~AD=-A044 12 HONEYWELL INFORMATION SYSTEMS INC MCLEAN VA FEDERAL ==ETC F/G 9/2
TRANSACTION PROCESSING OPERATING SYSTEM (TPOS).(U)
AUG 77 R EWINGe J BIELSKI F30602=76=C=0277
UNCLASSIFIED RADC=TR=77=276

|

RADC-TR-77-276
Final Technical Report
August 1977

ADAG44612

TRANSACTION PROCESSING OPERATING SYSTEM (TPOS)

Honeywell Information Systems Inc.

Approved for public release; distribution unlimited.

>
[8
e
/ O
/ ‘ (N ROME AIR DEVELOPMENT CENTER
o el Air Force Systems Command
€ L. Griffiss Air Force Base, New York 1344)
[
(e Y e |
<

This report has been reviewed by the RADC Information Office (0OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and is approved for publication.

wosons, ragend) . g’

RAYMOND A. LIUZZI
Project Engineer

APPROVED: /eﬁﬁv / M;g:

ROBERT D. KRUTZ, Colonel, USAF
Chief, Information Sciences Division

JOHN P. HUSS
Acting Chief, Plans Office

FOR THE COMMANDER:

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (DAP) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

e A RN T AN 1Y 52 4

UNCLASSIFIED

SECURITY @UASSIFICATION OF THIS PAGE When I‘IllllL"ll'th‘l

{177 READ INSTRUCTIONS
' | /) REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPO MBER - / 2 GOV ACCESSION NO.L 3 RECIPIENT'S CATALOG NUMBER
| RADC-TR-77-276 | (/)
4 TITLE (and Subtitle) . tTTyrropmere P OD-COVERED
AP ik .~ Final ,Z’ochni(‘ul Repert .
f g TpoQ o) 5 3 oevaer ™
g\ / TRANSACTION PROCESSING OPERATING SYSTEM (TPOS). | [Ju1 76 = Ju1 77, -
v//r | [6 PERFORMING 07C. REPORT NUMBER
—
e : . e N/A
7 AUTHOR(s) P - |8 CONTRACT OR GRANT NUMBER(s)
s p— - i
}) - /
/| Ronald Ewing / / F30602-76-C-0277/ ., .
7 John; Bielski { =7 ———
- - —— | ——

3 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJEC T, TASK
Honeywell Information Systems Inc. (A R——ABFA & WORK UNIT NUMBERS
Federal Systems Operations B~ 55810274 g
7900 West Park Drive, McLean VA 22101 i (17) ‘

11 CONTROLLING OFFICE NAME AND ADDRESS 7 1) 12, RERORI-OATE

/y August 1977
Rome ~Au‘ Development Center (ISIM) ~ AR HEER CE RGeS
Griffiss AFB NY 13441 261
14 MONITORING AGENCY NAME & ADDRESS(aL dl“t‘_f:‘_l‘l_l from Controlling Office) 15. SECURITY CLASS. (of this report)
Same o
/ } / P UNCLASSTFIED
15a. DECL ASSIFICATION DOWNGRADING
o N/A SCHEOULE
16 DISTRIBUTION STATEMENT (of thts Report)
DDC
Approved for public release; distribution unlimited. g
7 lo B & 1 B
D (X sl
SEP 28 1977 ‘

17 _DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from Report) | (“‘ 11! ‘

Same 1 DR, |
Hu U Ly
)

185 SUBOREMERT AR N O Eoie ety S i e SRl ST Nt S e mh e (= S i

RADC Project Engineer:
Raymond A. Liuzzi (ISIM)
e |

19 KEY WORDS (Continue on reverse stde tf necessary and tdentify by block number)

Transaction Processing
Operating Systems
Computers

Data Processing

\

W ABSTRACT (Continue on reverse side If necessary and identity by hlock number) B Ml e T ™ o |
The Transaction Processing Operating System (TPOS) is a specialized system
designed to control a subset of the total computer environment, on the
Honeywell H6000 architecture, of Transaction Processing Application Programs
(TPAPS) .

The TPOS system is designed to operate under Release 2/H of the General

Comprehensive Operating Supervisor (GCOS), the General Remote Terminal

Supervisor (GRTS) on the Network Processing Supervisor (NPS) and in >
DD , 38" 1473 €oimion oF 1 Nov 65 15 oBsOLETE UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enteret)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

conjunction with the Transaction Processing System (TPS).
L
This report includes the user, site and program logic documentation. In
addition, this report indicates specific usage of a monitoring and a
debugging capability provided within the TPOS environment.
!
!
\CCESSION for
5 =
| \TIS * Suction fa
Doc yobing po B
YA 6 el]
UNANNE) AR
s |
RY
4 DlSi:’ilQ'} IR/ AVALEBRITY £
| Dist. L0 Tnd or S
| ’
po s
f i
' UNCLASSIFIED.
SECURITY CLASSIFICATION OF Yuir AGE(Whan Data Entere s

e e U A 5 L o M AN T A

DOCUMENTATION PREFACE

Computer pefinition

The ‘''ransaction Processing Operating System is
designed to execute within a Honeywell Series 6000 or
Series 60/Level 66 Information System, with any
allowable memory size. One DATANET 30, 305, 355, or
6600 or 355 Communications Processor is required to
perform front-end processing functions and at least one
of the following terminals is required: Teletype Models
33, 35, 37, or 38; GE TermiNet 300; VIP Series 765,
775, 785, 7700 keyboard/display terminals.

System Definition

The Transaction Processing Operating System (TPOS)
1s designed to operate under Release 2/H of the General
Comprehensive Operating Supervisor (GCOS), the General
Remote Terminal Supervisor (GRTS) or the Network
Processing Supervisor (NPS) and in conjunction with the
Transaction Processing System (TPS).

A A RN s B

CONTENTS
Page
Purpose 1ol

Transaction Processing Operating System
Transaction Processing Operating System Executive
Introduction to the Executive
Overview

NN NN
W bt et

Site Reference

Introduction

User-Supplied Information

Executive Assembly

Keyword Processor Library
Creating the Keyword Procecsor Library
Generating the Keyword Processor Library

Executive Installation

Executive Initiation

Debug

Installation Macros

HHEPFFOOOOOUVLWNHE

Wwwwwuwwwuwww
. . . .

Executive Internals

Symbol Conventions 4.1
Explicitly Named Location Counters 4.3
Executive Module Symbols 4.3

Coding Practices 5.3
Register Conventions 5ieiil
Transfer of Control Sl
Courtesy-Calls Stel
Inhibited Code a2
TASK Symbol Usage Dis 3
Fault Requested System Services 53

Transfer of Control 6
IC&I Stacks 6l
Transfer of Control 6.1
.CALL. Mechanism Gic i
.CALL. Usage 63
.EXIT. Mechanism 6.3
.GOTO. Usage (S

Executive Communication Region ek
Special Usage 71
Communication Cell Formats 702
Communication Region Accumulated Counts 7

Transaction Attributes & Status Kernel (1'ASn) Sl
TASK Assidanments Bis]
TASK Format 8.2
Description of TASK Entries B3

ii

A AR L B

CONTENTS (cont)

TASK Status & Atcribute Flags
TASK Stuacus Bit Flags
1T'ASK Status Flags in .TFLAG
TASK Status Flags in .TFLAG+1
Attribute Bit Flags
Attribute Flags in .TFLAG+1l and
Keyword Profile

Terminal Control Block
TCB Assignment
TCB Format
Description of TCB Entries
TCB Status & Control Flags in .TCGSS

Keyword Processor Profile
Profile Function
Profile Generation
Profile Usage
Keyword Processor Profile As Assembled
Keyword Processor Profile at Execution Time

Queues
Core-Queue
Dispatcher 's-Queue
Output Intercom-Queue

Core & Swap-File Maps
Core-Map Particulars
Swap-File Map Particulars

Intercom Buffer Maps
Buffer Map Usage
Input Intercom Buffer
Output Intercom Buffer
Buffer Threshold Entries

Keyword Prefix Area
SPA Cells Supported as KPA

Executive Module & Routine Descriptions

GELBAR Fault Handler
Fault Processing
MME Identification/Validation
DRL Identification/Validation
GELBAR Fault Handler
GELBAR MME Validation

Transaction Scheduler

1ii

CONTENTS (cont)

Page
Function 171
Introduction 37 it
Stall-Out 172
Intercom Read Initiation 17,2
Intercom Read Termination 173
Entry Points 1755
Routine Descriptions 17.6
Core Allocator 181
Introduction 11855
Concept & Definition 18.1
Core-Map: The Resource 182
Core-Queue: The Demand 18.3
Resource Selection 1853
Demand Selection: Bypass/No-Pass Logic 18.4
Demand Resource Assignment 18.5
Core-Map Anomaly During Swap
Resource Allocation 18.6
Core Allocator Logic 18.7
Introduction 18.7
Major Execution Phases 18.7
Phase Interruption 18.8
Allocation Controls]:8.9
Primary Controls 18.9
Core-Queue/Core-Map Fence 18.9
Dampers
Dampers: General 18.13
Dampers: Meaning 18,13
Dampers Usage: General 1815
Main-Level Allocation 18.16
Demand Allocation Phase 18.16
Secondary Controls Associated
with Demand Allocation L8l
Swap Resource Allocation Phase 18.18
Secondary Controls Associated
with Swap Resource Allocation 18.20
Courtesy-Call Allocation 1E8e2N
New Demand Allocation 18211
Swap-Out Allocation 18.23
Entry Points 18,27
Routine Descriptions 18.28
Dispatcher 19, 1
Function TR
Introduction el
Dispatcher's-Queue 191
Dispatcher's—-Queue Service 19.3
Dynamic Queue Service Mask 19.4
Queue Service: When and How 1955
Service Initiation/Restart 19.6

iv

CONTENTS (cont)

Page
Service Considerations and Restrictions 197
Service Returns 19.8
System Function Enables 19.8
Dispatch-Select 11939
Dispatch 19.10
Lockup Logic 19702
Entry Points 19.14
Routine Descriptions 19.15
TASK Terminator 20.1
Function 20.1
Abnormal Termination 20..1
Normal Termination 202
Entry Points 20.4
Routine Descriptions 20.5
Output Intercom Processor 21.1
Function 2000
Introduction 210
Output Message Request 205 1
Enabling the Output Intercom Processor 2102
Overview 21.3
Entry Points 21.4
Routine Descriptions 21.4
Executive Error Messages 221
Introduction 22k
Error Message Generation 222
Executive Error Messages 22053
Entry Points 220
Routine Descriptions 2248
Executive Supported MME Services 2301
MME Service Symbols 2372
MME Service Descriptions 2312
GEINOS Handler 2353
I/0 Request Recognition 233
Device I1/0 Handler 23.4
MME GEINOS Preface 23.4
Need For Executive Control 23:5
Executive I/0 Administration
Pequirements 2359
Multiple Outstanding I/0 Requirements 23.6
Design Decision & Method 23.6
Executive I/0 Handling Overview 237
Device I/0 Initiation 23.8
Device I/0 Termination 23+.9
Keyword Processor Restrictions 23.9
Routine Descriptions 23«10
Intercom I/0 Handler 23413
%

