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SUMMARY

Let X be a discrete variable distributed like the sum of independent

variables Y and Z, where the signal Y is binomially distributed and
the noise variable Z 1is a nonnegative integer valued variable whose
distribution does not depend on the binomial parameter p. The family of
convoluted binomial distributions, that is, distributions of variables
such as X, are characterized in terms of a system of differential equa-
tions satisfied by their probability mass functions. A monotonicity
property for probability ratios of certain convoluted binomial distribu-

tions is noted, and the maximum likelihood estimate of the binomial

ki

parameter is shown to be easily obtained for these distributions using

the characterizing property established for their mass functions. Results

are applicable to models for binomial signals in noise in which the noise

distribution is known or can be estimated from an auxiliary experiment.

I. INTRODUCTION

Consider a random variable X distributed as the sum of independent
components Y and Z. Many situations in which a variable such as X
arises have the characteristic that one of the components of X, say Y,
is of particular importance to the investigator, while the other component
Z 1is of lesser or no interest. Typical of such scenarios is the process
of making observations with a Gieger counter, where the observed count is
the sum of counts due to the presence of radioactive material and counts
due to noise or static. We refer to X as a signal plus noise variable,

and identify the component of X of interest in a particular study as

the signal variable.
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Estimation for signal plus noise models has been pursued by a
number of authors. Research on such models may be classified into two
categories -- those which postulate that the noise distribution is known
and those that do not. Among investigations of the first type is the
study by Gaffey (1959), in which a consistent estimator of the signal
distribution was obtained with the noise variable modeled as a normal
variable with both parameters known. Samaniego (1976) studied maximum
likelihood estimation for Poisson signals in discrete noise with known
distribution. He showed that the maximum likelihood estimate of the
Poisson parameter could be obtained for a broad class of models via a
characterization result established for convoluted Poisson distributions.
The assumption that the noise distribution is known appears quite re-
strictive, but is realizable in experimental situations in which the noise
variable may be observed alone. In such situations, the empirical dis-
tribution of the noise variable may serve to approximate the true noise
distribution to any desired degree of accuracy. Estimation for models in
which only the functional form of the noise distribution is known has been
studied by Sclove and Van. Ryzin (1969), who obtained method of moments
estimators and their asymptotic variances for a variety of models.

We treat in this paper maximum likelihood estimation for binomial
signals in discrete noise with known distribution. For the special case
of the Binomial-Poisson model, moment estimators for the parameters appear
in Sclove and Van Ryzin (1969), while the maximum likelihood estimate of the
Poisson parameter when the binomial parameter is known may be obtained from
work in Samaniego (1976). The complementary problem of estimating the
binomial parameter by maximum likelihood methods when the Poisson parameter

is known is treated as an example in Section III of this paper.
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Binomial signals in noise arise in a variety of contexts. LExamples
abound in the literature on statistical communication theory. Woodward
(1953) discusses a communication system in which the received signal is
the sum of independent Bernoulli variables. Examples of recent work on
discrete signal detection include that of Greenstein (1974) on block
coding of binary signals and work by Crochiere et al. (1976) on digital
coding of speech. Another source of data well modelled as binomial
signals in discrete noise is the area of acceptance sampling. The number |
of defectives found in a sample from a large population is usually modelled
as a binomial random variable. Inspection policies which result in
systematically overcounting or undercounting the number of defectives in
the sample give rise to signal plus noise distributions for either the

number of defectives or the number of nondefectives in the sample.

Statistical literature contains a variety of formulations of the
notion of "almost binomial" data. Among the most widely studied relatives
of the binomial distribution are: truncated binomial distributions, for
which moment estimators were obtained by Rider (1955) and Shah (1966) and
for which maximum likelihood estimates were derived by Finney (1949); mixtures
of binomial distributions studied by Blischke (1964); censored samples from
binomial distributions, for which Blight (1970) developed useful theory.
A formulation similar to that studied here is the model for misclassification
of Bernoulli data studied by Bryson (1965). Models for binomial signals
in discrete noise may be viewed as misclassification models in which the
counting mechanism systematically overcounts binomial data.

In Section II, we establish a characterization result for convoluted
binomial distributions in terms of differential equations satisfied by

their probability mass functions. We show in Section III that the




characterization result may be fruitfully applied to maximum likelihood
estimation of the binomial parameter for a fairly broad class of signal

plus noise models.

