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~~~~exp 1icitl y wi th predicting players ’ payoff and only imp licitly (if at
all) with predicting which coalitions shall form . In this investiga—
t iort , the primary emphasis is on the first aspect of coalition behaviour ,
na mel y the formation of coalitions .,~~.

In one approach , the formation of coalitions is modelled as an
abstract gar~’. There are several solution concepts defined for abstract
games such as the von Neumann-Morgenstern stable sets , the core due to
Gil l ies  and Shap ley , and subsolutions due to Roth. A more descriptive
solut ion concep t re f l ec t ing the dynamic aspects of bargaining——called
the dynamic soLution-—i~ proposed. The core and the dynamic solution
are then used to analyze the abstract game formulation of the problem
of coalition formation . The predictions of the abstract game models
depend on th e particular ~payoff solution concept ” used. I.e . ,  the
models assune that there is a rule governing the final payoff  to each
player as a function of the coalition structure that forms . The predic-
tions of these models are then studied for the case of n-person cooperative
games with side payments using various payoff solution concepts such as
the individually rational payoffs , the core, the  Shap ley value and the
barga in ing  set

In another  aprroacb , coa l i t ion  fo rmat ion  is viewed as a b a r g a i n i n g
process where the players  are allowed to raise (coalitional) objections
and (coalitional) counter objections in the sane manner as in the
Aumann-Maschler bargainir~ sets. ~1hile the Aumann-Maschler bargaining
sets indicate distribution of joint payoffs given a fixed coalition
struc ture , the restricted bargaining set proposed in this investigation
indicates both formation of coalitions and distribution of payoffs as
outcomes.

Coalition formation has been extensive ly st udied by social scientists.
Two classical theories of coalition formation- -Cap iciw ’s theory of
coali tions in the triad and Gamron ’s theory ~ f coalition formation in
weighted majority games withau~ di ctat3rs or veto players--are mathe-
matically ana)yzed and compared with the t-redictions of the abstract
game models under the same assurptions .
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ON CAME THEORY AND COALITION rORMArIoN
~~~~~~~~~~~~~~:

Prakash Pundalik Shenoy , P h . D .
Cornell University , 1977

The theory of n-person cooperative games presented by von Neumann

and Morgens tern is a ma thematical theory of coalit ion behaviour , A

funda men tal problem posed in game theory is to determine what outcomes

are likely to occur if a game is played by “rat ional play ers ”. Given

an n-person cooperative game and assuming rational behaviour , it is

natural to inquire (1) which of the possible coalitions can be expected

to form and (2) what will be the final payoffs to each of the players .

However , most of the research in game theory has been concerned

explicitly with predicting players 1 payoff and only imp licitly ( i f  at

a] L) with predic ting which coalitions shall form . In this invest iga—

tion , the primary emphasis is on the first aspect of coalition behaviour ,

namely the formation of coalitions.

In one approach , the formation of coalitions is modelled as an

abstt int game . There are several solution concepts defined for abstract

game .i ~ueh as the von Neumann—Morgenstern stable sets , the core due to

Gilli es and Shap ley, and subsolut ions due to Roth. A more descriptive

so~.ution concept reflecting the dynamic aspects of bargaining--called

the dynamic solution—-is proposed. The core and the dynamic solution

are t~~ n used to analyze the abstract game formulation of the problem

of coalition t r n ~ ’ion . The pr i ~ ct ions of the abs tra ct ~- i me models

lepend on the p ar t i ular “:ay off  solu t ion concept” used . I.e., the

modeis .ms~ ume th at there is a rule governing the final p a y o f f  to eanh
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player as a function of the coalition structure that forms. The predic-

tions of these models are then studied for the case of n-person cooperative

games with side payments using various payoff solution concepts such as

the individually rational payoffs , the core , the Shapley value and the
(i )bargaining set

In another approach , coalition formation is viewed as a bargaining

process where the players are allowed to raise (coalit ional) object ions

and (coalitional) counter objections in the same manner as in the

Aumann-Maschler bargaining sets. While the Aumann-Maschler bargaining

sets indicate distribution of joint payoffs given a fixed coalition

structure , the restricted bargaining set proposed in this investigation

indicates both formation of coalitions and distribution of payoffs as

outcomes .

Coalition formation has been extensively studied by social scientists.

Two classical theories of coalition formation--Cap low ’s theory of

coalitions in the triad and Gamson ’s theory of coalition formation in

weighted majority games without dictators or veto players--are mathe-

matically analyzed and compared with the predictions of the abstract

game models under the same assumptions .
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— CHAPTER I

AN INTRODUCTION TO THEORIES OF COALITION FORMATION

1.1 A Statement of the Problem

The theory of n-person cooperative games presented by von Neumann and

Morgenstern is a mathematical  theory of coalition behaviour . A funda-

mental problem posed in game theory is to determine what outcomes are

like ly to occur if a game is p layed by “rational players”. Given an

n-person cooperative game in characteristic function form and assuming

the players to be “rational” , it is natural to inquire (1) which of the

possible coalitions can be expected to form and (2) what will be the final

disbursement of payoffs among the players . These two aspects of coalition

behaviour are closely related. The final disbursement of payoffs among

the players depend on the coalitions that finally form , and the coalitions

that finally form depend on the available payoffs to each player in

each of these coalitions . Since the publication in 191414 of the

monumental work Theory of Games and Economic Behaviour {75] by von Neumann

and Morgenstern , most of the research in n-person game theory has been

concerned explicitly with predicting players ’ payoffs and only implicitly

(if at all) with predicting which coalitions shall form . In this investi-

gation , the primary emphasis is on the first aspect of coalition behaviour ,

namely the formation of coalitions . Several theories of coalition for ~a-

tion are proposed based on the theory of n-person game ; . As in most of

n-person game theory , our models are (conditionally ) normative and u~~

only endogenous -jr~ ume r~ts , that in , only inf ctr~.i tion contained in the

characteristic funct a is U n e d .

I



2

1.2 Game Theory and Coalition Behaviour

Games in characteristic function form were first considered explicitly

and in detail in 19144 by von Neumann and Morgenstern (vN-M) [75]. Their

theory of behaviour in cooperative situations is predicated on two

assumptions. First , it is assumed that each coalition R of players

can assure itself of a particular amount v(R) of resource , independently

of what the remaining players do. Second , it is assumed that any coalition

may divide what it receives among its players in a completely arbitrary

manner (in other words , there is no restriction on side payments between

players).

vN-M also proposed the concept of “stable sets” as solutions to a

game . The basic feature of this solution concept is the idea of dominance

as a preference relation on the set of all “imputations”. An imputation

represents an allocation of the available resources among the n players

acting as one coalition . However , on strictly mathematical grounds the

theory of stable sets contains some unpleasant results. Shapley [90 ,91]

and Lucas [55 ,57,60,63] exhibited a number of games with particularly

pathological stable set solutions and Lucas [58,59] gave an example of a

game with no stable sets settling a long standing conjecture on the

question of existence of stable sets for all games. Besides these

mathematical pathologies , Weber [112, pp . 4-6] indicates a number of

philosophical objec tions to the concept of a stable set . In an approach

to one of these objections , Vickrey [108] proposed the concept o~ “self-

policing ” sets of imputations , and investigated the existence of stable

sets with the self-policing property . Another approach dates back to

a suggestion of Nash [73] where he writer that :
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“A.  . .type of application is to the study of cooperative
g a m e s . . .  . One proceeds by constructing a model of the
pre—play negotiations so that the steps of the negotia-
tion become moves in a larger non-cooperative game
describing the total situation.. .thus the problem of
analyzing a cooperative game becomes the problem of
obtaining a suitable, and convincing,.. .model for the
negotiation .”

In recent years , the noncooperative approach to the cooperative games has

been pursued by Selten [88], Harsanyi [39,41,414] and Weber [112]. In

another approach , Roth [84] introduces some alternate solution concepts

having some similarit ies to the vN-M stable sets.  He is then qu i te

successful in obtaining existence theorems for these concepts. (Cf. Weber

[112, pp. 2-14] and Lucas [65].)

One of the simplest solution concepts is the core . The theory of the

core is implicit in the theory of stable sets since the core is a subset

of any stable set . The core was first studied explicitly however in the

mid 1950’s by Gillies [35] and Shapley. The core may sometimes be empty .

Bondareva [19,20] and Shapley [93] give necessary and sufficient conditions

for the nonemptiness of the core of an n-person game with side payments.

Even when the core is nonempty , it may be “too smal l” , as in “ simple

games with veto players” where it assigns all the p.-eioff to the set of veto

players even though they may not be “dic tators” , that is , they may need

the help of some others to achieve these ~ i-~~ffs . (Cf. Lucas [62, p. IU .])

Several authors have proposed different value theories f or cooperative

games. A player ’s v a l u e  is an a priori  measure of his expected gain in a

given game . Most value theories determine a uni que impu ta t i on  as the i r

solution set . This outcome is j u n t i f i e d  by arguments based upon some concept

of fai rness  as determined by certain axi oms , ui- on some bargaining procedure

- I .. . -- - . . ~~~~ _ 
_
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or arbitration scheme , or upon probabilistic considerations . The Shapley

value [87] and the Banzhaf value [12] have been studied extensively and

used in applications. These value concepts have been interpreted in

several ways by Dubey [30], Davis [27], Myerson [70], Owen [76], Shapley

and Shubik [94], Straffin [104], Roth [85], and others. Lucas [64] and

Straffin [103] present a collection of various applications of these value

concepts to real life situations .

All the solutioc concepts discussed so far describe the disbursement

of payoffs among the players assum ing that the grand coalition of all

players forms . This idea is embodied in the definition of the imputation

which has been involved in all the concepts so far discussed , namel y the

vN-M stable sets , the core and the value theories. However , Aumann and

Dreze [8] presen t natural generalization of these solution concepts to a

given partition of the set of all players .

Aumann and Maschler [9] introduced several somewhat similar solution

concepts called bargaining sets. These sets describe what payoff vectors

are “stable” once a given coalition structure (partition of the player

set N into subsets) has formed . An individual outcome is stable in

their sense if there is no “objection” to it or if each objection to it

gives rise to a “counter objection”. An individual outcome in a bargaining

set can stand on its own , in contrast to an imputation in a vN-M stable

set. In the vN-M theory it is the whole set which possesses a global

stability or represents a standard of behaviour and not an individual

imputation in this stable set . One of these bargaining sets, denoted by

was shown by Feleg [79] to contain at least one payoff vector for

each partit ioning of the plo- icr-- into a coalition structure.

S A. _L......_. . - — — - . . 
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Davis and Maschler [28] introduced the kernel of a game which is

always a nonempty subset of the bargaining set ~~~~~

Schmeidler [87] defined the nucleolus which turns out to be a unique

outcome in the kernel and it is in the core if the latter is nonempty .

The bargaining sets , the kernel and the nucleolus describe outcomes

associated wi th  each coalition structure but they tell us nothing

exp licitly about which coalition s t ruc tu re ( s )  we could reasonably expect

from rational players .

In addition to those mentioned above , several other solution concepts

have been proposed. Some of these are reasonable outcomes due to Milnor

[68], ‘I.’-stability due to Luce [66, Ch. 10] and (k-r)—stability due to

Shubik [99].

Milnor suggests three different systems of “reasonable” conditions ,

each of which isolates a subset of the set of all imputations . In

doing so he has taken

tne point of view that it is better to have the
set too large rather than too small. Thus it is not
asserted that all these points within one of our sets
are plausible as outcomes ; but only that points outside
these sets are implausible .” [68]

q-stability is a property of pairs (x,P) where x is an imputation

and P is a coalition structure given that P can only break up into

certain other coalition structures . If the admissible coalition

changes are specified by a rule ~,(P), stating all the coalition

structures which can form from any given P , then (x,P) is mp-sta.ble

if none of the admissible coalitions can get more t’nan its members get in

(x , P ) .
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A payoff vector is (k -r )-st able  if , roughly speaking , no group of

r players can do better using another strategy on the assumption that

each of k players is committed to a “threat strategy” (i.e., will use

a certain strategy whatever happens). (Cf. Taylor [105], pp. 363-3614.)

In recent years , the dynamics of negotiation among the players have

also been investigated . One approach to this problem concentrates on

the use of discrete transfer schemes to study how players might arrive at

a desirable outcome. A parallel approach employs systems of differential

equations whose solutions represent a continuous transfer of payoff over

time . The advantages of such an approach are multifold . Not only does

it enable us to view game theory in terms of the actions of individuals

or coalitions , but it also enables us to characterize solution concepts

in terms of associated “behaviour” . Tn 1968, Stearns [102] exhibited a

sequence of discrete transfers of payoff among the players which converged

to points in the kernel of Davis and Maschler [28]. In 1972, Billera [18]

smoothed these transfer sequences to obtain a system of differential

equations whose solutions represented a continuous transfer of payoff

and which also converged to the kernel. In 1973, Kalai , Maschler anc~

Owen [148] started a systematic investigation of asymptotically stable

points in various bargaining sets.  They also show that the  nucleolus

is a dynamical ly stable p o int  for each system . Owen [781 proved tha t

the conditions imposed by IKalal , Maschler and Owen [4 8] can be relaxed

to a certain extent . In 19714, Wu [110] showed that a modification of

the re laxat ion  method of Agmon [1] could provide a discrete transfen

sequence which converged t -~ the  core . Also , Wu mi  Billera [111]

study a dynamic th ’-or v  for  the  kernel  g iven by Billera [18]. Grot te  [.~6]

~

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _  
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exhibi ts  several systems of differential equations which represent possible

behaviour patterns for the players . The solutions of these systems are

shown to converge to a number of solution concepts, among them the core,

the Shap ley value , and in certain instances, the nucleolus. Maschler

and Peleg [67] characterize all the dynamically stable points and the

dynamically stable closed sets with respect to Stearns ’ system which belong

to the appropriate bargaining sets . They are nucleoli of appropriate

Liapunov functions . In part icular , a new solution concept due to Gill

Kalai , called the lexicographic kernel is shown to be a dynamically stable

subset of the kernel.

In the vN-M characterist ic  funct ion , a coalit ion is assigned a value

which is assumed to be fixed irrespective of the organization of the

remaining players into coalitions. In 1961 , Thrall [106] formulated a

theory of n-person cooperative games with side payments in terms of a parti-

tion function which is defined on the  set of all par t i t ions  of the set of

p layers (see Thrall and Lucas [107]). Thrall’s formulation assigns a

real numbered outcome to each coali t ion in each par t i t ion of the set of

players . Subsequently Lucas [52 ,53 ,514,107] generalized and studied the

concept of a vN -M stable set and some asI~ects of the core for a game in

pa r t i t ion  funct ion form . Lucas [56] also exhibi ted  a game in partition

funct ion  form that  ban no stable sets.

In 1964, Eisenman [31 ,32] s tudied a na tu ra l  general izat ion of games

in par t i t ion  func t ion  for-rn which he ~ iLls “alliance games”. Eisenman

[32] also generalized the concept ~f Sl ipley value to alliance games.

Another  ge n e r a l i z a t i o n  of the  vN—M char-e teri ;~~ic function model of

a cooper - i t ive  game deals w i t h  ~ames in w i i J n h  side piym ents are either

- - ~~~~- - --- *-~~~~~~~~— ~~~~~~~~~~~~ - - - ~~~~~~~- - - -— - - - -- -~~~~~~~~~~~~-~~~~~-
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forbidden altogether or are allowed but “utility is not transferable”.

We say u t i l i ty  is transferable if the increment to the payoff of a

player caused by a transfer of money is proportional to the amount of

money transferred (cf. Aumann [5]). Most solution concepts described so

far for games with side payments have also been generalized to games

without side payments. Aumann [10], Peleg [10 ,79] and Stearns [100,101]

have studied the vN-M stable sets; Aumann [6], Billera [16 ,17] and

Scarf [86] have analyzed the core ; Asscher [3,14], Billera [15] and

Peleg [80] have investigated the bargaining sets , and the value concept

has been extended by Nash [72,74], Harsanyi [38,39,40], Isbell [145],

Miyasawa [69], Shapley [92] and Owen [77]. Aumann [7] presents a survey

of research on cooperative games without sidepayments up to 1967.

At this stage , it will be helpful to emphasize that n-person game

theory as described so far has been concerned directly with the problem

of disbursement of payoffs rather than the question of formation of

coalitions. The one possible exception is implicit in the ~-stabi1ity

theory , in the sense that if some coalit ion structures cannot form stable

pairs with any imputations , it could be surmised that such coalition

structures will not be frequently observed (cf. Rapoport [82, p. 286]).

Recently Fink [33] has proposed a solution concept that

“...yields assertions both on the coalition structures
formed and on the distribution of the payoff among
the players.” [33]

Fink defines three dominance re la t ions  on the set of “ ind iv idua l ly rat i onal

payoff configurations ” and studies the stable set solutions for these

abstract games. 

— ——-— — -- - ---— —--.————--— - —-- —,--——- ~~~~ - ---——-- —----- -— -—— -— — —-— - —— --—--—-——-— - ——-- -—- — —~ — -— -. — —— — ~~ —-—---——— - - A
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1.3 Theories of Coalition Formation in Sociology, Psychology and

Political Science

In sociology , psychology and poli t ical  science , there are a number of

simple theories about the process of coalition formation . These theories

consist essentially of an hypothesis concerning the player ’s goals or

motives , a premise concerning their payof f s  and an inference which sing les

out the coalitions most likely to form . We b r i e f ly  describe some of these

approaches in this  section . However , we do not review a number of more

informal and ad hoc theories of coalition formation nor the many experi-

mental studies designed to test theories of coalition formation . Caplow

[24] and Leiserson [51, Section 2.1] between them give a comprehensive

coverage of these two topics .

Cap low ’s [22 ,23] theory of coalition formation is restricted to

triads . A triad is a “three-person weighted majority game with a simple

major i ty  quota” . Caplow ’s theory is based on the notion that

“ ...the formation of given coalitions depends upon the
i n i t i a l  d i s t r ibu t ion  of power in the t r i ad  and , other
things being equal , may be predicted to some extent
when the initial distribution of power is known .” [22]

He thi n describes six possible types of power distributions for groups

of three players . On the  b i s is  of four assumptions which mainly postu-

late tb -i t a str-ongci- member always controls a weaker one and that the

goal L to dominate as many members as possible , he pred icts, for each

power distribution and as a function of the power rank order of the

individ ual , the most probable coalitions to ccur- .

Following Cap low , Gamson [34] f c-r~u -~t ei a slicht ly more general

theory of coalition format ion in “pr oper ” w--i ~J~t - -~ najer-i tv gam -- with -ut

— 4 _ _ _  --- ~~—~~- — -- ——- --~~- -~~ -- 
- - ------ - - 
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veto players or dictators . Gamson ’s main hypothesis is that

“any participant will expect others to demand from
a coalition a share of the payoff proportional to
the amount of resources which they contribute to a
coalition.” [314]

Based on this assumption , he infers that a player will favor a “cheapest”

winning coalition , i.e . a winning coalition whose total weight is a mini-

mum among all winning coalitions.

Riker ’s [83] theory of coalition formation is applicable primarily

to zero-sum games with side payments. Assuming rational behaviour and

perfect information , he deduces that

“...the equilibrium size of a winning coalition is
always minimal.” [83]

Leiserson [51] suggests several theories in which each player uses

a “search strategy”, looking for a coalition in a piecemeal , stepwise

fashion which requires of him only ‘local’ rationality as opposed to

‘global ’ rationality which requires the players to weigh their payoffs

in every possible coalition . One of these search strateg ies attempts

to minimize ideological diversity in the coalition ; another takes into

account differences on several issues and the possibilities of logrolling

(cf. Taylor [105 , p. 361]).

Axelrod ’s [11] theory of coalition formatioi is based on the notion

that players tend to minimize conflict of interest. His main hypothesis

is that

“in a parliamentary democrac’,- in which the parties
can be placed in a one-dimensional ordinal policy
space , minimal connected winning coaLtions: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~ - - -—
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1) are likely to form more often than would be
indicated by chance (even compared to just
other winning coalitions), and

2) once formed are likely to be of longer duration
than other coalitions .” [11]

By connected coalitions , he means coalitions which consists of ideologi-

cally adjacent parties .

In recent years , Cross [26], Komorita and Chertkoff [49] and Komorita

[50] have also proposed additional theories of coalition formation.

1.4 A Summary of Research -

In this section we briefly summarize the research in this thesis.

In Chapter 2, a new solution concept , called the dynamic solution ,

based on the elementary theory of Markov chains , is defined for abstract

games. The structure and properties of the solution are studied. The

(payoff) dynamic solution of all 3-person games with side payments is

determined. Finally, many games , pathological in their behaviour with

respect to the classical von Neumann-Morgenstern theory of stable sets ,

are shown to be amenable to this approach .

In Chapter 3, we propose some theories of coalition formation based

on the theory of n-person cooperative games. The predictions of these

theories depend on the particular “payoff solution concept” used , i.e. ,

the theories assume that there is a rule governing the distribution of

payoffs to each player in each coalition structure . The various theories

proposed are compared . Section 3.3 contains a representation of the

problem and solutions by means of digraphs . In Sections 3.14-3.7, the

predictions of the theor ies ire characterized for the case of games with

side paymen ts usirc v - t r i - r i - ~ i y of f  solut ion concepts  such as the 

~~~~~ -- - ---— - - -  ---~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -—- -~~ ~~~~~~~~~~~ -— - - -  — - - ----- --~~~~~~ -
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individually rational payoffs , the core , the ~sa~-ley v~~ -~i- and the

bargaining set ~~~~~ Finally in Section 3.8 . some r i f i~ at~ ons of these

theories are discussed .

In Chapter 4, Caolow ’s and Gamson ’s tL~ ~~~~ - o- tioi formation

are mathematically interpreted , analyzed and coso -~r. e-j with the models

in Chapter 3.

