
!~~

D_ AQk4 612 HONEYWELL INFORMATION SYSTEMS INC MCLEAN VA FEDERAL ——ETC FIG 9/2
TRANSACTION PROCESSING OPERATING SYSTEM CTPOS).(U)
AUG 77 R EWING. J BIELSKI F30602 76 C—0277

UNCLASSIFIED RAQC—TR—77—276 NL

“U_________

0011
_ _

(

~

RADC—TR— 77—2 76

~~~ 
Report

TRANSACTION PROCESSING OPERATING SYSTEM (TPOS )

Honeywell Information Systems Inc.

Approved for public release; distribution unlimited .

>-
0~

I C-)
LU ROME AIR DEVELOPMENT CENTER
..... J Air Force Systems Command D C

Griffiss Air Force Base, New York 13441

In)
u—

- I~~~~j L j  U (_JL



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~

This report has been reviewed by the RADC Information Office (01)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public , including forei gn
nations.

This report has been reviewed and is approved for publication.

APPROVED: .~ j~VL4*I~ ‘1~ c~€ J~PL

RAYMOND A. LIUZZI
Project Engineer

APPROVED:

ROBERT D. KRUTZ, Colonel , USAF
Chief , Information Sciences Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief , Plans Off ice

If your address has changed or if you wish to be removed from the RADC
mailing list , or if the addressee is no longer emp l oyed by your organization ,
please notify RADC (DAP) Griffiss AFB NY 13441. This will assist us in
ma in taining a curren t mailing list.

Do not return this copy. Retain or destroy.

1~N C l AS S I I E l)

I
1 REPORT DOCUMENTATION PAGE

____ ~~ ~~~~~~~~~~~~~~ I I ~~~~~ORM

— ,, o ,~~~~ A i $ $ ON NO. ~è P 1 F N T S O A T A L i m N UER

7 RAD C . - TR — 77— 2 7~ j ‘

4 T I T L F rn,! 1,~~k t U I .) - - ‘LI’ ~~~~~~~~~~~~~~ ~~~~~lOD t.QVf~~ l

7’
,

__ ~ Fina l .? e ch i i l t ’ i l Rep.tt .
TRANSACTION PROCESSIN : OP ERA ’ l ’ l N : SYSTE M (‘FPOS)~ Ju l 76 — Jul 7 7 - —

—- ~~~~~~~~~~~~~~~~~~~~~~~ NU M B E R

1- - - - —~ — - •-~~~~ -‘- -~~~
- N / A

7 A U T H O R (~~I
—________ -

_~ -~ B CeN T R A ~~T (1!! O R A N T N L J M E 3 E R t ’

) Ro na l d E w i n g F3~ 6O2-76-C -O277 / ~
John B i c i s k i ‘

~~~~ 
- •  •--- — —

9 0 4  ,~ ~~~~~~~~~~~~~~~~~ A N D  A D [ ) R S S S  TO I’ll 0. 14 A M E L E M I NT . P R OJ E CT . T A N .

I lonevwe I i  I n l o r m a t  ion Syst ems  I n c .  ( / A S E * OK UNIT NUM B ERS

V’~’d e r a l  Sy st e m s  Op era t  ions —~~~~~~ 558 10274
Th)U Wi ’-,t l’ i rk . l) r i v t  M c I & t n \ A  2.~l O l  

_______________—

II C C~~l T  001 L I N , 4 E I C E  0* 0 4  A M  A D D R E S S  ,‘ ,, 2. hL.~~~*e4.-’O*!~~ 
-

/ /1’ Au gu t 1477
Rome A i r  l ) cv e l o p m e n t  C e n t e r  ( 1 S l ~ l)  ~~~~~~ 

~~ N OI R OF I A ., I A
G r i f f is s  AFII NY 134 41 261

14 MO N IT O I A I N ., A Ol  N. .
’~ NA M 1  B AODI4 F’SSI I,lIo4.~~~~I n r n , , . , i , . . j l r , 1  ‘ I t  ..‘ IS S E C J R 1 T V  C L A ’ O  ‘ t ’ ’ t . , ,  

- - - — —

Same
- ‘ 1. ) ‘N CI.AS S I Fl El )

I IS,. LII L A S S I E I C A T I C 1 N *~, , N A I ) 1 4 4 r ,

N/A
DU

~~

6 GI S T OIH l .J 11014 ~ T A I L M E N T  I 1114 -

Approved for public rele,ise; distribut ion unlimited .

____ _____ 

U) SEP 
____

I T  D I S T R I B UT I O N  S T A T E M E N T  . I t h  ,ho1 , I ~~ nI ~~~~ I , n f l I , , , A .’u . 1 d,!Iere,,C horn Repo~ I)

Samt ._ 

- ‘ u

8 SLIPPL E M F N T A R Y N O T E S

RADC I’ r t ’  j o t  Fnt’ i TIo . ’r :
Raymond  A.  L i u z z i  ( I S I M )

1 WORD S lCo4lIln I,’ .,~~~~~~~~~~ ,‘ , I,’ 0~’ . ’ ’ ’  .n- rn,! ,d~~,, I I f l -  6,- 6 1 , - k
I r.tns,I.’ t Ion P r o c e s s i n g
O pt ’ r;lt i n g  Sy s t e ms
( ;Otn pu t e r s
l L i t , i  I’ t’ ,, ii. ’eSS I T ) f l

A1I , ’ R A T T  1 , . 4l 4 ’ - ” l 4 ” 4 ~ l 4 . ~ ” ’ 4  - H ~~~~~~ ’ I f roeI I ’ , ‘ - k  o,,rnl ;, 
--

T’hi’ ‘l’ r. insac t l i l T )  l’ roco s ’i  il~~ Oper ; i ~ I T i f i  S\’ ’~t em ( ‘cPU S ’) I ,  s p e ’  i , i I  I .‘e~l o \ ’ ~ t 1 11/

cleo I ~ ned t o  c i l I l t  ro I i s ub set  of t h e  t o t / I l  c o mp u t e r  e n v i r o n m e n t  , on t h e
I I , ’n e v w , ’ I I I I (~l t b)  n o b  i i  t i ’ l u r e • of  Tr a n s i t i ’ t ion P t o - c o o  I ii~~ App l b  I t  I on  Pro~’ r , im-
(TI ’M’S)

The ‘P1 k-’ ,v ste t l l  1 $  tlI’O j i l T e l l  t o  l I l ( ’ t ’ at  ~ ‘ u n d er  li’ I 1 , 1 0 1 ’ . / I I  o f  t i l E ’ I : O T I I ’ t ’ ,I I
I v~ ’ 1) p~ ’r . I  t Ing S1ii’er~ ’ 70 ,17 (~~~ 1) S)  . t l ie  1:01), ’ I I  I RI’Ill, ’t 0 ‘I’e rm i  1 ) 1 1

S t l p e r v i r t t ’r ( i . R F S ~ on t h e  N e t w o r k  l ’ i- ’ - I ’ s o l ng ~l I I l 4 e r \ ’ i o o r  ( N I ’ S )  o ld  I T T  ~~~~ . —

DD I~~~~~~
’4

7I 1473 i ’ ’ i - ’ ’  o’ ~~~ ~°‘ IS - ’ - . ’ E ’ I  NI l  -\‘~S i F 1 F lt

‘.1 n u l l  A r ’  I A l I n ) P 4  1! 1 , 1 , ’ , I t T  IA),.,. f )~~t~~ • n!eu ,

~2 ~~~~~-‘ / -~~~~~~~ ~‘



I ’N C L ~ SS i l l  I-J )
SE C U R I T Y  C L A S S I F I C A T I O N  OF THIS PAO( (Wh.,. D.f. Ent.~.d)

c o nj u n c t  i on  w i t h  t i l t ’  T r a n s a c t i o n  P r o i -e o s ln g  Sys t e m  (TP S)

Iii is r epo r t  inc  lud cs the  user , s i t e  and p r o g r a m  1u~~I u - d o cu m e n t a t  i on .  In
a d d i t i o n , t h i s  r e p o r t  i n d i c . I t  ~-s spec i f i c  usage of a m o n i t o r i n g  and a
d e b u g g i n g  l a p/ lb  i i  1t ~’ pr o v i d e d  wi  t h i n  t h e  TPOS O I I V  i ronment . 

S

- ‘ - -

5 111 S 
-

3:1
DDC ,~~ - r 

-

j ~~~~~~
‘“ n

- - 
- -~~~

‘
~ r~- ~~~~~ c~

l N i I . A S -~ I 1:1)
- - R I  I - I A S S I F I C ’  A T -  -~~ OF ‘ ‘-  ‘ -‘ I - ‘ “ I -’ , ,  I ’ .’~~ 1 - - . -  - 

- -— -~~~~~~--~~~~~~~~ - -‘ -



DOCUMENTATIO N P REFAC E

ç~i~pq~~ ~~~~~~~~

The Transact ion Processing Ope rating System is
desi qned to execute wi thin a Honeywell Ser ies 6 000 or
Series 60/Level 66 Information System , wi th any
allowa ble memory size. One DATANET 30 , 305 , 355 , or
6600 or 355 Communications Processor is required to
perform fro nt-end processing functions and at least one
of the fo l lowing terminals is req u ired : Te ’Letype Model s
33 , 35 , 37 , or 38 ; GE TermiNe t 300 ; VIP Series 765 ,
775 , 785 , 7700 keyboard/display terminals.

~~~~~~ D

The Transaction Processing Operating System (TPOS)
is designed to opera te under Release 2/H of the General
Comprehensive Opera t ing Supervisor (GCOS) , the General
Remo te Terminal Supervisor (GRTS) or the Network
Processing Supervisor (NPS) and in conjunction with the
Tra nsaction Processing System (T PS)

F,..-’
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~‘:1~T~T T - -  -- “ — “ “ ““  

~~~~~~~~~~ 

—

~~

—

CONT EN ‘FS

Page

Purpose 1.1

Transaction Processing Operating System 2.1
Transactio n Processing Operating System :xecutlvc 2 .1
Introduc tion to the Executive 2 .1
Overview 2.3

Site Reference 3.1
Introduction 3.1
User— Supplied Information 3.2
Exec u t i ve Assembl y 3.3
Keyword Processor Library 3.5

Creating the Keyword Proce~’sor Library 3.6
Genera t i ng the Keyword P r o c e s s o r L i b r a r y 3.6

Execut ive Installation 3.8
Executive Initiation 3.10
Debug 3.11
I n s t a l l a t i o n Macros 3 .14

E x e c u t i v e I n t e r n a l s

Symbol Conventions -1.1
Explicitl y Named Loca t ion C o u n t e r s 4 . 3
Executive Module Symbols 4.3

C o d i n g Pr a c t i c e s 5 .1
Register Conventions 5.1
Transfer of Control 5.1
Cou rtesy—Calls 5.1
Inhibited Code 5.2
TASK Symbol Usage 5.3
Fault Requested System Services 5.3

Tran sfer of Control 6.1
IC&I Stacks 6.1
T r a n s f e r of Con t ro l 6 . 1
.CALL. Mechanism 6.1
.CALL . Usage 6.3
.EXIT. Mechanism 6.3
.GOTO. Usage

Execu tive Communication Region 7.1
Spe ci al Usa ge 7 .~
Communication Cell Formats 7.2
Communication Regi3n A ccumulatr ’d Count~; 7. 17

Tra nsact - ion Attr ibut~~:: & St~~tus Kerne l ~ i
TASK Assic’nmentn 8.1
TASK Format 0.2
Descri ption of TASK Entries 8.3

ii -

_ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~ -- - - ~~~~~~~~~~~~~~-

- ~~

C O N T E N T S (c o n t)

Page

TASK Status & A toti bute Flags 8.9
TASK St~~~u,; Bit Flags 8.10

‘.L’AOK ~;tatus Flags in .TFLAG 8.10
TASK Status Flags in .TFLAG+1 8.12

Attribute Bit Flags 8.16
Attribute Flags in .TFLAG+l and

Keyword Profile 8.16

Terminal Control Block 9.1
TCB Assignment 9.1
TCB Format 9.2
Description of TCB Entries 9.3
TCB Status & Control Flags in .TCGSS 9.5

Keyword Processor Profile 10.1
Profile Function 10.1
Profile Generation 10.1
Profile Usage 10.3
Keyword Processor Profile As Assembled 10.3
Keyword Processor Profile at Execution Time 10.4

Queues 11.1
Core—Queue 11.1
Dispatcher ’s—Queue 11.2
Output Intercom—Queue 11.3

Core & Swap—File Maps 12.1
Core—Map Particulars 12.2
Swap—File Map Particulars 12.2

Intercom Buffer Maps 13.1
B u f f e r Map Usage 13 .3
Input Intercom Buffer 13.3
Output Intercom Buffer 13.4
Buffer Threshold Entries 13.5

Keywo rd Prefix Area 14.1
SP A C e l l s Suppor ted as KPA 14.1

Executive Module & Routine Descriptions 15.1

GE LBAR Fau l t Hand le r 16.1
F a u l t P r o c e s s i n g 16.1
MME Ident ification/Validation 16.2
DR IA I d e n t i f i c a t i o n/ V a l i d a t i o n 16 .3
GELB I\ R F a u l t H a n d l e r 16 .3
GELBAR MME Validation 16.4

Transaction Scheduler 17.1

iii

— - -~ --~ ‘-‘- ‘ --- - - - - --- ------ - --- - -—-— -

CONTENTS (cont)

Page

Function 17.1
In t roduc t io n 17.1
Stall—Out 17.2
In tercom Read Initiation 17.2
I n t e r c o m Read T e r m i n a t ion 17 .3
E n t r y P o i n ts 17.5
Rou t ine De s c r i p t i o n s 17. 6

Core A l l o c a t o r 18.1
In tr o d u c t i o n 18.1
Concep t & De f i n i t ion 18.1
Core-Map : The Resource 18.2
Cor e—Queue: The Demand 18.3
Reso u rce Se lec t i on 18 .3
Demand Selection: Bypass/No—Pass Logic 18.4
Demand Resource Assignment 18.5
Core—Map Anomaly During Swap

Resourc e A l l oca t ion 18.6
Core A l l oca tor Log ic 18 .7

Introduction 18.7
M a j o r Execu t ion Phases 18 .7
Phase Interruption 18.8
Allocation Controls 18.9

Primary Controls 18.9
Core—Queue/Core—Map Fence 18.9
Dampe rs

Dampers : General 18.13
Dampe r s : Mean ing 18.13
Dampers Usage : General 18.15

Main—Level Allocation 18.16
Demand A l l o c a t ion Phase 18.1 6

Seconda ry Con t r o l s A ssoc ia ted
with Demand Allocation 18.17

Swap Resource Allocation Phase 18.18
Second a ry Con t r o l s Assoc ia ted

wi th Swap Resou rce A l l o c a t i o n 18 .2 0
Courtesy—Call Allocation 18.21

New Demand A l l o c a t i o n 18 .21
Swap—Ou t Allocation 18.23

Entry Poin ts 18.27
Routine Descriptions 18.28

Dispa tche r 19 .1
I-’u n c t i o n 19.1
Introduc tion 19.1
D i spa tche r ‘s—Queue 19.1
D i s p a t c h e r ’s—Queue Serv ice 19 .3

