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The theory of n-person cooperative games presented by von Neumann
and Morgenstern is a mathematical theory of coalition behaviour, A
fundamental problem posed in game theory is to determine what outcomes
are likely to occur if a game is played by "rational players". Given
an n-person cooperative game and assuming rational behaviour, it is
natural to inquire (1) which of the possible coalitions can be expected
to form and (2) what will be the final payoffs to each of the players.
However, most of the research in game theory has been concerned
explicitly with predicting players' payoff and only implicitly (if at
all) with predicting which coalitions shall form. In this investiga-
tion, the primary emphasis is on the first aspect of coalition behaviour,
namely the formation of coalitions.

In one approach, the formation of coalitions is modelled as an
abstract game. There are several solution concepts defined for abstract
games such as the von Neumann-Morgenstern stable sets, the core due to
Gillies and Shapley, and subsolutions due to Roth. A more descriptive
solution concept reflecting the dynamic aspects of bargaining--called
the dynamic solution--is proposed. The core and the dynamic solution
are then used to analyze the abstract game formulation of the problem
of coalition formation. The predictions of the abstract game models
depend on the particular "payoff solution concept" used. TI.e., the

models assume that there is a rule governing the final payoff to each




player as a function of the coalition structure that forms. The predic-

tions of these models are then studied for the case of n-person cooperative
games with side payments using various payoff solution ccncepts such as
the individually rational payoffs, the core, the Shapley value and the
bargaining set Mii).

In another approach, coalition formation is viewed as a bargaining
process where the players are allowed to raise (coalitional) objections
and (coalitional) counter objections in the same manner as in the
Aumann-Maschler bargaining sets. While the Aumann-Maschler bargaining
sets indicate distribution of joint payoffs given a fixed coalition
structure, the restricted bargaining set proposed in this investigation
indicates both formation of coalitions and distribution of payoffs as
outcomes.

Coalition formation has been extensively studied by social scientists.
Two classical theories of coalition formation--Caplow's theory of
coalitions in the triad and Gamson's theory of coalition formation in
weighted majority games without dictators or veto players--are mathe-
matically analyzed and compared with the predictions of the abstract

game models under the same assumptions.
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CHAPTER I

AN INTRODUCTION TO THEORIES OF COALITION FORMATION

1.1 A Statement of the Problem

The theory of n-person cooperative games presented by von Neumann and
Morgenstern is a mathematical theory of coalition behaviour. A funda-
mental problem posed in game theory is to determine what outcomes are
likely to occur if a game is played by "rational players'. Given an
n-person cooperative game in characteristic function form and assuming
the players to be "rational", it is natural to inquire (1) which of the
possible coalitions can be expected to form and (2) what will be the final
disbursement of payoffs among the players. These two aspects of coalition
behaviour are closely related. The final disbursement of payoffs among
the players depend on the coalitions that finally form, and the coalitions
that finally form depend on the available payoffs to each player in
each of these coalitions. Since the publication in 1944 of the

monumental work Theory of Games and Economic Behaviour [75] by von Neumann

and Morgenstern, most of the research in n-person game theory has been
concerned explicitly with predicting players' payoffs and only implicitly
(if at all) with predicting which coalitions shall form. In this investi-
gation, the primary emphasis is on the first aspect of coalition behaviour,
namely the formation of coalitions. Several theories of coalition forma-
tion are proposed based on the theory of n-person games. As in most of
n~-person game theory, our models are (conditionally) normative and use
only endogenous arguments, that is, only information contained in the

characteristic function is used.




1.2 Game Theory and Coalition Behaviour

and in detail in 1944 by von Neumann and Morgenstern (vN-M) [75]. Their
theory of behaviour in cooperative situations is predicated on two
assumptions. First, it is assumed that each coalition R of players

can assure itself of a particular amount v(R) of resource, independently

may divide what it receives among its players in a completely arbitrary
manner (in other words, there is no restriction on side payments between
players).

vN-M also proposed the concept of 'stable sets" as solutions to a
game. The basic feature of this solution concept is the idea of dominance
as a preference relation on the set of all "imputations'". An imputation
represents an allocation of the available resources among the n players
acting as one coalition. However, on strictly mathematical grounds the
theory of stable sets contains some unpleasant results. Shapley [90,91]
and Lucas [55,57,60,63] exhibited a number of games with particularly
pathological stable set solutions and Lucas [58,53] gave an example of a

game with no stable sets settling a long standing conjecture on the

question of existence of stable sets for all games. Besides these
mathematical pathologies, Weber [112, pp. 4-6] indicates a number of
philosophical objections to the concept of a stable set. In an approach
to one of these objections, Vickrey [108] proposed the concept of '"self-
policing" sets of imputations, and investigated the existence of stable
sets with the self-policing property. Another approach dates back to

a suggestion of Nash [73] where he writes that:

Games in characteristic function form were first considered explicitly

of what the remaining players do. Second, it is assumed that any coalition




"A...type of application is to the study of cooperative
games... . One proceeds by constructing a model of the ;
pre-play negotiations so that the steps of the negotia-
tion become moves in a larger non-cooperative game
describing the total situation...thus the problem of
analyzing a cooperative game becomes the problem of
obtaining a suitable, and convincing,...model for the
negotiation."

In recent years, the noncooperative approach to the cooperative games has
been pursued by Selten (88], Harsanyi [39,41,44] and Weber [112]. 1In
another approach, Roth [84] introduces some alternate solution concepts
having some similarities to the vN-M stable sets. He is then quite

successful in obtaining existence theorems for these concepts. (Cf. Weber

[112, pp. 2-4] and Lucas [65]-)

One of the simplest solution concepts is the core. The theory of the
core is implicit in the theory of stable sets since the core is a subset
of any stable set. The core was first studied explicitly however in the
mid 1950's by Gillies [35] and Shapley. The core may sometimes be empty.
Bondareva [19,20] and Shapley [93] give necessary and sufficient conditions
for the nonemptiness of the core of an n-person game with side payments.
Even when the core is nonempty, it may be "too small", as in "simple

games with veto players" where it assigns all the payoff to the set of veto

players even though they may not be "dictators", that is, they may need

the help of some others to achieve these payoffs. (Cf. Lucas [62, p. 14.])
Several authors have proposed different value theories for cooperative

games. A player's value is an a priori measure of his expected gain in a

given game. Most value theories determine a unique imputation‘as their

solution set. This outcome is justified by arguments based upon some concept

of fairness as determined by certain axioms, upon some bargaining procedure




or arbitration scheme, or upon probabilistic considerations. The Shapley
value [87] and the Banzhaf value [12] have been studied extensively and
used in applications. These value concepts have been interpreted in
several ways by Dubey [30], Davis [27], Myerson [70], Owen [76], Shapley
and Shubik [94], Straffin [104], Roth [85], and others. Lucas [64] and
Straffin [103] present a collection of various applications of these value
concepts to real life situations.

All the solution concepts discussed so far describe the disbursement
of payoffs among the players assuming that the grand coalition of all
players forms. This idea is embodied in the definition of the imputation
which has been involved in all the concepts so far discussed, namely the
vN-M stable sets, the core and the value theories. However, Aumann and
Dreze [8] present natural generalization of these solution concepts to a
given partition of the set of all players.

Aumann and Maschler [9] introduced several somewhat similar solution
concepts called bargaining sets. These sets describe what payoff vectors
are '"stable'" once a given coalition structure (partition of the player
set N into subsets) has formed. An individual outcome is stable in
their sense if there is no "objection'" to it or if each objection to it
gives rise to a '"counter objection". An individual outcome in a bargaining
set can stand on its own, in contrast to an imputation in a vN-M stable
set. In the vN-M theory it is the whole set which possesses a global
stability or represents a standard of behaviour and not an individual
imputation in this stable set. One of these bargaining sets, denoted by
Mil), was shown by Peleg [79] to contain at least one payoff vector for

each partitioning of the players into a coalition structure.

Ww




Davis and Maschler [28] introduced the kernel of a game which is
always a nonempty subset of the bargaining set M;i).

Schmeidler [87] defined the nucleolus which turns out to be a unique
outcome in the kernel and it is in the core if the latter is nonempty.

The bargaining sets, the kernel and the nucleolus describe outcomes
associated with each coalition structure but they tell us nothing
explicitly about which coalition structure(s) we could reasonably expect
from rational players.

In addition to those mentioned above, several other solution concepts
have been proposed. Some of these are reasonable outcomes due to Milnor
[68], Y-stability due to Luce [66, Ch. 10] and (k-r)-stability due to
Shubik [99].

Milnor suggests three different systems of '"reasonable'" conditions,
each of which isolates a subset of the set of all imputations. In
doing so he has taken

"...the point of view that it is better to have the

set too large rather than too small. Thus it is not
asserted that all these points within one of our sets
are plausible as outcomes; but only that points outside
these sets are implausible." [68]

y-stability is a property of pairs (x,P) where x is an imputation
and P is a coalition structure given that P can only break up into
certain other coalition structures. If the admissible coalition
changes are specified by a rule y(P), stating all the coalition
structures which can form from any given P, then (x,P) 1is y-stable
if none of the admissible coalitions can get more than its members get in

(%7):




A payoff vector is (k-r)-stable if, roughly speaking, no group of
r players can do better using another strategy on the assumption that
each of k players is committed to a "threat strategy" (i.e., will use
a certain strategy whatever happens). (Cf. Taylor [105], pp. 363-364.)
In recent years, the dynamics of negotiation among the players have
also been investigated. One approach to this problem concentrates on
the use of discrete transfer schemes to study how players might arrive at
a desirable outcome. A parallel approach employs systems of differential
equations whose solutions represent a continuous transfer of payoff over
time. The advantages of such an approach are multifold. Not only does
it enable us to view game theory in terms of the actions of individuals
or coalitions, but it also enables us to characterize solution concepts
in terms of associated '"behaviour'". In 1968, Stearns [102] exhibited a

sequence of discrete transfers of payoff among the players which converged

to points in the kernel of Davis and Maschler [28]. 1In 1972, Billera [18]
smoothed these transfer sequences to obtain a system of differential
equations whose solutions represented a continuous transfer of payoff

and which also converged to the kernel. In 1873, Kalai, Maschler and

Owen [48] started a systematic investigation of asymptotically stable
points in various bargaining sets. They also show that the nucleolus

is a dynamically stable point for each system. Owen [78] proved that

the conditions imposed by Kalai, Maschler and Owen [48] can be relaxed

to a certain extent. In 1974, Wu [110] showed that a modification of

the relaxation method of Agmon [1] could provide a discrete transfer

sequence which converged to the core. Also, Wu and Billera E111})

study a dynamic theory for the kernel given by Billera [18]. Grotte [36]




exhibits several systems of differential equations which represent possible

behaviour patterns for the players. The solutions of these systems are
shown to converge to a number of solution concepts, among them the core,
the Shapley value, and in certain instances, the nucleolus. Maschler

and Peleg [67] characterize all the dynamically stable points and the
dynamically stable closed sets with respect to Stearns' system which belong
to the appropriate bargaining sets. They are nucleoli cf appropriate
Liapunov functions. In particular, a new solution concept due to Gill
Kalai, called the lexicographic kernel is shown to be a dynamically stable
subset of the kernel.

In the vN-M characteristic function, a coalition is assigned a value
which is assumed to be fixed irrespective of the organization of the
remaining players into coalitions. In 1961, Thrall [106] formulated a
theory of n-person cooperative gameswith side payments in terms of a parti-
tion function which is defined on the set of all partitions of the set of
players (see Thrall and Lucas [107]). Thrall's formulation assigns a
real numbered outcome to each coalition in each partition of the set of
players. Subsequently Lucas [52,53,54,107] generalized and studied the
concept of a vN-M stable set and some aspects of the core for a game in
partition function form. Lucas [5€] also exhibited a game in partition
function form that has no stable sets.

In 1964, Eisenman [31,32] studied a natural generalization of games
in partition function form which he calls "alliance games". Eisenman
[32] also generalized the concept of Shapley value to alliance games.

Another generalization of the vN-M characteristic function model of

a cooperative game deals with games in which side payments are either




forbidden altogether or are allowed but "utility is not transferable".
We say utility is transferable if the increment to the payoff of a
player caused by a transfer of money is proportional to the amount of
money transferred (cf. Aumann [5]). Most solution concepts described so
far for games with side payments have also been generalized to games
without side payments. Aumann [10], Peleg [10,79] and Stearns [100,101]
have studied the vN-M stable sets; Aumann [6], Billera [16,17] and
Scarf [86] have analyzed the core; Asscher [3,4], Billera [15] and

Peleg [80] have investigated the bargaining sets, and the value concept
has been extended by Nash [72,74], Harsanyi [38,39,40], Isbell [u45],
Miyasawa [69], Shapley [92] and Owen [77]. Aumann [7] presents a survey
of research on cooperative games without sidepayments up to 1967.

At this stage, it will be helpful to emphasize that n-person game
theory as described so far has been concerned directly with the problem
of disbursement of payoffs rather than the question of formation of
coalitions. The one possible exception is implicit in the y-stability
theory, in the sense that if some coalition structures cannot form stable
pairs with any imputations, it could be surmised that such coalition
structures will not be frequently observed (cf. Rapoport [82, p. 286]).

Recently Fink [33] has proposed a solution concept that

", ..yilelds assertions both on the coalition structures
formed and on the distribution of the payoff among
the players.'" [33]
Fink defines three dominance relations on the set of "individually rational

payoff configurations" and studies the stable set solutions for these

abstract games.




1.3 Theories of Coalition Formation in Sociology, Psychology and

Political Science

In sociology, psychology and political science, there are a number of
simple theories about the process of coalition formation. These theories
consist essentially of an hypothesis concerning the player's goals or
motives, a premise concerning their payoffs and an inference which singles
out the coalitions most likely to form. We briefly describe some of these
approaches in this section. However, we do not review a number of more
informal and ad hoc theories of coalition formation nor the many experi-
mental studies designed to test theories of coalition formation. Caplow
[24] and Leiserson [51, Section 2.1] between them give a comprehensive
coverage of these two topics.

Caplow's [22,23] theory of coalition formation is restricted to
triads. A triad is a 'three-person weighted majority game with a simple
majority quota". Caplow's theory is based on the notion that

"...the formation of given coalitions depends upon the

initial distribution of power in the triad and, other

things being equal, may be predicted to some extent

when the initial distribution of power is known." [22]
He then describes six possible types of power distributions for groups
of three players. On the basis of four assumptions which mainly postu-
late that a stronger member always controls a weaker one and that the
goal is to dominate as many members as possible, he predicts, for each
power distribution and as a function of the power rank order of the
individual, the most probable coalitions to occur.

Following Caplow, Gamson [34] formulated a slightly more general

theory of coalition formation in "proper" weighted majority games without

T e G TP AN
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veto players or dictators. Gamson's main hypothesis is that

"any participant will expect others to demand from

a coalition a share of the payoff proportional to

the amount of resources which they contribute to a

coalition." [3u4]
Based on this assumption, he infers that a player will favor a '"cheapest"
winning coalition, i.e. a winning coalition whose total weight is a mini-
mum among all winning coalitions.

Riker's [83] theory of coalition formation is applicable primarily
to zero-sum games with side payments. Assuming rational behaviour and
perfect information, he deduces that

"...the equilibrium size of a winning coalition is
always minimal." [83]

Leiserson [51] suggests several theories in which each player uses
a "search strategy", looking for a coalition in a piecemeal, stepwise
fashion which requires of him only 'local' rationality as opposed to
'global' rationality which requires the players to weigh their payoffs
in every possible coalition. One of these search strategies attempts
to minimize ideological diversity in the coalitionj; another takes into
account differences on several issues and the possibilities of logrolling
(cf. Taylor [105, p. 361]).

Axelrod's [11] theory of coalition formatior is based on the notion
that players tend to minimize conflict of interest. His main hypothesis

is that

"in a parliamentary democracy in which the parties
can be placed in a one-dimensional ordinal policy
space, minimal connected winning coalitions:




1y

1) are likely to form more often than would be
indicated by chance (even compared to just
other winning coalitions), and

2) once formed are likely to be of longer duration ; 4
than other coalitions." [11]

NESRT

By connected coalitions, he means coalitions which consists of ideologi- ]
cally adjacent parties.
In recent years, Cross [26], Komorita and Chertkoff [49] and Komorita

[50] have also proposed additional theories of coalition formation.

1.4 A Summary of Research

In this section we briefly summarize the research in this thesis.

In Chapter 2, a new solution concept, called the dynamic solution, i

based on the elementary theory of Markov chains, is defined for abstract

LORCRC——

games. The structure and properties of the solution are studied. The

(payoff) dynamic solution of all 3-person games with side payments is

determined. Finally, many games, pathological in their behaviour with

respect to the classical von Neumann-Morgenstern theory of stable sets,

are shown to be amenable to this approach.