MME
MME
MME
MME
MME
MME

CONTENTS (cont)

Introduction
Intercom Status Flags
Status Flags & Intercom Output
Status Flags & Intercom Input
Message Status Flags
Intercom Request Overview
Intercom Read Overview
Intercom Write Overview
Routine Descriptions
GEFCON Handler
GEINFO Handler
GELAPS Handler
GERELC/GEROAD Handler
GETIME Handler
GEWAKE Handler

Prototype MME GEROUT Handler

MME

GERSTR Handler

Initialization
Introduction
Overview
Initialization Console Messages

vi

Page

23513
23.13
23.14
23.15
231515
23.16
23.16
237
23.21
23.26
23 .27
23.28
28529
23.30
23.31
23..32
23.34

24.1
24.1
24.1
24.7

EVALUATION

This effort has provided a number of important enhancements designed
to improve the operational capability of the Transaction Processing Operating
System (TPOS) which executes under the GCOS Operating System on the H6000
Computer System.

The establishment of a sophisticated programming environment for
command and control applications is a criteria defined under TPO V 3.5.
Within this environment, a requirement exists for real-time processing on
the H6000 computer architecture. The TPOS system provides a vehicle to
process in a real-time mode a number of transactions to a wide variety of
previously defined data structures. The TPOS system also provides the
following capabilities:

. Ability to tailor the environment to the specific transaction
processing needs of a user.

. Reduction in the number of programs dedicated to a user's
site transaction processing requirements.

. Multiple concurrent execution of the same Transaction Processing
Application Programs.

The capability provided by the TPOS system can be immediately
utilized by a wide variety of current applications which execute under
control of the H6000 Transaction Processor. It can provide a means
of defining a real-time programming environment within large scale
computer architectures.

RAYMOND A. LIUZZI
Project Engineer

vii

e A A A 5 S = SR

PURPOSE

PURPOSE

The purpose of the Transaction Processing
Operating System is to:

(1) Allow multiple copies of the same Transaction
Processing Applications Program (TPAP) to
execute concurrently,

(2) Increase transaction processing
responsiveness,

(3) Create the necessary framework for efficient
control and interface of TPAPs to a common

data base,

(4) Provide a specialized, open-ended environment
that can be tailored to specific transaction
processing needs.

In addition, the operating system allows a
reduction in the number of GCOS Program Numbers i
dedicated to a site's transaction processing

requirements.

B i e

TRANSACTION PROCESSING OPERATING SYSTEM

TRANSACTION PROCESSING OPERATING SYSTEM

The TPAP Operating system (TPUS) is a specialized
system designed to control a subset of the total
computer environment for the exclusive execution of
Transaction Processing Applications Programs (TPAPS).
This operating system is by no means a comprehensive
computer operating system; however, it must perform
many of the executive or control functions required of
the 1latter. The TPAP Operating System executes under
GCOS as a slave program. In this context, it resembles
the Time-Sharing System.

The TPAP Operating System interfaces with the
Transaction Processing System as a TPAP. Consequently,
the TPOS is known to the Transaction Processing
Executive (TPE) as just another TPAP. This arrangement
allows several TPAP Operating Systems to be
incorporated into the Transaction Processing System.

Transaction Processing Operating System Executive

The TPAP Operating System Executive consists of
those routines that perform the executive or control
functions which are typical of any standard operating
system. In particular, these functions include the
initiation, monitoring and control of system
operations, resource allocation and processing support.

In the current state of development, the TPAP
Operating System and the TPAP Operating System
Executive are synonymous, thus the names can be used
interchangeably. Henceforth, the TPAP Operating System
is referred to as simply the Executive.

Introduction to the Executive

As previously stated, the Executive is a slave
program which operates within the Transaction
Processing System as a standard TPAP. The Executive
functions as the operating supervisor for some number

2k

TRANSACTION PROCESSING OPERATING SYSTEM

of TPAPs within a GELBAR environment. That is, the
Executive overlays the TPAPs into a portion of its
allocated memory and passes control to the TPAPs via
the MME GELBAR logic. Because the GELBAR changes the
BAR to the requested setting, both the Executive proper
and any other TPAPs residing within the Executive's
core are protected from memory access by the executing
TPAP.

TPAPs that are to execute under the control of the
Executive are generically called Keyword Processors.
Since the Keyword Processors can be written exactly
like a normal TPAP, this 1label serves solely to
differentiate between the two methods of execution.

The Keyword Processors are maintained on high
speed storage from which they can be retrieved when
requested by an input transaction. Multiple copies of
the same Keyword Processor are possible since each
input transaction designates to the Executive which
Keyword Processor is to be executed, independent of the
other transactions being serviced. Thus each
transaction effectively gets its own copy of the
requested Keyword Processor.

All files must be allocated to the Executive,
since the Keyword Processors are loaded without an SSA.
This requirement allows all the Keyword Processors to
access any data base allocated to the Executive and
creates the necessary framework for efficiently
controlling multiple data base access requests.

The Executive 1is responsible for the following
major functions:

o Receiving multiple input transactions via
Intercom I/0 from TPE and scheduling the
Keyword Processor identified by the
transaction.

o Allocating core and processor time on a

2.2

TRANSACTION PROCESSING OPERATING SYSTEM

priority basis to the scheduled Keyword
Processors.

0 Processing Keyword Processor program faults
and service requests by trapping, identifying
and routing the fault to the applicable
Executive routine. In particular, all Keyword
Processor requests for GCOS system services
are trapped, since MMEs and DRLs generate
faults. Thus all I/0 requests are intercepted
and handled by the Executive.

o Collecting and queueing output Intercom
messages from the Keyword Processors and
initiating Intercom I/0O for each message when
the processing for its related transaction is
complete.

Overview

The Transaction Processing Operating System
Executive monitors and controls its computer resources
in order to enable a set of programs, the Keyword
Processors, to operate concurrently. Its structure can
be logically divided into a set of modular routines
whose functions are briefly described in the following
paragraphs.

Input processing is performed for the Executive by
the Transaction Scheduler. The Transaction Scheduler
will request a message from the TPE whenever sufficient
Input Intercom Buffer space and a free Transaction
Attributes and Status Kernel (TASK) are available. A
TASK functions as the focal point for all the dynamic
information required to control the processing of a
transaction by its associated Keyword Processor. A TASK
is assigned to each transaction received by the
Executive.

When an input message is accepted, the Keywords
List 1is scanned. This list contains the keywords for
all Keyword Processors assigned to the Executive. If
the keyword 1is not 1in the list, an error message is

Z+3

TRANSACTION PROCESSING OPERATING SYSTEM

returned to the user and the transaction is deleted.
Otherwise, the Keyword Processor attributes are
retrieved from the Keyword Processor Profile table and
inserted into the TASK. The TASK is then linked to the
Core Allocator's Core-Queue and an attempt is made to
request another message.

The Core Allocator selects TASKs in priority order
and attempts to allocate a sufficient amount of core in
which the Keyword Processor can execute. It will
generally use the smallest block of available core to
make this allocation. If core is not available, but can
be obtained by swapping-out an in-core Keyword
Processor that meets the criteria for swap-eligibility,
then the Keyword Processor swap is initiated.
Otherwise, the TASK is bypassed and the next TASK in
priority sequence is considered for allocation. This
process 1is repeated until the end of the Core-Queue is
reached. The bypass count (initially set from the
Keyword Processor Profile) of each TASK in the gueue is
reduced by one whenever core is allocated to a lower
priority TASK. If the bypass count for a particular
TASK 1is =zero or is reduced to zero, no lower priority
TASK will be considered by the Core Allocator. When no
more TASKs can be allocated core, control is given to
the Dispatcher.

The Dispatcher is responsible for assuring that
all Executive functions are performed. It receives
control every time a Keyword Proessor terminates,
requests an Executive service, or runs out of time.

The flow of all transactions through the
Transaction Processing Operating System is generally
accomplished by making an entry in the appropriate
queue. For example, the Transaction Scheduler is driven
by input messages from TPE and generates an entry in
the Core-Queue. The Core Allocator is driven by the
Core-Queue and links the TASKs to the Dispatcher's
Queue. Message output is done by making entries in the
Output Intercom-Queue. A prime function of the
Dispatcher is to service the system queues. The
Dispatcher effects the appropriate service by enabling
the Transaction Scheduler, Core Allocator or other
required system routine.

TRANSACTION PROCESSING OPERATING SYSTEM

The Dispatcher must also select the highest
priority TASK in the Dispatcher's~-Queue and give it
control via a MME GELBAR, which provides core and time
limits to the TASK.

All Keyword Processors are expected to perform I1I/0
via a MME GEINOS request, as is done by most system
subroutines such as GFRC. Since GELBAR logic intercepts
all MMEs, no Keyword Processor can perform I/0 without
the Executive's permission. For MME GEINOS, parameters
are validated and DCW's are adjusted to account for the
GELBAR boundaries. In the case of device 1/0, the 1I/0
is reissued by the Executive and the Keyword Processor
is roadblocked until the I/0 has completed.

For Intercom I/0 writes, every Keyword Processor
must include an 1indicator within each output message
which specifies if the text is a segment (more text in

the message) an End-Of-Message, or an
End-Of-Transaction, as dictated by standard TPAP logic.
The Executive collects message segments until an

End-0Of-Message or an End-Of-Transaction status 1is
received. On either status, the Executive links each of
the segments successively (no intervening segments from
another TASK) into the output stream. It 1is necessary
to link these successively to assure that the segments
arrive at their destination in proper sequence.

If the End-Of-Transaction indicator is specified,
the Keyword Processor 1is prohibited from generating
additional output messages. However, the Keyword
Processor will be given control so it can perform any
wrap-up which may be necessary. Following this,
standard procedure is for the Keyword Processor to
reinitialize itself up to and including its request for
another transaction.