Dynamic Queue Se r vi ce Mask 19 .4
QUI’Ue Service : When and How 19.5
Service Ini tiation/Restart 19.6

iv

- - -

~

~
—

~~~~~~
- - ‘--- - -- --- - ---- -- ~~~~~~~~~~~

- -
~~~~~~~~~~~ - - - - -— -


__________ ____________________________________ —- ,-- ---

CONTENTS (cont)

Page

Service Con siderations and Restrictions 19.7
Service Returns 19.8

System Func t i on Enab les 19.8
Dispatch—Select 19.9

Dispatch 19.10
Lockup Log i c 19 .12
Entry Points 19.14
Roa t ine De s c r i p t i o n s 19.15

TASK Terminator 20.1
Function 20.1
Abnormal Termination 20.1
Norma l T e r m i n a t i o n 2 0 . 2
En t r y Po in t s 2 0 . 4
Rout ine De s c r i pt ions 20 .5

Output Intercom Processor 21. 1
Function 21.1
Introduction 21.1
Output Message Request 21.1
Enabling the Ou tput Intercom Processor 21.2
Overview 21.3
E n t r y Po in ts 21.4
Rou t ine D e s c r i ptions 21.4

Executive Error Messages 22.1
Introduction 22.1
Error Message Generation 22.2
Execu tive Error Messages 22.3
E n t r y Po in t s 22 .7
Routine Descriptions 22.8

Executive Supported MME Services 23.1
MME Service Symbols 23.2
MM E S e r v i c e D e s c r i ptions 23.2
GEINOS Handler 23.3

I/O Request Recognition 23.3
Device I/O Handler 23.4
MME GEINOS Preface 23.4

Need For Executive Control 23.5
Executive I/O Administration

flequirements 23.5
Multiple Outstanding I/O Requirements 23.6
Design Decision & Method 23.6
Executive I/O Handling Overv iew 23.7

Device I/O Initiation 23.8
Device I/O Termination 23.9
Keyword Processor Restrictions 23.9

Routine Descriptions 23.10
Inte rcom I/O Handler 23.13

V

-

~~~~~~~~~~
-
~~~~-~~~~~~-

_ - --- ‘.—‘,-——.---.-—

~

—- - ,—,--‘

~
- -

~~~
--- —-----—----.--

~
,---——-—.—-—-,---— -,--

CONTENTS (c o n t )

Page

I n t r o d u c t i o n  2 3 . 1 3
I n t e r c o m  S t a t u s  F l ags  2 3 . 1 3

St a t u s  F l a g s  & I n t e r c o m  O u t p u t  2 3 . 1 4
S t a t u s  F l ags  & I n t e r c o m  I n p u t  2 3 . 1 5
Message  S t a t u s  F l ags  2 3 . 1 5

I n t e r c o m  R e q u e s t  O v e r v i e w  2 3 . 1 6
I n t e r c o m  Read O v e r v i e w  2 3 . 1 6
I n t e r c o m  W r i t e  O v e r v i e w  23 .17
R o u t i n e  D e s c r i p t i o n s  2 3 . 2 1

MME GEFCON H a n d l e r  2 3 . 2 6
MM E GE I N F O  H a n d l e r  2 3 . 2 7
MME G E L A P S  H a n d l e r  2 3 . 2 8
MME G E R E L C / G E R O A D  h a n d l e r  2 3 . 2 9
MME G E T I M E  H a n d l e r  2 3 . 3 0
MME GEWAK E Han d le r  2 3 . 3 1
P r o t o t y p e  MME GEROUT H a n d l e r  2 3 . 3 2
MME GER STR H a n d l er  2 3 . 3 4

I n i t i a l i z a t i o n  2 4 . 1
I n t r o d u c t i o n  2 4 . 1
O v e r v i e w  2 4 . 1
I n i t i a l i z a t i o n  Console Messages 2 4 . 7

J



E\’A LI’AT ION

This t I  f o r t has provided a n u m b e r  of  i m p o r t a n t  e n h a n c e m e n t s  d e a i g O I - d
to improve the oper . l t i cn a l  c ap a b  i i i  t v  ot t h e  l’ransaccion Pr ocessing Oper at  ing
S vst t ’m (TPO S ) vhi cii executes u n d e r  the  (~COS Op e r a t i n g  Sy s t e m  on the  116001)
~~

n ’~~1l ’ t 1 t C r  Sy s t e m .

The e s t a b l i s h men t  0 )  d s~’ph i s t  I ca t& ’d  p r o g r a m m i n g  e n v i r o n m e n t  b r
C n L t : h l t l d  and ,- o n t  ro]. a p p l i ca t i o n s  i s  a or  i t  e n a  d e f i n e d  u n d e r  TPO V 3 .5 .
h’ i r h ~~n this environment , II requir ement exists b r  real—tir:e processing on
t h e  11600() computer architecture. The TPOS s v st e : n  p rov ides  a v e h ic l e  to
n ro c es s  in .1 rca 1— t i m e  mode a n u m b e r  of t r an sat ’t ~Ofl5 t o  a w i d e  v a r i e ty  of
p r e v i o u s ly  d e f i n e d  d a t / I  st ructllres. The TPOS sy s t e m  a lso  provides  the
f o 1 1 o s ~ in g  c a p a b i l i t i e s :

- Abilit y to tailor the environment t o  t h e  specific transaction
p r o c e s s i n g  needs of a u ser .

- R e d u c t  ion in toe  lu m b e r  of  p rograms  d e d i -.:It ed to a user ’s
s i te  t r a n s a c t io n  p r o c e s s i ng  r e q u i r e m e n t s .

Mu i t  ip l e  concurrent e x e c u t i o n  of t h e  same T ran s a c t  ion I r o c e s s  in g
-\ gpl i cat ion Programs .

The capability provided by the  TPOS sy s t e m  c a n  be m mcd i i t e l v
utiliz ed by a wide variety of current app lica tions whj c h  e x e c u t e  under
co n t rol of the 111 000 Transaction Processor. It can provide a means
i l l  dc! in ing a rca  1—t ime p r og r a m mi ng  e n v i ro n m e n t  w i t h i n  large scale
c o m p u t e r  l r ’ o it e c t u r e s .

—
~~~~‘~~~~~~/-~~ ~~~~~~~

g .-\ Y N O N I) .1. L I v;~:~ i
P r . ’j e c t Eng inee r

vi i

~~— -~~~ -~~~~~~~ ~~~

PUR P OSE

P U R P O S E

The p u r p o s e of t he T r a n s a c t i o n P r o c e s s i n g
O p e r a t i n g Sys tem is to:

(1) A l l o w m u l t i p l e cop ies of t h e sam T r a n s a c t i o n
P r o c e s s i n g A p p l i c a t i o n s P r o g r a m (T P A P) to
e x e c u t e c o n c u r r (- l t I v ,

(2) Increase transaction processing
r e s p o n s i v e n e s s,

(3) C r e a te the necessa r y f r amewo r k fo r e f f i c i e n t
c o n t r o l and i n t e r f a c e of TPAP 5 to a common
d a t a base ,

(4) P r o v i d e a s p e c i a l i z e d , o p e n — e n d e d e n v i r o n m e n t
t h a t can be t a i l o r e d to s p e c i f i c t r a n s a c t i o n
p r o c e s s i n g needs .

In a d d i t i o n , t he o p e r a t i n g sys tem a l l o w s a
reduc tion in the number of GCOS Program Numbers
d e d i c a t e d to a s i t e ’ s transaction processing
r e q u i r e m e n ts.

1.1

-—~~~~~~~~~~~~~~~~~~~~~~~~~~ - ,-- ~ -— ---~~‘---~

_ _ - - -

~~~~~~

--- 

I

TRANSACTION PROCE SSING OP ERATING SYSTEM

TRANSACTION PROCES SING OPERATING SYSTEM

The TPAP Operating ~ystem (TPUS ) is a specialized
system d e s i -~ned to  co n t r o l  a subset  of the  t o t a l
computer environment for the exclusive execution of
Transaction Processing Applications Programs (TPAP5) .
This operating system is by no means a comprehensive
computer operating sys tem ; however , it m u s t  p e r f o r m
many of the e x e c u t i v e  or c o n t r o l  f unc t i ons  r e q u i r e d  of
t h e  l a t t e r .  The TPAP O p e r a t i n g  Sys tem e x e c u t e s  u n d e r
GCOS as a slave program . In this context , it r e sembles
the Time—Sharing System .

The TPAP O p e r a t i n g  System i n t e r f a c e s  w i t h  the
T r a n s a c t i o n  P roces s ing  System as a TPAP . C o n s e q u e n t l y ,
the TPOS is known to the Transaction Processing
Executive (TPE) as just another TPAP . This arrangement
a l lows  seve ra l  TPAP Opera t ing  Systems to be
incorporated into the Transaction Processing System .

Transac tion Processing Operating System Executive

The TPAP Operating System Executive consists of
those routines tha t perform the executive or control
functions which are typ ical of any standard operating
system . In par ticular , these f u n c t i o n s  i n c l u d e  the
i n i t i a t i o n , m o n i t o r i n g  and c o n t r o l  of sys tem
ope rat ions , resou rce allocation and processing support.

In the c u r r e n t  s ta te  of deve lopment , the TPA P
Opera t i ng  Sy stem and the TPA P O p e r a t i n g  Sy s tem
E x e c u t i v e  a re  synonymous , thus the names can be used
i n t e r c h a n g e a b l y .  H e n c e f o r t h , t h e  TPAP Opera t i ng  Sy rt em
is refe rred to as simply the Executive. —

I n t r o d u c t i o n  to the E x e c u t i v e

As previously stated , the Exec ut ive is  a s l a vc
p r o g r a m  wh ich  ope ra tes  w i t h i n  the Tr a n s a ct i on
Processing System as a standard TPAP. The Executiv e-
func tions as the operating supervisor for some number

2.1 

-~~~~~ -~~~~~~~- -----~~~~~~ - , -  ~~~~~~~~~~ - ---.--~~~~- - - - - - --



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - - - -  ~~~~~ -- -  -- -

~~

--—

TRANSACTION PROCESSING OPERATING SYSTEM

of TPAPs within a GELBAR environment. That is, the
Executive overlays the TPAPs into a portion of its
al located memory and passes con t ro l  to the TPAPs v ia
t he  MME GELBAB log ic. Because the GELBAR changes the
BAR to the requested setting , both the Execut ive  proper
and any other TPAPs residing within the Executive ’s
core are protected from memory access by the executing
TPAP .

TPAPs that are to execute under the control of the
Executive are generically called Keyword Processors.
Since the Keyword Processors can be written exactly
l i k e  a normal TPAP , th is  label serves so le ly  to
differentiate between the two methods of execution .

The Keyword Processors are maintained on high
speed storage from which they can be retrieved when
requested by an input transaction. Multiple copies of
the same Keyword Processor are possible since each
input transaction designates to the Executive which
Keyword Processor is to be executed , independent of the
other transactions being serviced . Thus each
transaction effectively gets its own copy of the
requested Keyword Processor.

All files must be allocated to the Executive ,
since the Keyword Processors are loaded without an SSA.
This requirement allows all the Keyword Processors to
access any data base allocated to the Executive and
crea tes the necessary framework for efficientl y
controlling multiple data base access requests.

The Executive is responsible for the following
major functions :

o Receiving multiple input transactions via
Intercom I/O from TPE and scheduling the
Keyword Processor identified by the
transaction.

o A l l o c a t i n g  co r e and p r o c e s s o r  t ime on a

2.2 

---- --- -~~--~~~~



____________________________ ____________________________ ____________________ 
-

TRANS AC TION PROCESS I N G OPERATING SY STEM

priority basis to the scheduled Keyword
Processors.

o Processing Keyword Processor program faults

~r~d se rv i ce  reques t s  by t r a p p i ng ,  i d e n t i f y i n g
and routing the fault to the applicable
Execu tive routine. In particular , a l l  Keyword
Processor  r eques t s  f o r  GCOS sys tem s e r v i c e s
are t rapped , si nce MMEs and DRL5 generate
taults. Thus all I/O requests are intercepted
and handled by the Executive.

o Collecting and queueing output Intercom
messages f r om the Keyword  P r o c e s s o r s and
i n i t i a t i n g  I n t e r c o m  I/O f o r  each message  w h e n
the processing for its rela ted transaction is
complete.

Overv iew

The T r a n s a c t i o n  Pr o c e s s i n g  Opera t ing Sys tem
Execu tive monitors and controls its computer resources
in order to enable a set of programs , the K e y w o r d
Pr o c e s s o r s , to operate concurren tly. Its structure can
be l o g i c a l l y  d i v i d e d  in to  a set of modu la r  rou t ines
whose functions are briefly d e s c r i bed in  the f o l l ow i n g
paragraphs.

Input  p r o c e s s i n g  i s  p e r f o r m e d  f o r  the Exe cut i v e  by
the Transaction Scheduler. The Transaction Scheduler
will reques t a message from the TPE whenever sufficient
Input Intercom Buffer space and a free Transaction
Attribu tes and Status Kernel (TASK) are available . A
TA SK f u n c t i o n s  as the  f o c a l  poi nt fo r a l l  the dy na m i c
i n f o r m a t i o n  requ i r e d  to c o n t r o l  the pr ocessi ng of a
transaction by i ts associated Keyword Proce ssor. A TASK
is assigned to each transaction received by the
Executive.

When an input message is accepted , t h e Keywo r ds
L i s t  is scanned .  Th is  l i st c o n t a i n s  the k ey w o r d s  f o r
a l l  Key word  P r o c e s s o r s  ass i gned to the Executive. If
the keyword is not in the list , an e r r o r message  is

2.3 

.- -  .. 
~~~~~ —-- - -- -~~~~ 


TRANSACTION PROCESSING OPERA TING SYSTE M

returned to the user and the transaction is dele ted .
Otherwise , the Keyword Processor attr ibutes are
retrieved from the Keyword Processor Profile table and
inserted into the TASK. The TASK is then linked to the
Core A l l oca to r ’s Core—Queue and an attempt is r!ade to
request another message.

