» AD=AD45 274 SACRAMENTO AIR LOGISTICS CENTER MCCLELLAN AFB CALIF D==ETC F/6 9/2 N

SOFTWARE ENGINEERING TECHNIQUES IN COMPUTER M
DEC 76 J H LEHMAN SYSTEMS DEVELOPMENT==ETC (U)

UNCLASSIFIED SM=ALC/ACD=76=04 NL

s
L
== lle

2 flis nee

A

(\) Report No: SM-ALC/ACD-76-04
15 December 1976

SOFTWARE ENGINEERING TECHNIQUES
IN

COMPUTER SYSTEMS DEVELOPMENT

John H. Lehman ry 7y €
Lt. Colonel, USAF (Retired) I'T

L{ OCT 18 917
Distribution Statement A BE St 'T—TTEJ

Approved for Public Release; e

Distribution Unlimited Cy

DEPARTMENT OF THE AIR FORCE '
HEADQUARTERS SACRAMENTO AIR LOGISTICS CENTER (AFLC)
McCLELLAN AIR FORCE BASE, CALIFORNIA 95652

PN FILE COPY

AD

z

ABSTAINER it

This research report represents the views of the author and
does not necessarily reflect the official views of the Data Automation
Branch or the Department of the Air Force.

This document is the property of the United States Government
and is not to be reproduced in whole or in part without permission
of the Data Automation Branch, McClellan Air Force Base, California.

Todme e

-
Ak

ii

FORWARD

On 6 January 1976, the Data Automation Branch of Sacramento Air
Logistics Center (ALC) initiated the development of a major logistics
software capability, the "Allied Recoverable Requirements Computation
System'" (ARRCS). This was the first major software development task
assigned to this ALC since 1973 and represented our first opportunity
to employ the new software engineering techniques, (Top Down Design
and Structured Programming) then coming into their own in the data
processing community. This center had initially been exposed to
"IBMs Modern Programmer Productivity Techniques' through a series of
courses conducted early in 1974; however, because of lack of develop-
ment workload, had been unable to implement these concepts.

It was determined that ARRCS would be developed using a combina-
tion of techniques drawn from:

1. The Rome Air Development Centers project reports on
Structured Programming,

2. 1IBMs Modern Programmer Productivity Techniques,
particularly the use of HIPO charts, and

3. the concepts expounded in Fred Brooks' book, The Mythical
Man Month.

At the time that this new development was started, a determina-
tion was made that at least the initial activities would be thoroughly
documented in an attempt to ascertain the value of the new software
engineering techniques. To aid in this I directed a complete list
of project records be kept, including a weekly diary, and a monthly
review and report. Capt Daniel Wagner, the project officer, further
required a periodic "dump" of all thoughts and ideas that his team
had on this subject. These reports, other documentation, the
programs themselves, and all correspondence, form the source material
for this study.

I was fortunate to have assigned to the Data Automation Branch
Lt Col John H. Lehman, shortly before his retirement, for he volun-
teered to research and write this report.

Col Lehman was not assigned to the Data Automation Branch until
5 Aug 76, after the completion of ARRCS phase 1, therefore, all of
his views and conclusions were drawn from interviews and the source
material. He worked fulltime on the report until his retirement on
30 Oct 76, and part-time until its completion in mid-December.
Col Lehman is now retired, is a fulltime student, and working as a
Data Processing Consultant.

1

I believe this scudy accurately reflects '"lessons learned" in
this, our first attempt to employ the techniques of Top Down Design
and Structured Programming.

Correct decisions and errors are reported with equal candor in
the hope that the reader will benefit by our mistakes when imple-~
menting his first software engineering project. Many of Col Lehman's
recommendaticus have been implemented in phase 3 of ARRCS and our
organization is deejp'y indebted to him.

In addition to acknowledging the fine work donme by Lt Col John H.
Lehman, I would also like to thank the project leader, Capt Daniel L.
Wagner, Mr Carl Distefano, senior mission analyst, Mrs Joyce Vittone,
the project administrator, and every member of the ARRCS development
team, both programmer and logistician.

o e e

RICHARD H. THAY
Colonel, USAF

iv

ABSTRACT

This case study centers on the effort involved in the development of
a major logistics software system.

The development effort was unique in several major respects. It is
divided into three general groupings. The first is historical and
describes in the most general terms the system itself. The history
predates the development effort by some months and terminates roughly
with the certification of its initial phase.

The second part centers on a review and evaluation, not of the
system, but of the procedures followed in its development. This
evaluation is almost totally derived from commentaries, both written
and oral, of the participants.

The final third of the text provides suggestions which the author
hopes will prove useful in the development of the future phases of
the System or totally new software development efforts undertaken at
the Sacramento Air Logistics Center.

i anCul

TABLE OF CONTENTS

SECTION
Forward
Abstract
Preface
I HISTORY
System Background
The Problem

The USAF Solution

The FMS Solution
Pre-Development History
Development History

II TECHNICAL REVIEW AND EVALUATION
Manning-Personnel-Environment
General
Composite Profile
Programming/Analysis
Requirements System
Management
Environment
Physical Facilities
Organization
Documentation
General
The Functional Description (FD)
The Development Plan (DP)
The Data Element Directory (DED)
Software Engineering Techniques
The Development Team
Walk-Thru's
HIPOS
Development Support Library
Top Down Design
Top Down Implementation
Structured Programming
Major Handicaps
Training
Development Structure
System Definition
The Target Date
Statistical Recap

PAGE

iii

ix

bV s WN -

11
12
E3
14
14
15
15
15
16
16
16
17
18
18
18
23
24
29
25
25
26
26
27
28
29
30
30

I1I RECOMMENDATIONS

General 39
Organization

Applications Programming 31

Systems Programming 32
Training 33
Team Arrangements 33
Documentation 34
Software Engineering Techniques

The Development Team 35

Walk-Thru's 36
Standards/Procedures 36
Administrative Procedures 37
System Definition/Target Dates 38
Abstainer 41

List of Illustrations:

FIGURE PAGE
1 ARRCS Manning Chart 12
2 The Design Team 19
3 The Implementation Team 20
4 The Evolved Team 21
5 Sample Format 38
viii

PREFACE

On the sixth of January, 1976, the development of the Allied
Recoverable Requirements Computation System (ARRCS), a major applica-
tion software capability was officially initiated at the Sacramento
Air Logistics Center. This effort was unique in several major
respects. The ultimate user or users of the ARRC System, those
nations acquiring military aircraft from the United States, were not
involved in any but the most remote way with its development. The
myriad of potential users, and the limitless combinations of hardware
upon which the system might possibly be employed dicated severe
design constraints and tended to reinforce the premise that only
through the application of the principles of top down design (TDD)
and structured programming (SP) could a capability be developed with
the requisite flexibility. TDD and SP were therefore selected to be
the cornerstones of the development methodology employed in bringing
this system to life.

What follows is an analysis of this effort. I have divided the
study into three general groupings. The first is historical and
describes in the most general terms the system itself. The history
will predate the present development effort by some months and
terminate roughly with the certification of Phase I ARRCS by a team
of logisticians from Headquarters, Air Force Logistics Command.

The second part of the analysis will center upon a review and
evaluation, not of the system, but of the procedures followed in its
development. This evaluation is almost totally derived from comment-
aries, both written and oral, of the participants. As might be
expected, not everyone involved shared the same opinions and, where
a wide divergence existed, greater reliance was placed upon the
statements of those closest to the area in question, rather than the
most or least critical or laudatory.

The final third of the text will provide suggestions which the
author hcpes would prove useful in the development of the further
phases of the ARRC System or totally new software development efforts
undertakzn at the Sacramento Air Logistics Center. As in the case
of the preceding pzaragraph, the majority of the inputs originated
with the project participants. In final form most suggestions are
an amalgam of several proposals elaborated upon by the author.

This study differs in several major respects from similar
studies of top down design and structured programming efforts which
have come to my attention. First, the author was not involved in
the development of the system itself but rather became associated
with it only after its Phase I completion and then only for the
purpose of the study. Second, it was to be a history of the total
development effort and not just its technical aspects, and finally,

ix

DT - SREERSIRPRS S

i

recommendatiors were to be provided covering a broad spectrum ranging
from technical detail through organization.

The research pattern followed entailed: 1) Reading all available
files and documents, identifying and cataloging those items deemed
to be significant; 2) Establishing a tentative framework (outline)
for the study; 3) Relating documents to the proposed outline and
determining their adequacy in furaishing the requisite data; 4) Devel~
oping a questionnai (to be used in interviewing each participant)
coering in large measure those gaps that appeared in matching the
avaiiable documentation to the proposed outline and finally; 5) Inter~
viewing each available participant.

As a final note, I believe it necessary that I establish what
credentials I have to qualiiy me to perform this service. I have
been closely involved in Data Automation for eight of the last ten
years. An initial two years was spent in the maintenance of the
SAGE (Semi-Automated Ground Environment) System. During six of the
following eight years, I functioneu as super analyst programmer for
several medium to large application software capabilities, was Chief
of the Command Control Programming Branch, Chief of the Plans and
Requirements Division, and had a stint as Deputy Director of Data
Automation; all these at Headquarters PACAF (the Pacific Air Forces).
At the time of my departure from PACAF, the Analysis and Programming
Division had just initiated its first effort at TDD and SP, so my
practical experience in this area is limited.

My thanks to all the members of the development team whose
complete support and candor made th.c study possible. Also, my
special thanks to my secretary, Ms Tindi Flemming, for lLer typing
and redgctign of this technicar report.

JOHN %EHMAN
8189 Plumeria Avenue

Fair Oaks, California 95628
(916) 966~5189

e ———————

L

SECTION I

H1STORY

System Background

The Problem.

With the ever increasing sophistication of military hardware,
modern aircraft being a prime example, there has been a concurrent
increase in equipment costs. As would be suspected, not only has
original purchase price risen in terms of real dollars, but the
repair and replacement costs of individual components has also been
subjected to sharp increases. With some repairable/replacement
items costing in the hundreds of thousands of dollars few nations,
if any, could afford an arbitrary buy of six or twelve of each on
the off chance that that quantity would ultimately be used or even
be sufficient to the task.

