
AD AO~f5 ‘*10 CALIFORNIA UNIV. DAVIS DEPT OF MATHEMATICS FIG 12/1MAXIMUM LIKELIHOOD ESTIMATION FOR BINOMIALL ’? DISTRIBUTED SIGNAL——ETCCU )JUL 77 F J SAMANIEGO AFOSW-77—3180UNCLASSIFIED TR—3 AFO SR—TR— 77—0947 NL

I~~ I
~D4O4S~ 0

.
-

END
DATE

FpL ~ ED

11-77
ODE

$



~
Ij

-
~~ 

- 4 
d

~~F~~~~- rX-77~~~~17

s~9pJ~~~Id t.i piiU ~~u~ lJ
&tstrib~~ tM —

TECHNICAL REPORT SERIES
ON

SIGNAL PLUS NOISE MODELS

D O C

8~ Department of Mathematics
I±I

~ 
Universit y of California

~~ Davis, California

u~~~~. 
~

- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~1g~



— 
- ---

~
-— - ---

~
------

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.-—-

~
--—— -

~~
-—.- .-----. .

— . ‘j_ ~ ;.

- 
I

,

) / I
~1 y

• / ~



~~~~~~
— —s 

-. -.
~
,--- — -

~ ~
, —----,---—-

~ 
—-———

~
—--- --- —

~
- -,--.--

~

$ 

.- I 

~~

Maximum Likelihood Estimation

for Binomially D istribu ted S ignals

in Discrete Noise

Francisco J. Samaniego

Technical Report No. 3

July ,  1977 ~~

Department of Mathematics r ; ~ 17
University of California

Davis, California OCT 20 t917

~~~ 
c: ’~~ (~ 

. -

-~ - -~~ - ;-  2

— 

— 
~~~‘

• i~. El: .
Ii-~’~~ .c ~1 ~~~~~~ ~~ou O f f i cer

Th is research was supported in part by the Air Force Office of Scientific
Research under contract AFOSR-77-3180.



S~~L U R I  I I L L A S S $ r l c A  T I JN OF TH I S  PA G E  1W?,..,, I) a t , I i , , t” r r . $ )  
- _____________________________________________

( J -7j REP~RT ÔOCIJMENTAT ION PAGE
.- I .  REPO~~~~ 4~~~~~3 E R  2 GOVT ACCESSION NO. 3 R E C I P IE N T ’S C A T AL O G  N U M B E R(
~ • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _

4. T I T L E  (and S~ hr , r I , - ) 
- - - 

— %~~~~T Y P E  OF R E P O R T  & P E R I O D  C O V E R E D
‘ MAX I MUM LIKE LIHOOD EST I MATIO N FOR BINOM IALLY / SI ,’) - -

DISTRIBUTED SIGNALS IN DISCRETE NOISE 
~~~~ Interim ~~~ç , l ,, - 1 ‘~~~r

- -. ~~~~~
. - .-

~~~ - - 6-  p ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 AUTHOR(s) •_ /‘~ 
‘
~~• C ON T R A CT o

~~~~~~~~~~
T NU !~~~~~

R(I)

/ )  Francisco J /Samaniego (j
~ ~~~~~~~~~~ ~

9 P E R F O R MIN G  O R G A N I Z A T I O N  N A M E  A N D  A D D R E S S  $0. P R O G R A M  E L E M E N T  P R OJE C T . T A S K
A R E A 4 WO IT N U M B E R S

Univers i ty of Californi a
Department of Mathematics 611O2F 2301t/A5
Davis ,_ CA 95616 ____________________________

I I. C O N T R O L L I N G  O F F I C E  N A M E  A N D  A D D R E S S  J2_ ...,,~~E P 0R T  D A T E _ _ (11 y~~ T
Air Force Office of Scientific Research/NM 

,~~i
’
~ ,

Jult 1~71 -
Bo ili ng AFB , Washin gt on , DC 20332 -

________________________________________________________ 2~14 . M O N I T O R I N G  A G E N C Y  $AME) ._APP RESS( II  di~~~sent front _Cc n t r o t I i n ~~~J 1ice) $5. SECURITY CLAS S. (of th is  repor t )

( J ~~f. -~ 
UNCLASSIFIED

I ISa . D E C L A S S I F I C A T I O N  D O W N G R A D I N G

- 
SCHEDULE

16. D I S T R IB U T I O N  S T A T E M E N T  (of  t h i s  Report )  
- -

Approved for publi c release; distribution unlimited .