! 16 CONVOLUTED BINOMIAL DISTRIBUTIONS

Katz (1946) characterized a trilogy of discrete distributions in

terms of the difference equation

(x+1)f(x+1) = (a+bx)f(x) (2.11)
sati / the probability mass function f. He showed that the difference
eq acterized Poisson distributions among distributions with equal

mean and variance, while it characterized binomial (negative binomial)
distributions among distributions with mean smaller (larger) than its
variance. The characterization result we obtain below is the third of a
similar family of characterizations -- these in terms of differential
equations satisfied by the probability mass functions. These latter results

have the form
L o (2} = B(r=1) = P(x) (2.2)
e %o o o .

where P9 represents the probability mass function of a variable in a given
parametric family. The result established here characterizes convoluted
binomial distributions by equations of the form (2.2). The complementary
result for convoluted Poisson distributions is given in Samaniego (1976),

and for convoluted Pascal (negative binomial) distributions in Hannon and

Samaniego (1977).




Differential equations of the form (2.2) have been investigated

earlier. Boswell and Patil (1973) obtained characterizations of the
Poisson, binomial and negative binomial distributions in terms of these
equations. Our work has extended their results to convolutions of discrete
distributions, and utilized these extensions in maximum likelihood estima-
tion for signal plus noise distributions. Our characterization of con-

voluted binomial distributions is as follows.

Theorem. Let [XN p} be a family of nonnegative integer valued random
3
variables indexed by p € (0,1) and N € {1,2,-+-}. Let Z be a discrete varia-

ble whose distribution does not depend on p. Define X = Z, and suppose

0,p

that, for every N, XN y —§—> Z as p = 0. Then, P(X=k|N,p) is differentiable
bl

in p and

3% P(X=k|N,p) = N[P(X=k-1|N~1,p) - P(X=k|N-1,p)] (2.3)

for all N > 1, p € (0,1) and k > 0 if, and only if, the distribution of
XN s is a convolution of the binomial distribution with parameters N and
’

p and the distribution of the random variable 2Z.

Proof: We denote the binomial distribution with parameters N and p
by B(N,p). It is easy to verify that if the family [XN p} consists pre-
b

cisely of sums Y + Z, where Y and Z are independent and Y ~ B(N,p),

N,p

then the probability mass function of xN » satisfies (Z.3) for all appropriate
b4

N, p and k. We prove the converse by induction on N. Suppose (2.3)

is satisfied for N > 1, p € (0,1) and k > 0. Consider N=1. Let k be a

fixed but arbitrary nonnegative integer. We have by (2.3) that




g% P(X=k|1,p) = P(x=k-1]0,p) - P(Xx=k|0,p)
= P(Z=k-1) - P(Z=k)
The general solution of this differencial equation is

P(X=k|1,p) = p(P(Z=k-1) ~ P(Z=k)) + c,

where ¢, is a constant independent of p. The boundary conditon

k
£
Xl p = Z as p = 0 identifies e as P(Z=k), so that
P(X=k |1,p) = pP(Z=k-1) +(1-p)P(Z=k).
Thus, X has the distribution of Y + Z, where Y and Z are

l,p L,p
independent and Y ~ B(l,p). We now assume that for N < N¥, XN 5

has the distribution of the sum YN 5 + Z, where Y and Z are
3
independent and Y ~ B(N,p). For N=N*, we have for each fixed k

that
9

= P(X=k [N*,p) = N*[P(X=k-1|N*-1,p) - P(X=k IN*-1,p)] (2.4)

By the induction hypothesis, we may replace the probabilities on

the right hand side of (2.4) by the probabilities of the appropriate
convoluted binomial distribution. Equating the indefinite integrals
of both sides of (2.4) yields the general solution

min (k,N¥)

/N 1 -
P(X=k |[N*,p) = z 52 ) p (1-p)N 'P(z=k-1) + R
i=0
where x is a constant independent of p. Invoking the fact that
£ : ; i
xN*,p Z as p = 0, we have By 0. Thus, XN*’p has the distribution




.

of YN* - t 72 where Y and Z are independent and Y ~ B(N< p), complcting
,

the proof.