The Core Allocator selects TASKs in priority order
and attempts to allocate a sufficien t amount of core in
which the Keyword Processor can execut e. it will
generally use the smallest block of availa ble core to
make this allocation. If core is not available , but can
be obtained by swapping—out an in—core Keyw ord
Processor that meets the criteria for swap—eligibility,
then the Keyword Processor swap is initiated.
Otherwise , the TASK is bypassed and the next TASK in
priority sequence is considered for alloca tion. This
process is repeated until the end of the Co re—Queue is
reached . The bypass count (initially set from the
Keyword Processor Profile) of each TASK in the queue is
reduced by one whenever core is allocated to a lower
priority TASK . If the bypass count for a pa rticular
TASK is zero or is reduced to zero , no lower p r i o r i ty
TASK will be considered by the Core A l l o c a to r . When m c
more TASKs can be allocated core , c o n t r o l is g i ven to
the Dispatcher.

The Dispatcher is responsible for assuri ng that
all Executive functions are performed. It receives
control every time a Keyword Proesso r terminates ,
requests an Executive service , or runs ou t of t ime .

The flow of all transac tions through t he
Transaction Processing Operating System is generall y
accomplished by making an entry in the appropriate
queue. For example , the T r a n s a c t i o n ~c h e d u i e r is dr i ven
by input messages from TPE and g e n e r a t e s an e n t r y in
the Core—Queue. The Core Alloca tor is driven i - v t h e
Core—Queue and links the TASKs to the D i s p a t c h e r ’ s
Queue. Message outpu t is done by ma king * ntries in tIe
Ou tput Intercom—Queue. A prime fun ct ion I t t he -
Dispatcher is to service the syctem qut ’u l- s. The
Dispatcher effects the appropriate servic by ena bling
the Transaction Scheduler , (‘ore All ocato i or oth er
required system rou tine.

2 . 4

—-- ---- -
~~~~~~I~~~~~~~~~~~~ j

TRANSACTIO N PROC ESSI NG OPERATING SYSTE M

The Dispatcher must also select the highest
p r i o r i ty TASK in the D i spa t che r ’s—Queue and give it
con t r o l  v i a  a MME GELB A R , which p rov i des  core  and t ime
limi ts to the TASK.

A l l  Keyword  P r o c e s s o r s  a r e  expec te d to pe r f orm I/ O
via a MMb: GEINOS request , as is do ne by most  sys tem
subrou tines such as GFRC . Since GELBAR logic intercepts
a l l  MM Es , no Keyword  P rocesso r  can p e r f o r m  I/ O wi thou t
the Execu t ive ’s permission. For MME GEINOS , parame te r s
a re  v a l i d a ted and DCW ’s are  ad jus ted to accoun t f o r  the
C ,E L B I\R boundaries. In the case of device I/O , t he  I/ O
is  r e i s s u e d by the Executive and the Keyword Processor
is roadblocked until the [/0 has completed.

For Intercom I/o writes , e v e r y  K e y w o r d  Processo r
must i n c l u de an i n d i c a t o r  w i t h i n  each outpu t message
wh ich specif ies if the text is a segment (more text in
the message) an End—Of—Message , or an
End—Of—Transaction , as d i c tated by sta ndard TPAP logic.
The Ex ec u ti ve c o l l e c t s  message segmen ts u n t i l  an
End— UI -Message or an End—Of—Transaction s t a t u s  is
received . On either status , the Execu tive links each of
the segments successivel y (no  inte r v e n i n g  segmen ts f r o m
another lASK ) into the output stream. It is necessary
to link these successively to assure that the segments
arrive at their destination in proper sequence.

If the End—Of—Transaction indicator is specified ,
the Keyword Processor is prohibited from generating
addi tional output messages. However , the Keyword
Pr oce ssor w i l l  be g i v e n  con t r o l  so i.t can  p e r f o r m  a n y
wrap—up which may  he necessary. Following this ,
standard p r oced u r e  is  fo r the K e y w o r d  Pr ocesso r  to
r e m i t  i a l i z e  itself up to and  includ in g i t s  r e qu e s t  f o r
a n o t h e r  I an ~~a ct  i o n .

At  t h i s  p o i n t  t he  K e y w o r d  P roces so r  has  comp le ted
i t s  p r o c e s s i n g  of t h e  t r a n s a c t i o n  a s sig n e d  to It ;
c o n s e q u e n t  l y ,  i t  i s  suspended  f r o m  f u r t h e r  e x e c u t i o n  by
t h e  1” xe cu ti v e . I f  t h e  Keyword Processor i s  reusable
( i . e . ,  can process mul tiple transactions serially), and
t h e r e  is an outstanding I nput message for the keyword
as s o c i a ted w i t h  i t , the new message is ass igned to the
Keyword Processor and it is again eli g ible for

2.5 

- - - ‘- - -~~ -- —- - -~~~~~~~---- ~~~~~ - - -----~~~~~-



TRANSACTION P R O C E S S I N G  O P E R A T I N G  SYSTEM

e x e c u t i o n .  O t h e r w i s e , r e u s a b l e  or not , t h e  K - w o r d
Processor is terminated and eff ectiv ely disposed of. In
t h i s  case and f o r  a l l  n o n — r e u s a b l e  K e y w o r d  P r o c e s s o r s ,
a new copy of t h e  K e y w o r d  P r o c e so or  w i l l  be i n i t i a t e d
for a subsequent input message that snecified the
Keyword Processor.

There a l so  e x i s t s  the c a p a b i l i ty fo r  the Keywo rd
Processors to communica te among themselves by
t r a n s m i t t i n g  an  o u t p u t  message  w i t h  a s i n g l e
Destination—ID of *** This capability is restricted to
i n t e r n a l  c o m m u n i c a t i o n  among t h e  K e y w o r d  P r o c e s s o r s
tha t are controlled by the Executive.

2 .



r ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -—

~~~~~~~~

-- - -- ---

S ITE REFE RENCE

S IT E R E F E R E N C E

Introduc tion

Thi s s ec t ion is conce rned w i t h the n e c e s s a r y s i t e
operations that are required to generate , i n s t a l l and
run a TPAP Operating System. The major steps that are
r e q u i r e d to set the sys tem in to mo t ion a r e
c h r o n o l o g i c a l l y l i s t e d below :

o R e q u e s t i n g t~ e use r—supplied Keyword
P rocessor p r o g r a m s and c h a r a c t e r i s t i c s

o A~~s~ m h l i n q t h e E x e c u t i v e w i t h the d e s i r e d
par amet r i c s t r u c t u r e and the K e y w o r d
P r o c e s s o r c h a r a c t e r i s t i c s

o Creatin g arid loading the Keyword Processor
Li br a r y

o Ins talling the Executive within TPE.

The above steps are further explained in the
discussions that follow . Those methods presented in the
d i s c u s s i o n s a re onl y mean t to be a g u i d e l i n e show ing
one of many poss i b le me thod s .

Lastly , i t sh ou ld he e m p h a s i z e d that there can be
several TPOSs , s ince each sys t em ex te r n a l l y r esembl es a
normal TPAP.

3.1

-- - - ---~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _

S I l K R E F E R E N C E

U s e r S~ ppl ied i n f o r m a t i o n

The u s e r is r e s p o n s i b l e f o r s u p p l y i n g t h e K e y w o r d
P r o c e s s o r p r o q r a m s and t h e c o n t r o l p a r a m e t e r s , w h i c h
a r e r e qu i r e d by t h e F x e c u t i v e . Some of t h e c o n t r o l
i n f o r m a t i o n m u s t be c o o r d i n a t e d among a l l u s e r s whose
t r a n s a c t i o n p r o c e s s i n g p r o g r a m s ar e to he i n s t a l l e d
u n d e r t h e same E x e c u t i v e .

A l l K e y w o r d Processor p r o g r a m s s h o u l d be s u i t a b l e
t o r a l o w l o a d , sLice t h e E x e c u t i v e u n c o n d i t i o n a l l y
lowloads a l l K e y w o r d P r o c e s s o r s . The p r o g r a m s s h o u l d be
s u b m i tt e d in r e l o c a t a b l e ob j ec t f o r m , such as t h e $
OBJECT deck p r o d u c e d by a c o m p i l a t i o n .

The u s e r m u s t a l so supp ly the c o n t r o l i n f o r m a t i o n
t h a t d e f i n e s the K e y w o r d P r o c e s s o r and i t s f i l e
environm e nt. In p a r t i c u la r , t h e use r m u s t s u b m i t t he
f o l l o w i n g :

(1) Keyword— Processor— ID — t h i s is a three
c h a r a c t e r ID t h a t u n i q u e l y i d e n t i f i e s t h e
K e y w o r d P ocessor f r o m o t h e r K e y w o r d
Pr ocessors assigned to the E xecu t i ve ,

(2) M a x i m u m i n p u t and o u t p u t m e s s ag e s i ze s —

these s i z e s sh o u l d i n c l u d e t h e message
h e a d e r s and he g i v e n in w o r d s ,

(3) K e y w o r d s — t h e se a r e t he k e y w o r d s t o be
a s s o c i a t e d w i t h t h e K e y w o r d P r o c e s s o r . A l l
K e y w o r d s m u s t i c e i g h t c h a r a c t e r s or less in
Si Z O .

I n a d d i t i o n to t h e ab ove K~ yw ori Processor
i nt o r ma t ion , t h e u s e r m u s t a iso supply th l- expected
t i i o r ego i emen t s. Tb is 5 0) 0 Id in c I tide t h e n sce s sa r y S
}-‘i LE c o n t r o l ca r d s a l o ng w i t h a u y $ U~-d- ;R11) c o o t ro l
c a r d s t h a t w o u l d be r e g u i r e l l t o a t t a c h t h e f i l e s t o t h e
i xecu t ive.

3 . 2

- _

__________________________ ______

SITE R EFERE NCE

Notice that the Keyword—Processor— ID , K e y w o r d s and
the File—Code assignments should be coordinated among
the users to ensure that there will not be any
conflicts.

Executive Assembly

The Executive must be assembled to incorpora te the
necessary Keyword P rocessor i n f o r m a t i o n and to
parametrically tailor the Executive to the an ticipated
transaction processing needs.

All use r supplied information regarding the
Keyword Processors is inserted into the Executive by
means of the Keyword Processor Profile macro. This
macro is s y m b o l i c a l l y denoted by .PRFL.. Actual use of
the macro is described in the Keyword Processor Profile
discussion.

Of particular importance to the Site personnel are
the priority and bypass count assignments. Prior to
assigning the values , the importance of each Keyword
P r o c e s s o r , relative to all other Keyword Processors to
be controlled by the Executive , must be esta b l i shed .

Prio rities within the Executive are currently
pre—emptive , consequen t l y , the p r i o r i t y va lues a re
m e a n i n g f u l on ly in te rms of the i r al g e b r a i c
relationships and no t their individual magnitudes. For
example , there would be no operational difference
between differen t sets of Keyword Processor priority
a s s i g n m e n t s as long as the r e l a t i o n sh i p s b e t w e e n t he
as s igned v a l u e s w e r e the same.

Bypass c o u n t a ss i g n m e n t is more d i f f i c u l t . The
p u r p o s e of the bypass c o u n t s is to a l l o w th e E x e c u t i v e
to t e m p o r a r i l y i g n o r e a p r i o r i t y v a l u e d u r i n g core
a l l o c a t i o n , t h e r e b y a l l o w i n g m o r e e f f i c i e n t core
u t i l i z a t i o n and s y s t e m t h r o u g h p u t .

The bypass c o u n t s h o u l d be set to z er o f o r o n l y

3.3

_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-—-— 

—~~~~~~~~~ ‘-- ---——



S I T E  R E F E R E NC E

the  mos t  u r g e n t  K e y w o r d s  or K e y w o r d  P r o c e s s o r s .  For t he
remainder of the keywo rds , the bypass  counts  shou ld
p r i m a r i l y  r e f l e c t  the  s i z e  of the  a s soc i a t ed  Keyword
P roces so r  and s e c o n d a r i l y ,  the  a m o u n t  of t i m e  n o r m a l l y
r e q u i r e d  to p rocess  a t r a n s a ct i o n .  T h a t  is , the  l a r g e r
the  K e y w o r d  P rocessor  the  l a r g e r  t h e  bypass  c o u n t ;
among K e y w o r d  P r o c e s s o r s  of t he  same s i z e , t he  slowe r
the  p r o c e s s i n g  t h e  l a r g e r  t h e  bypass  c o u n t .  Of cou r se ,
a l a r g e  bypass  c o u n t  s h o u l d  not  be a s s igned  to a h i g h
p r i o r i t y  keyword  even i f  the  K e y w o r d  P roces so r  is l a r g e
or s low .

I t  is a n t i c i p a t e d  t h a t  some e x p e r i m e n t i n g  w i t h  the
bypass  c o u n t s  w i l l  be nece s sa ry  in a heavy  t r a n s a c t i o n
processing environmen t to achieve a satisfactory
t h r o u g h p u t  r a t e .  However , i f  the  p r o c e s s i n g  w o r k l o a d  is
light to moderate , the effect of the bypass count is
negligible.

The p a r a m e t r i c  s t r u c t u r e  of the  E x e c u t i v e  is
d e f i n e d  by the se r ies  of mac ros  l i s t e d  be low :

.BLJFF . G e n e r a t e  I n p u t/ O u t p u t  I n t e r c o m  B u f f e r
Space

.COMQ. Generate Output Intercom-Queue Space

.L I N E .  G e n e r at e  T e r m i n a l  C o n t r o l  B lock  & B u f f e r
Space

.MSG. Set Maximum Input & Output Intercom
Message  S izes

. SWAP. G e n e r a t e  S w a p — F i l e  Map Space

. T A S K .  Se t TAS K S i z e  & Genera te TASK Space

.TPOS . Set TPOS Options

See I n st a l l at i o n  M a c r o  u s a g e  f o r  an  e x p l a n a t i o n  of how
to use  the  above m a c r o s .