I l .  DI S T R IB U T I O N  S T A T E M E N T  (of the abs t rac t  entered i.. mock 20 . i i  d i f fe ren t  from Report)

n”? F~
18. S U P P L E M E N T A R Y  NOTES - 

.

-
~~~ OCT 20 1~•r1

,. - -
.

- -)  -
~~~ 

- - 
-
~~

-
, . . — ~ — I - 

t :~~~~: L~. ~ 
- :~ 

- 
.~

$9 .  K E Y  WORDS (Continue on reverse s ide If neces sary  and iden t i f y  by b lock number)

max i mum l i kel i hood est ima t ion , convolu t ion , parametric monotone rat i o

2~\~~~
,

S T R A C T  (Continu, on r.vera. aid. i f n.c...ary and iden t i f y  by block numb•r)

Let X be a discrete variable distributed like the sum of independent
variables Y and Z, where the signal Y is binomially distributed and the
noise variable Z is a nonnegative integer valued variable whose distribution
does not depend on the binomial parameter p. The fami ly of convoluted binomial
distributions, that is, distributions of variables such as X, are character-
ized in terms of a system of differential equations satisfied by their ‘- .

DD i~~~~
’
~n 1473 EDITIoN OF I N O V6 S IS OB SOLET E UNCLASSIFIED

/ 
/ ,I~~~

” t

,
/j ~~

’ 
SE C U R I T Y  C L A S S I F I C A T I O N  OF T H IS PAO E ($9ven ‘Cia Ent•r~ d)

- ._ _ _ _ _ _ _ _ _ _ _



-~- - - ‘---..---—--------—---•-—‘—

• i t  I L L

SECURITY CLASSIF ICAT ION OF THIS  PAGE(IThw Data Eni.r.d)
S —

20. Abstract

~~ ‘probability mass functions . A monotonicity property for probabilit y
ratios of certain convoluted binomial distributions is noted , and the
maximum likelihood estimate of the binomial parameter is shown to be
easily obtained for these distributions using the charac terizing property
established for their mass functions. Results are applicable to models
for binomial signals in noise in which the noise distribution is known or
can be estimated from an auxiliary experiment .~

UNCLASSIFIED

•

~ 

•



• - ---—— . ---~~ . ,-----— -- --.-, -.-- •-—- —.----- — -.------- -,- .•-.•--

SUMMA RY

Let X be a discrete variable distributed like the  sum of independent

variables Y and Z, where the signa l Y is b inomia l l y d i s t r i b u t e d  and

the noise variable Z is a nonnegative integer valued variable whose

distribution does not depend on the binomial parameter p. The famil y of

convoluted binomia l d i s t r ibu t ions, that  is , d i s t r i b u t i o n s  of v a r i a b le s

such as X, are characterized in terms of a system of differential equa-

tions satisfied by their probability mass functions. A monotonicity

property for probability ratios of certain convoluted binomial distribu-

tions is noted , and the maximum likelihood estimate of the binomial

parameter is shown to be easily obtained for these distributions using

the characterizing property established for their mass func tions. Results

are applicable to models for binomial signals in noise in which the noise

dis t r ibu t ion  is known or can be est imated from an a u x i l i a r y  e x p e r i m e n t .

I. INTRODUCT ION

Consider a random variable )( distributed as the sum of independent

components Y and Z. Many situations in which a variable such as X

arises have the characteristic that one of the components of X, say Y ,

is of particular importance to the investigator , while the other component

Z is of lesser or no interest. Typical of such scenarios is the process

of making observations with a Gieger counter, where the observed count is

the sum of counts due to the presence of radioactive materia l and counts

due to noise or static . We refer to X as a signal plus noise variable ,

and identify the component of X of interest in a particular study as

the signal variable. 

- -• - ,~~~~~~~~- .- -  ~~~ . ~~~~~~~~~~ - • -~~~~~~ •
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Estimation for signal plus noise models has been pursued by a

number of authors. Research on such models may be c l a s s i f i ed  in to  two

categories - - those which postulate that the noise distribution is known

and those that do not. Among investigations of the first type is the

stud y by Gaf fey  (1959), in which a consistent estimator of the signal

distribution was obtained with the noise variable modeled as a normal

variable with both parameters known. Samaniego (1976) studied max imum

likelihood estimation for Poisson signals in discrete noise with known

distribution . He showed that the maximum likelihood estimate of the

Poisson parameter could be obtained for a broad class of models via a

characterization result established for convoluted Poisson distributions.