The expense of reestablishing a production line for a small run
could add astronomically to the cost of an item, whereas failure to
do so when the part is needed, could result in the effective loss of
each aircraft as that component became damaged beyond repair. On
the opposite end of the spectrum is the overbuy which could result
in an inventory of unique parts, all purchased at great expense, and
all reduced to the value of scrap when its associated weapons system
was phased out.

The problem is one of having just the proper amount on hand at
any one time to meet immediate and crisis needs while also forecasting
requirements far in advance or through the life cycle of the weapons
system. The factors that must go into such a calculation are manifold.
Representative of the considerations involved are: the flying hours
programmed per aircraft per period of time; failure rates on specific
items; the status of failed items, be they locally repairable, depot
repairavle, or condemmed (beyond economical repair); enroute times
to maintenance facilities; and repair cycle times once the defective
part has reached the depot.

Each country or geographical area has unique characteristics
that can alter the above considerations. Flying an aircraft 100
hours a month, will surely result in a greater number of component
part failures than flying only twenty. The quality of flight and
ground crews will have a large effect, as will environmental conditions.
Blowing sand may cause rapid failure of certain components whereas
extreme cold will have a detrimental effect on others. Though all
this data could be manipulated by a single automated system with a

single data base projecting worldwide requirements, each customer
receiving a pro raca share of de-icer boots, as an exampie, would
prove of marginal utility at best.

Foreign Military Sales (FMS), that is the transfer of U.S.
Military and Related Hardware to foreign countries, are conducted on
a cash, loan, or grant basis. Assuming that it is in the best
interest of the United States that maximum effective use of this
equipment pe made and maximum benefits be derived per dollar spent,
the above delinear 1 problem requires a solution. Beyond that,
‘ince each recipient of U.S. Military Hardware has unique requirements,
any solution must take these variations into consideration. A
system to accomplish this has been called a Recoverable Requirements
Computation System,

The U.S. Air Force Solution

As might be expected, the United States Air Force has such a
system already in existence. The problem described above, or rather
its solution, is therefore simpliiied since: 1) Methods of calcula-
tion employed by one system may be employed by another; 2) A body
of experience exists in the development and employment of such a
capability; 3) Data is available, arrived at empirically, as in the
case of consumption factors, or analytically, as in the determination
of what constitutes a repairable asset.

Three possibilities come immediately to mind. Why not use this
capability on behalf of each FMS recipient? Or, why not provide
each FMS recipient with a copy of the software for their own use?
Or, why not convert the present system to operate on FMS recipient
hardware? There are many objectic s to each of the above courses of
action and I will only state cthe basic reason each was ruled out as
a viable alternative.

In processing/calculating individual FMS requirements at a
continental United States facility, the system would be almost
totally unresponsive to the local manager responsible for making buy
decisions. Data input and product output would be hopelessly behind
the times. With a possible 63 FMS countries requiring this
service, the administrative problems, not to mention computer hardware
requirements, would be horrendous.

To provide each FMS recipient with present programs would be
futile. The present system, actually a number of sub-systems, is
operated largely on a second generation IBM 7080 computer. Most FMS
recipients are just now entering into thc computer era and, quite
naturally, purchasing or leasing third rather than second generation
equipment. In most instances, conversion and integration of present
USAF software would be beyond the capabilities of indigenous program-
ming staffs in FMS recipient countries.

To further expand on the theme of conversion, an inhouse analysis
of the efficacy of a direct conversion of the present Air Force System
resulted in the conclusion that a total re-write incorporating already
identified requirements and enhancement would be the preferable course
of action. Among the reasons cited, were the state of present system
documentation and the large number of modifications already made that
have naturally resulted in a less than straightforward, easily followed,
program code.

The Foreign Military Sales (FMS) Solution.

Since employment of the USAF system(s) either directly or following
a conversion was judged to be a less than adequate alternative, the
only remaining choices were to develop a totally new system or develop
no system at all. In choosing to create ARRCS for a wide and, to a
great extent, unknown constituancy the developers took on a burden that
would not accrue to a more conventional development activity.

The constraints and considerations under which the design evolved
included the following. The system must:

1. with only minor modification (to facilitate installation) be
capable of operating on any third generation computer that had available
an ANS COBOL and ANS FORTRAN compiler.

2. be tape oriented, thercby dictating sequential processing.

3. have the capability to accept a variety of input formats with
little system modification to allow interface with existing capabilities.

4, be adaptable to special requirements of individual users.
5. be simple to operate with extensive data edit capabilities.
6. be modular to facilitate

a., implementation of portions of the system if the full
capability is not required.

b. system enhancement to provide more sophisticated data
handling and manipulation as required.

Pre-Development Histcosy

Though the necessity of establishing methods and procedures for
determining, with accuracy, recoverable item requirements of nations
engaged in purchasing (obtaining) U.S. Military Hardware has been
under discussion for many years, the earliest serious reference to
the development of a computer capability for this purpose that the
author could find was datei February 1975 when, during the course of
a VNAF (Republic of "“"etnam, Air Force) Requirements Computation
Cor ference, the Sacramento Air Logistics Center, Directorate of
Material Management, SM-ALC/MMM, agreed to prepare specifications
for a very simplified automated rejuirements computation system.

The Air Force Logistics Command, Directorate of Data Automation
(AFLC/AD) was to write, test, and operate the developed system. By
early March '75, AFLC had reconsidered its role as system developer
and this now devolved upon SM-ALC. Further, on 10 March 1975,
AFLC/AD directed SM-ALC/MM to prepare the Data Automation Requirement
(DAR) and System Specification (SS), by April, at which time SM~
ALC/AC (Office of the Comptrocller) was to review the completed
documentation and assess its capability to support the development
workload. By the third of April, it became evident that our client
state would have no further use of a Recoverable Requirements Compu-
tation System and authority to expend DAV funds for continued develop-
ment was cancelled. On 9 April 1975, however, HQ AFLC requested

that the DAR and specification be completed by "18 April 1975 as
originally planned", citing the real and valid need for the system
by other Security Assistance Program countries.

The DAR, titled Allied Recoverz>le Requirements Computation
System (ARRCS), was completed on 22 MMay 1975. Development costs in
terms of manpower were estimated to be 66 man months of computer
programmer/analyst time and 24 man months of effort on the part of
logistics systems analyst. In forwarding the completed DAR to
HQ/AFLC, SM-ALC/MMM indicated that the functional description (FD)
and Systems Specification (SS) would be provided upon completion. A
review of the available files in ACDA shows no further activity
until 18 July 1975, when SM-ALC/MMML (Advanced Logistics Systems
Pianch) at the instigation of HQ/AFLC/MMI (Directorate of International
Logistics, Office of DCS/Materiel Management) requested SM-ALC/AC
provide inputs to derive an estimated cost to design, develop, and
implement the ARRC System fcr the Iranian Air Force without producing
all the documentation required by the Department of Defense Automated
Data System Documentation Standards Manual, DODM 4120.17-M.

The estimated cost of the system, not taking into account the
Iran unique expenses, (TDY, Training, et al) was decreased from
$146,790 (reflected in the ARRCS DAR) to $67,343, representing a
drop of just over 54%. 1 hasten to add that the system sketched in
the DAR was considerably smaller and far less sophisticated than the
system finally approved for development, and since added to and
embroidered upon.

|

On 29 August 1975, SM-ALC/MM was given authority to continue
with the development of the ARRC System "until completion of the
current phase", this being the development of a Functional Description
and System Specification. 1t was thought likely at that time that
the system would be employed in Iran under Project Peace Log and on
5 September a message from AFLC confirmed that billing would indeed
be against that project. It stated further that "4120.17-M documenta-
tion does not apply" and requested a completion date for the System
Description and Specifications. On 9 September 1975, AFLC was
advised that a target date of 15 October 1975 had been established
for completion of the requested documents and suggested a review of
the completed work be conducted at SM-ALC by AFLC/MMI/ACD during the
week of 16 October. On 7 October the incorporation of 'Variable
Safety Level" into the ARRC System was requested by AFLC/MMI and
concurred in by SM~ALC/MMM. A new review date of 3~7 November was
also agreed upon.

On 3 November, when the review was conducted, the only document
available was a draft of the System Specification. On 21 November,
SM-ALC/ACD was notified by AFLC/MMI that funding for the system
would no longer be provided through Project Peace Log. Further, SM-
ALC/ACD was requested to send someone to HQ/AFLC to discuss ARRCS
development for initial implementation in Saudi Arabia under the
sponsorship of Project Peace Hawk. On 25 November 1975, the System
Description prepared by SM-ALC/MMM, and dated 6 November 1975, was
received by SM-ALC/ACD.

The Directorate of International Logistics, Office of DCS/Materiel
Management advised SM~ALC/MMM/AC on 23 December, that, '"The current
requirement and authorization for SM-ALC to develop the Allied
Recoverable Requirements Computation System under Project Peace Log,
has been changed to Project Peace Hawk for further funding.'" The
letter went on to state in paragraph 2, '"Under this new agreement,
the specifications for the ARRC System will call for the addition of
mathematical models, expansion of documentations requirements, and
various other changes which have been discussed with your ACD person-
nel." The authorization in paragraph 1 was followed by a request in
paragraph 3, that AC and MM accept the development resonsibility,
identify project officers, prepare a milestone chart, and justify
resources required.

With SM-ALC/AC/MM acceptance of the expanded development effort
on 6 January 1976, the project was officially launched.

Development History

Though a considerable amount of time and effort had already
been expended on the ARRCS project, and though the official start
date must be 6 Jan 76, the serious effort dates from 23 December

1975 and the request made by HQ AFLC/MMI that SM-ALC/MM/AC undertake
this task as a joint venture. By the sixth of January a milestone
chart had been prepared showing a four phased development effort

with the first target event, [system) definition, to be completed in
mid-January '76, and the last target event, [in-country] implementa-
tion, forecast for completicn by the end of August 1977. The implemen-
tation of phase 1 "Basic DO41" was targeted for mid-June '76.