In Chapter 5, some modifications of the Aumann-Maschler (A-M) bar-

gaining set M~
1) 

are discussed. The A-M bargaining set theory was

developed to attack the following general question : If the players in a

cooperative n-person game have decided upon a specific coalition struc-

ture , how then will they distribute among themselves the values of the

various coalitions in such a way that some stability requirements will

be satisfied (cf. Davis and Maschler [28, p. 39]). In our theory , we

do not assume that players have any a priori preference for any particular

coalition structure . Some examples , illustrating the basic differences

(~~~~)  . .
between the A-H bargaining set and our restricted bargaining set

are exhibited. A few general results are also presented.

Finally in Chapter 6, we present a brief summary of the research

in this thesis and discuss its potential significance. Some questions

left unanswered in this work are also raised.

-p ~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ - - - -~~~~~~
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CHAPTER II

A DYNAMIC SOLUTION CONCEPT FOR ABSTRACT GAMES

2.1 Introduction

Most solution concepts for m-person cooperative games are normative

or prescriptive theories. A more descriptive theory reflecting the

dynamic aspects of bargaining is proposed in this chapter . Section 2.2

contains some notation and definitions . We introduce two additional

binary relations which depend on the binary relation domination in an

abstract game . An interpretation of these relations is also presented.

In Section 2.3, the concepts of an elementary dynam c solution and a

dynamic solution are introduced and discussed. The properties of the

dynamic solution are studied in Section 2.4. For an abstract game with

a finite number of outcomes , the concept of dynamic solution coincides

with a concept of an R-admissible set defined by Kalai , Pazner and

Schmeidl~ r in [146]t• In Section 2.5 the dynamic solution for all 3-person

games wi th  side payments is determined. Finally in Section 2.6, many

games , which have pathological behaviour in the classical von Neumann-

Mor-genstern theory of stable sets , are shown to be amenable to our approach .

2.2 Notations and Definitions

An abstract 
~~~~ 

is a pair (X,dom) where X is an arbitrary set

whose members are called outcomes of the game , and dom is an arbitrary

tKalai and Schmeidlcr [147] have also defined a solution concept similar to
the dynami - solution . However , the- research l-~ eseI~~oJ in this chapter was
done independently of both these references .

13 

-—~~~~~~~~~~------- -~~~~~ --~~~~~~~~~~  - --- - - - -— - - --- - - 

A



_ _ _  ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

14

binary relation defined on X and is called domination. An outcome

x ~ X is said to be accessible from an outcome y c X , de noted by

x 
~
- y (or y ~ x), if there exists outcomes z0 x ,

where m is a p osLt ive  integer , such that

(2 .1)  x z dom z dom z don . . .  don z don z y .
0 1 2 m-l m

Also assume x ÷ x , i . e .  an outcome is accessible from itself. Clearly ,

the binary relation accessible is transitive and reflexive .

An interpretation of the relation accessible is as follows : If the

players are considering an outcome y at some stage , then an outcome

they will consider next will be a z € X such that z don y. If x ÷ y

and if the players are considering outcome y at some time , then it is

possible that they will consider outcome x at some future time . I.e.

one may interpret the relation as a possible succession of transitions from

one outcome to another .

Two outcomes x and y which are accessible to each other are said

to communicate and we write this as x -
~
--

~~ 
y. Since the relation accessible

is transitive and reflexive it follows that

Proposition 2.1. Communication is an equivalence relation .

We can now partition the set X into equivalence classes. Two

outcomes are in the same equivalence class if they communicate with each

- tht- r. Wi- say th-~t the abstract game is irreducible if thi r~ equivalence

relation induces only one class. The set 

-- - - - - -- -~~~~~~~~~~
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(2.2) Dom(x) = {y € X:  x dom y }

is called the dominion of x. Similarly we define the dominion of any

subset A C X  by

(2.3) Dom(A) u Dom(x)
x€A

Also define the inverse dominion of x by

(2.4) Dom
1(x) {y € X : y dorn x}.

The core C (due to Gillies [35]) of an abstract game is defined to be

the set of undominated outcomes . I.e.

(2.5) C = X — Dom(X).

We can rewrite the definition of the core in terms of the relation

accessible as follows:

(2.6) C 1x € X: For a l l y c X , y � X , we have y l x } ,

i.e., in the terminology of Markov chains , the core is the set of all

absorbin& outcomes. Note that each outcome in the core (if noriempty )

is an equivalence class by itself.

A vN-M stable set V (due to von Neumann and Morgenstern [75]) of

an abstract game is any v c X such that

(2.7) V = X - Dom(V). 

-~~~~ -~~~---~~~--~~~ ----- ----- ~~~~~~~~ -
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Any vN-M stable set V satisfies internal stability and external stability,

i.e. ,

(2.8) V n Dom(V) 0 and V tj Dom(V) X.

In recent years , Behzad and Harary [13 ,114] and Shmadich [98] have charac-

terized finite abstract games for which vN-M ~-tahle sets exist .

2.3 The Dynamic Solution

We define an elementary dy~amic solution (elem . d-solution ) of tPw

abstract game (X,dom ) as a set S c X such that

(2.9) if x € S, y € X-S , then y -s’ x and

(2.10) if x ,y € S, then x 
~
- y and y ÷ x.

Condition (2.9) requires S to be ‘externally stable ’ in a dynamic sense ,

i.e. if the players are considering x € S at some t ime , then they will

never consider any outcome that  is rot in S in the future . We can

th ink of Condition ( 2 . 10 )  as ‘ internal  s t a b i l i t y’ in a d ynamic  sense.

I.e., if the players make a transition (in the consideration of outcn’~e:)

from x to y then it ii possible that  the players w i l l  - i r ~iin cccsiier

the outcome x in the future .

Proposition 2.2. An elem . d-solution S is an equivalence class.

Pr - c t :  By Condition (2.10). S is contained in an u -~c~ valence c am

i.e. S H . Suppose S � H . Let x H— s and y -
~ S. Then x • y

is an ‘-duiva i encn  cl-is-; , ~hi di o -utr-3di st (2. ~ )
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The C ..verse , however , is not always true , i.e., an equivalence class

need not be an elem . d—solution . Condition (2.9) requires S to be (in

the terminology of Markov chains ) a non-transient (recurrent, persistent)

equivalence class .

Proposition 2.3. Each outcome in the core C of the game is an elem.

d—solu t ion.

The proof follows from the definition of the core in (2.6).

The dynamic solution (d-solution ) P of the game is the union of

all distinct elementary dynamic solutions. I.e.

(2.11) P~ u{S c X: S is an elem . d-so~ution}.

We can interpret P as the set of all likely outcomes of the game .

Proposition 2.4. For any abstract game , the dynamic solution always exists

and is unique .

Proof: Existence follows from the fact that the empty set 0 is always

an elem. d-solution . Uniqueness is clear from Proposition (2.2) and the

definition of the d-solution .

~~~position_2.5. C c P

The proof follows from Proposition 2.3 and the definition 1 P.

2.14 Properties of the Dy imic Solution

If X is a fini te set , then out definit L~~n of the d-solution coincides

with the definition of the R-admissible ~ict d ie i - -
~ Kalai . Pazner and 

-- -~~~~----- -- -- -- - -~~~~ -- -- - - - -~~~~ - - - --- ---- ---~~~~~
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Schmeidler [146]. In this section we demonstrate the equivalence of the

two definitions. This will also illustrate some of the properties of

the d-solution .

Lemma 2.6. It X is a finite set , then P is the d-solution if and

only if P satisfieo :

(2.12) For all x ,y ~ F, y x <-~> x y.

(2.13) If x € F , y € X-P , then y -
~‘ x. And

(2.14) if y € X-P , then S x t~ P such that x ÷ y.

Proof: (- -C > )  It is clear from the definition of P that it satisfies

Conditions (2.12) and (2.13). Suppose Condition (2.14) does not hold.

Then for some y
1 

c X-P , x I y
1 

for all x € P. Let A
1
(.r
1
) c X-P be

the equivalence class containing y
1
. If A

1
(y
1
) s-atlsfie-i Condition

(2.9), then A
1
(y
1
) is an d en . d-solution which is a contradiction . If

not , then S y~ € X-P-A
1
(y
1

) such tha t y
2 *- x for some x A

1
(y, ).

Let A
2
(y
2
) c X-(P u A

1
(y
1
)) be the equivalence class containing y

2
.

Repeating this argument , since X is finite , we get an equ iva lence
k- 1

class A
k
(y
k
) C — P — u AJy.) satisfy ing Condi tiu~ (2.~~). lou :

i=l
A
k
(y) ~s art elem. d—solution , which i s a contr adi- tio ii

(< - )  Statements (2.12) and (2.13) imp ly that P is a union of

p1cm . d-solutions . upr -sse some d en . d-so l ut ion s is not inc Ink-~

in P . ani let - -  - S c X — P .  Th ’n from : i - Ij t i o n  ( 2 . 1 5 )  5 x c P sit -h

that X • y. But x I S contradicts the ~~i-” t 1 i t  S ~ .i an e~ - -m .

-h- s H i o n ! Hence P is t b - - uni -n of all e~ t- m . d—sol~~ticns . E

- - -  -~~~~
—--

~~~~~~~~~
-
~~~~~~~
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Theorem 2. 7. If X is a f i n i te  set , then the d—so lut ion  is nonempty and

unique .

Proof: Nonemptiness follows from Condition (2.14 ) of Lemma 2 . 6 .

Uniqueness follows from Proposition 2.14.

Remark : If R is an arbitrary binary relation , Kalai, Pazner and

Schmeidler define an R-admissible set as a subset of X satisfying

Conditions (2.12), (2.13) and (2.14) with the binary relation R substi-

tuted in place of •-.

Define a binary relation transitive-domination denoted by t-dom

as follows :

(2.15) For all x ,y € X , x t-dc-r y <=~ x y and y * ~~~.

Transitive dominat ion is irreflexiv-:- and transitive . The following lemma

is proved in Kalai , Pazner and 5 -br-idl er [46].

Lemma 2.8. If X is a finite set , the d-soiut ion P satisfies :

(2.16) For all x ,- .- e P , x t,~dom v and y t~ d- ni x (internal ;;tot-~~1ity).

(2.17) For all y X-P , 3 x ~ P such that x t-dom y (external
s t a b i l i t y) .

I.e. P is the ;rJ- ~u-: ~i~-M s t - - d - _ : - a t i -id U~ - - of t h e  ~L-- st rac t  game

(X ,t - d - m ) .

T h - -  1 - i l  - w r  i - - - s it s u- ~ ~-~ sv con. uen es o~ t h e  d~ fj~~j o~ ~ t e

lut j i t i  . N - v-a t i- - less , they ar- - useful in cem~ ut iii t P d- s olu t  ion . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proposition 2.9. If x ,y c X such that x y and y -
~~ x , then y I P.

Proof: If x € F, then y € P contradicts Condition (2.12). If x I P.

then y ~ P contradicts Condition (2.13).

Corollary 2.10. Let y be an outcome that is not in the core . Then

Dom (y )  0 ~--> y é P.

in

Proposition 2.11. x I P --> ( u Dom
k(x)) n P = 0 for all integers in > 1.

k=1

k
Proof :  y u born ( x )  -> + x for x I P 

~ °- y I P.
k z l

Proposition 2.12. If the core C is the unique vN-M solution , then P = C.

Proof: From Projasition 2.5 , C c P. Since C is the unique vN-M stable

set , v ~ X — C ==> S x ~ C such that  x 
~
- y. But y I x ( s ince  x € C).

Hence y I P (b y Proposition 2 . 9 ) .

Corollar-y 2.13. Let C be a nonempty core . If y ~ Dom
k(C) for some

integer k > 1 then y I P. I.e. P c X - U Dom~ (C) for every integer
j~~I

m > 1.

2.5 Dynamic Solutions of 3-Person Games

A cooperative n-person game it-i characteristic function 50cr is a pa ir

(N,v) where N = {l ,2 , . . .  ,n} denotes the  ~~ - -t  of lay- -I-s and v is C

non-negative real valued function defined on the subset-’ of N whi h

satisfies v (O) 0 and v({ I)) 0 for all i - U. ~! ; - ~~ 
-

- - i

-i re s a il e d  coali t  I : :is. A c o a l it i on  St ‘u turt - (c.3. ) P (P 1 } is
1 m

j  par t it  ion of N I it t ’ d i -  j o i nt  ( i  f l e n ; - t y  ) coal I I ‘m . The- :;~ t of

(:-iyof f) cutc-om -s corre ;p( nd ine to s’ - l i t  ion st  i - - J r - I  ui -c- P is dei ’- I’-

- - -.-— —~~~~~~~~~~~~ —~~~~~ - - ~~~ - - --- - -  - 
- --—-——~~~~~~~~~- ~~~~-~~~~ -—----~~~ ~~~~~~ -— — -  p - - ____
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by X(P), where

(2.18) X(P) = {x € E’~: x . > 0 for all i € N and ~ x. v(P .)
i — -  • 1 Ji€P .

J

for each P . € P}
3

The elements of the set X({N}) are referred to as imputations. Domina-

tion is defined as follows;

x € X(f~ is said to dominate y € X(P) via coalition R , denoted by

x dom
R 
y if x . > y. for all i € R and 

~ 
x . < v(R).

i€R

x dominates y ,  denoted by x dom y if S a nonempty R C N

-oi l, th-C t x dorn~ y.

In the abstract  game ( X ( P ) , dom) as defined above , we cannot have

dominat ion  via N and via one player coalitions . Also , if x . = 0, then

~ does not dominate -my other outcome via coalitions that contain player i.

Lemma 2 .14. Let I’ be a 3-person game and P be a c . s .  tha t  contains

onl y one-player or two-p layer coalitions . Then the dynamic solution of

the game (X(P),dom ) is the entire set of outcomes , i.e. P(P) = X (P).

So we need concern ourselves with only the c.s. P {N} . Let

C((h41 ) denote the core of the abstract game (X({N}),dom ). To condense

notation we will denote P({N}) and C({N}) by P(N) and C(N)

respectively . Assume without loss of generality that the characteristic

funct ion sat isfies

L ~~~~~~~~~~~~ -
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(2.19) v({l,2}) < v({l,3}) < v({2,3}).

Let v({l,2}) a, v({l,3}) b , v ( ( 2 ,3}) c and v({l,2,3}) d.

The following inclusive cases should be distinguished :

Case 1) d > (a+b-s-c)/2 , d > c.

In this case the core C(N) � 0 and is given by

(2.20) C(N) {x c E~~: x. > 0 for all i € N , x
1 

-t- x
2 

> a , x
1 

+ x
3 

>

x
2

i- x
3

> c  and x
1

÷ x
2

t x
3

= d}.

The d-solution is given by p (bi ) C(N). (See Figure 2.1.)

Case 2 )  d < (a+b+ c ) / 2 , d > c.

In this case C(N) = 0. The d—solution is given by

P(N) Conv{w
1
,w
2
,w3

} - fw
1
,w
2
,w
3
} where

w
1 

= (a+b-d , d-b , d-a),

w
2 

= (d-c , a-s-c-d , d-a),

w
3 

(d-c , cl-b , b÷c-d)

and Conv(a
1
,. . .  ,a }  denotes the convex hull of the points in

(See Figure 2.2.)

Case 3) a b < d < C , d > a+b .

In this case the core C(N) � 0 and is given by

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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C(N) = Conv{(0, a, d—a), (0, d-b , b)}

and the d-solution is riven by P(N) = C (N). (See Figure 2.3.)

Case 14) a < b < d < c , d < a + b .

It-i thi s case , 0(N) 0. The d-solution is given by

P(N) Conv{(a+b-d , d-b , d-a), (0, a, d - a ) ,  (0, d-b , b)}

- {(a+b-d , d-b , d-a), (0, a, d-a), (0, d-b , b)}

(See Figure 2.4.)

Case 5) a < d  < b < c .

In this case C (N) 0. The cl—solution is given by

P(N) = Conv{(a, 0, d-a), (0, a, d-a), (0, 0, d)}

- ((a, 0, cl-a), (0, a, I-a), (0 , 0, d)}

(See Figure 2.5.)

Case 6) d < a < b < c.

In this case C (N) 0. The cl-solution is given b-.

P(N) Conv{ (d, 0, 0), (0, d , 0), (0, 0, d))

— {(d, 0, 0), (0, d , 0), (0, 0, d)}

(See Figure 2.6.)

Thus all cases have been considered .

~

- --- - - -  ----- --~~~~~~—-~-- -~~~~~~~~~~~~~--~~~~ -- -p --~~~~~~~~~~~ -- --- - - -~~
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(0,1,0) Ci

•1- ‘I

~1
1. I \~~~,

~~~~~
‘ I

:4
,,~~ x

1
-s- x

3
= b

C

l i i i

(0,o,d) (d ,o ,0)

Figure 2.1. The dynamic solution P(N) of a 3-person game , Case 1).
The arrows in the figure indicate transitions.

C)

•1
~

~
- (0,d ,0) ~~~

/
Al

0

( d-c , a+c-d , d -a)  
-

(d-c , cl-b , b+ -d) 
_ i

_ x1 + x 3 b

l A I ~~ I ) l l ~~_l l l t t ’ I I t I t t I t

(0,0,d)  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fi~ ure 2 .2 .  The d ynamic solut ion P ( N )  of a 3-; c-r- -~ n c - i t - i c - , Case 2 ) .

L - - _ _ _
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(o,d ,0)

(0, d—b , U). ~ / ~~~

~/ ,‘:;~\ 
x
1 

+ x
3 

= b

\+
/ / I~~~

\~~ lx
0

I
-

(0, a, d-a) _ I I  I i )  I I I  I I )  I I t t

(o ,O ,d) \ (d ,o,0) J
Figure 2 . 3 .  The dynamic solution P ( N )  of a 3-person game , Case 3) .  P

-I.
0

‘I

+

~ ~/ 
(o,d ,o)

(0, a, d-a ) )‘( I \~

(0, d-b , b )  ~1~ 1~~ ‘
~~~~
‘ 

( i-b d -j b d-a)

a 

- 

= b
/ ~

‘Aq -~~“~~“J ~~~~~~~~~~~~~~ \ ~1 3

/ j~
t
- l t l i I I l t I  I l l  1 _I l I t i l l  I I  1 1 1 1  I I I  I

I

(0,0,1) (d ,0,0)

Figure 2.4. The dvn-inic solution P (N) of a 3-1-orson game , Case 4). 

- - - -— - -~~~~~~- p- -- .~~~~~~ 

-_



p - - ~~ -

26

+ 0
(0,d ,0)

C .tt- V 

T

(0, a, cl—a)

/

1
, /7 

_
; 

-

+ b i-~~~~~~~ . (d ,0,0)
co ,o ,aJ

(a, 0, cl—a)

Figure 2.5. The dynamic solution P ( N )  of a 3-person game , Case 5) .

C) +
I,

+
~ O ,d O  --

~A C

9)

1~/ - /
/ , /

/ - /
/ 

/
‘

1/7/)~~/ / 7 / / /  )/ ,  
/ 1,1/I ~/1J/~

(o,o,d)  + x 3 = b ( 0,0)

Figure 2.6. The d ynamic  solution P ( N )  of a 
~~~~~~~~~~~~~~~~~~ 

‘one , -c
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2.6 Some Examples

In this section we study several examples which are pathological

in their  behaviour with respect to the classical vN-M theory of stable

sets.

Example 2.1. (A 5-person game with a unique vN-M stable set strictly

larger than the core . See Lucas [55].)

Consider the 5-person game given by

v(l23145)t 2, v (l2) v(314) = v(135) = v (245) = 1,
v(R) = 0 otherwise.

The core C Conv{(l ,0,0,l,0), (0,l,l,0,0)} and the unique vN-M solution

is given by

V = Conv{(l,0,0,l,0), (1 ,0,1,0,0), (0,1,1,0,0), (0,l,0,l,0)}.

The cl-solution coincides with the core . This is seen as follows . We
2 .

have Dom(C) = X - V and V - C c Dom (X-V). Hence C X - u Dom 3 (C).
j=l

By Corollary 2.10, it follows that P = C.

Example 2.2. (A 5-person game with a unique stable set which is non-convex.

See Lucas [57].)

Cons ider the 5-person game given by

‘ To condense no ta t ion  w’ - d a r I e n  ex~~r~~~- i ~- : ,  - l ike  - - ‘~~(1, 2 , 3 , 4 , 5 ) )  to
v( I 2 d ’~ )

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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v(123145) 3, v(234) = v(3145) = 2,

v( 12 ) = v( 145) = v ( 3 5 )  = v( 34) = 1, v(R) 0 otherwise.

For this game

X = {x e E~~: ~ 
x. 3, x . > 0 for all i € N}.

ic N

Let

B = {x € X: ~ ~~. > v (R) for all R C  N except {2,3,4}}.
i€R 1

Then the core C of the game is given by

C = {x c B : x
2 

+ x
3 
+ x4 

> 2}.

It can be easily shown that Do m ( C )  D X - B and B - c C Dom(X-B).

Hence by Corollary 2.10 , we have P = C.

Examp le 2 . 3 .  (A game wi th  no symmetric stable set . See Lucas [57].)

Let N = {l ,. . . , 8},  v ( N )  = 4 , v (1357)  = 3 , v ( 2 5 7 )  = v ( 4 5 7 )  1,

v( 12 )  = v( 
~~~~~)  v ( 56 )  = v ( 7 8 )  1, v ( R )  = 0 for all other R C N.

For th is  game ,

X = {x ~ }~~: 
i , N  

4 , dnd x . > 0 for all I c N ) .

Let -

H = {x - - X: + = X
3 

+ X = X
5 

+ X
6 

X .7 + X
8 

1) .

