise in most existing verification systems, that the
validity of the proofs generated is open to question. With an aim toward rectifying these
problems, the research discussed in this dissertation attempts to accomplish the following
ob jectives:

l. To develop a programming language which is sufficiently powerful to express many
interesting algorithms clearly and succintly, yet simple enough to have a tractable formal
semantic definition.

2. To completely specify both proof theoretic and model theoretic formal semantics for this
language using the simplest possible abstractions.

8. To develop an interactive program verification system for the language which automatically
performs as many of the straightforward steps in a verification as possible. [continued next page)

This research was supported by the National Science Foundation under Contract NSF MCS765-
00327 and Advanced Research Projects Ag}ﬂ of the Department of Defense under ARPA Order
No. 2494, Contract MDA903-76-C-0206. T he views and conclusions contained in this document
are those of the author(s) and should not be interpreted as necessarily representing the official
polictes, either expressed or implied, of Stanford University or any agency of the U. S. Government.

Available from University Microfilm, P. O. Box 1346, Ann Arbor, Michigan 48106.

NSRS ——

e

WO 4% AT ’vfw".‘ﬂ/
‘ & iakde i
K2 $

The first part of the dissertation decribes the motivation for creating TYPED LISP, a variant of
PURE LISP including a flexible data type definition facility allowing the programmer to create
arbitrary recursive types. It is argued that a powerful data type definition facility not only
simplifies the task of writing programs, but reduces the complexity of the complementary task of
verifying those programs.

The second part of the thesis formally defines the semantics of TYPED LISP. Every function
symbol defined in a program P is identified with a function symbol in a first order predicate
calculus language Lp. Both a standard model Mp and a natural deduction system Np are defined
for the language Lp. In the standard model, each function symbol is interpreted by the least call-
by-value fixed-point of its defining equation. An informal meta-mathematical proof of the
consistency of the model Mp and the deductive system Np is given.

The final part of the dissertation describes an interactive verification system implementing
the natural deduction system Np.

The verification system includes:

1. A subgoaler which applies rules specified by the user to reduce the proof of the current goal
(or theorem) to the proof of one or more subgoals.

2. A powerful simplifier which automatically proves many non-trivial goals by utilizing user-
supplied lemmas as well as the rules of Np.

With a modest amount of user guidance, the verification system has proved a number of
interesting, non-trivial theorems including the total correctness of an algorithm which sorts by
successive merging, the total correctness of the McCarthy-Painter compiler for expressions, the
termination of a unification algorithm and the equivalence of an iterative algorithm and a
recursive algorithm for counting the leafs of a tree. Several of these proofs are included in an
appendix.

This thesis was submitted to the Department of Computer S.. - 4 the Committee on
Graduate Studies of Stanford University in partial fulfillment of the 1 irements for the degree
of Doctor of Philosophy.

mﬂu Sl i

PREFACE

This dissertation is not aimed at the casual reader. A shorter, less rigorous, and much more
readable account of the same research appears in the Proceedings of the T hird International
Colloquium on Automata, Languages, and Programming, (1976) Edinburgh Press, Edinburgh,
under the title "User-Defined Data Types as an Aid to Verifying LISP Programs.”

1 would like to thank my advisor David Luckham for his patient guidance and

encouragement, and my colleagues Derek Oppen, Nicholas Littlestone, and Richard
Weyhrauch for their helpful advice and criticism. Al the mistakes are mine.

TABLE OF CONTENTS

Chapter 1. INTRODUCTION ittt ittt oo oo a s oes s 1
Section 1. Research Objective. 1
Section' 2. "Previous Work:: 550 . o e e e 2
Section 8. Motivation for Creating TYPEDLISP. 4
Chapter 2. TYPEDLISP . . . v ssi dled s nmaianmsml oo aiain s aors 8
Section 1. Informal Descriptionof TYPEDLISP 8

1. Data TypeDefinitions00 e v oo v o anooeanaiosns 8

2 Eunction! el It ton s e e 10

L) BT 007 0 G 0 G0 0 O G O OB 00 0 Ol GG G G D P 11
Section 2. Stax of TYPEDLISP. ¢« o v v so s s 86 60 60 anasoa 13
Section 3. Semanticsof TYPEDLISP 20

1. Assertion Language Syntax 0.t e e e e e e . 20

2. Assertion LanguageSemantics.l o L. 23

3. The Semantics of Program Compeosition s
Chapter 3. A FORMAL DEDUCTION SYSTEM FOR TYPEDLISP 33
Section I. Introductoni. . . ¢ . . o o ve s e e v s e e e e e e e 33
Section 2. Ap: An Axiom System for the Standard Model. 33
Section 3. Completeness of the Axiom System Ap 11
Chapter ¢ A NATURAL DEDUCTION SYSTEM FOR TYPEDLISP. 43
Section I. IntrodUction’s . . . o . o G v b e s e s e e b e e e e e 43
Section 2. Expression SimplificationRules 44
Section 8. Formula Simplification Rules 47
Section 4. Goal Simplification Rules 49
Section 5. General Proof Rules. 49
Chapter 5. THE IMPLEMENTED VERIFICATIONSYSTEM 54
Section b, INTOAUCHON. © 0. . i v v le e sib e 6 0 ea b s s e e e 54
Section 2. Structureofthe Verifier. 54
Section 3. Demonstration of the Verifier 56
Section 4. Capabilities of the Verification System. 70
Chapter 6. FURTHERWORK . . . v i« i vo v v s v 5o o s st v o605 o3 7
Section 1. Improving the verification systemn 7
Section 2. Proving Theorems About Partial Functions 7
Section 8. Extending TYPEDLISP i iive n”