Manpower requirements had also been determined to be five
Mission Analysts (employment, as opposed to computer analysts -
provided by the Lc istize Systems Management Division), eleven
computer specialists, one clerk-typist, and, parenthetically, one
supervisory computer analyst., The development team grew at a more
or less constant rate uncil It reached its full compliment in March
of 1976. There was no turnover of programmer/analysts until close
to the end of Phase 1 development when one change was made, though
several changes and substitutions were made in the ranks of the

Mission Analysts.

The major task conironting the ARRCS team for the next two
months was the developmen: of tu. (unctional description (FD).
Since the "expansion of dccumentations requirements,' in the letter
of authorization appareatly alluded to DODM 4120.17-M standards, any
savings that were tc be realized by minimizing the amount of documen~
tation produced wevz now eliminatad. The cost of producing good
documentation however, is citen more than offset in the system's

maintainability, utility, and longevity.

In the letter ¢f & Jan 76 accepting development responsibility,
it was stated that "a system requirements review should be accomplished
the week of 2 Feb 1976" and this conference was ultimately held at
SM-ALC during the week 15-25 February 1976. In attendance were
representatives from SM-ALC, AFLC, 0O0-ALC (Ogden Air Logistics
Center) representing the F-16 System Manager, and Northrop Worldwide
Aircraft Services, lLawtcn. OK (NWASI). NWASI was involved due to
negotiations concernirye contractural support to be provided Saudi
Arabia in programming ana operating its Aircraft Replacement Components
Logistics/Supply Systexz. In preparation for this, NWASI had an IBM
370/135 computer alleged to be in the same configuration as a machine
to be installed in Saudi arabia at some date in the then not too

distant future.

To paraphrase a tzlking paper prepared by SM-ALC/ACDA: The
purpose of the meeting was to review the ARRCS functional description,
thus assuring thac the uvser's needs had been thoroughly identified
and were clearly staced. In addition, the development plan would be
reviewed to insure that ARRCS was developed and documented in an
orderly manner using the new techniques. The aim of the conference
was to establish a functional base line and firm committments regarding
documentation and manning of the project. It was essential that all
parties agree on the scope of the work. AFLC/MMR had agreed to
support this project because they saw a potential use by AFLC.

P -

| —————

During the course of the review, AFLC directed some changes and
additions be made to the draft functional description. 1In a message
dated 3 March 1976, AFLC/MI requested that two ARRCS development
team personnel travel to HQ AFLC for the purpose of reviewing and
discussing the revised FD and developing a command ARRCS briefing.
Travel was accomplished between 7-10 March. In addition to the FD
review/approval and development of the command briefing, the meeting
produced an item of major significance. While the due date for
Phase I (the first increment) was confirmed as 20 June 1976, the
completion date for the final increment, (Phase IV) was moved ahead
one year and four months to 1 January 1979. Reasons for this change
in final implementation date were given as:

1. More stringent error detection and correction parameters.

2. Stock levels computed individually by base rather than
employing depot averaging techniques. :

3. Each package (phase/increment) to be developed and demon-
strated as a stand-alone system.

By mid-March the functional description (FD) and development
plan (DP) had been completed and approved.

While the functional description and development plan were
being placed in final form an in-house training effort was initiated
to acquaint or reacquaint the programmers/analysts on the development
team with the principles and techniques of top down design and
structured programming. Classes were held for two hours a day, for
eight consecutive duty days starting on the third of March. At the
end of this period, it was estimated that six additional hours of
instruction would be required. This was tentatively scheduled for
the week of 22 March, but never materialized.

During that period a solution had to be provided for the problem
posed by the non-availability of a computer of the target machine
type and configuration within the development center. There were
several iterations on how to solve this dilemma. The DP Solution
entailed initial development on the CDC Cyber 70, followed by conversion
and test on the IBM 360/44, operated by the 1155th Technical Operations
Squadron at McClellan AFB, with the final adaptation to an IBM 370
being accomplished at Lawton, OK in the facilities of Northrup
Worldwide Aircraft Services, Inc. (NWASI).

Another iteration, also not acted upon, considered the acquisition
of a 370/115 through NWASI for installation at McClellan AFB.

The final

time from a privat
and, though a certai
great amount of tin
administrator, in ac
The initial face ¢t
of March. By 12
and on the fifteent
into effect. Pr
Juaranteed process:

On 20 April,
the contracted fo:
week, the initial

On the ninth ol
System demonstraticu
Arabia was now tc
The reason given w
Northrup Worldwide

By the third
o team went to Lawton,
NWASI environment
generation and opci

The operatin;
way compatible wit!
extensive testin;
software at that
to be provided bv
loaded (IPL's).
stand-alone oper:
was initiated.
the first order ¢
engineering support
system support in the

negotiations betweon
dragged on over Ln
would not accept o1 «
was awarded to C'io

the trip proved a su
for an IBM systems
available to the A

session for ARRCS programmer
contract extended ro

ously pranned to take place in Saudi

(bC. The requirement for operating

early in the developme:

being dated the tventy one ot March, Unfortunately, contract

ide this service.

From the standpoi

vided for the lease of IBM 370 computer

. Health Data Corporation (CHDC),
inconvenience was experienced, and a

{fort expended by one team member, the

his, the overall effect was positive.
with CHDC was made on the sixteenth
nt was reached on costs and services
nth, the contract was signed and went
the designation of a work-area,
presentation of a three hour training
570 DOS/VS. The period of the
1976, at a net cost of $23,413.68.

4 Health Data Corporation conducted
tr2ining and during the following

ARRCS programs was undertaken.

tication was received that the ARRC

cd at the NWASTI facility, Lawton, OK.
ot the Saudi Arabian government and
lces, Inc., to finalize negotiations.

hirce members of the ARRCS development

pieces of the ARRC System in the
t~hand knowledge of the system
uration of that computer.

cmployed at NWASI was not in any
-»m employed at CHDC, Before
wplished on the ARRCS applications
plete system generation would have
ind the system initial program
'S in this environment would require
Ltate an IPL each time processing
{ a system generation (IPL) became
wing the acquisition of system

systems engineer was recognized
the earliest written reference

the Air Force to acquire this support
ability" and "guarantee'" (which IBM
On the twenty-fifth of May, a contract

imiliarization with the NWASI environment,
vinted up the requirement once more
jcrating systems programmer) to be

nent team.

e S S i

One further element caused concern and that was the lack of

understanding on the part of both NWASI and SM-ALC about what their
opposite number was developing. It all became moot shortly there-
after, however, when NWASI dropped out of the equation entirely.
Though several trips to Lawton, OK had been planned, including one
for the demonstration of Phase I ARRCS, only the single TDY between
the sixteenth and the twentieth of May was ever conducted. With
NWASI out of the picture the demonstration locale was moved to CHDC,
with the tentative date remaining unchanged.

Programming and testing continued through May and June and
though no figures are available, the frequency and length of walk-
thru's declined as the required delivery date approached.

In mid~June, a meeting was held at Wright-Patterson Air Force
Base for the purpose of briefing cognizant individuals on the progress
of ARRCS development and "firm up the demonstration date'". Broadening
of the ARRC System was also to be discussed. Both SM-ALC/ACD and
MMM were in attendance. The immediate outcome of the discussions
was the establishment of 19-21 July as the demonstration time frame
tor Phase I.

In early May, interest was shown in the acquisition of a '"Librar-
ian Software Package'" to aid in the development effort. Among other
things, the librarian software would facilitate program testing,
provide an audit trail of program changes, allow the inclusion of
temporary modifications, and produce summary output products showing
lines coded, contents of program libraries, etc. On the twenty-
third of June, the "Librarian'" purchased from Applied Data Research,
Inc. was installed at the CHDC facility but not without some problems
that resulted in the loss of two days of program test time.

In early June, a "training plan' was completed and defined
requirements ranging from Introduction to System 360 Programming
through Training for Project Management. On the eighteenth of June,
approval was received from HQ AFLC to carry over funds from 76/4 to
77/T to be spent for training in support of the ARRCS project.

For the week ending 28 May, the activity report read:

The computation group has tested the OIM segment; the
input group has some conversion, F/M [File Maintenance]
and edit modules tested, and the output group is coding
the June demo products. The output group may require
overtime to complete the June demo.

The week ending 18 June:
The computation run has run to completion and is approxi-

mately 987 tested. The output worksheet has been tested
for pages 1 and 5 and part of page 3.

9

Input conversion is approximately 957 tested.

On the ninth of July, the full five page computation worksheet
was prepared and given to the Mission Analysts to research. A total
of 28 discrepancies were ideantified by MM and AC personnel. During
the week ending the tenth of July, testing and debugging continued
and problems were compounded by a power failure at the CHDC computer
installation late in the week and both Saturday and Sunday, (the
seventeenth and eighteenth of July) were used to put the finishing

touches on the sys ~m.

On the twenty-second of July, Phase I of ARRCS received certifi-
cation from a team of logisticiauc sent by the Air Force Logistics
Command for that purpose. Some minor discrepancies were noted.

10

SECTION 11

TECHNICAL REVIEW & EVALUATION

Manning-Personnel-Environment

General.

Development of the Allied Recoverable Requirements Computation
Systems (ARRCS) application software and its attendant documentation
was a joint venture of the Sacramento Air Logistics Center (ALC)

Data Auomation Branch, Office of the Comptroller and the Logistics
Systems Management Division of the Directorate of Material Management.
Though authority to proceed with the development was received in

late December of 1975, some preliminary work had, of necessity,
already been initiated. From 24 November 1975 through March 1976,

the number of programmer/analysts involved grew from one to 14 at a
more or less constant rate and with only one exception occuring in
early July there were no terminations or transfers experienced prior
to the completion of the initial development effort documented in

this study. In aggregate approximately 607 of one programmer's time
was spent on maintenance of other capabilities and of this amount,

the bulk was employed in support of the DO41A system, the logical
stepfather of the ARRCS. A secretary was assigned in mid-January

and has also provided support for the ARRCS project without significant
interruption.