The assumption that the noise distribution is known appears quite re-

strictive , but is realizable in experimental situations in which the noise

variable may be observed alone. In such situations , the empirical dis-

tribution of the noise variable may serve to approximate the true noise

distribution to any desired degree of accuracy . Estimation for models in

which only the functional form of the noise distribution is known has been

studied by Sciove and Van. Ryzin (1969), who obtained method of moments

estimators and their asymptotic variances for a variety of models.

We treat in this paper maximum likelihood estimation for binomial

signals in discrete noise with known distribution . For the special case

of the Binomial-Poisson model , moment estimators for the parameters appear

in Sclove and Van Ryzin (1969), while the maximum likelihood estimate of the

Poisson parameter when the binomial parameter is known may be obtained from

work in Sanianiego (1976). The complementary problem of estimating the

binomial parameter by maximum likelihood methods when the Poisson parameter

is known is treated as an example in Section III of this paper.

— —-~ • • - - - .  --- —. -•— -- —----.- .~ --- ~-—- —-- — —.--~- --.—- .------- -fl--—-—- • • - -.-----—— a-.—-
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Bullo Illial ~.ignaIs in no ise ar ise in a v a r iety  ol. co f l Lex t s  . I-,xaiup I ~-

abound in the l i t e r a t u r e  on s t a t i s t i c a l  communicat ion theory . Woodwa rd

(1953) discusses a communication system in which the received signal is

the sum of independent Bernoulli variables. Examp les of recent work on

discrete signal detection include that of Greenstein (1974) on block

coding of binary signals and work by Crochiere ut al. (1976) on digital

coding of speech. Another source of data well modelled as binomial

signals in discrete noise is the area of acceptance samp ling. The number

of defectives found in a sample from a large population is usuall y modelled

as a binomial random variable. Inspection policies which result in

systematically overcounting or undercounting the number of defectives in

the sample give rise to signal plus noise distributions for either the

number of defectives or the number of nondefectives in the sample.

Statistical literature contains a variety of formulations of the

notion of “almost binomial” data. Among the most widely studied n-latives

of the binomial distribution are: truncated binomial distributions , for

which moment estimators were obtained by Rider (1955) and Shah (1966) and

for which maximum likelihood estimates were derived by Finney (1949); mixtures

of binomial distributions studied by Blischke (1964); censored samples from

binomial distributions , for which Blight (1970) developed useful theory .

A formulation similar to that studied here is the model for misclassification

of Bernoulli data studied by Bryson (1965). Models for binomial signals

in discrete noise may be viewed as misclassification models in which the

counting mechanism systematically overcounts binomial data.

In Section II, we establish a characterization result for convoluted

binomial distributions in terms of differential equations satisfied by

their probability mass functions. We show in Section III that the 

- - -• - .-- • - ..—--—- •. — •.——-
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c h a r a c t e r i z a t i o n  r e s u l t  may be fruitfull y app lied to maximum likelihood

estimation of the b inomial parameter fo r  a f a i r l y broad class ol s i  ~ i t a i

plus noise models.

II. CONVOLUTED BINOMIAL DISTRIBUT IONS

Katz  (1946) cha rac t e r i zed  a t r i l o g y  of discrete distributions in

term s of the difference equation

(x+l)f(x+l) = (a+bx)f(x) ( 2 . 1 )

sat’ v the p robab i l i t y  mass f u n c t i o n  f .  He showed tha t  the difference

el .icterized Poisson distributions among distributions with equal

m~~ . and varianc e, while it characterized binomial  (negative binomial)

distributions among distributions with mean smaller (larger) than its

variance. The characterization result we obtain below is the third of a

similar family of characterizations -- these in terms o differential

equations satisfied by the probability mass functions. These latter results

have the form

~~ 
P~(X) = P9(x-l) 

- P9
(x) (2.2)

where P9 represents the probability mass func tion of a variable in a given

parametric family. The result established here characterizes convoluted

binomial distributions by equations of the form (2.2). The comp lementary

result for convoluted Poisson distributions is given in Samaniego (1976),

and for convoluted Pascal (negative binomial) distributions in Hannon and

Samaniego (1977).

— . - -  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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D i i  I ~. rent i al i q ua t  j o Lt s  of the  form ( 2 . 2 )  have been invest ig;i~ I

earlier. Boswell and Patil (1973) obtained characterizations of Un

Poisson, binomial and negative binomial distributions in terms of these

equations. Our work has extended their results to convolutions of discrete

distributions , and utilized these extens ions in maximum like l ihood estima-

tion for signal plus noise distributions . Our characterization of con-

voluted binomia l distributions is as follows .