iv

it
[

REBPERENCGES: . . . o « ciuiic o a6 ni i aisi s snh s el e o e sl o et s 73
i APPENDIX I. SAMPLEPROOFS. A S 74
| Section 1. Example I: Iterative REVERSE 74
Section 2. Exampie 2: Total correctnessof FLATTEN. 77
i Section 3. Example 3: Total Correctness of Sorting by Merging 83
i Section 4. Example 4: McCarthy-Painter Compiler for Expressions 120
APPENDIX 2. TLVUSERSMANUAL., 137
? Section §. TLV Conventions v v vl oial v s vimv v s s 0m 5o o s s 137
Section2. TLV UserCommands00t teeenenen.. 140
BOution & URGION TEN. 0 .00 il cn bk e 5 s e s SRR Wt s 142
Section 4. TYPED LISP Syntax Error Messages 144
LoMINOET ERIOfS. . o 0 o b o v w a v tn o e e wiisl et ial e dee ok denist e etin e 144
T MRPE RIS . . v s s sk e R e e R ek e e 144
Section 5. TYPED LISP Verifier Command Errors. 147
APPENDIX 8. CALL-BY-VALUEFIXED-POINTS. 150
!
b
v

CHAPTER |

INTRODUCTION

1.1 Research Objective

During the past fifteen years, computer scientists have developed a variety of techniques for
proving programs correct. Unfortunately, none of these methods have reached the stage where
they are practical programming tools. The verification of typical production programs is still
far beyond the capability of existing verification systems.

Program verification researchers have frequently ignored practical considerations.
Many verification methods employ complex, counter-intuitive formalisms which confuse most
computer scientists and totally mystify ordinary programmers. Proofs in these systems tend to
be unnatural and very difficult to understand. There is little prospect that they will ever be
widely used in practical verification systems. Still other approaches to verification try to
reduce the correctness of a program to some other logical problem better suited to
mechanization (such as the validity of a single predicate calculus formula). Unfortunately,
mechanically "solving” the transformed problem for a non-trivial program is an unfeasibly
huge computation (infinite if the program is incorrect). Moreover, the transformed problem
often is so unintelligible to the programmer that it is virtually impossible for him to
solve--even with the aid of an interactive theorem prover.

Another distressing trend in program verification research has been a careless disregard
for firm logical foundations. The notion of proof is so vaguely treated in many verification
systems that the “correctness proofs” generated by the systems are of dubious value. Proving
a statement using such a system provides little assurance that the statement is true.
"Verifying” a program only reduces the correctness of the program to the correctness of the
verification system involved (including both the methodology and the proof-checking
programs). Computer scientists have been very lax in scrutinizing proposed verification
methods for logical flaws.

In the machine implementation of verification systems, there has been far too much
emphasis placed on total automation. Most implemented verification systems are almost
completely automatic, but none of these automatic systems can verify more that a very limited
set of simple programs. Despite intense research efforts, the performance of theorem proving
programs still does not approach the level required for automatic verification of non-trivial

L1 Research Ob jective Page 2

programs. Furthermore, there is no existing methodology which suggests that sufficiently
powerful theorem provers are on the horizon. Completely automatic verification fails to
exploit the programmer’s intuitive understanding of the programs he creates. Interactive
verification controlled by the programmer is a much more promising approach which has not
received sufficient attention from research< in the field.

With these criticisms in mind, my goal has been to develop logically sound, interactive
verification methods which show promise of having practical applications. In order for a
programmer to guide a verifier through a proof of program correctness, he must understand
the proof steps generated by the verifier. Consequently, the formal system used by an
interactive verifier should be as intuitively transparent and natural as possible. For this
reason, | selected first order predicate calculus with equality as the basis for my formal system.
Proofs in well-designed predicate calculus natural deduction systems (originally developed by
Gentzen) closely correspond to their informal counterparts. Furthermore, first order predicate
calculus is a very well understood formal system which has received near universal acceptance
among mathematicians as the appropriate system for formalizing mathematical theories.

Programming languages vary widely in their suitability for verification. Ideally a
programming language should permit the programmer to directly formalize the simplest, most
abstract description of the algorithm he wishes to implement. On the other hand the language
should have a brief, tractable formal definition so that we can be confident we have correctly
defined its semantics. Consequently, I chose PURE LISP as the basis for my verification
system’s programming language. PURE LISP is sufficiently powerful to concisely express
many complex algorithms, yet it has a simple formal definition. My initial idea was to
develop a first-order theory of LISP S-expressions analogous to Peano’s axioms for the
natural numbers, and then to define the semantics of LISP programs by treating each LISP
function as a new primitive function satisfying its defining equation. In other words, for each
function definition f(x},..xp) » 7(x|,..Xp) in a LISP program, where f(x|,...xp) is a LISP
expression, the axiom f{x|,...Xp) = 7(x},..Xp) is appended to the theory. Finally, I planned to
develop a natural deduction system for proving theorems in the theory and implement that
system in an interactive verifier.