Initial planning called for three full time analysts to be
provided by the Logistics Systems Managements Division. However,
this was later raised to five. Between mid-January and mid-July,
this number averaged between five and six, with only one brief
period in February showing only four assigned. As can be sezn in
Figure 1, a total of ten individuals were used to fill the five
Mission Analyst positions over the period of Phase I, ARRCS Development.
In order to differentiate between Computer Programmer/Analysts and
Logistics Systems Analysts, the latter will be referred to as Mission
Analysts for the remainder of this report.

NOV DEC JAN FEB MAR APR Ir MAY I JUN JUL

¥ -) - . - e e o LW 0 e R
Y Snpmpmp— ga—p—— e geege—— g SR TR T

= o TR UBAT Y M R R BRI O [< iR SN [N B ¢

| - - e - e b SR - N TER e
I - s [psp——— amm sesw £18 . s -
- LY] -_— - Dmn s
[- . - [XK .
SR mN o.J MY NN MR o IR WER LB _ |
2 prs s 3 la S EMS OMD) GEE SIS -
o SO BV Y s v s - .
oy ca

wes mm m ACD Programmers/Analysts

ACD Secretary

== MM Mission Analysts [!

Figure 1. ARRCS Manning Chart

Composite Profile.

In developing a composite profile, thoee areas of experience or
expertise were considered. These were 1) Computer Programming/
Analysis; 2) Requirements Syscems and; 3) Management.

Under the general heading of Computer Programming and Analysis
are include experience with CCBOL Programming, Third Generation
Hardware, Job Control Larguage, Top Down Design and Structured
Programming, and Original System Design and Development (as opposed
to System Maintenance or Add-Ons).

Computer Programming/Analysis

Cobol Programming: A straight mathematical tally of COBOL
programming experience for the fourteen programmers involved, shows
an impressive seven year average. High time was 22 years and low
was six months.

Third Generation Hardware: Experience on third generation hardware
ranged from zero to just over seven years. Average experience
approximated three years with the bulk of that having been acquired
on the CYBER 70. A total of ten years experience was on IBM 360/dd
equipment with no experience on the IBM 370/ddd, the target hardware
for the ARRC System.

Job Control Language: Through JCL in one form or another is
characteristically employed on most third generation computers there
is not a direct correlation between JCL and third generation equipment
experience. JCL for the Burroughs B-3500 is limited and there is no
format compatibility between CYBER 70 and IBM 360-370 control language.
Beyond that, the depth of experience can vary greatly from a develop-
ment activity where JCL creation must be done in total by each
programmer through a maintenance function where Procedures (Proc
Libraries) have been established and programmers operate with only a
small, predefined, subset of the total JCL package.

Control Language experience for the team averaged approximately
two and one third years, with an IBM JCL background being shared by
only four members of the group, representing a total of ten and one
half years.

Top Down Design (TDD) and Structured Programming (SP): Though
three team members had attended a formal course of instruction in
1974, they acquired no measurable practical experience other than an
application of some SP concepts to system maintenance and enhancenent
activities. One team member, without benefit of formal training in
TDD had been applying the principles in some measure to development
tasks.

Original System Development: Assessing experience levels in
the development of original systems is an iffy thing at best. Sub-
systems of a large capability may call for greater originality than
the "from scratch" development of a small or even medium sized
system. For that reason, development of major units of the Advanced
Logistics System (ALS) were considered as meeting the criteria.

Just what is a small or medium or large system is also not that easy
to define. Programmers interviewed were given the latitude to
determine for themselves which systems fell into what category
though the suggestion was made that small systems were probably in
the area of ten programs, medium systems in the vicinity of fifty
and large systems circa 100 or better. With these firm guidelines
established, it was determined that only three of the 14 Programmer/

13

— —

Analysts interviewed had not ergaged in the design of some unique
computer software capability. A total of eight small, eleven medium,
and four large systems (of which two were sub-systems of ALS) were
developed. In only one instance did ceding not accompany the design;
but in only six cases, involving two individuals, did the development
activities entail a level of supervision or personnel management.

Final Note: Though only Computer Programmer/Analysts were
considered in this portion of tne composite profile, one Mission
Analyst had an ex “nsive programming background having employed
TOVIAL, ALGOL, FCR{RAN, PLl1 and SIMSCRIPT. Third generation hardware
experience included the I3M 360 and HIS 6000. He had worked on the
design and coding of six small and three medium sized systems. None
of these tasks involved supervision.

Requirements Systems.

The availability of a body of prior experience with requirements
systems was important for two reasons. The first centered on system
complexity, Stated simply, unii..0 a standard supply system which
deals with inventory, item issue, predetermined order points, special
requisitions, etc., operating almost exclusively in the present, a
requirements system must werk in the past in an attempt to establish
usage rates, the present to correlate inventory with requirements,
and the future to extrapolate (or prognosticate) requirements over X
months or years for the life of a weapons system. A Repairable
Requirements Computation System such as ARRCS is greatly complicated
by including not only replacement requirements as a straight new buy
but also taking into account the repair or condemnation of recoverable
items. Myriad faccors as divers: ~s shipping times and depot repair
cycles, must be considered in arvi-ing at a time phased forecast
uniquely tailored to each re.overable item in the weapons system.

The second .eason that a Requirements System background was of
importantance was the lack of comprehencive, detailed, system specifica-
tions.

Of 14 Programmer/Analysts, three had prior Requirements Projection
System experience., However, in one case that association had ended
seven years earlier and in another, there had been a lapse of 22
years. The third Programmer/Analysts had a very extensive and
current background, naving completed six years in that area of the
ALS Development Effort.

Management.
The final area of concern in developing the composite team

profile was that of management experience. Here, because of its S
rumored uniqueness, we limited ourselves to prior experience in

14

software development. Of the 18 participants, only two had prior
management experience. One supervised the activities of one to five
programmers during the conduct of five unique development projects.
The second had management responsibility for 15 to 16 programmer
analysts in the development of a major sub-system of ALS and subse-
quently, for 150 individuals engaged in ALS system integration.

Environment
Physical Facilities.

Both Mission Analysts and Computer Programmer/Analysts shared
a common facility at one end of a large room that comprised the ACD
Management Section. Partitions were provided to allow some measure
of privacy. Two small communal working areas with chalk boards and
facilities for seating eight in cramped discomfort were carved out
of a corner of the corner. Allocating each individual a proportionate
share of walkways, keypunch, and communal areas, etc., floor space
probably averaged 100 square feet per soul. An IBM 029 keypunch was
available for programmer use. More remarkably, three pieces of
equipment were made available for the exclusive use of the ARRCS
Development Team: an IBM Mag Card II typewriter, acquired in January 1976,
a Xerox copier, acquired 7 May 1976, and a Dictaphone system, incor-
porating telephone dictating devices at four locations, as well as
two portable hand carried cassette recorders, acquired 30 April 1976.
Many computers are in place at the installation, but of these, only
a CYBER 70, a dual configured Burroughs 3500, and an IBM 360/40 are
third generation machines. Further, the IBM 360/40 is dedicated to
a single application and not available for unique development. An
IBM 360/44 operated by the 1155 Technical Operations Squadron,
Headquarters Command, located elsewhere on McClellan AFB can be made
available on a lease basis for development activities during non-
prime time.

Organization.

The bata Automation Branch (ACD) is organizationally directly
beneath the office of the Comptroller (AC), Sacramento Air Logistics
Center. ACD comprises four sections designated: Management, Base
Systems, Logistic Systems, and Computer Operations. Each section,
with the exception of Computer Operations, has as a constituent, a
development group. Responsibility for ARRCS development was vested
in the "Special !or FMS (Foreign Military Sales)l Development Group"
created largely for this purpose and nominally placed under the
Management Section. Mission Analysts are attached, rather than
assigned, to the development group and retain their Materiel Management
organizational identity.

i

Documentation
General.

There are three major documents that fit this category: the
basic functional description and all but one of its appendicies,
which I treat separately, the development plan (normally section 6
of the FD but in this case developed as an entity, and the list of
data elements which, though appendix 8 to the FD, qualifies as a
document in its o right on size alone. Though DODM 4120.17-M
cerved to provide the major framework, many of the formats originating
in AFLC supplement 1 to that manual were also employed in preparing
the text. Each document, for goocd or ill, had a pronounced effect
on the further activities of the development team and should, in
that light, be subject to further discussion.

The Functional Description (FD).

Development of the FD was a joint undertaking of SM-ALC/AC/MM.
The purposes of this document as stated in DODM 4120.17-M were met
to the extent possible. Those areas where compliance could not be
achieved centered upon the uncertainty of, or lack of data on,
ultimate system users. The FD did serve as a "basis for mutual
understanding between the [proxy] user [AFLC/MI] and the developer."
It provided information on performance requirements, »reliminary
design, and fixed costs, and could serve as "a basis for the develop-
ment of system tests."

Appendicies were employed where extensive data required in
special paragraphs would have desiroyed the continuity or readibility
of the document. Every item deli eated under the rubric 'this
paragraph shall" was not provided, however, the FD was a remarkable
piece of work, the more so considering the pressures and time con-
straints under which it was developed.

There can be no doubt that it received serious attention outside
the development team, in its draft form at the Requirements Review,
and subsequently in its final form by HQ AFLC/MI, at the time of its
approval. A detailed review was also accomplished at HQ AFLC and
produced two papers, one citled "Comments on Functional Description
for Allied Recoverable Requirements Computation System' dealing
primarily with changes to some of the formulas used in output calcula-
tions, and a second, "J.M. Hill Working Note #89" suggesting that
the major product output by the Phase I system, the Detailed Require-
ments Computation Worksheet, be produced as two separate products,
one dealing with repair and the other with buy requirements.

The major infirmity with the FD is that it was, in most respects,
published in "fiaal form" with little discernible eifort made through
the course of Phase I development to keep it current. No machinery
was established to facilitate update though in some instances,

16

formula changes were posted by pen and ink and initial page-for-page
revision of the data elements (Appendix 8) was attempted.

Without updating, the FD lost much of its value. A month after
its publication, the statement '"The functional description is not
perfect..." and the exhortation "We must all work together to make
it perfect" were made. A week later, a memo stated, 'The FD as
written is no longer a source document for resolving misunderstandings
in the following areas:'" It went on to list six technical questions
and voiced a complaint about the data elements listing. However,
the only formal revisions to appear were the aforementioned changes
to Appendix 8.