Convoluted binomial distributions characterized above may be viewed
as mixtures of shifted binomial distributions. If X ~ ﬁa(N,p) is under-
stood to mean that X - a ~ B(N,p), then the convolution of B(N,p) with
the distribution {pi}:=0 may be represented as the mixture ¥ piBi(N,p).
The method of moments has often proven tractable in estimat ing the
parameters of mixtures of distributions, and might be pursved in dealing
with convoluted binomial distributions. We choose instead to c¢xamine
maximum likelihood estimation in the next section, where we are able to
directly apply the system of differential equations (2.3) satisfied by

convoluted binomial distributions.

III. MAXIMUM LIKELIHOOD ESTIMATION

Estimation of the parameters of a convolution by the method of
maximum likelihood is in general a formidable analytic problem. For con-
volutions of discrete distributions, the likelihood function for a random
sample is a product of somewhat unmanageable sums, and a straightforward
approach to maximization seems unpromising. Sclove and Van Ryzin (1969)
proposed method of moments estimators for parameters of convolutions,
showing this approach to be tractable in many examples. Samaniego (1976)
showed that maximum likelihood estimation was feasible for certain con-
voluted Poisson distributions. We show here that a similar analysis can

be applied to convoluted binomial distributions.
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Let xl,...,xn be a sample of size n from a convoluted binomial
distribution with known noise distribution. Denote the likelihood

function for this sample by

n
L(xl ’x2’ s ,XnaP) = izllp(xi':xilN’p)

The characterization result established in Section II implies that the

likelihood equation é% £n L = 0 may be written as

; P(Xi=xi-1|N-1,p) - P(Xi=xi|N-1,p)

0. 3.1
P(Xi=xi|N,p) (3.1)

i=1

We define below, for a parametric family of probability distributions, the

notion of parametric monotone ratio in a given parameter.

Definition. Let [Pp,a’ p € P, o € @} be a family of discrete distributions
indexed by a real parameter p and a (possibly degenerate) parameter «.
The family is said to have parametric monotone decreasing ratio (PMDR) in
p 1if, for each fixed o and for each a < b for which .a and b receive

positive mass under Pp & for every p € P, the ratio
3

P a(X=a)
(X=b)
P,@

is decreasing in p.

The relevance of PMDR to maximum likelihood estimation for convoluted

binomial distributions is seen in the following lemma.

. .



Lemma 1. Let xl,...,xn be a random sample from a convoluted binomial

distribution having PMDR in the parameter p. Then - 4n L is a de-

op
creasing function of p.
® Proof: Since A n L = % ;l In P(X.=x lN p) we need only show that
=l dp s q Op (i U
é% fn P is decreasing in p. We assume that x 1is such that

P(X=xlp,N) > 0 for some (and thus for all) p € (0,1). Note that

3 1,
T 4n P(X=x|N,p)

i P(X=x-1|N-1,p) - P(X=x|N-1,p)
% P(X=x|N,p)

P(X=x-1|N-1,p) - P(X=x|[N-1,p)
pP(X=x-1[N-1,p) + (1-p)P(X=x[N-1,p)

=N

P(X=x-1|N-1,p) - P(X=x|N-1,p)
p(P(X=x-1]N-1,p) - P(X=x|N-1,p)) + P(X=x|N-1,p) °

=N (3.2)

For a convoluted binomial distribution with P(X=x|N,p) > 0, the terms
P(X=x|N—1,p) and P(X=x-1|N-1,p) cannot both be identically zero in p.
Moreover, because of PMDR, their difference can be zero for at most one
value of p. If the numerator is positive (negative) for all p € (0,1),

then (3.2) is a decreasing positive (negative) function of p. This includes
the cases where either P(X=x|N-1,p) = 0 or P(x=x-1lN-l,p) = 0 for which

(3.2) is equal to 1/p and -1/(l-p) respectively. Assume that

P(X=x|N-1,p) > 0 and suppose the numerator of (3.2) is zero at Py € (0,1).

The ratio (3.2) is of the form
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h
g(p) + f(p)

For p < py, h(p)/g(p) = 1/p and h(p)/f(p) is nondecreasing, so that

(3.2) is positive and decreasing for p < Pg* The ratio (3.2) equals zero
at p = py- For p > Pps We find that (3.2) is negative and decreasing, so
that (3.2) is decreasing for p € (0,1). This shows that é% fn P is a

decreasing function of p, completing the proof.