1.2 Previous Work

To my knowledge, R. Boyer and] Moore [Boyer and Moore 1975; Moore 1975] are the only
other computer scientists who have pursued a similar line of research. Their ob jectives,
however, were quite different from mine. Their primary goal was to build a completely
automatic verifier which could prove as many simple theorems about LISP functions as
possible. To accomplish this ob jective, they defined the semantics of LISP using an approach
very similar to my own. First, they created a first-order theory of S-expressions built from
the single atom NIL. Then they defined the semantics of a LISP program P containing only
total functions by adding the axiom flx,, .., x) = *(x,, .., x) for each function definition

1.2 Previous Work Page 3

LTRSS SO LR {¢ ST xn) in P. Their verifier implements a simple set of proof rules derived
from these axioms, including rules which perform symbolic evaluation and induction on the
structure of the data. A set of heuristics determines which rule is applied at any given point
in an attempted proof.

The Boyer-Moore verifier can automatically prove a surprisingly large number of
simple theorems, clearly demonstrating the effectiveness of structural induction and symbolic
evaluation in program verification. As a special-purpose automatic theorem prover, Boyer
and Moore’s verifier is an impressive achievement. However, when judged as a PURE LISP
verification system, their work suffers from a number of shortcomings, including the
following:

1. Their verifier either proves a theorem totally mechanically or fails completely--there is no
provision for user guidance. Some very simple LISP theorems cannot be proved using
the Boyer-Moore verifier. A typical example of a trivial theorem the Boyer-Moore
verifier cannot prove is the following theorem about the standard LISP function
APPEND [Boyer 1975}

Vx [APPEND(x,APPEND(x,x)*APPEND(APPEND(x.x).x)]
where
APPEND(x,y) s IF NULL x THEN y ELSE CONS(CAR(x),APPEND(CDR(x).y)).

2. Their deductive system is not designed to prove arbitrary theorems about arbitrary

PURE LISP programs. Their induction rule, for example, is quite weak, being limited to
several restricted forms of step-wise induction on S-expressions (binary-trees).
Consequently, proofs requiring more general forms of induction (such as the correctness of
a merge sorting algorithm presented later in this paper) are beyond the capabilities of
their deductive system.

3. To simplify the process of generating proofs, Boyer and Moore limit the data domain of

their LISP subset to S-expressions constructed from the single atom NIL. Unfortunately,
theorems about LISP functions in this restricted domain are not necessarily true in the
more general domain of standard LISP S-expressions. For example, the statement

Yx[NILTREE(x)=T)
where
NILTREE(x) s NULL(x) OR
[NILTREE(CAR(x)) AND NILTREE(CDR(x))]

is a theorem in Boyer and Moore’s restricted data domain but obviously is not a theorem
in the domain of standard LISP S-expressions (any S-expression containing an atom
other than NIL is a counterexample).

—

1.2 Previous Work Page 4

4. Since Boyer and Moore's formal system assumes all user-defined functions are total, their
verification system only proves partial correctness (i.e. if any function in the program P is
not total, any theorem proved about P may not hold). They never defined the semantics
of partial functions or developed a method for proving that a particular function is total.

In contrast to Boyer and Moore, my ob jectives have been to create a consistent formal
deductive system capable of proving all theorems of practical interest about PURE LISP
programs, and to develop an interactive verifier to help the programmer construct arbitrary
proofs within this system. I have not been interested in building any heuristics into the
verifier which improve the automatic capabilites of the verifier, but occasionally prevent the
programmer from constructing the sequence of proof steps he wants.

1.3 Motivation for Creating TYPED LISP

Early in my research, I discovered that informal, straightforward proofs of simple theorems
about LISP functions did not translate directly into formal proofs in my envisioned
verification system. In fact, the seemingly trivial task of formally stating many simple
theorems turned out to be far more complicated than I anticipated. Consider the ubiquitous
sample theorem which asserts that the standard LISP function REVERSE has the property
that REVERSEeREVERSE is the identity function. The obvious formal statement of this
theorem is:

YX[REVERSE(REVERSE(x))«x].

Unfortunately, this formulation of the theorem is unsatisfactory, because it is false (any atom
other that NIL is a counterexample). REVERSE is well-defined only for S-expressions
which represent linear lists using the standard encoding. In order to correctly state the
theorem, we must define an auxiliary boolean LISP function LLIST which is a characteristic
function for the subset of S-expressions which represent linear lists. Using LLIST, the
correct statement of the theorem is:

Vx[LLIST(x) > REVERSE(REVERSE(x))=x].

The proofs of simple theorems about LISP functions within a first order theory of
S-expressions are even more cumbersome. The most concise, natural description of a typical
LISP function is not expressed in terms of how it manipulates S-expressions, but in terms of
how it operates on some abstract data types which are represented as S-expressions.
Unfortunately, the only way to describe LISP functions in a first order theory of
S-expressions is in terms of how they affect S-expressions. Proofs which deal with abstract
type representations rather than the abstract types themselves have two very serious
drawbacks:

1.3 Motivation for Creating TYPED LISP Page 5

1. Many proof steps must be devoted to checking the correctness of code which encodes or
decodes the abstract types as concrete representations.

2. Inductive proofs must usc induction on the structure of the representations rather than
the structure of the abstract types.

As an illustration, consider the following trivial theorem expressing a simple property of the
LISP function APPEND when applied to linear-lists of atoms (henceforth called atom-lists):

Vx ¢ atom-lists [APPEND(x,NIL) = x]
where:
APPEND(x,y) =
IF NULL(x) THEN y ELSE CONS(CAR(x),APPEND(CDR(x)y)) .