In Chapter 3, we propose some theories of coalition formation based
on the theory of n-person cooperative games. The predictions of these
theories depend on the particular '"payoff solution concept" used, i.e.,
the theories assume that there is a rule governing the distribution of
payoffs to each player in each coalition structure. The various theories
proposed are compared. Section 3.3 contains a representation of the
problem and solutions by means of digraphs. In Sections 3.4-3.7, the

predictions of the theories are characterized for the case of games with

side payments using various payoff solution concepts such as the
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individually rational payoffs, the core, the Shapley value and the

bargaining set Mii). Finally in Section 3.8, some modifications of these
theories are discussed.

In Chapter 4, Caplow's and Gamson's theories of coalition formation
are mathematically interpreted, analyzed and compared with the models
in Chapter 3.

In Chapter 5, some modifications of the Aumann-Maschler (A-M) bar-
gaining set M§i) are discussed. The A-M bargaining set theory was
developed to attack the following general question: If the players in a E

cooperative n-person game have decided upon a specific coalition struc-

ture, how then will they distribute among themselves the values of the
various coalitions in such a way that some stability requirements will
be satisfied (cf. Davis and Maschler [28, p. 39]). In our theory, we

do not assume that players have any a priori preference for any particular

coalition structure. Some examples, illustrating the basic differences

between the A-M bargaining set Mil) and our restricted bargaining set ,
w

Mr’ are exhibited. A few general results are also presented. i
Finally in Chapter 6, we present a brief summary of the research H

in this thesis and discuss its potential significance. Some questions i

left unanswered in this work are also raised.




CHAPTER II

A DYNAMIC SOLUTION CONCEPT FOR ABSTRACT GAMES

2.1 Introduction

Most solution concepts for n-person cooperative games are normative

or prescriptive theories. A more descriptive theory reflecting the
dynamic aspects of bargaining is proposed in this chapter. Section 2.2
contains some notation and definitions. We introduce two additional
binary relations which depend on the binary relation domination in an
abstract game. An interpretation of these relations is also presented.
In Section 2.3, the concepts of an elementary dynamic solution and a
dynamic solution are introduced and discussed. The properties of the
dynamic solution are studied in Section 2.4. For an abstract game with
a finite number of outcomes, the concept of dynamic solution coincides
with a concept of an R-admissible set defined by Kalai, Pazner and
Schmeidler in [u6]+. In Section 2.5 the dynamic solution for all 3-person
games with side payments is determined. Finally in Section 2.6, many
games, which have pathological behaviour in the classical von Neumann-

Morgenstern theory of stable sets, are shown to be amenable to our approach.

2.2 Notations and Definitions

An abstract game is a pair (X,dom) where X is an arbitrary set

whose members are called outcomes of the game, and dom is an arbitrary

TKalai and Schmeidler [47] have also defined a solution concept similar to
the dynamic solution. However, the research presented in this chapter was
done independently of both these references.
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binary relation defined on X and is called domination. An outcome

x € X 1is said to be accessible from an outcome y ¢ X, denoted by
x «y (or y -+ x), if there exists outcomes zO = X, 21’22"°"Zm

where m 1is a positive integer, such that

(2.1) x = zO dom zl dom z, dom ... dom zm—l dom Zm = vy.
Also assume Xx < x, 1.e. an outcome is accessible from itself. Clearly,
the binary relation accessible is transitive and reflexive.

An interpretation of the relation accessible is as follows: If the
players are considering an outcome y at some stage, then an outcome
they will consider next will be a 2z « X such that z domy. If x <y
and if the players are considering outcome y at some time, then it is
possible that they will consider outcome x at some future time. I.e.
one may interpret the relation as a possible succession of transitions from
one outcome to another.

Two outcomes x and y which are accessible to each other are said
to communicate and we write this as x <> y. Since the relation accessible

is transitive and reflexive it follows that

Proposition 2.1. Communication is an equivalence relation.

We can now partition the set X into equivalence classes. Two

outcomes are in the same equivalence class if they communicate with each

other. We say that the abstract game is irreducible if this equivalence

relation induces only one class. The set




(2.2) Dom(x) = {y € X: x dom y}

is called the dominion of x. Similarly we define the dominion of any

subset A < X by

(2.3) Dom(A) = u Dom(x)
XeA

Also define the inverse dominion of x Dby

(2.4) Dom-l(x) = {y € X: y dom x}.

The core C (due to Gillies [35]) of an abstract game is defined to be

the set of undominated outcomes. 1I.e.
(2.5) ¢ = X - Dom(X)-

We can rewrite the definition of the core in terms of the relation

accessible as follows:
(2.6) C=1{xeX: Forall y e X,y # x, we have y ¥ x},

i.e., in the terminology of Markov chains, the core is the set of all
absorbing outcomes. Note that each outcome in the core (if nonempty)
is an equivalence class by. itself.

A vN-M stable set V (due to von Neumann and Morgenstern [751) of

an abstract game is any V ¢ X such that

207 ) V = X - Dom(V).
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Any vN-M stable set V satisfies internal stability and external stability,

ey

(2.8) VnDom(V) =@ and V u Dom(V) = X.

In recent years, Behzad and Harary [13,14] and Shmadich [98] have charac-

terized finite abstract games for which vN-M stable sets exist.

2.3 The Dynamic Solution

We define an elementary dynamic solution (elem. d-solution) of the

abstract game (X,dom) as a set S ¢ X such that

(2.9) if xe€¢ S, ye X-S, then y ¥ x and

(2.10) if x5y € S, then %<y and y < x.

Condition (2.9) requires S to be 'externally stable' in a dynamic sense,
i.e. if the players are considering x ¢ S at some time, then they will
never consider any outcome that is not in S in the future. We can

think of Condition (2.10) as 'internal stability' in a dynamic sense.
I.e.,if the players make a transition (in the consideration of outcomes)
from x to y then it is possible that the players will again consider

the outcome x in the future.

Proposition 2.2. An elem. d-solution S is an equivalence class.

Proof: By Condition (2.10), S is contained in an equivalence class H,
i.e. ScH. Suppose S #H. Let x ¢ H-S and y ¢ S. Then x <« y

since H 1s an equivalence class, which contradicts (2.9).
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The ¢ .verse, however, is not always true, i.e., an equivalence class
need not be an elem. d-solution. Condition (2.9) requires S to be (in

the terminology of Markov chains) a non-transient (recurrent, persistent)

equivalence class.

Proposition 2.3. Each outcome in the core C of the game is an elem.

d-solution.

The proof follows from the definition of the core in (2.6).

The dynamic solution (d-solution) P of the game is the union of

all distinct elementary dynamic solutions. I.e.

2.1 1L) P=u{S c X: S is an elem. d-solution}.

We can interpret P as the set of all likely outcomes of the game.

Proposition 2.4. For any abstract game, the dynamic solution always exists

and is unique.

Proof: Existence follows from the fact that the empty set @ is always
an elem. d-solution. Uniqueness is clear from Proposition (2.2) and the

definition of the d-solution.

Propogsition 2.5. C <P

The proof follows from Proposition 2.3 and the definition of P,

2.4 Properties of the Dynamic Solution

If X is a finite set, then our definition of the d-solution coincides

with the definition of the R-admissible set due to Kalai, Pazner and
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Schmeidler [46]. In this section we demonstrate the equivalence of the
two definitions. This will also illustrate some of the properties of

the d-solution.

Lemma 2.6. If X is a finite set, then P 1is the d-solution if and

only if P satisfies:

€2.12) For all R,y ¢ P, y <~ x <> %<y,
(2.13) If x e P, y e XP, then y ¥ x. And
(2.14) if y € X-P; then 9 x ¢ P such that x < y.

Proof: (*>) It is clear from the definition of P that it satisfies

Conditions (2.12) and (2.13). Suppose Condition (2.14) does not hold.
Then for some ¥, € X-P, x +¥ ¥y for all x € P. Let Al(yl) c X-P be
the equivalence class containing - IE Al(yl) satisfies Condition
(2.9), then Al(yl) is an elem. d-solution which is a contradiction. If
not, then I ¥y € X—P-Al(yl) such that Yy € ¥ for some X ¢ Al(yl).
Let A2(y2) c X-(P u Al(yl)) be the equivalence class containing Yo
Repeating this argument, since X 1is finite, we get an equivalence

class Ak(yk) cX-P - .gl Ai(yi) satisfying Condition (2.9). Hence
Ak(yk) is an elem. d-soi;tion, which is a contradiction!

(<=) Statements (2.12) and (2.13) imply that P is a union of
elem. d-solutions. Suppose some elem. d-solution S 1is not included

in P, and let y ¢ S ¢ X-P. Then from Condition (2.14) I x ¢ P such

that X « y. But x ¢ S contradicts the fact that S is an elem.

d-solution! Hence P 1is the union of all elem. d-solutions. [:
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Theorem 2.7. If X 1is a finite set, then the d-solution is nonempty and

unique.

Proof: Nonemptiness follows from Condition (2.14) of Lemma 2.6.

Uniqueness follows from Proposition 2.4.

Remark: If R 1is an arbitrary binary relation, Kalai, Pazner and
Schmeidler define an R-admissible set as a subset of X satisfying
Conditions (2.12), (2.13) and (2.14) with the binary relation R substi-

tuted in place of <.

Define a binary relation transitive-domination denoted by t-dom

as follows:

€215 ) For all x,y € X, x t-domy <= x «y and y # x.

Transitive domination is irreflexive and transitive. The following lemma

is proved in Kalai, Pazner and Schmeidler [u6].

Lemma 2.8. If X 1is a finite set, the d-solution P satisfies:

(2.16) For all x,y ¢ P, x tfdomy and y tfdom x (internal stability).

(2.17) For all y € X-P, I x ¢ P such that x t-dom y (external
stability).

I.e. P is the unique vN-M stable set and the core of the abstract game

(X,t-dom).

The following results are easy consequences of the definition of the

d-solution. Nevertheless, they are useful in computing the d-solution.
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Proposition 2.9. If x,y ¢ X such that x+«y and y ¥ x, then y ¢ P.

Proof: If x e P, then y ¢ P contradicts Condition (2.12). If x ¢ P,

then y ¢ P contradicts Condition (2.13).

Corollary 2.10. Let y be an outcome that is not in the core. Then

Dom(y) = @ = y ¢ P.

m
Proposition 2.11. x ¢ P-=> (v Domk(x)) n P =¢ for all integers m > 1.
k=1

Proof: vy ¢ Domk(x) = y+ x for x ¢ P=y ¢ P.

k

e =

i

Proposition 2.12. If the core C 1is the unique vN-M solution, then P = C.

Proof: From Proposition 2.5, C < P. Since C 1is the unique vN-M stable
get, y e ¥-C=> T x e C such that *+ y. But y+¥ x (since x ¢ C).

Hence y ¢ P (by Proposition 2.9).

Corollary 2.13. Let C be a nonempty core. If y ¢ Domk(C) for some

Dom?(C) for every integer
1

integer k> 1 then y £ P. l.e. Pc X -
j

nwc 3

m i.l'

2.5 Dynamic Solutions of 3-Person Games

A cooperative n-person game in characteristic function form is a pair
(N,v) where N =1{1,2,...,n} denotes the set of players and v is a
non-negative real valued function defined on the subsets of N which

satisfies v(@) = 0 and wv({i}) = 0 for all i ¢ N. The cubscts ot N

are called coalitions. A coalition structure (c.s.) P=fp

a partition of N into disjoint (nonempty) coalitions. The set of

(payoff) outcomes corresponding to coalition structure P 1is denoted
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by X(P), where

(2.18) X(P) = {x ¢ B xs >0 for all i e N and Z X, = v(P.)
ier J

for each Pj e P}
The elements of the set X({N}) are referred to as imputations. Domina-

tion is defined as follows:

x € X(P) is said to dominate y € X(P) via coalition R, denoted by
x dom_ y if x, >y, forall ie R and ] x, < v(R).
R 1 i ] e
ieR
x dominates y, denoted by x dom y if J a nonempty R < N

such that x domR V.

In the abstract game (X(P),dom) as defined above, we cannot have
domination via N and via one player coalitions. Also, if X, = 0, then

x does not dominate any other outcome via coalitions that contain player i.

Lemma 2.14. Let T be a 3-person game and P be a c.s. that contains
only one-player or two-player coalitions. Then the dynamic solution of

the game (X(P),dom) is the entire set of outcomes, i.e. P(P) = X(P).

So we need concern ourselves with only the c.s. P = {N}. Let
C({N}) denote the core of the abstract game (X({N}),dom). To condense 4
notation we will denote P({N}) and C({N}) by P(N) and C(N)

respectively. Assume without loss of generality that the characteristic
k y y

function satisfies
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(2.19) v({1,2}) < v({1,3}) < v({2,3}).

Let w({1.2}) = a, w({1,3}) = by w({2,8}) = and w({1,2.,3}) = d.

The following inclusive cases should be distinguished:

Case 1) d > (atb+c)/2, d > c.

In this case the core C(N) # # and is given by

(2.20)  C6H) = {2 e B %

i 0 for altl ie N, % +%.>a, % +x. >b,

| Vv

X
il

(o9

—

S
x2 + x3 > ¢ and xl + x2 + 3

The d-solution is given by P(N) = C(N). (See Figure 2.1.)

Case 2) d < (atb+c)/2, d > c.

In this case C(N) = @#. The d-solution is given by

P(N) = Conv{wl,w ,w3} - {w,,w.,w,.} where

2 M

W, = (atb-d, d-b, d-a),
Wy = (d-c, atc-d, d-a),
W, = (d-c, d-b, b+c-d)

and Conv{al,...,ap} denotes the convex hull of the points in

{al,...,ap}. (See Figure 2.2.)

Case 3) a<b<d<c, 4> atb.

In this case the core C(N) # # and is given by
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Cc(N) = Convi{(0, a, d-a), (0, d-b, b)}

and the d-solution is given by P(N) = C(N). (See Figure 2.3.)
Case 4) a <b <d<c, dc< ath.

In this case, C(N) = #. The d-solution is given by

P(N) = Conv{(at+b-d, d-b, d-a), (0, a, d-a), (0, d-b, b)}
- {(atb-d, d-b, d-a), (0, a, d-a), (0, d-b, b)}
(See Figure 2.4.)
Case 5) a<d<hz«<e.

In this case C(N) = #. The d-solution is given by

P(N) = Conv{(a, 0, d-a), (0, a, d-a), (0, 0, d)}

- {(a, 0, d-a), (0, a, d-a), (0, 0, d)}

(See Figure 2.5.)

Case 6) d<ash ga.

In this case C(N) = @#. The d-solution is given by

P(N)

i}

Convi(d, 0y 0}, (0, ds 0)y (0, O; d)}

- {ta, o, 0), (0, 4, 0)s K0, 0, Q)]

(See Figure 2.6.)

Thus all cases have been considered.
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(0,0,d) (d50,0)

Figure 2.1. The dynamic solution P(N) of a 3-person game, Case 1).
The arrows in the figure indicate transitions.

(d-c, d-b, btg-d)

(o,o,d)/ " (d,0,0)

(atb~-d, d-b, d-a

Figure 2.2. The dynamic solution P(N) of a 3-person game, Case 2).
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(0,d,0)

(0, a, d-a)

IENERANTENR N BN

(0,0,d) N\ (d,0,0)

Figure 2.3. The dynamic solution P(N) of a 3-person game, Case 3).

' " ) t X, = b
SR
o =
(0,0,d) A\ (4,0,0)

Figure 2.4. The dynamic solution P(N) of a 3-person game, Case u4).




(d; 0:50)

by 2
G505 dr)
//' A‘*zl‘(a, 0, d-a)

Figure 2.5. The dynamic solution P(N) of a 3-person game, Case 5N

Figure 2.6. The dynamic solution P(N) of a 3-person game, Case )
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2.6 Some Examples

In this section we study several examples which are pathological
in their behaviour with respect to the classical vN-M theory of stable

sets.

Example 2.1. (A 5-person game with a unique vN-M stable set strictly
larger than the core. See Lucas [55].)

Consider the 5-person game given by

v(123u5) = 2, v(12) = v(34) = v(135) = v(2u5) = 1,

v(R) = 0 otherwise.

The core C = Conv{(1,0,0,1,0), (0,1,1,0,0)} and the unique vN-M solution

is given by
V= Convi(L;050.,1,0), (1,0.1,0,0), (0.1,150,0), (0,1,0,1,0)F

The d-solution coincides with the core. This is seen as follows. We
2 7

have Dom(C) = X -V and V - C ¢ Dom(X-V). Hence C =X - u Domj(C).
J=t

By Corollary 2.10, it follows that P = C.

Example 2.2. (A 5-person game with a unique stable set which is non-convex.

See Lucas [57].)

Consider the 5-person game given by

"To condense notation we shorten expressions like v({1,2,3,4,5}) to
v(12345),




RO S b b orandabesn L e

v(123u5) = 3, wv(234) = v(3u45) = 2,

v(45) = v(35) = v(34) = 1, v(R) = 0 otherwise.

v(12)
For this game

5
{xe B’ } % =3 %, >0 forall ie Nk
. a i =
ieN

>
1

Let

B = {x e X: z X, > v(R) for all Rc N except {2.3.4}}.
ieR

Then the core C of the game is given by

C={X(B:X2+x3+xu12}.