Theorern. Let [X
N P J be a family of nonnegative integer valued random

variables indexed by p E (0,1) and N E (1 ,2,...). Let Z be a discrete varia-

ble whose distribution does not depend on 
~~~
. Define X

0~~ Z , and suppo se

that, for every N, X
N 

—f--> Z as p 0. Then, P(X=k(N,p) is differentiable

in p and

~~~~- P(X.rk~N ,p )  N [P(X =~k-l~ N -l ,p )  - P(X=kIN-l ,p)] (2.3)

for all N 
~ 

1, p E (0,1) and k > 0 if , and onl y if , the d i s t r ibu t ion  of

is a convolution of the binomial distribution with parameters N and

p and the dhtribution of the random variable Z.

Proof: We denote the binomial distribution with parameters N and p

by ~3(N ,p) . It is easy to ver i fy  that if the family 
~~~~~~ 

consists pre-

cisely of sums 
~N ,p + Z, where Y and Z are independent and Y ~~

- B(N,p),

then the probability mass function of satisfies (~ .3) for all appropriate

N , p and k. We prove the converse by induction on N. Suppose (2.3)

is satisfied for N > 1, p E (0,1) and k ? 0. Consider N = 1. Let k h~’ a

fixed but arbitrary nonnegative integer. We have by (2.3) tha t
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~~ P(X k~ 1,p) = P(X k-l~ O ,p) - P(X k~ O ,p)

= P(Z=k-1) - P(Z=k)

The general solution of this differenLial equation is

P(X k~ 1,p) p(P(Z k-l) - P(Z=k)) +

where c
k 

is a constant  independent of p. The boundary conditon

Z as p -. 0 identifies C
k 
as P(Z=k), so that

P(X”kjl ,p) = pP(Z k-l) +(l-p)P(Z k).

Thus , X has the d i s t r i b u t i o n  of Y + Z , where Y and Z are
l ,p l ,p

independent and Y —. B(l , p) .  We now assume t h a t  for N — N~~, XN 
~

has the d i s t r ibu t ion  of the sum Y + Z , where Y and Z are

independent and ? ‘— B(N,p). For N=N*, we have for each fixed k

that

~~ P(X ~k~ N* ,p)  N *[P (X k_ 1~ N*-l ,p) - P(X=k~N*~ l ,p)1 (2 .4)

By the induction hypothesis , we may replace the probabilities on

the righ t hand side of (2 .4) by the probabilities of the appropriate

convoluted binomial distribution. Equating the indefinite integrals

of both sides of (2.4) yields the general solution

min(k,N*),N*\ i N*_i
P(X~klN* ,p) = 

.
~~~ .) p (l-p ) P(Z=k-i) + Ck
1=0 \

where C
k 

is a constant independent of p. Invoking the fact that

X
N* p 

£ z as p ~ 0, we have ck 0. Thus, has the distribution

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- t 7. wln re Y and 7. ire independent . ~i nd Y —~— (N~ , p ) , cutup I t  J

t h e  proof .

Convoluted binomial distributions characterized above may be viewed

as mixtures of shifted binomial distributions. If X 
~ ~~~~~~~ 

is under-

stood to mean that X - a — B(N ,p ) , then the convolution of 2(N,p) with

the distribution (p.J ~~ 0 
may be represented as the mixture ~ p.B .(N ,p).

The method of moments has often proven tractable in estimat ng the

parameters of mixtures of distributions , and might be purs . ed in dealing

with convoluted binomial distributions . We choose instead to t~xamine

maximum likelihood estimation in the next section , where we are able to

directly app ly the system of differential equations (2.3) satisfied by

convoluted binomial distribution~ .

III. MAXIMUM LIKELIHOOD ESTIMATION

Estimation of the parameters of a convolution by the method of

maximum likelihood is in general a formidable analytic problem . For con-

volutions of discrete distributions , the likelihood function for a random

sample is a produc t of somewhat unmanageable sums, and a straightforward

approach to maximization seems unpromising . Sclove and Van Ryzin (1969)

proposed method of moments estimators for parameters of convolutions,

showing this approach to be tractable in many examples. Samaniego (1976)

showed that maximum likelihood estimation was feasible for certain con-

voluted Poisson distributions . We show here that a similar analysis can

be app lied to convoluted binomial distributions .