The proof of this theorem is extremely easy in the theory of atom-lists. We merely appiy
induction on the structure of x. The base step, x=NIL, is trivial:

APPEND(x,NIL) « APPEND(NILNIL) = NIL

by symbolic evaluation. For the induction step, we must show that for any atom-list v, the
statement:

Yu ¢ atoms [APPEND(CONS(u,v),NIL) = CONS(u,v)]
follows from the induction hypothesis:

APPEND(vNIL) = v.
But, symbolic evaluation reduces:

Yu ¢ atoms [APPEND(CONS(u,v)NIL) = CONS(u,v)]
to:
Yu ¢ atoms [CONS(u,APPEND(v,NIL)) = CONS(u,v)]

which is an immediate consequence of the induction hypothesis and the substitution of equals
for equals. Q. E.D.

The proof of the same theorem in the theory of S-expressions is less straightforward.
First, in order to correctly state the theorem in terms of S-expressions, we must define a
boolean-valued function ATOMLIST which is a characteristic function for the set of
S-expressions which represent linear-lists of atoms:

1.3 Motivation for Creating TYPED LISP Page 6

ATOMLIST(x) = IF NULL(x) THEN T
ELSE IF ATOM(x) THEN NIL
ELSE ATOM(CAR(x), AND ATOMLIST(CDR(x))

Using this definition, the theorem can be w -itten:
Vx ¢ S-expressions [ATOMLIST(x) > APPEND(x,NIL) = x] .

As before, the proof of the theorem proceeds by induction on the structure of x. The base
step, X e atoms, splits into two cases: x=NIL and x«NIL. The first case is identical to the base
step of the atom-list proof. In the second case, x«NIL, symbolic evaluatior reduces:

ATOMLIST(x)= T > APPEND(x,NIL) = x
to:
NIL=T > APPEND(x,NIL) = x

which is an immediate consequence of the axiom NIL«T. For the induction step we must
prove that for any S-expressions u and v:

ATOMLIST(CONS(u,v)) « T > APPEND(CONS(u,v)NIL) s CONS(u,v)
is a consequence of the induction hypotheses:

ATOMLIST(u)= T > APPEND(uNIL)= u
and
ATOMLIST(v)= T > APPEND(VNIL)s v.

Like the base step, the induction step has two casei: u ¢ atoms and u -¢ atoms. In the first
case, symbolic evaluation reduces: '

ATOMLIST(CONS(u,v)) = T > APPEND(CONS(u,v)NIL) « CONS(u,v)
to:
ATOMLIST(v) = T > CONS(u,APPEND(v,NIL)) = CONS(u,v)

which an immediate consequence of the first induction hypothesis and the substitution of
equals for equals. In the remaining case, u —¢ atoms, symbolic evaluation reduces:

ATOMLIST(CONS(u,v)) » T > APPEND(CONS(u,v)NIL) = CONS(u,v)

NIL+T > CONS(u,APPEND(v,NIL)) = CONS(u,v)

1.3 Motivation for Creating TYPED LISP Page 7

which is an immediate consequence of the axiom NIL=T. Q.E.D.

It is clear that the proof using induction on S-expressions is longer and less transparent
than the proof using induction on atom-lists. Since the inductive structure of S-expressions
is different from that of atom-lists, the S-expression proof is forced to examine all cases of
S-expressions which do not represent atom-lists and prove that they are not atom-list
representations.

The auxiliary function ATOMLIST serves as a clumsy mechanism for specifying the
implicit data type atom-list. If we included atom-list as a distinct, explicit data type in our
programming language and expanded our first-order theory to include atom-lists as well as
S-expressions, the informal proof using induction on atom-lists could be formalized directly
in our first order system. However, since LISP programs typically involve a wide variety of
abstract data types, simply adding a few extra data types such as atom-list to LISP will not
eliminate the confusion caused by dealing with abstract data type representations rather than
the abstract types themselves. In fact, the more complex that an abstract type is, the more
confusing that proofs involving its representations are likely to be. Consequently, I decided
that the best solution to this problem is to include a comprehensive data type definition
facility in LISP and to formally define the semantics of a program P by creating a first-order
theory for the particular data types defined in P. The resulting language TYPED LISP is
described in the next chapter.

CHAPTER 2

TYPED LISP

2.1 Informal Description of TYPED LISP

TYPED LISP combines a recursive data type definition facility (similar to those proposed by
McCarthy [1963) and Hoare [1973]) with a modified subset of PURE LISP. For the sake of
semantic simplicity, TYPED LISP does not permit passing functions as parameters or
referencing non-local variables (ie. dynamic scoping). Furthermore, there is no distinction
between equivalent and identical data values; there is only one copy of any data value. A
TYPED LISP program consists of a set of data type and function definitions. As in PURE
LISP, the program is executed by evaluating some expression containing no variables or
undefined function identifiers.

2.1.1. Data Type Definitions
The set of primitive data ob jects in TYPED LISP is the set of all capital identifiers: {A, B,
«» Z, AA, AB, .., AZ, BA, .., AAA, ..}. Data types are simply sets constructed from this set of
primitive ob jects using the rules described below. The primitive type atom consists of all
primitive data objects except for NIL, ZERO, TRUE, and FALSE. For notational
convenience, we let every capital identifier denote the primitive data type consisting of that
identifier, eg. NIL denotes both the data object NIL and the data type {NIL}. The intended
meaning of a capital identifier is always clear from its context.
A data type definition in TYPED LISP has the syntax:

type type-identifier w data-type-expression
where type-identifier is a (lower-case) identifier and a data-type-expression is either:.