The Development Plan (DP).

Though, as in the case of the basic FD, DODM 4120.17-M provided
guidance in preparation of the DP, AFLC Supplement 1 to that manual
was also relied on to some minor extent in deriving formats. Beyond
that, a text entitled '"The Mythical Man Month" appears to have
figured prominently in defining the Software Engineering Techniques
(DP Section 3) and the Structure of the ARRCS Development Team (DP
Section 4). Evaluation of the DP is a difficult task. In many
respects it went far beyond that which is required by the DOD manual.
Since the AFLC supplement had been intended to provide additional
guidance for the Advanced Logistics System documentation effort, the
ARRCS team was under no obligation to comply with its provisions.
Yet, the stated purposes of the ARRCS DP were a paraphrase of the
purposes outlined in that document. Of the three objectives, only
one and one half were met. Those related to documentation and the
overall management approach. The others, "Pertinent Information on
Resource Requirements', and ''Schedule and Rationale for the Project
Development and Implementation' were not addressed in any easily
identifiable form.

Software engineering techniques encompassed the seven tenets
associated with, and embracing, top down design and structured
programming. These being: The Team Concept, Walk-Thru, HIPOS, the
Development Support Library, Top Down Design, Top Down Implementation,
and Structured Programming. The ARRCS team structure defined in the
FD, was derived in large measure from the '"Surgical Team" described
in the Mythical Man Month. There were to be two teams, the first
evolving into the second as the transition was made from design to
design implementation. Highly stylized names such as Design Assistants,
Tool Smith, Co-Pilot, and Language Lawyer, were used to identify
positions or perhaps functions on the teams.

Other areas addressed in the DP were: Training (Sec 5), Collec-

tion of Historical Data (Sec 6), Status Reporting (Sec 7), Technical
Report (Sec 8), System Design Phase (Sec 9), Programming Phase (Sec }

Ly

- RS

10), the Gathering and Conversion of Data (Sec 11), the Program
Test/Certification Plan (Sec 12), and Computer Hardware (Sec 13).
All cf these were in some measure directive in nature. However,
most would have required, to one degree or another, implementing
directives expanding upon the basic theme and providing in-house
procedures before they could prove effective.

Data Element Directory (DED).

A data elem¢ « directory (DED) was produced in an effort to
assure the use of standard data elements in the programming activities.
Twe hundred thirty items were identified and described under the
headings: Data Element Name, Mnemonic Name, Type/Length, Code
Value, Source, Qutput, Function, and Description. Though Mnemonic
names ranged from two to 30 characters, the number of long names
exceeded the short by several orders of magnitude.

The DED went through several iterations. At first it was
appendix 8 to the FD, and as such, was revised once. However, the
volitility of this list resultec in its eventual "automation" in an
abreviated form. As data elements were added, changed, or deleted,
new listings were produced and circulated. Unfortunately there was
no way of identifying modifications without doing a line-by-line,
word-by-word comparison with the previous list. Data division
"copy" (include) members were not employed so enforcing the use of
standard data element mnemonics was difficult at best. Dissatisfaction
with the content of the DED as well as the length and propriety of
the mremonic names was a source of irritation throughout the develop-
ment effort. Employment of the DED was honored more in the breach
than in the acceptance.

Software Engineering Techniques

The Development Team.

As reported earlier, the DP defined two distinct team structures,
one to be employed during system degign, and the other to come into
play with system implementation.

das Lte o

AC Personnel Chief
----— MM Personnel Programmer | '
‘
Adminis- J :-—--------j
trator 1 Co-Leader |
............. 4
Secretary
|3 ' |]
"'-""""""'
System System i System !
Designers Designers ! Analysts .
Design Design
Assistants Assistants

Figure 2. Design Team

19

AC Personnel
______ MM Personnel Chief
Programmer
Adminis- E System ;
SRR L [~= ~~~ ~7i. Evaluator _
{
Secretary :
'
|
{
Librarian | Testers
i
\
!
i
|
Language :
Lawyer i
!
i
| R ! 7
i
Team I | Team
Chief | : Chief
o '
|
j
Co- 2 Co-
Pilot } Pilot
)
| IR R i i i
[! 3 ¥ |
et e :"""" ST
Tool ! Project : ' Project § Tool
Smith ! Analyst _Analyst ___i} Smith

Figure 3. Implementation Team

20

| —

!"------------------u-n"M!HﬂHHF!"E—!"“'FIUIIIIIIIIHHT. D e T VORI
(.

-

5

E 5

A direct transformation from the design to the implementation
team structure never took place and most individuals questioned
indicated that they functioned in substantially the same manner
throughout the entire effort, with design, of course, preceeding
programming. A reconstruction of the ARRCS team structure based on
interviews, sets up this relationship:

AC Personnel
______ MM Personnel Project
Leader]
TR LTS AT 1
Adminis- + MM Rep :
trator \ and System |
L Evaluation |
:
Secretary :
= i
e v 2k = 1 i
Group Chief : Group Chief H Group Chief)
Inputs : Test Data : Computation :
Test : Data Elem : Test N
e T, == i r-'“'L’--
! Mission ' ! Mission | | Mission
¢+ Analyst 7) Analyst : -_—1 Analyst
' _________ =t l s o o o — [PR
L 1 [1
Edit-Update Data ExtracH Test Data Computation Outputs
Development tion Data Elem Development Development
= Development Directory

Figure 4. The Evolved Team

21

As in the previous diagrams, dashed lines are used to portray
the MM positions and functions and the solid lines, those positions
filled by and functions performed by AC programming personnel. The
titles chosen were those that most nearly defined the positions as
described by the individuals holding them.

The project leader did not function as a programmer in the
conventional sense, so the term chief programmer used in the DP was
not used. The associated functional statement was accurate, however,
as he was in charg of the total project, was instrumental in the
‘egign, development anc implementation of the system; and provided
leadership, reviewed work and offered constructive critism.

The MM project officer functioned to a large extent as liaison
between the logisticians in the various cognizant oifices of the
Materiel Management areas at the SM-ALC ana the development team.

As senior MM representative, he did exercise some measure of control
over the mission analyst personnel. Among other things, the DP
states that he represents the svstem user and therefore, must ensure
that the system design and documentation meet user needs. Notably
absent from the functional statement was any reference to co-leading
so the title co~leader seemed inappropriate and was dropped.

The administrator, due to the press of additional duties, lost
touch with the technical aspects of the project, a function stipulated
in the DP. Tasks in which the administrator became involved include:
authoring the DP, preparing position descriptions, conducting manpower
studies, arranging meetings and conferences, budget and financial
reporting, contract negotiations and monitoring, and conducting in-
house training.

Prior to 29 March 1976, three groups, input, computation, and
output, comprised the program development arm of the ARRCS development
team. On that date, ''due to overlapping functions, the output group
was dissolved and the duties realigned to the input and computation
groups.' Other than that, there was no notable change in organization
when activies shifted from design to implementation. Each programming
group had two sub-groups comprised of computer programmer/analysts
working on specific programs. No one answered to the name co-pilot,
tool smith, or language lawyer. Also amcng the casualties was the
"librarian'" function which was never implemented.

The test data and data element group evolved from the testers.
Their position, however, did not come to rest under the system
evaluator, but rather under the project leader. In section 12 of
the DP (ARRCS Program Test/Certification Plan) the function of the
test group is spelled out in detail including the requirement for }
validation and authentication of program/modules. In *the final]
analysis the test group produced test data only and individual

programmers and group chiefs performed the test group function In
conjunction with the wystem evaluator, The test group also provided
the Data Element Directory and a computer program that edits, updates,
and retrieves the "automated'" DED.

Though Mission Analysts were nominally assigned to each group,
in practice they became a mobile resource used by whatever team had
a requirement for mission data or required research on specific
mission related issues. As might be surmised, Mission Analysts were
deeply involved in identifying and defining data elements.

Walk-Thru's.

The walk-thru was to be practiced for the life of the project.
All work was to be reviewed and the principle function was described
as error detection. Walk-thru's as employed in the ARRCS development
effort could be placed in two broad categories, design and coding.
Design walk-thru's were normally held at the behest of either the
project leader or the group chiefs. Coding walk-thrus were conducted
only within the group and then at the request of the group chief or
individual programmer. No formal procedures were established and
scheduling was accomplished on an "as desired" basis.

Since each walk-thru was in essence an AdHoc gathering, with no
specific guidelines as to recording, assignment of action items, or
subject definition or limitation, no complete record is available.
However, from the memos that are available, one issue stands out.
The design walk-thru's were employed to a very great extent in
arriving at a system design, rather than in detecting errors or
deviations from established specifications. There were no limits
set as to time or subject matter with the consequence that sessions
ranged from a brief one half hour to a far less brief one and one
half days.

Though the lack of structure in the conduct of walk~thru's
might be cited as a short coming, the failure to have detailed,
design-tLo specifications made the walk-thru's an essential feature
of the development effort. It also made each participant, to either
a greater or lesser degree, a designer of the ARRCS system.

Design walk~thru's held at the request of the projcct leader
were often documented to some extent in memos. In addition to the
project leader, the group chief of the group involved, one or more
programmers, and Mission Analysts (often including the MM representa-
tive) were usually in attendance. On occasion the chief of the
other development group attended as did representatives of the test
data group.

23

Desigin walk~tnru's held within each group were usually limited
to group members and were, on the average, shorter in duration and
more limited in scope.

Coding walk-thru's were held within the group (if at all) and
were basically a one-on-one situation, often, but not always, involving
the group chief. Of the coding walk-thru's conducted, many were
initiated atter program bugs had been identified rather than as a
program step-thru rior to compilation or execution.

Cf fifteen team members responding to the question "Did the
walk-thru's provide a signif !cant service...?", ten answered in the
affirmative, three stated that “some' rather than "significant"
service was rendered and twc allowsd that only minor benefits were
derived. Of the nine team members actively engaged in coding programs,
three had not employed lime-by-line walk-thru's at all, and only two
had "faithfully' adhered to the 'line-by-line coding review."