Suppose a random sample is taken from a convoluted binomial distribu-
tion with PMDR in p, and suppose that the noise distribution is known.
Lemma 1 implies that the likelihood equation é% 4n L = 0 has at most one
root. Thus, the maximum likelihood estimate of p is zero, one or the
unique solution of the likelihood equation. The MLE may easily be obtained
numerically for such problems, since values of s; fn L above and below zero
may be used to approximate the MLE to any desired degree of accuracy.

We consider below examples of convoluted binomial distributions with

PMDR. In Example 1, we will invoke the following result.

Lemma 2. Let {fi} be a sequence of positive functions of a real variable
y defined on an interval of the real line. Let [aj], {bi} be scquences
of positive real numbers, with a, <a; for all i. If fi(y)/fj(y) is

decreasing in y whenever i < j, then every function of the form

n
b, £ (y)
e

H (y) = , k, <k, < see < k_,

i
n
‘Ek kfk(y)

for n > 2, is decreasing in y.

e



Proof: To start an induction argument, we consider n = 2.

b f (y) +b £ (y)
55 5 5s

H, (y) =
2 a, b £ (y)+a b f (y)
ki ey ky k) ky

b of () o+ by £ (y)
k) Ky ky Ky

£ (y) +b £ (y)) + (a, -a, )b, £ (y)
Iy ky k, k, k' k, K,

&, (b
My By

which is of the form

h
ch(y) + g(y) ~

Since h(y)/g(y) is decreasing by hypothesis, we have that Hz(y) is de-

creasing in y. Suppose the lemma holds for n. Then

n+1
izlbkifki(Y)
LTL e ’ g et S K
3 & & By & &)
£ i=1 i i i
|
; n+l
Zb £ (y)
i e
B {',n+l % n+l
: a Zb £ (y))+ I (a, -a, )b £ (y)
i b LT ) i M4 M M N

which is decreasing in y if

e o

E




n+l
kg
n+l (3.3)
Z (ay -8 by £, ()
i=2 i 1 5 R
is decreasing.
But by hypothesis,
£, O
9
n+l
By <8 Jb £y )
i=2 i 1 ) i

is decreasing in y, so the ratio (3.3) is decreasing if

nt+l
%

2 b )
i=2 "1 i

is decreasing. This latter ratio has the form of Hn(y) and is decreasing

in y by the induction hypothesis. Thus, the proof is complete.

Example 1. Let Y ~ B(N,p), and Z ~ ?(8), i.e., Z is a Poisson random
variable with parameter 6. Let Y, Z be independent and let X = Y + Z.

One can easily check that the ratio P(X=0)/P(X=1) is decreasing in p.

For x > 2,
x-1 9x-i-l
e selemeemt O (Y=1)
Blex=1) . gug =170 °p
P(X=x) X ex-i
2 e—P Y=
i=0 (x-i): p( )

i
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which is decreasing in p if the ratio (3.4) below is decreasing

x-1 x=-i-1

. 8 -
Ry 2 e
i=0
; , (3.4)
x=1 ox1

since when Pp(Y=x) > @, Pp(Y=i)/Pp(Y=x) is decreasing in p for all
i < x for which Pp(Y=i) > 0. The function (3.4) satisfies the hypotheses

of Lemma 2, being of the form Hn+1(p), with

£,(p) = P_(¥=i)
. : 9x-i-l
i T o(x-i-1)!
and a, = —QT
i x-1i

for ki =i=20,1,...,n, where n = min(N,x-1). It follows that the function
(3.4), and consequently the ratio P(X=x-1)/P(X=x), is decreasing in p.

Thus, the binomial-Poisson convolution has PMDR in the parameter p.

Example 2. Let Y be a random variable whose distribution belongs to a family
of distributions with PMDR in the parameter p. Suppose the support of Y

is equal to a set of consecutive positive integers. If Z ~ B(l,m) and Y

and Z are independent, we show that the distribution of X = Y + Z has

PMDR in p. It is easy to check that P(X=a)/P(X=a+l) is decreasing, where

a 1is the smallest integer that Y takes on with positive probability.