_  
~~~~~~~~~ - - --- - --- ---- -~~~~~~~~-- -- - - - -~~~~~~ 
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Th en the core C of the game is given by

C = {x H : x
1 

+ x
3 

+ x
5 

+ x
7 

> 3).

Define F’. {x H: x . 1) for i 1,3,5,7, and

F = F
1 

u F
3 

u F
5 

u F
7 

- C.

It is shown in Lucas [57] that Dom (C) (X-H) u (H — (C u F)). It is

also clear that (H-C) C Dom(X-H). Hence C = X - Dom
2
(C). By Corollary

2.10 it follows that P = C.

Example 2.4. (A game with no vN—N stable set . See Lucas [58 ,59].)

Lucas [581 constructs a ten-person game in which the set of imputations

can be partitioned in to  reg ions as follows :

X = (X-B) u (B - (C u E u F)) u (C u £ U F)

where C is the nonempty core . The domination relations is such that

(1) Dom(C) (X—B) ci (B — (C ci E ci F)),

(2) F n Dom(C u E u F) 0,

(3) E c Dom(X-B).

By ~or’oJ 1/try 2.10 and R e lat i o n  ( 1) , P ° (C ‘ E ii F ) , ~~~~ -~~~~ ~ — a I  (2)

-> F c Dom({X—B } ci {B — (C U C U F)J) -‘> F it P = 0 u s i ~ ’ Prc-: oriti on £ .11

and Relat ion  ( 3 )  ~~ E it P = 0 by Proposition 2.11. Hen-re P =

- -
- - • - - -—-

~~~~~~~~~~~~~ p - —-~~ — -— -  - -  
~~~~~~ —--- .  j
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[x~~j~~~~2.5. (An 8-ocr-c’ ii game with a unique stable set that is non convex.

See Lucas [60].)

Let N (1,... ,8}, v(N) = 4, v(1467) = 2 , v(l2) = v(34) v(56) = v(78)
= 1, v (R) = 0 for all other R C N. For this game it can be shown as

in Examp le 2.3 that P = C.

A game without side payments is a triple (N,v,X) where N = {l ,... ,n}

is a set of n players , v is a “generalized characteristic function”

and X is the set of imputations. A generalized characteristic function v

maps rc-nc;m; ty subsets of N into subsets of n—dimensional space E
t-~, where

the subset v (R) -ms i /,ned to coalition i-I 5cnsi~~t 
- - of all vectors x su- h

that R can guarantee all of its members at least their share in x. We

assume that v satisfies the following axioms for any nonempty R C N.

(1) v(R) is closed , nonempty and convrc~.

(2) If X C v(R) and y. < x. for all i E R then y c v(R).

(3) v(R
1
) it v(R~ ) C v(R

1 
ci R~ ) wheoover R

1 
it P

2 
= 0.

(4) x € v(N) - > x. < . for some y X and f r -  all I c hi .

Examp le 2.6. (A 7-person non side payment game with no vN-11 stable sets .

See Stearns [1011.)

Let N = (1,... ,7} and X be the convex hull of the five imputations

p’ = (1 ,1,2,0,0,0,0) c = (2 ,0,2.0,2,1,1)

p
2 

= (0 ,0,1,1,2,0,0) o = (0,0,0,0,0,00 )

(2,0,0.0,1.1,0) 

~~~
- -

~~~~~~~~~~~~~--.-~~ - -~~ -—- . —-- -- ---~----- ------ - p- 

-

_ _
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Let the “minimal  winning ” coali t ions be

(135) , ( 127) , (347), (567).

Note that a coalition is winning if it contains a minimal winning coali-

tion as a subset. Define v: - 0 -
~ by

{x r E
7
: x . c y. for all I ‘ R and for some v -- X)

when R is winnir-

v (R) =

{x € x .  < y. for all I ~ R and ioo- a ll y r XI

when R is non-w hrmirg .

The core of this game is the single imputation c. The cl-solution is

P = C. This is seen as follows.

Dom(c) X - (L
1 

u L
2 

ci L
3
) where L. = [c,~~

1
]

the closed line segment joining c and p
1 for i = 1,2,3. Let

x L. - c , i.e., x ( X + 1 , 1-),, 2, 0, 2X , 0, A) for some 0 < 1.

Let

y
1 

(2, 0, 2A
1
, 0, A~~÷1 , ~~~~~ X

1) where X < < 1,

y
2 

= (2 A 2
, 0 A

2
+l A

2
~ l, 2, 0, A

2 ) where < A
2 

< 1 and

= (A 3
÷b , 1-A

3
, 2, 0, 2A

3
, ~~~, wh - re < 1.

Tben y~ 1 m (127) y
2 dom (3,47) V

’ dom
(567) 

x.  Therefore  y 3 
~ x .  0~ t

-

~

--- -

~

- --- - ---- .-. -
~~~~~~~~~~~~

.-
~~~

- - - - --

~~~~~

- --

~~~~~ 

-
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x l’ y
3
. Hence by Proposition 2.9 , x / P. Hence P = C {c). (5ee

Figure 2.7.)

c = (2,0,2,0,2,0,1)

3
y

‘
~~~~ 2

-i

L 1
1 (34 Y

x L
2

(1 ,1,2,0,0,0,0) 
p
3 

= (2,5,0,0,l,~~,
0)

p
2 

(0,0,1,1,2,0,0)

l h ~~uro 2.7. A 7-person non side 1 -i ~~r n e i i t  g~ t-,o with nc s~ ib i -~~ ~~~~



CHAPTER III

-uML Tf-IL’ORIL’S OF COALITTQN FORMATION

3.1 Introduction

In this et ,i1-ter , we propose several theorie- - of coalition formation.

In one approach , c o aj i t i o n  structures are modelled as the outcomes of an

iL-~ty - ,ic t i’aO - on w f -h h an r-~ r atrh - it e domination relation is defined ,

In t t l 5 t f l L - i a, I tch , ;~~-,o f  r disbursements ari - f coalition structures are

modelled - i s  ou tcomes .  In both eases , w- - study th e core and the dynamic

soluti - : o~ the ,i~~ - tr  tot c m e . The tw ‘ models are th°-r-i compared. Section

3 . r taj ri; a r- -: - -r- .- s-- n t it i- - -n — f 0- - m- d-~ls b , means of di cr-orbs. The

c-Ire - in - I ~ t -  n t-i sIc ~t i -n - t - fa - al t OaT~ c - imp ~~~
; -  then described

in ,. r a t h i — t . - r --r he ter m -Jt)LL,-- : . ~ :- t h - o 3 , L4 _ 3 , 7 , t h€- solutis-: :; or

I re il ; t i - i c t  gan- ;; d 1 ’~ sb - it - t o: ~s- 0 -r t i c  - i ; :  of g~ ner: with ri de

u: ir~-. van - u - - i ,  f f  s - l - ~t i_ ~ ‘uric ept ; suct  as the individual ly

- - - f Is , the c - t o - , tst Sb-i; l- -y v l u -  - :itid t O -  0- -ir-g ai: ing set

OI naIly i n  Seutior . 3.8 , s- ai.;russ r o r ; s i b c€  s - t i f ~~- stions in the

d e f i n i t i o n  of t i c . !.~ m r i t  h r  t - - - l t t  ii In the case where co a l i t i o n  struc-

turt s i i -  fle -Sr - - n o Se  l i e  2 is - ‘u t u  -s -

3.2 The Models

We shall fir -st istr,d u ; a s n -  no t  it ions ir l i del initions . - t

N (1,..., nI -ic- n - - i -  t I e set of p I-iyer -s . Let F be an n-; arson

coot -ritive gam e (with side I’~ vment~s , w h i h o u t  side - i - ; n ’ :;ts or a game

3 -~
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in p ar t i t i o n  f u n c t i o n  for -mn
T
). Let 2~ 0-: ti- the ~ c-t of all ubsets

(coalitions) of N ana U denote tr~ - ret of all partitions (- a l i t i - n

structures ) of U . Let S : U /  be a JycO 0 solut ion concept , where

U
t-t

2 do n o t -  the set ot -ill subsets  - ‘I the n-d im- ns hc: .11 Euclidean ; g i - -? E~ .

Intuit iv-: -,’ , give: :. 1t ti: - - pfa;er-: in hi align thr—mselves into coali-

tions in the c.s. P . H , we inter~ i-c t S(P ) as the set of all likely

dit bar - 11-nents of ay- f f.~: t -  pl~ yor--: in N. E.g. S may den tc- the

individua lly rational tuvo fis , t he  s r-e , a vN-N stable set , the Shapl°v

val ue , the bargaining set ~~~~~ the kernel , the nucleolus or any cther

payoff solution concept that indicates d~ sbur-sement --‘0 pay -‘If s as

solutions of an n-person cooperative cane . For P ~~~ , 
S ( P )  may be

the empty set 0 (e.g. the core), or- a single point in E~ (e.g. the

Shapley value or the nuclaol r~~
) or a noriem ;-t-,- subset of E~ (e.g . the

bargaining set or the kernel). If S(P) = 0 ( i n t e r p r e tir i c :  thi r—

f ac t as players i:n.ibie t’ reach an agreement on t O e  U l s O u r n e m e nt  of

payoffs when they art ali; , i al ~r i t ’ ;  c oa l i t i ons  b n  P). then w will

assume for simplicity of exposition tha t P is rot vhab le. Let i(S )

li en - -t a  t h e  set of all viable coaiit i~ n structureS with resp~ :t to the

~~yüi f solution concept (n.s.c.) S, i.e .,

(3.1) fl(S) = (P Ti : S ( P )  � ~~~~~~

hc f iri j t I 3. . \ solut i- ;; (-ar t i,- l i r - it i si with ra- :; - ’ -t I .n .  . S

- i  o,i~~~ r’ ( x . P )  s uch , that x - 3 ( P )  and P ~ IT (S) .

1~i\I1 . t a - : . fi t - l - f i ~~’’t 0 ‘olS t - - x t  1 ; ,  in t l r  a h b e - n d ;~~ :.

~

--- - --‘ ~~~~~ -~~~~~~~~~~ - -~~~~~~~~- - -  ~~~~~~~~~~ -- -~~~~~~~~~~~~~~~ -- -~~~~~~~~~~--
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A solution configuration w.r.t. p.s.c. S represents a possible

outcome m f  the n-person cooperative game where S represents any

appropriate payoff solution concept . Let SC(S) denote the set of all

solution configurations w.r.t. p.s .c. S , i.e .

(3.2) SC(S) = ci [S(P) x {P}]
P0fl(S)

We now define a binary relation , dominat ion , on the set SC(S) as follows :

Definition 3.2. Let (x,P1
) and (v ,P2

) belong to SC(S). Then (x,P1
)

dominates (y,P
2
), denoted by (x,P

1
) corn (y,P

2
) iff

(3.3) 3 a nonempty R ~ P1 
such that x. > y .  for all i c R.

Intuitively , if (x,P1
) dam (y, P2

), then the players in some coalition R

in c.s. P
1 

prefer P
1 

to P
2
. We require the players in subset R to

be together in a coalition in c.s. P
1 

so that there is no conflict of

interest between these piayer ’s preference for P1 and their allegiance

te the other pia -- rmt in their coalition .

The dominance relation as defined above may be neither irreflexive

nor transitive . We now have art abstract game (SC(S),dom ) where SC(S) -:

is the ct of outcomes and corn is a binary relat ion on SC(S). For

this abstract game , we look at th a  cure and the dynami c solution as

defined in Chapter 2 . 

~~~~~---- -~~~~~ ‘- -~~~~~~~~
-

~~~~~
- - ‘ - 

~~~~~~~~~ 
“- ‘-
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Definition 3.3. Lc.-t F be an n-person cooperative game
1 
and S be a -

p.s.c. The core of solution configurations w.r.t. p.s.c. 5, denoted 
-

by J Q(S)~ i;: the core of the abstract game (SC(S )  ,du’m).

Definit ion 3~~i4~ Let I’ be an n-person cooperative game and S be a —

p.s .c. The dynamic solution ~f ~~~~~~~~~~~~~~~ co n f i g u r a t i o n s  w . r . t .  p .s.c.

5, denoted by J
1
(S), is the dynamic solution or the abstract game

(SC(3),dorn).

F rom Pr-’: : os ition 2.5 , we onlain the fol lowing result . -

Proposition 3.1. J
0
(S) c J

1
(5). 

-

The core of an abstract game is a ver y intuitive and plausib le solu-

t ior i  cc -i c -st . However , fo r  some g-i me c ;  ~ird for certain p.s.c. , J0
(S)

may be an empty set . In r;uc li cases , we can t r-ocee-d to look at J
1
(S) -

as a solut i t  concept. If the p .s.c. S is such that S( P) is a u n i que 
-

point in Ut-1 for i - h P fl(S) with H (S) � 0, then the  set SC(S)

is finite and nonenptv . L--; apr aaling to Theorem 2.7, we conclude the

folfowini - result.

Proposi t ion  3.2. Let I’ be an n-:’erson :-uop -rative game and S be a -

p.s.c. such that n (S) � 0 and assure that S (P) is a r : iq~;e point in

for- each P :i(S). Then I (S) � 0.  -

In a n r > t b i f r  -g - - roa b , we :1- rh - : just t o’ set of a1 L v i , d J e  c- il i t l ’ti -

.t r  ;‘:tures  H(S) as the outcome:: oh — in b;tract pan - . A domina t j o l t

in t h i s  :act ion , h - - n- t a r  - i i i  n— j ar - : -fl Cc-Opel it iv-- game wit i- side pay— 
-

mci-its, without s hh i  id /ments or a - - m i -  it. par t it ion function m a-rn. —

-

~

-

~

- - ---

~ 

- - --~~~~~~~~ ---- --- - _
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relation on H(S) is defined as follows .

Definition 3.5. Let P
1, 

P
2 

€ Ti(S), 0 � R C and S be a p.s.c.

Then P
1 

dominates P
2 

via R w .r . t .  p.s.c. 5 , denoted by

P
1 

dom
R
(S) P

2
, i f f

(3.4) R c P
1 

and

(3.5) for each y I: S(P
2
), 3 an x “ S(P

1
) su ch tha t x . > y. V I e R.

Intuitively , if P
1 

dom
R
(S) P

2
, then the players in subset R prefer

P
1 

to P
2 

because by Condi tion ( 3 .5) , no matter how the olayers disburse

the payoffs corres~~ ndincr to c.s. P
2
, each player in P. will do better

in c.s. P
1
. Condition (3.~~) is irn~-osed for the same reasons Condition

(3.3) is imposed in I’-- f iiui t i n 3.2 .

D - ai t ion 3 . 6 .  Let P
1. 

P
2 

- TI(S) and S be a p . ’- . c .  P
1 

domin at es

P2 
; !- 1. t .  5, denoted by P

1 
dam(S) P

2
, iff

(3.6) 3 a nonempty R .~ such tha t P1 
dom

R
(S) P

2
.

We now have another abstract game (fl(S),dorn(S)) where TI (S) is the

set of outcomes and dom(S) is the bi n -in’, relation on TI(S). Once again

we look at the core and the dynamic solution of this abstract game .

Definition 3.7. Let F be -in n-: :no: - -r~ tive game m d S be a

p.s.c. The con-i of coalition st m-tr: tu r -s w .n .t. p . S .c .  S . den’ tc. i ho;

is t-he ru n- c -- of the abst - t C i rri e (fl (S) , -lnn(S)).

— - -— ~~ - --— - — -—- -—-— - - -— —~~ - -——-- -- — — -  -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Definition 3.8. Lot 1 be an n-person c:: ‘piarativ- :- game and S be a

p.s.c. The dynamic solution of coalition structures w .r . t .  p . s . c .  5 ,

denoted by K
1
(S), is the dynamic solution of the abstract game

( H ( S ) ,do m ( S ) ) .

Once again , by appealing to Proposition 2 .5 , we have :

Proposition 3.3. K0
(S) c K

1
( S ) .

Also , since TI ( S ) is always f i n ite , we have :

Proposition 3~ 14~ K
1
(S) ~ 0.

The following results gives a comparison of the two models.

Theorem 3.5. Let F be an n-person cooperative gone and S Pa a Im .s.c.

Then we have

K
0
(S) {P . Ii; (x,fl J 0

( S) }.

Proof; Let P 1 
L {P c I I :  ( x ,P )  J

0
( S ) } .  Then x t S(P

1
) such that

(x,P1
) is undominated in SC(S) which irn:’ljr-s that P 1 - u n d a m m: r a t - -d

(w.r.t. 5)  in H (S), i.e., P 1 C K 1
( 5) .  ~~

A n o t h e r -  consequence c-f t he — l o t  i r n i t i -  -ns  of K (S ) i l - .l .3
0

( S)  - i  - - id I iw ’ . :

Theorem 3 . 6 .  Let F be an n - I  ar s on  - a o l lr 3 t  ;r’ game and S I - - a p 
.~~~ .

- .

such tha t  V P TI , S ( P )  i s  either -i single taint sot i n  ~~

c ’ : :t ;ff I :01 . Then

~~~- i — - - - ---~~— - - - -
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K 0
(S)  = {P e TI: (x ,P) c J

0
( S) }  and

J 0
(S) = {(S(P),P): P C K

0
( S) } .

If J 0
(S) � 0 , then the solution configurat ion model indicates both

coalition structures and distribution of payoffs among the players as

solutions in J
0
(S) whereas the coalition structure model indicates only

coalition structures as solutions in K
0
(S). Also by Theorem 3.5 , J

0
(S)

indicates fewer (or at most an equal number of )  coalition structures as

solutions compared to i<
0
(S). However , if the p.s.c. S is such that

for each P ii , S(P) is either a single point in E’1 or an empty

set , then the two models are identical (except in form ) ar-d indicate the

same r e s u l t s .

3 .3  R ep r e s e n t a t i o n  by Digrap hs

L i n c e  the  number of coalition structures Is f i n i t e , we can represent

the abstract  pane ( T I ( S ) , d o m ( S ) )  of a game on N by means of a directed

gr- -mph  (or ‘t ic ’ r - a : - h ) .  Given a payof f  solution concept S , let D = D(S~

be a d i - . rap h whose ver tex set V ( D )  H ( S )  and whose arc set A ( D ~ is

g iven b y

(3 . 7 )  A ( D )  = { (P
1,P

2
) -- f l ( S ) x  T I ( S ) :  P

1 
don (S)  P

2
}.

We call such a di grap h D t h e  domination digraph of the abstrac t game

(fl(S),dorn(S)).

Example 3.1. Let I’ be a 3—person game on {l ,2,3}. Let S be a p . s . c .

def i n ed as fo l lows :
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Let 0 < a < b < c = d be real numbers such that c > a+b and

(0 ,0,0) if P = l{i}, {2}, {3}}

(O ,a,O) if P l{l ,2}, {3}}

S(P) =
(O ,O ,b) if P = {{l ,3} , { 2 } }

1(0, x2
, c—x

2
): a < x

2 
< c—b ) if P = {{l}, {2,3 } }  or {{l , 2 , 3}}

To condense notation , we shall drop the braces around coalitions in coali-

tion structures and , for example, denote 1(1), {2 ,~
}} by ( 1) ( 2 3 ) .

Note that

(l)(23) dom(S) (1)12)13) ,

(i)(23) dam(S) ( 1 2 ) ( 3 ) ,

(l)(2 3) don(S) (13)(2).

The domination graph of the game F is shown in Pious- - 3.1.

(l)(2)(3)

( 12 ) ( 3 ) 
• (123)

(1 u )( 2) (1 )(.‘ 
~~)

l i;nir ’ 2.i . . Ihic ‘l~ mir na t i :nn d n C r - -m T F - ) f p-InTl . - 111 U x a m i t -  3 . 1 .

—- --~~~~~~~~~~~ - — --—- - — — -~~-~~~~-— -  --~~~~~~~~~ -— — ~~~~~~~~ —- - --~~ -- --- -- ——— - - -  -
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Lot (P ,P ) ~ -1(b). T h u  we say P is adjacent to P~ and P -,1 2  1 — 2

is adjacent from P
1
. The outdep .ree , od (P), for P c IT(S) is the

number- of c.s.’s adj-is-ent from it and the indegr -ee , id(P), for

P Il(S) i n the number- adjacent to it . Then , in terms of this 
-

t e rminology , the core of the abstract porno (H(S),dom(S)) is given by

(3.8) = {P E V(D): id(P) = 0).

It-n Example 3.1, 1K
0
(S) = {(1)(23) , (123)).

The converse digraph D’ of TI has the same vertex set ~s TI and

the arc (P
1
,P
2
) c A(D ’) <- ---

~~ (P
2 ,P

1
) r A (D). Thus the converse of D

is obtained by reversing the direction of every arc in 0. If D D(S) 
-

-

is the domination digraph of the abstract game (fl(S),dom(Sfl, then we

call its converse D1 = D’(S) the t r ans i t ion  digrap h of the abstract

game (fl(S),dom(S)). The transition digraph of the game in Example 3.1 2.

is shown in Figure 3.2.

( l) (2) ( 3)

( 12) ( 3 )~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,(l23) 

I
Figure 3.2. The tr- -insition di rn-i p h - P t I -  p ine in Example 3. 1

- -—  --- - - --~~~~-—~~~~- - - - - -  - - - - -- -~~~~~~~~~~——  - — -  .~~~~~~~~~~~~ - - - - ~~~~-- - - --
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To define the 01’uas ic solution in terms -jf the transition graph , we

need a few basic definitions from graph theory (cf. Flararv [37]). A

(directed) walk in a digraph is an alternating sequence of v’-rti ces and

arcs P ,e ,P ,. .. ,e ,P in which each arc e . is (P . ,P .). A
0 1 1 n n i i—l i

closed walk has the same first an ih~ last vertex. A oath is a walk in

which al l vertices are distinct; a cycle is a nontrivial closed walk

with all vertices d i st i n c t  (except  the first and the last). If there is

a path from P
1 

to P2, then P
2 

is said to be accessible from P
1
.

A di graph is :trongl”  eonne:ted or strong if any two ve r t i ce s  are mu tua l l y

accessible . A s t rong component of a d i g r - a : - h  is a max ima l  s t r o n g  saLon ash .