I. An enumeration listing a finite set of primitive data ob jects:

(Cpo- . Cyh

2.1.1 Informal Description of TYPED LISP Page 9

eg.
type boolean s {TRUE, FALSE).

A construction defining a set of data ob jects which are constructed from simpler ob jects.
A construction has the syntax

c(sl:Tr e sn:Tn)

where the constructor ¢ is the type-identifier being defined; Sp- s S, are (lower—case)
identifiers naming the component selector functions; and Ty ..., T, are the types of the
components, e.g.

type pair = pair(atoml: atom, atom2: atom)
which defines the data type pair consisting of ordered pairs of atoms, and creates the
constructor function pair: atom x atom - pair for constructing pairs from atoms, and
the selector functions atoml, atom?2 : pair - atom for selecting components of a pair.
A disjoint-union

T V...UT_

defining the data type formed by the union of the disjoint data types LTRSS T, g

type ext_pair a NIL U pair .

The disjointness of the subtypes T, ..., T, can easily be checked at parse-time.

A recursive-union
BIU...UBmUclU...Ucn

of the disjoint data types B, ..., B (called the base types), and the construction types
defined by the recursive constructions €ps - -+ €, Each recursive construction must have
at least one component type which contains the type defined by the recursive-union.
Some sample recursive-union data type definitions are:

type natnum s ZERO U suc(pred: natnum)
type tree = atom U cons(car: tree, cdr: tree)

e it S i i

2.1.1 Informal Description of TYPED LISP Page 10

The members of the type natnum defined above are precisely ZERO, suc(ZERO),
suc(suc((ZERO)), suc(suc(suc(ZERO))), ..; and the members of type tree are the
S-expressions constructed from the base set of ob jects atom.

Besides all primitive data ob jects and the primitive data type atom, there are several other
pre-defined data types in every TYPED LISP program. The universal type any consists of
all data ob jects defined in the program. All the other pre-defined types can be described in
terms of standard TYPED LISP data type definitions as shown below:

type boolean s {TRUE, FALSE)

type natnum s ZERO U suc(pred: natnum)
type minus = minus(abs: suc)

type integer = minus U natnum .

In contrast to PURE LISP, the false boolean value is denoted by the data object FALSE
rather than NIL. Furthermore, boolean functions must return either TRUE or FALSE.

2.1.2. Function Definitions
TYPED LISP function definitions have the straightforward syntax
function function-name (p T ,..., p T)T = ¢

where function-name is a (lower-case) identifier naming the function being defined; p P
p,, are (lower-case) identifiers serving as parameters; Ty ..., T, are the types of the

corresponding parameters; T is the type of the range of the function; and § is a TYPED LISP
expression containing no variables other than the parameters.

Every TYPED LISP function is strict, l.e. it is undefined if any of its arguments is
undefined or belongs to the wrong type. The only primitive or implicitly defined functions in
TYPED LISP, other than the constructor and selector functions corresponding to every
construction type, appear below, along with their domain and range specifications:

Sfunction domain range

equals any x any boolean

c any x any boolean

and boolean x boolean boolean

or boolean x boolean boolean

not boolean boolean

T any boolean (for every type T)

T

212 Informal Description of TYPED LISP Page 11

The functions equals, and, or, and not all have the obvious interpretations. Note that, uniike
their PURE LISP counterparts, and and or are call-by-value functions (i.e. they always
evaluate both of their arguments). The function € (written as an infix operator) tests whether
or not its first argument is a proper substructure of its second argument. Hence, for any data
value t, t € t returns FALSE, while ZERC c suc(ZERO) returns TRUE. For every type T,
the function :T" (written as a postfix operator) is simply the characteristic function for type T.
Given any data object x, x:T' returns TRUE if x is a member of type T and FALSE
otherwise.

Every construction type definition c(s:T, . . ., 5,:T,) implicitly defines the constructor

function ¢ mapping T x ... x T into type ¢ and the selector functions s, mapping type ¢
into type T, i = I, .., n. The constructor function ¢ applied to arguments x,, .. ., X of types
Ty - - » T, respectively, returns the constructed data object «(x, . . ., X). Inversely, each
selector function s, applied to the data ob ject oy, ... xp) returns x,.

2.1.3. Expressions
Expressions in TYPED LISP are limited to the following forms:
1. An if-expression with syntax:
if E, then 52 else E3
where £, £,, £q are expressions.

2. A case-expression with syntax:

where T is any data type which is an enumeration, disjoint-union, or recursive-union of
thetypesT,..., T ;and ¢ El. ek En are expressions.

8. A function-call of one of the following four forms:

f(ElH il -fn)

not §
€, binary-boolean-operator &y
€, tope-operasor T

2.1.3 Informal Description of TYPED LISP Page 12

where f is a function-name (including constructor and selector names); El. Sy En are
expressions; binary-boolean-operator is either equals, nequals, €, -~c, and, or or;

type-operator is either : or —1; and T s any data type.

4. A bracketed expression

(&)
where £ is an expression.
5. A primitive data ob ject (capital identifier).