- - -  -
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Let X1,...,X~ be a sample of size n from a convoluted binomial

distribution with known noise distribution. Denote the likelihood

function for this sample by

L(x 1,x2,.. .,x ,p) = fl P(X~~x1IN ,p)

The characterization result established in Section II implies that the

likeithood equation ~~~~
- 2n L = 0 may be written as

n P(Xi=x1
_ 1IN_ l ,p) - P(Xi=x~ IN-l ,p)

i=l P(X~=x~ IN ,p) 
= 0. (3.1)

We define below, for a parametric family of probability distributions, the

notion of parametric monotone ratio in a given parameter.

Definition. Let (i’ , p E P, ~ € C) be a family of discrete distributions

indexed by a real parameter p and a (possibly degenerate) parameter o~.

The family is said to have parametric monotone decreasing ratio (PNDR) in

p if, for each fixed ~ and for each a < b for which a and b receive

positive mass under ~~~~ for every p E P, the ratio

P~~~(X a)

P (x=b )

is decreasing in p.

The relevance of PMDR to maximum likelihood estimation for convoluted

binomial distributions is seen in the following lemma.

- -

~

- - .— -- - .  ---.- .~~ - - -~~~~- -—- -. - -- . . ,-~~~~- _ _
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Lemma I. Let X 1,... ,X be a random samp le from a convo lu ted  binomi al

distribution having PMDR in the parameter p. Then ~- in L is a de-

creasing function of p.

$ Proof: Since in L -- in P(X~~x .IN ,p) we need only show that

in P is decreasing in p. We assume that  x is such that

P(X=x~p,N) 0 for some (and thus for all) p E (0 , 1). Note that

in P(X=xLN ,p)

N 
P(X=x-l~N-l ,p~ - P(X=x~N-l ,p~

P (X=x IN , p)

— P(X=x-IIN-l ,p) - P(X=x(N-l ,p)— N pP(x=x-1IN-l ,p) + (l-p)P(X=xIN-l ,p)

— 
P(X=x-l~N-l ,p) - P(X=xIN-l ,p) 2N 
p(P(X=x-1~N-l,p) - P(X=xIN-l ,p)) + P(X=xIN-l,p) 

. (3. )

For a convoluted binomial distribution with P(X=xIN ,p) > 0, the terms

P(X=xlN-l ,p) and P(X x-lIN-1 ,p) cannot both be identically zero in p.

Moreover, because of PMDR, their difference can be zero for at most one

value of p. [f the numerator is positive (negative) for all p E (0,1),

then (3.2) is a decreasing positive (negative) function of p. This includes

the cases where either P(X=x~N-l ,p) = 0 or P(X=x-ljN-l ,p) = 0 for which

(3.2) is equal to l/p and -l/(l-p) respectively. Assume that

p (X=x I N-l ,p) > 0 and suppose the numerator of (3.2) is zero at p0 
E (0 , 1).

The ratio (3.2) is of the form
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h (p)
g ( p )  + f ( p )

For p - p0, h(p)/g(p) lip and h ( p ) / f ( p )  is nondecreasing, so that

(3.2) is positive and decreasing for p —. p0. The ratio (3.2) equals zero

at p = p0. For p p0, we find that (3.2) is negative and decreasing , so

that (3.2) is decreasing for p E (0,1). This shows that in p is a

decreasing function of p, completing the proof.

Suppose a random sample is taken from a convoluted binomial distribu-

tion with PMDR in p, and suppose that the noise distribution is known.