Let 
~~~~~~~~~~~~ 

be the strong c -anonts of 0’. ii. -: condensation

D0 ’sf TI iti:: the strong col- : - on i e n t s  of TI as itt: vertice s , wi th

arl ar -c from T. ID T . whenever there is at least one arc in TI Pr- -rn

a vertex of T. to a vertex of T.. (See P ipure  3.3.) It  follows from

the moximali ty  of strong comj:lon ents that the condensation D° of any

proj ii D has T i ’ :  cycles . Let D’ (5) be the transition graph t the

- i b ’ s t r - ~ ct game ( f l ( S ) , i~m n ( S ) )  with st : -en n , components T
1

, 2
2 

T .

TI :  D~’: : 

T

l\y

T 3

F i c i r - - 3. ~~~. A d ig r -n: 1 , iu-: l -~ ::o1 i t i a .

- - -~~~~~~ - - -- -- --~~~~~~~~~~~ --
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Then the dynamic solution of the abstract game is given by

(3.9) K (S) = u {T. : od(T.) 0 in the condensation D’:’:}.
1 1 1

In Example 3.1, K
1
(S) {(1)(23), (123)).

3.4 Solutions with Respect to the Individually Rational Payoffs

Let (N,v) be an n-person cooperative game with side payments as

defined in Sect ion 2 .5 , Chapter II. The individually rational payoffs

corresponding to coalition structure P = (F
1
,... ,P )  € II is the set

1(P) = {x € E
n
: ~ x . = v(P.) for all j = 1,... ,m and

i€P.
3

x . > v(i) for all I € N).
1 —

When P = (N), I ( ( N ) )  is also referred to as the set of imputations.

Since 1(P) is nonempty for all P c II , we have

11(I) = IT.

A game (N ,v) is said to be super-additive if

(3.10) R
1 

n R
2 

= 0, R
1
,R
2 

€ ~~‘> v ( R
1

) + v ( R
2
) < v(R

1 
U R

2
)

and otrjj~l superadditive if strict inequalit; holus in Relation (3.10).

Define the worth ot a coalition stracture ~ in the C:ImTn ~ - ( N ,v)

by



- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~
—

~~~~~~~~--

(3.11 ) w (P) = v(Pj.

Let

z = max w (P)
P- n

and def in e

(3.12) Ii = (P e H: w (P) = z}.

If x € E t-
~ and R c N , let x (R) ~encte ~ :-: . . Then we have the

i- P_ -

Pal Lowing theorem .

Thei r - ann 3 .7 . Let F b -  -s I:—: - - r - : - sr :  c- sot an ~t ive i -  w i th: ~e p 1 7 0 e : i tE .

Then ~~(r) 1 0. In ir ’t i c u i  i n , - - - - i v .  K ( I )  ‘ 3 .

1 1  1 - - - -  -
Proor. Let  P (J- ,P.~ P ) . -u ; ose i P r~~~ : n that

L -

P d a:i (I) P . i.e. 5 p P s u - : t ~ - -t P - - ~~(:)P
1
. 3~ - -. 

writ - R ~R r’ Fl). P i o L  , - I(F ) s- . - ii t n -i: - (
~~ ~ v (P~~)

i P. n P~ �~~~~~ 
‘- r -~m i 1 i 1 , ,...,rn . Si:.c- ~ 1-~ 

( ~) ~ 
-

1 (P )  s. t .  x . -
. ‘ . ~or 11 - p . I.~~. v(p ) 1 -~(p —

~ v ( P~~). Pi—:~ P - f l  o-:fc- L~ aw: . P~ { - t ~~~~f l 1
- {I~~: 1 ~~~n~~ ~~~)}

P.nR�O

u {  P~ 
— P.; F~ n P j~ } . Th~ n w ( P ) > s( P ) , - : 1 ; -  H ~ t ut ! T I i  -

com : letes tbi- ~ proof. El

T i e  :-)~ jsw inlc -x -n:n: le will show tin i t , in . conan- i~~ , v - : 1 : .  5 . L-~-

- ta tons -n it th-:mn i:~ the theorem above .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~-
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Px es le 3 .~~~. L- t I be a 4-person porn-: with

--‘(12) = v(14) v(23) = 1, and v(R) = 0 for all other R c N.

Let P
1 

= (12)(3r), P
2 

= (l4)(23) and P
3 

= (l)(23)(Lr). w(P
1
) = 2,

w(P
2
) = w(P

3
) = 1. But K

0
(I) = {P

1
, P

2
, P 3

].

However , with a slight assumption , we can claim the following,.

Theorem 3.8. Let F be an n-person game with side payments such that

(N) H . Then K (I) = FT
z 0 z

Proof; From Theorem 3.7 we need prove only K
0
(I) C H .  Let P

1 
€

such that P
1 ~ 

H , i.e. w(P
1

) < z. Then (N) dom (I) P
1
. This is seen

as follows . Let x 1(P
1
). Then x ( N )  = w(P

1
) < z . Defin e y so t ha t

v. = x. + ( z  - w ( P  ) ) / n  for  all I ~ N. Then y C I ( ( N } ) and v.  ~ x .
- 1  i 1 1

for all 1 €  N.

Cor ol la ry  3 .9 .  Let F be a superadditive came . Then 1K0
( I )  = f l .

Furthermore , if F is strictly superadditive , then K
0

( T )  = ((N)).

Proor: P sup-:r - iJ Ii tive - > ( N )  € II , and F strictly su~ eri~ di tiv~.

= {(N)}. 
~~

For the solution configurations m old , no general existence result i’

possible as is illustrated by the following example :

Ex-nn: ’le 3 .3. Let T (N ,---) be i 3—person g~m n o  with

-‘(12) -‘(b ) v (23) 2, v (123) 2 . P . 

~~~~~~~ --
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It can eoail y so show :, that for this game J
0

( I )  = 0.

3~ 
r, So l u t ion s  with Pe:.n)ect to the I ore

Let (N ,v) be a cooperitive game with side n a v r r e n t s .  Then the core

of the- come (N,v) corresponding to c.s. P c ii is defined by

(3.13) Co(P) = {x 1(P): x(R) > v(R) for all R ~ 2
N
}

The -:ore c o r - r - s - T - n r I -iing to a particular c.s. nra -I be empty . He nce in general

fl (Co) � II. In fact , for s -me p ines the core corresponding to every c.s.

ma’,’ be ernl ty ,  i.e. , iI ( C o ) = 0.  A characterization of K
0

(Co ) and

T (Co ) is: as follows .

Th- -- -rn J.IP . Let (N ,v) be -i cooperative game with side payments. Then ,

K
0
(Co) = fl(Co) = {P: Co(P) ~ 0).

Al sc

J
0
(Co) = SC(Co ) u {r~~(P) {P}].

F- I l (Co )

I r - a e f : Let P 1. P2 
- TI (Co). ~u~- poae P

1 
Jcn , (Co ) P

2 
t o n some R P1.

f i s t  y ( ( ~~~~~~~). T i n  N x~~ Co(P l ~~.t .  x . > y .  f - n  al l  i

.e . x ( R )  :- -
~ (R). ~~U t  s i n e s  R P

1. 
x (R) = v (R). H- -:: - ° v (P )  ~ v ( P )

- on it n ’ .n - ii ’-t ing t T :” act that y a Co(P). The rr-:s-~ of tb- ~~ c onnd

0 - : - r t j~~’; is similar to t n e  first. ~~

re i n :  ; ~I.1I. Let (N ,’;) bo a cue P:  -i t ivc’ an t - w i t h  s Co i’5 (~~5 S.

S sa a p.s.c. ‘sd t in - n t , Pen- a L L  P - 5(P) c T (P), s.d

-

~

--- --—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~----- _-~~~~~~~~-~~~~~ ~~~~~~ - --
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S(P) n c0(P) ~ 0 whenever co(P ) � 0.  Then K
0

(Co ) C K
0
(S) and

J
0

(Co ) C J0
(S) (as subsets of 11).

In light of Theorem 3.10 we would like to characterize the coalition

structures with nonempty cores. The next two theorems along with a

known characterization of games with nonempty cores corresponding ta

the grand coalition N accomplish this task .

Theorem 3.12. Let (N,v) be a coop erative game with side payments . If

FT ( Co ) � 0 ,  then 1I( Co )  =

Proof: Let P1 
- I I ( C o ) , and suppose P

1 ë H . Then S P2 c IT such

that w(P 2
) > w(P

1
). Let x € Co(P

1
) . Then x ( R) > v (R) for all

R c N which implies that w(P
1
) = x( N) > w(P

2
) and this is a contradiction !

hence li t Co) C fl
z

Let P a 11 ansI -assure’ P IT (Co) c fi . Let x e Co(P ). Then
1 z 2 z 2

x(F )  
~
- v(R) f - a - all R e N. If x (P) > v (P) for some R a P

1
, then

w (P .~) = x (N ) w (P
1
), contradicting the fact that P

1 
a H . Henc e

x (P) = v(P) for all P C P
1 

-
~~~ x e Co(P

1
) ~~> P

1 
€ fl(Co). Therefore

1 1 ( C ) o fl~~. E

Corollary 3.13. Let (N,v)  be a game wi th sid e ~‘avrnento . Then for all

P1, P2 
a fl(Co), Co(P

1
) = Co(P

2
).

(oral b r - ,- 3~ J 4 , Let (N ,v) be a game with side payments. If the n 0 is a

P -- H .;:e ii th - Co (P) = 0, P h - n fl (Co) = 0.

iv an  a ‘ ItTI- :  = (N ,v) h-n f inie a gurr:i- F = (N ,-: ) derived fr -rn F as
Z

f-,l low :;.

- ~~~~~— — 
—--—-~~~- - -~ - - - --— - -- - --
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if R = N

(3.14) v (R) =
z

v(R) for all other R C N

where z = max w(P).
P€ H

When ther-e is more than one game under discussion , we shall denote the

sets Co (P), H (Co) and 
~~ 

by Co(P,F), H(C o,P) ,  and fl (F) ,

respectively.

Theorem 3. 15. Let F (N ,v ) be a game and F be as in Relation

(3.14). Then if Co(P,F) � 0, Co(P,F )  = C o ( ( N ) ,I’ ).

Proof: From the definition of F it is clear that for P � ~~

Co(P,F) = Co(P,F ). From Theorem 3.12 we obtain fl(Co,I’ )  IT (F ).
z z z z

Since (N) € H ( F ) , by Corollary 3.13 , Co(P,F )  Co(( N ),F ) .  Hence

the theorem follows . D

Gamr-s with n n nnc - rn~ t’; cores corresponding to the grand ccc l~ tiorn have

been characterized by Bondareva [19,20] and Shapley [93]. For the sake

of connl--teness we will repeat this chara-:terizationr here.

A balanced set 6 is d ef i n e d  to be a coll-:ctie’n of ::nrhsets R of

N rd tli tb- re ac t -; that there exist positive numbers ‘
~ P. 8

called we-i >; h i t . ,  :-u ch that for each i N we nave

(3.15) 6
R 

=

(P.- 6: i- P.)

A g- rn-- (N ,v i - - i l I a d  sal -nn -e l Fl

~

-- 
~~~~~~~~

----
~~~~

-
~~~~~

- -
~~ -

~~~~~~~~~~~~~~ -- -~~~~~~~~~~~ - - -~~~~~~~~~~~~~ 
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(3.16) 
~ 

6R”~~~ 
< v ( N )

RCB

holds f or every balanced set wit h weirhts The fo l l owing  theorem

was proved by Bondareva [19 ,20] and Shapla y [93].

Theorem 3.16. Let (N,v) be a gao:. Then C-s((N)) � 0 if m d  only

if the game is balanced. -

Corollary 3.17. Lot 1’ = (N ,v) be a game . Tb--n ll(Co,T ) � 0 i f  and

only if t he  game (N ,v )  in balanced .

Proof: (Necessity): H(Co ,F) � 0 > Co((Ni ,(N ,v ) )  ~ 0 (b - . Thion ’r m 3.15)

-> (N ,-~- ) is balanced (P’, Theorem 3.16).
z

(Sufficiency): If I’ = (N ,v is balanced Co((N),F ~ ~‘J (by
z z

Theorem 3.16). If (N) € H (F) then F = F and we are finished .z z
Other-wise ~ P € TI (F )  such that P ~ (N) .  Then , Co(P,F) = Co (P,F )  =z z z
Co(( N) ,F )  ~ 0. fl

Thus we have completely characterized K
0

(Co ) and J
0
(Co) for all

games with side payments.

Example 3.14. (A pam- with no solut ion. See Lucas [58 ,59].)

Let N = (1,2,3,14,5,6,7,8,9,10) and v be given by

v(N) = 5 , v(l3579 ) = 4 ,

v ( l2 )  = v( 34) = v ( 5 6 ) = v ( 7 8) = v ( Y l O ) = 1,

v( 357 9 ) = v ( l 5 79 ) v( 1379 ) 3 ,

v(357) = v (1s7) v (137) = 2 , 
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v (359) = v(L59) = v(139) = 2,

v ( 1’4 7 9)  = v ( 3 6 7 9 )  = v ( 5 2 7 9 )  = 2 , and

v ( R) = 0 for  all other  R c N .

In this game z 5, 11 = ((N), P
1 

( l 2 ) ( 3 4 ) ( 5 6 ) ( 7 8 ) ( 9  10))  and

C o ( ( N ) )  = c0(P
1
) = {x: x(l2) = x(3’4) = x(56) = x(78) = x (BlO) = 1,

and x ( l 3 5 7 9 )  > 4). By Theorem 3.10,

K
0

(Co ) = ((N) ,P1
}, and

J
0
(Co) = Co((N)) x {(N),P

1
} .

3.6 Solutions with Respect to the Shapley Value

Shap ley [89] defined a unique value satisfyin ip thre -- -~xions for a l l

n— ni- n-son cooperativ’- games with side c ym er t s .  It was - i-:s-unei t h 0 n

the grand coalition would form . Later , Aumann and Dreze [8] generalized

the axioms to define the Shapley value for’ all coalition structures. —

A pernnutation a of N is a one-one function f rom N onto

it- slf. For R a 2
N
, write aR = {ai :  i e R } .  If  v is a game on

N , de t i ne  a game a;nv on N by

(3 . 1 7 )  ( - o : v ) ( R )  = v (cnP) for- all R

A L :  .0 , F t v and u ii a f - i n n °s on N , Ic t ine a game v+u on N by

(3.18) (-+u )(P) —--- (R) + ;(P.) lop all  ~ - 2
N~

~

- - -

~

—

~

- - -

~

- -, -.~- - ~ ~~~~ - . —-- -- -~~~~~- ~~~~--~~~~~~~ ---__
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Call a c . s .  P = (P , . . .  ,P )  invariant under a if aP .  = P.  for all
1 m — 3 3 H

j = 1,... ,m .  Player i is nul l  if v ( R  u ( i ) )  = v ( R )  for all R a

Let denote the set of all games with side payments on N. Since

we assume that  for all games with side payments , v ( ø )  = 0 and v(i) = 0

V i € N , is a Eucl~ dean space of dimension - (n + l ) .

F i x  N {1, . . .  ,n }  and P (P
1, . .  . ,P )  € II. The Shap ley value

correspondin& to c.s.  P is a funct ion from to ~~ i.e . a

function that  associates wi th  each game a payoff  vector satisf y ing the

following axioms :

A .1 (Rela t ive  Ef f i c i ency ): n~~ ( v ) ( P . )  = v ( P .)  for all j = 1,... ,nrn .

A . 2  ( Symmetry ): For all permutations a of N under which P is

invariant ,

= nli p ( v ) ( a R ) .

A . 3  ( A d d i t i v i t y) :  ~p (v+u ) fn~~(v )  + ~ p
(u).

A. i4 (Nul l  Player  Axiom ) :  If  i is a null  p layer , then 1~p ( v ) ( i )  = 0.

When P ( N ) ,  the above axioms are equivalent to Shap ley ’s axiom which

specif y a unique value ~(v)  = (~~1
( v ) ,. . . ,&~( v ) )  g iven by

(3.19) ~.(v) = 
~

(N)
~~~~~~~~ 

= y (r-lfl (n-r) ! 
[v(R) - v ( R  - (1))]

RcN

where r = I R I , the cardinality of coalition R. For each P. €

denote by vjR the game on R defined for all T c P. by

~ 

_ _
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(3.20) (vj R)(T) = v ( T ) .

Theorem 3.18. Fix N and P = (P 1, . . .  ,P). Then there is a unique

value I,-~ and it is given for all j  = 1,... ,m and i r P . by

(3.21) (4?pv ) ( i)  (nI (~~~) ( v I P ~~) ) ( i ) .
I

Proof: See Aumann and Dreze [8 , pp.  220-221].

Since ~~P) is nonempty for all P c II , l l (~~) = TI .  Also note from

(3.19) that if v is superadcitive , then ~ ( P ) ( i)  > 0 , hence

~ 1(P). Also , since n~(P) consists of a unique  outcome for all

P II , by Theorem 3.6 the s.s. model and the c.s. model give identical

results. For convenience , all the results in this section are stated only

for the c.s. model.

A partial existence theorem for K
0
(~~) is as fol lows:

Theorem 3.19. Let I be an n-person game in which the only coalitions

wi th positive values are all the (n—l )-person and n-person coalitions.

Then K
0
(~~) � 0.

Proof: Let us denote the game as follows :

v ( i ) 0 for a l l i N ,

v ( N — ( f l)  a . for all i N ,
1

v ( N )  b , and v ( R )  = 0 for a l l  o ther  R c N .

Wh n; thor’- is no ‘Joub t about the game v in - P - c  consider-at i on n  , we sha l l
‘v- not - :- p( v )  by 1(P)  w h i c h  is cons i s ten t  w i t h  t h e  p rev i  ‘us L e n - t i - - n .
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We can assume (by relabell ing of the  players) that

( 3 . 2 2 )  a1 
< a

2 
< . . .  < a .

Let a = 

~ 

a
1 

and H = (P € II: w ( P )  = an
) .  Using (3 .19)  and ( 3 . 2 1 )

we have

( 3 . 2 3 )  c~( ( N ) ) ( i )  = ( ( n — 1) b  + a — n - a .)/(n(n—l)).
1

By ( 3 . 2 2 )  we have

( 3 . 2 4 )  ~ ( ( N ) ) ( l )  > 4 ( ( N ) ) ( 2 )  > . . . >

t. Lso ,

( a ./(n-l) for ~ = 1,... ,n

(3.25) ~((N-i)(i))(j) = ~ 
�

1~.. for j = i

Clearly ,  the only c . s . ’ s we need look at are ( N )  and ( N - i ) ( i )  for

i = 1,... ,n .  All the c .s . ’s not in TI a 
(except ( N ) )  are dominated

by c . s . ’ s in H .  From Expressions ( 3 . 2 3 ) ,  ( 3 . 2 1 4 )  and ( 3 . 2 5 )  i t  f o l low s

that (N) dom@’) (N-n)(n) 1ff

nI~~~N))(n_l) >
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i .e .  1ff

b > ( n ( a  + a )  - a ) / (n - l ) .
n n-i

Also if a a (i.e. ( N  - ( n — i ) ) ( n - i )  e II )  then
n n-i a

n

( N )  dom (~~) (N — ( n- 1 ) ) ( n -i )

1ff

~ ( ( N ) ) ( n )  > ~ ( ( N  - ( n - l ) ) (n - l ) ) (n ) ,

i . e .  i f f

b > (n ( a  + a )  - a ) / (n - l) .
n n-i

Now ,

( N - n ) ( n )  dom(~’) ( N )

1ff

>

i.e. 1ff

b < (n(a + a ) — a ) / ( n — l ) .
n 1

Hence we have

--. - - -
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ft

c ( N )  If b > (n(a + a )  - a)/(n-1)n n-i

K (~~~~)  = 
11a If b < (n ( a  + a )  - a )/ (n - i)

0 1 n n 1

( N )  u II o therwise .
a E

Corollary 3 .20 .  Let F me a 3-person game with side payments . Then

� 0.

In general , this is the strongest existence result we can obtain . I.e.

there is a 4-person game for which K
0
(~~) = 0.  This is shown in Example

3 . 9 .  A

If Co(P )  ~ 0, ~(P) may not belong to C o ( P ) .  Hence Corollary 3.11

is not app licable for the Shapley val5e . The fol lowing example i l lustrates

this  fact .

Example 3.5. Let N = (1,2,3) and v be g iven by v ( l )  = v ( 2 )  = v ( 3 )  = 0 , -
~~~~

v ( l2 )  = 50 , v(13) = 50, v ( 2 3 ) = 56 , and v ( l 2 3)  = 80. Then the Shapley

value is given by :

(24.67, 27.67, 27.67) if P (123)

(0 , 28, 28) if P = (l)(23)

c
~(P) = (25 , 0, 25 ) if P ( 13 ) ( 2 )

(25 , 25 , 0) if P = (l2)(3)

(0 , 0, 0) if P = (l)(2)(3)

Note that Cn ((l23)) = Conv{(20 , 30 , 30), (24 , 26, 30), (24, 30, 26 ) )

bu t  ~((l23)) / Co((l23)). The transition digraph is shown in Figure 3.4,

and hence K
0
(~~

) = K
1
(~~) = (l) ( 23) .  

-- -~~~~~~- ——--~~— -~~~~— - -—-- —-- -~~~~~~~~~~~ - — - - ~~~—~~~~~~~~~-~~~~~~~~~~ - - - -
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( 13 ) (2 )  ( l ) ( 2 3 )

Figure 3. 4. The t rans i t ion  di graph for Example 3 .5 .

The above example illustrates a weakness of the  Sha:’ley value in t ha t

the Shapley value is derived ent irely from the  c har a c t e r is t ic  func t ion

rather  than  the b a rs ai n i n g  positions of the players in the process of

coalition formation . However , the Shapley value ban been extensively

used as an a priori measure of power of player s in “simp~ e ga m es . Hence

the s tud y oi K 0
(~~) and K

1
(~~) is most app rop r iat e  for simple games .

The -:lass of all s imple games forms a subclass  of the  class of .~bl

cooperative game s with side payments . A n i m n ’ L a - game 1-: a g ene in wh i-d~

every co-’ilitinn has value e i ther  or 0.  A c n - n h i t L o n  P. C N in w i n n i n g

if v ( R )  = 1 and losing if v(R) = 0. A sirnob- : g.sac can be rera’esr-nta- --I

h i  a pair (N ,W ) where N is the set of p l - i ’,’ers and W is the set of

winnin g co~~t it - i o n . A s imple game is monot -n~ ’ 1~ f R i W a n d

T D P. -o T - W , and superadditive (or i roner’) ill P - W - N - P /  W .

Superadditivi ty Lnnnr ’lies monotonicity F ri simple games. A wi n ning r -~ L i -

tion R is called minima) p inning if every proper- subset of F is Iosirg .

A inonotonie  s im ~-te  game can be pr ’-sented by t h e  r - a i r  ( N ,~
m ) whe r ~

is thr- set of all minimal  w i n n i n g  co a l i t i o n s . If  Wm 
= {{i}}, ti ’s

pI n - - n -  i s n ~ d to be a d f tt : i t s r .  If n W  � 0, the n play :r ~

.,- -~~~~
— ——- - - - -

~~~~
-

~~~~
.- -
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is said to be a veto pb av e i . If  k j  ~~~ then player  k is sai ’  to be a

dummy. Dummies p lay rio ac t ive  role in the  game and for all prac t ica l

— purposes can be omi tte d  from the set of players . A weighted majority game

is a monoton ic simple game that  can be represented by

(3.26) [q: a
1
,a
2
,... ,a ]

where q > 0 is called the quota, a . > 0 , i = 1,... ,n is the weight

of the 1th player , and R E W <‘s~~~ a. > q .  Expression ( 3 . 2 6 )  is said to

be a wei ghted majority representation of the simple game . Two weighted

majo r i t y  representations are said to be equivalent  if they represent the

same simple game . E . p .  [2;  1,1,1] and [5; 2 ,3 ,4] are equivalent  since

both r ep r e s e n t  the game ( ( 1 , 2 ,3) ,  LLJm {(1 2) , ( 13) ,  ( 2 3 ) ) ) .  Not every

monotonic  s imple game may have a weighted majority representation .

Examp le 3.6. The most common of all simple games is the straight majori ty

~~~~~~~~~~ ~n
’ n odd , in which

= {R C N: R } = (n÷l)/2}

where IR I denotes the cardinality of coalition P .  Tbn Ehanley value

is given by

(1/~ Rj if -= P € (Q
, P a P

~(P)(i)

0 otherwi s°.