It can be easily shown that Dom(C) > X - B and B - C < Dom(X-B).

Hence by Corollary 2.10, we have P = C.

Example 2.3. (A game with no symmetric stable set. See Lucas E5710.)
et N = 41;...48%, w(N) = &, w(1857) = 3, w~(257) = w(ub7) = 1,
v(12) = v(34) = v(56) = v(78) = 1, v(R) = 0 for all other R c N.

For this game,

X = {x ¢ E?: ) X, =4, and x, >0 for all i € N}.




Then the core C of the game is given by

C=1{xe H: x, + x_ + x_ + %, > 3}.

Define Fi =% e H: Xy = L} feor i = 1,3,5,7, and

BB F3 u E

1 V] F7 = €,

5

It is shown in Lucas [57] that Dom(C) = (X-H) v (H - (Cu F)). It is

also clear that (H-C) c Dom(X-H). Hence C = X - Domz(C). By Corollary

2.10 it follows that P = C.

Example 2.4. (A game with no vN-M stable set. See Lucas [58,59].)

Lucas [58] constructs a ten-person game in which the set of imputations

can be partitioned into regions as follows:

¥ = (X-B) 4 (B - (cuv EuF) g (€CouEuF)

(L) DPom(C) » (X~B) v (B = (€ u E u E}}),

(Z2) En Dom(C U E u E) = @,

; (3) E < Dom(X-B).

By corollary 2.10 and Relation (1), P < (Cuv E v F), Relation (2?)

where C 1is the nonempty core. The domination relations is such that

= F c Dom({X-B} u {B - (CUEUTF)}) = FnP =0 using Proposition 2.11

and Relation (3) => En P = #§ by Proposition 2.11. Hence P = C.
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Example 2.5. (An 8-person game with a unique stable set that is non convex.
See Lucas [60].)

Let N = {1,...,8}, v(N) =4, wv(l467) = 2, v(12) = v(34) = v(56) = v(78)
=1, v(R) = 0 for all other R c N. For this game it can be shown as

in Example 2.3 that P = C.

A game without side payments is a triple (N,v,X) where N = {1,...,n}

is a set of n players, v 1is a ''generalized characteristic function"

and X 1is the set of imputations. A generalized characteristic function v
maps nonempty subsets of N into subsets of n-dimensional space En, where
the subset v(R) assigned to coalition R consists of all vectors x such
that R can guarantee all of its members at least their share in x. We

assume that v satisfies the following axioms for any nonempty R < N.

(1) v(R) 1is closed, nonempty and convex.

(2) If x € v(R) and y; £ %, forall i e R then y e v(R).

(3) V(Rl) n v(R2) c v(Rl U R2) whenever Rl n R2 = @.

(4) x € v(N) <= X, SV for some y € X and for all i ¢ N.

Example 2.6. (A 7-person non side payment game with no vN-M stable sets. 1
See Stearns [101].)

Let N = {1,...,7} and X be the convex hull of the five imputations

ot = (1,1,2,0,0,0,0) ¢ = (2,0,2.0,2,0,1)
p? = (0,0,1,1,2,0,0) o = (0,0,0,0,0,0,0)
3

p- = (2,0,0,0,1,1,0)




31

Let the '"minimal winning" coalitions be

(135, (227), ((3n7), (567]).

Note that a coalition is winning if it contains a minimal winning coali-

tion as a subset. Define wv: 2N -9~ E7 by

( {x ¢ E: x, <y, forall i € R and for some vy ¢ X}
when R 1is winning
v(R) = <
{x e E7: X, <Y for all i€ R and for all y e X}
L when R is non-winning.

The core of this game is the single imputation c. The d-solution is

P = €. This is seen as follows.

i
Dom(c) = X - (Ll U L2 U La) where L.i = [Cesp
the closed line segment joining c¢ and pl forr 1 = 1.,2.3. Let

X € Li - Gy d.8.s %= (ktly 1=k, 25 6, 24, 0, A) for some 0 < & < 1.

Let

(2, 0, 2%, 0, X141, 1-x", A7) where A < A 1,

<
"

4 (2A2, (9% A2+l, Az-l, Ty Oy Az) where Al < Xz < 1 and

«
"

3
y = (A3+l, =2 4 24 O, 2A3, Oy Aa) where Xz < X3 < 1.

3 2 1 3
Then y dom(L27) y dom(3u7) V' dom<567) X. Therefore y <« x. But




x ¥ y3.
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Hence by Proposition 2.9, x ¢ P. Hence P =C = {c}. (See

Figure 2.7.)

p

Figure il

1

e = £2,0:9.0:2,0.13

3 ‘
= (1,1,2,0,0,0,0) B = 62,859,0,1.1,0

2
= (U501 52,0509

A 7-person non side payment game with no stable sets.




CHAPTER III

SOME THEORIES OF COALITION FORMATION

3.1 Introduction
In this chapter, we propose several theories of coalition formation.
In one approach, coalition structures are modelled as the outcomes of an ]

abstract game on which an appropriate domination relation is defined.

In another approach, payoft disbursements and coalition structures are
modelled as outcomes. In both cases, we study the core and the dynamic
solution of the abstract game. The two models are then compared. Section
3.3 contains a representation of the models by means of digraphs. The
core and the dynamic solution of the abstract game are then described

in graph-theoretic terminology. In Sections 3.4-3.7, the solutions of
the abstract games are characterized for the case of games with side
payments using various payoff solution concepts such as the individually
rational payoffs, the core, the Shapley value and the bargaining set
Mii). Finally in Section 3.8, we discuss possible modifications in the
definition of the domination relation in the case where coalition struc-

tures alone are modelled as outcomes.

3.2 The Models
We shall first introduce some notations and definitions. Lot
N ={(1l,...,n} denote the set of players. Let T be an n-person

cooperative game (with side payments, without side payments or a game

33
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s s % 3
in partition function form ). Let 2N denote the set of all subsets

(coalitions) of N and I denote the set of all partitions (coalition
n
B - .
structures) of N. Let S: 1 » 2 be a payoff solution concept, where
.n

2 denotes the set of all subsets of the n-dimensional Euclidean space E .

Intuitively, given that the players in N align themselves into coali-
tions in the c.s. P e NI, we interpret S(P) as the set of all likely
disbursements of payoffs to players in N. E.g. S may denote the
individually rational payoffs, the core, a vN-M stable set, the Shapley
value, the bargaining set Mii), the kernel, the nucleolus or any other
payoff solution concept that indicates disbursement of payoffs as
solutions of an n-person cooperative game. For P < I, S(P) may be
the empty set @ (e.g. the core), or a single point in g (e.g. the
Shapley value or the nucleolus) or a nonempty subset of g” (e.g. the
bargaining set Mii) or the kernel). If S(P) = ¢ (interpreting this
fact as players unable to reach an agreement on the disbursement of
payoffs when they are aligned into coalitions in P), then we will
assume for simplicity of exposition that P is not viable. Let Ii(S)
denote the set of all viable coalition structures with respect to the

payoff solution concept (p.s.c.) S, i.e.,
(3.1) () = {P ¢ n: S(P) # g}.

Definition 3.1. A solution configuration with respect to p.s.c. S i

a pair (x,P) such that x e S(P) and P e N(S).

b
All terms not defined in this text appear in the appendix.
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A solution configuration w.r.t. p.s.c. S represents a possible

outcome of the n-person cooperative game where S represents any
appropriate payoff solution concept. Let SC(S) denote the set of all

solution configurations w.r.t. p.s.c. S, i.e.

(3.2) se¢Sy = o ESCP) < £PL]
PeTi(S)

We now define a binary relation, domination, on the set SC(S) as follows:

Definition 3.2. Let (x,P,) and (y,Pé) belong to SC(S). Then (x,Pl)

dominates (y,F&), denoted by (x,Pl) dom (y,Pé) iff

(3.3) 3 a nonempty R ¢ Pl such that R for all 1 e R.

Intuitively, if (x,Pl) dom (y,Pé), then the players in some coalition R
in c.s. P, prefer P to P,. We require the players in subset R to

L ik 2

be together in a coalition in c.s. Pl so that there is no conflict of

interest between these player's preference for Pl and their allegiance
to the other players in their coalition.

The dominance relation as defined above may be neither irreflexive
nor transitive. We now have an abstract game (SC(S),dom) where SC(S)

is the set of outcomes and dom is a binary relation on SC(S). For

this abstract game, we look at the core and the dynamic solution as

defined in Chapter 2.
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Definition 3.3. Let T be an n-person cooperative game+ and S be a

p.s.c. The core of solution configurations w.r.t. p.s.c. S, denoted

by JO(S), is the core of the abstract game (SC(S),dom).

Definition 3.4. Let T be an n-person cooperative game and S be a

p.s.c. The dynamic solution of solution configurations w.r.t. p.s.c.

S, denoted by Jl(S)’ is the dynamic solution of the abstract game

(sc(S),dom).
From Proposition 2.5, we obtain the following result.

Proposition 3.1. JO(S) c JI(S)'

The core of an abstract game is a very intuitive and plausible solu-
tion concept. However, for some games and for certain p.s.c., JO(S)
may be an empty set. In such cases, we can proceed to look at Jl(S)
as a solution concept. If the p.s.c. § 1is such that S(P) 1is a unique
point in E" for each P ¢ m(S) with N(S) # @, then the set SC(S)
is finite and nonempty. By appealing to Theorem 2.7, we conclude the

following result.

Proposition 3.2. Let T be an n-person cooperative game and S be a

p.s.c. such that n(S) # # and assume that S(P) 1is a unique point in

E® for each P « n(S). Then JJ(S) £ 0.

In another approach, we model just the set of all viable coalition

structures [(8) as the outcomes of an abstract game. A domination

F =
In this section, I denotes an n-person cooperative game with side pay-
ments, without side payments or a game in partition function form.
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relation on II(S) 1is defined as follows.

Definition 3.5. Let Pl’ P2 e M(S), @ £ R e 2N and S be a p.s.c.

Then Pl dominates P_ via R w.r.t. p.s.c. S, denoted by

s R R

Pl domR(S) P2, 1 EF
CItk) ReP and

(3.5) for each y ¢ S(PQ), 3 an x ¢ S(Pl) such that R, =7 i € R.

Intuitively, if Pl domR(S) PQ, then the players in subset R prefer

Pl to P2 because by Condition (3.5), no matter how the players disburse

the payoffs corresponding to c.s. PQ. each player in R will do better
in cs. Pl' Condition (3.4) is imposed for the same reasons Condition

(3.3) is imposed in Definition 3.2.

Definition 3.6. Let P ., P, ¢ M(S) and S be a p.s.c. P, dominates

D i
P2 w.r.t. S, denoted by Pl dom(S) P?, e E
(3.6) 3 a nonempty R ¢ 2N such that Pl domR(S) PQ.

We now have another abstract game (N(S),dom(S)) where N(S) 1is the
set of outcomes and dom(S) 1is the binary relation on I(S). Once again

we look at the core and the dynamic solution of this abstract game.

Definition 3.7. Let I be an n-person cooperative game and S be a

p.s.c. The core of coalition structures w.r.t. p.s.c. S, denoted by

KO(S), is the core of the abstract game (N(S),dom(S)).
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Definition 3.8. Let I be an n-person cooperative game and S be a

p.s.c. The dynamic solution of coalition structures w.r.t. p.s.c. S,

denoted by Kl(S), is the dynamic solution of the abstract game

(n(S),dom(8)).
Once again, by appealing to Proposition 2.5, we have:

Proposition 3.3. K,(S) c Kl(S).

Also, since T(S) is always finite, we have:

Proposition 3.4. Kl(S) £ P.
The following results gives a comparison of the two models.

Theorem 3.5. Let T be an n-person cooperative game and S be a p.s.c.

Then we have
KO(S) 5 {P e M: (x,P) e JO(S)}.

Proof: Let Pl € {Pell: (x,P) ¢ JO(S)}. Then I x ¢ S(Pl) such that

(x,bl) is undominated in SC(S) which implies that Pl is undominated

Ewar .t S) in S, e, Pl € KO(S). []
Another consequence of the definitions of KO(S) and JO(S) is as follows:

Theorem 3.6. Let T be an n-person cooperative game and S be a p.s.c

such that V P ¢ N, S(P) is either a single point set in E" or an

empty set. Then
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"

KO(S) {P e : (x,P) ¢ JO(S)} and

JO(S) {(S(P),P): P ¢ KO(S)}.

15 JO(S) # @, then the solution configuration model indicates both
coalition structures and distribution of payoffs among the players as
solutions in JO(S) whereas the coalition structure model indicates only
coalition structures as solutions in KO(S). Also by Theorem 3.5, JO(S)
indicates fewer (or at most an equal number of) coalition structures as
solutions compared to KO(S). However, if the p.s.c. S 1is such that
for each P ¢ I, S(P) 1is either a single point in " or an empty
set, then the two models are identical (except in form) and indicate the

same results.

3.3 Representation by Digraphs

Since the number of coalition structures is finite, we can represent
the abstract game (N(S),dom(S)) of a game on N by means of a directed
graph (or digraph). Given a payoff solution concept S, 1let D = D(S)
be a digraph whose vertex set V(D) = NI(S) and whose arc set A(D) is

given by

(3.7 A(D) = {(Pl,PQ) e N(S)=xT(S): Pl dom(S) PQ}.

We call such a digraph D the domination digraph of the abstract game

(1(S),dom(S)).

Example 3.1. Let T be a 3-person game on {1,2,3}. Let S be a p.s.c.

defined as follows:
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Let 0 a<b<c-= d be real numbers such that ¢ > a+b and

r(0,0,0) fE

n

i1k, {23, {8}1

(0,a,00 if P

{{1,2}, {3}}
S(P) = ﬁ

[

Hh

-
"

(0,0,b) {{1.3}; {2k}

(€0, x5 c-x): a < x) < c-b} if P = {{1}, {2,3}} or {{1,2,3})

To condense notation, we shall drop the braces around coalitions in coali-
tion structures and, for example, denote {{1}, {2,3}} by (1)(23).

Note that

(1)(23)  dom(S) «1)(Z2)(3),
(1)(23) dom(S) (12)(3),

(1)(23) dem(S) (18)(2).-

The domination graph of the game T 1is shown in Figure 3.1.

(1)(2)(3)

i * (123)

(13)(2) (1)(23)

Figure 3.1. The domination digraph of game in Example 3.1.
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Let (Pl,P?) ¢ A(D). Then we say Pl is adjacent to P. and P2

2
is adjacent from Pl' The outdegree, od(P), for P ¢ N(S) is the

number of c.s.'s adjacent from it and the indegrgg, id(P), for
P - 1(S) is the number adjacent to it. Then, in terms of this

terminology, the core of the abstract game (lI(S),dom(S)) is given by

(3.8) KO(S) = {P e v(B): id(P) = OF.
In Example 3.1, KO(S) =) (28D, (1 23) ).

The converse digraph D' of D has the same vertex set as D and
the arc (Pl’P2) ¢ A(D'") <= (PQ’Pl) ¢ A(D). Thus the converse of D
is obtained by reversing the direction of every arc in D. If D = D(S)
is the domination digraph of the abstract game (II(S),dom(S)), then we

call its converse D' = D'(S) the transition digraph of the abstract

game (M(S),dom(S)). The transition digraph of the game in Example 3.1

is shown in Figure 3.2.

CLYE2)(3)

(12)(3) e (123)

(1332 i (1)(23)

Figure 3.2. The transition digraph of the game in Example 3.1
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To define the dynamic solution in terms of the transition graph, we
need a few basic definitions from graph theory (cf. Harary [37]). A

(directed) walk in a digraph is an alternating sequence of vertices and

P ., ,P  in which each arc e Tis) " (B P.). A

Nl PO’el’ gl n’ n i i-1” i

closed walk has the same first and last vertex. A path is a walk in

which all vertices are distinct; a cycle is a nontrivial closed walk
with all vertices distinct (except the first and the last). If there is

a path from PL to PQ, then PQ is said to be accessible from Pl'

A digraph is strongly connected or strong if any two vertices are mutually

accessible. A strong component of a digraph is a maximal strong subgraph.

Let T 3T be the strong components of D'. The condensation

l’TQ"" m

D* of D has the strong components of D as its vertices, with

an arc from Ti to Tj whenever there is at least one arc in D from
a vertex of Ti to a vertex of Tj' (See Figure 3.3.) It follows from
the maximality of strong components that the condensation D¥* of any

graph D has no cycles. Let D'(S) be the transition graph of the

abstract game (N(S),dom(S)) with strong components T ToseeesT

w

Figure 3.3. A digraph and its condensation.
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Then the dynamic solution of the abstract game is given by

(3.9) Kl(S) = U{Ti: od(Ti) = 0 in the condensation D'#*}.

In Example 3.1, Kl(S) = {(1)¢23), (123)}.

3.4 Solutions with Respect to the Individually Rational Payoffs

Let (N,v) be an n-person cooperative game with side payments as

defined in Section 2.5, Chapter II. The individually rational payoffs

corresponding to coalition structure P = (Pl,...,Pm) e I is the set

LGP = {x € B Z xg

v(P,) fop all 9 = i,.-.,m and
ier J

x
Vv

> v(i) for all i e N}.