At this point the Keyword Processor has completed
its processing of the transaction assigned to it;
consequently, it is suspended from further execution by
the Executive. If the Keyword Processor is reusable
(i.e., can process multiple transactions serially), and
there 1is an outstanding input message for the keyword
associated with it, the new message is assigned to the
Keyword Processor and it 1is again eligible for

24

TRANSACTION PROCESSING OPERATING SYSTEM

execution. Otherwise, reusable or not, the Keyword
Processor is terminated and effectively disposed of. In
this case and for all non-reusable Keyword Processors,
a new copy of the Keyword Processor will be initiated
for a subsequent input message that specified the
Keyword Processor.

There also exists the capability for the Keyword
Processors to communicate among themselves by
transmitting an output message with a single
Destination-ID of ***_ This capability is restricted to
internal communication among the Keyword Processors
that are controlled by the Executive.

wr— —— ,uu-u---nl!ﬂIl-I'l-Ill--H-uIl-------——-usnn—uuq1‘

SITE REFERENCE

SITE REFERENCE

Introduction

This section is concerned with the necessary site
operations that are required to generate, install and
run a TPAP Operating System. The major steps that are
required to set the system into motion are
chronologically listed below:

0 Requesting the user-supplied Keyword
Processor programs and characteristics

o Assembling the Executive with the desired
parametric structure and the Keyword
Processor characteristics

o C(Creating and loading the Keyword Processor
Library

o Installing the Executive within TPE.

The above steps are further explained in the
discussions that follow. Those methods presented in the
discussions are only meant to be a guideline showing
one of many possible methods.

Lastly, it should be emphasized that there can be
several TPOSs, since each system externally resembles a
normal TPAP.

SITE REFERENCE

User Supplied Information

The user is responsible for supplying the Keyword
Processor programs and the control parameters, which
are required by the Executive. Some of the control
information must be coordinated among all users whose
transaction processing programs are to be installed
under the same Executive.

All Keyword Processor programs should be suitable
for a 1lowload, since the Executive unconditionally
lowloads all Keyword Processors. The programs should be
submitted in relocatable object form, such as the §
OBJECT deck produced by a compilation.

The wuser must also supply the control information
that defines the Keyword Processor and its file
environment. In particular, the user must submit the

following:

(1) Keyword-Processor-ID - this |is a three
character ID that uniquely identifies the
Keyword Processor from other Keyword

Processors assigned to the Executive,

(2) Maximum input and output message sizes -
these sizes sanould 1include the message
headers and be given in words,

(3) Keywords - these are the keywords to be
associated with the Keyword Processor. All
Keywords must be eight characters or less in
size.

In addition to the above Keyword Processor
information, the user must also supply the expected
file requirements. This should include the necessary $
FILE control cards along with any § USERID control
cards that would be required to attach the files to the
Executive.

O bt S i

SITE REFERENCE

Notice that the Keyword-Processor-ID, Keywords and
the File-Code assignments should be coordinated among
the wusers to ensure that there will not be any
conflicts.

Executive Assembly

The Executive must be assembled to incorporate the
necessary Keyword Processor information and to
parametrically tailor the Executive to the anticipated
transaction processing needs.

All user supplied information regarding the
Keyword Processors is inserted into the Executive by
means of the Keyword Processor Profile macro. This
macro is symbolically denoted by .PRFL.. Actual use of
the macro is described in the Keyword Processor Profile
discussion.

Of particular importance to the site personnel are
the priority and bypass count assignments. Prior to
assigning the values, the importance of each Keyword
Processor, relative to all other Keyword Processors to
be controlled by the Executive, must be established.

Priorities within the Executive are currently
pre-emptive, consequently, the priority values are
meaningful only in terms of their algebraic
relationships and not their individual magnitudes. For
example, there would be no operational difference
between different sets of Keyword Processor priority
assignments as long as the relationships between the
assigned values were the same.

Bypass count assignment is more difficult. The
purpose of the bypass counts is to allow the Executive
to temporarily 1ignore a priority wvalue during core
allocation, thereby allowing more efficient core
utilization and system throughput.

The bypass count should be set to zero for only

3.3

SITE REFERENCE

the most urgent Keywords or Keyword Processors. For the
remainder of the keywords, the bypass counts should
primarily reflect the size of the associated Keyword
Processor and secondarily, the amount of time normally
required to process a transaction. That is, the larger
the Keyword Processor the 1larger the bypass count;
among Keyword Processors of the same size, the slower
the processing the larger the bypass count. Of course,
a large bypass count should not be assigned to a high
priority keyword even if the Keyword Processor is large
or slow.

It is anticipated that some experimenting with the
bypass counts will be necessary in a heavy transaction
processing environment to achieve a satisfactory
throughput rate. However, if the processing workload is
light to moderate, the effect of the bypass count is
negligible.

The parametric structure of the Executive is
defined by the series of macros listed below:

.BUFF. Generate Input/Qutput Intercom Buffer
Space

.COMQ. Generate Output Intercom-Queue Space

.LINE. Generate Terminal Control Block & Buffer
Space

.MSG. Set Maximum Input & Output Intercom
Message Sizes

.SWAP. Generate Swap-File Map Space
.TASK. Set TASK Size & Generate TASK Space

.TPOS. Set TPOS Options

See Installation Macro usage for an explanation of how
to use the above macros.

SITE REFERENCE

Keyword Processor Library

A special file must be created for each Executive
to hold the Keyword Processor programs which are under
its control. This file is called the Keyword Processor
Library File and is assigned the file name L-xxX, where
xxXx is the TPAP-ID assigned to the Executive in TPE.
This naming convention allows each Executive to be
conveniently associated with its library file.

SITE REFERENCE

Creating the Keyword Processor Library

The control card setup to create a library 1is as
follows:

1 8 16
$ SNUMB

$ IDENT

$ FILSYS

USERID TRAX-EXECSPassword
FCREAT TRAX-EXEC/L-xxx,SIZE/n,n/
$ ENDJOB

***EOF
where xxx 1is the TPAP-ID of the controlling Executive.

Generating the Keyword Processor Library

Within the Keyword Processor Library, the program
element names for the Keyword Processor programs are of
the form S.yyy, where yyy is the Keyword-Processor-ID
internal to the Executive. The Executive retrieves the
Keyword Processors, during initialization, by
performing a GECALL with the desired S.yyy name to the
library.

SITE REFERENCE

The first Keyword Processor program can be loaded
onto the library with the following control card setup:

1 8 16

$ SNUMB

$ IDENT

$ LOWLOAD

$ OPTION SAVE/S.yyy,NOGO
$ LANGUAGE

(KEYWORD PROCESSOR PROGRAM)

$ EXECUTE

$ PRMFL H*,R/W,R,TRAX-EXEC/L-XXX
$ LIMITS

$ ENDJOB

***EOF

where vyyy 1is the Keyword-Processor-ID and xxx is the
Executive's TPAP-ID.

For subsequent Keyword Processors, the SAVE option
must be replaced with the SAVOLD option.

Notice that since TPE requires the TPAP files to
be in spawn format, 1i.e., a control card deck, a
Keyword Processor can also be executed as a normal TPAP
by inserting a $§ PROGRAM card, which specifies the
S.yyy Keyword Processor name. Such a deck also has to
specify the Keyword Processor Library as a dynamic
user's library. In this case a TPAP Profile would also
have to exist within TPE for the Keyword Processor.

SITE REFERENCE

Executive Installation

Each Executive must be installed into the
Transaction Processing System by assembling a TPAP
Profile 1into module TRXD of TPE to specify the
operating characteristics of the Executive and by
creating and loading a TPAP File to hold the
Executive's spawn deck. The installation procedure is
described in the Transaction Processing System Site

Manual (Order No. DD36).

The necessary operating parameters to be supplied
to the TPAP Profile macro are:

(1) Executive's TPAP-ID

(2) Input and output buffer sizes

(3) All keywords belonging to the Keyword
Processors assigned to the Executive along
with their associated priorities

(4) Accept ***STRT message

(S) BCD input and output

(6) Maintain select/dispatch order

(7) No swap

(8) Accept multiple input messages

The buffer sizes are the sizes used in the
Executive's .MSG. macro previously described.

The necessary information that must be included on
the TPOSs TPAP File is:

(1) $ LIMITS card specifying the amount of memory
to be assigned to the Executive.

(2) $ PRMFL card to attach the Keyword Processor
Library as a user's dynamic library with File

SITE REFERENCE

Code **,

(3) §$ FILE card to attach space for the SL
Load-File.

(4) S FILE card to attach space for the $S
Swap-~File.

(5) All file cards supplied by the user for the
Keyword Processors themselves.

The amount of memory to be allocated to the
Executive, as requested on the § LIMITS card, should
take into account the size of the Executive as
determined from its assembly.

The $L Load-File holds the Keyword Processors
during the Executive's execution, since they can be
retrieved from it faster than from the library.
Consequently, sufficient space must be allocated to the
file to hold all the Keyword Processors. Any excess
space is released at the end of the Executive's
initialization.

The TPOS TPAP File can contain the Executive in $
OBJECT form or it can specify an object 1library onto
which the Executive has been edited. Independent of the
actual method wused, a sample control card make-up for
the TPAP File is as below:

I 8 16
$ IDENT (Optional)
$ USERID TRAX-EXECSPassword
$ LOWLOAD
$ OBJECT

(TPOS EXECUTIVE)

$ DKEND

SITE REFERENCE

$ LINK INIT
$ OBJECT

TPOS INITIALIZATION

$ DKEND
$ EXECUTE DUMP
$ LIMITS ,Memory-Size
$ PRMFL ** R,R,TRAX-EXEC/L-xxx Keyword Processor Library
S FILE SL,,Size Keyword Processor Load-File
$ FILE $S,Size Keyword Processor Swap-File
$ FILE Keyword
Processor
Files
S FILE
$ ENDJOB

Executive Initiation

Frequently used or priority TPAPs are prespawned
and remain in the GCOS program queue. Prespawning the
priority programs causes them to pass through the
relatively slow peripheral and core allocation phase,

i making them available for immediate execution from the
GCOS swap file.

Each Executive can be explicitly spawned by
issuing a dummy message with the appropriate keyword or
| implicitly spawned at the system console or master
| terminal via the RESTORE *** Command. This command will
‘ spawn each TPAP whose profile contains flag word bit
0=1 with the message *** STRT. The Executive recognizes
this message, performs its initialization functions and

sends an End-of-Transaction status to TPE.

During the spawning phase, those files specified

3,10

|
|
|
|
|
|

SITE REFERENCE

in the TPAP File, are attached to the Executive. These

files reflect all files to be managed by the
or accessed by the Keyword Processors.