As can be seen from the above, walk-thru's were employed primarily
in the design area and used as their focus of attention the HIPO
diagrams showing program inputs, processing, and outputs. Not all
HIPOS were '"walked-thru" in team sessions, the activies of the
computation group receiving greater attention. It was generally
reported that group walk-thru's resulted in an cpenness within each
group. However, team walk-thru's judging by the correspondence
available, were not seen in the =zame light and were on occasion
regarded as an intrusion or evaluation.

Though some problems were enccuntered in the procedures, or
lack of procedures, followed for :lk-thru's and though not all
HIPOS and even less code wa: reviewed, the use of walk-thru's was
considered, in aggregate, as the most significant factor in contributing
to the reduction in program bugs.

EIPOS.

HIPO diagrams were produced for about 80% of the praegrams/program
modules written. An administrative procedure in the form of a
memorandum was developed to facilitiate correction of HIPO charts
typed on the Mag Cavd IL typewriter. However, though there was a
level of standardization within each group, as to scope and content,

th
there was no standardization between the groups. There was an area
of agreement, however, that, though HIPOS (as employed in the ARRCS
effort) provided utilitv in defining program function they were of
little value in producing program cocde. Thie delineation of program
function must have provided significant service however, since the
use of HIPOS was ranked as the second most important factor in the
reduction of program bugs.

ki sttt i

Development Support Library.

Without the position of librarian being filled, the maintenance
of a central development support library fell by the wayside. The
librarian was to have maintained office procedures, a full set of
documentation, program listings, references to the machine library,
test results, etc.

Office procedures: These were generally disseminated in the
form of memos. They were not classified or grouped as to subject
matter and no numbering system or subject index was employed.
Procedures were 'bucked around" to be initialled and group chiefs
usually retained copies of the memos in a general file. The single
exception to this was the establishment of a three ring binder that
was to contain data relative to operations on the IBM 370 computer
at California Health Data Corporation. It was started with an initial
seven items but failed to grow beyond the original size.

Documentation: Documentation consisted primarily of the FD,
data element dictionary, DP, HIPOS and compile listings. Development
group chiefs each had copies of the first three as well as compile
listings and HIPOS for the majority of programs in their area. The
FD and DP were in the possession of any team members having an
interest or need for them. Up until the time of the Phase I certifi-
cation other documents such as the data requirements document,
system/subsystem specification, data base specification, etc. listed
in the development plan and described in DODM 4121.17-M were not
produced though some halting steps may have been taken in that
direction.

Top Down Design.

This technique as described in the DP was followed. The system
was analyzed by function, the system structure was developed, and
the design was evaluated. Out of this effort came the "Functional
Relationship Chart[s]", Appendix 4 to the ARRCS functional description.

Top Down Implementation.

It is at this point that the greatest divergence from the
techniques of top down design and structured programming takes
place. The DP itself adds to the confusion for it states:

"In this method, programs or series of programs need not be
developed in a sequential manner. An example user output
before developing the edit runs. This enables the user to have
output for training prior to delivery of the total system."

25

This is contrary to any other text the a'thor has read on the
subject, but yet .t was, in large measure, the precursor of the
actual implementation methodology followed in the ARRCS development.

An IBM text on the subject defined the top down approach as
"patterned after the natural approach to system design and requires
that programming proceed from developing the control architecture
(interface) statements and initial data definition downward to
developing and integrating the functional upits."

It goes on tu say:

"The top down approach reguires that the daca base definiticn
statements be coded and that actual data records be generated
before executing any segment which references them."

The team structure itself with an input group and computation
group working simultaneocusly at defining and coding system components
makes the top down implemeuntation, as defined elsewhere than the DP,
an improbability. Development was carried on simultaneously and
communications between the two groups was considered poor in conveying
design data. An intecfa™® problem did develop between the data base
and computational program and required the development of a special
read module late in the degelopment cycle. There is some conjecture
that the read module was the most eifective method for interface in
any event.

- ..
Structured Frogramming.

Though each programmer?invc _ved attempted to employ structured
programming techniques to the Tegt the results vaiied from
programmer to programmer, < Ye initial program was for most the
major obstacle. Afcerwardg coding came closer and closer to reaching
the ideal. 1In addition to waMk-thru's and HIPOS, the use of coding
conventions such as indentation and the elimination of GO TO's to
the extent possible were ranked high as reasons for fewer program
bugs. Though impossible to Quant;fy there was general agreement
that significantly fewer bugs did appear in the structured code as
opposed to conventional code and that problems, in the form of bugs
or specification changes, orce identified, were easier to resolve.

Major Handicaps. *
In addition to the constraints on system development listed in

Section I, there were several major handicaps or obstacles coafronting

the development team. Some of these were external to the team and

in this category I would place the already discussed non-availability

of an IBM 370/ddd computer on site, and the seemingly arbitrary

26

derivation of the Phase I completion date. Others were internal and
include training, lack of the paraphenalia associated with software
development activities, and an adequate definition/specification for
the system under development.

Training.

Training, or rather the lack of it, was evident in three broad
areas: 1) Target equipment to include COBOL differences, Job Control
Language and the operating system; 2) Top down design/implementation,
structured programming, and employment of all the tools associated
with TDD and SP; and, 3) Requirement computation systems in general -
this being important since each team member, to a greater or lesser
degree, was expected to serve as analyst and system designer.

By no means was everyone handicapped to an equal extent by each
of the above listed training shortcomings, but the team as a whole
would have benefited greatly if this training could have been provided
prior to the development effort. The DP addressed the first two
areas.

Target Equipment Training.

Training on the target equipment was to be provided by the
computer vendor. However, with the exception of a one day overview
of DOS/VS (Disk Operation System/Virtual Storage) which was generally
conceeded as providing little tangible benefit, and an orientation
conducted by the California Health Data Corporation which primarily
addressed the CHDC environment, no other formal IBM 370 training was
forthcoming.

The requirement for system engineering support though vecognized
early in the development cycle, was not met until development was
nearing completion and then only in a limited fashion.

A system engineer performs largely in a consultant's role and
can be employed in any number of ways. He is considered the authority
on prog.amming and can evaluate code for efficiency or analyze
programs experiencing particularly perplexing bugs. His major
attribute however, is his knowledge of the operating system and
system utilities. This includes a complete understanding of job
control language, system generation, access methods, and file format-
ting, dump interpretation, and the employment of programming, develop-
ment, and operating aids, such as procedure libraries, copy libraries,
generation data groups, debug language, etc, An ideal situation
would be to have this expertise available in-house and though this
training is admittedly expensive, the dividends it would pay would,
in all likelihood, offset the costs involved.

27

TDD and SP Training.

Although the DP stated that 22% of the people assigned to the
project haa had a 40 hour course in the Soiftware Engineering Techniques
(top down design and structured programming) to be used, it had been
almost two years since that training had been conducted and, more
over, it had not, to any significant degree, been applied to a true
life development effort. An in-house course was taught starting in 3
early Marcn. This was, according to the DP, intended as an overview
and course durati n was 16 hours. Indepth lectures to be provided
just prior to the application of techniques within the development
cycle never materialized, due undoubtedly to the crush of development
activity. Though the conclusicn reached may well be considered
speculative, there appeared to be an underlying assumption that if
an individual were "familiar with the language peculiar to the
techniques' that their application might follow naturally, rather
like knowing that open heart surgery i< surgery conducted with the
heart open. The radical departure cf TDD and SP from standard
practice was probably not appreciated. At any rate, it was not
adhered to.

Requirements Training.

Six programmers attended a short course on the D041 system.
This is the applications software capability employed by the Air
Force in Requirements Determination. Since development of program
specificacions was a joint effort exercised through the walk-thru's,
an individual understanding of what the system was to accomplish and
how it was to accomplish it wae far more important than programming
in an environment where detailed specifications are provided program-—
mers who then £ill out the "specs' with the required code.

When posed the gquestion "On a scale of 1 to 10, [with 10 being
top score] how well did the training prepare you for the work ahead?"
the average rarting extended by the programmers was just at three.

Of the four Mission Analysts interviewed, only one had attended
the DO41 training and responded with an eight to the above question.
Two Mission Analyste had worked on Requirements Systems for prolonged
periods as system users and the fourth was starting pretty much from
scratch.

Development Structure

Though a large development effort (a major portion of the
Advanced Logistics System (ALS)) had recently been concluded at SM-
ALC, there was an apparent dearth of procedures and paraphernalia
usually found in a software development shop. Shop standards and
conventions were nct in evidence nor were there in-hLcouse procedur 2s
for Incident Reporte, Technical Memos, Reporting and Recording
Historical Data, Managing Development Libraries, etc. There were no

28

development oriented operating instructions that could be added to
or modified as the unique requirements of a unique effort using
unique (for SM-ALC) procedures unfolded. Though the DP zlluded to
much of this, the implementing instructions were never prepared, and
in consequence, the data not collected, maintained, or evaluated,
and procedures not defined, refined, and adhered tec.

There was no central activity from which training could be |
obtained or through which training could be arranged. There was 3
also no in-house activity to which operating system software problems
were directed for solution.

In the final analysis there were no effective tools to measure
development status and progress (or lack there of) and consequently,
whether by design or default, the ARRCS effort was, in large measure,
carried out in isolation.

System Definition

To grow is good, to grow like Topsy, now that's a different
story. Initial ARRCS development was to take one year and require
an aggregate of ten people. From there, it expanded to one year and
nine months and 18 people. At that time, (FD development) the total
system was fairly well defined in a general or overview form.

Before FD publication, the time frame expanded to three years and
one month based on the criteria already repurted, and study is now
underway to expand ARRCS even further to provide the capability to
compute war reserve stocks. Important now is the lack of definition
of each specific phase. Phase I entailed the production of the
Requirements Computation Worksheet. On the ARRCS Phased Development
Chart this was referred to as "Basic DO41" and no further advanced
notice was given as to what '"Basic DO41" embraces. Rather like
Humpty Dumpty's retort to Alice in "Through the Looking Glass" it
could be stated, "It means just what I choose it to mean, neither
more nor less." In order to plan and to measure progress, a completion
date must be forecast, specific milestones must be established,
specific tasks must be defined, and the system must be adequately
described. And the secret is not to do it in that order.