It  i s  clear-  tha t

---—- ~~~~
- —- --
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K
1

( n ~ ) = K 0
(~~) = {P ,. Ii :  P contains  a minimal winn ing coalitionj.

Example 3. 7. The pure bargaining game B , is g iv en ~ by W
m 

{ ( N ) } .

The Sh ap b ey  valu° is giv -n by

11/n if P ( N )
nt ( P ) ( i )  =

0 o therwise

clearly , K 1
(~~) = K

0
(~~) ((N)).

Example 3.8.  Let ~ be a proper g~~ne with -a di tator. Then

(i l t I is a dist ~ t -i-
=

0 - t f i e n - - ~~ at - .

Hence K1
( V )  = K

0
(~~) = It. Note ti -::ver -

- p t - i ; - -r w I :  s not a d i ’ : t - a t o r  is

a dummy . So e s s e n t i aL ly  we nave ’ a 1—p er son  g - i rs-L in -.~hich tb. - o n l ~ ~~

is winn ing  by himself .

Exann n~ te 3 . 9 .  C on s i d er  the wa- i ~ht~ i —)r ’it~ 
- ,‘ irs - [3: ~- , l , l .1]. The

m in i m a l  w i n n i n a -~ c- ’a i i~~H n n r -  o”  W = (CL). I I ) . ( i - i ) ,  ( 2 ~ - - ( ~~.

Shapley v-aloe is g iven b y

- - --

~

----

~

--- - - ---

~

-- -~~ - ----- - — -  ~~~- - -  ~~~~~ - --
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(1/ 2 , 1/6 , 1/6 , 1/6) if P = (12314)

( 2 / 3 , 1/6 , 1/6 , 0)  if P = (l23)(4)

(2 / 3 , 1/6 , 0 , 1/6) if P = (l24)(3)

(2 / 3 , 0 , 1/6 , 1/6) if P = (l34)(2)

~(P) = (1/2 , 1/2 , 0 , 0)  if P = ( 12 ) ( 3 L # ) or ( 1 2 ) ( 3 ) ( 4 )

(1/2 , 0 , 1/2 , 0) if P = ( l 3 ) ( 2 4 )  or ( 1 3) ( 2 ) ( 4 )

(1/2 , 0 , 0 , 1/2) if P = ( l 4 ) ( 2 3 )  or ( l 4 ) ( 2 ) ( 3 )

(0 , 1/3 , 1/3 , 1/3) if P = ( l ) ( 2 34 )

(0 , 0 , 0 , 0)  otherwise.

The t rans i t ion  dl graph of the game is shown in Fi gure 3 . 6 .  Since all c .s . ’ s

that contain only losing coalitions are dominated , these are omitted from

this transition digraph. Note that }K
~
(
~~
) 0. However ,

= ((1)(234), (l2)(3)(14), (12)(34), (l314)(2), (l3 ) (2 4)

(13)(2)(4), (124)(3), (l4)(23), (l14)(2)(3), (l23)( 14)}.

A closer loo k it tine Shapley value for different c.s.’s in Example 3.9

reveals the foIl wir,g observat ion. If p layers 1 and 2 who are in a winning

coalition with 3 in the c.s. (123)(4) decide to expel player 3 from th- :

coalition and form the smaller winning coalition (12), one would ex :’-st

both p1~iyers not to decrease their power in the cm~ iler winning ‘—c - n liti~ nn

( 1 2 )  since there  are fewer p l ay e -s to share the same amount  of power.

However , player 1 actually does decrease his power from 2/3 to 1/2.

We shall nail this phenomenon the paradox of smaller coalitions . To under-

stand why this phenomenon a-s Lurs , let us look at Theorem 3.18. It s ta te:-  

~~~~~~~~~~~~~~~~~~~~~ --
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( l 2 ) ( 3 4 )
( 1 2) ( 3 ) ( 1 4 )  ( l 3 4 ) ( 2 )

( 12 4 ) ( 3~

( 1234)
1)( 2 34 )

(13)(24),

( 13 ) ( - 2 ) ( 4 )

( l 2 3 ) ( 4 )  ( 14 ) ( 2 3 )
(14)(2)(3)

Fi gure_ 3.5.  The t rans i t ion  digraph in Example 3 . 9 .

that  give s a c .s .  P = (P
1,. . . ,l ’ )  t in e  h t n a p ley valae of ~: ~ayer  i in

coal i t ion  P~ depends only on the sub game v I P . . I . e .  the Shap ley

value of a p layer in a coalition is oblivious of the presLnce of other

p layers r iot in the  coali t ion  for  barga in ing  nw-poses .  We shal l  regard

th i s  p henomenon as a “flaw~’ in the  proper t i es  of the Sl.a ~ le- .’ v a lue .  To

m i k ’ -  the above discussion more formal , l- ’t F = ( N ,W ) be a s i m i l e

game and a be a payoff value  conpe; t (i.e. for all games and for

each P II , c (P) is a single ;—oint in E t
, where n = the number ~-f

p l aye r s) .  We say F does not ‘ - x h i h i t  the  paradox of sma l l e r  coa l i t i ons

w.r .t. ~~yoff value s a - I n e j t a i f f  the f o l l o w i n g  holds :

Let P1, P
2 - ii such ti - na t  P~ a P

1, 
~k ~~ ~k 1 ~

ir ’ such t h a t  P L 1  C W , a n d 
~kl P

2
. Tie-n

o(P )(i) > o (P ) ( i )  t a- n-  a l l  I - - It -1 I . ,

- ‘~~~~~~~~~~~~~~~~~~~~~ -- - - -~~~~~~~~~~~~ - -~~~~~ - - -- -- --- —- - - -- - - -~~~~~ - - --  ~~~~~~
- ---

~~~~
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Id~’ - following result is a consequence of the above definit ion.

Theorem 3.21. Let F be a proper simp le game that does not exhibit the

paradox of smaller coalitions w .r .t. c t .  Then K
0
(ct ) � 0.

Proof: Let T c W
m 

such that TI ~~. R I  for all R a (Q m~ Let P a II

~~~~
- s u s in  that T € P. Then ~(P)(i) = l/ IT I for all I a T. Suppose

~ P1 
a H such that  P

1 
dom

R
(t) P for some R € P

1
, i.e., n t c (P

1
) ( i )  >

ct (P)(i) for all i a R. Let P.’ be any minimal winning coalition con-

tained in P., i .e. R’ C R and R’ € Wm . Let P
2 

a IT be such that

P.’ € P
2
. Then since I’ does not exhibit the paradox , ct (P

2
)(i) >

for all 1 a R’ . Also

( l / I R ’I  if I e

=

L. 0 o therwise .

Since F is proper , P.’ n T � 0. Hence for all i R ’  n T ,

l / IR ’I ~(P2
)(i) > ~~P1

)(i) > ~(P)(i) = 1/ I T I ,  which is a contradict ion

(since I R ’ I  ~~.. IT!)! ~~

Let

(3.27) t = m m  IR !
R~W Th

and let

(3.28) = (P a H: P contains a winning coalition of size t}.

Then we obtain the following .
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Co n - , LLcr-- .- 3.22. Let  F b -  a :‘m ’o ; er s im ;  Ic ann n a- t h a t  does not exh ib i t  t ine

1 -ar a a o x  of smaller ~:salit ton- . w . r - . t . ctc . Then F ( ~~) D J~~ .

Tb--it in general we cannot  s t rengthen  th e  dbn’ze resul t  is shown by

the foil-swing example.

Example 3.10. Let F be a 4-;eersu:. game res,1-o-”-el atea by [14; 2,2,1,1].

The minimal winning coalitions are ( ( 1 2 ) , ( 134 ) , ( 23 14 ) ) . The S h - a 1 - l - v

value is given by

( 1/ 2 , 1/2 , 0 , 0) if P ( l 2 ) ( 3 4 )  -or ( l 2 ) ( 3 ) ( 4 )

( 1 /2 , 1/2 , 0 , 0)  if P = ( 12 3 ) ( i 4 ) or ( l 2 4 ) ( 3 )

~(P) = (1/3 , 0, 1/3 , 1/3) if P = ( l 3 L ,)~~2 )

(0 , 1/3 , 1/3 , 1/3) if P = (l)(2314)

( 1/3 , 1/3 , 1/Cc , 1/6) If P = (12314)

N t e t : n r c m the game doe- not e x h i b i t  t i n e  ~ir ~ ,d -x of smaller coalit ia-nt- .

A l so  t 2 , - w i  ii = {(l2)(3)(n~ ), (t2)(34Y ~ . i~ w-~va-r

= {( l ~~) ( 3 ) ( . 1 4 ) ,  ( 1 2 ) ( 3 5 ) , ( l E n ) ( 4 ) ,  ( 12 4 ) ( 3 ) } .  Observe t i o t

: , ] - i - ~er - ; 3 -sri-I 4 are d : i n n m n i - ~s i n n  t h e  u b g a n e  on {l . 2,3} and (1 ,2,4)

ron . - - - tively .

An t:i t e- n -em t isp -rob Ti ra ised s~ Th or em 3.21 i s  to characterize

the class of g irr.os t ’. it -Jo n ; - ~ r-xh is it t b -  sir t X  of sma l l e r  coal i t  ions

w .r.t. ‘t . Let —as look ~at  symme~ r i - - , t n n;~.- c .  A n- a n n e ( N ,v )  is nailed

symm etric i f tha v i l i , ~ - -t c co a l i t i - n i -t ’ -: --nar - 5 1 /  - ‘ n ,  thr- : i z c . - ‘ Il i-

coalit P r .  A :;~~mrr - - t r ~ rs r i  ‘ s i c  F i r . le v: isn- - is c t  t h e  l i c O M
nn ,~

— -  a___ ___ . .  
~~~~~~~~ 
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where ~ = ( R  C N :  I R !  > k } .  The following proposition follows

from the symmetry axiom of the Shapley value .

Proposition 3.23. Let F be a symmetric simple game . Then F doe--s

not exhibit the paradox of smaller coalitions w.r.t. 1 . In fact ,

=

Proof: The Shapley value is given by

( 1 /I R I  if I c P € P and R € W

~(P)(I)

0 otherwise .

Hence the  result  follows from Sta tement  ( 3 . 2 1) .  
~~~

Since Example 3.10 does not exhibit the paradox and is not symmetric ,

Proposition 3.23 is not a complete characterization . A list of all proper

simple games with four or fewer players is given in the appendix along with

the Shapley value nt corresponding to all coalition structures ,

and whe ther or not the game exhibi ts the paradox .

Another interesting problem is to determine , if possibl e, a power

index that has all the desirable propert i- ; of the Sh-nple y va lue but that

does not exhibit the paradox of smaller coalitions .

The most criticsil axiom of the Aumann-Drc -ze ner nerili zati on of ti n c-

Shap ley value is A.3.

~~~~~~~~~ p(vfu) l p ( V )  + ct1~ ( u ) .

Thi s axiom is ~~ce~ table if and only if we assume that the c.s. P is fixed
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- -l i i i t r i t  ~~~~~~~~ Inc c ~ ,.i1jt Hr 
~k 

a P cannot  bargain on the basis of the

V i lU a - S  of c ’ - i l i t io n s  n e t  contained in This a s sumpt ion  is not appro-

p i - l a t -  t m -  - o r- nc - dc - I w i n - n - c  tb-- p H y -r - s  are bargaining for a coa l i t i on

: : t rU ~ tur - -’- -m d  no c . s .  is f i x e d .

Aii m her p.e:- - r-alization of the Shapley value (which he defined only for

tha- - n-ir e ; c-L-alition) to the case of all coal i t ion st r u ctures which is

a ;; ’ra- ;-ri,a t -s for rn- -nat -sn ic simple games is as follows .

(I) Tl~~ Sh nj ~~ va lue corresponding to the grand coalit ion is

us-s d as a m a priori measure of ~-jwe:- of the  players . This

is suggested by Shapley and Shubik [94].

(ii) And w i thin any coalition in a c.s., a player c- inn expect to

share in the payoff proportional to his power as defined in

(I). This is suggested by Gamson [34] .

Assumpt ions (i) and (ii) define a unique value for all monotonic simHe

games which we denote by ~~~
‘ . We can define f’ by axioms as follows :

The (generalized) Shap ley value ~~~
‘ is a function from ~

to 11
11
, i .e., a function that associates with each game and a c.s. a

payoff vector satisfy ing the f ollowing axioms :

A’ .I (h’~lative Efficiency ): 
~
‘(P ,v)(P

k
) = 

~~~~~ 
for all P. and

all P a 11.

A ’ .2 (Symmetry ): For all P II , and all pel muta t i~ nnrm ~ of N under

which  P i - invariant ,

= t’ (P,v)(’ii) for al l R c N .

~ 

_______
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A’ .3 (Addi t iv i ty_ ): If v and u are games in GM
, then

ctc ’ ( ( N ) , v + u )  ct ’ ( ( N ) , v )  + c t ’ ( ( N ) , u)

A ’ .4 ( N u l l  Player Axiom ): If i is a null player , th en

ct ’ (P ,v ) ( i )  = 0 for all P a 11.

A ’ .5 (Proportionality ): For all P a 11 ,

~~‘(P ,v ) ( i )  . ~‘((N),v ) ( j )  = ~ ‘(P,v ) ( j )  •

f or a ll i ,j L 

~k 
a P . p

When P = (N), Axioms A ’ .l-A ’ .14 are equivalent to Shapley ’s axioms

whi ch specif y tine uni que value g iven by Expression (3 . 1 9) .  Denote

ct ’ ( ( N ) ,v )  by d1n (v) (n~~(v),.. . ,n~n ( v ) ) .  (Since c t ’ ( ( N ) , v )  =

our notation is consistent.) Next we obtain the following result .

Theorem 3 .2 14 .  Fix N = (1,... ,n } and let GN denote the set of all

monotonic games on N .  Then there Is a unique value satisfying Axioms

A ’ .l-A ’ .5 given by Expression (3.19) and

4 . ( v )_________— . v ( P  )  where P P is such that

~ np .(v) 
k k

icP . . .k - P , .i~f is r t a n u l l  c i - ~yc:r
( 3 . 2~~~) ctc ’ ( P ,v ) ( l )

0 if j  is a nul l  ~- l  mve - r

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof: It can be easily shown that States~ -mnt s (3.19) and ( 3 . 2 9 )  satisf y

Axioms A ’ .l - A ’ .S.  Uniqueness follows from Axi oms A ’ .l and A ’ .S.

Corollary 3.25. Let F be a monotonic simple game . Then F does not

exhibit the paradox of smaller coalitions w .r.t . I’ .

Proof: This follows from Expression ( 3 . 2 9 ) .

In view of Corollary 3 . 2 2 , we mig ht be tempted to assert that

fl~~. However , the following example shows that it is not true .

Example 3.11. Consider the weighted majority game given in Example 3 .9 ,

[3 ; 2 ,1,1,1]. Then 4 ’  is given by

~~~~~ 
1/6 , 1/6 , 1/ 6) if P = ( 1234 )

I ( 3 / 5 , 1/5 , 1/5 , 0) if P = ( l 2 3 ) ( 1 4)
=

1 (3/ ~4 , 1/4 , 0 , 0) if P = ( l 2 ) ( 3 ) ( 4 )  or ( l 2 ) ( 3 4 )

L(0 , 1/3 , 1/3 , 1/3) if P = (1)(234).

For all other c . s . ’ s , n t ’ ( P )  can be determine l by the symmetry of plivers

2 , 3, and 4 .  I t  is d c i i -  tha t  K
0 ( ’~ ’)  = { ( 1) ( 2 3 4 ) } .  Note  that  in t h i s

example  t = 2, horace (1)(2314) I

Let

( 3 . 3 0 )  s = mm ~~ ~~J v ) .

R C W m i R

Wh en t b -  n ,  is no doubt about the ct s n l n e  v und -r  c ons ider -i t  i - -n , w - - s ha l l
d e n - - t n - ‘

~~
‘ (P ,v ) by ctn ’ ( P) w ; i  i -si n is cons -cl ent w i l l  t a l m~~l ish’- el

nota~ r o n .

~

--

~ 

-~~~~-- - --~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _- —~~~~-.- ~~ - ~~~~~~~~~~~~~~ - - -— - — -~~
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and let

( 3 .31) H = {P a I T :  P con tains  a coal i t ion P such tha t  ~ n~n .( v )  = SI .

icR

Then we have the following important fac t.

Theorem 3.26. Let F be a proper simple game. Then K
0
(~~’ )  = I T .

Proof: Denote ct’( (N)) by p (n ~~~,... ,ct ). Let P
1 

€ I T .  Suppose

Fl such that P
2 

dom
R
(ct
~~
) P

1 
for some P a P

2 
such that R a P.

Then ct’ (P
2
)(i) > ct’(P

1
)(i) for all i a R. Let T € P 1 be such that

Tn . .
T a U) and 

~ 
~c . = s. Since F is proper R ii T � 0. Pick ~ a R n T .