Executive

SITE REFERENCE

Master Terminal Capabilities

TPOS has master terminal capabilities which are
used via a DAC connect to TPOS. There are five master
terminal program functions:

- Statistics

- Debug

- Line Switch

- Terminal Hold
- Termination

The master terminal capabilities are entered via a
DAC connect. For example, the "JDAC" command in time
sharing could be used to connect to TPOS:

JDAC TPOS

TPOS will issue a connect message in the following
format:

**TPOS: MM/DD/YY at HH:MM:SS: ON CHANNEL CCCC

where MM = Month
LD = Day
YY = Year
HH = Hour
MM = Minute
SS = Seconds
CCCC = Channel Number

At this time TPOS asks which of the four "programs" you
wish to enter. The message has the format:

PROGRAM NAME ?

In response, one may enter:
STATS - Statistics
DBUG - Debug
LSWIT - Line Switch
WAIT - Terminal Hold

BYE - Termination

SITE REFERENCE

Because of the nature of the information, two of
the systems require passwords, which are:

Program Password
STATS NUMBERS
DBUG WELCOME

NOTE: All commands must be entered with "UPPER CASE".

Statistics

TPOS has a master statistics capability. The
current statistical functions are:

TPOS 6] List TPOS Usage Information

TPOS B List TPOS Communication Counts

TPOS A List both TPOS Usage Information
and communication Counts

TPOS Defaults to TPOS A

In addition to the above functions, continuous
monitoring may be obtained by the use of an asterisk
(*) after the commands. For example:

TPOS U
TPOS G
TPOS A*

Statistical monitoring in continuous mode may be
interrupted by use of the break function on a terminal
(S*SBRK on a CRT).

Upon completion of the statistical monitoring, the
statistical program is terminated by use of the "DONE"
command.

Debug
TPOS has a master debug capability. This

capability is accessed via a DAC connect to TPOS. The
current debug functions are:

Sol3

SITE REFERENCE

Snap
Sal-a2 Snap from al to a2
Sa,n Snap n words starting at a
SR Snap processor registers in dump
format
SB Snap breakpoint table
Patch
Pa pl,....pn Patch n words starting at a with

octal values pl thru pn
PVia .pl,;....pn Same as above, except verify patch
with a snap

Breakpoints

Ba Insert breakpoint at a

BVa Insert breakpoint at a and verify

Da Delete breakpoint at a

DVa Delete breakpoint at a and verify
Transfer

Ta Transfer control to a

TVa Transfer control to a after verifi-

cation

If at a breakpoint, reload breakpoint processor
register values prior to transfer.

Return
R Return to caller. If at a breakpoint,
resume interrupted execution after
reloading processor registers.
Caller
(2 Display IC where dbug was called.
This is useful when called from
other than a breakpoint.
Where

wi{symbol} Display location and size associated with
the supplied assembly symbol, provided
the symbol was assembled into the sym-
bol table.

——

SITE REFERENCE

Offset

Q¢

Verification

VON
VOFF
VASIS

Display current offset value

Set address offset to c. The value c¢
will be added to all dbug verb addresses
if they are not designated as absolute.

Set verification mode on
Set verification mode off
Don't change verification mode

Processor Register Display

X
XB
SBA

XBB
XBE
XBR
XP

XA
XQ
XE
XT
XI

Xn
XD

XAn
XIR

Display all processor registers in XB,XP,
XD order

Display base address registers in XBA,XBB,
XBE,XBR order.

Display MBA contents. If a non-extended
memory processor, so indicate.

Display MBB contents

Display BER contents

Display BAR contents

Display 'panel' registers in XA,XQ,XE,XT,
XI order

Display AR contents

Display QR contents

Display Exp-R contents

Display timer contents

Display all index registers in X0 to X7
order

Display index register n

Display all address registers in XAQ0 to
XA7 order

Display address register n

display indicator register

Processor Register Modificatio

M{VIA p

| M{V}Q p
| M{V}E p
' M{V}IR p
M{Vin p
M{V}An p

" |

Modify AR with octal value p and verify
if requested

Same as above except for QR

Same as above except for ER

Same as above except for IR

Same as above except for index register n

Same as above except for address register
n

SITE REFERENCE

For all modifications, the octal value P cannot be

larger than the largest value that can be contained 1in
the register to be modified.

Absolute/Relative Addresses

All dbug addresses are treated as relative to the
offset (see 0) unless preceeded with the letter A,

meaning absolute.
Finished

F For use with DBUG in a GELBAR envir-
onment. This verb effects a DRL to

return to the subsystem or program
from which it was invoked.
Line Switch
TPOS has a master terminal line switch capability.
This function allows the line to be switched from TPOS

to another DAC program (such as time <sharina). The
format is:

LSWIT XXXXXX
where XXXXXX 1s the name of the DAC program to which
the user wishes to be connected. For example, to switch
from TPOS to the Time Sharing System, one would type:
LSWIT TSS

and the line would switch to the TSS logon sequence.

Terminal Hold

TPOS has a master terminal line hold capability.
This function is initiated by typing

WAIT

and 1is terminated by using the "break" capability on
the terminal ($*$BRK on a CRT).

SITE REFERENCE

Termination

TPOS master terminal capabilities may be exited
via the "BYE" command which will cause the terminal to
be disconnected just as if a logoff had been performed
from the Time Sharing System. The format is:

BYE

Master Terminal Session

The following three pages are representative of
the usage of the master terminal functions.

Sl

SITE REFERENCE

SYSTEM ?jdac tpos

** TPOS: 07/25/77 AT 22:49:10 ON CHANNEL 4050
PROGRAM NAME? stats
SUNSERITIIING

REALY
?TPOS

TPOS INTERNAL STATUS ON 07/25/77 FROM 21:03:09 TO 22:49:31

PROGRAM-# 15 SNUMB 8912T ACTIVITY 02 URGENCY 05 SW 000000000000

TIME PROCESSOR MEMORY I/0 LINES
START 20.762 USED 0.003308 SWAP 7K USED 0.012 USED 78
ASOF 22.826 LIMIT 0.049623 TOTAL 18K LIMIT LIMIT 2048
LAPSE 2.063 GELBAR (.000222

-ENDSP - GELBAR DISPATCHES 1538

.ENGI - INTERRUPT BROKEN GELBARS 61

.ENRLQ - RELINQUISHES 2285

.ENRLT - RESOURCE LOCKUP THRESHOLDS 0

.ENTSS - SCHEDULER STALLS 0

.ENLRT - LOST INTERCOM READS 87

.ENLWI - LOST INTERCOM WRITES 0

<ENRCV - TRANSACTICNS RECEIVED 38

.ENMLA - MAIN-LEVEL CORE ALLOCATIONS 0

.ENMLS - MAIN-LEVEL SWAP ALLOCATIONS 0

.ENSAR - MAIN-LEVEL SWAP REFUSALS

.ENSWP - SWAPS

.ENNML - NORMAL TERMINATIONS 3
.ENABT - ABNORMAL TERMINATIONS

.ENIBO ~ INPUT BUFFER CVERFLOWS

-ENCRI - INPUT BUFFER CORE CHANGES

.ENICC - COMPLETED INPUT OVERFLOWS

-ENOBO - OUTPUT BUFFER OVERFLOWS

.ENCRO - OUTPUT BUFFER CORE CHANGES

.ENOOC - COMPLETED OUTPUT OVERFLOWS

cocococoouwvwcoccoc

2UQTPOS U

TPOS INTERNAL STATUS ON 07/25/77 FROM 21:03:09 TO 22:50:38

PRCGRAM-# 15 SNUMB 8912T ACTIVITY 02 URGENCY 05 Sw QouooouoouoL

TIME
START 20.762
ASOF 22.844
LAPSE 2.082

?

PROCESSOR
USED 0.003376
LIMIT 0.049623
GELBAR 0.000229

(o
.

MEMORY 1/0
SWAP 7K USED 0.012
TCTAL 18K LIMIT

18

LINES
USED 78
LIMIT 2048

SITE REFERENCE

WHAT?
2TPOS C

TPOS INTERNAL STATUS ON 07/25/77 FROM 21:03:09 TO 22:51:17

.ENDSP -
.ENGI -
.ENRLQ -
.ENRLT -
.ENTSS -
«ENLRT -
-ENLWI -
.ENRCV -
.ENMLA -
.ENMLS -
-ENSAR -
.ENSWP -
.ENNML -
.ENABT -
.ENIBO -
.ENCRI -
.ENIOC -
.ENOBO -
.ENCRO -
.ENOOC -

GELBAR DISPATCHES

INTERRUPT BROKEN GELBARS
RELINQUISHES

RESOURCE LOCKUP THRESHOLDS
SCHEDULER STALLS

LOST INTERCOM READS

LOST INTERCOM WRITES
TRANSACTIONS RECEIVED
MAIN-LEVEL CORE ALLOCATIONS
MAIN-LEVEL SWAP ALLOCATIONS
MAIN-LEVEL SWAP REFUSALS
SWAPS

NORMAL TERMINATIONS
ABNORMAL TERMINATIONS

INPUT BUFFER OVERFLOWS
INPUT BUFFER CORE CHANGES
COMPLETED INPUT OVERFLCWS
OUTPUT BUFFER OVERFLOWS
OUTPUT BUFFER CORE CHANGES
COMPLETED OUTPUT OVERFLOWS

SedS

1574
61
2329
0

0

89

w
oo o

oOooccocococuvwwoo

SITE REFERENCE

WHAT?
2TPOS A

TPOS INTERNAL STATUS ON 07/25/77 FROM 21:03:09 TO 22:52:34

PROGRAM-% 15 SNUMB 89121 ACTIVITY 02 URGENCY 05 Sw 000000000000

TIME PROCESSOR MEMORY I/0 LINES
START 20.762 USED 0.003500 SWAP 7K USED 0.014 USED 78
ASOF 22,877 LIMIT 0.049623 TOTAL 18K LIMIT LIMIT 2048
LAPSE 2.115 GELBAR 0.000236

-ENDSP - GELBAR DISPATCHES 1608

.ENGI - INTERRUPT BROKEN GELBARS 62

.ENRLQ - RELINQUISHES 2373

.ENRLT - RESOURCE LOCKUP THRESHOLDS 0

.ENTSS - SCHEDULER STALLS 0

-ENLRT - LOST INTERCCM READS 90

.ENLWI - LOST INTERCOM WRITES 0

.ENRCV - TRANSACTIONS RECEIVED 38

.ENMLA - MAIN-LEVEL CORE ALLCCATIONS 0

.ENMLS - MAIN-LEVEL SWAP ALLOCATIONS 4}

.ENSAR - MAIN-LEVEL SWAP REFUSALS

.ENSWP - SWAPS

.ENNML - NCRMAL TERMINATIONS 3
.ENABT - ABNCRMAL TERMINATIONS

.ENIBO - INPUT BUFFER OVERFLOWS

.ENCRI - INPUT BUFFER CORE CHANGES

.ENIOC - COMPLETED INPUT OVERFLOWS

-ENOBO - OUTPUT BUFFER OVERFLOWS

.ENCRO - OUTPUT BUFFER CORE CHANGES

.ENOOC - COMPLETED OQUTPUT OVERFLOWS

coocococuwwoo

?DONE

PROGRAM NAME? DBUG

JINIVIRIIING

<<<ENTER DBUG

DBUG?S)

ERR - ADDRESS NOT OCTAL
DBUG?S0

000000 000000000000
DBUG?F

<<<EXIT DBUG

PROGRAM NAME? WAIT
START WAITING @ 22:54:52

PROGRAM NAME? LSWIT TSS
RADC Rs&D TSS GCOS-GU3 07,/25/77 AT 22.919 CHANNEL 4050

3.20

SITE REFERENCE

INSTALLATION MACROS

Several macros are used within TPOS to tailor it
to a particular site's operating requirements. Use of
the macro along with a description of the macro
parameters follows.