The ARRCS effort from a systems definition standpoint appeared
to this novice in requirements systems to be quite cryptic. Two or
three sentences provided sufficient input to extend the development
effort by many man years. The lack of specificity may, on the omne
hand, give a feeling of comfort and could indeed by adequate if
everyone understands and everyone will always be there but this is
highly unlikely. On the other hand, lack of specifics is only
postponeable up to a point and it is at that point that the chickens
will most assuredly come home to roost.

29

System definition, the reduction to its constituent parts, and
further redefinition to embrace the individual tagks involved in its
development is essential.

The Target Date.

Given time, the lack of training could have been overcome for
the problem was recognized in the DP. Also addressed in the DP were
many of the areas identified as shortcomings under the heading, Lack
of Unique Uevelopment Structure. Assuming that recognizing the
requirement woulc ~ave led to its fulfilliment, the culprit became
‘he arbicrarily arrived at Phase I target date that caused a time
compression problem. Not that Phase IV date appears any less arbitrary,
just comfortably years in the future. Working backward from a
sacred date is rather like deciding a year in advance (or maybe six
months) to have a baby on Christmas, only it's a lot less fun.

Since no cne had calculated, with any degree of precision, the
gestation period of a "Basic DC41", nor would it have mattered much
if they had, what was delivered on the due date would be it. It
should be recognized that political aspects must of necessity often
outweigh the purely technical considerations of software development.
However, equal recognition should extend to the realization that an
apparen: gain through early system delivery may well be offset by
system or documentation shortcomings, or worse, become an aggregate
loss when the system must be maintained or even re-developed at some
not too distant date.

STATISTICAL RECAP

Statistics (1 Jan through *22 Jul 76)
Lines of Code Produced 15,988
Man Hours
Programmer/Analysts/Admin Support 12,663
Mission Analysts 4,275
Total 16,938
Cost
Salaries $180,461.57
Support 12,388.94
Computer 14,145.35
Total $216,995.86
Lines of Code Per Man Day =9 5
Total Cost Per Line of Cocde LS ot :

* July figures are estimates.

30

SECTION III

RECOMMENDATIONS

General

In providing recommendations the author has an opportunity to
appear omniscient, egged on by the gift of hindsight and the knowledge
that he will not be responsible for implementing any of the suggestions
made. Only one alternative is presented for each area perceived as
requiring change. But many alternatives exist, one of which might
entail maintaining the status quo, which could prove just as, or
perhaps even more, effective than the recommendation provided. The
author also realizes that certain choices are institutionally pro-
scribed but indulges in the fantasy of "wouldn't it be nice." An
example that comes immediately to mind is the establishment of due
dates based on a realistic evaluation of the problem and the resources
available to develop the solution. To omit addressing these matters
would tend to discount their significance, however, political and
structural considerations have a pronounced effect on most large
development efforts. Too much or too little control, too few or too
many resources may accrue when the strictly technical aspects of a
strictly technical problem are subjected to non-technical "solutions."

I recognize that I have a built in bias that comes from attempting

to apply what worked for me at other times, in other places to

similar situations. Often several iterations occurred before 1
discovered a satisfactory solution and providing the reader this
insight will not provide him or her the personalities that made a
particular solution preferable to another. All recommenations I

make, however, are not up-for-grabs. For example, I consider the
establishment of standards and procedures and the utilization of

formal task accounting/project monitoring techniques essential.

The major source of my recommendations, however, was the members
of the ./.7{CS development team who, during the course of the interviews,
touched on every idea I put forth in the following paragraphs.

Organization
Applications Programming.

Though not addressed directly in the study, the creation of a
single applications programming and computer program maintenance
activity (programming shop) should provide major benefits. It would
allow greater specialization in certain areas (librarian and technical
writer for example) yet allow for greater flexibility in cllocating
resources, Standards and procedures would be easier to develop with

31

the elimination of two or three parochial views even though the
immediate approach were something less than catholic. Enforcement
of standards would be more uniform under oune watchful eye than many.

Ideally, within the programming activity a flexible organizational
structure would be attained to allow team orientation for major
projects whereas preogram maintenance and minor development would be
best served if area or machine oriented. Individual programmers
would be moved between and among the various teams, not only depending
upon workload but “lsc to provide breadening experience and allow
for the cross-feed ¢f techniques and applications software capabilities
data. This movement, essencial to provide redundancy, must be
carried out in a judicious menncr.

Systems Programming.

The lack of adequate systems progremming {(often referred to as
software specialist or systems engineer) support was evident in the
ARRCS development project. (pp 8, 27) I highly recommend the
establishment of a strong systew. programming activity (systems
shop). From an organizational standpcoint the systems shop could be
pliaced either directliy below the Director of Data Automation, a co-
equal cof the programming shop, or as oue of its two compcnents.

The systems shop performs a complex fuaction from both a technical
and administrative standpoint. 1Its major orientation should be that
of service activity for the programming shop. In chat light, it
must be capable of performiung the classic development support program—
ming tasks outlined on page 27 of the text. In addition, the following
duties should also be incorporarc” in its charter.

Training: A limited in-hous- capability to rfamiliarize programmers
with: changes to the cperating systems (usually brought about by
version changes); new hardware; sclutions to recurring problems
identified by system monitoring techniques, or computer operations;
core dump interpretation; etc.

Provide the interface with ATC or commercial vendors in the
acquisition and scheduling of Ar provided or contract training.

Documentation: Serve as documentation authority to resolve problems
in the documentation area including the interpretation of standards.

Technical Reference Library: Maintain the tech library. If extensive
development ig envisioned the Auerback or DataPro publicaticns could

prove a valuable addition.

Equipment Monitoring: Monicor hardware and systems performance to
determine adequacy of equipment and software design.

32

VI P

Systems Housekeeping: Handle required housekeeping and utility

chores such as disk dumps or reformatts, building procedure libraries,
and passing judgement on assembly language programs to keep them out
of sacred core.

Special Studies: Perform studies such as those leading to equipment
substitutions/trade-offs, system configuration changes, and system
conversions.

Training

Training, or the lack thereof, is documented on pages 27 and 28
of the text. Both the target equipment and the programming techniques
to be employed were almost totally new to the programming team and
the background in requirements systems was also, in large measure,
sketchy. Training requirements must be defined and, to the extent
possible, met prior to development. The use of ATC mobile teams
should be considered and training conducted on a continuing basis to
create and upgrade skills and develop a pool cf resources. In-house
training should be limited to that described under the heading of
Systems Programming. From a cost standpoint, ATC provides the best
buy but specialized training on specific hardware will, in all
likelihood, require vendor support and a substantial expenditure of
funds per student enrolled. To forego training may prove to be a
poor economy when support must be contracted for, as in the case of
ARRC Systems engineering requirements, or when time and money saving
equipment, techniques, and procedures never enter the domain.

It should be noted that the employment of a flexible organizaticn
described on a preceeding page would provide a level of training on
in-house software capabilities as well as facilitate the exchange of
techniques, insights, and procedures between individuals.

Team Arrangements

Though the close association of MM and AC provided many tangible
benefits (pp 18-23), there are some problems that must be guarded against.
When the programmer/analysts get in bed with the system user the two
things that usually result are:

1. The programmer/analysts, being more familiar with computer
system development, will start doing the user's work of defining
requirements.

2. The user, seeing the trials and tribulations of giving
birth to a software capability, will start making the required
excuses for late delivery or accept systems that fall short of
requirements.

33

Mission analysts should, if possible, be kept as an entity with
assigned areas ci responsibility. Tasks must be formalized and
formal procadur2s must be adhered te., This is not to establish two
waring camps, for close, harmonious relations are very essential but
a clear delineation of tasks and duties is no less so.

Documentation

Program and system documentation are the perennial problems of
most development =fforts with which T have been asscciated. ARRCS
was certainly no exception {pp 16-18, 24, 25, 26). The best way to
assure poor documentaticn is to attempt to overdocument. Confronted
with a seemingly impossible taslk, most people will avoid coming to
grips with 1t., It shoulid be neoted that more people aveid the mountain
“"because it's there,” than climb it.

The first characteristic of good documentation ie that it's
useful, Obviously if 1t's not useful it's useless and should not
have, or may well not have, been produced in the first place. If
all it does is £1ll a square, .ill the square with a no~-op and move
on.

Agsuming that it has passed the first test the next test is,
"is it currenc?” Out of date documentation can be worse than no
documentation at all, sc machinery must be established to assure its
continued currency.

If DODM 4120.17-M 4s to be used, I would strongly recommend
that the phrase

...ensure that the Informaticn that is necessary for that
project has bean Iliicluded and that the information will be
useful when the project is implemented. [The emphasis is
aine,]

appearing in paragraph 1.3 of that manual serve as the guiding
principle, not only in selecting which documents will be produced,
but also the depth to which they will be developed.

In thosc cases where a computer product could suffice, as in
the case of the data elewmsut directory, a standard capability ehould
be developed with & product suitable for display on an 8 x 10 1/2
inch sheet of paper. Exceptlon updating and chauge identification
should also be incorporated.

In the case of the cevelopment plan, a comprehensive set of

operating instructions could replace much of the DP allowing it ¢to
cover only the project unique aspects of the development effort.

34

|

One document that should be developed early is the documentation
plan. (An OI should describe its form and content.) Each contributor
must be identified by name or title and the exact form of his or her
input should be specified. 1If, for example, a HIPO diagram and
program abstract are required for each compiled module of the system,
these should be presented by the programmer in final form when the
program/module enters local certification testing. The required
bits and pieces of documentation gathered as the development cycle
progresses should form the nucleus of the documentation effort. If
extensive development work is contemplated, the employment of a
technical writer should be considered. The function of the technical
writer is not to relieve team members of their individual writing
responsibilities but rather to tie up the bits and pieces, judiciously
gathered, into the final written output.

Software Engineering Techniques

The Development Team.