When P = (N), I((N)) is also referred to as the set of imputations.

Since TI(P) is nonempty for all P e II, we have

n(r) = m.

A game (N,v) is said to be superadditive if

- N ==
(3.10) Rl n R2 = g, Rl’RZ € 2 = V(Rl) + v(RQ) < v(Rl U R2)

and strictly superadditive if strict inequality holds in Relation (3.10).

Define the worth of a coalition structure P in the game (N,v)

by




wP) =  } v(Pj).

P.cP
]

= max w(P)

Pell

and define

(3.12) HZ = {P e Ty w(P) = 2}.

If xcE and Rc N, let x(R) denote ) x,. Then we have the
ieR *
following theorem.

Theorem 3.7. Let T be an n-person cooperative game with side payments.

Then K (I) # #. In particular, we have K (1) > 1 .

3 1
Proof. Let P 1 R . I . Suppose 3 P ¢ N such that

P dom(1) Pl, i.e. IR e P such that P dom (1) P]. Now we can
. 1 | i 1 i
write R u (Rn Pi). Pick y € I(P") such that y(Rn Pi): v(Pi)
i=1

1f R P? £ @0 forall i = 1,2,+.+.sm. Since P dom_( 1) PEs

g% e LP) 8.¢. Xy 2 Vs for all i e R. I.e. v(R) = x(R) > y(R) =

2 y 1 1 1 .
]Z V(P%). Pick P e T as follows. Pz = {R} v (P = {p,: P. nR # 01}
PinR#ﬂ i i i

1 2 ]
U {Pi - R: Pi nR #01}. Then w(P") > w(PL), a contradiction! This

completes the proof. [ |

The following example will show that, in general, we cannot make a stronger

statement than in the theorem above.
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Cxample 3.2. Let I' be a Y-person game with
v(12) = v(34) = v(23) = 1, and v(R) = 0 for all other R <c N.

Let Pl = (12)(3%), P2 = (1uY(23) and P3 = (1) (23 k). w(Pl) =

w(P2) =w(P } = 3. But KO(I) = 0P

3 P.b.

B

3

However, with a slight assumption, we can claim the following.

Theorem 3.8. Let I be an n-person game with side payments such that

i

(N) « HZ. Then KO(I) i

.-
Proof: From Theorem 3.7 we need prove only KO(I) cm . Let Pl e T
such that Pl ¢ L i.e. w(Pl) < z. Then (N) dom(I) Pl' This is seen
as follows. Let x ¢ I(Pl). Then x(N) = w(Pl) < z. Define y so that
¥ = B, 1 (z - w(Pl))/n for all i e N. Then y e I({N}) and Vi X

for all 4 e N. [:]

Corollary 3.9. Let I be a superadditive game. Then KO(I) =T _.

Furthermore, if T is strictly superadditive, then KO(T) = {(N)}.

Proof: T superadditive => (N) ¢ HZ, and T strictly superadditive

=0, = {}. []

For the solution configurations model, no general existence result is

possible as is illustrated by the following example:

Example 3.3. Let T = (N,v) be a 3-person game with

vil2) = v(13) = »{23) = 2, v(123) = 2.5,
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It can easily be shown that for this game JO(I) = @,

3.5 Solutions with Respect to the Core

Let (N,v) be a cooperative game with side payments. Then the core

of the game (N,v) corresponding to c.s. P e I is defined by

€3.13) Co(P) = {x e I(P): x(R) > v(R) for Eii R € 2N}.

The core corresponding to a particular c.s. may be empty. Hence in general
M(Co) # I. In fact, for some games the core corresponding to every c.s.
may be empty, i.e., I(Co) = #. A characterization of KO(CO) and

JO(Co) is as follows.

Theorem 3.10. Let (N,v) be a cooperative game with side payments. Then,

KO(CO) = JIfCo) = {P: ColP) £ Pl.
Also
JO(CO) = SElCo) = U [eo(P ) x {P}].
PLH(CO)

Proof: Let Pl’ PQ'

Let y . Co(P ). Then I x ¢ Co(P ) s.t. x>y, for all i e R.

N(Co). Suppose P domR(Co) PQ for some R ¢ Pl'

I.e. x(R) > y(R). But since R ¢ Pl, x(R) = v(R). Hence y(R) < v(R)
contradicting the fact that y ¢ Co(P,). The proof of the second

assertion is similar to the first. ]

Corollary 3.11. Let (N,v) be a cooperative game with side payments.

Let 8 be a p.s.c. such that, for all P « N, S(P) ¢ 1(P), and
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S(P) n Co(P) # # whenever Co(P) # @#. Then KO(Co) = KO(S) and

JO(Co) (= JO(S) (as subsets of 1).

In light of Theorem 3.10 we would like to characterize the coalition
structures with nonempty cores. The next two theorems along with a
known characterization of games with nonempty cores corresponding to

the grand coalition N accomplish this task.

Theorem 3.12. Let (N,v) be a cooperative game with side payments. If

N(Co) # #, then IMN(Co) = Hz

Proof: Let Pl e NM(Co), and suppose Pl d . Then Jd P2 e I such
that w(P2) > w(Pl). Let % e Co(Pl). Then x(R) > v(R) for all
Rc N which implies that w(Pl) = x(N) i_w(P2) and this is a contradiction!
Hence M (Co) c Hz.
Let Pl ‘ Hz and assume P2 e M{Co) < HZ. Let x ¢ Co(PQ). Then
x(R) > v(R) for all Rec N. If x(P) > v(P) for some R ¢ Pl’ then
w(Pz) £ x(N) > W(Pl)’ contradicting the fact that Pl € HZ. Hence
x(P) = v(P) for all P ¢ Pl = %E Co(Pl) = Pl e N(Co). Therefore

m(Co) > 1. ]

Corollary 3.13. Let (N,v) be a game with side payments. Then for all

Pl’ P2 e N(Co), Co(Pl) = Co(PQ).

Corollary 3.l4. Let (N,v) be a game with side payments. If there is a

P e Hz such that Co(P) = @, then TI(Co) = @.

Given a game [ = (N,v) define a game rz (N,vz) derived from I as

follows.




ug

z. 1fF Rz N
(3.14) vZ(R) =

v(R) for all other R c N

where 2z = max w(P).
Pell
When there is more than one game under discussion, we shall denote the
sets Co(P), Nn(Co) and n, by Co(P,I'), 1m(Co,I'), and HZ(F),

respectively.

Theorem 3.15. Let I = (N,v) be a game and Fz be as in Relation

(3.1%). Then if ColP,I') # By ColP,F) = cO((N),rz).

Proof: From the definition of Fz it is clear that for P # (N)
Co(P,T) = Co(P,FZ). From Theorem 3.12 we obtain H(Co,FZ) = HZ(PZ).
Since (N) e HZ(FZ), by Corollary 3.13, Co(P,FZ) = Co((N),Fz). Hence

the theorem follows. [:]

Games with nonempty cores corresponding to the grand coalition have
been characterized by Bondareva [19,20] and Shapley [93]. For the sake
of completeness we will repeat this characterization here.

A balanced set B is defined to be a collection of subsets R of
N with the property that there exist positive numbers &§_ VR « B

R

called weights, such that for each i ¢ N we have

(3.15) ) 8 = 1.
{ReB: icR}

A game (N,v) 1is called balanced iff
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(3.16) I 8gv(R) < v(N)
ReB

holds for every balanced set with weights {GR}. The following theorem

was proved by Bondareva [19,20] and Shapley [93].

Theorem 3.16. Let (N,v) be a game. Then Co((N)) # # if and only

if the game is balanced.

Corollary 3.17. Let T = (N,v) be a game. Then 1I(Co,T) # @ if and

only if the game (N,vz) is balanced.

Proof: (Necessity): N(Co,T) # § = Co((N),(N,vz)) # @ (by Theorem 3.15)
=> (N,vz) is balanced (by Theorem 3.16).

(Sufficiency): If FZ = (N,vz) is balanced = Co((N),FZ) £ @ (by
Theorem 3.16). If (N) € HZ(F) then T = Fz and we are finished.
Otherwise 2 P ¢ HZ(FZ) such that P #£ (N). Then, Col(P,T) = Co(P,FZ) =

Col(N),T ) # 8. [

Thus we have completely characterized KO(Co) and JO(Co) for all

games with side payments.

Example 3.4. (A game with no solution. See Lucas [58,59].)

Let N = {1,2,3,4,5,6,7,8,9,10} and v be given by

v(N) = 5, wv(13579) = 4,
v(12) = w(34) = v(56) = v(78) = v(910) = 1,

v(3579) = v(1579) = v(1379) = 3,

v(357) = v(157) = »(137) = 2,
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v(359) = v(159) = v(139) = 2,
v(1479) = v(3679) = v(5279) = 2, and

v(R) = 0 for all other R < N.
In this game 2z = 5, E = {(N), Pl = (12)(34)(56)(78)(910)} and
Co((N)) = Co(Pl) = {x: x(12) = x(34) = x(56) = x(78) = x(910) = 1,

and x(13579) > u4}. By Theorem 3.10,

Ko(Co) = {(N),Pl}, and

JO(Co) = Co((N)) X{(N),Pl}.

3.6 Solutions with Respect to the Shapley Value

Shapley [89] defined a unique value satisfying three axioms for all
n-person cooperative games with side payments. It was assumed that
the grand coalition would form. Later, Aumann and Dreze [8] generalized
the axioms to define the Shapley value for all coalition structures.

A permutation o of N 1is a one-one function from N onto
itself. For R « 2N, write aR = {ai: i € R}. If v is a game on
N, define a game a%v on N by

(3.17) (o#v)(R) = viaR) for all Re 2.

Also, if v and u are games on N, define a game v+u on N by

(3.18) (v#u)(R) = v(R) 4+ u{(R) for all R ¢ 2




S

Cadlira aiss  BE= (Pl,...,Pm) invariant under a if an = Pj for all

j=1,...,m. Player i is null if v(Ru (i)) = v(R) for all R € 2N.

Let GN denote the set of all games with side payments on N. Since

we assume that for all games with side payments, v(@) = 0 and v(i) = 0

R TAR b A MY YA ) e T N T e T e

¥V ieN, GN is a Euclidean space of dimension o (n+l).

Fix N = {1,...,n} and P = (Pl,...,Pm) ¢ . The Shapley value

. : . N n .
corresponding to c.s. P is a function QP from G to E i.e. 4

function that associates with each game a payoff vector satisfying the

following axioms:

A.1 (Relative Efficiency): ¢P(v)(Pj) = V(Pj) for all 3§ = ls... M.

A.2 (Symmetry): For all permutations o of N under which P is

invariant,

®P(a*v)(R) = ¢p(V)(GR)-

A.3 (Additivity): ¢p(v+u) = ¢P(v) + ¢P(u).
A.4 (Null Player Axiom): If i 1is a null player, then ¢P(v)(i) = 0.

When P = (N), the above axioms are equivalent to Shapley's axiom which

specify a unique value ¢(v) = (¢l(v),...,¢n(v)) given by

{e-1)!(n-r)!
nl

(3.19) ¢,(v) = ¢ (V)(Q) = ) [v(R) - v(R - {iD]

RcN

where r = IR], the cardinality of coalition R. For each R ¢ 2N,

denote by v|R the game on R defined for all T < R by
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(3.20) (v|R)(T) = v(T).

Theorem 3.18. Fix N and P = (P .,Pm). Then there is a unique

10"

value @P and it is given for all Jj = 1l,...,m and i ¢ Pj by

(3.21) (o,v)(i) = (¢ (v[P.))(1).
P ) J

CB
]

Proof: See Aumann and Dreze [8, pp. 220-221].

Since Q(P)+ is nonempty for all P ¢ I, T(¢) = T. Also note from
(3.19) that if v 1is superadditive, then ¢(P)(1) » 0 hence
®(P) ¢ I(P). Also, since ®(P) consists of a unique outcome for all
P ¢ I, by Theorem 3.6 the s.c. model and the c.s. model give identical
results. For convenience, all the results in this section are stated only
for the c.s. model.

A partial existence theorem for KO(¢) is as follows:

Theorem 3.19. Let I' be an n-person game in which the only coalitions
with positive values are all the (n-1)-person and n-person coalitions.

Then Ko(¢) 9.
Proof: Let us denote the game as follows:
vii) = 0 for all i e N,

v(N - (1)) = a5 for all i e N,

v(N) = b, and v(R) = 0 for all other R < N.

i . g ;
When there is no doubt about the game v under consideration, we shall
denote @P(v) by ®(P) which is consistent with the previous section.
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We can assume (by relabelling of the players) that

€3.22) a i_a2 < eeeSan.
n

Let a= ) a, and NT_ = {P e m: w(P) = a }. Using (3.19) and (3.21)
i=1 @2 “n i

we have

(3.23) d((N))(i) = ((n-1)b + a - n-ai)/(n(n—l)).

By (3.22) we have

(3.24) d((N))(1) > o((N))(2) > ... > &((N))(n)

Also,

a,/(n-1) for j =1,...,n
(3.25) o((N-1)(i))(§) = 3 # 3
0 for j =1

Clearly, the only c.s.'s we need look at are (N) and (N-i)(i) for

& =L vesn. ALL the ¢.S's "ot in Ha (except (N)) are dominated
n
Py e.s.'s 1in Ha . From Expressions (3.23), (3.24) and (3.25) it follows
n
that (N) dom(¢) (N-n)(n) iff

¢((N))(n-1) > ¢((N-n)(n))(n-1)




i.en LEE
Also if a_ =
TEE

Jeel L aEE

Now,

iff

i.e. 1iff

Hence we have
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b > (n(an + an—l) - a)/(n-1).

(i.e. (N - (n-1))(n-1) € ﬂa ) then
n

(N) dom(®) (N - (n-1))(n-1)

o((N))(n) > ¢((N - (n-1))(n-1))(n),

b > (n(an + an—l) - a)/(n-1).

(N-n)(n) dom(®) (N)

((N-n)(n))(1) > ¢((N))(1),

b < (nla + a ) - a)/(n-1).
n A&
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(N) If b > (n(an + an_l) - a)/(n-1)
K (9) = “an if b<(n(a +a)-a)nl)
(N) u Il otherwise.
an D

Corollary 3.20. Let T be a 3-person game with side payments. Then

KO(¢) 0.

In general, this is the strongest existence result we can obtain. TI.e.

there is a W-person game for which Ko(¢) . This is shown in Example
329

If Co(P) # #, ¢(P) may not belong to Co(P). Hence Corollary 3.11
is not applicable for the Shapley value. The following example illustrates

this fact.

Example 3.5. Let N = {1,2,3} and v be given by v(1) = v(2) = v(3) = 0,
v(12) = 50, wv(13) = 50, wv(23) = 56, and v(123) = 80. Then the Shapley

value is given by:

7 (20,67, 27.87, 71.67)  AF P = {123)
(0, 28, 28) it P = (1)(23)
»(P) = 4 (25, 05 25) if P = (13)(2)
(25, 25, 0) if P = (12)(3)
\ (0, 05 0) if P = (1)(2)(3)

Note that Co((123)) = Conv{(20, 30, 30), (24, 26, 30), (24, 30, 26)}
but ®((123)) ¢ Co((123)). The transition digraph is shown in Figure 3.4,

(¢) = (1)(23).

and hence K0(¢) = K

X




(1)(2)(3)

(12)(3) (123)

— -
(13)(2) (1)(23)

Figure 3.4. The transition digraph for Example 3.5.

The above example illustrates a weakness of the Shapley value in that
the Shapley value is derived entirely from the characteristic function
rather than the bargaining positions of the players in the process of
coalition formation. However, the Shapley value has been extensively
used as an a priori measure of power of players in "simple'" games. Hence
the study of KO(¢) and Kl(¢) is most appropriate for simple games.

The class of all simple games forms a subclass of the class of all
cooperative games with side payments. A simple game is a game in which
every coalition has value either 1 or 0. A coalition R c N is winning
if v(R) = 1 and losing if v(R) = 0. A simple game can be represented
by a pair (N,W) where N is the set of players and W is the set of

winning coalitions. A simple game is monotonic iff R ¢ W and

T>R=>T e W, and superadditive (or proper) iff R W > N - P ¢ W.

Superadditivity implies monotonicity in simple games. A winning coali-

tion R is called minimal =inning if every proper subset of R is losing.

A monotonic simple game can be .. presented by the pair (N,wm) where W™

is the set of all minimal winning coalitions. If W™ = {{i}}, +then

player 1 is said to be a dictator. If 7 e W™ # @, then player j
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is said to be a veto player. If Kk ¢ me then player k is said to be a
dummy. Dummies play no active role in the game and for all practical

purposes can be omitted from the set of players. A weighted majority game

is a monotonic simple game that can be represented by
(3.26) [q: al,aQ,...,an]

where q > 0 1is called the guota, a; >0, 1=1,...sn Iis the weight

of the ith player, and R € W <= 2 a; > q. Expression (3.26) is said to
ieR

be a weighted majority representation of the simple game. Two weighted

majority representations are said to be equivalent if they represent the
same simple game. E.g. ([2; 1,1,1] and [5; 2,3,4] are equivalent since
both represent the game ({1,2,3}, W = {(12), (13), (23)}). Not every

monotonic simple game may have a weighted majority representation.