3 . 4

-

~

-

~

-- - - ~~~ -~~ - - -  --  ---~~~~~~~ - - 



~~~~~~~~~~ - - —-~~~~~~~~~~~~~~ -- - — - -~~~~ 

SIT E R E F E R E N C E

Keyword Processor Lib~~~ y

A specia l f i l e m u s t be c r e a t e d f o r each Ex e c u t i v e
to h o l d the Keyword Processor p r o g r a m s w h i c h a re unde r
its control. This file is called the Keyword Processor
L i b r a r y F i l e and is ass igned the f i l e name L — x x x , w h e r e
xxx is the TPAP—ID assigned to the Executive in TPE.
This naming conven tion allows each Executive to be
convenien tly associated with its library file.

_ _ _ _ _ _ _ _ _

3 . 5

J

S I T E R E F E R E N C E

C r eat in~j t h e K e y w o r d P r o c e s s o r L 1 br a ~ y

The c o n t r o l c a r d s e tu p to c r e a t e a l i b r a r y is as
f o l l o w s :

1 8 16

$ SN U M B

$ I D E N T

$ F I L S Y S

U S E R I D T R A X -E X E C $ P a s s w o r d

F C R E A T T E A X — E X E C / L — x x x , S I Z E / n , n/
I

$ EN D J O B

* * * E OF
w h e r e x x x is the T P A P — I D of the c o n t r o l l i n g E x e c u t i v e .

Gen e a t i ~~~ t h e K e y w o r d P r o c e s s or L i b r a ry

Wi t h i n t h e Keyword Processor Library, the p r o g r a m
e l e m e n t names f o r t h e K e y w o r d P roces so r p r o g r a m s a r e of
t h e f o r m S . y y y , w h e r e y y y i s t h e K e y w o r d — P r o c e s s o r — I D
i n t e r n a l to t he E x e c u t i v e . The E x e c u t i v e r e t r i e v e s t h e
K eyword P roce ssors , d u r i n g i n i t i a l i z a t ion , by
performing a GECALL with the desired S.yyy name to the
l i b r a r y .

3 - I:)

‘— - --~~~~~~~

- - —r —P--
- —

SITE REFERENCE

The f i r s t K e y w o r d P r o c e s s o r p r o g r a m can be loaded
o n t o t h e l i b r a r y w i t h t h e f o l l o w i n g c o n t r o l c a r d s e t u p :

i_________
~~~ _ ___ __i~ _~ ___ ____________ _______ 

- —

$ S N U M B

$ I D E N T

$ LOWLOAD

$ OPTION S A V E/ S . y y y , NOGO

$ L A N G U A G E

(K EYWO RD PROCESSOR PROGRAM)

$ E X E C U T E

$ PRMFL H * , R/W , R , T R A X _ E X E C / L _ x x x

$ L I M I T S

$ ENDJOB

*

w h e r e  yyy  is the  K e y w o r d — P r o c e s s o r — I D  and  x x x  i s  t h e
E x e c u t i v e ’ s TPAP—ID .

For s u b s e q u e n t  K e y w o r d  P r o c e s s o r s , t he  SAVE o p t i o n
m u s t  be r e p l a c e d  w i t h  the  SAVOLD O p t i o n .

N o t i c e  t h a t  s i n c e  TPE r e q u i r e s  the  TPAP f i l e s  to
be in spawn f o r m a t , i . e . ,  a c o n t r o l  c a r d  deck , a
Keyword Processor can also be executed as a norma l TPAP
by i n s e r t i n g  a S P R O G R A M  c a r d , w h i c h  s p e c i f i e s  t he
S . yy y  Keyword Processor name . Such a deck  a l so  has  to
spec i I the Keyword Processor Library as a d y n a m i c
user ’s library. In this case a TPAP P r o f i l e  w o u l d  a l so
have t o  exist withi n TPE f o r  t h e  K e y w o r d  Pr o c e s s o r.

3 - 7  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


S i T E R E F E R E N C E

E x e c u t i v e i n s t a l l a t i o n

Each E x e c u t i v e m u s t s- .- i n s t a l l e d i n t o t h e
T r a n s a c t i o n P r o c t ’ss i u u Sy s t em b y a s s e m b l i n g a TPAP
P r o f i l e i n t o n o i u l e T R X D of TP E to s p e c i fy t h e
o p e r a t i ng c h a r a c t e r i s t i c s of t h e E x e c u t i v e and by
c r e a t i ng and ~o a d i n y a T P A I ~ F i le to h o l d t h e
E x e c u t i v e ’ s spawn decK . The i n s t a l l a t i o n p r o c e d u r e is
d e s c r i b e d in t h e ‘ l r ~~n s a c t i O n P r o c e S s L~~9 Sy s tem S i t e
M a n u a l (O r d e r N o . D D 3 6) -

The neceosar ope rat ing para illetors to be supplied
t o t h e TPAP P r o f i l e m a c r o a r e :

(1) E x e c u t i v e ’ s T P A P — I D

(2) I n p u t and o u t p u t b u f f e r s i z e s

(3) All keywords belonging to the Keyword
Processors assigned t o the Executive along
w i t h their associated priorities

(4) Accept ***~‘rRT nleusage

(5) BCD i n p u t and o u t p u t

(6) M a i n t a i n s e l e c t/ d i s p a t c h o r d e r

(7) No swa p

(8) A c c e p t m u l t i p l e input messages

The b u f f e r s i ze c a t e t he si z e s used in t he
E x e c u t i v e ’ s .MS G . m a c r o p r e v i o u s l y d e s c r i b e d .

‘ihe n c * - s s a r y i n f o r m a t i o n t h a t m u s t be i n c l u d e d on
the TPOSs TPAP File is:

(1) $ L I M I T S card spe c i fy in g the amount of memory
to he ass~ qned to the Executive.

(2) $ PRM}’L card t o a t t a c h t h e K e y w o r d P r o c e ss o r
L i b r a r y as a u s er ’ s d y n a m i c library with File

3 . 8

r-~— ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SITE R E F E R E N C E

Code ** .

(3) $ F I L E c a r d to a t t a c h space f o r the $L
Load- File.

(4) $ FI LE c a r d to a t t a c h space f o r the $S
S w a p — F i l e .

(5) A l l f i l e ca rds supp l i ed by the user f o r t h e
Keyword Processors themselves.

The amount of memory to be allocated to the
Executive , as requested on the $ LIMITS card , shou ld
take into account the size of the Executive as
d e t e r m i n e d f r o m i t s a s s e m b l y .

The $L Load—File holds the Keyword Processors
during the Executive ’s execution , since they can be
r e t r i e v e d f r o m i t f a s t e r t h a n f r o m the l i b r a r y .
C o n s e q u e n t l y , s u f f i c i e n t space m u s t be a l loca ted to the
f i l e to hold a l l the Keyword P r o c e s s o r s . Any excess
space is re leased at the end of the E x e c u t i v ’~ ’ s
i n i t i a l i z a t i o n .

The TPOS TPAP File can contain the Executive in $
OBJECT form or it can specify an object l ibrary onto
w h i c h the E x e c u t i v e has been e d i ted . I n d e p e n d e n t of t he
a c t u a l m e t h o d used , a sample c o n t r o l ca rd m a k e — u p f o r
t h e TPAP F i l e is as be low :

1 8 16

$ IDENT (Opt iona l)

$ U S E R I D T R A X — E X E C $ P a s s w o r d

$ LOWLOAD

$ OBJECT

(TPO S E X E C U T I V E)

$ D K E N D

3 . 9

- - ~~- —--—- -- --~~~~— --— - --~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~-~~~~~~~—-.- —-~~ ~~~~~ —

S I T E R E F E R E N C E

$ L I N K I N I T

$ OBJECT

IPOS I N I T I A L I Z A T I O N

$ D K END

$ E X ECUTE D U MP

$ L IMITS ,Memory—Size

$ PRM FL ** ,R ,R ,TRAX_ EXEC/L_xxx Keyword Processor Library

$ F I L E $L , , Size Keyword Processor Load—File

$ F I L E $ S ,,Size K e y w o r d P rocesso r S w a p — F i l e

$ FILE Keyword
Processor
Fi les

$ F I LE

$ ENDJOB

Executive Ini tiation

F r e q u e n t l y used or p r i o r i t y TPAPs a r e p re spawned
and remain in the GCOS program queue. Prespawning the
p r i o r i t y p r o g r a m s causes them to pass t h r o u g h t he
r e l a t i v e ly slow peripheral and core allocation phase ,
m a k i n g t h e m a v a i l a b l e f o r i m m e d i a t e e x e c u t i o n f r o m the
GCOS swap fi le.

Each E x e c u t i v e can be exp l i c i t l y spawned by
i s s u i n g a d u m m y message w i t h t he a p p r o p r i a t e k e y w o r d or
i m p l i c i t l y spawned at t h e s y s t e m conso le or m a s t e r
terminal v ia the RESTORE ~~~ Command. This command will
spawn each TPAP whose p ro f i l e con tains f lag word bit
0=1 with the message ~~~ STRT. The E x e c u t i v e r e c o g n i z e s
t h i s messagr ’ , p e r f o r m s i t s i n i t i a l i z a t i o n f u n c t i o n s and
sends an End—of— Transaction status to TPE.

Dur in g the spawning phase , those files specified

3 . 1 0

—

~~~~~
- -
~~ 

—--
~~

--
~- .~~~~~~~~~~~~~



SIT E REFERENCE

in the TPA P File , are attached to the Executive. These
files reflec t all files to be managed by the Executive
or accessed by the Keyword Processors.

3 . 1 1  

- -. -  -- - - -~~~~- - - —  --~~~-----—~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

S I T E REF E REN C E

Master Terminal cap~bilit ies

TPOS has master terminal capabilities which are
used via a DAC connect to TPOS. There are five master
terminal program functions:

— S t a t i s t i c s
- Debug
— Line Swi tch
— T e r m i n a l H o l d
— Termina t ion

The m a s t e r t e r m i n a l c a p a b i l i t i e s a r e e nt e r e d v i a a
DAC connec t . For example , the “JDAC” command in t ime
s h a r i n g c o u l d he used to connec t to TPOS :

JDAC TPOS

TPOS will issue a connect message in the following
format :

**TPOS : MM/DD/YY at HH :MM:SS: ON CHANNEL CCCC

w~~er e M M = M o n t h
bD = Day

= Year
HH = H o u r
MM = M i n u t e
SS = Seconds
CCCC = Channel Number

At t h i s t i m e TPOS a s k s w h i c h of the f o u r “ p r o g r a m s ” you
w i s h to e n t e r . The message has the f o r m a t :

PROGRAM NAME ?

In r e sponse , one may e n t e r :

STATS — S t a t i s t i c s

DBUG - Debug

LSWIT — Line Switch

W A I T — T e r m i n a l Ho ld

B Y E — Termina t ion

3 . 1 2

_ _ - —-— - -~~~~ - - ~--- - —----- -— -~~~-- --- — - --~~~~ ------~~~-
-— ------ - - -

SITE REFERENCE

Because of the nature of the information , two of
the sys tems requ i re passwords , which are :

Program Password

STATS N U M BE R S
DBUG WELCOME

NOTE: A l l commands m u s t be e n t e r e d w i t h “ U PPER CASE ” .

S t a t i s t ics

TPOS h a s a m a s t e r s t a t i s t i c s c a p a b i l i t y . The
c u r r e n t s t a t i s t i c a l f u n c t i o n s a r e :

TPOS U L i s t TPOS Usage I n f o r m a t i o n
TPOS C L i s t TPOS C o m m u n i c a t i o n C o u n t s
TPOS A L i s t both TPOS Usage I n f o r m a t i o n

and communication Coun ts
TPOS D e f a u l t s to TPOS A

In addition to the above functions , con t inuous
m o n i t o r i n g may be o b t a i n e d by t he use of an a s t e r i s k
(*) a f t e r the c o m m a n d s . For examp le:

TPOS U”
TPOS C*
TPOS A *

S t a t i s t i c a l m o n i t o r i n g in c o n t i n u o u s mode may be
interrupted by use of the break func t ion on a terminal

on a CRT)

Upon c o m p l e t i o n of t h e s t a t i s t i c a l m o n i t o r i n g , t h e
s ta t i s t i c a l p r o g r a m i s t e r m i n a t e d by use of t h e “ DONE ”
c o m m a n d .

TPOS has a master debug capab~ l~~ty . Th :s
c a p a b i l i t y is accessed v~~a a DAC c o n n e c t t o TPOS . Th~
curren t debug functions are:

3.13

- -~~~~~~~~~~~ -— —- - - - --~~~~~~~

SITE RE FER ENCE

Snap

Sal—a2 Snap from al to a2
Sa ,n Snap n words starting at a
SR Snap processor regis ters in dump

format
SB Snap br eakpoint table

Pa t ch

Pa pl ,...,pn Patch n words starting at a with
octal valu es p1 thru pn

PVa p1,... ,pn Same as above , excep t ver i f y pa tch
wi th a snap

B r e a k p o i n ts

Ba I n se r t b r e a k p o int a t a
BVa In ser t breakpoin t at a and ver i f y
Da Delete breakpoint at a
DVa Dele te breakpoint at a and ve r i f y

Transfer

Ta Transfer control to a
TVa Transfer con trol to a after verifi-

c a t i o n

If at a breakpoint, re loa d br eakpo int processor
regis ter values prior to transfer.

Re turn

R Re turn to caller. If at a break point,
resume interrupted execution after
reloading processo r registers.

Caller

C Disp lay IC where dbug was called.
Th i s is u s e f u l when c a l l e d f r o m
o ther than a breakpoin t .

Where

Wtsymbo l) Disp lay loca tion and size associated with
the supp lied assembly symbol , provided
the symbol was assemhl ’d into the sym-
bol table .

3.14

--- - - - - - - - =— — ~~~~-------- - -- ~~~~-- - - -—--- - - ------- ---
~~~~~~~~~~ - - - -—



SITE RE F E R E N C E

Offset

O D isplay curren t offset value
Oc Set address offset to c. The value c

will be added to all dbug verb addresses
if they are not designated as absolute.

Ver i f ica t ion

VON Set verification mode on
VOFF Set ve r i f i ca t ion  mode of f
VASIS Don ’t change verification mode

Processor Register Disp lay

X D isplay all p rocessor regis ters in XB ,XP ,
XD order

XB Display base address regis ters in X BA ,XBB ,
XBE ,XB R o rder .

SBA Display MBA contents. If a non—extended
memory processor , so indicate.

XBB Display MBB con tents
XB E D i sp lay BER contents
X BR Display BAR con tents
X P Display ‘panel’ regis ters in XA ,XQ,XE ,XT ,

XI order
XA Display AR contents
XQ D isplay QR con tents
XE Display Exp—R contents
XT Display timer contents
XI Display all index registers in X0 to X7

order
Xn Display index regis te r n
XD Display all address reg is ters  in XAO to

XA7 order
XA n Display address reg ister n
XI R d i splay indica tor regis ter

P r o c e s s o r  ~~~~i st e r  M o d i f i c a t i o n

M { V } A p Mod i fy AR wi th oc tal value p and ve r i f y
i f  reques ted

MtV}Q p Same as above except for QR
MtV} E p Same as above except for ER
M IV}IR p Same as above except for IR
M ( V } n  p Same as above except for index reg ister n
M I V }An p Same as above except for address re gis ter

n

3 . 15



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SITE REFERENCE

For all modifications , the oc tal v a l u e  P canno t be
larger than the largest value that can be contained in
the regis ter to be modified .

Absolu te/Rela t ive Addresses

All dbug addresses are t rea ted as rela t ive to the
offse t (see 0) unless preceeded with the letter A ,
meaning absolu te.

Finished

F For use wi th DBUG in a GELBAR envir-
onmen t . This verb e f f ec t s  a DRL to
return to the subsystem or program
from which it was invoked .