Lemma 1 implies that the likelihood equation ~~~
- in L = 0 has at most one

root. Thus, the maximum likelihood estimate of p is zero, one or the

unique solution of the likelihood equation. The NLE may easily be obtained

numerically for such problems, since values of -
~~~

- in L above and below zero

may be used to approximate the MLE to any desired degree of accuracy .

We consider below examples of convoluted binomial distributions with

PMDR. In Example 1, we will invoke the following result.

Lemma 2. Let (f) be a sequence of positive functions of a real variable

y defined on an interval of the real line. Let (a .), [bj be scquences

of positive real numbers, with a~ < aj÷l for all i. If f~ (y)/f .(y) is

decreasing in y whenever i < j, then every function of the form

n
E b

k ~k ~~i=l i I
H
~

(y) = , k
1 
< k

2 
K • . .  K k ,

E ak bk ~k (‘
7~~

i=l i I i

for n 
~ 
2, is decreasing in y.

I 

-. .- -  .~~~,.- 
------  - ---- -.- - - 
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Proof: To s t a r t  an induc t ion  argument , we c o n s i d e r  it  2 .

bk ~k 
(y) + bk ~k (y)

1 1  2 2
H 2

(y) = a bk ~k 
(y) + ak 

b
k ~k ~~~

i l l  2 2 2

bk ~k 
(y) + bk ~k (y)

1 1  2 2
ak (bk ~k (y) + bk ~k ~~~~ + (a k ak 

)b
k ~k ~~~

1 1 1  2 2  2 1 2 2

which is of the form

h (y)
ch(y) + g(y)

Since h(y)/g(y) is decreasing by hypothesis , we have that  H 2 (y) is de-

creasing in y. Suppose the lemma holds for n. Then

n+l

.
E b~~f~~ (y)
i -

= n-i-i , k
1 

-
~~ 

- - k +l .
E ak b

k
f
k
(y)

i=l 1 1. 1

n+l
E b

k ~k 
(y)

i=l I i
= -,.n+l ~ n+l
ak 

E bk ~k 
(p)) + ~ 

(ak 
a
k 
)b
k ~k ~~~l i=l i i i=2 i 1 1 1

which is decreasing in y if
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- 
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n+l

~ 
b k ~k (y)

i=l i .1 3 3n+l

~: (ak 
-a k )b k ~k (y)

i=2 1 1 i i

is decreasing.

But by hypothesis ,

I
n+l

.~~~ 
(ak -ak )b~~f~~ (y )

1 1 1 1

is decreasing in y, so the ratio (3.3) is decreas ing if

n+ 1
E bk ~k ~~~i=2 i i

n+l
E (ak ~~k )b

k ~k ~~~i=2 i 1 i i

is decreasing. This latter ratio has the form of 11 (y) and is decreasing

in y by the induction hypothesis. Thus, the proof is complete.

Example 1. Let Y ~3(N , p ) ,  and Z —~ P(e), i.e., Z is a Poisson random

variable with parameter 9. Let Y, Z be independent and let X = Y + Z.

One can easily check that the ratio P(X=0)iP(x=i) is decreasing in p.

For x 
~ 
2,

x-i x-i-l
E , P (Y=i)

~(X=x-l) 1=0 (x-i-l). p

P(X x) — 
x x-i
E , P (Y=i)

~~ 
(x-i). p 
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which is decreasing in p if the ratio (3.4) below is ducreasing

x-1 x-i-l

.~~~ (x-i-l) 
P (Y=i)

(3.4)
x-l x-i

L 9 . , P (Y=i)
i=0 

(x-i). p

since when P (Y=x) 0, P (Y=i)/P (Y=x) is decreasing in p for all

i <.. x for which P (Y=i) > 0. The function (3.4) satisfies the hypotheses

of Lemma 2, being of the form 
~~~~~~~~~ 

wi th

f1(p) = P (Y=i)

9x- i- 1b . = (x—i—1)

9
and a. =

1 X 1

for k. = I = 0,l,...,n, where n = min(N,x-I). It follows that the function

(3.4), and consequently the ratio P(X=x-1)/P(X=x), is decreasing in p.

Thus, the binomial-Poisson convolution has PMDR in the parameter p.

Example 2. Let Y be a random variable whose distribution belongs to a family

of distributions with PMDR in the parameter p. Suppose the support of Y

is equal to a set of consecutive positive integers. If Z B(l,n) and Y

and Z are independent, we show that the distribution of X = Y ÷ Z has

P)U~R in p. It is easy to check that P(X=a)IP (X=a+l) is decreasing, where

a is the smallest integer that Y takes on with positive probability.