Example 3.6. The most common of all simple games is the straight majority

game Mn’ n odd, in which

W" = {Rc N: |R|] = (n+1)/2)

where |R| denotes the cardinality of coalition R. The Shapley value

is given by

1/|[R| if i e ReW, ReP
®(P)(i) =

E 0 otherwise.

I It is clear that




Kl(o) = K0(<l>)

Example 3.7. The p
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= {P ¢ NI: P contains a minimal winning coalition}.

ure bargaining game Bn’ is given by w™ = {(N)}.

The Shapley value i

clearly, Kl(¢) = 4

Example 3.8. Let

Hence Kl(¢) - K0(¢
a dummy. So essent

is winning by himse

Example 3.9. Consi
minimal winning coa

Shapley value is gi

s given by

1/n if P = (N)
e(P)(1) =

0 otherwise

gt9? = {(N)}.

[ be a proper game with a dictator. Then

1 if £ 18 a dictator

8(P)(1) =

0 otherwise.

) = . Note that every player who is not a dictator is
ially we have a l-person game in which the only player

ks

der the weighted majority game [3: 2,1,1,1]. The
litions are W™ = {€(12)5 €13), C1u), (23u)}. The

ven by
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((1/2, 1/6, 1/6, 1/6) if P = (1234)
(2/%, 1/6, 1/6, 0) if P = (123)(y)
(273, /6, O, 1/6)} if P = (124)(3)
(2/3, 0, 1/6, 1/6) if P = (134)(2)

$CP) = ¢ (1/2, 1/2, O, O) if P = (12)(34) or (12)(3)(&)

(1/2, 0, 1/2, 0) if P = (13)(24) or (13)(2)(u)
CIT/ 25000 1@ i) if P = (14)(23) or (14)(2)(3)
€0, 143, 143, 1/8) if P = (1)(234)

(o, 0, @, 0) otherwise.

The transition digraph of the game is shown in Figure 3.6. Since all c.s.'s
that contain only losing coalitions are dominated, these are omitted from

this transition digraph. Note that KO(¢) = @. However,

Kl(o) = {(1)(234), (12)(3)(4), (12)(3u), (13u)(2), (18)(2u)

(13)(2) (), €128)(3), (1u)(28}), €14)(2)(3), (123} (u)}.

A closer look at the Shapley value for different c.s.'s in Example 3.9
reveals the following observation. If players 1 and 2 who are in a winning
coalition with 3 in the c.s. (123)(4) decide to expel player 3 from the
coalition and form the smaller winning coalition (12), one would expect
both players not to decrease their power in the smaller winning coalition
(12) since there are fewer players to share the same amount of power.
However, player 1 actually does decrease his power from 2/3 to 1/2.

We shall call this phenomenon the paradox of smaller coalitions. To under-

stand why this phenomenon occurs, let us look at Theorem 3.18. It states
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(12)(3u4)
(12)(3)(u)

(13u)(2)

(124)(3

(123u) g
(13)(2un)
(13)(2)(4)
(128 Yy (14)(23)
(14)(2)(3)

Figure 3.5. The transition digraph in Example 3.9.

that given a c.s. P = (Pl,...,Pm) the Shapley value of player i in
coalition Pj depends only on the subgame lej. I.e. the Shapley
value of a player in a coalition is oblivious of the presence of other
players not in the coalition for bargaining purposes. We shall regard
this phenomenon as a '"flaw" in the properties of the Shapley value. To
make the above discussion more formal, let T = (N,W) be a simple

game and o be a payoff value concept (i.e. for all games and for

each P e I, o(P) is a single point in En, where n = the number of

players). We say I does not exhibit the paradox of smaller coalitions

w.r.t. payoff value concept o iff the following holds:

Let Pl’ P2 e T such that Pk € Pl, Pk e Wy, P . c Pk

is such that pkl e W, and Pkl ¢ P7. Then

o(P)(1) > o(P)(1) for all i <P




The following result is a consequence of the above definition.

Theorem 3.21. Let I be a proper simple game that does not exhibit the

paradox of smaller coalitions w.r.t. &. Then Ko(¢) 0.

Proof: Let T e W" such that |T| < |R| for all Re W™, Let PeT

be such that T ¢ P. Then &(P)(i) = 1/|T| for all i e T. Suppose

q Pl € N such that Pl domR(¢) P for some R € Pl’ i 6., ¢(Pl)(i) >
®(P)(i) for all i e R. Let R' be any minimal winning coalition con-
tained in R, i.e. R' < R and R' € W™, Let P2 € T Dbe such that

R' ¢ P,. Then since T does not exhibit the paradox, ¢(P2)(i) Z_¢(Pl)(i)

for all % € R'. Also

1/|R*] if ie R

¢(P2)(i)

0 otherwise.

Since T is proper, R' n T # @§. Hence for all ie¢ R'n T,

Vv

1/RY) = o(P,)(1) > o(P )(4)
(since [R'| > |T|)! [:]

®(P)(1) = l/ITl, which is a contradiction

Let
(3.27) t = min |R|
ReW™
and let
(3.28) n. = {P ¢ N: P contains a winning coalition of size t}.

t

Then we obtain the following.
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Corollary 3.22. Let T be a proper simple game that does not exhibit the

paradox of smaller coalitions w.r.t. ¢. Then KO(¢) > Ht.

That in general we cannot strengthen the above result is shown by

the following example.

Example 3.10. Let T be a 4-person game represented by [4; 2,2,1,1].
The minimal winning coalitions are {(12), (134), (234)}. The Shapley

value is given by

((1/2, 1/2, 0, 0) iF P o= (12)(34) or (12)(3)(w)
(1/2, 1/2, 0, 0) 1F P o= (123)(8) or (124)(3)
o) = { (1/3, 0, 1/3, 1/3)  if P = (134)(2)
(0, 1/3, 1/3, 1/3)  if P = (1)(234)
(173, 1/3, 1/6, 1/6) 1f P = (123)

Note that the game does not exhibit the paradox of smaller coalitions.
Alse & = 2, and ﬂt = {(12)(3)Cu), (12)}(34)}. However,

KO(¢) = {(12)(3)(4), (I2)(3u), (123)(u), (124)(3)}. Observe that
players 3 and 4 are dummies in the subgame on {1,2,3} and {1,2,u4}

respectively.

An interesting problem raised by Theorem 3.21 is to characterize
the class of games that do not exhibit the paradox of smaller coalitions
w.r.t. ®. Let us look at symmetric games. A game (N,v) 1is called

symmetric if the value of a coalition depends only on the size of the

coalition. A symmetric monotonic simple game is of the type M e (N,w)
Ty
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where W = {R c N: |R]| > k}. The following proposition follows

from the symmetry axiom of the Shapley value.

Proposition 3.23. Let T be a symmetric simple game. Then T does

not exhibit the paradox of smaller coalitions w.r.t. ¢. In fact,

KO((I)) =T,.

Proof: The Shapley value is given by

IRl if feReP and Re W
o(P)(1) =

0 otherwise.

Hence the result follows from Statement (3.21). [:]

Since Example 3.10 does not exhibit the paradox and is not symmetric,
Proposition 3.23 is not a complete characterization. A 1list of all proper
simple games with four or fewer players is given in the appendix along with
the Shapley value ¢ corresponding to all coalition structures, KO(¢),
and whether or not the game exhibits the paradox.

Another interesting problem is to determine, if possible, a power
index that has all the desirable properties of the Shapley value but that
does not exhibit the paradox of smaller coalitions.

The most critical axiom of the Aumann-Dreze generalization of the

Shapley value is A.3.

A.3. ¢P(v+u) = ¢P(v) + ¢P(u).

This axiom is acceptable if and only if we assume that the c.s. P is fixed

P

T T T T Y e P
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and that players in a coalition Pk ¢ P cannot bargain on the basis of the

values of coalitions not contained in Pk. This assumption is not appro-
priate for our model where the players are bargaining for a coalition
structure and no c.s. is fixed.

Another generalization of the Shapley value (which he defined only for

the grand coalition) to the case of all coalition structures which is

appropriate for monotonic simple games is as follows.

(i) The Shapley value corresponding to the grand coalition is
used as an a priori measure of power of the players. This

is suggested by Shapley and Shubik [9u].

(ii) And within any coalition in a c.s., a player can expect to

share in the payoff proportional to his power as defined in

(i). This is suggested by Gamson [3u].

Assumptions (i) and (ii) define a unique value for all monotonic simple
games which we denote by ¢'. We can define ¢' by axioms as follows:
The (generalized) Shapley value ¢' 1is a function from 1 x GN

L0 . : ! :
to E, 1i.e., a function that associates with each game and a c.s. a

payoff vector satisfying the following axioms:

A'.l (Relative Efficiency): ¢'(P,v)(Pk) = v(Pk) for all P, € P; and

k
Sl e .

A'.2 (Symmetry): For all P ¢ NI, and all permutations a of N under

which P 1is invariant,

¢'(P,a%v)(R) = ¢'(P,v)(aR) for all R c N.
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A'.3 (Additivity): If v and u are games in GN, then

o' ((N),v+u) = o' ((N),v) + ¢'((N),u)

A'.4 (Null Player Axiom): If i is a null player, then

6 for all P e I.

o' (P,v)(i)

A'.5 (Proportionality): For all P

m

I,

o' (P,v)(i) ~ o' ((N),v)(3) = ¢ (P,v)(F) - &' ((N),v)(i)

for all i,j e P, e F.

When P = (N), Axioms A'.l-A'.4 are equivalent to Shapley's axioms
which specify the unique value given by Expression (3.19). Denote

$'((N),v) by ¢(v) = (¢l(v),...,¢n(v)). (Since &'((N),v) = ¢, .(v)

(N)

our notation is consistent.) Next we obtain the following result.

Theorem .20, Eix N = {1, s..ant and let GN denote the set of all
monotonic games on N. Then there is a unique value satisfying Axioms

A'.1-A'.5 given by Expression (3.19) and

- ¢.(v)
— 3 . ¥(P.) where Pk ¢ P is such that
Toe.(v)
iep, * . P
4 k j Pk’ if j 1is not a null player
(3.29) ¢'(P,v)(j) =

L 0 if j 1is a null player
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Proof: It can be easily shown that Statements (3.19) and (3.29) satisfy

Axioms A'.l1l -A'.5. Uniqueness follows from Axioms A'.l and A'.S5. I:]

Corollary 3.25. Let T Dbe a monotonic simple game. Then I does not

exhibit the paradox of smaller coalitions w.r.t. &'.
Proof: This follows from Expression (3.29).

In view of Corollary 3.22, we might be tempted to assert that

K0(¢') > Ht. However, the following example shows that it is not true.

Example 3.11. Consider the weighted majority game given in Example 3.9,

[3; 2,1,1,1]. Then ¢' 1is given by

3/ 6 1/65 /B A6y 1iE P = (1234)
5 (375, 1/5, 1/5, 0) i B = (12
o'(P) =
@3/, 1/u, 0, 0 if P = (12)(3)(4) or (12)(34)

05 1/8, /35 173D i P (1)(23n).

For all other c.s.'s, ¢'(P) can be determined by the symmetry of players
2, 3, and 4. It is clear that KO(¢') = {(1)(234)}. Note that in this

example t = 2, hence (1)(234) ¢ m,-

Let

(3.30) s = min Z ¢i(v),

Rcwm L

TWhen there is no doubt about the game v under consideration, we shall

denote ¢'(P,v) by ¢'(P) which is consistent with the established
notation.




(3..31) ﬂq = {P ¢ N: P contains a coalition R such that

Y ¢.(v) = s}.
icR *

Then we have the following important fact.
Theorem 3.26. Let T be a proper simple game. Then Ko(é') = HS.

Proof: Denote ¢'((N)) by ¢ = (¢l,...,¢n). Let Pl € M_. Suppose

P2 € T such that P2 domR(¢’) Pl for some R ¢ P2 such that R e P.

Then ¢'(P2)(i) > Q'(Pl)(i) for all i e R. et T e Pl be such that

TeW" and )3 ¢; =s. Since T isproper Rn T # #. Pick je Rn T.
ieT

Then ¢'(Pl)(]) = ¢j/s. Since J ¢ R, ¢'(P2)(]) = ¢j/(i§R ¢i) > ¢j/s,
i.e., ] ¢.<s, acontradiction! Hence K (¢')> I_.
R 3 0 s

Let P, eI and P. e I be such that P, ¢ 1 . Then
i s 2 2 s

P, dom_ (¢') P, where T e P. such that T e W" and } ¢, = s because
i & T 2 1L seT

¢(Pl)(i) = ¢i/s Forallly Siet B iand ¢'(P2)(i) < ¢i/s for all i e T.

Hence KO(¢') c m- ]

3.7 Solutions with Respect to the Bargaining Set Mil)
The bargaining set was first introduced by Aumann and Maschler [9].

They defined several types of bargaining sets. One of these, denoted by

;l), was shown to be nonempty for every c.s. by Peleg [81].

Let xN denote a vector in E' where r = [R|, whose elements are

M

indexed by the players in R. Let x e I(P) and let i &nd j be two
distinct players in coalition Pk € P. An objection of i against j to

; R ; o - .
x ¢« I(P) is a vector y , where R 1is a coalition containing player i
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but not j, whose coordinates Yy satisfy ¥s ? Xoo Yy > % ¥ 2 € R

ande y, = v(R). A counter-objection to this objection is a vector
2cR
z , where D 1is a coalition containing player Jj but not i, whose

coordinates 2y satisty z, > % for each % - D, =z for each

% g =Yg

{1
2 ¢ Rn D, and Z z, = v(D).

2eD
x € I(P) is stable if for each objection to x, there is a counter-
objection. The bargaining set corresponding to the c.s. P ¢ I, denoted
by Mil)(P) is the set of all stable individually rational payoff

e LOPNS el
(3.32) M§i)(P) = {x e I(P): x is stable}.

Theorem 3.27. Let T be an n-person cooperative game with side payments.

Then Mil)(P) £ ¢ for each P e T.
Proof. See Davis and Maschler [29] and Peleg [81].

As a result H(Mii)) = II. The bargaining set is a natural payoff solution
concept to study the solutions Jo and KO for the following reasons:
(i) the bargaining set for each c.s. consists of payoffs that

are stable in the sense of objections and counter-objections.

If for a particular c.s., a payoff is not in the bargaining

set, some player would have a justified objection (an

objection that has no counter-objection) which when carried

out would result in breakup of the coalition structure.

Hence we are not justified in using unstable payoffs

corresponding to a c.s. to dominate another c.s. Also,

(ii) the bargaining set is nonempty for each coalition structure.

NDT— Io— | | J
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We shall now determine KO(Mil)) for all 3-person games with side
payments.

Consider the 3-person game given by N = {1,2,3},

v(l) = v(2)

v(3) = 0, =(12) = a, v(13) = by w(23) = e,
(3.33)
and v(123)

d, where 0 <a<b<ec and d> 0.

Theorem 3.28. Let T be a 3-person game as in (3.33) with d > (atb+c)/2.

{(1)(23)}

(i) If 4 < ¢, then Ko(Mii))

(ii) 1I£ 4

il Ko(Mii)) {(1)(23), (123)}

{(123)}.

i

(iii) If d > e, then KO(Mii))

Proof: (i) 1In this case we have (a+b)/2 + ¢/2 < d < ¢/2 + ¢c/2, hence

at+b < c. The bargaining set is given by

(0, 0, 0) iF P = (1)(2)(3),
(05 a, 0) if P = {12)(3),
(3.34) Mii)(P) 20¢ (0, 0, B) iR = () (2]
Conv{ (0, c-b, b), (0, a, c-a)} CEPRE NG S
\(0’ d/2 - (b-a)/2, d/2 + (b-a)/2) if P = (123)

Clearly (1)(23) dom(M{ ™)) (12)(3) and (1)(23) dom(Mii)) (13)(2).
Also since (0, c/2 - (b-a)/2, c/2 + (b-a)/2) € M;i)((l)(23)) and

B, (1)(23) dom(Mil)) (123). The transition graph is shown in

Hence Case (i) follows.
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(ii) 1In this case, the bargaining set is as in (3.34) except for

c.s. (123) which is

Mii)((123)) = u{P e,

Therefore (ii) follows. (See Figure 3.7.)

(1) Case.l) o > atb
Here the bargaining set is as in (3.34) except for c.s. (123)
which is given by

M;l)((lQS)) = {(xl,x ,x3): R SR S B X X 2 ¢, and

2 1 == 1 3 — 2 —
X, + %, + X, = d}
For each (0, X, c—xQ) € Mﬁi)((l)(23)) where a 2%, < c-b, we have
((d-c)/3, X, * (d-c)/3, c-x, t (d-c)/3) ¢ Mii)((123)). Hence

(123) dom(Mfl)) (1)(23). The transition digraph is shown in Figure 3. 8.