Line Swi tch

TPOS has a mas ter termin al line switch capability.
This func tion allows the line to be switched from TPOS
to another DAC proqram (such as time ~h .~ r i n n ’f Ph~
format is:

LSWIT X X X X X X

where XXXXXX is the name of the DAC program to which
the user wishes to be connected . For example , to sw itch
from TPOS to the Time Sharing System , one would type :

LSWI T TSS

and the line would switch to the TSS logon sequence.

Terminal Hold

TPOS has a master terminal line hold capability.
Th i s func t ion is ini ti a ted by typing

W A I T

and is terminated b’/ using t h e  “ b r e a k ”  c a p a b i l i t y  on
the terminal ($*$BRK on a CRT)

3 . 1 6

_ _ _ _ _ _ _ _



- ______ _______  

- —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—-———------ - - -

SITE R E F E R E N C E

Termination

TPOS mas ter terminal capabilit ies may be exi ted
via the “BYE ” command which will cause the terminal to
be disconnected just as if a logoff had been performed
from the Time Sharing System . The forma t is:

BYE

Mas ter Terminal Session

The following three pages are representative of
the usage of the master terminal functions.

3.17

_ -

SITE REFERENCE

SYSTEM ? j dac t~ os

** TPC~~: 0 7/ 2 5 / 7 7 AT 2 2 : 4 ~~:1O ON CHANNEL 4(~~U —

PROGRAM N A M E ? st a ts

,vn ’uuJn
R E A D Y
?TPOS

TPOS INTERNAL STATUS ~‘N 07/25/77 FROM 21:03:09 TO 22:49:31

PRC-C~~AM- 4 15 SNUMB ~~e12T ACTIVITY 02 URGENCY 05 Sw 000000000000

TIME PROCESSOR MEMORY I/O LINES
STA RT 20.762 USED 0.003306 SWAP 7K USED 0.012 USED 78
ASOF 22.o 6 LIMIT 0.049623 TOTAL 18K LIMIT LIMIT 2048
LAPSE 2.063 GELBAR (.000222

.ENDSP — GELBAR DISPATCHES 153b

.ENuI — INTERRUPT BROKEN GELBARS 61

.ENHLQ — RELINQUISHES 2285

.ENRLT — RESOURCE LOCKUP THRESHOLDS 0

. EN T S S — S C H E D U L E R STALLS 0

. E N L R T — LOST INTERCOM READS 87

.ENLWI — LOST INTERCOM WRITES 0

.ENRCV - TRANSACTIONS RECEIVED 38
. E N M L A — MAIN—LEVEL CORE ALLOCATIONS 0

- M A I N — L E V E L SW A P A L L C C A T I O N S 0
. E N S A R — M A I N — L E V E L S W A P R E F U S A L S 0

— S W A P S 0
. E N N M L — N O R M A L T E R M I N A T I O N S 33
. E N A B T — A B N O R M A L T E R M I N A T I O N S 5
. E NI B O — I N P U T B U F F E R O V E R F L C U S 0

. E N C R I — I N P U T B U F F E R C O R E C H A N G E S 0
. E N I C C — C O M P L E T E D I N P U T O V E R F L O W S U

. E N C P O — O U T P U T B U F F E R O V E R F L O W S 0
. E N C R O — O U T P U T B U F F E R CORE C H A N G E S 0

— C O M P L E T E D O U T P U T O V E R F L O W S U

? U @ T P O S U

TPOS INTERNAL STATUS ON 07/25/77 FROM 21 :33:0~ TO ~2 :50 :38

P P C G P - \ M — ; 15 a N U M B 8~~(2 T A C T I V I T Y 02 Y H S O 4 C Y 05 SW 00 u ((u t ~0

TIME PROCESSO R ;-n:M NY Ij s LI~Ou T ’ P T 2 0 .7 ~~2 U S E D 0 . 0 0 3 3 7 6 S W A P 7 K s~rr 0.u 12 0 5 1. 0 76
AOu F .s 44 LIMIT U .U4 9t,_ 3 T TAL i~~ L I M I T ~~~~L A P S E 2 . 0 ~i . G E L I ’A R 0 .O U u ~~~~

3.1 8

_ _ _ _ _ _ _ _ _ _

4
—- -- -- --- - - - - - — ---- - ------ - - --— --~~-- - --

- .-
~

-.. - --- -~
~~

- -
~~~~~~~~ - -~~~ ----- --- - - - --— .~~~ - - ~~~~

SITE REFERENC E

WHAT?
?TPOS C

TPOS INTER N AL STATUS ON 0 7/ 2 5/ 7 7  FROM 2 1 : 0 3 : 0 9  TO 2 2 : 5 1 : 1 7

. E N D SP  — GELBAR D I S P A T C H E S  1 5 7 4

. E N G I  — I N T E R R U P T  BROKEN GELBARS 61

. E N R L C  — R E L I N Q U I S H E S  2 3 2 9

. E N R L T  — RESOURCE LOCKUP THRESHOLDS U

.ENTSS — S C H E D U L E R  STALLS 0

. E N L R T  — LOST INTERCOM READS 89

. E N L W I  — LOST INTERCOM W R I T E S  0
. E N R C V  — TRANSACTIONS RECEIVED 38
. E N M L A  — M A I N — L E V E L  CORE ALLOCATIONS 0
. E N M L S  — M A I N — L E V E L  SWAP A L L O C A T I O N S  0
.E N S A R  — M A I N — L E V E L  SWAP REFUSALS 0
. E N S W P  — SWAPS 0
. E N N M L  — NORMAL T E R M I N A T I O N S  33
.ENABT - A B N O R M AL T E R M I N A T I O N S  5

.EN1 BO — INPUT B U F F E R  OVERFLOWS 0

. E N C R I  — I N P U T  B U F F E R  CORE CHANGES 0

. E N I O C  — C O M P L E T E D  I N P U T  OVERFLOWS 0

.ENOBO — OUTPUT B U F F E R  OVERFLOWS U

. E N C R O  — OUTPUT B U F F E R  CORE CHANGES 0

. ENOOC — COMPLETED OUTPUT O V E R F L O W S  0

3 . 1 9



- -“--.---———- ,— —.------ - ---V---
-

‘1
SITE REFERENCE

WHAT?
?TPOS A

TPOS I N T E R N A L  STATUS ON O 7/25~~~77 F R O M  2 1 : 0 3 : 0 9  TO 2 2 : 5 2:3 4

PROGRAM— a 15 S N U M B  8 9 12 T  A C T I V I T Y  02  URGENCY 05 SW 0 0 0 0 0 0 0 0 0 0 0 0

T I M E  PROCESSOR M E M O R Y  I /O L I N E S
START C .7b .~ USED 0 . 0 0 3 5 0 0  SW AP 7K USED 0 . 0 1 4  USED 78
ASOF 2 2 . 8 7 7  L I M I T  0 . 0 4 9 6 2 3  TOTAL 18K L I M I T  L I M I T  2 0 4 8
LAPSE 2 .115 GELBAR 0.000236

.ENCSP - GELBAR DISPATCHES 1608

.E N G I  - I N T E R R U P T  B R O K E N  GELBARS 62

. E N R L Q  — R E L I N Q U I S H E S  2 3 7 3

. E N R L T  — R E S O U R C E  L O C K U P  THRESHOLDS 0

.EN T S S  — S C H E D U L E R  STALLS 0

. E N L R T  — LOST INTERCOM READS 90

. E N L W I  — LOST I N T E R C O M  W R I T E S  0

. E N R C V  — T R A N S A C T I O N S  R E C E I V E D  38

.ENMLA — M A I N— L E V E L  C O R E  A L L O C A T I O N S  0

. E N M L S  - MAIN—LEVEL SWAP ALLOCATIONS U

.EN S A R  — M A I N — L E V E L  S W A P  R E F U S A L S  0

.ENSWP - SWAPS 0
. E N N M L  — NOR MA L T E R M I N A T I O N S  33
.ENABT — ABNORMAL TERMINATIONS 5
.ENIBO — INPUT BUFFER OVERFLOWS U
.ENCNI — INPUT BUFFER CORE CHANGES U
.ENOC — C O M P L E T E D  I N P U T  O V E R F L O W S  0
.ENOBO — OUTPUT BUFFER OVERFLOWS 0
. E N C R O  — OUTPUT B U F F E R  CORE CHANGES 0
.ENOOC — C O M P L E T E D  O U T P U T  O V E R F L O W S  0

PRCGRAM NAME? DBUG

< < - E N I UR DBUG
D B U G ? S )
ERR - ADDRESS NOT OCTAL
DBU G ?S 0
000000  0 0 0 0 0 0 0 0 0 0 0 0
D B UG ? F
< < < E X I T  DBUG

PROGRAM NAME? WAIT

START W A I T I N G  N 2 2 : 5 4 : ~~~

PROGRAM N A M E ?  LS WI T TSS
RADC R & D  TSS G C O S — G U 3  ~7 / 2 5 / 7 7  AT 2 2 . 9 1 9  C H A N N E L  4 0 5 0

3. 20



~
- --

~~~ ~~
- -

~~~~~~~~~~~
--
~~~~~~~ - - ~~~— 

~~~~~~~~~~~~~

-

SITE R E F E R E N C E

INSTALLATION MACROS

Several macros are used within TPOS to tailor it
to a particular site ’s opera ting requirements. Use of
the macro along with a description of the macro
parame ters fol lows.

.TPOS. — Set TPOS Options

This macro is used to set assembly flags that control
the conditional assembly of TPOS modules and tailor
TPOS to various operating environments. The macro is
used as fol lows :

1 8 16

.TPOS . [ OPTIONS - STRING -l , . . . 1OPTION-STR I NG -N J

Where opt ion strings curren t ly recognized are :

‘SYMBOL—TABLE ’ Se ts an assem bly flag so macro
.SYMT. will generate a symbol table.

‘CONSOLE~ TTY ’ Se ts an assembly f lag indica t ing
tha t a TTY is to be used in lieu
of a system console.

SYMDEF-SYMBOL-TABLE-ENTRIES ’
Se ts an assembly flag indica t ing
all symbols encoun tered by macro
.SYMT . should be SYMDEF ’d.

‘REMOTE—I/O ’ Sets and assembly flag to allow
conditional assembly of Remo te
I/O supervisor code.

The .TPOS. macro call should be inser ted immediately
after the macro defini tion. See the assembly listing .

Intercom Buf fer  ~pace Macro

1 8 16
.BIJFF. Input—Inter com— Buffer—Size ,
ETC Ou tput—Intercom—Buffer—Size

Th is macro establishes the in iti al sizes of the
In tercom input and output buffers in words. As a

3. 21 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


_____________________________________ 1’

SITE RE FERENC E

s tar t ing poin t , the input buffer can be set to the
average message size times the number of TASKs desired .
Sim i larly, the ou tput buffer size can be set to the
average outpu t buffer size times the number of TASKs.
If memory is not a problem , the maximum memory size
should be subs tituted for the average message size in
both cases.

This macro should be inser ted into the TPOS assembl y
deck as specif ied in the program listing .

Q~~p~~~ I n t e r c o m Q u e u e M a c r o

1 8 16
-

.CO~1Q. Number— of—Queue—Entr i es

The single subfield spec i f ies th~ numbe r of Output
In tercom Queue entries in order to reserve space for
the complete queue at assembly time. As a guideline ,
the number of queue ent ries should be at least as large
as the number of TASKs.

This macro should be inser ted into the TPOS assembly
deck as spec ified in the program listing .

Term in a 1 Con trol Block & Buffer ~~ ace Macro

1 8 16

LINE. Number—of—Terminal—Lines ,
ETC W a i t - f o r — R e c o n n e c t — T i m e

The f i r s t s u b f i e l d s p e c i f i e s the m a x i m u m n u m b e r of
t e r m i n a l l i n e s t h a t TPOS is to h a n d l e .

The second subfield represents the time interval from
termi nal disconnect during which all control
information is ~e be held in limbo . This time interval
is spec ified in seconds. The purpose of this field is
to allow a reconn ect feature in a future enhancement.

This macr o should be inserted into the TPOS assembly
deck as specified in the program listing .

3. 22

~ -

~~~~~~~~~~~~~~~~~~~~~~ 

SITE REFERENCE

Set Maximum Inpu t & Output Message Sizes Macro

1 8 16 
____ ____

MSG . Maximum—Input—Message—Size ,
ETC Maximum—Output—Message—Size

Bo th subfields specif y the message sizes in words. The
maximum inpu t and output message sizes should be chosen
as the maximum sizes from the user—supplied Keyword
Processor specifica tions.

This macro should be inseL ted into the TPOS assembly
deck as specified in the program l isting .

Swap— File !~~
p Space Macro

1 8 16

SWAP . N u m b e r — o f — S w a p - M a p — E n t r i e s

The single subfield specifies the size of the Swap—Map

~n terms of the number of map entries desired . No more
than 255 entries should be requested since an in—core
TASK remains assigned to a program even when it is
swapped and the maximum number of TASKs is 255.

The .SWAP. macro can be omitted if a Swap—File will not
be alloca ted to TPOS . This macro should be inserted
into the TPOS assembly deck as specif ied in the program
1 is t i ng.

TA SK Space Macro

1 8 16

TASK. Numbe r—of—TASKs ,TA SK—S tack—Si ze

The f i r s t subf ie ld spec i f ies  the maximum number of
TASKs which are to be assembled into TPOS . No more than
255 TASKs can be requested .

The second subfield sets the size of the TASK IC&I
stack. This subfield can be left null for the current
TPOS vers ion.

This macro should be inserted into the TPOS assembly

3. 23

-- -  --



SITE REFERENCE

deck as specified in the program listing .