.TPOS. - Set TPOS Options

This macro 1is used to set assembly flags that control
the conditional assembly of TPOS modules and tailor
TPOS to various operating environments. The macro is
used as follows:

)¢ 8 16

«FEOS . [OPTIONS-STRING-1,...l0PTION-STRING-N]

Where option strings currently recognized are:

'SYMBOL-TABLE' Sets an assembly flag so macro
.SYMT. will generate a symbol table.

'CONSOLE=TTY' Sets an assembly flag indicating
that a TTY is to be used in lieu
of a system console.

'SYMDEF-SYMBOL-TABLE-ENTRIES'
Sets an assembly flag indicating
all symbols encountered by macro
.SYMT. should be SYMDEF'Qd.

'REMOTE-1/0' Sets and assembly flag to allow
conditional assembly of Remote
I/0 supervisor code.
The .TPOS. macro call should be inserted immediately
after the macro definition. See the assembly listing.

Intercom Buffer Space Macro

| R LT | R e N U It e A A
.BUFF. Input-Intercom-Buffer-Size,
ETC Output-Intercom-Buffer-Size
This macro establishes the initial sizes of the
Intercom input and output buffers 1in words. As a
Jeil

SITE REFERENCE

starting point, the input buffer can be set to the
average message size times the number of TASKs desired.
Similarly, the output buffer size can be set to the
average output buffer size times the number of TASKs.
If memory is not a problem, the maximum memory size
should be substituted for the average message size in
both cases.

This macro should be inserted into the TPOS assembly
deck as specified in the program listing.

OQutput Intercom Queue Macro

1 8 16

.COMQ. Number-of-Queue-Entries

The single subfield specifies the number of Output
Intercom Queue entries in order to reserve space for
the complete queue at assembly time. As a guideline,
the number of queue entries should be at least as large
as the number of TASKs.

This macro should be inserted into the TPOS assembly
deck as specified in the program listing.

Terminal Control Block & Buffer Space Macro

E 8 16

.LINE. Number-of-Terminal-Lines,
ETC Wait-for-Reconnect-Time

The first subfield specifies the maximum number of
terminal lines that TPOS is to handle.

The second subfield represents the time interval from 1
terminal disconnect during which all control
l information is to be held in limbo. This time interval
' is specified in seconds. The purpose of this field is
i to allow a reconnect feature in a future enhancement.
}
|
|

This macro should be inserted into the TPOS assembly
deck as specified in the program listing.

L —— — ——

SITE REFERENCE

Set Maximum Input & Output Message Sizes Macro

1 8 16
.MSG. Maximum-Input-Message-Size,
ETC Maximum-Output-Message-Size

Both subfields specify the message sizes in words. The
maximum input and output message sizes should be chosen
as the maximum sizes from the user-supplied Keyword

Processor specifications.

This macro should be inserted into the TPOS assembly
deck as specified in the program listing.

Swap-File Map Space Macro

3 8 16

.SWAP. Number-of-Swap-Map-Entries

The single subfield specifies the size of the Swap-Map
in terms of the number of map entries desired. No more
than 255 entries should be requested since an 1in-core
TASK remains assigned to a program even when it is
swapped and the maximum number of TASKs is 255.

The .SWAP. macro can be omitted if a Swap-File will not
be allocated to TPOS. This macro should be inserted
into the TPOS assembly deck as specified in the program

listing.

TASK Space Macro

1 8 16

.TASK. Number-of-TASKs,TASK-Stack-Size
The first subfield specifies the maximum number of
TASKs which are to be assembled into TPOS. No more than
255 TASKs can be requested.

The second subfield sets the size of the TASK IC&I
stack. This subfield can be left null for the current

TPOS version.

This macro should be inserted into the TPOS assembly

Se2d

SITE REFERENCE

deck as specified in the program listing.

SYMBOL CONVENTIONS

SYMBOL CONVENTIONS

Certain symbol conventions are followed within the
Executive both to standardize the symbols by their
generic usage and/or content and to avoid confusion.
The conventions are currently:

..XXxx Explicitly Named Location Counter Symbol
or Location Counter Origin

.XXXX. Macro Symbol

.Axxxx Assembly Parameter or Symbol

.AMRKn MARK Symbol for Conditional Assembly

.AMSWn Switch Symbol for Macro Expansions

.BITnn General Use Bit Symbol

.BTxxx TASK or TCB Bit Flag

.Dxxxx DRL Processor Primary Entry Point

.Exxxx Executive Communication Region Cell

.ENxxx Executive Accumulated Count

.GXxxX MME Processor Primary Entry Point (for
standard GExxxXx MME symbol)

.Kxxxx Keyword Processor Prefix Area Cell
.KEYLn Keywords List Offset Symbol

.PRFLn Keyword Processor Profile Offset Symbol
.Txxxx TASK Cell

.TCxxx Terminal Control Block Offset Symbol
B.Txxx TASK Bit Flag

B.Axxx Keyword Processor Attribute Bit Flag

SYMBOL CONVENTIONS

DRLNnx
OF
Dnnxxx

MMENnx
or
Mnnxxx

YYY.nn

YYYnnn

Internal DRL Processor Symbol
(for DRL symbol value nn)

Internal MME Processor Symbol
(for MME symbol value nn)
Symbol for Entry Point nn of Module YYY

Internal Executive Symbol for Module YYY,
Symbol Sequence Number nnn

SYMBOL CONVENTIONS

Explicitly Named Assembly Location Counters

Named location counters are used during assembly
to order or position coding elements and data, but more
importantly to allow macro definition of non-contiguous
elements. Current location counter names and element
description are:

..EXCR Executive Communication Region

..XLIT EIS Transliteration Tables

..EXEC Executive Proper

. .MSG Executive Error Messages

..PRFL Keyword Processor Profiles

..KEYL Keywords List

.. TASK TASK Space

..LINE Terminal Control Block & Buffer Space

. .SYMT Symbol Table

..BUFF Input-Output Buffer sizes, Output Intercom
Queue, Swap-File Map

Location counter defined assembly elements are
sequenced according to the first wusage order of the
counters. Notice that the origin of each explicit
location counter must be properly set when the counter
is first defined, i.e., invoked.

Executive Module Symbols

Internal Executive symbols for its modules and
their component routines assume the form YYYnnn, where

YYY is the module name and nnn is the module symbol
sequence number. Current module YYY names are:

AIO Core Allocator 1/0

4.3

SYMBOL CONVENTIONS

CAL
COM
DBG
DRL
DSP
ETX
EXM
FLT
HKP
I10
KEY
MAC
MAP
MME
RIO
RLS
SCH
STA
SYM
TRM

The
pVC, LUF,

Core Allocator
Communication Region
Interactive Dbug

DRL Validation/Handler
Dispatcher

Edit Transaction Number
Executive Message Intercom
Fault Handler

Housekeeping

Intercom I/O Handler
Message Keyword Processing
Macros

Map Mechanics

MME Validation/Handler
Remote I/0 Supervisor
Remote Line Service

Transaction Scheduler
Interactijve Statistics
Symbols

Terminator

following YYY symbols are reserved: C(Mu,
MEM, OFL, ONC, PAR, TAG, TRO and ZOP.

CODING PRACTICES

CODING PRACTICES

Register Convention

The only dedicated 1index register within the
Executive's system functions is X7. This 1s wused to
hold a pointer to the TASK being processed, if |
appropriate to the particular function. Though the
remaining register wusage 1is not specified, generally
the lower numbered registers are treated as the nmore
volatile.

Transfer of Control

Transfer of control among the system functions is
currently accomplished via the .CALL., .EXIT. and
.GOTO. macros. See transfer of control chapter.

There is no transfer of control register
safe-storage conventions within the <calling sequence.
If safe-storage 1is necessary it must be done by the
calling routine. As an aide to determining which
registers are affected, each routine has a preface in
the assembly listing that specifies which registers it
alters or destroys. Notice that if the called routine
references yet another routine, it 1s necessary to
check the preface of the latter routine too.

Register safe-storage has been kept to a minimum
wherever possible to reduce this housekeeping overhead.
Extra care in modifying or installing a system routine
can ensure a .ainimum of register 1interference and
necessary safe-storage. This applies particularly to
those routines which are executed on a frequent basis.

Courtesy~Calls

Normally, courtesy-calls are used as the primary
level for processing with the main-level suspended in a
: roadblocked state. Within the Executive, courtesy-calls
are used as a second level for processing in addition

lf 5.1

e ————

to the main-level.

CODING PRACTICES

Thus the main-level 1is not

roadblocked. The Executive's design dictates that some
functions be performed and their component routines be

given control at
levels.

Inhibited Code

Inhibited code is necessary within and throughout
several system functions. Coding must be so conditioned
when a system routine is 'common' to both main and
courtesy-call levels
references or modifies data that is 'common' to both
main and courtesy-call levels.