In TYPED LISP, expressions are evaluated according to a very simple set of rules. As in
nearly every language (eg. ALGOL W) implementing conditional and case expressions, only
the index-expression and the selected alternative expression are evaluated. Since all TYPED
LISP functions are strict (except for the conditional and case operators), all function
arguments are passed by value--including the arguments of boolean binary-operators, not,
type-operators, and all constructor and selector functions. In other words, every argument of a
function-call is evaluated before the function-call itself is evaluated. Each of the operators
equals, <, and ~T (for each type T) simply denotes the primitive TYPED LISP function of
the same name. Similarly, the operators nequals, ~<, and ~T (for each type T) denote the the
functions not ® equals, not ® ¢, and not @ :T, respectively.

Initially, I enforced the following standard parse-time type checking rules in expressions:

1. The declared type of an argument in a function-call must be a subset of the declared type
of the corresponding formal parameter.

2. The declared type of the body of a function must be a subset of the declared type of the
function’s range.

3. The declared type of the index-expression in a case-expression must be a subset of the
type declared at the head of the case-expression. Similarly, the type of the
index-expression in an if-expression must be a subset of the type boolean.

However, 1 quickly discarded the idea when it became apparent that such type restrictions
forced the programmer to write awkward, inefficient code in many cases. Consider the
following sample program defining the commonly used functions assoc and put for
manipulating LISP “a-lists".

type tree = atom U join(left: tree, right: tree)
type pair s pair(var: atom, val tree)
type pair_list & NIL U cons(head: pair, taik pair_list)

2.1.3 Informal Description of TYPED LISP Page 18

type ext_pair s NIL U pair

function assoc(v: atom, I pair_list): ext_pair e
Join case of |
NIL: N
const {head(l)) equals v then head(l)
Moo nasoc(v,tail(l))

function put(v: atom, t: tree, k pair_listk pair_list »
pair_list case of |

NIL: cons(pair(v,t)NIL) .

cons: if var(head(l)) equals v then cons(pair(v.t)taik(1)) ?

else cons(head(l),put(v.t,tail(1))) .

Now assume we want to use the expression val(assoc(v,])) in a context where 1 always contains
a pair p with head(pv. The declared type of assoc is ext_pair which is not a subset of the
domain of the selector function val. Consequently, the expression is syntactically invalid
E according to standard parse-time type-checking rules, even though its meaning is clear. If we
insist on requiring the type of an argument to be a subset of the declared type of the
corresponding formal parameter, we must replace

vaKassoc(v,1))
by
ext_pair case assoc(v,)) of
NIL: some value indicating an error
pair: vaKassoc(v,)))

even though the NIL alternative of the case-expression can never be executed. Since
situations of the this kind frequently occur in actual programming practice, I relaxed the
parse-time type checking rules so that the type of an expression only has to intersect the type
required by its context, eg. the type of an argument must intersect the type of the
corresponding formal parameter. Of course, in an actual TYPED LISP implementation,
run-time type checking should be done in all those cases where standard parse-time rules are
violated. If the user formally proves that a certain run-time error can never occur, then that
particular check can be safely eliminated.

2.2 Syntax of TYPED LISP

The formal syntax description appears below. I have followed Hoare and Wirth's syntax
diagram notation as closely as possible using the graphics characters available to me.
Non-terminal symbols appear in standard type; terminal symbols appear in boldface.

22 Syntax of TYPED LISP

program

-1 data-type-definition

-4 function-definition

Page 14

+ function-declaration
data-type-definition
type ~ type-identifier
type-identifier

——{ identifier }——

identifier

lower-case-letter —

enumeration

| { +{ constant

enumeration

dis joint-union

construction

recursive-union

B ———— . T J

o

22 Syntax of TYPED LISP Page 15

constant

capital-letter

dis joint-union

-1 type-name » X
u o
type-name i
» identifier —s j
[
constant
construction
| constructor - (-+{ selector-declaration ~)
4
constructor

———{ identifier f——

selector-declaration

b

———sd selector o

type-name |—s

selector

———sd identifier

g ————r T T & .o Vo A
o 3 A e Wy WP

22 Syntax of TYPED LISP Page 16

recursive-union

———{ disjoint-union — U construction »

function-declaration

-+ function —{ function-name

— partial

(variable-declaration -) o ¢ type-name |—s

Y

function-name

———{ identifier

variable-declaration

—— variable g K -+ type-name |——

variable

| identifier L—»

function-definition

grEr function-declaration o e +| expression p—s

Sl

22 Syntax of TYPED LISP
expression
-] Ccase-expression P
-+ if-expression
+ term
case-expression
—— type-name - case of expression
o ¢ r
I ype-name R ! expression
if-expression
o if expression
+| then - expression else expression j——s
term
factor v —
4
or |

Page 17

22 Syntax of TYPED LISP Page 18

factor
-+ simple-expression —
4
and e
simple-expression
not + simple-expression —
- primitive-expression
— equals primitive-expression
1
nequals
c
-c
primitive-expression
-1 constant —a
4 4
-+ variable - @ +| type-name
function-call ~+ | = —l
~ | expression |—] |—

22

Syntax of TYPED LISP Page 19

function-cali

| function-name (expression) p—s

execution-expression

— expression —

The syntax rules which are not context free appear below:

1.

The identifiers atom, any, boolean, natnum, suc, minus, integer, and all
capital-identifiers are pre-defined type-names for every TYPED LISP program P. The
selectors pred and abs are implicitly defined within the constructions of suc and minus
[see Section 2.1.1).