3 . 2 4  

~~~ - - - - . -~~~~~~~~~ - --~~~~~ - - - - --  ~~~~-—- . -- - - - - - - .~~ 


SYMBOL CONVENTIONS

SYMBOL CONVENTIONS

Cer tain symbo l conventions are followed within the
Executive both to standardize the symbols by their
generic usage and/or conten t and to avoid confusion.
The conven tions are currentl y:

xxxx Exp licitly Named Location Counter Symbol
or Location Counter Origin

.xxxx. Macro Symbol

.Axxxx Assembly Parameter or Symbol

.AMRKn MA RK Symbol for Conditional Assembly

.AMSWn Switch Symbol for Macro Expansions

.BITnn General Use Bit Symbol

.BTxxx TASK or TCB Bit Flag

.Dxxxx DRL Processor Primary Entry Point

.Exxxx Executive Communication Region Cell

.ENxxx Executive Accumulated Count

.Gxxxx MME Processor Primary Entry Point (for
standard GExxxx MME symbol)

.Kxxxx Keyword Processor Prefix Area Cell

.KEYLn Keywords List Offset Symbo l

. P R F L n Keyword Processor P r o f i l e O f f s e t Symbol

.Txxxx TASK Cell

.TCxxx Terminal Con trol Block Offset Symbol

B.Txxx TASK Bit Flag

B.Axxx Keyword Processor Attribute Bit Flag

4.1

_ _ _ _ _ _ -—-..-- -.--- ~~~~~ -.-- -~~~ --~~~- -- - - - ~~~~~~~ -- -~~~~~~~~~~~~~_ _ _ _

SYMBOL CONVE NTIONS

DRLnnx Internal DRL Processor Symbol
or (f o r DRL sym bol v a l u e nn)

D n n x x x

MMErinx Internal MME Processor Symbol
or (for MME symbol value nn)

Mnnxxx

YYY.nn Symbol for En try Point nn of Module YYY

YYYnnn Internal Executive Symbol for Module YYY ,
Symbol Sequence Number nnn

4 . 2

_ _ - - - - - ----- - - - -- --
~~~~~~~

---
~~~~-


SYMBOL CONVENTIONS

E x p l i c i t l y Named Assembl y Location Counters

Named location counters are used during assembly
to order or posi t ion coding e lements and data , but more
importan tly to allow macro definition of non—contiguous
elemen ts. Current location counter names and element
description are :

EXCR Executive Communication Region

XLIT EIS Transliteration Tables

EX EC E x e c u t i v e Proper

.MSG Executive Error Messages

..PRFL Keyword Processor Profiles

KEYL K e y w o r d s L i s t

TASK TASK Space

LINE Terminal Control Block & Buffer Space

SY MT Symbo l Table

BUFF Input—Output Buffe r sizes , Outpu t I n t e r c o m
Queue , Swap—File Map

Location counte r defined assembly elements are
sequenced according to the first usage order of the
counters. Notice that the origin of each explicit
loca t ion coun ter mus t be prope r ly se t when the coun ter
is f i r s t d e f i n e d , i.e. , invo ked.

Executive Module Symbols

Internal Execu tive symbols for its modules and
their componen t routines assume the form YYYnnn , where
YYY is the module name and nnn is the module sym bol
sequence number. Curren t module YYY names are:

AIO Cor e A l l o c a to r I/O

4. ~

—-.- - --- - - - - -- ----—- -~ - ---- —-~~~~ - - -~~~~~-- - ——- ---~“ — - . —

SYMBOL CONVENTIONS

CAL Core Alloca tor

COM Communica t i on Region

DBG Interactive Dbug

DRL DRL Validation/Handler

DSP Dispatcher

ETX Edit Transaction Number

EXM Executive Message Intercom

FLT F a u l t H a n d l e r

HKP Housekeep ing

110 I n t e r c o m I/O Handle r

KEY Message Keyword Process ing

MAC Macros

MAP Map Mechan ics

M ME MME Val ida t i on/Hand le r

RIO Remote I/O Supervisor

RLS Remote L i n e Se rv i ce

SCH Transaction Scheduler

STA I .~t er ~~r t - i vp Statistics

SYM Symbols

1PM T c r T ~ ~-~~~
-
~~~r

The following YYY symbols are r eservea : CM ii , D~~~,
DVC , LUF , MEM , OFL , ONC , PAR , TAG , TRO and ~OP.

4 . 4

1

~ 

_ _  _
- -~~~~~~-- ..-~~~~~~~~~~~~~~~~~~~~~~~ ----



- -- -~~~~~------— -~~~~- - --

CODING PRACTICES

CODING PRACTICES

Reg ister Convention

The only dethcated index register within the
Executive ’s system functions is X7. This is used to
hold a poin ter to the TASK being processed , if
appropriate to the par ticular function. Though the
r e m a i n i n g  reg i s ter usage is no t specified , generall y
the lower numbered registers are treated as the more
volatile.

Transfer of Control

Transfer of control among the system functions is
currently accomplished via the .CALL. , .EXIT. and
.GOTO. macros . See transfer of control chapter.

There  is no t r a n s f e r  of c o n t r o l  r eg i s t e r
safe—s torage Conventions within the calling sequence.
I f  saf ~ - - torage is necessary it must be done by the
calli n9 routine. As an aide to determining which
reg i st ers  a r e  a f f ected , each routine has a preface in
the assembly list ing that specifies which registers it
al ters or destroys. Notice that if the called routi~~
references yet another routine , it is necessary to
check  the  p r e f a c e  of the la t ter rou t ine too.

Regis ter safe—storage has been kept to a minimum
wherever possible to reduce this housekeeping overhead.
Ex tra care in modify ing or ins ta llr ng a system routine
can  e n s u r e  a ~ninimum of register Ln terference and
necessary safe—s torage. This applies part icularl y to
those routines which are executed on a frequent basis.

Cour tesy-Calls

N o r m a l l y ,  c o u r t e s y — c a l l s  ar ~ use d as t h r ~ p r i m a r y
level for proce ssinu w i th th~ main—leve l suspend ed in a
roadhiocked stat~~. W i t h i n  t h e Execu t~~vc’, courtesy—calls
a r • u~~r r i  as a second  l e v e l  f o r  p r 1c~’r s~~nq i n  a d d i t i o n

5 . 1

_ _ _  - .



- --~~~~~~~~~~~~~~~ 
-

~~~~~~
-

CODING PRAC TICES

to the main-level. Thus the main—level is not
roadblocked . The Executive ’s design dictates tha t some
func tions be performed and their component routines be
given control at both the main and courtesy—call
l eve l s .

I n h i b i t e d Code

Inhibi ted code is necessary within and throughout
several system functions. Coding must be so conditioned
when a sys tem rou t i ne is ‘common ’ to both main and
courtesy—call levels and not reentrant or when it
references or modifies da ta that is ‘common ’ to both
m a i n and cour tes~ -call levels.

Non—reentran t system routines are inhibited in
order to ensure tha t they are not busy when called by
an interrupting cour tesy—call. Determination of whether
or not a routine is inhibited must be made by examining
the assembly listing .

Data that must be handled with inhibited code is
generally a system queue or map. Inhibiting the
main—level data reference functions similarl y to a
programmed gate by eliminating overlaping references
and the confusion they could create. Notice tha t
i n h i b i t ing is onl y required at the main—level since a
courtesy—calt canno t be interrupted by either the
main—level or by another courtesy—call.

The need for an inhibited reference in any
particular case depends on the type of access intended.
For example , inhibi ting would not be necessary i f t h e
reference is meant to ‘jus t take a look ’ ; however , i f
the reference is meant to modif y or to check fo r some
condition and temporaril y preserve it , inhibiting woul d
be required. To aide in determining which items are
suscep tible to this problem , t he i t em des c r i p t ions a re
keyed according to whether or not courtesy—call
reference is made to t h e m .

5.2

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- - - -~~~~~~~- --- -- - ~~~~~~~~~~~~~~~~~~~~~~~~~ -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ --— - - - .
~~~

- _ _ - .
~- — - --- _~~~~~—~~~~- - .

CODING PRACTICE S

TASK Symbol Us~ 9~

TASK symbols are relative offset symbols;
consequen tly their difference is absolute. When using
these symbols and referencing one TASK cell given a
poin ter to another (other than the base of the TASK)
the pointer offset should be expressed as a symbolic
difference rather than a numeric difference. If this is
not done and TASK symbols are reshuffled , deleted ,
etc . ,  the pointer offse t will be in error. TASK format
flexibili ty is the primary benefit derived from
symbolic defini tion.

Faul t Requested System Services

Keyword Processors can reques t system services by
generating a processor fault with the MME or DRL
instructions. Currently onl y a subset of the standard
GCOS MME functions are supported . For a description of
the interface between the Executive and this type of
system service , see the MM E processor section. For a
description of the restrictions and conventions to be
observed by the service routines themselves , see the
D i s p a t c h e r ’s Queue d i s c u s s i o n .

5.3

---

~

---

~ 

~~~~~~~~~--~~~~~~~~ -- -~~~~~~~~~~~~~~ - - - - .-~~~~~~~~~~~~~~~
- . .

_ _

~~_ ----~~~~ - _ - ~~~~~~~~~~~~~~ -- - .- - _ _ - - -_ - --- .--~~~~ ~~

TRANSFER OF CONTROL

TRANSFER OF CONTROL

Transfer of control in the initial version of TPOS was
accomplished via TSXn type instructions. As development
continued , this method failed to provide the
flexibility required by new functions. Two types of IC
& I stacks were incorporated to eliminate most transfer
of control difficulties.

IC & I St a c k s

The first stack is a master or TPOS stack , located at
.ESTAK. The stack pointer is located in .EICIS as a
tally word. This stack pointer always points to the
last entry node in the stack provided the stack isn ’t
empty .

The other type of stack is the TASK stack , located at
offset symbol .TSTAK in each TASK . The stack pointer is
located at offset symbol .TALLY of the stack. As with
TPOS ’ s stack , the stack pointer always points to the
las t entry mode in the stack.

With both stacks , reference to the last entry mode is
accomp l ished by us ing the tally stack pointer word as
an indirect word.

TRANSFER OF CONTROL

There are three allowable transfers of control
mechanism . They are the .CALL., .EXIT., and .GOTO.
macros. The latter never involves a stack.

.CALL. Mechanism

The .CALL. macro is used for making an entry in the
appropriate IC&I stack , if one is s p e c i f i e d , and then
transferring control to the desired location. The macro
expansion and method for making a stack entry varies
according to the stack to be used.

For TPOS ’s stack , the macro expands into:

6.1

TRAN SFER OF CONTROL

1 8 16

XED .EPUSI-1
DRL (transfer location)

Where .E PUSH is a fixed instruction pair consisting of:

1 8 16

E V EN
.EPUSH STC1 .EICIS ,DI

TT F l ,IC*

For a TASK s t ack ,X7 mus t point to the applicable TASK.
In this case the macro expands in to:

1 8 16
____ _____ ____

XED . E C A L L
DRL (t r a n s f e r l o c a t i o n)

Where .ECALL is a fixed instruction pair consisting of :

1 8 16

EVEN
.ECALL STC1 .TPtJSH ,7*

TTF 1,TC*

and .TPUSH is a NOP within the applicable TASK used for
making a TASK stack entiy. This call consis ts of:

1 8 16

.TPUSH NOP .TALLY ,DI

.TPUSF-I is a necessary pa rt of this sequence since it
holds the absolutc address of .TALLY ,7 (relative to
TPOS~ s LAL) th e r e by ma k i n g i t ’s a d dr e s s m o d i f i c a t ion
f i e l d a v a i l a b l e f o r the Dl type ta l l y modification. If
the TASK is moved , .TPU SH m u s t be ad j u s t ed to r e f l e c t
the new location of .TALLY ,7.

Overflow protection exi sts for either stack. If a stack
overflow occurs , the TTF transfer at .EPUSH or .ECALL+1
wil t not he taken. This causes the DRL in either macro
expansion to be executed. There is no confusion between
a stack overflow DR[, and a service DRL , s ince the
la tto r is returned throuqh the GELBAR Fault Vector

6 .2

- - -~w--w.. ----- -- -- —~~~~~~~~ -~~ - -v--,,. -
-- ~~~~~~~

-,
~~~~~~~~~

TRANSFER OF CONTROL

instead of the DRL Fault Vector in TPOS ’s SPP.

.CALL. USAGE

The .CALL. macro is used as follows :

1 8 16

.CALL ? Symbol , Null I
{ I- , Call— Mode—

Designator
IModule—Name , Entry—Point!

Where the Call—Mode—Designator specifies the type of
call to be made and consequently affects the inline
macro expansion , Call—Mode—Designators are :

Blank or T Use IC&I stack in TASK pointed to by X7.

E Use TPOS ’s TC&I stack.

Xn Do not use any stack. Instead genera te
a TSXn to the specified symbol or
module—name , entry point.

The last Call—Mode—Designator was included to allow
exis ting TSXn transfer of control calls to be inverted
to the .CALL. format. This designator is not intended
for fu ture use except when calling a module which does
not use a stack to exit.

.EXIT. Mechanism

The .EXIT. macro is used for removing an entry from the
app ropriate IC&I stack , i f  a n y ,  and then return ing
control to that IC plus a variable offse t. As with the
.CALL. macro , the macro expansion varies according to
the stack specified in the macro call.

FOR TPOS ’ s stack , the macro expands into:

1 8 16

EAXO (variable—offset )-r- l
XED .EPOP

6.3

— - -

~

- -



_____ —,——---——~ ----—---- — - - — -- - - -—~~~~,-- -~.- 

~
—,-.-——-- — .-.------- . —-—--- - — — - — .,------- ____

TRANSFER OF CONTROL

Where .EPOP is a fixed instruction pair consisting of:

1 8 16

EVEN
.EPOP ASXO .E I C I S , I

RET .E ICIS ,ID

The fu st expansion instruction sets XO to the
specified offse t from the .CALL. plus one to step the
calling IC past the DRL in the .CALL. macro expansion.
The two instructions at .EPOP add the desired IC offset
to the IC within the stack and then return control to
the resulting IC as the stack pointer is popped to the
previous stack ent ry.

For a TASK stack , X7 must point to the applicable TASK.
In this case , the macro expands into:

1 8 16 
_____ __________

E A XO ( v a r i a b l e— o f f s e t) + 1
XED .EEXIT

Where .EEXIT is a fixed instruction pair consisting of:

1 8 16 
____

E V EN
.EEXIT ASXO .TALLY ,7*

RET .TPOP , 7*

This  m e c h a n i s m  is the equivalent of the TPOS stack exit
mechanism excep t an indirect word at .TPOP ,7 in the
TASK is required to effect the ID tally modification
for popping the stack. The contents of .TPOP are:

1 
____ 

8 16 
____

.TPOP NOP .TALLY ,ID

.EXI T. Usa~~

The .EXIT. macro is used as follows:

1 8 16

.EXIT. I C — O f f s e t , Ca ll— ~1ode— Desiinator ,

4 

- -~~ -- - -



TRANSFER OF CONTROL

Condi tiona 1— Transfer

The IC—offset represents the number of instructions to
be shipped pas t the .CALL. calling sequence. The
Call—Mode— Designator tailors the macro expansion as
fo l lows :

Null or T If the third parameter is no t nu~.l ,
the two insttuctions

Condi tional—Transfer 2,IC
TRA 3 ,IC

are generated to allow a
condi tional exit. These
instructions are immediatel y
followed by the expansion which
returns , using the IC&I in TASK
stack.

E Return usin . IC&I ir. TPOS ’s stack.

N ,Xn ,*Xn , If the third subfield is null , the
AU ,AL ,QU ,QL , single instruction
*AU ,*AL ,*QU ,*QL ,
I TRA IC—offset , Register— Modification

implied by Call-Mode—
Designator

is generated .

If the third subfield is not null , the
single instruction.

Conditional-Transfer IC-Offset , Reg-
ister Modifica-
tion implied by
Call— Designator

As wi th the .CALL. macro , .EXIT. Call-Mode-Designators
other than Nul l , T or E were included for compatability
wi th existing procedures. These designators should be
avoided in new procedures.