Non-reentrant

Data that must be handled with inhibited code 1is

generally a system

main-level data reference functions similarly to a
eliminating overlaping references

they could create. Notice that
inhibiting is only required at the main-level since a
courtesy-call cannot
main-level or by another courtesy-call.

programmed gate by
and the confusion

The need for

be required. To aide
susceptible to this
keyed according to
reference is made to

system routines are inhibited in
order to ensure that they are not busy when called by
an interrupting courtesy-call. Determination of whether
or not a routine 1s inhibited must be made by examining
the assembly listing.

an inhibited reference in any
particular case depends on the type of access intended.
For example, inhibiting would not be necessary if the
reference is meant to
the reference is meant to modify or to check for some
condition and temporarily preserve it, inhibiting would
in determining which items are
problem, the item descriptions are

them.

both the main and courtesy-call

and not reentrant or when it

gueue or map. Inhibiting the

be interrupted by either the

'just take a look'; however, if

whether or not courtesy-call

P " D : ol de U e 3 i, >

CODING PRACTICES

TASK Symbol Usage

TASK symbols are relative offset symbols;
consequently their difference is absolute. When using
these symbols and referencing one TASK cell given a
pointer to another (other than the base of the TASK),
the pointer offset should be expressed as a symbolic
difference rather than a numeric difference. If this is
not done and TASK symbols are reshuffled, deleted,
etc., the pointer offset will be in error. TASK format
flexibility 1is the primary benefit derived from
symbolic definition.

Fault Requested System Services

Keyword Processors can request system services by
generating a processor fault with the MME or DRL
instructions. Currently only a subset of the standard
GCOS MME functions are supported. For a description of
the interface between the Executive and this type of
system service, see the MME processor section. For a
description of the restrictions and conventions to be
observed by the service routines themselves, see the
Dispatcher's Queue discussion.

TRANSFER OF CONTROL

TRANSFER OF CONTROL

Transfer of control in the initial version of TPOS was
accomplished via TSXn type instructions. As development
continued, this method failed to provide the
flexibility required by new functions. Two types of IC
& I stacks were incorporated to eliminate most transfer
of control difficulties.

IC & I Stacks

The first stack is a master or TPOS stack, located at
.ESTAK. The stack pointer 1is located in .EICIS as a
tally word. This stack pointer always points to the
last entry node in the stack provided the stack isn't
empty.

The other type of stack is the TASK stack, located at
offset symbol .TSTAK in each TASK. The stack pointer 1is
located at offset symbol .TALLY of the stack. As with
TPOS's stack, the stack pointer always points to the
last entry mode in the stack.

With both stacks, reference to the last entry mode is

accomplished by using the tally stack pointer word as
an indirect word.

TRANSFER OF CONTROL

There are three allowable transfers of control
mechanism. They are the .CALL., .(EXIT., and .GOTO.
macros. The latter never involves a stack.

.CALL. Mechanism

The .CALL. macro 1is used for making an entry in the
appropriate IC&I stack, if one is specified, and then
transferring control to the desired location. The macro
expansion and method for making a stack entry varies
according to the stack to be used.

For TPOS's stack, the macro expands into:

6.1

TRANSFER OF CONTROL

1 G RESREIAR | N o
XED .EPUSH
DRL (transfer location)

Where .EPUSH 1s a fixed instruction pair consisting of:

1 8 16 b Sl
EVEN

.EPUSH STC1l .EICIS,DI
TR 1,I€C*

For a TASK stack ,X7 must point to the applicable TASK.
In this case the macro expands into:

1 8 16
XED .ECALL
DRL (transfer location)

Where .ECALL is a fixed instruction pair consisting of:

1 8 218 -2
EVEN

.ECALL STC1 .TPUSH, 7*
TTF 1,1C*

and .TPUSH is a NOP within the applicable TASK used for
making a TASK stack entry. This call consists of:

1 8 16

.TPUSH NOP .TALLY,DI

.TPUSH 1is a necessary patt of this sequence since it
holds the absolute address of .TALLY,7 (relative to
TPOS's LAL) thereby making 1it's address modification
field available for the DI type tally modification. If
the TASK is moved, .TPUSH must be adjusted to reflect
the new location of .TALLY,7.

Overflow protection exists for either stack. If a stack
overflow occurs, the TTF transfer at .EPUSH or .ECALL+1
will not be taken. This causes the DRL in either macro
expansion to be executed. There is no confusion between
a stack overflow DRI, and a service DRL, since the
latter 1is returned through the GELBAR Fault Vector

62

TRANSFER OF CONTROL

instead of the DRL Fault Vector in TPOS's SPP.

.CALL. USAGE

The .CALL. macro is used as follows:

1 8 16

SCALL, | Symbol, Null |
{ }, Call-Mode-
Designator

|Module-Name, Entry-Point]

Where the Call-Mode-Designator specifies the type of

call to be made and consequently affects the inline
macro expansion, Call-Mode-Designators are:

Blank or T Use IC&I stack in TASK pointed to by X7.
E Use TPOS's IC&I stack.
Xn Do not use any stack. 1Instead generate

a TSXn to the specified symbol or
module-name, entry point.

The last Call-Mode-Designator was included to allow
existing TSXn transfer of control calls to be inverted
to the .CALL. format. This designator is not 1intended
for future use except when calling a module which does
not use a stack to exit.

.EXIT. Mechanism

The .EXIT. macro is used for removing an entry from the
appropriate IC&I stack, if any, and then returning
control to that IC plus a variable offset. As with the
.CALL. macro, the macro expansion varies according to
the stack specified in the macro call.

FOR TPOS's stack, the macro expands into:

1 g8 1

EAXO (variable-offset)+1
XED . EPOP

TRANSFER OF CONTROL

Where .EPOP is a fixed instruction pair consisting of:

1 8 16 B
EVEN

.EPOP ASX0 .EICIS,I
RET .EICIS,ID

The firsk expansion instruction sets X0 to the
specified offset from the .CALL. plus one to step the
calling 1IC past the DRL in the .CALL. macro expansion.
The two instructions at .EPOP add the desired IC offset
to the IC within the stack and then return control to
the resulting IC as the stack pointer is popped to the
previous stack entry.

For a TASK stack, X7 must point to the applicable TASK.
In this case, the macro expands into:

1 8 16
EAXO (variable~offset)+1
XED «BEEXTT

Where .EEXIT is a fixed instruction pair consisting of:

1 8 16
EVEN

.EEXIT ASX0 .TALLY, 7*
RET «EPOP, 1™

This mechanism is the equivalent of the TPOS stack exit
mechanism except an indirect word at .TPOP,7 1in the
TASK 1s required to effect the ID tally modification
for popping the stack. The contents of .TPOP are:

1 8 16

.TPOP NOP .TALLY, ID

+EXIT., Usage

The .EXIT. macro is used as follows:

1 8 16

.EXIT. IC-Offset, Call-Mode-Designator,

6.4

B e B T T Y et _

e

TRANSFER OF CONTROL

Conditional-Transfer

The IC-offset represents the number of instructions to
be shipped past the .CALL. calling seguence. The
Call-Mode-Designator tailors the macro expansion as
follows:

Null or T If the third parameter is not null,
the two instructions

Conditional-Transfer 25 LLE

TRA VS E

are generated to allow a
conditional exit. These
instructions are immediately

followed by the expansion which
returns, using the IC&I in TASK

stack.
E Return using IC&I in TPOS's stack.
N, Xn, *Xn, If the third subfield is null, the
AU,AL,QU,QL, single instruction
*AU, *AL, *QU, *QL,
I TRA IC-offset, Register-Modification

implied by Call-Mode-

Designator
is generated.

If the third subfield is not null,
single instruction.

Conditional-Transfer IC-Offset, Reg-
ister Modifica-
tion implied by
Call-Designator

As with the .CALL. macro, .EXIT. Call-Mode-Designators
other than Null, T or E were included for compatability
with existing procedures. These designators should be
avoided in new procedures.

TRANSFER OF CONTROL

.GOTO. Usage

The .GOTO. transfer of control macro is wused as
follows:

1 8 16

.GOTO. |Symbol, Address-Modification|
{ } , Condition-
al-Transfer

|[Module-name, Entry-Point |

The Module-name, Entry-Point option will generate:

| TRA | | Symbol, Address-Modification]
{ or } { or }
|Conditional-Transfer | |[Module-Name, Entry-Point |

Where allowable address modification types are:
N,Xn,I,AU,AL,QU,QL,*Xn,*AU, *AL,*QU, *QL

Precaution

Both .CALL. and .EXIT. macro expansions can consist of
more than one instruction. As a result, care must be
taken when calling modules with multiple returns since
a .CALL. followed by another .CALL. or a .EXIT. could
result in a return to an instruction interior to an
expansion.

COMMUNICATION REGION

EXECUTIVE COMMUNICATION REGION

This region of the Executive is used for common
storage and for communication among the Executive's
internal functions. As such, the region contains the
following:

o assembled constants that define the
Executive's parametric structure

o status of internal Executive functions

o control information for internal functions.

symbolic tags for Communication Region cells are of the
general form .ExxxX.

Special Usage

Some Communication Region cells are referenced
within both main and courtesy-call level processing.
These cells must be handled with extra care as dictated
by the type of reference being made. In order to
1dentify these cells it is sufficient to indicate which
ones are accessed in the courtesy-call routines. This
is done by inserting the key (CC-Fef) after the cell
name in the following communication cell descriptions.

COMMUNICATION REGION

.EACQS - Allocator's Core-Queue Service (CC-Ref)

0 17 18 25 26

]PTR TO .TMEM OF LAST TASK |NO-PASS TALLY |MBZ
| UNSUCCESSFULLY SERVICED BY |or SELECTION |
|MAIN-LEVEL CORE ALLOCATOR |Q-DEPTH |

——

The wupper half of this cell holds the current service
position within the Core-Queue. This position can point
to the base of Core-Queue when the next qgueue-entry
eligible for selection is the first entry in the queue.
The lower half of this cell holds a demand selection
Core-Queue depth tally that indicates the number of
TASKs remaining to be serviced up to and including the
highest priority no-pass, when positive, and indicates
the current Core-Queue depth of the service, when
negative. This cell is used to interlace courtesy-call
and main-level allocation activities.

.EAIXP = Allocator's 1Interrupted Execution Phase
(CC=Ret)}

0 oy 17 18 35
NEGATIVE COUNT OF COURTESY- |MAIN-LEVEL EXECUTION |
|CALL NO-PASS's | PHASE I

The upper half of this word holds a negative count of
Core-Queue no-pass's that were 1linked or forced in
courtesy-call. The lower half describes the current
phase of the main-level allocator as follows:

0 = not enabled
1 = demand (load) allocation
2 = 'swap' resource allocation.
This cell 1s used by courtesy-call routines to

interlace their functions with main-level allocations
functions.