Case 2) ¢ < atb

In this case the bargaining set is given by

(1)(2)(3),

G0y Oy 0) RN

(pl, Py @) if P = (12763,
(25, g ‘ H
(3.35) Ml P) = < (pl, 0, p3) it P = (1ai2hy
(o, Py pa) 5 PSR 2S )
Ca¢(123)) it P = 025




Figure 3.6. The transition digraph in Theorem 3.28, (i).
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(1)(2)(3)

(12)(3 (123)

(13) (2> (1)(23)

(1)(2)(3)

(12)(3)
e (123)

(132 (1)(23)

Figure 3.7. The transition digraph in Theorem 3.28, (ii).

(LYC2)(8)

(12)(3) —p— (123)

(13)(2) (1)(23)

The transition digraph in Theorem 3.28, (iii) case 1).

Figure 3.8.
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where Py = (atb-c)/2, P, = (atc-b)/2, Py = (btc-a)/2, and

Co((123)) = {(xl,x2,x3): B R R, 2asx FE 0Bk + X, 20,

Let p = (pl f o, t p3), then clearly,
(p, + (d-p)/3, p, * (d-p)/3, Dy + (d-p)/3)  M{")((123))

Hence c.s. (123) dominates (w.r.t. M;l)) every other c.s. This

case completes the proof of the theorem. [:]

Theorem 3.29. Let T be a 3-person game as in (3.33) with 4 = (atbtc)/2.

ii)) EC30S N3 20 GG 23], (128X

(i) If c < atb then KO(M

(41} 1F o = ath ihen KO(Mii)) ((1)(23)}.

Proof: (i) In this case, the bargaining set is as in (3.35) with
Mil)((123)) = (pl, P, p3). The result clearly follows.
(ii) In this case, the bargaining set is as in (3.34). Since

d < ¢, the result follows. [:]

Theorem 3.30. Let T be a 3-person game as in (3.33), with d - (atbtc)/2.

(1) If c<ab then KM ) = ((12)(3), (13)(2), (1)(23)}.
(i) If c>atb then K M) = {(1)(23)).

Proof: (i) In this case, the bargaining set is as in (3.35) except for

c.s. (123) for which it is given by




|
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(p, + (d-p)/3, p, + (d-p)/3, Pyt (d-p)/3)

1 2
if 2c-a-b < d
(3.36) Mii)((123)) = { (0, a/2 - (b-a)/2, d/2 + (b-a)/2)
if b-a < d < 2c-a-b
(05 .0,d) if d < b=a.

In all cases, the transition graph is presented in Figure 3.9. Therefore

(i) follows.

(ii) In this case the bargaining set is as in (3.34%) except for
c.s. (123) for which the bargaining set is as in (3.36). The transi-

tion graph is shown in Figure 3.10. Hence the result follows. [:]

(1)(2)(3)

(12)(3) (123)

CL3C2) (1)¢23)

Figure 3.9. The transition graph in Theorem 3.30, (i).
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(10C2)(3)

(12)€3) (123)

(13)(2) Ot (1)(23)

Figure 3.10. The transition graph in Theorem 3.30, (ii).
Since Theorems 3.28, 3.29 and 3.30 cover all cases, we have proved

the following.

Theorem 3.31. Let T be a 3-person game as in (3.33). Then

(1)
KO(Ml ) £ 8.

For every P < N, if x € I(P) belongs to Co(P), then no player can

have an objection against another player. Thus if Co(P) # 0,
(i) (1)
1 1

Corollary 3.11. So we obtain the following.

Co(P) < M. "(P). Hence the p.s.c. M satisfies the hypothesis of

Lemma 3.32. Let T be an n-person game. If T(Co) # @ then

(1) e (1)
KO(M1 ) # . In fact kO(Ml ) > 1.
Proof: This is a consequence of Corollary 3.1l and Theorem 3.12. l:]

No general existence theorem for KO(MEL)) is known at this time.

Example 3.12 illustrates a pathology for KO(Mil)) which is due to
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a "flaw" in the properties of the bargaining set.

Example 3.12. Let T be a 5-person game with

v(12) = 10, wv(35) = 85, wv(1l3u4) = 148, wv(2345) = 160, and

v(R) = 0 for all other R < N.

A simple computation reveals that the bargaining set is given by

- (0, 10, 05 0, 0) if B = (12)3)Y(u)¢s), (12)¢3)(us5),

(12)(345) or (12)(34)(5),

(0, 0, 85, 0, ) if P = (1)(2)(35)(&), (14)(35)(2),

(124)(35) wor (1)(24)(35),
(0,0, 148, 0, 0) it P = (138)2)(5) wor (L34)(25),

(0, 10 < x, < 12, 160-x,, O, )" if P = (1)(2345),

€0, 10, 18550, @) 2f . P = CLE29(35)(h),

(0l 10 0 B @) foriald other P e IT.

Note that in every c.s. that contains a coalition which has a positive
value, at least one player in the coalition gets zero payoff in the
bargaining set. As a result, due to Condition 3.5 in the definition of

domination, no c.s. dominates another c.s. Hence KO(Mﬁl)) =0l

The above example exhibits a flaw in the properties of the bargaining

set. E.g., in the c.s. (12)(35)(4) player 5 gets zero payoff in the

+Denotes the set {(0, X5 160—x2,

0, 0): 10 < x, < 12},

?
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bargaining set. This is because player 5 has no 'bargaining power' at
all vis-d-vis player 3. Since there are no coalitions with a positive
value that contains player 5 but not player 3, player 5 cannot even
object! However the payoff in the bargaining is counter-intuitive
because we could argue: Why should player 5 enter into a coalition with
player 3 if his share of the resulting coalitional value is the same as
what the player could have obtained had he been in a coalition by himself?
In this respect, we could say that the bargaining set is derived entirely
from the bargaining positions of the players in the process of coalition
formation in contrast with the Shapley value which is derived entirely
from the characteristic function of the game. These two p.s.c.'s reflect
two extreme view points in looking at solutions of cooperative games in
characteristic function form. A major research problem is to define a
p.s.c. that exhibits both the strategic value and the bargaining power of
the players.

One method of attacking this problem in the case of the bargaining
set is to regard the bargaining set as an idealization (of the bargaining
process) and relax the definition of an objection by €, where € is a
small positive real number. More formally, let x ¢ I(P) and i and
j be two distinct players in a coalition Pk ¢ P. An e-objection of
i against j 1is a vector yR, where R is a coalition containing player
i but not j, whose coordinates Vg satisfy Vy ¥R T Ey F, 2Ry

i
for all ¢ ¢ R, and Z ¥ v(R). A counter-objection to this

LeR
e-objection is defined as before. We say x € I(P) is e-stable if for

each e-objection in x, there is a counter-objection. The e-bargaining

set, denoted by Milg, corresponding to c.s. P e I is the set of all
e ’

g-stable x ¢ I(P), i.e.,




i i

(3.37) Miii(P) = {x e I(P): x 1is e-stablel.

We could regard € as a 'sacrifice' each player is willing to make (if
necessary) for coalitional stability.

Note that the results in Theorems 3.28, 3.29, 3.30 and 3.31 as well

M(i)

as Lemma 3.32 remain unchanged if we replace Mil) by e
2

Example 3.13. Consider the game in Example 3.12. The e-bargaining set

is given by

s

(0 < = X &, lO-xl, O Q58 4f P = (12008 )(E)

1
(12)(3)(45), (12)(345) or (12)(3u4)(5),

(0, @ 85-x5, 0y 0 2 x, < g) if P = (1)(2)(35)(4),

(14)(2)(35), (124)(35) or «(1)(2u)(35),

(i) (o <X Ze, lo—xl, 85-x5, 0, 0 < Xe < e) if P = (12)(35)(4),
M.~ (P) =
1€
(0 S % <E, (7% 1“8'x1_xu’ 0 <X S € o) 4if P = (134)(25) or
(134)(2)(5),
(0, 10-¢ < %y < 12%e, 160-x2-xu—x5, 0 <%, <€ 0 < %X <€)

if P = (1)(23u45),

\(O, 0, 0, 0, 0) for all other P e H.

It is clear thet KO(Miiz) = ((12)(35)(4), (134)(2)(5), (134)( 25),
(1)

(1)(2345)} which is more intuitive than KO(Ml I8 =

Example 3.14. (The Chemical Company Game. See Anderson and Traymnor L2k}

Two chemical companies Cl and C_ supply two fabricating companie::




1.

Pl = (Cl)(cz)(Fl)(Fg)’ P2 =
P3 = (Cle)(C2)(F1)’ Pu =
P5 = (Cl)(czFl)(Fl), P6 =
P7 = (C1F2)(C2Fl)'

The respective payoffs (profits) to these coalitions in the particular

coalition structures are:

F. and F2. The permissible cozlition structures are:

(ClFl)(Cz)(F2),
(cl)(c2Fl)(F2),

(ClPl)(CQFQ),

Pl: 25, 155 75, L00: P2: 3005 25, 110-
P3; 500, 30, 85. Pq: 28, 20@, 105.
PS: 30, 425, 90. P6: 400, 600.

P7; 700, 300.

This "partition function" induces the characteristic function:

= — F & = =
V(Cl) 25, v(C2) 15, V(‘l) 75, V(FQ) 100, V(Cl,Fl) 300,

v(Cl,FQ) = 500, V(CQ’Fl) = 200, V(CQ’FQ) = 425,

The bargaining set

3 BT
N (P)-ﬁ

M;l) is given by
( (25, 15, 75, 100)

g0 <
(30 < x,

(25, 15 < x, < 125, 200-x

2

(115 < %, < 225, 15, 300-x

l,

?1

100)

< 225, 15, 75, 500-x,)

100)

78
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¢ (25, 15 _<_x2 < 125, 75, '4?5-)(2) it P =P
(x5 X, 300—xl, u25—x2) i P =P
Mil)(P) = < where x

1» ¥, are as in Figure 3.11

(yl, y2a 200_}’23 300—yl) £ P=P

\_ where ¥y1» ¥, are as in Figure 3.12.

- ki

J 150
4 125 L2571
- 15 ‘ 154
P > P = >
90 115 225 %) 90 115 200 225 'y,
Figure 3.11. The bargaining Figure 3.12. The bargaining
(1) . (i) ;
set Ml (P6) for the chemical set Ml (P7) for the chemical
company game. company game.

The transition digraph is shown in Figure 3.13. Hence

(G
KO(Ml ) = {(ClFl)(CQFQ), (ch?)(chl)}.
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w

Figure 3.13. The transition digraph of the chemical company game.

3.8 Some Modifications of the Coalition Structure Model

In this section, we look at some modifications of the domination
relation in the abstract game (Ii(S),dom(S)). We define two other

domination relations one of which is stronger than dom(S) and the

st Al Sehin e e S0 el L 1 il

other weaker than dom(S).

o 2 34

denoted by Pl w-dom(S) Pz, iff

? Definition 3.9. Let P, P, e N(S) and S be a p.s.c. Then P

weakly dominates P

2’

(3.38) for each y ¢ S(PQ), 7 a nonempty R ¢ Pl and x ¢ S(P,)

such that g > yi for all 1 € R
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Definition 3.10. Let Pl’ PQ € I(S) and S be a p.s.c. Then Pl

strongly dominates P2, denoted by Pl s-dom(S) PQ, iff 3 a nonempty
R € Pl and x € S(Pl) such that for all vy ¢ S(PQ), LE for all

i e R. 1

The following relations are direct consequences of Definitions 3.6,

3.9 and 3.10.

(3.89) If Pl s-dom(S) P2, then Pl dom(S) PQ'

(3.40) If Pl dom(S) P2, then Pl w-dom(S) P2.

Let Ko w(S) and KO s(S) denote the cores of the abstract games
bl 9

((S),w-dom(S)) and (N(S),s-dom(S)) respectively. As a consequence of

Relations (3.39) and (3.40), we have

|
|
; 5 |
¢3.41) Ko,s(S) =] KO(S) KO’W(S). 1

Also, if 8 is a p.s.c. such that for each P e I, S(P) is

: p ; v n
either a single point set in E or an empty set, then

1"
=
~
Wn
~

Ko,s(S) = KO(S)




CHAPTER IV

A COMPARISON WITH CAPLOW'S AND GAMSON'S THEORIES OF COALITION FORMATION

4.1 Introduction

In this chapter, we reformulate Caplow's and Gamson's theories of
coalition formation in a more general and mathematical setting and
compare the predictions of these approaches with our models. Caplow's
theory is restricted to triads, i.e., a three person weighted majority
game with a simple majority quota. Gamson's theory is applicable to all
proper weighted majority games without dictators or veto players.

Before we make this comparison, we note that our theory is normative,
whereas both Caplow's and Gamson's theories are descriptive. Like game
theory, our theory is based on the assumption of "strict rationality".

Luce and Raiffa write:

"...it is crucial that social scientists recognize

that game theory is not descriptive but rather
(conditionally) normative. It states neither how people
do behave nor how they should behave in an absolute
sense, but how they should behave if they wish to
achieve certain ends." [65]

However, as noted by Gamson [34, p. 380],

"...a normative theory often provides a useful starting
point for a descriptive theory."

4.2 Caplow's Theory of Coalitions in the Triad

Much of the recent research on coalition formation in sociology and

psychology was generated by a paper by Caplow [22]. Caplow proposes that
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the formation of coalitions

"depends upon the initial distribution of power, and,
other things being equal, may be predicted under certain
assumptions when the initial distribution of power is
known." [22]

Caplow's four assumptions are:

A.1l. Members of a triad may differ in strength. A stronger mecmber can

control a weaker member and will seek to do so.

A.2. Each member of the triad seeks control over the others. Control
over two others is preferred to control over one other. Control

over one other is preferred to control over none.

A.3. Strength is additive. The strength of a coalition is equal to

the sum of the strengths of its two members.

A.4. The formation of coalitions takes place in an existing triadic
situation, so that there is a pre-coalition condition in every
triad. Any attempt by a stronger member to coerce a weaker
member into joining a non-advantageous coalition will provoke

the formation of an advantageous coalition to oppose the coercion.

Caplow enumerates six different triadic power structures and,
based on his assumptions, makes predictions as to which coalition:

will form in each type of triad. In a subsequent paper, Caplow [23]

lists two more types of triads that were overlooked in the original
presentation along with his predictions. The predictions are listed

in Table 4.1. Before we compare our theories with Caplow's theory, we
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will restate Caplow's theory in a mathematical settingf.
Let T Dbe an n-person weighted majority game

(4.1) [q; a .,an] where q > (al +...4 an)/z,

12

and let W denote the set of all winning coalitions in T'. Let i

and j be two distinct players. We say that player i controls player

j in coalition structure P iff either

(4.2) a; > aj, and i,j € Pk eW, P eP, or

(4.3) ie Pk ell, j¢gP B i 2

Let B(P)(i) denote the number of players player i controls in c.s.

P. The Caplow Power Index, denoted by k, is defined as follows:

B(PY(1)/ § B(P)(§) if ) B(P)(5) # 0
jeN jeN
(4.4)  x(P)(i) =

0 otherwise

for d11 i ¢ N and a1l P e T,

Intuitively, «(P)(i) denotes the relative power of player i when the :

3 13
players are aligned as in c.s. pt ’

1.'I‘hc author assumes full responsibility for the ensuing formulation, which,
though never formally stated, is implicit in Caplow's paper [22].

++Note that, although Caplow stated his theory only for the restricted case
of triads, our formulation of Caplow's theory holds for the more general
case of n-person proper weighted majority games.
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We are now in a position to compare Caplow's predictions with the
predictions of our theories. Since a unique outcome is associated with
each coalition structure, by Theorem 3.6, the s.c. model and the c.s.
model indicate the same results with respect to the Caplow power index.
Examples 4.1-4.8 deal with the eight different types of triads analyzed
by Caplow. At the end of each example, we quote Caplow's analysis of

the triad, partly to justify our definition of the Caplow power index.

Example 4.1. Consider the Type 1 triad [2; 1,1,1]. Then the Caplow

ABC
power index, «, 1is given by
c (05 0, 0) if P = (A)(B)(C)
(1/2, 1/2, G} if P = (ABMC)
k(P) = é (1/2, 0, 1/2) if P = (AC)(B)
(O, 142, 172 dfF P = {(A)(BC)
& (05 0, @) if P = (ABC)

The transition digraph is as in Figure u4.1. KO(K) = {(AB)(C), (AC)(B),

(A)(BC)}. Caplow argues:

", ..each member strives to enter a coalition within
which he is equal to his ally and stronger (by virtue
of the coalition) than the isolate." [22]

Example 4.2. Consider the Type 2 triad [5; 3,2,2]. Then the Caplow
ABGC
power index, «k, is given by

e
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r (0, 0, 03 if P = (A)(B)(C)
(2/3, 1/3, 0) if P = (ABY}C)
k(P) = < (2/8, 0, 143) 1 © = (ACHED :
Conn /20 1) i E P (A (IR
(10 0D if P = (ABC)

The transition digraph is shown in Figure 4.2. KO(K) =AY CEC) T,

Caplow argues:

"...Consider the position of B. If he forms a coalition
with A, he will (by virtue of the coalition) be
stronger than C, but within the coalition he will be
weaker than A. If, or the other hand, he forms a
coalition with C, he %ill be equal to C within
the coalition and stronger than A by virtue of the
coalition. The position of C 1is identical with that
af "B e

Example 4.3. Consider the Type 3 triad [3; 1,2,2]. Then the Caplow
power index, «, is given by et
r (0, 0, 0) if P = (A)(B)(C)
(173, 2/3, 6) if ¥ = {aB){(C)
«(P) = ¢ (1/3, 0, 2/3) if P = (AC)(B)
(O 2 oL/ TP = CAT(BE)
& (04 L/2¢ 1/2Y if P = (ABC)

The transition digraph is shown in Figure 4.3. KO(K) = {(ABY(CY, CACY(B)IL.