For any y > a for which P(Y=y) > 0O,




P(X=y-1) _ nP(¥=y-2) + (l-1)P(Y=y-1)
P(X=y) mP(Y=y-1) + (1-n)P(Y=y)

. B(ley=2) /)
P(Y=y-1) + (1-m)

P(Y=y)

P(Y=y-1)

TT

m+ (1-1m)

which is decreasing in p. If Y has finite support and

N = lub{Support of Y}, then

P(X=N) _ mP(Y=N-1) + (1-m)P(Y=N)
P(X=N+1) TP (Y=N)

which is also decreasing in p. Thus X = Y + Z has a distribution with
PMDR. Since the support of X 1is again equal to a set of consecutive
positive integers, it follows that the distribution of X = Y + Z, with
Y, Z independent and Z ~ B(M,m) has PMDR in p. Moreover, since the
binomial distribution itself has support on consecutive positive integers,
we conclude that convoluted binomial distributions B(N,p) * B8(M,n) have PMDR
in p.

In Example 2, we require the support of a random variable Y to consist
of a set of consecutive integers for convolution with a Bernoulli variable
to be PMDR preserving. The necessity of this condition is apparent in the

following example.

Example 3. Let Y be a variable taking values on even integers according

to binomial probabilities as follows:




e p——

s v e,

P(Y=2i) = (T)Pl(l-p)N-L O

It is obvious that the distribution of Y has PMDR. Let Z ~ 8(1,m) be

independent of Y, and let X = Y + Z. For even x,

P(x-1) = mP(Y=x-2)
P(x) ~ (1-m)P(Y=x)

which is decreasing in p. If, however, x is odd,

P(x-1) _ (1-mP(Y=x-1) _ l-m
P(x)  mnP(Y=x-1)  n °

Thus, the ratio P(x-1)/P(x) is a constant independent of p.

In Examples 1 and 2 given above, PMDR in the parameter P guarantees
that the likelihood equation has at most one solution. As we shall see,
there are convoluted binomial distributions without PMDR, but satisfying
a weaker monotonicity property, for which we are able to demonstrate that

the likelihood equation has at most one root.

Definition. Let{Pp o PEB « € @} be a family of discrete distributions
e g ) 2] b
indexed by a real valued parameter p and a (possibly degenerate) parameter

«@. The family is said to have weak parametric monotone decreasing ratio in p

(WPMDR) if, for each fixed o € @ and for each a < b for which a and b

receive positive mass under Pp o for every p € P, the ratio
H]

P a(x=a)
Pp’a(x=b)




Lemma 3. Let xl,...,xn be a random sample from a convoluted binomial

17

is either decreasing in p or is equal to a constant independent of  p.

distribution PN - with WPMDR in the parameter p. If at least one
b

observation xi is such that

P(x=xi-1|N-1,p)/p(x=xiin-1,p) (3:5)

is not identically 1 in p, then é% In L is a decreasing function of p.

Proof: For every observation X4 for which the ratio (3.5) is identically 1,

we have é% 4n P(X=xi|N,p) = 0 by (2.3). For any observation X, for which

the ratio (3.5) is decreasing, é% in P(X=xi|N,p) is decreasing by the

argument used in proving Lemma 1. It remains to show that this is also

true for observations X, for which the ratio (3.5) is identically equal

toc # 1. We have

P(¥=x, -1|N-1,p) - P(X=x, [N-1,p)
p(P(x=xi-1[N-1,p) - P(X=xi|N-l,p»-+ P(X=xilN-1,p)

9
op

fn P(X=xi|N,p) =

This function has the form

h
g(p) + £(p)

n

where h(p)/g(p) = 1/p and h(p)/f(p) = ¢ - 1. Thus g% 4n P(X=xi|N,p) is

decreasing in p. Since g% In L is the sum of functions each of which is

decreasing in p or identically zero, and at least one of these functions

is decreasing, we have that g% In L is decreasing in p.




We now consider a pair of examples of convoluted binomial distributions

with weak PMDR.