COMMUNICATION REGION

.EBAS5 - Base Address Setting

0 17 18 29 30 35
|BASE ADDRESS SETTING |NOT USED | X5 MOD |

This word 1is used to resolve an address given an offset
in 1index register 5 (X5) to the base setting in the
upper half of this word. The base setting is the LAL of
some Keyword Processor. This <cell 1is set by the
Dispatcher at every dispatch.

.ECALL - Make Entry in TASK IC&I Stack

0 17 18 35
STC1 | .TPUSH, 7* [
TTF |1,IC* |

.ECMAP - Core-Map (CC-Ref)

0 17 18 25 26 27 35
FWD CORE-MAP PTR (.TMEM)	# FREE 1024	0	[MBZ
	WORD BLOCKS		
MB?Z	SWAP~CORE LAL		
MBZ {			

IBKWD CORE~MAP PTR (.TLAL) [SWAP-CORE UAL

Four words representing the base Core-Map entries. The
first two words are the first Core-Map entry and the
last two words are the last map entry. Base entry
format 1s identical to the general Core-Map entry. (See
Core/Swap Map discussion). Swap-core 1s the core area
in which Keyword Processors are loaded and executed.
The swap-core UAL is defined to be:

(swap~core LAL) + (swap-core size)

in multiples of 1024-word blocks. At assembly time
.ECMAP upper points to .ECMAP+2, and .ECMAP+3 upper
points to .ECMAP+1.

.ECNSL - CONSOLE 1ID

. A R 23
[MBZ T S N

=10

\

COMMUNICATION REGION

One word that holds the Terminal Identification when a
TTY is used in lieu of a system console.

.ECOMO - Output Intercom Enabled Flag (CC-Ref)

This flag is used to indicate that OQutput Intercom I/O
is enabled and that the courtesy-call Output Intercom
routine is executing, when set to a non-zero value. The
flag is controlled by the Output Intercom I/O routines.

.ECOMQ - Output Intercom-Queue Space (CC-Ref)

0 17 18 35
IPTR TO LAST ASSIGNED OUTPUT |PTR TO FIRST FREE OUTPUT]
| INTERCOM-Q ENTRY SPACE+1 | INTERCOM~Q ENTRY or ZERO|
| (.ECQSZ) [[
IINTERCOM-Q ENTRY SPACE+1 [INTERCOM~Q ENTRY or ZERO|

These cells are wused to manage the free Output
Intercom~Queue entries as an availlable chain. The words
are defined by the Output Intexcom-Queue macro
(.COMQ.). .ECOMQ upper 1s assembled to point to the
first word past the assigned space and the 1lower half
is assembled as the 1location of the first assigned
queue-entry. ECQSZ lower holds a bit mask wused to
allow/disallow Intercom-Queue entry requests within the
Dispatcher's-Queue Service. To allow requests, the mask
is 'ORed' into .EDQSM, while to ignore requests, the
1's-complement of the mask is 'ANDed' with .EDQSM. The
mask bit position is assigned symbolically in
accordance with the bit position of the 'Need Output
Intercom~-Queue Entry' TASK Status Flag (B.TNQE).

.ECQP - Output Intercom-Queue (CC-Ref)

ML R R T R R T T S e e s Sl R
|FWD LINKED OUTPUT INTERCOM- [BKWD LINKED OUTPUT INTERCOM-|
IQUEUE _ENTRY PTR or ZERO _ |QUEUE ENTRY PTR or ZERO |

This cell holds the forward and backward pointers to
the head and tail of the Output Intercom-Queue. Entries
linked to the queue are waiting or in transmission.

1+4

COMMUNICATION REGION

.ECORQ - Core-Queue (CC-Ref)

0 17 18 25 26 35
| FWD CORE-QUEUE ENTRY PTR |BKWD CORE-QUEUE ENTRY PTR|
|TO .TMEM or ZERO | TO .TLAL or ZERO |
|# OF TASKs LINKED TO CORE~QUEUE [MBZ |

Two words, the first of which holds the 1link pointers
to the first and last entries in the Core-Queue and the
second contains a count of the number of TASKs linked
to the queue.

.ECQSZ - Output Intercom-Queue Entry Size

The upper half of this cell is set during assembly to
the Output Intercom-Queue entry size by the .COMQ. This
cell must be paired with cell .ECOMQ. (See .ECOMQ).

.EDAMP - Static Core Allocator Dampers (CC-Ref)

0 35
ISTATIC CORE-MAP DAMPER 1
[STATIC SWAP DAMPER T

The Static Core-Map Damper is a Core-Queue to Core-Map
control that, when on, signifies core is full relative
to the <current demands in the Core~Queue. The Static
Swap Damper 1is a Core-Queue to 'swapable' core-holes
control that, when on, signifies core is full relative
to the set of core-holes that would be created 1if
swap-eligible Keyword Processors were swapped-out of
core. The dampers are on when they assume a non-zero
value. (See Core Allocator discussion).

.EDQSM - Dispatcher's-Queue Service Mask

. J— RS oY | S IR |

I DISPATCHER' S-QUEUE
__|SERVICE BIT MASK

|— —lun

This cell is wused by the Dispatcher's-Queue Service
when scanning the status of TASKs linked to the queue
in order to determine if a TASK is roadblocked by or
requesting some Executive function. Selected bits

e

COMMUNICATION REGION

within the mask are set off by the applicable service
routines when their service cannot be provided. The
bits are set on when a service request is possible. Of
the bits used in the mask, the bit positions are
aligned with the 1like bit positions symbolically
assigned to those TASK Status Flags being scanned.

.EDQSP - Dispatcher's-Queue Service Position (CC-Ref)

G e L S e e T
|PTR TO .TFLAG OF NEXT TASK |SE
|TO_SERVICE

- 35
VICE IN PROGRESS FLAG |

' o

This cell holds the location of the next TASK to be
serviced by the Dispatcher's-Queue Service in the upper
half, and a flag that indicates the queue service is
enabled, when non-zero, in the lower half.

.EDSPQ - Dispatcher's-Queue (CC-Ref)

| RN AL N PR BN PR 7 TN D SR R P 35
|FWD DSP-Q ENTRY PTR [BKWD DSP-Q ENTRY PTR
ITO .TPRIO orx ZERO |TO .TFLAG oxr ZERO |
|# OF TASKs LINKED TO DSP-Q {
I

Two words, the first of which holds the 1link pointers
to the first and last entries in the
Dispatcher's-Queue, and the second contains a count of
the number of TASKs which are linked to the queue.

.EEXIT. - Remove Entry from TASK IC&I Stack

. AT W £l LA B SRR | e e AL TR M el .
INBRY i i e R PR R
IRET _ e R SPUP IR T

Two words that hold the fixed instruction pair used by
the .EXIT. macro to add a return offset to the calling
IC in the TASK stack and to logically remove the entry
from the stack while returning control to the resulting
IC. See transfer of control.

7.6

COMMUNICATION REGION

.EGTQS - GELBAR Time Quantum Sum

0 35

|GELBAR TIME QUANTUM SUM FOR ALL GELBAR'd PROCESSOR TIME |

This cell is used to accumulate all processor time used
by the Keyword Processors themselves.

.EIMAP - Input Intercom Buffer Map (CC-Ref)

0 e~ 17 18 35
|FWD INPUT BUFFER MAP PTR | # OF UNATTACHED WORDS AT |
I | THE START OF THE BUFFER
[LOC OF LAST INPUT BUFFER [RESERVED T
|

| CELL |

Two words, the first of which holds the Input Intercom
Buffer base map entry. The second word is used to
record the last buffer cell address and is not required
by map mechanics. These words are defined by the
Generate Buffer Space macro (.BUFF.). See Buffer Map
discussion for a further explanation.

.EINCC - In Courtesy-Call Flag

This cell is used by internal routines that execute at
both main and courtesy-call 1levels to indicate that

execution is at the courtesy-~call level.

.EINIT -~ Initialization Vector

.EINIT is the primary SYMDEF entry point to the
Executive. This cell holds a startup vector to the
Executive's Initialization Routine. The transfer is
required because the initialization routine is attached
to the Executive as a link, consequently the entry
SYMDEF must be to the main link.

.EKEYL -~ Keywords List (CC-Ref)

0 A7

TPTR TO FIRST KEYWORD

. 2532 35
| _# KEYWORDSIMBz 1

COMMUNICATION REGION

This cell is built during assembly and is used by those
routines that search the Keywords List. The cell is
defined during assembly after all profiles and keyword
entries have been built.

.ELDSP - Last Dispatch

[N 17 18 35
|LOC OF LAST DISPATCHED TASK|NOT USED I

This word holds a pointer to the 1last TASK that was
dispatched to. This cell is set by the Dispatcher and
used by the Fault Handler.

.EMXSZ - Maximum Message Size

0 107 L8 35

One word that holds the maximum output message size and
the maximum input message size as declared to TPE 1in
the Executive's Profile. This word is used to screen
Keyword Processor Profiles during startup, to allocate
input buffer space and to ensure that output messages
do not exceed the maximum output message size declared
to TPE. This cell 1is defined during assembly by the
.MSG. macro.

.ENPQD - No-pass Q-Depth (CC-Ref)

[ST S pel: ¥ B - SRR - 5| R - |
|PTR TO .TPRIO OF HIGHEST | NO-PASS | MB?Z |
| PRIORITY NO-PASS TASK | Q-DEPTH | l

The upper half of this cell holds a pointer to TASK
cell .TPRIO of the highest priority no-pass in the
Core-Queue and the lower half holds the Core-Queue
depth of the no-pass. If a no-pass does not exit, this
cell is zero.

.ENUQD - Selection Q-Depth (CC-~Ref)

i — A7 28 25 26
MBZ | SELECTION |MB2Z
| Q-DEPTH |

|— —o
|— —n

7.8

COMMUNICATION REGION

This cell holds the Core-Queue depth of the 1last TASK
unsuccessfully serviced by the main-level Core
Allocator during demand (load) allocation. The Q-depth
can be zero when the next TASK eligible to be selected
is the first TASK in the Core-Queue. This cell is wused
by courtesy-call routines to help determine the
allocation eligibility of a newly linked demand and to
interlace courtesy-call and main-level functions.

.EOMAP - Output Intercom Buffer Map (CC-Ref)

0 17 18 3

5
|[FWD OUTPUT BUFFER MAP PTR |# OF UNATTACHED WORDS AT |
|
[
l

I | THE START OF THE BUFFER
|LOC OF LAST OUTPUT BUFFER |RESERVED
| CELL |

Two words, the first of which holds the Output Intercom
Buffer base map entry. The second woxd is used to
record the last assigned buffer cell address and is not
required by map mechanics. These words are defined by

the Generate Buffer Space macro (.BUFF.). See Buffer
Map discussion for a further explanation.