As documented in the text (pp 18-23), the team did not assume
the characteristics described in the DP. In developing a system top
down it would be advantageous if the various programming groups
could be brought into play as the higher modules reached completion
rather than carrying on in the more conventional pattern with input
and output functions being developed side by side. (See pages 18-
23.) The de-intimatizing of the AC/MM relationship has already been
discussed. In ARRCS, the MM function should operate alongside the
programming function and not be imbedded in it.

In a "chief programmer team" the chief programmer, by definition,
programs. If some other technique or relationship is thought prefer-
able, and it might well be, the titles and graphic structure should
conform to the reality.

The loss of the librarian function with the concomitant loss of
the development support library removed one of the major tenets of
TDD/SP and one of the more interesting features of that concept (p.
25). A strong librarian could have divined a measure of progress
and assured greater standardization between development groups.

I recommend that in all future TDD/SP development the librarian
position be activated and given to a highly competent individual.
The librarian should not be used as a "go-fer" but should, in addition
to those tasks defined in the ARRCS DP, take charge of the DED, task
accounting, and its logical consequence, project monitoring.

35

Walk-Thru's.

Along with several other procedures, walk-thru's should be
governed by a formal procedural statement. Content, time allotted,
attendance, recording, assignment/d{gsposition of action items, etc.,
should all be addressed. (pp 23-24)

Standards/Procedures

Shop standard must be developed and enforced (pp 28-29). They
vhould address, at a minimum:®

Task assignment
Programming techniques
Coding conventions
Documentation

SN
e« & o @

Procedures must be established te facilitate:

1. Requirement submiss:ion/evaluation

2. Work scheduling approval/disapproval
3. Design review

&, Project/task monitoring

5. Testing/certification

In develcping standards, procedures, and operating instructions
managers will more often than not assign this task to an individual
who may have displayed an sbility to write or simply to someone who
is not busy with more presging duties. Though the manager may
believe he has something more impoctant to do, he is generally
wrong. These are HIS standards, .rocedures, and operating instructions
and dictate hcw his team or crifice will function. He must think it
out and relate it to his management or ogranizational philosophy and
the standards he believes essential to enforce. If he doesn't
compose every word, he must at lzast provide explicit guidance on
what is to be addressed and how it is to be executed.

Two areas listed above require some amplification. These are:
task assignment and project/task monitoring. Though verbal assignment
of tasks may prove adequate for small projects, the more people
involved and the more compiex the problem, the more important it
becomes that a formal mecharnism be established to define individual
tasks. Procedures must also exist that allow feedback concerning
time estimates, both prior to, and during task accomplishment.

The use of a formal written procedure in assigning jobs is of
great value. Since it requires the originator to define exactly
what hz wants it will normally result in a more thoroughly thought
out request and, to a great extent, elimipate che misunderstandings

that result from verbal orders. Since even the largest development
project must be divided into a collection of smaller, more manageable
tasks, this should provide the requisite measure of bookkeeping to
identify what is finished, what is in the works, and what remains on
the drawing boards.

In assigning a task it 1is important to obtain inputs from the
individual made responsible for its accomplishment. Estimates of
the work involved (usually in man days) planned start date, and
forecast completion date, are essential for planning purposes. This
is especially true if a critical path has been identified and the
job is astride it. Along with identifying the development status,
(progress or lack thereof) compilation of this data will tell a
manager where manpower resources are fully employed and where reserve
manpower exists. Each individual's workload can also be determined.
Periodic feedback must be part of this system for early completion
of individual jobs would allow additional work assignments to be
made whereas forecast slippages could point up the requirement to
employ additional resources or reorder priorities.

I recommend the development of a task assignment procedure that
ties in closely with documentation requirements. Some level of
narrative description should be employed though HIPO's and pseudo
code may serve in defining the more technical aspects of a problem.
Task assignment, in addition to providing the nucleus of the required
documentation should also describe the documentation to be developed
as part of the assigned task. e.g. listing of edit error messages,
program abstract, file format, etc.

I recommend the use of an automated task accounting system but
have strong reservations about a time accounting system which generally
reveals only that there are eight hours in each work day and that
everyone reporting is fully employed.

Book Two, Section 19, of this study contains an extract from a
task accounting system which has evolved over the past eight years
at HQ PACAF. It has been found to be exceptionally useful in managing
project<. accounting for manpower expenditures against specific
systems, and providing visibility for both the Chiefs and the Indians.

Administrative Procedures.

In addition to a dearth of standards and procedures, office
instructions were also lacking (pp 25, 28). Administrative file
assignment instructions and a file plan should be developed. The
use of the Dictaphone could be enhanced by the development of standard
formats designed to assure that all required data is addressed in
those areas where some measure of standardization can be achieved.

37

P ——

As an example, if historical data (s to be maintained on specific
projects, o format such as that appearing in [lgure five would aid
the secretary in both preparing and filing the report and the origin-
ator in its development.

Historical Report

Format # Historical Report f

System Date of Report

Time Span Covered

Originator

Subject

Replaces/Aggregates Report(s)

Description of Event(s)

Significance

Attachments

Figure 5. Sample Format.

System Definition/Target Dates. (pp 29-30)

After all the prose has been put to bed and the viewgraphs
shoved in the bottom drawer, after all the glowing and glaring
generalities have passed on, almost every software system still ends
up composed of the same basic building blocks; Input Formats,
Elements of Data, Edits, Updates, Data Bases, Support Files, Data
Manipulation Programs, Data Retrievals, Submission Modules, and
Ocassionally a Control Program.

38

A system must be defined to at least that degree before a
realistic time estimate can be derived. An analyst must work with
the user in defining the system to that level of abstraction for
neither individual would normally embody all the expertise or have
the identical vision of what to do and how to do it. A user who can
dictate programming techniques does so at his own peril but a user
who accepts without question the analysts view of what is best for
him from a product standpoint, is equally imperiled.

Individual programs may be defined in a short narrative with
the qualification, easy, average, or hard. A best guess of work
(man days/man weeks) required can then be derived. The estimates
for the entire system can be aggregated and, if you're cautious,
multiplied by two, and, if you're realistic, multiplied by three.

What has been accomplished is an understanding of what, in
general terms, will be produced. The analyst knows, and the prospec-
tive user knows. If the method of estimating time appears arbitrary
it's only because it is. Yet there are benefits to be derived, for
you have at least established times that can be attached to dates
and tasks that can be assigned to people. The accuracy of your
estimating technique can be checked empirically as the work progresses,
as well as before the fact when the macro defined task receives a
micro examination from the programmer assigned to bring it to fruition.
The refinement of estimates is an on-going procedure that requires a
task accounting system of some sort to be effective. The application
of resources can then be varied to meet critical dates/ihandle routine
chores/or get ahead of schedule.

In all likelihood, a pattern will emerge showing more time
required for one function then originally estimated while other
activities take less. The multiplier can be varied, up or down, to
account for this and overall estimates refined until any deviation
from forecasts becomes insignificant, or at least, easy to manage.

It must be stressed that system definition to the level described,
macro time estimation, task identification and assignment, task
accounting and feedback, and estimate refinement, are all part and
parcel of a total system of project management. Each team builds up
its own identity and momentum but once a team has functioned as a
unit its productivity can be charted and predicted with reasonable
accuracy. In this way the team has developed the due date and
changes in direction that cause delays or project extension can be
easily identified.

39

’IlIlIIlllIIIlIIIllllllIIIllllIllllll!'llll.FHl!-!l!l!lllIIIIllIIIllllll!!llIl!lll-lll!ll!!lﬂl!!lllﬂﬂﬂ"‘-"HW‘

it's nice to know what you're supposed to be doing. This
procedure assures that each individual does, znd, analogous to the
mirror on the bedroom ceiling, it allows a persomn to look up from
time-to-time to see how things are going.

40

UNCLASSIFIED
- SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) .
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE ppr)l NSTRUCTIONS
P MBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CA NUMBER
SM-ALC/ACD-76-#b : F Y (9 ; e

4. TITLE (and Subtitio) ! g 5. TYPE OF REPON v : S

*,
Software Engineering ’I'echniques in Computer Case Study - Final}é oL,
Systems Development s ‘ SRR ot f ol -R—E:ﬁm‘“f/

7. AUTHOR(s) T8 CONTRACT OR GRANT NUMBER(s)
/QQ John H?/iehman

—

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

g AREA & WORK UNIT NUMBERS

Data Automation Branch

Sacramento Air Logistics Center/ACD
McClellan Air Force Base CA 95652

11. CONTROLLING OFFICE NAME AND ADDRESS 7

Data Automation Branch @ 15 Decemior D762
Sacramento Air Logistics Center/ACD : o

McClellan Air Force Base CA 95652 40

14. MONITORING AGENCY NAME & ADDRESS({(diffe. rom Controlling Oftice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repor

§ Approved for Public Release - Unlimited Distribution

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Approved for Public Release - Unlimited Distribution

. 18. SUPPLEMENTARY NOTES

Prepared in cooperation with members of the development team for the Allied
Recoverable Requirements Computation System (ARRCS) at McClellan Air Force
Base, CA.

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)
Software Engineering Techniques: The Development Team; Walk-Thrus; HIPOS;
Development Support Library; Top Down Design; Top Down Implementation;
Structured Programming.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

\%b This case study centers on the effort involved in the development of a
major logistics software system.

(Continued) (\1__,.,_“-.

DD ,55n%; 1473 €0'TION OF 1 NOV 65 15 0BSOLETE

UNCLASSIFIED

4, y /¢ !8 C] SECURITY CLASSIFICATION OF THIS PAGE (When Data Ente

5 5)b o

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (cont) !

The development efforr was unique in several major respects. It is

divided into three general groupings. The first is historical and describes
in the most general terms the system itself. The history predates the
development effort by some months and terminates roughly with the
certification of its initial phase. :

The seccnd part centers on a review and evaluation, not of the system,

but of the procedures followed in its development. This evaluation is

almost totally derived from commentaries, both written and oral, of the
participants.

The final third of the text provides suggestions which the author 'hopes will
prove useful in the development of thc future phases of the System or
totally new software development eiforts undertaken at the Sacramento

Alr Logistics Center.

~—
X

I

o2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