Example 4. Let Y be a nonnegative integer valued random variable whose
distribution belongs to a one-parameter family of distributions with WPMDR
in the parameter p. If Z 1is independently distributed according to a

geometric distribution G(®) with probability mass function

f(z=z) = (1-8)8~ 2=0,1,2,¢¢ ,
we show that the distribution of X = Y + Z has WPMDR in p. Suppose x - 1

and x vreceive positive mass from the distribution of X. If P(Y=x) = O,

x-1 k
T (1-8)8'P (Y=x-i-1)
P(X=x-1) _ i=0 P
P(X=x) X i
T (1-8)8'P (Y=x-i)
i=0 P

is equal to 1/8. If Pp(Y=x) > 0, this ratio may be written in the form

S 1 4-) S,
gp) + £(p) °’

where h(p)/g(p) = 1/8 and h(p)/f(p) is either constant or a decreasing
function of p. Thus, for all appropriate x, the ratio
P(X=x-1)/P(X=x) is either constant or decreasing in p, establishing WPMDR
for the distribution of X. Since the binomial distribution B(N,p) has
WPMDR, we have that the convolution B(N,p) * G(8) has WPMDR. It is useful
to note that for X ~ B(N,p) * G(8), the ratio P(x-1)/P(x) is decreasing
in p for 0 < x < N, and is equal to 1/8 for x > N. Since this ratio is

)

never identically 1, the function <— #n L is decreasing in p for samples

ap
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from B8(N,p) * G(8).

Consider the convolution B(N,p) * G(8) * G(8), or equivalently
the convolution B8(N,p) * NB(2,8) where NB(r,8) represents the negative
binomial distribution with parameters r and 6. If Y ~ B8(N,p) * G(8)

and Z ~ G(8), independent of Y, and if X =Y + Z, then for any x > 0

x-1 .
T 0'P(Y=x-i-1)
P(x-1) _ i=0
P(x) =~ x-1 i .
8 T 0 P(Y=x-i-1) + P (Y=x)
i=0 P

Because Pp(Y=x) is positive for all p, this ratio is decreasing in p.
Thus the family B(N,p) * NB(2,0) has PMDR in p. The same argument leads

one to conclude that B(N,p) * W3(r,8) has PMDR in p for any r > 2.

Example 5. Let Y ~ B(N,p), and let Z be a random variable independent
of Y with a uniform distribution on the integers 0,1,...,k, that is, with

probability mass function
P(Z=2z) = — z=0,1,...,k.

Suppose k > N. Then the ratio

r x-1

T P (Y=i)
i=0 P

X

% P (Y=1i)
i=0 P

PGe-l -{ 1 EN<x<k

if x <N

P(x)

N
¥ P_(Y=i)
i=x-k-1 P ! , _
N lfk‘f.x:N'f'k
£ P_(Y=1i)
i=x-k v
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It is therefore clear that the distribution of X has WPMDR.

Suppose a random sample of size n is taken from the convolution ;
B(N,p) = U[0,1,...,k], with k > N, The distribution 8(N-1,p) * U[0,1,...,k]

has WPMDR in p. If at least one observation x; fails to satisfy the inequality

i S k, we have by Lemma 3 that é% fn L is decreasing in p. If all

< k with at least ome x; < N, the MLE is p = 0. If all x; > N with at

N <x

b |
least one x, > k, the MLE is p=1. 1In all other cases in which observations

X; smaller than N or larger than k exist, the MLE is the unique solution

of the likelihood equation. When all x, satisfy N < x, < k, the likelihood
is equal to the constant (1/k+1)n, independent of p, and any p € [0,1] is
an MLE.
For completeness, we note that the convolution B8(N,p) * U[0,...,k] for
k < N has PMDR in p. Thus, if a sample is taken from B(N,p) = U[0,...,k]
o

with k < N, we have by Lemma 1 that S; 4n L is decreasing in p and the

MLE is zero, one or the unique solution of the likelihood equation.

The examples given in this section serve to demonstrate that maximum
likelihood estimation of the binomial parameter is easily accomplished for
a fairly broad class of convoluted binomial distributions. In addition
to the distributions examined in these examples, multiple convolutions of
B(N,p) with two or more other families, for example, the three-fold
convolution B(N,p) * £{8) * \B(r,m), can be shown to have PMDR in p. In
all such cases, with all parameters save the binomial parameter p known,
the maximum likelihood estimate of p 1is easily found. It is possible to
construct convoluted binomial distributions for which the equation

g% fn L = 0 has any number of solutions. Thus, maximum likelihood

A | - —
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estimation can be unfeasible for such models even by numerical methods.
When parametric monotonicity holds, the estimation problem is entirely

straightforward.
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