Caplow argues:
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(A)(B)(C)

(AC)(B)
(A)(BC)

Figure 4.1. The transition digraph of Type 1 triad.

(R)(B)(C)

(AB)(C) (ABC)

—
(AC)(B) XKD

Figure 4.2. The transition digraph of Type 2 triad.
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"...A may strengthen his position by forming a coalition
with either B or C, and will be welcomed as an ally
by either B or C. On the other hand, if B joins C,
he does not improve his pre-coalition position of equality
with C and superiority to A. His only motive to enter
a coalition with C is to block AC. However, C's
position is identical with B and he, too, will prefer
A& to B as an ally." [22]

Example 4.4. Consider the Type 4 triad [3; 3,1,1]. Then the Caplow
B €

power index, «k, is given by

Qb)) if P = (A)(B)(C)
(273, 173, 0y if P = (BBMcC)
k() = < (2/3, 0, 1/3} if P = (ACHB)
(1, 0, 0) if P = (A)(BC)
L {1, G, @) if P = (ABC)

The transition digraph is shown in Figure Uu.u4. KO(K) = {(A)(B)(C), (A)(BC),

(ABC)}. Caplow argues:

"...B and C have no motive to enter a coalition with each
other. Once formed, the coalition would still be weaker
than A and they would still be equal within it. A
on the other hand, has no motive to form a coalition with
B or C, since heis stronger than each of them and is
not threatened by their coalition. No coalition will
be formed, unless B or C can find some extraneous
means of inducing A to join them." [22]

Example 4.5. Consider the Type 5 triad [5; 4,3,2]. Then the Caplow
A BZC

power index, «, is given by




(A)(B)(C)

(AB)(C) caomffem: (ABC)

4‘_
(AC)(B) (A)(BC)

Figure 4.3. The transition digraph of Type 3 triad.

(A(B)(C)

(AB)(C) ® (ABC)

® (A)(BC)
(AC)(B)

Figure 4.4. The transition digraph of Type 4 triad.
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¢ (a, 0, 0) if P = (AXBXC)
(2/3, 1/3, 0) if P = (AB)(C)
k(P) = { (2/3, 0, 1/3) if P = (AC)(B)
(o, 2/8, 3/3) if P = (K)(Be)
L €2/3, 1/8, 0} if P = C4BC)

The transition digraph is shown in Figure 4.5. KO(K) = {(AC)(B), (A)(BC)}.

Caplow argues:

".,..A seeks to join both B and C and C seeks to
join both A and B but B has no incentive to enter
a coalition with A and has a very strong incentive
to enter a coalition with C. Whether the differential
strength of A and B will make them differentially
attractive to C lies outside the scope of our present
assumptions." [22]

Example 4.6. Consider the Type & triad [u4; 4,2,1]. Then the Caplow
power index, k, 1is given by e
(ls 0, 0) ifF P = LA(BYC)
(2/3, 1/3, 0) if P = (AB)(C)
«(P) = < (2/3, 0, 1/3) if P = (AC)(B)
(1, 0, 0) if P = (A)(BC)
\ (2/3, 1/3, ©0) if P = (ABC)

The transition digraph is as in Figure u4.6. KO(K) = {(A)(B)(C), (A)(BC)}.

Caplow argues:
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(A)(B)(C)

. (AB)(C (ABC)

(AC)(B) (A)(BC)

Figure 4.5. The transition digraph of Type 5 triad.

(A)(B)(C)

(AB)(C) (ABC)

[} \
(AC)(B) (A)(BC)

Figure 4.6. The transition digraph of Type 6 triad.
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"...A 1is stronger than B and C combined and has no

motive to form a coalition. As in Type 4, true coalition

is impossible. However, while in .ype 4 both of the

weaker members seek to join the stronger member, only C

can improve his position by finding some extraneous

means of inducing A to join him." [22]
By claiming that only C can improve his position by joining A,
Caplow seem to imply that B controls C in the c.s. (A)(B)(C).
Such an assumption seems unreasonable to us and we resolve this small
discrepancy by suggesting that Caplow has erred in making such a claim.

Note that a similar discrepancy arises in Caplow's analysis of the

Type 3 triad where he claims that B is superior to A 1in c.s. (A)(B)(C).

Example 4.7. Consider the Type 7 triad ([4; 3,2,1]. Then the Caplow
power index, «k, 1is given by i
r (0, 0, 0) if P = (A)(B)(C)
(235 /S ) e P =R AR (O
k(P) = (285 0, L/8) if P = (BC)(B)
(0, 0, 0) if P = (A)(BC)
L (23, L8 O if P = (ABE)

The transition digraph is shown in Figure 4.7. Hence, KO(K) = 4 (8B)Y(CY,

(AC)(B), (ABC)}.

Example 4.8. Consider the Type 8 traid [3; 2,1,1]1. Then the Caplow
ABC

power index, «, 1is given by




‘ 9y
AL K 60! if P = (A)(B)(C)
(2/3, 1/3, 0) if P = (AB)(C)
; «(P) = { (2/3, 0, 1/3) if P = (AC)(B)
: .(o, 0,5 10D if P = (A)(BC)
L1, 6, 0) 1% P = (hBe)

The transition digraph is as in Figure 4.7. Hence, KO(K) = {(AB)(C).,

(AC)(B), (ABC)}. For the Type 7 and 8 triads, Caplow argues:

"...the combined strength of B and C is exactly
equal to A, so that no effective coalition of B

and C 1is strategically possible. In other words,
although a coalition of B and C can block the
dominance of A, it is not sufficient to control

the situation, and, therefore, the probable coalitions

under the standard assumptions are AB or AC." [23]
(A)(B)(C)
(AB)(C) SLRBE
[
(AC)(B) (A)(BC)

| Figure 4.7. The transition digraph of Types 7 and 8 triads.
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This completes our analysis of the eight different triads. The
results are summarized in Table 4.1. A comparison reveals almost
total agreement. All the c.s.'s predicted by Caplow are predicted
by our theory. The only disagreements are in Types 4, 6, 7, 8, where
our theory predicts more c.s.'s than that predicted by Caplow. However,
this can easily be explained. Caplow implicitly assumes that in every
triad, bargaining for coalitions start from the c.s. (A)(B)(C). A
quick look at Figures 4.1-4.7 will reveal that with this additional
assumption, our theory gives exactly the same predictions as Caplow's.
Vinacke and Arkoff [109] conducted experiments to test Caplow's
theory. Their results, shown in Table 4.2, tend to support Caplow's
theory in general with a few disagreements especially in the case of
Type 3 and Type 5 triads. In the Type 3 triad, Caplow predicts coalition
structures (AB)(C) and (AC)(B) without any reference to their
relative frequency of occurrence. However Vinacke and Arkoff note that
in the Type 3 triad, c.s. (AC)(B) occurs more frequently than c.s.
(AB)(C). In the Type 5 triad, Caplow predicts coalition structures
(AC)(B) and (A)(BC) with the reservation that
"...whether the differential strength of A and B
will make them differentially attractive to C lies
outside the scope of our present assumptions." [22]
The results of the Vinacke-Arkoff experiments indicate that in the
Type 5 triad, c.s. (A)(BC) occurs more often than c.s. (AC)(B).
Chertkoff [25] makes an additional assumption which leads to the
conclusion that in the Type 5 triad, c.s. (A)(BC) occurs twice as

frequently as (AC)(B) and that c.s. (AB)(C) does not occur at all.

e

4




*SIUBWTJIBCKD JFJONAY-OYOBUTA BY} UT speral Jo sadhl XTS 2yl Ul peawdoj Sadniondis uo

¢t °T1qel

(09) (V)

(8)(2v)

(0)(gv)

(D) (g) (V)

$8an3onais
UoT1TITROD

uoTiejuassadsy
: LKitaoleR
< < 3 < ¢ < < < “ < 3 < < . -
E1°g%n tw] [z 8w 5] [gte T 2] e e ] 2] pa1yBTap
juaTeaInbg

adfy




G657

Also, the same assumption when applied to the case of Type 3 triad

leads to the conclusion that c.s.'s (AB)(C) and (AC)(B) are equally
likely and c.s. (A)(BC) does not occur at all.

Let us assume that all transitions from each coalition structure

are equally likely. Then given an initial probability distribution

.

on the set of all viable coalition structures, we can compute the proba-
bility of formation of each coalition structure in Kl(S). B, an
the Type 5 triad, given that players start (with probability 1) from

c.s. (A)(B)(C), we observe that (Figure 4.8) c.s. (AB)(C) forms

with probability 1/3, c.s. (AC)(B) forms with probability 1/3 and

c.s. (A)(BC) forms with probability 1/3. However, once c.s. (AB)(C)
is formed, c.s. (A)(BC) occurs with probability 1. The net result is
that c.s. (A)(BC) occurs with probability 2/3 and c.s. (AC)(B) occurs
with probability 1/3. Coalition structure (AB)(C) also forms with

probability 1/3 but only as an intermediate c.s., i.e., only temporarily.

(A)(B)(C)
1/3
1/3
(AB)(C (ABC)
i 1
A)(BC
(AC)(B) RRIEEY
Figure 4.8. The transition digraph of the Type 5 triad with the probability
of transitions under the assumption of equiprobable transitions.
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A similar analysis of the Type 3 triad (Figure 4.9) indicates that,
starting from c.s. (A)(B)(C) (with probability 1), c.s. (AB)(C)
occurs with probability 1/2 and c.s. (AC)(B) occurs with probability
1/2. Coalition structure (A)(BC) occurs only as an intermediate
coalition structure with probability 1/3. A summary of the predictions
of our theories under the assumption of equi-probable transitions is
shown in Table 4.3. Note that these predictions agree quite well with

the Vinacke-Arkoff experimental results.

(A)(B)(C)

(AB)(C) (ABC)

(AC)(B) 172 (A)(BC)

Figure 4.9. The transition digraph of the Type 3 triad with the
probabilities of transition under the assumption of
equi-probable transitions.
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4.3 Gamson's Theory of Coalition Formation

Following Caplow, Gamson formulated a slightly more general theory
of coalition formation in proper weighted majority games without dicta-
tors or veto players. Before we present Gamson's theory, we need a

definition. Let T be a weighted majority game. A cheapest winning

coalition is a winning coalition whose total weight is a minimum among
all winning coalitions. Gamson's main hypothesis is as follows:

"Any participant will expect others to demand from a

coalition a share of the payoff proportional to the

amount of resources which they contribute to a coalition."
Here, a participant refers to a player, and his resources refers to his
weight in the weighted majority game. Based on his main hypothesis,

Gamson makes the following predictions about coalition formation.

(i) A player will favor a cheapest winning coalition.

(ii) A coalition of two distinct players {i,j} will form if
and only if there are reciprocal strategy choices between
the two players. I.e. both player i and player J
prefer coalition {i,j}.

(iii) The process of coalition formation is a step by step
process where two players merge together into a coalition
at a time.

(iv) Once a two-person coalition forms, the situation becomes
a new one--the two players in the coalition are replaced

by one player whose weight equals the sum of the weights

of the two players in the coalition.




Implicit in Gamson's main hypothesis is a definition of a payoff

value concept. Let T = [q; al,...,an] be a proper weighted majority

game without a dictator or a veto player. Then the Gamson power index,

denoted by Yy, 1is given by

a,
& .
rwlB ) if _{ ., #8
a 1€Pk
€4.5) y(P)(1) = ieP,
0 if ) a, =0
i P »
= 5 e

where P, ¢ P is such that i ¢ P for all Pe Nl and all ie N. Let

k X
(4.6) g = min z a;
ReW 1eR
and
(4.7) Hg = {P ¢ I: P contains a cheapest winning coalition}.

Then Theorem 4.1 tells us what our model predicts using Gamson power index

as a p.s.c.

Theorem 4.1. Let T be a proper weighted majority game. Then Ko(y) = Hg.

1 2
some R ¢ P2 with R ¢ W. Then Y(PQ)(i) > Y(Pl)(i) for all i « R.

Proof: Let P_ ¢ Hg. Suppose P,_ ¢ M such that P2 domR(y) Pl for

Let Te P, such that Te W and | a, = g. Since T is proper,
. jer 1

RnT#pP. Let je Rn T, Then y(Pl)(j) = aj/g. Since J € R,

y(P.)(j) = a,/( Z - ) SIC R T S N TR Z a, < g and a contradiction
2 p " i 7 R 1
icR i€R

(from the definition of g) results. Hence KO(Y) > ﬂg
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Let Pl & ﬂg and P2 e I such that P2 ¢/ Hg. Then Pl domT(y) P2

where T ¢ Pl such that T ¢ W and Z a; = 8 because y(Pl)(i) =
ieT
ai/g for all i € T and Y(PQ)(i) < ai/g for all 1 € T. Hence

KO(Y) c ng. [

It can be easily shown that Gamson's predictions (i)-(iv) about
coalition formation lead to c.s.'s in Hg. However Gamson assumes that
players begin forming coalitions starting from one player coalitions.
So if we choose only those c.s.'s in Hg that are accessible from the

c.s. consisting of only one player coalitions, our model reaches the same

conclusions as Gamson's predictions.




CHAPTER V

A RESTRICTED BARGAINING SET

5.1 Introduction

In R. J. Aumann and M. Maschler [9], a theory was developed to
attack the following general question: If the players in a cooperative
n-person game have decided upon a specific coalition structure, how then
will they distribute among themselves the values of the various coali-
tions in such a way that some stability requirements will be satisfied
(cf. Davis and Maschler [29]). 1In this chapter, we do not assume that
players have any a priori preference for any particular coalition struc-
ture. Assuming only rational behaviour, we study the outcomes of n-person
cooperative games with side payments in terms of coalition structures and
disbursement of payoffs that satisfy certain stability requirements.
These stability requirements are modelled in the same manner as in the
Aumann-Maschler (A-M) bargaining sets, centering upon the idea that a
"stable" payoff configuration should offer some security in the sense
that each "objection'" could be met by a '"counter objection."

In Section 5.2, we discuss some aspects of the A-M bargaining set
Mii) which reflect the fact that a given coalition strugture is assumed
to be fixed and the bargaining is done under this assumption. In
Section 5.3, a modification of the A-M bargaining set Mii) called the
coalitional bargaining set, Mc, is introduced. Another bargaining
set called the restricted bargaining set, Mr’ is also defined. The
restricted bargaining set is a subset of the coalitional bargaining

set and results when the stability requirements in Mc are slightly

103




104

strengthened. Section 5.4 consists of a few examples which illustrate
the basic differences between the bargaining sets Mr and Mii).
Finally, in Section 5.5, the restricted bargaining set for all 3-person
games with side payments is determined. Also a few general results

are presented.

5.2 Some Comments on the Aumann-Maschler Bargaining Set Mil)
The definitions of an objection and a counterobjection in the A-M

(1)

1 are made with the objective of identifying stable

bargaining set M
payoff configurations given that a particular coalition structure is

assumed to be fixed. The reasons for this inference are as follows.

(i) In the definition of an objection, (see Chapter 3, Section 3.7),
a player is allowed to object only against players in his own coalition.
Hence the payoff configuration ((v(l),...,v(n)); (1)(2)...(n)) is
trivially stable because each player is in a coalition by himself and
has nobody to object against! This feature of an objection makes sense
only if the coalition structure is assumed to be fixed whence a player
can only object to the distribution of the payoff of his coalition.

(ii) Let (x,P) be a p.ce, yR be an objection by player i
against player j in (x,P), and 2 be a counter-objection by j
against 1i. We may have R n D = @ in which case, the only thing
that prevents player i from carrying out his objection is the
assumption that player i wishes to stick to coalition structure P

(which would be destroyed if player i carries out his objection).

Example 5.1 illustrates this fact.
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Before we present the example, we introduce a definition. Let (N,v)

be a game and P = (Pl,...,Pm) be a partition of N. The game (N,v)

is said to be decomposable with partition P if for all R ¢ 2N,

s et e w—E S

m
(5.1) v(R) = J wv(Sn Pj).