icT

Then ~ ‘(P 1
) ( j )  ~~./ s .  Since j € R , ~ ‘(P 2

) (j )  = 
~~~~~~~~~~~~~~ ~~~ . )  >

i E R
i . e . ,  ~~ ~~~~ 

< s , a con - radiction ! Hence K (ct’) ~ 11
1 0 sicR

Let P a 11 and P € 11 be such that P cJ IT . Then

1 s 2 2 s

P
1 

dom~~( c~c ’)  
~~ 

where T € P
1 

such that T a ~ m and 
~ 

= s because
ic T

ctn (P )(i) q ./s for all i a T and t’ (P ) ( i )  < 4c ./s for all i a T .
1 i 2

Hence K
0
(cP’) c T I .

3.7 Solutions with Respect to the Bargaining Set

The bargaining set was first introduced by Aumann and Maschler [9].

They defined several types of bargaining sets. One of these , den oted by

( i )
was shown to be nonempty for every c.s. by Pe leg [81].

Let x
k denote a vec tor in 5

r where r R ( ,  whose elements :mm ~

ind exed by the ploy -ars in R. Let x a 1 (P) and let i cnd j be two

distinct players in coalition . P. An of— ect ia- rn of i against i to

P . . .x 1 (P )  i s  a ve er ’ -c y , where P is a coalition containing player

~

---

~

. _ - - - - _ _-- _ --——---_-- _-- -- _ _ ____ - -- -~~-- _ - -
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but not j ,  whose coordinates Yf 
satisfy y. > x . ,  y~ > xf V i a P.

and ~ 
y~ = v(R). A counter-objection to this objection is a vector

Dz , where D is a coali t ion conta in ing  player j but not i , whose

coordinates z~ satisf y z9 
> xf for each Q -- D, z~ > y~ for each

9. a R n D , and ~ z 9 = v ( D ) .
t - D  -

x a 1(P)  is stable if for each objec t ion  to x , there is a counter-

object ion . The bargaining set corresponding to the c . s .  P a IT , denoted

by M~~~(P )  is the set of all stable individually rationa l payoff

x c 1( P ) ,  i . e . ,

( 3 . 3 2 )  M~~~ (P) = {x a 1( P ) :  x Fs stable} .

Theorem 3 . 2 7 . Let F be an n-person cooperative game wi th  side r ay m e nt s .

Then i41 
) (p )  ~ 0 for each P a H .

Proof. See Davis and Maschler [29]  and Peleg [81].

As a re su lt IT(M
(1)) = H. The bargaining set is a natural payoff solution

concept to study the solutienr and K
0 

for the following reasons :

(i) the bargaining set for each c.s. consists of 1:a- -7offc that

are stable in the sense of obj -ct i a -n -u and counter-objc-cti~~ns.

If for a part icular c .s • , a ~ ‘iycd f is riot in 1 h ’ n r - p , i ri

set , some player would have a justitied -1cl1 ’ t  ion (an

objection that has no co n amrt c -~ ’— ob ~ection ) wi Fe la when - - -a r m - i c ]

out wa-uI -I result in breakup ‘f the coalition structure .

ii- - r i - s c we are ‘n _ justifi P in us i n c  ifl L a I ’ l e  -J ~~Oi S

d e n  - - s ~~en ; i i n p ,  to a c .s. to domin at ’.’ i n i e t l i ~~n a . s .  A lso~

~iI I t i n -  3 ar g ~a i n i n s , set Fr noracun , ty for e ach c c l  Hie’i . ~ t m - ~ t n c - .

_ _  _ _
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We shall now determine X 0(M~~~) for all 3-person games with side - c

payments.

Consider the 3-person game given by N {l ,2,3},

v ( l )  = v ( 2 )  = v( 3 ) = 0 , v ( l 2 )  a, v( 13 ) = b , v ( 2 3 )  c , 1:
(3.33)

and v( 12 3) = d , where 0 < a < b < c and d > 0.

Theorem 3.28. Let F be a 3-person game as in (3.33) with d > (a+b+c)/2.

( i )  If d a c , then K 0
(M~~~~) = {(l)(23)}

(ii) If d = c , then K0(M ~~~) = {(1)(23), (123)1

( i i i)  If d > c , then K 0
(~~~~~ ) = {(123)}.

Proof: (1) In this case we have (a-i-h)/2 + c /2  a d < c /2  + c/2 , hence

a+b a c.  The bargaining set is given by

(0 , 0 , 0) if P = (1)(2)(3) ,

(0 , a , 0) if P = (12)(3) ,

( 3 .34)  M~~~~( P )  = (0, 0, b) if P = (13)(2) ,

Con v {(O , c—b , b ) , (0 , a , c — a ) }  if P = (l)(23),

(0 , d/ 2  - ( b - a ) / 2 , d/ 2  + (b-a)/2) if P (123)

Cl- - - ir ly ( l ) ( 2 3 )  dom (M~~~~) ( 1 2 ) ( 3 )  an . d ( l ) ( 2 3 )  dom(M ~~
’1) ( l 3 ) ( 2 ) .

- \ .  -o s i r - ; e  (0 , c /2  - (b-a)/2, c/2 + (b - a ) / 2 )  a M~~
1) ( ( l ) ( 2 3 ) )  and

- P . (1)(23) d c m ( M ~~~~) ( 1 2 3) .  The t r ans i t ion  graph is shown in

- 
-

- . Fbeunce C ,i~~-c ( i )  follows .
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(ii) In this case , the bargaining set is as in (3.34) except for

c.s. (123) which is

M~~~~ ((l23)) = M~~~~ ((l)(23)).

Therefore (ii) follows . (See Figure 3.7.)

(iii) Case 1) c > a+b

Here the bargaining set is as in (3.34) except for c.s. (123)

which is given by 
- 

-

M~~~ ((l23)) {(x
1
,x
2
,x
3
): x

1 
+ x

2 
> a , x1 

+ x
3 

> h , x2 
+ x

3 
> c , and

x1 + x 2 + x 3 = d } .

For each (0 , x
2
, c-x

2
) a ~~~~~~ l)(23)) where a < x 2 

< c-b , we have

( ( d - c ) / 3 , x 2 + (d - c) / 3 , c-x 2 + ( d - c ) / 3 )  a M
( 1) ( ( l 2 3 ) )  Hence

(123) dom(M~~~~) (1)(23). The transition digraph is shown in Figure 3~~8.

_____ 
2~ c < a+b

In this case the bargaining Set is given by

(0 , 0, 0) if P = (l)(2)(3),

(p
1

, p 2, 0) if P = (l2)(3) ,

(3 .35) M~~~(P) = (p
1
, 0, p

3
) if P = (13)(2),

(0 , ç~2 ’ p
3

) if P = (l)(23) ,

Co( (123 1 ) if P = ( 12 3 ) .
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( 1 ) ( 2 ) ( 3 )

( l 2 ) ( 3  ( 1 2 3 )

( 13 ) ( 2  ( l ) ( 2 3 )

Figure 3.6. The transition digraph in Theorem 3 .28 , ( i ) .

(l)(2)(3)

( 12 ) ( 3 )
• ( 1 23 )

( l 3 ) ( 2 ~~ ~~ ( l ) ( 2 3 )

Figure 3.7. The t rans i t ion  digraph in Theorem 3 . 2 8 , (i i ) .

( l ) ( 2 ) ( 3 )

( l 2 ) ( 3 )  ( 123)

( l 3 ) ( 2 )  ( l ) ( 2 3 )

Fi gure 3 .8 .  The t r an s it ion  ‘l i gr i ; h in  Theorem 3 . 2 8 , ( i i i )  case 1) .

— -- - - -

~

—-
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where p
1 

(a+b- c)/2, p
2 

= (a+c—b)/2 , p
3 

= (h-t-c-~c)/2 , and

Co( ( l23))  = {(x 1, x2 , x 3 ) :  x1 1- x
2 

> a , x 1 + x 3 
> b , x 2 + x 3 > c ,

and x
1 

+ x 2 + x
3 

= d}.

Let p = (p
1 

+ p
2 

+ p
3
), then clearly ,

(p
1 

+ ( d -p ) / 3 , p 2 + (d-p)/3 , p
3 

÷ (d-p)/3) a M~~~ ( ( l2 3 ) )

Hence c.s. (123) dominates (w.r.t. M~~~) every other c.s. This

case completes the proof of the theorem .

Theorem 3.29. Let F be a 3-person game as in (3.33) with d = (a+h+c)/2.

( I )  If c < a+b then K
0
(M~~~~) = {(l2)(3), 

( l 3 ) ( 2 ) , ( l ) ( 2 3 ) , (123)1 .

( i i )  I f  c > otb then K
0
(M~~~~) = {(l)(23)}.

Proof: (i) In ‘iH - case , the bargaining set is as in (3.35) with

M~
’
~~( ( l 2 3 ) )  = (p

1
, p

~~
, p

3
). The result clearly follows .

( i i )  In t l .ig e a s e r , the bargaining set is as in (3.34). Since

1 a c , t i e result follows . ~~

Tl ee ’~~~ n 3.30. Pet F be a 3—person game as in ( 3 . 3 3 ) ,  w l h  a - (~i i l ’ + ,  ) /
~~~~.

(i) If c < a+b thrra K
0
(M~
’
~~) = ((12)(3), (l3)(2), (l)(23)} .

(ii)  If c -~~ + ;- then K
0
(M~~~~) = {(l)(23)}.

Pr-- ~~t : (i) In this case , the bargai; ne set is as in (3.35) excer-t ~ ‘r

(123) for- whi ch it is given by
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+ (d—p)/3 , l’2 
+ (~~~p )/3 , ~~3 + ( d — p ) / 3 )

if 2c-a-b < d

( 3 . 36 )  M~~~~( ( l 2 3 ) )  = (0 , d/ 2  - (b-a)/2 , d / 2  + ( b - a ) / 2 )

if b-a < d a 2c-a-b

(0 , 0 , d)  if d < b-a.

In all cases , the transition graph is presented in Figure 3.9. Therefore

(I) follows .

(ii) In this case the bargaining set is as in (3.34) except for

c.s. (123) for which the bargaining set is as in (3.36). The transi-

tion graph is shown in Figure 3.10. Hence the result follows. J~

( l ) (2 ) ( 3)

( l 2 ) ( 3 ) ( 123)

(13)(2) (1)(23)

F igure_ 3 , 1 . The I n  a r s i t i o n  graph  in Theorem 3.30 , ( 1) .

—

~

---- --- ---—----- .-- - ----- -_-~~~~~~~ — - - - - —--~~~~ —- — -~~~~~~--- - - — - --~~~~- -_ - - _-~~~—--~~
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(1 )  (2)( 3)

(i2) (3)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (l23)

Figure 3~ 1U . The t s a r  i ti - - n i graph in Theor em 3.30, (ii).

Since Theorems 3 . 2 8 , 3 . 2 0  and 3.30 cover all  oases,  we have proved

the i~~1I’~wiflg .

Theorem 3.31. Let F be a 3-p erson game as in ( 3 . 3 3) .  Then

� 0.

For every P . fl , if x 1 (P) belongs to Co(P), t h o m  no player can

have an objection against another player . Thus if Co (P) � 0,

Co(P) c M~~
)
(P). Henc~ the p .s . c .  sat i s f i e s  the  h yp o th a - s i s  of

Corollary 3.11 . So we obtain the t a - I  l o w i n g .

Lemma 3 . .  Let F s-c an n—person  game . If Il(Co) � 0 t s e n

K
0
(M~~~~) � 0. In fa c t ~~ (~~( i ) ) ~ fl~~

Pr~s cf : ib is is .1 conse~ uomn c~- of -P -n - o l l a ry  3. 11 and Theor em 3.12.

bc e g - - n n e r - a l  e x ist e n c e  t h i - -o r em f o r  K 0
(~i~~~~) is known at t h i s  t i m e .

r lx -im 1-- ie 3.12 F i  I U S I  ~ - i t ’ 5  r a t s -  - f’rgv I cr (~ {
(i ~ which ~s 

je ~~- to  

-
_ _

- - - -  --- ---———-—--- - - -_ - - — ---------- —- --- - -
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a “f law ” in the properties of the bargaining set.  
a

Example 3.12. Let F be a 5-person game with

v(12)  = 10 , v ( 3 5 )  = 85 , v ( 13 14)  = 148 , v ( 2 3 4 5 )  = 160 , and

v (R) = 0 for all other R c N.

A simple computation reveals that the bargain ing set is given by

(0, 10, 0, 0, 0) if P = (l2)(3)(4)(5), (12)(3)(45),

( 1 2) ( 34 5 )  or ( 12 ) ( 3 4 ) ( 5 ) ,

(0, 0 , 85 , 0 , 0) if P = (l)(2)(35)( 4), (14)(35)(2) ,

( l2 4 ) ( 3 5 )  or ( 1) ( 2 4 ) ( 3 5 ) ,

M~~~(P) 
-

(0, 0 , 148 , 0 , 0) if P (l34)(2)(5) or (l314)(25),

(0 , 10 < x 2 
< 12, l60-x2, 0, 0) ’ if P = (l)(2345) ,

(0 , 10 , 85 , 0 , 0) if P = (l2)(35)( 4),

(0, 0 , 0 , 0 , 0)  for all other P a 11 .

Note that in every c.s. that contains a coa l i t i on  which has a pos i t ive

value , at least one player in the coalition gets zero i iyoff in the

bargaining set. As a result , due to Condition 3.5 in the definition of

domination, no c.s. dominates another c.s. Hence K
0

(M~~~~~~~~~)

The above example exhibits a flaw in the properties -f the bargaining

set. E.g., in the c.s. (l2)(35)(4) p layer S gets zuro payoff in the

t
Denotes the set ((0, x

2
, l60—x

2
, 0, 0) : 10 < x 2 < 1 2) .  

~~ --—~~ - — — - -_ --- .~~~~~~~~ rn~~~~~ - - - —~~~~~-~~~~~- _ _
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bargaining set. This is because player 5 has no ‘bargaining power ’ at

all vis-~ -vis player 3. Since there are no coalitions with a positive

value that contains player 5 but not player 3, player 5 cannot even

objec t! However the payoff in the bargaining is counter-intuitive

because we could argue : Why should player 5 enter into a coalition with

play- -r 3 if his share of the result ing coali t ional  value is the same as

what the player could have obtained h~d he been in a coal i t ion by himself?

In this respect, we could say that the bargaining set is derived entirely

from the b a r g a i n i n g  p o s i t i on a s  of the p layers in the process of coal i t ion

formation in contrast with the Shapley value which is derived entirely

from the charac te r i s t i c  func t ion  of the game . These two p .s . c . ’ s ref lec t

two extreme view points in looking at solutions of cooperative games in

characteristic function form . A major research problem is to define a

p .s.c. that exhibits both the strateg ic value and the bargaining power of

the players .

One method of attacking this problem in the case a-f the bargaining

set i— to regard the bargaining set as an idealization (of the bargaining

process) and relax the definition of an objection by a , wher e a is a

small positive real number . More formally, let x a 1(P) and I and

j be two distinct players in a coalition P, P. An c - o b j e c t i o n  i-f

i ag - a in r t j  is a vector y
R

, where  R i n  a soi]iti n , ~‘- re t ain i ing p l c , - r

i but not j ,  whose coordinates y
9. 

satisfy y . > x . + a , y > x~

for ~a1 1 2. R , an-I ~ y 9. = v (R). A counter-objection to this

a — o b j e c t i o n  is d e f i n e d  as b e t s - n - c . We say x - 1(P) is a—stable it for

- - i o t a  a — o b j - - - ct  ion in x , th e - re is a - - r e n n r i t e r ’ — ob j o c t  r o n .  The c—ba rgaini ng

S o t , el e ni ’tod by ~~~~~~~~~~~ , aerresponding to c.s. P 11 is the set of all

a—stable :< a 1 (P), i .~~. ,

--~~~~~~~~~~
-_ ----- ~~~~~~~~~~~~~~~~~~~~~~~ - _

~~~~~~- - -~~~
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(3.37) M~~~ (P) = lx € 1(P) :  x is c - s tab le) .

W e could regard a as a ‘sacrifice ’ each player- is willing to make (if

necessary ) for coalitional stability .

Note that  the results in Theorems 3 .2 8 , 3 .29 , 3.30 and 3.31 as well

as Lemma 3.32 remain unchanged if we replace M~
1) by

Example 3.13. Consider the game in Example 3.12. The a-bargaining set

is g iven by

(0 < a , lO-x 1, 
0, 0, 0) if P = (l2)(3)( 4)(5),

( 12 ) ( 3 ) ( 4 5 ) ,  ( l2 ) ( 34 5 )  or ( l 2 ) ( 3 4 ) ( 5 ) ,

(0 , 0 , 85—x
5 , 0 , 0 < x 5 < a )  if P ( 1 ) ( 2 ) ( 3 5 ) ( a 4 ) ,

( 1 4) ( 2 ) ( 3 5 ) ,  ( l 2 4 ) ( 3 5 )  or ( l ) ( 2 4 ) ( 3 5 ) ,

(0 < x 1 ~- a , lO—x
1
, 85—x

5
, 0, 0 < x

5 
< a) if P = (l2)(35)( 4),

M i (P )  = 
—

(0 < x 1 < a , 0 , 1148-x
1

-x 4 , 0 < x4 < a , 0) i f  P (l 34 ) ( 2 5 )  or

(134)(2) (f’),

(0 , 10—a < x 2 < 12i- c , 160-x 2
—x 4 —x

5
, 0 < x4 < a , 0 < x

5 
< a )

if P = (l)(2345),

(0 , 0 , 0 , 0 , 0)  for  all other P a H.

It is clear tha t  K (M~~~) ((l2)(35)(4), (l34)(2)(5), (l 34 )(  25) ,
0 l , L

( l ) ( 2 34 5 )}  which is nor-c intuitive than K
0
(M~~~~) = H.

Examp le__3 . l a . (The ‘t i c - m i d  i i  C em~ a r ay Game . See An al - - n son and Tn ’ayni nm - [2 ] .

Two chemical  ‘ a-rn I r a  i er ;  
~ l 

and C
2 

s u n p ~’l y two fab r  icat  i m p  rronn !; .j ra i~ 
-

-I -- ~~~~~~~~~~~~ - - -~~~ ---
_ _  _
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F1 
and F2

. The permissible coali t ion s tructures are :

P1 
= (c

1
)(c

2
)(F

1
)(F

2
), P

2 
= (C

1
F
1

) ( C
2

)(F
2
),

P3 = (C
1
F
2

)(C
2

)(F
1
), P 4 =

P 5 = (c
1
)(c2F1

)(F
1
), P

5 
(c
1
F
1
)(C

2
F
2
),

P7 = (C
1
F
2
)(C

2
F
1
).

The respective payoffs (profits) to these coalitions in the particular

coalition structur es are :

25, 15, 75 , 100. P 2 : 300 , 25 , 110.

500 , 30 , 85 . P
4 : 28 , 200 , 105.

30 , 142 5 , 90. P
5 : 400, 600 .

P 7 : 700 , 300.

This “par tition funct ion” induces the characteristic function :

v ( C 1
) = 25, v ( C

2
) = 15, v ( F~ ) 75 , v (F~ ) 100, v(°1,F1

) 300,

v (C
1
,F
2
) = 500 , v ( C

2 ,F
1

) = 200, v ( C
2 ,F

2
) = 1425.

The bargaining set is given by

(2 5 , 15 , 75 , 100) if P = P
1

(115 < x < 225 , 15 , 300—x 1, 100) if P = P
M 1

1 ( P )  = 
1 2

- (90 < x1 < 225 , 15 , 75 , 5 00—x . )  i f P = P 3
( 2 5 , 15 < x 2 125 , 200- x 2

, 100 ) i t  P P1
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(25 , 15 < x 2 
< 125 , 75 , 425—x 2

) if P = P
5

(x 1 , x 2 , 30 0—x 1, 4 2 5 — x
2

) if P = P 6

M~ ’~~(P )  = where x1, x 2 are as in Fi gure 3.11

(y
1, y 2 , 200—y 2

, S OO — y
1

) if P = P
7

where y
1
, y

2 
are as in Figure 3.12 .

/1 
- 

l25

90 115 225 X
1 90 115 200 22 5

Figure 3.11 . The bargaining F ig u r e  3. 12 . The barga in ing

set M~’~(P5) for the chemical set M~
’
~ (P7

) for the chemical

company game . company game .

The t r a n s i t i o n  digraph is shown in Figure 3 .l~~. Hence

K
0
(M~~~) = { ( C

1
F

1
) ( C

2 F 2
) ,  ( C1F2

) ( C
2

F
1

) } .  

--- —“--— --~~~~~~~~- --~~~~~~~~~~~~~ --- - -_~~- - - --- --- ---
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P1

P2 
P

7

P
6

P3

P4 P
5

Figure 3.13. The transition digraph of the chemical company game .

3.8 Some Modif ica t ions  of the Coalition Structure Model

In this sec tion, we look at some modifications of the dominat ion

relation in the abstract game (H(S),dorn(S)). We define two other

domination relations one of which is stronger than dom (S) and the

other weaker than dom (S).

Definition 3.9. Let P
1
, P2 

€ 1ICS) and S be a p.s.c. Then P
1

weakly dominates P 2,  denoted by P
1 
w-dom (S) P 2 , i f f

(3.38) for each y a S(P
2
), ~ a n - ncr-rn; ty R a P

1 
and x a S(P1

)

such tha t  x .  > y. for a l l  1 e R .
1 1

- ~~~~~~~~~~~~~~~~ -
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Def in i t i on  3.10. Let P1, P
2 

a I l ( S )  and S be a p .s .c .  Then P
1

strongly dominates P
2
, denoted by P

1 
s-dom(S) P2, iff ~ a nonempty

R a P
1 

and x a S(P
1

) such that for all y a S(P
2
), x. > y .  for all

i a R .

The following relations are direct consequences of Definitions 3.6 ,

3.9 and 3.10 .

(3 . 3 9 )  If P
1 

s-dom(S) P
2
, then P

1 
don(S) P

2
.

( 3 . 4 0 )  If P
1 
don(S) P

2
, then P

1 
w-dom(S) P

2
.

Let K (S) and K (S)  denote the cores of the abstract games
0 ,w 0 ,s

(H(S),w-dom(S)) and (fl(S),s-dom (S)) respectively . As a consequence of

Relations (3.39) and (3.40), we have

(3.41) K (S)  ~ K (S) ~ K (S).
0,s 0 0,w

Also , if S is a p . s . c .  such tha t  for each P a H , S( P )  is

either a single point set in E’~ or an empty set , then

K ( S )= K ( S ) =K  (S).
0 ,s 0 0 ,w

_ _  _ _ _  _ _ _
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CHAPTER IV

A COMPARISON WITH CAPLOW’S AND GAMSON’S THEORIES OF COALITION FORMATION

4.1 Introduction

In th i s  chapter , we reformulate Caplow ’ s and Gamson ’ s theories of

coalition formation in a more general and mathematical  setting and

compare th€~ predictions of these approaches with our- models . Caplow ’s

theory is res t r ic ted to triads , i. e . ,  a three person weighted major i ty

game with a simple major i ty  quota.  Gamson ’ s theory is app licable to all

proper wei ghted maj ority games without dictators or veto players.

Before we make this comparison , we note that our theory is normative ,

wh ereas both Caplow ’s and Gamson ’s theories are descriptive . Liace game

theory, our theory is based on the assumption of “strict rationality ” .

Luce and R a i f f a  w r i t e :

.. it is crucial  tha t  social scient is ts  recognize
that game t a m e r o r y  is not descr ip t ive  but rather
(conditionally) normative. It states neither how people
do behave nor how they should behave in an absolute
sense , but how they should behave if they wish to
achieve cer ta in  ends . ” [65]

However , as noted by Gamson [~~14 , p .  380],

“ ...a normative t h e or y  ~ t t c - n  ‘r -ovides a useful start ing
point for a des criptive theory .”