.EORG - TPOS Origin
This symbol under location counter ..EXCR 1locates the

origin of TPOS.

.EPOP - Remove Entry from TPOS's IC&I Stack

0 17 18 35
[ASX0 }.BICIS,T T
IRET | .EICIS,ID I

Two words that hold the fixed instruction pair used by
the .EXIT. macro to add a return offset to the <calling
IC in TPOS's TASK Stack and to logically remove the
entry from the stack while returning control to the
resulting IC. See transfer of control.

COMMUNICATION REGION

.EPRFL - Keyword Processor Profiles

0 17 18 25 26 35
|PTR TO FIRST KEYWORD |# OF |MB2Z |
| PROCESSOR PROFILE | PROFILES | |

This cell points to the first Keyword Processor Profile
in the upper half and holds the number of profiles
assembled in the lower half. This number is scaled for
use as the tally of a Repeat instruction.

.EPRFX - Keyword Processor Prefix

This symbol is used to symbolically define the size of
the Keyword Processor Prefix Area, that is the equated
value of the symbol is the prefix size. There is no
storage associated with this symbol.

.EPUSH - Make Entry in TPOS IC&I Stack

0 17 18 35
ISTC1 | .EICIS,DI |
| TTF 11,IC* [

Two words that hold the fixed instruction pair used by
the .CALL. macro to make an IC&I entry in TPOS's stack.
This stack 1s located at .ESTAK and the stack pointer

is a tally word at .EICIS. See transfer of control.

.EQMIN - Core-Queue/Core-Map Fence (CC-Ref)

glocr 17 18 35
[MBZ [CORE-Q :: CORE-MAP FENCE l

This cell is an internal Core Allocator control that
functions as a fence between the demands in the
Core-Queue and the available core-holes in the
Core-Map. Whenever the Static Core-Map Damper is on,
the following relationship is satisfied:

max Core-Map (available core-hole)< .EQMIN < min
Core-Queue (resource demands)

See the Core Allocator discussion for a further

7,10

COMMUNICATION REGION

explanation.
.ERLUF - Resources Lock-Up Flag

This is a one word flag that is on when it holds a
non-zero value. The flag is set on by the Dispatcher
when:

(1) the Dispatcher®s-Queue is not empty
(2) it is unable to select a TASK eligible for dispatch

(3) the Output Intercom Processor is not active

(4) no TASKs are roadblocked by outstanding device 1/0.

If the Dispatcher cannot clear the flag after one queue
service attempt, it initiates lockup threshold 1logic
and commences aborting TASKs to free-up resources. In
the event the lockup remains, the Dispatcher will abort
the Executive.

.ESDAT - Startup Date

0 3
| STARTUP DATE (MMDDYY)]

One word that holds the startup date at the completion
of initialization.

.ESDQP - Swap Search Dispatcher's-Queue Position
(CC-Ref)
0 - 17 18 e Tl 35

1PTR TO .TPRIO OF NEXT TASK|MBZ |
|WHERE SWAP-ELIGIBLE TASK | [
ISEARCH IS TO RESUME ' o |

This cell 1is wused during main-level swap resource
allocation to hold a pointer to cell .TPRIO of the next
TASK where the swap-eligible TASK search is to resume.

s

COMMUNICATION REGION

.ESMAC - Swap-File Map Space (CC-Ref)

0 L R 17 38 SO0 S Tl A8
IPTR TO LAST ASSIGNED SWAP-|PTR TO FIRST FREE SWAP-FILE]
IFILE MAP ENTRY SPACE+]1 [MAP ENTRY or ZERO l
[SWAP-FILE MAP ENTRY SIZE [MBZ T

| I I

Two words wused to build or release Swap-File Map
entries. The lower half of the first word points to the
first available map entry if there is one. These cells
are defined by the Generate Swap-File Map space macro
(.SWAP.). .ESMAC upper is assembled to point to the
first word past the assigned space and .ESMAC lower is
assembled to point to the first assigned Swap-File Map
entry.

.ESMAP - Swap-File Map (CC-Ref)

- S A TR -, 17 18 35
|FWD SWAP-FILE MAP PTR |# OF FREE 64 WORD BLOCKS |
L SRR _ | SWAP-FILE LAL I
k. | RS G D A S R BB e o
|BKWD SWAP-FILE MAP PTR | SWAP-FILE UAL [

Four words that hold the Swap-File base map entries.
The first two words are the first Swap-File Map entry
and the last two words are the last entry. Entry format
is identical to the general Swap-File Map entry format.
The Swap-File UAL is defined to be:

(Swap-File LAL) + (Swap-File size) |
in 64-word blocks. At assembly time .ESMAP upper points

to

.ESMAP+2, and .ESMAP+3 upper points to .ESMAP+l.

.ESORG - Master IC&I Stack Origin

This symbol locates the beginning of the Master IC&I
stack used for transfer of control between TPOS
executive routines. See .ESTAK.

COMMUNICATION REGION

.ESTAK - Master IC&I Stack

This symbol locates the first word past the Master IC&I
stack used for transfer of control between TPOS
executive routines. The size of this stack is
established as the difference between .ESTACK and
.ESORG. This symbol 1is used to locate the stack since
entries are inserted from high to low address, i.e.,
via DI-type tally modification.

.ESTAL - Stalled Scheduler Vector (CC-Ref)

0 35

TIC & T WHERE TRANSACTION SCHEDULER STALLED-OUT or ZERO]

The Transaction Scheduiesr uses this cell as a flag,
everytime it 1is enabled by the Dispatcher at the
main-level, to determine if it has stalled-out and
needs to be restarted. When the scheduler is stalled,
.ESTAL is treated as a vector that holds the IC & 1
where the Transaction Scheduler stalled-out and is to
be restarted. When this cell is zero, the scheduler is
enabled at the courtesy-call level.

.ESTIM - Startup Time

0 Pl e
[STARTUP TIME (1/64 MS)

—dn

This word holds the startup time at the completion of
initialization.
.ESWPE - Swap Eligible TASK Count (CC-Ref)

0 35
[# OF SWAP-ELIGIBLE TASKsS or KEYWORD PROCESSORsS [

This cell holds the count of the number of TASKs whose
associated Keyword Processors are eligible to be
swapped out of core. This condition is indicated within
a TASK when its B.TESW bit flag is on in cell .TFLAG.

COMMUNICATION REGION

.ESYMT - Symbol Table

0 17 18 25 26 35
! | # OF TABLE | |
| SYMBOL TABLE PTR | ENTRIES |MBZ I

This word is used to access the symbol table if one has
been built. If no symbol table exists, this word is all
zeros. See symbol table description.

.ETACK - Dispatcher's TASK Alarm Clock
0 35

| TIME WHEN NEAREST TASK ALARM CLOCK IS TO RING (1/64 ms) |
|ALL ONEs IF NO TASK ALARM CLOCKs ARE SET [

This cell is used as a wake-up indicator for those
Keyword Processors that have i1ssued a MME GEWAKE. The
alarm clock is set to the nearest time when a TASK
alarm clock is to ring and its Keyword Processox
awakened. If no TASK alarm clocks are set, this clock
is turned off by setting it to -1 (all ones). The
Dispatcher's-Queue Service checks if the alarm is
ringing.

.ETASK - TASK Space

0 £ . 17 18 35
|PTR TO LAST ASSIGNED |PTR TO FIRST FREE [
| TASK _ENTRY SPACE+1 | TASK ENTRY ' |
T(.ETKSZ) I 1
| TASK_ENTRY SIZE SR |B.TNST [

These cells are used to manage the unassigned TASK
entries as an available chain. The cells are defined by
the Generate TASK Space macro (.TASK.). .ETASK upper is
assembled to point to the first word past the assigned
space and .ETASK lower is assembled as the location of
the first assigned TASK entry. .ETKSZ lower holds a bit
mask used to allow/disallow need-spawn-TASK requests
within the Dispatcher's-Queu Service. To allow
requests, the mask is 'ORed' 1into .EDQSM, while to
ignore requests, the 1's complement of the mask is
'ANDed' with .EDQSM. The mask bit position is assigned
in accordance with the bit position of the 'need Spawn
TASK' (B.TNST) TASK Status Flag.

714

COMMUNICATION REGION

.ETBUF - Terminal Buffer Space (CC-Ref)

0 17 18 s 35
PTR TO LAST ASSIGNED	PTR TO FIRST FREE
TERMINAL BUFFER SPACE +1	TERMINAL BUFFER
TERMINAL BUFFER SIZE	MBZ

|

These cells are used to manage the unassigned terminal
buffer space as an available chain. The cells are
genexated by the .(LINE. macro. .ETBUF upper is
assembled to point to the first word past the assigned
texrminal buffer space and .ETBUF lower is assembled to
point to the first word of the assigned buffer space.

.ETCBP - Terminal Control Block Chain

0 Sy 17 18 35
| FWD TCB CHAIN PTR |[BKWD TCB CHAIN PTR |
lor ZERO |or ZERO |

This cell holds the base forward and backward pointers
to the head and tail of the TCB chain. If the chain is
empty, this word is zero.

.ETCBT - Terminal Control Block Space

) N A 17 18 I e L SR T
|PTR TO LAST ASSIGNED | |
ITCB SPACE +1 i |PTR TO FIRST FREE TCB |
WECB STZE |MBZ |

These cells are used to manage the unassigned Terminal
Control Block (TCB) space as an available chain. Both
cells are defined at assembly time by the .LINE. macro.
.ETCBT upper 1is assembled to point to the first word
past the assigned TCB space and .ETCBT lower is
assembled to point to the first word of the assigned
TCB space.

.ETIME - System Time

0
ISYSTEM TIME (S/6d me)

| lw
I—wn

TelS

COMMUNICATION REGION

This cell holds the system time when the Dispatcher's
TASK Alarm Clock (.ETACK) was last checked to see if it
was ringing. The alarm clock 1is said to be ringing
whenever .ETIME > L.(ETACK. This <cell 1is used to
individually wake-up the sleeping Keyword Processors.

.ETIMQ - Time Quantum

0 35
|LAST GELBAR TIME QUANTUM (1/64 ms) |

This word holds the time quantum set for the last
Keyword Processor GELBAR in 1/64 ms. The cell is set by
the Dispatcher whenever it <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>