6.5 

~~~~~~~~~~~ -- -~~~


_ _ _ _ _

TR ANSFER OF CONTROL

.GOTO. Usage

The .GOTO. transfer of control macro is used as
follows :

1 8 16

.GOTO. Symbol , Address—Modification!
Condition-
al— Transfer

M o d u l e — n a m e , E n t r y — P o i n t I

The Module—name , Entry—Point option will generate :

I TRA I Symbol , Address—Modification !
{ or } [or
Condit ional—Transfer I Module—Name , Entry—Poin t

Where allowable addres s modification types are:
N ,Xn ,I,P.U,AL ,QU ,QL ,*Xn ,*AU ..*AL ,*QU ,*QL

Precaution

Both .CALL. and .EXIT. macro expansions can consist of
more than one instruction. As a result , care must be
taken when calling modules with multi ple returns since
a .CALL. followed by another .CALL. or a .EXIT. could
result in a return to an instruction interior to an
expansion.

6.(-

- - ~~~~~~ -. -.--~~~~-- . — ------ ~~~~~--— -.
--— ~~~

COMMUNICATION REGION

EXECUTIVE COMMUNICATION REGION

This region of the Executive is used for common
storage and for communication among the Executive ’s
internal func tions . As such , the region con tains the
following :

o assembled constants that define the
Execu tive ’s parametric structure

o status of internal Executive functions

o control information for internal functions.

Symbolic tag s for Communication Region cells are of the
general form .Exxxx.

Special Usage

Some Communicat ion Reg ion cells are referenced
within both ma in and courtesy—call level processing .
These cells must be handled with extra care as dictated
by the type of reference being made. In order to
iden tify these cells it is sufficient to indicate which
ones are accessed in the courtesy—call routines. This
is done by inserting the key (CC—Fef) after the cell
name in the following communication cell descriptions.

7 . 1

~~. - -

r ~~~~~~~~~~~~~~~ ~~~~~~~

COMMUNICATION REGION

.EACQS — Allocator ’s Core—Queue Service (CC—Ref)

O 17 18 25 26 35
IPTR TO .TMEM OF LAST TASK NO-PASS TALLY IMBZ
IU NSUCCESSFULLY SERVICED BY b r SELECTION I
IM AIN—LEVEL CORE ALLOCATOR I Q-DEPTH I I

The upper half of this cell holds the current service
pos ition within the Core—Queue. This position can point
to the base of Core—Queue when the next queue—entry
eligible for selection is the first ent ry in the queue.
The lower half of this cell holds a demand selection
Core—Queue depth tally that indicates the number of
TASKs remaining to be serviced up to and including the
highest priority no—pass , when positive , and indica tes
the curren t Core—Queue depth of the service , when
negativt . This cell is used to interlace courtesy—call
and main—level allocat’on activi ties.

.EAIXP — Allocator ’s In terrupted Execution Phase
(CC—Ref)

0

17 18 35
INEGATIVE COUNT OF COURTESY— 1MA IN—LEVEL EXECUTION
ICALL NO—PASS’s I PHASE

The uppe r half of this word holds a negative count of
Core—Queue no—pass ’s that were linked or forced in
courtesy—call. The lowe r half describes the current
phase of the main—level allocator as follows:

0 not enabl~~d

I demand (load) allocation

2 ‘ swap ’ res ourc~: allocation.

Th is cell is used by cour ti-c y—ca lI routines to
inte rlace the Lr functions with ma i.n— Iove l allocat ions
func tions.

7.2

. ~~ - - ------ _ - ——--~~~~~~~~

COMMUNICATIO N REGION

.EBAS5 — Base Address Setting

0
-

17 18 29 30 35
I BASE ADDRESS SETTING I NOT USED 1X5 MOD I

This word is used to resolve an address given an offset
in index register 5 (X5) to the base setting in the
upper half of this word. The base setting is the LAL of
some Keyword Processor. This cell is set by the
Dispatcher at every dispatch .

.ECALL — Make Entry in TASK IC&I Stack

o 1 7 1 8
—

35
TSTC1

—
I.TPUSH ,7* I

ITTF Il ,IC* I

.ECMAP — Core—Map (CC-Ref)

0 17 18 25 26 27 35
I FWD CORE—MAP PTR (.TMEM) 1* FREE 1024 10 IMBZ
I WORD BLOCKS I I

IMBZ SWAP-CORE LAL
I MBZ

_______ _________ ____

T~KWD CORE-MAP PT~~~~~~~ALY T~~AP-CORE UAL

Four words representing the base Core—Map entries. The
first two words are the first Core—Map entry and the
last two words are the last map entry. Base entry
forma t is identica l to the general Core—Map entry. (See
Core/Swap Map discussion) . Swap—core is the core area
in which Keyword Processo rs are loaded and execu ted.
The swap—core UAL is defined to be:

(swap—core LAL) + (swap—core size)

in multip les of 1024—wo rd blocks. At assembly time
.ECMAP upper points to .ECMAP +2 , and .ECMAP +3 upper
points to .ECMAP+1.

. FCNS L - CONSOLE ID

0 23 24
M H Z I T E R M I N / \ L 11) I

7.3

~
-
~~~~~~~~~~~~~~~~~~~~~~~~~ ---

~~-

C O M M U N I C A T ION REGION

One word that holds the Terminal ldentification when a
TTY is used in li eu of a system consol e.

.ECOMO — Output Intercom Enabled Flag (CC—PeE)

Thi s flag is used to indicate that Output Intercom I/O
is enabled and tha t the courtesy—call Output Intercom
routine is execu t ing , when set to a non—zero value. The
flag is con trolled by the Output Intercom I/O routines.

. ECOMQ — Output Intercom—Queue Space (CC-Ref)

0 17 18 35
i PTR TO LAST ASSIGNED OUTPUT I PTR TO FIRST FREE OUTPUT I

I ( . E C Q S Z )  I I
I I N T E R C O M - Q  ENTRY SPA CE+1 I I N T E R C O M - Q  ENTRY or ZERO !

These c e l l s  a r e  used to manage the free Output
Intercom— Queue entries as an available chain. The words
are defined by the Outpu t Intercom-Queue macro
(.COMQ.). .ECOMQ uppe r is assembled to point to the
firs t word past the assigned space and the lower half
is assembled as the location of the first assigned
queue-entry. ECQSZ lower holds a bit mask used to
allow/disallow Intercom—Queue entry reques ts within the
Dispa tcher ’ s— Queue Service. To allow requests , the mask
is ‘ORed’ into .EDQSM , while to ig nore reques ts, the
1’ s-complement of the mask is ‘ANDed ’ wi th .EDQSM. The
mask bit posi t ion is assigned symbolicall y in
accordance wi th the bi t position of the ‘ reed Output
Intercom-Queue En try ’ TASK Status Flag (B.TNQE)

.ECQP — Output rntercom-Queue (CC—Ref)

0 17 18 35
l EwD L I N K E D  OUTPU T I N ’r E R C O M -  B K W D L I N K E D  OUTPUT I N T E R C O M - I
I Q U E U E ENTRY PTR or  ZERO LW- U I-; ENTRY PTR or Z E R O

This cell holds the forwa rd and I ackward p o i n te r s  to

th e head and t a i l of the ~Iu t put Intercom -- .ueue. Entries
link ed to the queue are waiting or in transmission.

7 . 4

- - - - . - -- -~~~~~-  - --~~~~~~~~— ._ . . -



COMMUNICATION REGION

.ECORQ - Core-Queue (CC-Ref)

0 17 25 26 
— 

35
IF WD CORE-QUEUE ENTRY PTR I BKWD CORE-QUEUE ENTRY PTRI
ITO .TMEM or ZERO ITO .TLAL or ZERO
l # OF TASKs LINKED TO CORE-QUEUE TM8Z
I 

_ _ _  
I I

Two words , the first of which holds the link pointers
to the first and last entries in the Core-Queue and the
second contains a count of the number of TASKs linked
to the queue.

.ECQSZ — Output Intercom-Queue Entry Size

The uppe r half of this cell is set during assembly to
the Output Intercom-Queue entry size by the .COMQ. This
cell must be paired with cell .ECOMQ . (See .ECOMQ).

.EDA MP - Static Core Allocator Dampers (CC—Ref)

0 35
STATIC CORE-MAP_DAMPER I
T~TATIC SWA P DAMP ER

The Static Core—Map Damper is a Core-Queue to Core-Map
control that , when on , signifies core is ful l relat ive
to the current demands in the Core—Queue. The Static
Swap Damper is a Core—Queue to ‘swapable ’ core—holes
con trol that , when on , signifies core is full relative
to the set of core—holes that would be created if
swap-eligi ble Keyword Processors were swapped-out of
core. The dampers are on when they assume a non-zero
value. (See Core Alloca tor discussion).

.EDQSM - Dispatcher ’s—Queue Service Mask

0 17 18 35
1MHZ DISPATCHER ’S—QUEUE I
I SERVICE BIT MASK I

This cell i s used by the Dispatcher ’s— Queue Servic e
when scannin g the sta tus of TASKs linked to the queue
in order to determine if a TASK is roadhlocked hy or
reques~~in u some Fx~ cu t iv e function. Selected hits

7 . 5

_ _  ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



C O M M U N I CA TION R EGION

w i t h i n  t h e  mask  a r e  set  o t t  : y  t h e  a p p l i c a b l e  s e r vi c e
routines when their service cannot he p r o v i d e d . The
bi ts are set on when a service request is possible. Of
the bits used in the mask , the bi t positions are
aligne d with the like bit positions symbolically
assigned to those TASK Status Flags being scanned.

.EDQSP — Dispatcher ’s— Queue Service Position (CC—Ref)

o 17 18 35
I PTR TO .TFLAG OF NEXT TASK I S E R V I C E  IN PROGRESS FLAG I
ITO SERV ICE I I
This cell holds the location of the next TASK to be
serv iced by the Dispatcher ’s-Queue Service in the upper
h a l f , and a flag that i n d i c a t e s  th e queue serv ice is
enabled , when non—zero , in t he  lowe r half.

.EDSPQ — Dispatcher ’s-Queue (CC—Ref)

o 17 18 35
lE WD DSP=Q ENTRY PTR IB~~ D~~~~P~~ ~~~~~ 

p~~ 
-

I TO .TPRIO or ZERO ITO .TFLAG or ZERO I
# OF TASKs LINKE D TO DSP-Q — - 

I

Two words , the first of which holds the link pointers
to the first and last entries in the
Dispa tcher ’s-Queue , and the second con tains a count of
the numbe r of TASKs which are linked to the queue.

.EEXIT. — Remove Entry from TASK IC&I Stack

0 17 18 35
IA SXO I .TAr ,Ly ,7* I
I R E T  

- - 

T . T P O P , 7* 
- - -

Two words that hold the f i x e d  i n s t r u c t i o n  p a i r  u sed  by
the .EXIT. macro to add a te~~ir n of fse t to the calling
IC in the TA SK stack and to L qi ca ll y remov e t h e  entry
from th e stack while re t u r n r n q  control to the re s u l t i n q

IC. See transf e r of control.

7 .

~~~ - - - - - - - -~~~~~~~~~~~~~~ -- - - -——_- - - - _____


- .,— - -- ~~~— --.~~--- — - — — — ---.--
~.- —— —,~~--——---,------—~--

COMMUNIC ATION REG I ON

.EGTQS - GELBAR Time Quantum Sum

o
________ _______

35
ICELBA R TIME QUANTUM SUM FOR ALL GELBAR ’d_PROCESSOR TIME I

This cell is used to accumulate all processor time used
by the Keyword Processors themselves.

.EIMAP — Input Intercom Buffer Map (CC—Ref)

o 17 18 35
I FWD INPUT BUFFER MAP PTR l# OF UNATTACHED WORDS AT
I

ITHE START OF THE BUFFER

1T~C OF LAST INPUT BUFFER T~ ESERVED
ICELL I

Two words , the first of which holds the Input Intercom
Buffer base map en try. The second word is used to
record the last buffer cell address and is not required
by map mechanics. These words are defined by the
Generate Buffer Space macro (.BUFF.). See Buffer Map
discussion for a further explanation .

.EINCC — In Courtesy-Call Flag

This cell is used by internal routines that execute at
both main and cour tesy—call levels to indicate that
execution is at the courtesy—call level.

.EINIT — Initialization Vector

.EIN Ir is the primary SYMDEF entty point to the
Executive. This cell holds a startup vector to the
Exec ut ive ’s Initialization Routine. The transfer is
requ ired because the in itiali zation routine is attached
to the Executive as a link , c o n s e q u e n t ly the en t ry
SYMDEF must be t o the main link.

.EKEYL — Keywords List (CC—Ref)

0 17 18 25 26 35
TPTR TO I- IPS [K I - Y W O R D

- [k ~~~o~ ri~TME~~ T

7 . 7

—- .——— —--- - - - -~~~~~ -——t —--- —~-——--— ——— ~~ —_ b— --—- —
_ _

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - - - - -- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -

COMMUNICATION REGION

This cell is built during assembly and is used by those
routines that search the Keywords List. The cell is
defined during assembly af ter all profiles and keyword
entries have been built.

.ELDSP - Last Dispatch

0 17 18 
_____ 

35
I LOC OF LAST DISPATCHED TASKINOT_USED

This word holds a pointer to the last TASK that was
dispatched to. This cell is Set by the Dispatcher and
used by the Fault Handler.

.EMXSZ - Maximum Message Size

o 17 18 35
M A X I M U M  OUTPUT ~4ESSAGE SIZE !MAXIMUM iNPUT MESSAGE S I Z E !

One word that holds the maximum output message size and
the ~naximum input message size as declared to TPE in
the Executive ’s Profile. This word is used to screen
Keyword Processor Profiles during startup, to al loca te
input buffer space and to ensure that output messages
do not exceed the maximu m output message size declared
to TPE. This cell is defined during assembly by the
.MSG . macro.

.ENPQD — No -pass  Q — D e p t h  ( C C — R e f )

o 17 18 2 5 26 35
I PTP TO . T P R I O  OF’ H I G H E S T  I N O—P A sS I M B Z
I P R I O P I T Y  N O- PT \ SS  TASK I Q - D E P TH I

The upper half of this cell h o l d s  a p o i n t e r  to TASK
cell .TPRIO of the highest priority n o— p a s s  i n  the
Core—Queue and the lower half holds the Core-Queue
depth of the no—pass. If a no-pass does no’ exit , this
cell is zero.

E- NUQD — Sel ’ct i on Q~~D p t h (CC—Pef)

U 17 18 25 26 35
M 10 ISl UECTION IMI3 Z

I 
— 

I C~-DEPTII - - -~~ --

7 . d

— - --~~~~~ —~~~~~~~~~~ - -- ---~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~ - -- 
-— .—~~~~~~~~~~~~



- . 

COMMUNICATION REGION

This cell holds the Core—Queue depth of the last TASK
unsuccessfully serviced by the main—leve l Core
Allocator during demand (load) allocation. The Q—depth
can be zero when the next TASK eligible to be selected
is the first TASK in the Core—Queue. This cell is used
by courtesy—call routines to help determine the
allocation eligibility of a newly linked demand and to
intetlace cour tesy—call and main—level functions.

.EOMAP — Output Intercom Buffer Map (CC—Ref)

o 17 18 
___________ 

35
I FWD OUTPUT BUFFER MAP PTR I# OF UNATTACHED WORDS AT
I 

____ 
ITHE START OF THE BUFFER I

b LOC OF LAST OUTPUT BUFFE R I RESERVED
ICELL 

____  ____  
I ______  ______  ___

Two words , the first of which holds the Output Intercom
Buffer base map entry. The second word is used to
record the last assigned buffer cell address and is not
required by map mechanics. These words are defined by
the Generate Buffer Space macro (.BUFF.). See Buffer
Map discussion for a further explanation.

.EORG - TPOS Origin

This symbol under location counter . . EXCR locates the
origin of TPOS.

.EPOP — Remove E n t r y  from TPOS ’s I C & I  S tack

o 
_____ 

17 18 35
TK~~o 

I RET 
— 

I .EICI S,ID 
— — —

Two words tha t hold the fixed instruction pair used by
the .EXIT. macro to add a return offset to the calling
IC in TPOS ’s TASK Stack and to logically remove the
ent ry  from the stack whi le re turning contro l  to the
resul ting IC. See transfer of control.

7.9 

—  - - - - , .-- --—_ ~~~~::—: —~~---~~~~~~