Example 5.1. Let N = {1,2,3,4,5,6} and v be given by v(i) = 0 for

all 4 e N, w(l2) = v»(13) = v(23) 2, v(45) = v(u46) = v(56) = 2,

v(i23) = 3, «(u56) = 3 and w(R) v(Rn(123)) + v(Rn(456)) for all other

R ¢ N. Note that the game is decomposable with partition (123)(456).
€onsider the p.e. ((L,1:1,2/3,2/3,2/8),(128u56)) € Mil). An objection

to this p.c. by player 4 (or 5 or 6) against player 1 (or 2 or 3) is

e e 1 S A 0 P o i

((1,1,1),(456)). A counter objection to this objection by player 1 against
player 4 is ((1,1),(12)). Thus players 1, 2 and 3 are able to exploit

the assumption that players 4, 5 and 6 wish to stick to the grand coalition,
to their own (unfair) advantage. Without this assumption, there is

nothing that player 1 (or 2 or 3) can do to stop player 4 (or 5 or 6) from

carrying out the objection ((1,1,1), (456)).

T Y B Vo S Sy g e 1= VT 2 e T

For the reasons outlined above, the A-M bargaining set M§i) assumes
more than just rational behaviour on the part of the players and ha: to
be iaterpreted as follows: Given that the players have decided upon a
specific coalition structure P, Mii)(P) represents likely (probable)
disbursements of payoffs which are stable in the sense that any objection
by a player against another player in his coalition could be met with a

counter objection. We would like to study the outcomes of games in

terms of disbursement of payoffs and formation of coalitions under a
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scheme of objections and counter objections assuming only rational behaviour
of the players. I.e. we do not assume that players have any a priori
preference for any coalition structure. This will be the subject of

study in the subsequent sections of this chapter.

5.3 The Restricted Bargaining Set

Let T = (N,v) be an n-person game with side payments.

The superadditive cover of a game (N,v) 1is the game (N,G) defined

by

P

€5.2) v(R) = max{ Z v(Ri): (Rl""’R Y is a partition of RF.
321, p

Note that the superadditive cover of a game is itself superadditive. Also

if v is superadditive and v is its superadditive cover, then v = v.

Even though some n-person game may not be superadditive, a coalition

can always realize its value in the superadditive cover by suitably

coordinating their strategies, i.e. by forming the partition that

achieves the maximum value in Expression (5.2). For this reason, we

will only deal with superadditive games for the rest of this chapter.

Howevsr, nonsuperadditive games can be analyzed as follows. We study

the restricted bargaining set for the superadditive cover. The results

regarding coalition formation (as determined for the superadditive cover)

are then "translated" back to the original nonsuperadditive game using

Expression (5.2). We illustrate by means of an example.

Example 5.2. Let N = {1,2,3} and v be given by v(i) = 0 for

all i ¢ N, wv(12) = v(13) = 100, w(23) = 50 and (123} = 0.




107

The game is not superadditive. Its superadditive cover is given by

v(123) = 100, v(R) = v(R) for all other R < N.

Suppose our theory, when applied to the game (N,v), indicates that

c.s. (123) shall form. Since

v(123) = v(12) + v(3)

v(1l3) + v(2),

this corresponds to the statement that c.s.'s (12)(3) or (13)(2) will

form in the game (N,v).

A payoff configuration (p.c.) is a pair (x,P) such that x ¢ I(P),

P ¢ I where I(P) denotes the set of all individually rational payoffs

as defined in Section 3.4, Chapter 3.

Definition 5.1. Let (x,P) be a p.c. for a game I where P = (Pl,...,PmL

Let R and T be coalitions for which
€5+ g # Rc N,
and
(5.4) T=1€ v P.) - R.

P.nR#p

]
v 5 3 ¥ S K

A coalitional objection of R against T in (x,P) 1is a vector y for
which

R >
(5.5) Ty > X ¥ 1 € Ry

i i

- T— —




(5.6) ) y? = v(R).
ieR

Thus, once a coalition decides to object, it has no choice of players
against whom it is objecting, i.e. it cannot single out a particular
coalition against whom the objection is directed. The objection is
directed towards those players whose coalitions are disrupted by the
objecting coalition R. Also we do not distinguish any particular

player in R as making the objection.

Definition 5.2. Let (x,P) be a p.c. in a game T and let yR be a

coalitional objection of R against T in (x,P) where R and T

satisfy (3.1). A coalitional counter objection of T against R is

D .
a vector z for which

(5.7) DnT#G8@,
(5.8) DnR#ZP, D?R,
(5.9) 22>y, VieDnR
' 3 i ) 5
D
(5.10) Z e %, Vi D
Y &
D
€5.11) ) w, = aiD).
9 b
1eD

In their counter objection zD, the players in D n T claim that they

can block R from carrying out their objection by inducing some players

in R to join them (5.8), offering these players more than what they
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were offered in the objection (5.9), while at the same time protecting
their share (5.10). The players in D n T are allowed to use the tactic
of '"divide and rule'" by taking some members of R as partners, but

they may not take all the members of R as partners (5.8).

Definition 5.3. A p.c. (x%x,P) in a game T is called Mc—stable, i

for each coalitional objection of R against T in (x,P), there is

a coalitional counter objection of T against R.

The set Mc of all Mc—stable p.c.'s in a game T will be called the

coalitional bargaining set of T.

It is possible to strengthen the demand for siability in Mc and

still gain something from the game.

Definition 5.4. A p.c. (x,P) will be called Mr-stable if for each
coalitional objection of player k ¢ R against T as in Definition 5.1,
there is a coalitional counter objection by T against k - R as in

Definition 5.2, except that Condition (5.8) is now replaced by

C5512) DnR#ZP, k€D

Intuitively, each coalitional objection is now identified with a particular

player in coalition R. The set of all Mr—stable p.c.'s will be called

the restricted bargaining set Mp. Certainly Mr c Mc and the following

example will show that this inclusion may indeed be strict.

Example 5.3. Let N = {1,2,3} and v(i) = 0 Vi ¢ N, v(12) = 3,

v(23) = 5, v(13) = 4 and wv(123) = 5. An easy computation will reveal that
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MP = {(/3, 5/3, 8/3), (123))} and

MC = f€€2/3, 5/8, 8/3), (123)), €€0,2,.2), (A M23))}
The p.c. ((0,2,3), (1)(23)) dis not Mr-stable because a coalition objec-
tion ((e,3-€), (12)) by player 1 against player 3 has no coalitional

counter objection.

5.4 Some Examples

In this section, we present some examples which illustrate some basic

differences between the bargaining sets Mr and Mil).

Example 5.4. Let N = {1,2,3,4} and v be given by v(i) = 0 for
all i e N, w(l2) = v(13) =v(23) =3, ~(34) =1 and

v(R) = max [v(T) + v(R-T)] for all other R c N. Consider p.c.
TcR

((1,1,1,1), (1234)). Either player 1 or 2 or 3 can object. Let
((1+e,2-e), (12)) be a coalitional objection to the p.c. by player 1
against coalition (3u4). Player 3 can counter-object by ((2,1), (23)).
Similarly, every coalitional objection has a coalitional counter
objection. Hence ((1,1,1,1), (1234)) € Mr' A simple computation reveals

that
Mr £ {(x, CL284) )y % e Comvi(ld L 1), CH/3, h/a, U/l, )k},

Note that M;l)((1234)) = {(u4/3, 4/3, 4/3, 0)} which is unreasonable

as player 4 can threaten not to join the grand coalition if he is not

given some share of v(34) and the best that players 1, 2 and 3 can do
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without player 4's cooperation is only ((1,1,1), (123)).
Example 5.5. Consider the 6-person game given in Example 5.1. A simple

computation reveals that

Mr = fW0€2/3, 2/3, 2/3, 1L, 1, 1), (123U56)),

({273, 273, 2/8, 1, 1, 1), €123)(k56))}.
However, note that
Mii)((123u56)) = Conv{(2/3, 2/8, 2/8, 1, 1, 1), (i, 1, 1, 2/3, 2/8, 2/3)}
which is not reasonable because
Mii)((123)(456)) = £(2/3, 2/3y 2/3, 1, 1; 1)}

and the game is decomposable with partition (123)(456).

Example 5.6. Consider the game N = {1,2,3} and v given by v(i) = 0
for all i e N, wv(12) = v(13) = 100, v(23) = 50 and v(123) = 0.

Note that the game is not superadditive. If we examine the restricted
bargaining set of this game for purely theoretical reasons, we observe
that Mr = @. A reasonable procedure, however, is to consider the
superadditive cover of this game as given in Example 5.2 and the

restricted bargaining set of this superadditive cover is given by

Mr = {((200/3, 50/3, 50/3), (123))}.
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Translating this result back to the original non superadditive game (N,v),

the restricted bargaining set of the game (N,v) consists of outcomes

{€(200/3, 50/3, 50/3), (12)(3)), ((200/3, 50/3, 50/3), (13)(2))}.

Note that these outcomes are not payoff configurations with respect to the
game (N,v). Outcome ((200/3, 50/3, 50/3), (12)(3)) can be interpreted
as follows: coalition (12) gives player 3 a side payment of 50/3 in

return for his cooperation in not trying to disrupt the coalition (12).

5.5 Additional Results

In this section, we present a few general results about the restricted

bargaining set. Recall from Section 3.4, Chapter 3 that

z = max w(P)
Pen
and

I = {P e I: w(P) = z}

where w(P) denotes the worth of c.s. P as defined in Expression (3.11).

Then we obtain the following.

Theorem 5.1. Let (N,v) be an n-person superadditive game with side
payments. Then (x,P) ¢ Mr implies that P ¢ HZ, i.e., the restricted
bargaining set consists of only "Pareto-optimal" outcomes.
Proof: Let (x,P) « Mr' Suppose P ¢ M, . Then ) X, < 2. Let

i icN

A= (z- § xi)/n. Then ((xl+A..‘.,xn+A),(N)) is a coalitional
icN




objection by any player 1 ¢ N against the empty coalition @. But,

because of Condition (5.7), there is no coalitional counter objection,

which is a contradiction. [:]

Theorem 5.2. Let T be a 3-person superadditive game with side payments.

ThC“ M‘ # Q. In det
X € M(.)((N)) >(x (N))( M .
0 1 it 3

Proof: Let T be as follows. N = {1,2,3} and v(12) = a, v(13) = b,

v(23) = ¢ and v(123) =d where 0 < a<b<c<d. f

Case 1) ¢ > ath, d > c.

In this case Co((N)) # # and the restricted bargaining set is given by
Mr = {(x,(N)): x ¢ Co((N))}.
The A-M bargaining set Mii)((N)) is given by
M) = cocany).

Cage 2) ¢ > atb, d = @.

In this case, Co((1)(23)) = Co((123)) # # and

MP = [ixJF): % e Col(123)), P = (1)(23) o (133)}).

(i)

Also Ml

((12)(3)) = Mii)((123)) = Co((123)).
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Case 3) c < atb, d > (atbtc)/2.

Again, Co((123)) # # and

Mr = {(x,(123)): x € Co((123))}.

Also Mii)((l23)) = Col(L233).

Case 4) c < atb, d < (atb+c)/2.

In this case, Co((123)) = @ and
(1) _
Ml ((123)) = {(pl + (d-p)/3, Pyt (d-p)/3, Pyt (d-p)/3)}

where P; ® (atb-c)/2, Py = (atc-b)/2, Py = (btc-a)/2 and

P =P + Py + Py The restricted bargaining set is given by
Mr = {(pl + (d-p)/3, P, * (d-p)/3, Py * (d-p)/3), (123))}.

Since we have covered all cases, this completes the proof of the

theorem. [:j

Recall the definition of SC(S) given in Section 3.2. It is clear
that Mr 5> SC(Co). Hence if MN(Co) # @ for a superadditive game,
SC(Co) # ¥ and hence Mr # #. However, at this time, the author has

no general proof of existence nor a counterexample. The author conjectures

that for superadditive games, Mr 0.




CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 A Summary

In the preceding pages, we have presented several theories of
coalition formation. One approach was to model the process of coali-
: tion formation as an abstract game. We then studied the core and the

dynamic solution of the abstract game. The predictions of the abstract

game models depend on the particular payoff solution concept used.

g I.e., the models assume that there is a rule governing the distribution
of the joint payoffs to each player in each coalition structure. The
predictions of these models were then studied for the case of n-person
cooperative games with side payments using various payoff solution
concepts such as the individually rational payoffs, the core, the
Shapley value and the bargaining set Mgi). Several possible modifi-
cations of the abstract game models were also discussed.

In another approach, coalition formation was viewed as a bargaining
process where the players are allowed to raise (coalitional) objections
and (coalitional) counter objections in the same manner as in the
Aumann-Maschler bargaining sets. While the A-M bargaining sets indi-
cate distribution of joint payoffs given a fixed coalition structure,
the restricted bargaining set indicates both formation of coalitions and
distribution of payoffs as outcomes. Some examples were presented
illustrating some fundamental differences in the bargaining sets Mii)

and Mr' However, the important question of the existencc of Mr for

superadditive games is still open.

LLS
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6.2 Conclusions

There are a number of interesting research problems not covered in
this investigation. The abstract game models were formulated for the
general case of n-person cooperative game with side payments, without
side payments or in partition function form. However the predictions
of the models were studied only for the special case of games with side
payments. Even for this special case, the solutions of the models were
characterized only for some of the known payoff solution concepts. Some
of the important payoff solution concepts for which the results of the
abstract game models were not considered in this work are the kernel, the
nucleolus, the Banzhaf value (for simple games), the e-core and others
described in Section 1.2, Chapter 1. Other nucleoli, centers and
additional value concepts, as well as several variants of the well known
solution concepts mentioned also exist. It should also be interesting
to investigate the predictions of these models when applied to special
classes of games such as market games, quota games, convex games,
symmetric games, simple games, etc.

Regarding the restricted bargaining set, an important task is to
prove its existence (or to find a counterexample) for superadditive games.
If a counterexample is found, the definitions of coalitional objection
and coalitional counter objection may have to be modified to admit existence.
A proof of existence will establish the restricted bargaining set as a
viable solution concept deserving further study in regards to its mathe-
matical structure and properties.

One more possible approach for studying the question of coalition 1

formation in the framework of the theory of games that merits research,
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is to model the process of coalition formation as a noncooperative game
in normal or extensive form, in the spirit of Nash's suggestion quoted
in Section 1.2, Chapter I of this work. Some recent work on
noncooperative games by Harsanyi [42,43] could prove useful for this
approach. Also see Lucas and Maceli [A.8].

Game theory as a mathematical tool is being increasingly employed
by behavioural scientists. In the context of decision making in conflict
situations of the type which can be modeled by n-person game theory, a
behavioural scientist will focus on two important questions: 1) Which
coalitions are likely to form? 2) How will the members of a coalition
apportion their joint payoff? Although n-person game theory has largely
concentrated on the second question, the behavioural scientist may well
be primarily interested in the first question. Consequently, behavioural
scientists have developed their own theories of coalition formation.
(See Section 1.3, Chapter i.) The main emphasis of this work has been
on attempting to answer the first question in the framework of the theory
of n-person cooperative games. In this respect, it is hoped that this
investigation will help to make the theory of games a more attractive tool
for the social scientist. The results presented in Chapter u reveal
that some theories of coalition formation proposed by behavioural
scientists are not very different from those predicted by game theory
under the same assumptions, although at first glance there seems to L«
little resemblance between the two. Since these theories (proposed by
behavioural scientists) are based on empirical observations and have
been widely tested in experiments, the results of Chapter 4 may go a

long way toward lessening the doubts about the relevance of game theory in

predicting human behaviour.

|
|
|
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The research presented here was motivated by the author's investi-
gations of the world oil market. (See Shenoy [97].) In that context,
B
an important problem was the question of the stability of the OPEC’

cartel.

o

0il and Petroleum Exporting Countries, a coalition of thirteen oil
producing countries.




APPENDIX

A.1 The Aumann-Dreze Ceneralization of the Shapley Value for all

Simple Games with Four or Fewer Players

The table on the following pages contains all distinct proper simple
games of four or fewer players excluding dummies. All winning coalitions
are listed--the minimal winning coalitions are listed first and separated
from the rest by a semicolon. The weighted voting representation given in
column 4 are the simplest ones. The Shapley value ¢ of a c.-. depends
only on the winning coalition contained in the c.s. The Shapley value
of all c.s.'s containing winning coalitions, in the sequence as in column 3,
is given in column 5. The Shapley value of a c.s. not containing any
winning coalition is zero for each player and therefore is not given in
column 5. Column 6 contains all c.s.'s in KO(¢) identified by the
winning coalition it contains. The last column indicates whether the game

exhibits the paradox of smaller coalitions or not.

A.2 n-Person Games in Partition Function Form

Let N = {1,...,n} be a set of n players who are represented by

g o oyine HetaNE= (Pl,...,Pm) be an arbitrary partition of N into

coalitions P ...,Pm. Then for each partition P, assume there is an

l,

outcome function

which assigns the real numbered outcome FP(Pj) to the coalition Pj
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when the partition P forms. The function

which assigns to each partition its outcome function is called the

partition function for the game. Finally, the ordered pair

= CNL.E)

is called an n-person game in partition function form.
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