4.2 Ca
~~~~~~

WH Tba-
~~~~
L0t Coalitions in the Tm - ia - P

Much of the rec en t  research on coa li t  i - or I or mat  ion in  ~~~~~~ - l o g y  and

psychology was generated by a 
~~~~~~ - by C a - p C  -w [ 2 2] .  C- a d  - w  p m ’ ;  ‘‘ - ;c-
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the formation of coalitions

“depends upon the initial distribution of power , and,
other things being equal , may be predicted under certain
assumptions when the initial distribution of power is
known .” 1122]

Caplow ’s four assumptions are :

A ..L Members of a triad may differ in strength . A stronger momber can

control a weaker member and will seek to do so.

P.2 .  Each member of the triad seeks control over the others . Control

over two others is preferred to control over one other. Control

over one other is preferred to control over none.

A.3 . Strength is additive . The strength of a coalition is equal to

the sum of the strengths of its two members.

A .~4. The formation of coalitions takes place in an existing triadic

situation, so that there is a pre-coalition condition in every

triad. Any attempt by a stronger member to coerce a weaker

member into joining a non-advantageous coalition will provoke

the formation of an advantageous coalition to oppose the coercion .

Caplow enumerates six different triadic power structures 4rnd ,

based on his assumptions , makes predictions a’, to which 4j f l t~ o o -

will form in each type of triad . In a subsequent pa~er , Cap low [2 3]

lists two more types of triads that were overlooked in the orig inal

presentation along with his predictions . The predictions are listed

in Table 4.1. Before we compare our theories with Caplow ’s theory , we 

_________
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will restate Caplow ’s theory in a mathematical se ttingt.

Let r be an n-person weighted majority game

(4.1) [q; a
1
,... ,a ]  where q > (a

1 
+. • - + a ) / 2,

and let W denote the set of all winning coalitions in r . Let I

and j be two distinct players. We say that ~~~y~er i controls player

j in coalition structure P 1ff either

(Li.2) a. > a., and i ,j  ~ 
~k E W , 

~k 
€ P, or

(4.3) 1 C 

~k 
~ ~~~ ‘ ~ 

q’ 
~k’ ~k 

E P .

Let ~(P)(i) denote the number of players player i controls in c.s.

P. The ç~plow Power Index, denoted by K , IS defined as follows :

~ ~(P) (j) if ~ f~(P) (j) � 0
j E N

(L 4 . 4 )  K ( P ) (l )  =

0 otherwise

for all I c N and all P € fl .

Intuitively , K(P)(j) denotes the relative power of player i when the

players are aligned as in c.s. P~~.

tTh , author assumes full responsibility for the ensuing fermulation , which ,
though never formall y stated , is implicit in Caplow ’s paper [22].
tI•

Note that , although Caplow stated his theory only for the restricted ca se
of triads , our formulation of Caplow ’s theory ho lds for t~~~~- more ,y~n’r~I 1
case of n-~ erson proper we ighted majority games. 

-4-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We are now in a position to compare Cap low ’s predictions with the

predictions of our theories. Since a unique outcome is associated with

each coalition structure , by Theorem 3.6, the s.c. model and the c.s.

model indicate the same results with respect to the Caplow power index .

Examples 4.1-4.8 deal with the eight different types of triads analyzed

by Caplow. At the end of each example , we quote Caplow ’s analysis of

the triad , partly to justify our definition of the Caplow power index.

Example 4,1. Consider the Type 1 trIad [2; 1,1,1]. Then the Caplow
A B C

power Index , K , is given by

(0 , 0 , 0) if P = (A ) ( B ) ( C )

(1/2, 1/2 , 0) if P (AB)(C)

K(P) = (1/2 , 0, 1/2) if P (AC)(B)

(0 , 1/2 , 1/2) if P = (A)(BC )

- (0, 0, 0) if P = (ABC )

The transition digraph is as in Figure 14 .1. 1K
0
(K) = {(AB)(C), (A C ) ( B) ,

(A)(BC)}. Caplow argues:

“...each member strives to enter a coalition within
which he is equal to hi~ ally and ~trnng”r (ii/ virtur
of the coalition ) than the isolate.” [22]

Example 4.2. Consider the Type 2 triad [5; 3,2,2]. Then the Cdpir w
A B C

powe-- r- index , K , is given by

-~
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(0, 0 , 0) if P = (A)(B)(c)

(2/ 3, 1/3 , 0) if P ( A B ) ( C )

K(P) = (2/3, 0, 1/3) if P (Ac)(B)

(0, 1/2 , 1/2) if P (A)(BC)

(1, 0 , 0) if P = (ABC )

The transition digraph is shown in Figure 4.2. K
0
(K) {(A)(BC)} .

Caplow argues :

“...Consider the position of B. If he forms a coalition
wIth A , he will (by virtue of the coalition) be
stronger than C, but wi thin the coalition he will be
weaker than A. If , c r  the other hand , he forms a
coalition with C , he ~.il1 be equal to C within
the coalition and stronger than A by virtue of the
coalition. The position of C is identical with that
of B.” [22]

Example 4.3. Consider the Type 3 triad [3; 1,2,2]. Then the Caplow
A B C

power index , K , is given by

(0, 0, 0) if P = (A ) (B ) ( C)

(1/3, 2/3 , 0) if P = (AB)(C)

K(P) = ( 1/3 , 0 , 2/3 )  if P = (AC ) ( B)

(0, 1/2 , 1/2) if P = (A)(BC)

(0 , 1/2 , 1/ 2 ) if P = (ABC)

The transition digraph is shown in Figure 4.3. K
0
(K) {JAB)(C), (AC)(B)}.

Caplow argues :

~

— ---—-

~

- - ~~~~ -— - -- - ,-— —- ~~~~~~~~~~ - -~~~~~ ---~~~~~ - ~~~- - - -—-—- - - _ _
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( A ) ( B ) ( C )

( A B ) ( C )  -4 (ABC )

(A C ) ( B )
(A )( BC )

Figure 4.1. The transition dig~~iph f Type 1 triad .

(A ) ( B ) ( C )

( A B ) ( C )  (ABC )

(AC ) (B)  (A )( BC)

Figure 14.2. The transition digrap li of Type 2 triad .

— — - - —  — -——----‘-‘---
~~~
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.A may strengthen his position by form ing a coali tion
with either B or C , and wil l  be welcomed as an a l ly
by either B or C. On the other hand , if B joins C ,
he does not improve his pre-coalition position of equality
with C and superiority to A. His only motive to enter
a coalition with C is to block AC. However , C’s
position is identical with B and he, too , will prefer
A to B as an ally .” [22]

Example 4.4. Consider the Type 14 triad [3; 3,1,1]. Then the Caplow
A B C

power index , K , is g iven by

(1, 0, 0) if P = ( A ) ( B ) ( C )

(2/3, 1/3, 0) if P = ( A B ) ( C )

K (P )  = (2/3, 0, 1/3) if P = (AC)(B)

(1 , 0, 0) if P = (A)(BC)

(1, 0, 0) if P = (AB C )

The transition digraph is shown in Figure ‘4 .4 .  X
0

( K )  = { ( A ) ( B ) ( C ) , ( A ) ( B C ) ,

(ABC)}. Caplow argues :

“...B and C have no motive to enter a coalition with each
other . Once formed , the coal ition would still be weaker
than A and they would still be equal within it. A
on the other hand , has no motive to form a coalition with
B or C, since he is stronger than each of them and is
not threatened by their ceilition . No coalition will
be f ormed , unless B or C can find some extraneous
means of inducing A to ~oin them .” [22]

Examp le ‘4.5. Consider the Type 5 triad [5; 4,3,2]. Then the Caplow
A B C

power index , K , is g iven by

~
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go

(A)(B)(C)

( A B ) ( C )  (ABC )

(AC)(B) (A)(Bc)

11

Figure 4.3. The transition digraph of Type 3 triad.

(A ( B ) ( C )

( A B ) ( C )  I (A B C )

(A)(BC )
(AC ) ( B )

Figure 4.14. The transition di graph of Ty; 14 t i t J .
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(0, 0, 0) if P = (A)(B)(C)

(2 / 3 , 1/3, 0) if P = (A8)(C)

K ( P )  = ( 2 / 3, 0, 1/3) if P = ( A C ) ( B )

( 0 , 2/3 , 1/3) if P = ( A ) ( B C )

(2 / 3, 1/3, 0) if P = (ABC )

The transition digraph is shown in Figure ‘4.5. K
0
(K) = {(AC)(B), (A)(BC)}.

Cap low argues :

“...A seeks to join both B and C and C seeks to
join both A and B but B has no incentive to enter
a coalition with A and has a very strong incentive
to enter a coalition with C. Whether the differential
strength of A and B will make them differentially
attractive to C lies outside the scope of our present
assumptions .” [22]

Example 14.6. Consider the Type 6 triad [4; ‘4 ,2,1]. Then the Caplow
A B C

power index , K , is given by

(1, 0, 0) if P (A)(B)(c)

(2 / 3 , 1/3 , 0) if P (AB)(C)

ic(P) = (2 / 3 , 0, 1/3) if P = (AC)(B)

(1, 0, 0) if P = (A)(BC)

(2 /3 , 1/3, 0) if P = (ABC )

The transition digraph is as in Figure ‘4.6.  I(
0

( K ) = {(A)(B)(C), ( A ) ( B C ) } .

Capl ow argues: 
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(A)(B)(C)

- ( A B ) ( C  (ABC)

( A C ) ( B )  ( A ) ( B C )

Figure ‘4.5. The transi tion digr aph of Typ e 5 triad .

(A)(B)(c)

( A B ) ( C )  (ABC )

( A C ) ( B )  • (A)(BC )

~~~~ire ‘4.b. The transiti d i g r a~~L c i  Type  r rL~~. 

-4---- -~~~~~~~~~~~~~~ 4- —4-- ----~~~~~~~~~~~ - - -  -
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• .A is stronger than B and C combined and has no
motive to form a coalition . As in Type 4, true coalition
is impossible. However , while in ype 14 both of the
weak er members seek to join the stronger member , only C

• can improve his position by f inding some extran eous
means of inducing A to join him .” [223

By claiming that only C can improve his position by joining A ,

Cap low seem to imp ly that B controls C in the c.s. (A)(B)(C).

Such an assumption seems unreasonable to us and we resolve this small

discrepancy by suggesting tha t Caplow has erred in making such a claim .

Note that a similar di screpan cy arises in Caplow ’s analysis of the

Type 3 triad where he claims that B is superior to A in c.s. (A)(B)(C).

Example 14.7. Consider the Type 7 triad [4; 3,2,1]. Then the Caplow
A B C

power index , K , is given by

(0 , 0, 0) if P ( A ) ( B ) ( C )

(2 / 3 , 1/3, 0) if P (AB)(c)

K (P) = (2/3 , 0, 1/3) if P ( A C ) ( B )

(0, 0, 0) if P ( A ) ( B C )

(2 /3 , 1/3 , 0) if P (ABc)

The transition digraph is shown in Figure ‘4 . 7 . Hence , 1K
0
(K) {(AB)(C),

(AC)(8), (ABC)}.

Example 4.8. Consider the Type 8 traid [3; 2 ,i ,1]. Then the Caplow
A B C

power index , e , is given by
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(0, 0, 0) if P = ( A ) ( B ) ( C )

(2/3, 1/3, 0) if P = ( A B ) ( C )

K ( P) = (2/3 , 0, 1/3) if P = (AC)(B)

(0, 0, 0) if P = (A)(BC )

(1 , 0, 0) if P (ABC)

The transition digraph is as in Figure 4.7. Hence , K
0

( K )  = { ( A B ) ( C ) ,

• (AC)(B), (ABC)}. For the Type 7 and 8 triads , Caplow argues :

“...the combined strength of B and C is exactly
equal to A , so that no effective coalition of B
and C is strateg ically possible. In other words ,
although a coalition of B arid C can block the
dominance of A , it is not sufficient to control
the situation , arid , therefore , the probable coalitions
under the standard assumptions are AB or AC.” [23]

( A ) ( B ) ( C )

(AB)(C) • (ABC)

( A C ) ( B )  ( A ) ( B C )

f igure 4.7. The transition digraph of Types 7 and 8 triads. 

----4- •~~~~ - •~~~~~~~~ —- - - -~~~~~ —-~~~ _



This completes our analysis of the eight different triads. The

results are summarized in Table 14.1. A comparison reveals almost

total agreement . All the c.s. ’s predic ted by Cap low are predic ted

by our theory . The only disagreements are in Types ~4, 6, 7, 8, where

our theory predicts more c.s. ’s than that predicted by Caplow. However ,

this can easily be explained. Caplow implicitly assumes that in every

triad , bargaining for coalitions start from the c.s. (A)(B)(C). A

quick look at Fi gures ‘4.1-4.7 will reveal that with this additional

assumption , our theory gives exactly the same predictions as Caplow ’s.

Vinacke and Arkoff [109] conducted experiments to test Caplow ’s

theory . Their results , shown in Table 14 .2, tend to support Caplow ’s

theory in general wi th a few disagreements especia lly in the case of

Type 3 arid Type 5 triads . In the Type 3 triad , Cap low predicts coali tion

structures (AB)(C) and (AC)(B) without any reference to their

relative frequency of occurrence. However Vinacke and Arkoff note that

in the Type 3 triad , c s . (AC)(B) occurs more frequently than c.s.

(AB )( C ) .  In the T ype 5 triad , Caplow pred icts coal i t ion struc tures

(AC)(B) and (A)(BC) with the reservation that

“...whe ther the differential strength of A and B
will make them differentially attractive to C lies
outside the scope of our present assumptions .” [22]

The results of the Vinacke-Arkoff experiments indicate that in the

Type 5 triad , c.s. (A)(BC) occurs more often than c.s. (AC)(B).

Chertkoff [25] makes an additional assumption which leads to the

conclusion that in the Type S triad , c.s. (A)(BC ) occurs twice as

frequently as (AC)(B) and that c.s. (AB)(C) r l ) ”f l  not occur at all. 

-~~~~ - - - - - - - -— •-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
— - — --
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Also , the same as~ um~ t ion when appl ied  to the case of Type 3 triad

leads to the conclusion that  c . s . ’ s ( A B ) ( C )  and ( A C ) ( B )  are equally

l ike ly  and c . s .  ( A ) ( B C )  does not occur at all.

Let us assume that  all t ransi t ions  from each coalition structure

are equally l ikely . Then given an initial probabili ty d is t r ibut ion

on the  set of all viable coalition structures, we can compute the  prob a—

b i l i t y  of formation of each coali t ion structure in K
1

C S).  E . g . ,  in

the Type 5 triad , g iven that players start (with probability 1) from

c .s .  ( A ) ( B ) ( C ) , we observe that (Figure ‘4 . 8)  c . s .  ( A B ) ( C )  forms

with probability 1/3 , c . s .  ( A C ) ( B )  forms wi th  probabil i ty  1/3 and

c.s. (A)(BC) forms with probability 1/3. However , once c.s. (AB)(C)

is formed , c.s. (A)(BC) occurs with probability 1. The net result is

that c .s .  ( A ) ( B C ) occurs wi th  probabil i ty 2/3 and c . s .  ( A C ) ( B )  occurs

wi th  probabili ty 1/3. Coali t ion s t ructure  ( A B ) ( C )  also forms with

probabi l i ty  1/3 but only as an interm ediate c . s . ,  i. e . ,  only temporari ly .

( A ) ( B ) ( C )

1/3

1/3 1/ 3

( A B ) ( C  (A B C )

1 1

( A c ) ( B )  
( A ) ( B C )

Figure 4 .8. The t r a n r  j t  P fl d ig raph  of t P ~ T y p # -  5 t r i ~~ ! w i t h  t h e  p m - e l  1 ) 1 ]  i L .y
of t rans  i t ions  under  t h - a- eum 1 -t j ( f l  Cf equ i : r e h , h l e  t r~~f i - :  ~~~rI~~ 

- - —7-- --—
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A similar analysis of the Type 3 triad (Figure ‘4 .9)  indicates that ,

starting from c.s. (A)(B)(C) (with probability 1), c.s. (AB)(C)

occurs wi th probability 1/2 and c .s. (AC)(B) occurs with probability

1/2. Coalition structure (A)(BC) occurs only as an intermediate

coalition structure with probability 1/3. A summary of the predictions

of our theories under the assumption of equi-probable transitions is

shoF-,n in Table 14.3. Note that these predictions agree quite well with

the Vinacke-Arkoff experimental results.

(A)(B)(c)

1/3

1/3 
1/3

1/2
( A B ) ( C )  (ABC )

/2

/2

4
(AC)(B) 1/2 (A)(BC)

Figure 1 4 9  The transition digraph of the Ty~ i 3 triad with the
probabil i ties of transition under- the assumption of
equi-probable transitions. 
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14 • 3 Gam son ’s Theory of Coalition Formation

Following Cap low , Gamson formula ted a sligh tly m’ re genera l theory

of coali tion forma tion in proper weighted majority games without dicta-

tors or veto players. Before we present Gamson ’s theory , we need a

definition . Let I’ be a weighted majority game . A cheapest winning

coali tion is a winning coalition whos e total weight is a minimum among

all winning coalitions . Gamson ’s main hypo t~ csis is as follows :

“Any participant will expect others to demand from a
coalition a share of the payoff pr-&~~ortion~ l to the
amount of resources which they contribute to a coalition.”

Here , a participa nt refers to a player , and his resources refers to his

weig ht in the weighted major i ty game . Based on his main hypothesis ,

Gamson makes the following predictions about coalition formation .

(i) A player will favor a cheapest winning coalition .

(ii) A coalition of two distinct players {i , j }  will form if

and only if there are reciprocal strategy choices between

the two players . I.e. both player i and player j

prefer coalition {i ,j } .

( i i i )  Th e proc ess of coali tion forma tion is a step by step

process where two p layers merge together i~,re a coalition

at a time .

(iv) Once a two-person coalition forms, th -- ~-i tuation f 4 5 4 4 5

a new one—- the two players in the coalition are replaced

by en’~ play er whose weight e 1u a P ;  t he  sum of the we~ rPts

at th ’ two pLiyere in the coalition . 

~~~~ - - - -~~~~~- , ~~~~~~--—- - - — - - - - - —~~~~~~~~~~ - - - -- --



- - ‘ ‘- ~~~~~~ — - —-- —‘- - - 4- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

4- ’ ’ 4 -

103.

Imp licit in Gamson ’s main hypothesis is a definition of a payoff

value concept. Let 1’ = [q; a
1
,... ,a ]  be a proper weighted majori ty

game without a dictator or a veto player . ~~ien the Gamson power index,

den oted by y ,  is given by

v(P ) if ~ a. ~ 0k 
iEP

k 
1

(4.5) y (P ) ( i )  1ç i P ~ 
~

L 0 if ~ a. O
lLP

k

where e P is such that j 
~k

’ ~ - t  i ll P fl and all i € N. Let

~4.6) mm ~ a .
R1W i R  1

and

(4.7)  11
g 

= (P - 11: P contains a cheapest winning coalition).

Then Theorem 4.1 tells us what our model predicts using Gamson power index

as a p.s.c.

Theorem 14.1. Let r be a proper weighted majority game . Then K
0
(’,-) = fl

g~

Proof: Let P
1 

C 11
g~ 

Suppose P~ 4: II such that P
2 

dom~ (’~) P1 
for

some R ~ P~ wi th R € W. Then y (P
2
)(i) > ‘y- ( P ~ ) ( i )  for all i c R.

Let T P
1 

such that T ~ (U and ~ a. g . Since r is r)rorfer ,
i’T

R n T � 0. Let j 1 R n T. Then y(P
1
)(j) = a./g. Since j

y(P
2

) ( j )  = a./ (  ~ a.) > a ./g; i.e., ~ a. < g and a coritrahicti n
jtR i~ R

(from the definition of g) results. Hence 1K
0

( y )  
~

- - -  , 44-7 ’ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_______________________________
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Let P c 11 and P € fl such that P / ii . Then P dom (‘,-) P
I g 2 2 g I T 2

where T ‘ P1 
such that T (U and a. g, because y(P

1
) ( i )

1 LT

a ./g for all i € T and y(P
2

) ( i )  < a ./g for all i € T. Hence

1K
0

( y ) c 11
g~ 

LII

It can be easily shown that Gamson ’s predictions (i)-(iv) aboit

coalition formation lead to c.s.’s in H . However Gamson assumes that
g

players begin forming coalitions starting from one player coalitions .

So if we choose only those c.s. ’s in II that are accessible from the
g

c.s. consisting of only one player coalitions , our model reaches the same

conclus ions as Gamson ’s predict ions .

L  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _
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CHAPTER V

A RESTRICTED BARGAINING SET

5.1 Introduction

In R. J. Aumann and N . Naschler [9], a theory was developed to

attack the following general question : If the players in a cooperative

n-person game have decided upon a specific coalition structure , how then

will th ey distribute among themselves the values of the various coali-

tions in such a way that some stability requirements will be satisfied

(cf. Davis and Maschler’ [29]). In this chapter , we do not assume that

players have any a priori preference for any particular coalition struc-

ture . Assuming only rational behaviour , we study the outcomes of n-person

cooperative games with side payments in terms of coalition structures and

disbursement of payoffs that satisf y certain stabili ty requirements .

These stability requirements are modelled in the same manner as in the

Aumann-Maschler (A-M) bargaining sets, cen tering upon the idea tha t a

“stable ” payoff configuration should offer some ~-ecurity in the sense

that each “objection” could be met by a “counter ob j ec t ion . ”

In Section 5.2, we discuss some aspectL. of the A-M bargaining set

M(1) which reflect the fact that a given coalition sti-u~ ture is assumed

to be fixed and the bargaining is done under this assumption . In

Section 5.3 , a modification of the A-M bargaining set called the

coalitional bargaining set , M
c~ 

is introduced . Another bargaining

set called the restricted bargaining set, M , is also defined . The

restricted bargaining set is a subset of the coalitional bargaining

set and results when the stability requirements in M are slightly

- 103
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strengthened . Section 5.4 consists of a few examples which illustrate

the basic differences ~,-tw , - n  the bargaining sets M and M~
1)

.

Finally , in Section 5.5 , the  restricted bargaining set for all 3-person

games with side payments is determined . Also a few general results

are presented.

5.2 Some Comments on the Aumann-Maschler Bargaining Set

The definitions of an objection and a counterobjection in the A-N

bargaining set are made with the objective of identify ing stable

payoff  conf igurations given tha t a particular coalit ion structure is

assumed to be fixed . The reasons for this inference are as follows .

(i) In the definition of an objection , (see Chap ter 3, Section 3.7 ) ,

a player is allowed to object only against players in his own coalition.

Hence the  payoff  configurat ion ( ( v ( l ) , .  . . ,v(n)); (l)(2). . .(n)) is

trivially stable because each player is in a coalition by himself and

has nobod y to ob j ect against ! This fea ture of an objec tion mak es sense

only if the coalition structure is assumed to be fixed whence a player

can only object to the distribution of the payoff of his coalition.

(ii) Let (x,P) be a p .c ., be an obj ect ion by play er i

against p layer j in (x ,P), and be a counter-objertion by j

against i. We may have R n D 0 in which case , the  only th ing

that prevents player I from carrying out his objact~ un is the

assumption that player i wishes to stick to coalition structure P

(which would ba destroyed if player i carries out his objection).

Examp le 5.1 illustrates this fact .

- - - - -~~~~~~~~ —-  -- .~~~~~--- - - —- - 4 - -  - - . - - - ,- - - - - - - 4
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Before we pr esen t the examp le , we introduce a definition. Let (N,v )

be a game and P = (P
1
,. . ‘~ ni~ 

be a partition of N. The game (N,v )

is said to be decomposab le wi th partition P if for all R c

m
(5.1) v(R) 

~ 
v(S n P.).

jzl

Example 5.1. Let N = (1,2,3,4,5,6) and v be g iven by v ( i )  0 for

all i € N , v(12) v(13) v(23) = 2, v(45) = v(46) v(56) = 2,

v(l2 3 ) = 3 , v(456) = 3 and v(R) = v ( P - ( 1 2 3 ) )  fv (Rn(~456)) for all other

R c N. Note that the game is decomposable with partition (123)(456).