An identifier employed as a constructor, selector, type-name, or function name must be
unique. No such identifier may be used as a variable. Furthermore, the variables
declared within a particular function definition must be distinct.

The identifiers type, function, declare, partial, if, then, else, case, of, and, or, not,
equals, and nequals are all reserved; they may not be defined by the user as type-names,
selectors, constructors, or function-names.

Before an identifier appears in a data-type-expression as a type-name it must be defined

in a data-type-definition as a type-name or constructor--with two exceptions:

a. In the definition of a recursive type T, the type-names used in selector-declarations
may be defined anywhere in the program.

b. If a type-name T is defined by a data-type-expression which is a construction, then
the constructor name must also be T'.

The type-names which appear as alternatives in a disjoint-union must denote dis joint
types. We defer the definition of disjoint type-names until the next chapter (Section 2.3.2)
where we will continually use that definition in proofs. Despite the fact that the
definition for dis jointness of type-names is given in the chapter on semantics, it is really a
syntactic notion. We can easily check to see whether or not two types are dis joint at parse
time.

Every declared function must eventually be defined by a function definition.

2.2 Syntax of TYPED LISP Page 20

Furthermore, the parameter lists in must be identical in both cases.

7. A particular variable v may not appear within the expression forming the body of a
function-definition unless it is declared in the function-definition.

8. The type-name T heading a case expression £ must be either be defined as an
enumeration, disjoint-union, or a recursive-union. Within the case bc ly of §, the case
alternatives must be in one-to-one correspondence (including the same ordering) with the
subtype alternatives. Each case alternative must begin with the name of the corresponding
subtype.

9. A function-name may not appear in a function-call unless it has already been declared as
a function-name in a function-declaration, or as a constructor or selector in a
construction. In a function-call, the enclosed list of arguments must contain the
appropriate number of arguments for the particular function being called.

10. No variables may appear in an execution-expression.

2.3 Semantics of TYPED LISP

Before defining the semantics of TYPED LISP, we must establish some notation for
distinguishing between a symbol and what it denotes. In cases where the distinction is
necessary, we will underline the symbol when talking about its denotation. On the other hand,
when no confusion is possible, we will usually omit the underlining of denotations in the
interests of improved readability.

In this section, we will define the meaning of an arbitrary TYPED LISP program P by
using the following approach. First, we will define a first-order predicate calculus language
Lp (including equality) such that the terms of Ly, include all syntactically valid TYPED LISP

expressions given the functions and data types defined in P. Then, to define the meaning of
terms and formulas in the language Lp, we will construct a standard structure M, consisting

of a data domain and interpretations for all the constant, function, and predicate symbols in
the language. We will use MP to define the meaning of any statement about P written in Lp.

2.3.1. Assertion Language Syntax

Before we can define the syntax of our assertion language, we must review the standard
definition for a first order predicate calculus language including equality:

Definition. Given a countably infinite set of variables V, a (possibly empty) set of
constant symbols C, a (possibly empty) set of n-ary function symbols F__ for each positive

23.1 Semantics of TYPED LISP Page 21

integer n, and a (possibly empty) set of n-ary predicate symbols for each positive integer

n, we define the corresponding first order language L (including equality) as follows. The

terms of L are defined by the inductive rules:

a. Any variable v e V is a term.

b. Any constant symbol ¢ € C is a term.

¢ Iff, ., 1 areterms and f e F (f Is an n-ary function symbol), then Ait,, .. 1) is a
term.

The formulas of L are defined by the rules:

a. Ife, and 1o are terms, then ¢ |~fgisa formula.

b. If ¢, ., ¢ areterms and p € P (p is n-ary predicate symbol), then Py 1) isa

formula.

If « and B are formulas, then (@ A 8) is a formula.

If @ and B are formulas, then (& v) is a formula.

If @ and B are formulas, then (a > f) is a formula.

If @ is a formuly, then (-a) is a formula.

If @ is a formula and v € V (v is a variable), then (Yv &) is a formula.
If @ is a formula and v € V (v is a variable), then (v &) is a formula.

F®m m 0 Qo

Given a TYPED LISP program P, the assertion language L, is the first-order language with
the following specifications:

1. The variables of LP are:

a. All identifiers which are not reserved or defined as type names, constructors, selectors,
or function names in P.
b. Subscripted single letter identifiers, i.e. 'l’bl' won By Bge vors B o o o

2. The constant symbols of L, are @, A, B,...,Z, AA,AB,...,AZ ..., AAA,... e all

valid TYPED LISP constants plus «.
8. The function symbols of Ly, are equals, <, not, or, and, is-T' (for every type name T

defined in P), T-case (for each type name T defined in P which is a disjoint or recursive
union), and all the function names, selectors, and constructors defined in P. Each function
symbol f in L, takes exactly the same number of arguments as its counterpart in P; hence,

not and is-T (for every type T defined in P) take one argument; equals and c take two
arguments; and T-case takes n+ 1 arguments where n is the number of subtype alternatives
in the dis joint union forming T.

4. There are no predicate symbols in Lp.

We will omit parentheses around formulas whenever convenient. In the absence of
parentheses, the precedence of connectives in decreasing order of binding power is =~, A, v, .
Al of the binary connectives (A, v,) are right associative.