For any y > a for which P(Y~y) > 0,



- - 

~~~~
. -~~

_i _
~~~~~~~~~~

—-’--— ___ ._ -- .- --_-;--___ - .- - - -—--- -• •-- -- —
~~~~

— -
~~

.1 
I, )

P (X=y- I) nP(Y =y-2 )  + ( 1- i i)Pj~ =y- l )
P(X=y) riP(Y=y-l) + (l-n)P(Y=y)

P(Y=y-2) 
+ 1 i•i

— 

TI 
P(Y=y-l) ~

— 

+ ~l-TT’ 
P(Y=y)

“ / P(Y=y-l)

which is decreasing in p. If Y has finite support and

N = lub [Support of yJ, then

P(X=N) — nP(Y=N-l) + (l-n)P(Y=N)
P(X=N+1) 

— 
nP(Y=N)

which is also decreasing in p. Thus X = Y + Z has a distribution with

PMDR . Since the support of K is again equal to a set of consecutive

positive integers, it follows that the distribution of X = Y + Z, with

Y, Z independent and Z — B(M,n) has P)~ R in p. Moreover, since the

binomial distribution itself has support on consecutive positive integers ,

we conclude that convoluted binomial distributions ~3(N,p) * B(M,ri) have PMDR

in p.

In Example 2, we require the support of a random variable Y to consist

of a set of consecutive integers for convolution with a Bernoulli variable

to be PMDR preserving. The necessity of this condition is apparent in the

following examp le.

Example 3. Let y be a variable taking values on even integers according

to binomial probabilities as follows :

. •~~~ 
_ _ _ _ _ _ _ _ _ _
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P(Y=21) = (
N
)~~

L
(1 )

N-L 
i=O ,l ,...,N.

It is obvious that  the d i s t r i bu t i on  of Y has PMDR. Let Z ~3(1,ri) be

independent of Y, and let X = Y + Z. For even x ,

P(x-l) — rtP (Y=x -2)
P(x) 

— 

(l-ii)P(Y=x)

which is decreasing in p. If, however, x is odd ,

P(x-l ) - (l-TT)P(Y=x-1) 
= 

I-n
P(x) 

- 

riP (Y=x-1)

Thus, the ratio P(x-l)/P(x) is a constant independent of p.

In Examples 1 and 2 given above, PMDR in the parameter p guarantees

that the likelihood equation has at most one solution. As we shall see ,

there are convoluted binomial distributions without PMDR, but satisfying

a weaker monotonicity property , for which we are able to demonstrate that

the likelihood equation has at most one root.

Definition. Let(P~~~ pEP, ~ € a) be a family of discrete distributions

indexed by a real valued parameter p and a (possibly degenerate) parameter

~~. The family is said to have weak parametric monotone decreasing ratio in p

(WPMDR) if, for each fixed a € C and for each a < b for which a and b

receive positive mass under 
~p a  

for every p E P, the ratio

P (K=a)

P (X=b)
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is either decreasing in p or is equal to a constant independent of p.

Lemma 3. Let 
~~~~~~~~~ 

be a random sample from a convolu ted binom ial

dis t r ibu t ion  
~N p  with WPMDR in the parameter ~~

. If at least one

observation x .  is such that1

P(X=x .-l~ N-1 ,p)iP(X=x .~ N-1 ,p) (3.5)

• . . a .is not identically 1 in p. then ~~
— in L is a decreas ing func t ion  of p.

Proof: For every observation x1 for which the ratio (3.5) is identically 1 ,

we have in P(X’x IN ,p) = 0 by (2.3). For any observation x~ for which

the ratio (3.5) is decreasing, ~~~
— in P(X=x .IN ,p) is decreasing by the

argument used in proving Lemma 1. It remains to show that this is also

true for observations x1 for which the ratio (3.5) is identically equal

to c ~ 1. We have

P(X x1-ifN-l ,p) - P(X x
~
IN- l,p)

in P(X x~ (N ,p) = p(p (Xx..lIN..l p) - P(X x .IN-l ,p))+ P(X=x .IN-l ,p)

This function has the form

h (p)
g(p) + f(p)

where h(p)/g(p) lip and h(p)/f (p) c - 1. Thus ~~~
- in P(X=x .~ N,p) is

decreasing in p. Since in L is the sum of functions each of which is

decreasing in p or identically zero, and at least one of these functions

is decreasing, we have that in L is decreasing in p.



We now cons ider  a pai r  of exam p les of c o n v o lu t -d b i n o m i a l  d i  si r i b u t  i l ) f l s

w i t h  weak PMDR.

Example 4. Let Y be a nonnegative integer valued random variable whose

distribution belongs to a one-parameter family of distributions with WPMDR

in the parameter p. If Z is independentl y distributed according to a

geometric distribution G(9) with probability mass function

f(Z=z) = (1_9)9
Z 

z=0,l,2,..•

we show that the distribution of X Y + Z has WPlff~R in p. Suppose x - 1

and x receive positive mass from the distribution of X. If P(Y x)  = 0,

x-l
E (l-9)O’P (Y=x-i-l)