Consider the p .c. ((l ,l,l,2/3 ,2/3 ,2/3),(l23456)) ~~~~~ An objec t ion

to thia p.c. by play er 4 ( or 5 or 6) again st p lay er 1 (or 2 or 3 ) is

((1,1,1), (456)). A counter objection to this objection by player 1 aga i nst

player 14 is ((l ,1),(12)). Thus players 1, 2 and 3 are able to exploi t

th’~ assump tion tha t p layers 4, 5 and 6 wish to stick to the grand coalition ,

to their own (unfair) advantage . Without this assumption , there is

nothing that player 1 (or 2 or 3) can do to stop player 4 (or 5 or 6) from

carrying out the objection ((1,1,1), (456)).

far the reasons outlined above , the A—N bargaining set M~
1) 

assumes

mon t h a n  j u s t  ra t iona l behavio ur on the f~an1 of th e  p layer-s  and h - I  - t o

be i ; . ler -~- r e t ’- d  a-; t lIows : Given t h at  the  player-s h a v k ’  decided upo ni -~

s pc : i f i c  coa l i t ion  s t r u c t u r e  P , M~
1)(P )  represen ts lik ely (pr obabl e )

d isbursemen ts of payof f s  which are stabl e in the sense tha t any object ion

b .  a p i - I v - - r  again- - t another lav ’-r in his coalition could be met with a

coun . - - .h~~- - t i - - a . We would like to study the ou tcomes of games in

t I - ro s  of di sb ln-: ;ement of p a y o f f s  and 1- i-mot ion of coalitions un ~t i ’  a

~~~— .  -i- --- --------- ------- --- -  
---— -- - - -~~~~~ --~~~~~~~ -~~~~~~-- - - - -- -- --4— —-.--~~~~~~~~~ --
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scheme of obje ctions and counter objec tions assum ing only ra tiona l behaviour

of the players. I.e. we do not assume that players have any a priori

preference for any coalition structure . This will be the subject of

study in the subsequent sections of this chapter .

5.3 The Restricted Bargaining Set

Let I’ (N,v) be an n-person game with side payments .

The superaddi tive cover of a ~~~~ (N ,v) is the game (N,~~
) def in ed

by

p
( 5 .2 )  ~(R) max{ ~ v(R.): (R

1
,... ,R ) is a par tition of R } .

~r1 
p

Note that the superadditive cover of a game is itself superadditive . Also

if v is superaddi tive and ~ is its superaddi tive cover , then V = v.

Even though some n-person game may not be superadditive , a coali tion

can always realize its value in the superadditive cover by suitably

coordina t ing thei r stra tegies , i.e . by forming the par tition tha t

achieves the maximum value in Expression (5.2). For this reason , we

wi ll only deal with superadditive games for the rest of this chapter .

Howewr , nionsuperadditive games can be analyzed as follows . We -~tud y

the restricted bargdining set for t he  superadditive cavc ;- . Thc I 1 1 /  t

regardin g coali tion forma t ion (as determined for the supe raddi t iv e cover )

are then “translated” back to the original nonsuperadditive game usinr,

Expression (5.2). We illustrate by means of an example .

Examp le 5.2. Let N = {l ,2 ,3} and v be given by v ( i )  = ~ f r

a l l  i N , v(l2) v(13) 100, v(23) = 50 and v(123) 0. 

-- —
~~~~~~~~~ --4-—-- -4-- - -~~~~~~~~~~~~~~~ - 4 - — -- — - - — — —  _ _ _



‘~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

107

The game is not superadditive . Its superadditive cover is given by

Z’(123) 100, Zr (R) = v(R) for all other R C N.

Suppose our theory ,  wh en applied to the game (N ,~r), indicates that

c.s. (123) shall form . Since

~(l23) v(12) + v(3) = v(13) +

this corresponds to the statement that c.s. ’s (l2)(3) or (13)(2) will

form in the game (N ,v).

A payoff configuration (p.c.) is a pair (x ,P) such that x € 1(P),

P ~
- H where 1(P) denotes the set of all individually rational payof f s

as defined in Section 3.4, Chapter 3.

Definition 5.1. Let (x ,P) be a p . c .  for a game P where P = (F 1, . . .  ,P ) .

Let R and T be coalitions for which

(5.3) O � R C N ,

and

(5.4) T ( u P .)  — R .
P .oR~ O ~3

A coalitional objection of R against T in (x ,P) is a t i c  y ’ 1 e v -

wh ich

(5.5) I I  x . V i  F , 

----- - ——-~~~~~~~ - —~~~~~~~—- ~~~~~~~ -- - ---- -- -— -- - - -  -—-—
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and

(5.6) ~~ y~ 
= v ( R ) .

i R

Thus , once a coali tion decides to obj ect , it has no choice of pl ayers

against whom it is objecting, i.e. it cannot single out a particular

coalition Igainst whom the objection is directed . The objection is

directed toward s those players whos e coalitions ar e disrupted by the

objecting coalition R. Also we do not distinguish any particular

player in R as making th e objec t ion .

Definition 5.2. Let (x,P) be a p . c . in a game F and let yR be a

coalitional objection of R against T in (x,P) where F and T

sa tisf y (3.1). A coalitional counter objection of T against R is

a vector 
D for which

(5.7) D n T � ~~~,

(5.8) D n R � 0, D � R ,

(5.9) z~ > v .  V I 0 n R ,

(5 .10) z~ > x . v ~ ~ 0

(5.11) ~ z~ = v ( D ) .
i ’D

In their counter objection ~
D
, lii  players in D n T claim that 

~~~~ ‘- - ,‘

- i i i  b!ock R from carrying out thei r  objec t i - i n  by induc i ng ~~~ p layers

in R to join them (5.8), offering these players more than what they

_ _ _ _ _ _ _ _ _ _ _  

~~~~~--~~~~~~~~ 4--
~~~~~~~~~~
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were offered in the objection (5.9), while  at the same time protect ing

their share (5.10). The players in D C T are allowed to use the tactic

of “divide and rule” by t ak ing  some members of R as partners , but

they may not take all the members of R as partners (5 .8).

Definition 5.3. A p.c. (x ,P) in a game r is called M -stable , if

for each coalitional objection of R against T in (x ,P), ther e is

a coalitional counter objection of T against F.
7—

The set M of all M -stabie p.c. ’s in a game F will be called the

coalitional bargaining set of P.

It is possible to strengthen the demand for s Lability in (A and

still gain something from the game .

Definition 5.4. A p .c. (x,P) will be c~~Llei M
r
_ stable i f  for each

coalitional objection of player k F ocain:-t T as in Definition 5.1,

there is a coalitional counter objccti~ n by T again :~ k F as in

D e f i n i t i o n  5 .2 , except that Condition (5.8) is now replaced by

(5.12) D n R � 0, k / P

Intuitively , each coalitional objection is now identified with a particular

player in coalition R. The set of all M
r
_stable p.c .’s will be called

the restricted bargaining set M . Cer tainly  M
r 

C and the following

example will show that this inclusion may indeed be strict.

Exorii f 1’- 5 . 3 .  Let N {l ,2,3 } and v ( i )  0 V N , v ( l 2 )  = 3 ,

-i(23) 5, v(l3) 4 and v(123) 5. An eacy corn u t -~t -in w i f l  r - - v r - t I  t h at .

- - — — - — 4 -— - — - 4 -~~~~~ ~~~~~~~- — - — - —-~~~~~ - - — -—— - -  - - 4--~~~~~~~~ — -~~~~~—- - - —— ~~~~~~~~~~~~ —-- — -~~~~~~~~~~~~~~
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M {((2/3, 5/3 , 8/ 3), (123))) and
r

M ( ( ( 2/ 3 , 5/ 3 , 8/3), (123 ) ) , ((0,2,3), ( l ) ( 2 3 ) ) )

The p .c. ((0,2,3), (l)(23)) is not M
r
_stable because a coalition objec-

tion ( ( e ,3-c) , ( 1 2) )  by p layer 1 against player 3 has no coali tional

counter objection .

5.4 Some Examples

In this section , we presen t some examples which illustrate some basic

differences between the bargaining sets IA and M~
1)

.

Examp le 5.4. Let N = (1,2,3,41 and v be given by v ( i )  0 for

all i N , v( 12 )  = v (l 3 ) v ( 2 3 ) 3, v(34) = 1 and

v(R) = max [v(T) + v(R-T)] for all other R c N. Consider p.c.
TcR

(( 1,1,1,1), (1234)). Either player 1 or 2 or 3 can objec t. Let

((1+E ,2-c)., (12)) be a coalitional objection to the p.c . by player 1

against coalition (34). Player 3 can counter—object by ((2,1), (23)).

Similarly ,  every coali tional objec tion has a coali tional counter

objection . Hence ((1,1,1,1) , ( 12314) )  
~ 
M .  A simple computation reveals

that

IA { (x , (1234)): x c Conv{(l,l,l,l) ,  (4/3 , 4/3, 4/3, 0)}} .

Note that M~~~ ((l234)) = ((14/3 , 4/3 , 14/3, 0)} which  is unreasonable

as player 4 can threaten not to join the grand coalition if he is not

given some share of v(314) and the t - - -  t that p l a c er s  1, 2 and 3 can do 

- - -~~~~~~-- -
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without player 4’s cooperation is only ( ( 1 ,1,1), (123)).

Example 5.5. Consioer the 6-person game given in Example 5.1. A simple

computation reveals that

M = (((2/3 , 2/3, 2/3, 1, 1, 1), (123456)),

( (2 / 3 , 2/3 , 2/3 , 1, 1, 1), (l23)(456))}.

However , note that

M~
’
~~((123456)) = Conv{(2/3, 2/3 , 2/3 , 1, 1, 1) , (1, 1, 1, 2/3, 2/3 , 2/3))

which is not rea sonable because

M~
’
~ ((l23)(45s)) ( ( 2/ 3 , 2/3 , 2/3 , 1, 1, 1))

and the game is decomposable wi th partition (l23)(456).

Examti 1~~~5 .6 .  Consider the game N = (l,2,3} and v given by v(i) = 0

for all i c N , v(12) = v (13) 100, v(23) 50 and v(l23) 0.

Note that the game is not superadditive . If we exalninic the  r e o t r - i c t c ’I

bargaining set of this game for purely theoretical reasons , we observe

that M
r 

0. A reasonable procedure , however , is to consider the

superadditive cover of this game as given in Example 5.2 and the

restricted bargaining set of this superadditive cover is given by

Mr (((200/3 , 50/3 , 50/ 3 ) ,  (l23))}.

-- -—  ----—-~~~~~~ ---—- 4 - —~~~~~~~ ~~~~~~~~~~ - - -~~~~~~~~~~~ - — -- — 4 - - - -  -- - - 
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Tra nslating this result back to the original non superadd itive game (N ,v ) ,

the res tricted bargaining set of the game (N ,v ) consists of ou tcomes

{((200/3 , 50/3, 50/3), (l2)(3)), ((200/3, 50/3 , 50/3), (l3)(2))}.

Note that these outcomes are not payoff confi gura tions wi th respect to the

game (N ,v). Outcome ((200/3 , 50/3 , 50/ 3 ) , ( 12 ) ( 3 ) )  can be in terpre ted

as fo llows : coalition ( 12) gives player 3 a side paymen t of 50/ 3 in

return f or his cooperation in not try ing to disrupt the coalition (12).

5.5 Addit ional  Results

In this section , we present a few genera’ results about the restricted

bargaining set. Recall from Section 3.4, Chapter 3 that

z max w(P)
PC H

and

II = ( P  ~ H : w(P) = z}
z

where w(P) denotes the worth of c.s. P as defined in Expression (3.11).

Then we obtain the following.

Theorem 5.1. Let (N,v) be an n-person su~—eradditive game with side

payments . Then (x,P) C M
r 

implies that P € 11~~’ i.e., the restricted

bargaining set consists of only “Pareto-optimal” outcomes.

Proof :  L - t  (x,P) I A .  hupp~- e P 1 H .  Then ~ x . ~~~. Let:

= ( z  - ~ x .)/n. Then ((x +1. x +A),(N)) is i -  a1;~~ )fl-1l
i - N  

1 1 n

_ _  - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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objection by any player i N against the empty coalition 0. But ,

because of Condition (5.7), there is no coalitional counter objection ,

which is a contradiction . fl

Theorem 5.2. Let F be a 3-person superadditive game with side payments.

The-u IA / 0. In fact

x M~~~ ((N)) -~~(x,(N))€ IA1 r

Proof: Let F be as follows . N = (1,2,3) and v(12) = a , v ( l 3 ) =

v(23) = c and v(123) d where 0 < a < b < c < d.

Cas e 1) c > a+b , d > c.

In this case Co((N)) ~ 0 and the restricted bargaining ct give n by

IA = { (x ,(N)): x Co((Nfl}.

The A-M bargaining set M~ ’~~( ( N ) )  is given by

M~’~ ((N)) Co((N)) .

Case 2) c > a+b , d c.

In this  case , C o ( ( l ) ( ~~3)) = Co((l23)) � 0 ~~~

IA { (x ,P): x - Co((123)), P (1 )(23) or ( i~~3 f l .r

A l e  M~~~ ((12)(~~) )  M~ 
i ) ( ( 1 2 3) )  Co((123)).

- -
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Case 3) c < a+b , d > (a-t-b+c)/2.

Again , C o (( 12 3 ) )  / 0 and

IA = {(x ,(123)) : x € Co((123))}.
r

Also M~~~ ((l23)) 
= Co((l23)).

Case 4) c < a+b , d < (a+b+c)/2.

In this  case , Co( ( 123 ) )  = 0 and

+ (d-p)/3 , p
2 

t (d-p)/3 , p
3 

+ (d-p)/3)}

where  = (a-s-h-c)/2 , p
2 

= (a+c—b)/2 , p
3 

= (b+c-a)/2 and

p p 1 
+ + p

3
. The restricted bargaining set is gi ven by

M
r 

= { (p
1 

+ (d-p)/3 , p
2 

+ (d—p)/3 , p3 + (d—p)/3) , ( l2 3 ) ) } .

S i n t :e we have cove~ - oi all cases , this comp letes the pr oof of the

t h e o r e m .  E

Recall the detinition of SC(S) given in Section 3.2. It is clear

th it IA ~ SC(Co). Hence if fl (Co) � 0 for superadditiv-~ game ,

SC(Ce) ~ 0 and hence IA 1 0. How v~-r , at t h i s  t i m e , the aut ~~~r has
r

no ~‘ener il pro -f of e x i  t C t i c e  nor a c ( -un t -~r- -xam p le . The-  i ithor con~ ccture-

that f -r - ;u
~ erad-l it 

IVy games , IA 1 0 .

- --~~~~~~ 4-*-,---— - - -  4 - 4 - 4~~~ 7-~~~~~~~~~~~~ ~~~~~~~~-



4-- — ———4- 4-—-- — 4-
-

~ 

- - —-—-—---——— -~~~ z- 4-
~~~~~~~~~~~~~~~~~~~~~ T ~~~ _ _ _ ~~~~~ _ -

CHAPT ER VI

SUMMARY AND CONCLUSIONS

6.1 A Summary

In the preceding pages , we have presented several theories of

coali tion formation . One approach was to model the process of coali-

tion formation as an abstract game . We then studied the core and the

dynamic solution of the abstract game . The predictions of the abstract

game models depend on the particular payoff solution concept used .

I.e., the models assume that there is a rul e governing the dis tribution

of the j oint payof f s to each player in each coalition structure . The

predictions of these models were then studied for the case of n-person

cooperative games with side payments using various payoff solution

conce;-ts such as the individually ra tional payoffs , the core , the

d}ia~-tey value and the bargaining set M~~~. Several possible modifi-

c - it ions of the  abstract game models were also discussed.

In another appr oach , coali tion forma tio n was viewed as a barga ining

process where the players are allowed to raise (coalitional) objecti ns

aid (coalitional) counter objections in the same manner as in the

Aumann-Nlaschler bargaining sets. While the A-N bargaininv sets m di- —

cat e  li str ibut i on of ~eint payoffs given a fixed coalition structure ,

the restricted bargaining set indicates l ath  f o r m a t ion  of coal i t ions and

di stributio n of payoffs as outcomes. Some examples were presented

i L iotrat in c some- fundamental diff~o- -ncac- in th ’- bar- or ini nc, t-

- in-I IA . How ~- v y t -  , the in -or - tant ~ ue - t ion o~ t h - - ex i s  f - r n - - - of IA 1 or
- 1’

i i rad-l t i cc games is st ill -~~ e r r .
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6 . 2  Conclusions

There are a number of interesting research problems not covered in

this investigation . The abstract game models were formulated for the

general case of n-person cooperative game with side payments, withou t

side payments or in partition function form . However the predictions

of the models were studied only for the special case of games with side

payments. Even for this special case , the solutions of the models were

characterized only for some of the known payoff solution concepts . Some

of the important payoff solution concepts for which the results of the

abstract game models were not considered in this work are the kernel , the

nucleolus , the Banzhaf value (for  simple games) , the c-core and others

described in Section 1.2, Chapter 1. Other nucleoli , centers and

addi tional value concepts, as well as several variants of the well known

solution concepts mentioned also exist. It should also be interesting

to investigate the predictions of these models when applied to special

classes of games such as market games , quota games , convex games ,

symmetric games , simple gaines , etc .

Regarding the restricted bargaining set , an important task is to

prove its existence (or to find a counterexample) for superadditive games.

If a counterexample is found , the definitions of coalitional objection

and coalitional courter objection may have to be modified to admit existence .

A proof of existence will establish the restricted bargaining set as a

viable solution concept deserving further study in regards to its mathe-

matical ntructure and properties.

m e  more possible approach for studying the question of coalition

formation in the framework of the theory of games that merits research ,

— _ - - --4-- - -- —- -—4--- ---—4--- —4-- - — —4-—- - — —4--- — ——4-
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is to model the process of coalition formation as a noncooperative game

in normal or extensive form , in the spirit of Nash’s suggestion quo ted

in Section 1.2 , Chapter I of this work . Some recent work on

noncooperative games by Harsany i [42 ,43] could prove useful  for this

approach. Also see Lucas and Maceli [A.B].

Game theory as a mathema tical tool is being increasingly employed

by behovioural scientists. In the context of decision making in conflict

situations of the type which can be modeled by n-person game theory , a

behavioural scientist will focus on two important questions : 1) Which

coa l itions are l ikely to form? 2) How will the members of a coalition

apport ion the ir j oint p a y o f f ?  Althoug h n-person game theory has largely

(- ‘-n -en t rat ed  on the second question , the behavioural scientist may well

be primarily intex-ested in the first question . Consequently , behavioural

scientists have developed the i r  own theories  of coalition formation .

(S e e  Section 1.3 , Chap ter . )  The main emp hasis of th i s  work has been

on d ttempting to answer the first question in the framework of the theory

of n—per son cooperative games . In thin respect , it is hoped tha t this

investigation will help to make the theory of games a more attractive tool

for the social scientist. The results ~-resented i n  Chapter  4 reveal

tha t some theories of coalition form~aU n p~-opo sad by behavio ural

s c i e n t i s tr  are not very d i f f e r e n t  from those i red~~~ted by n an- ’ theory

under the same assumptions , although at firs t glance t h e r~ s--e rn n n o  1- - -

ii tt I-- re: embl in -a  - I -  t w e -c r i  t he  two . Since ther e t Peon  es ( r-e~ - c:i-d by

behavioural sc r e - n t l  r- ) are  based on c - m r - i  r i  ca l  - b c - :  V - i t  n - r i - I  havc-

been wi ] - I y tested in exp er iments , the r esultr ;  - -f C l i ~~ tor  4 may gc. a

1 -rig w r y  t w i r l 1 - n i n g  the 1- - ibis  about the  relevance ~f game theory in

• -re - li n t 1: r um - l i  b e h a v i -  - u r .
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The research presented here was motivated by the author ’s investi-

gations of the world oil market . (See Shenoy [97].) In that context ,

an important problem was the question of the stability of the OPEC

cartel.

t0fl and Petroleum Exporting Countries , a coalition of thirteen oil
producing countries .

_ _ _ _   ---7-—- --- -- - - - - -- --~~~~~~~ - - -- - - - - - - - -  - - -
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APPENDIX

A . 1 The Aumann-Dreze Generalization of the Shapley Value for all

S imp le Game s wi th Four or Fewer Player s

The table on the following pages contains all distinc t proper simp le

games of four or fewer players excluding dummies. All w in n ing coali t ions

are listed--the minimal winning coalitions are listed first and separated

from the rest by a semicolon . The weighted voting representation given in

column 4 are the simplest ones. The Shapley value ~ -~~~ a c.— . depends

only on the winning coalition contained in the c.s. The Shapl-w value

of all c.s. ’s con ta in ing  winning coali tions , in the se5uer-rce as in column 3,

is g ive n in column 5 . Th e Shap ley value of a c.s. not containing any

w i n n i n g  Lc-ali t~~O IA is zero f or each play er and there f ore is not g iven i n

column 5 . Colum n 6 contain s all c .s .’s in K
0
(~~

) identi f i ed  by the

w i n n i n g  coa l i t ion  it con ta ins . The last column indi cat es whe ther the  game

e x h i b i t s  the paradox of smaller coalitions or n o t .

A .2 n-Person Games in Partition Function Form

Let N = {l,... ,n} be a set of n players who are represented by

1,... ,n . Let P (F
1
,... ,P )  be an arbitrary partition of N into

coalitions P
1

,. .. ,P .  Then for each partition P, assum e there is an

outcome func tion

F : P

which assigns the real numbered outcome F~ (P . ) to t b -  coalition P.
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when the partition P forms . The function

F : 11 -
~ F~

whi ch assigns to each partition its outcome function is called the

partition function for the game . Finally, the ordered pair

r = (N ,F)

is called an n-person game in partition function form .
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