231 Semantics of TYPED LISP Page 22

To make the syntax of L, and TYPED LISP consistent, we include the following
abbreviations in L. Let £, ¥, a P % denote arbitrary terms, and let T denote an
arbitrary type. Then:

not § stands for not(f)

¢ equals ¢ stands for equals(§y¥)

¢ nequals ¥ stands for not(equals(§.¥))

Ecy stands for c(k¥)

t-cy stands for not(c(k.¥))

E: T stands for is-T'(§)

E~T stands for not(is-T(§))

if £ then ¢ else stands for boolean-case(¢ ¥.0)

T case ¢ of Tyay Tyay ... Toa) stands for 1‘-g:ase(E.al.a2 i)

(where T is defined as the disjoint union of the types T |, T2’ s Tp)

OO o N -

The operators introduced in the above abbreviations are ranked in decreasing order of
precedence in equivalent groups as follows:

{T, ~T} (for any type T} 2
{equals, nequals, €, ~c} 2
{not} 2

for}] 2

{and}

When the syntax of L, is extended to include the above abbreviations, the set of terms of Lp
includes all syntactically valid TYPED LISP expressions given the declarations in P.

For notational convenience, we also introduce the following formula abbreviations where §, ¢
are arbitrary terms and @, § are arbitrary formulas.

v | stands for ~E=¥)
/] stands for @sBf)ar(@oa)
stands for § = TRUE

The new connective » has lower precedence than the other connectives (=, A, v, 2). Like the
other binary connectives, it is right associative. Of the three abbreviations introduced above,
the last one is by far the most important. Abbreviating the formula §sTRUE by the term §
allows us to treat boolean expressions as formulas without jeopardizing the soundness of our
formal system. In addition, this abbreviation permits us to denote the universally valid
formula by the boolean truth value TRUE and the the unsatisfiable formula by the boolean
truth value FALSE without any loss of precision. Adding this abbreviation to Lp does not

231 Semantics of TYPED LISP Page 23

make the syntax of L, ambiguous; a term'’s context uniquely determines whether or not it

abbreviates a formula.
2.3.2. Assertion Language Semantics

We will use a standard first order definition of truth for formulas in Lp given interpretations

for the constant symbols and function symbols [Enderton 1972). The formal definitions
appear below:

Definition. Given a first order language L, a structure M corresponding to L is a
quadruple with the following components:
1. A non-empty set [M| called the domain of M.

For each constant symbol C in L, a member C of [M|.

2
3. For each n-ary function symbol f in L, an n-ary function & M™ - M|
4. For each n-ary predicate symbol P, an n-ary relation 5 c IM[n.

Definition. Let M be a structure for a first-order language L including equality. An
inter pretation function for M is any function mapping the set of variables in L into |M].

Definition. Let s be an interpretation function for the structure M. Given M and s, the
meaning of any term or formula ¥ in L is <y M;s> where < > denotes a translation
function that, given a structure M and an interpretation function s, maps the formulas in
L into truth values (true or false) and the terms of L into elements of M| We define the
translation function < > as follows:
1. For any constant C in L,

<C,M,s>=C
2. For any variable x in L,

<X, M. $H . S(X)
3. For any term in L that is a function call ﬂal, e, @

<ﬂa', e an). M, s> -[(<a|,M.s>, ...,<an,M,s>).

)'

4. For any atomic formula in L of the form a=f,
<a=f, M, s> = true if <a,M,s> and <8 M,s> are equal
= false otherwise.
5. For any atomic formula in L of the form P(al. o an),
<P(¢l. doog an), M, s> = true if (<a|,M,s>, - <¢n.M,s>) <P
= false otherwise.
6. For any formula in L of the form # A &,
<0 A M,s> =true if <0 Ms> is true and <¢,M,s> is true
= false otherwise.
7. For any formula in L of the form # v ¢,

232 Semantics of TYPED LISP - Page 24

<0 v é, M, s> =true if <0 Ms> is true or <@ M,s> is true
= false otherwise.
8. For any formula in L of the form @ > ¢,
<05 @, M, s> = true if <OMs> is false or <@ M,s> is true
= false otherwise.
9. For any formula in L of the form -8,
<-0, M, s> = true if <0 M,s> is false
= false otherwise.
10. For any formula in L of the form Vx8,
<Vx0, M, s> = true if <0,M,s> is true for all interpretation functions s’ such that
s'(y)=s(y) for every variable y distinct from x.
= false otherwise.
11. For any formula in L of the form 3x8,
<3x0, M, s> = true if <0,M,s> is true for some interpretation functions s’ such that
s'(y)=s(y) for every variable y distinct from x.
= false otherwise.

The translation of a term formula ¥ corresponds exactly to our intuitive understanding of the
meaning of 7 given that each free variable v denotes s(v), each constant symbol denotes the
corresponding element in M, each function symbol denotes the corresponding function in M,
each predicate symbol denotes the corresponding relation in M, and the built-in equality
predicate "=" denotes the binary relation {(x,x) | x ¢ [M[}.

We will use the following terminology concerning structures throughout the sequel.

Definition. We say that a formula & is true in M for s if and only if <y, M, s> = true.
We call M a model for a (denoted M |- &) iff M satifies a for all interpretation functions
s. If every formula in a theory (set of formulas) T in L is satified by M, then we say that
M is a model for T (denoted M |- T).

Proofs of metatheorems about out formal system will frequently rely on the following lemma
without specifically citing it, since it is intuitively obvious:

Lemma L. If two interpretation functions sl and s2 are identical for all the free variables
appearing in a formula or term v, <, M, sl> is identical to <¥, M, s2>.

Proof. Immediate from the definitio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>