P(X=x-l )  — i=0
P(X=x) — x

E (l-e)9
1p (Y=x-i)

i=0

is equal to lie. If P~~(Y x) > 0 , this ra t io  may be written in the form

h (p)
g(p) + f(p)

where h(p)/g(p) = 1/9 and h(p)/f(p) is either constant or a decreasing

function of p. Thus , for all appropriate x, the ratio

P(X=x-1)iP(X=x) is either constant or decreasing in p, establishing WPMDR

for the distribution of X. Since the binomial distribution B(N,p) has

WPMDR, we have that the convolution ~3(N,p) * G(9) has WPMDR . It is useful

to note that for X — 13(N,p) * G(9), the ratio P(x-l)/P(x) is decreasing

in p for 0 < x - - N, and is equal to 1/9 for x N. Since this ratio is

never identically I, the function -
~~~
- in L is dec reasing in p for samples

— - .- — -  -~~~~~ - — — — -  ~~~~~~~~~~~~~~~~~~
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from ~3(N ,p)  * G(e).

Consider the convolution 13(N,p) * G(8) * G($), or equivalently

the convolution ~3(N,p) * ti1~(2,9) where fl13(r ,9) represents the negative

binomial distribution with parameters r and e. If Y -- ~3(N,p) * G(9)
and Z — G(9), independent of Y, and if X = Y + Z, then for any x ~ - 0

x-l
E &P(Y=x-i-l)

P(x-l) 
— 

i=0
P(x~ 

— x-l
9 E 9

1
P(Y l) + P (Y=x)

i=0 p

Because P~ (Y=x) is positive for all p, this ratio is decreasing in p.

Thus the family ~3(N,p) * l~~(2,9) has PMDR in p. The sante argument leads

one to conclude that t~(N,p) * fl~3(r,9) has PNDR in p for any r > 2.

Example 5. Let Y — B(N,p), and let Z be a random variable independent

of Y with a uniform distribution on the integers 0,l,...,k, that is, with

probability mass function

P(Z..z) = z=0,l,...,k.

Suppose k > N. Then the ratio

x-l
E p (Y=i)
i=O

if x < N

E P (Y=i)
i=0

P(x-l)~~~ 1 i f N < x K kP(x) —

N
E P (Y= i)

i=x-k-l ~‘

N if k x — ~ N + k
E P (Y= i)

i=x-k

_______________ -- —•-—- —-------- ---• --..--—-- .-—-
~~~~~

—., - .—
~~~ 4 

— - — -—- — -  - —-———.- — - - - - - - -- —--- ——- —.—------—--—-•--—-•-•--- .
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I t  i_ s t h e r e f o r e  c lea r  tha t  the d i s t r i bu t i on  of X has WPI~~R.

Suppose a random samp le of size n is taken front the convolution

~ (N ,p)  ~~Uf0,1,...,kJ, with k N. The distribution ~(N- 1,p) ~~U [0,l ,...,kJ

has W PMDR in p. If at least  one observation x .  f a i l s  to sat isf y the inequal i ty

N x~ -c k , we have by Lema 3 that  ~~~
- in L is decreasing in p. if all

x .  < k with at least one x1 K N , the MLE is ~ = 0. If all x~ > N wi th at

least one x . > k, the MLE is ~ = 1. In all other cases in which observations

x 1 smal ler  than N or larger than k exis t, the MLE is the unique solution

of the likelihood equation. When all x.  sa t is f y N < x. < k, the likelihood

is equal to the constant ( 1ik+l)~~, independent of p, and any p E [0,1] is

an MLE.

For completeness , we note that the convolution g3(N,p) * U[0,...,k] for

k < N has PMDR in p. Thus , if a samp le is taken from B(N ,p)  * U[ 0 ,...,k]

with  k < N , we have by Lemma 1 that ~~~
- in L is decreasing in p and the

MLE is zero, one or the unique solution of the likelihood equation.

The examples given in this section serve to demonstrate that maximum

likelihood estimation of the binomial parameter is easily accomplished for

a fairly broad class of convoluted binomial distributions . In addition

to the distributions examined in these examples, multiple convolutions of

8(N,p) with two or more other families, for example, the three-fold

convolution B(N,p) * P(9) * 118(r,n), can be shown to have PMDR in p. In

all such cases , with all parameters save the binomial parameter p known,

the maximum like lihood estimate of p is easily found. It is possible to

construc t convoluted binomial distributions for which the equation

in L = 0 has any number of solutions . Thus, maximum likelihood

— - - -- --~~~~~~~~~ - - • ~~ 
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estimation can be unfeasible for such models even by numerical methods.

When parametric monotonic ity hold s, the estimation problem is entirel y

straightforward
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