~~~~~~~~~~~
-

~~~
- - -- -

~~~~~~~~~~
-_ - -—

~~~~~~~~~~~~~~~~~~~~~~ ~~~~

-- ----- ---

~~~~~ ~
——-_--

~
-
~

--- _—— --- - -_-
~
--I

~~

- — - - .

~~~~

, -—— —- -—--

~~

- _ .

COMMU N ICATION REGION

.EPRFL — Keyword Processor Profiles

0 
— — - 

17 18 25 26 35
I PTR TO FIRST KEYWORD l # OF IMBz
I PROCESSOR PROFILE 

— 
I PROFILE~ _ I

This cell points to the first Keyword Processor Profile
in the upper half and holds the number of profiles
assembled in the lower half. This number is scaled for
use as the tally of a Repeat instruction.

.EPRFX — Keyword Processor Prefix

This symbol is used to symbolically define the size of
the  Keyword  Processor  P r e f i x  Area , t h a t  is the equated
value of the symbol is the prefix size. There is no
storage associated with this symbol.

.EPUSH — Make Entry in TPOS IC&I Stack

0 
—- 

17 18 ——_____ 35
I STC 1 

— —  
I . E IC IS ,DI 

——
I TTF 

____ 
Il ,IC* 

__________

Two words that hold the fixed instruction pair used by
the .CALL. macto to make an IC&I entry in TPOS ’s stack.
This stack is located at .ESTAK and the stack pointer
is a tally word at .EICIS. See transfer of control.

.EQMIN - Core-Queue/Core—Map Fence (CC—Ref)

0 17 18 35
IM BZ ICORE-Q :: CORE-MAP FENCE

T h i s  c e l l  is an internal Core Allocator control that
func tions as a fence between the demands in the
Core-Queue and the available core—holes in the
Core-Map. Whenever the Static Core-Map Damper is on ,
the followin g relationship is satisfied :

max Core- Map (available core-hole)< .EQMIN < mm
Core—Queue (resource demands)

See the Core Allocator discussion for a further

7.10

_ _ _ _ _ _ _ _ _ _ _



COMMUNICATION REGION

explanation.

.ERLUF — Resources Lock—Up Flag

This is a one word flag that is on when it holds a
non—zero value. The flag is set on by the Dispatcher
when :

(1) the Dispatcher~ s—Queue is not emp ty

(2) it is unable to select a TASK eligible for dispatch

(3) the Output Intercom Processor is not active

(4) no TASKS are roadblocked by outstanding device I/O.

If the Dispatcher cannot clear the flag after one queue
service at temp t , it initiates lockup threshold logic
and commences aborting TASKs to free—up resources. In
the event the lockup remains , the Dispatcher will abort
the Executive.

.ESDAT - S t a r t u p  Da te

o 
_________________ _____ 

35
STARTUP DA TE_ (MMDDYY)  

——____ —

One w o r d  t h a t  h o l d s  the startup date at the completion
of initialization.

.FSDQ P — Swap Search Dispatcher ’s—Queue Positio n
(CC-Ref)

0 17 18 
______ 

35
I PTR TO .TPRIO OF NEXT TASK I MBZ
IWHERE SWAP-ELIGIBLE TASK I
I SEARCH IS TO RESUME I

Thi s cell is used du - ing main—level swap resource
allocation to hold a poin ter to cell .TPRIO of the next
TASK where the swap—eligible TASK search is to resume .



~~~~~~~~~
_ — — — —

~~~
- ----- — . —_ - _— — -~~~~~~ - -

~~~~
——- —— -—— - - - —_- — -

COMMUNICATION REGION

.ESMAC - Swap-File Map Space (CC-Ref)

O 17 18 35
IPT R TO LAST A S S I G N E D S W A P — I P T R TO FIRST F R E E SWAP-F ILE I
FILE MAP ENTRY SPACE+l MAP ENTRY or ZERO

I SWAP-FI LE MAP ENTRY SIZE (MHZ
— — ____ — — — -

Two words used to build or release Swap—File Map
entries. The lower half of the firs t word points to the
first available map entry if there is one . These cells
are defined by the Genera te Swap—File Map space macro
(.SWAP.). .ESMAC uppe r is assembled to point to the
first word past the assigned space and .ESMAC lower is
assembled to poin t to the first assigned Swap-File Map
e n t r y .

. E S M A P — S w a p-F i l e Map (C C — R e f)

o 17 18 35
! FWD SWA P-FILE MAP PTR I# OF FREE 64 WORD BLOCKS

M B Z
- - --

SWAP-FILE LAL
M R Z

- - - - -

TBKWD SWAP-FILE MAP PTR SWAP-FILE UAL

Four words that hold the Swap—File base map entries.
The firs t two words are the first Swap-File Map entry
and the last two words are the last entry. Entry format
is iden tical to the general Swap—File Map entry format.
The Swap—File UAL is defined to be:

(Swap—File LAL) + (Swap—File size)

in 64—word blocks. ~~t assembly time .ESMAP upper points
to

. E S M A P + 2 , and . ES M AP + 3 uppe r p o i n t s to . E SM A P + 1.

.ESORG — M a ; t e r IC&I Stack Or iiin

This symbo l locates the beginning of the Master IC&I
s~ ack used for t ransfer of c o n t r o l h e t w e e n TPOS
execu tive routines. See .1-STAN ,

7 . 12

.

COMMUNICATION REGION

.ESTAK - Master IC&I Stack

This symbol locates the first wo~ d past the Master IC&I
stack used for transfer of control between TPOS
execu tive routines. The size of this stack is
established as the difference between .ESTACK and
.ESORG . This sym bol is used to locate the stack since
en tries are inserted from high to low address , i.e.,
via DI—ry pe tally n- odi ficat ion.

.ESTAL — St -all~ d s c h ~~d u l e r Vector (CC—Ref)

0 35
I IC ~. I WHFI~[TPANSe~- TION SCHEDULER STALLED—OUT or ZERO I

The Transaction Schedul~~r uses this cell as a flag ,
everytime it is er.abled b y the Dispatcher at the
m a i n — l e v e l , t o d e r m i n e i~ i t has s t a l l e d — o u t and
needs to be restarted. Wheo the scheduler is stalled ,
.E STAL is t r e a t e d as a v e c t o r t h a t h o l d s the IC & I
where t he Transaction Scheduler stalled—out and is to
be r e s t a r t e d . When t h r . s c e l l is z e r o , the s c h e d u l e r is
enab led a t t h e c o u r t e s y — c a l l l e v e l .

.ESTIM — S t a r t u p Time

O 35
I STARTUP T I M E (1/ 6 4 MS)

- —

This w o r d h o l d s t he s a r r u p t i m e a t the comp letion of
i n i t i a l i z a t i o n .

.ESWPE — Swap Eligible TASK Count (CC—Ref)

O
-- -

35
1 * OF SWAP-ELIGIBLE TASKs or_ KE YWORD PROCESSO Rs

This cell holds the c o u n t of the n u m b e r of TASKs whose
associated Keyword Processors are eligible to be
swapped ou t of co re . This condition is indicated within
a TASK when i t s B.TESW bit flag is on in cell .TFLAG .

7.1 3

— — . - - — —— . -- — - - - - ~~~~~--~~~~~~~~~~- ~~——-~---,. —-- ~~~-~~~~~~ - .-~~-‘-— - ----p-—-—

. - - --
~

-
-

~

--- -
-. --

~ -- --

C OM M U N I C A TION RE G ION

.ESYMT — Symbo l Table

0

17 18 2 5 26 35
I I # OF TABLE ~~~~~~

—

~~~ I
SYMBOL TABLE PTR I ENTRIES IMBZ I

This  word  is used to access the  symbol  t a b l e  if  one has
been b u i l t .  I f  no symbol t a b l e  e x i s tc , t h i s  word  is a l l
z e r o s . See symbol table d e s c r ip t i o n .

.ETACK - Dispatcher ’ s TASK Alarm Clock

_  - _  
35

I TIME WHEN N E A R E S T  TASK ALARM CLOCK IS TO RING (1/6 4 rnsFF
t ALL ONEs IF NO TASK ALARM CLOCKs ARE SET I

This cell is used as a wake—up indicator for those
Keyword Processors tha t have issued a MME GEWAKE. The
alarm clock is set to the nearest rime when a TASK
alarm clock is to ring and i ts Keyword Processor
awakened. If no TASK alarm clocks are set , this clock
is turned off by setting it to — 1 (all ones). The
Dispa tcher ’s—Queu e Service checks if the alarm is
ring ing.

.ETASK - TASK Space

0 17 18 35
IPT R TO LAST ASSIGNED I PTR TO FIRST FREE I —

ITASK_ ENTRY SPACE+1 TASK ENTRY I
T~7ETKSZ) I
I TASK ENTRY SIZE IB.TNS’r I

These cel l s are used to manage the u n a s s i g n e d  TASK
en tries as an available chain. The cells are defined by
the Generate TASK Space macro (.TASK.). .ETASK upper is
assembled to point to the first word past the assigned
space  a n d  . E TASK lowe r i s  a s s e m b l e d  as  the l o c a t i o n  of
the first assiqned TASK entry. .ETKSZ lower holds a h it
m a s k  used t o  allow/disallow neod—cpawn—TAS K requests
w i t h i n  t he  D i s p a r c h e r ’ s - Cu e u  S e r v i c e .  To a l l o w
r e q u e s t s , t h e  m a s k  is ‘ ORed ’ i n t o  . E D Q S M , w h i l e  to
i g n o r e  r e q ue s t s , the l’ s com plement of the ma sk is
‘ A N D e d ’  w i t h  . E I ) Q S M .  The m a s k  b i t  p o s it i o n  is  a s si qn e d
in  a c c o rd a n c e  w i t h  the b i t  p o s i t i o n  of t h e  ‘ n eed  s p aw n
T A S K ’ ( B . T N S T )  TAS K St a t u s  Fla~~. 4

_ _ _ _ _  

_ _- I



—- ------—---- -—~~~~~~~~-.------ -~~~~~-- - ------- --—----- —- ----—

COMMUNICATIO N REGION

.ETBUF — Terminal Buffer Space (CC—Ref)

O 
______ 

17 18 35
IPTR TO LAST ASSIGNED I PTR TO FIRST FREE I
ITERMINAL BUFFER_SPACE +1 ITERMINAL BUFFER I
I TERMINAL BU FFER S I Z E  1MB? I
I I 

_ _ _  _ _ _ _ _  
I

These cells are used to manage the unassigned terminal
buffer space as an available chain. The cells are
g e n e r a t e d  by the . L I N E .  m a c r o .  .ETBUF uppe r is
assembled to point to the f i rs t  word past the assigned
terminal buffer space and .ETBUF lower is assembled to
point to the first word of the assigned buffer space. - 

-

.ETCBP — Terminal Control Block Chain

0 
______ 

17 18 35
I FWD TCB CHAIN PTR I BKWD TCB CHAIN PTR I
bar ZERO tar ZERO I

This cell holds the base forward and backward pointers
to the head and tail of the TCB chain. If the chain is
e m p t y ,  t h i s  word  is z e r o .

a
.ETCBT - Terminal Control Block Space

0 17 18 35
I P T R TO LAST ASSIGNED I I
ITC B SPACE +1 I PTR TO FIRST FREE TCB

S I Z E  
— 

IMB Z 
-

I I I
These  ce l l s  a r e  used to m a n a g e  the  u n a s s i g n e d  T e r m i n a l
C o n t r o l  B l o c k  ( T CB )  space as an a v a i l a b l e  c h a i n .  Both
cells are defined at assembly time by the .LINE. macro.
.ETCBT upper is assembled to poin r to the first word
past the assigned TCB space and .ETCBT lower is
assemble d to point to the first word of the assigned
TCB space.

. E T I M E  - System Time

0 35
T~~~~~ M~~~ ië Ti/~4 rns) - - - -

7.15

_ _  ~~~~~~--~~~~~~~~~ - - - - ----- -- - -~~~~~~~~~- -- -- ~~~~~~~~~~~



- 
------ - -----— ------ -—- -

~~~~ 
—--

~
-w--—-- -- - -

—- -.

COMMU N I C A T I O N REG ION

T h i s cell holds the system time when the Dispatcher ’s
TASK A l a r m Clock (. E T A C K) was l a s t c h e c k e d to see i f it
was ringing . The alarm clock is said to be r i n g i n g
whenever .ETIME > .E TACK. This c e l l is used to
individually wake-up the sleep ing Keyword Processors.

.ETIMQ - Time Quantum

0 35
LAST GEL BAR Tfl IE QUA NTUM (1/64 m s)

This word holds the time quantum set for the last
Keyword Processor GELBAR in 1/64 ms. The cell is set by
the Dispatcher whenever it issues a GELBAR , except when
it reissues a GELB A R that was broken by an I/O
i n t e r r u p t .

.ETKSZ — TASK S i z e

The uppe r h a l f of t h i s ce l l is set d u r i n y a s s e m b l y to
the TASK eilLr y size by the .TASK. macro. It must be
paired w i t h c e l l . ETASK. (See .ETASK .)

.ETREd - TASK P roces so r R e g i s t e r s

0 1 7 18
- 35

I PTR TO TASK PROCESSOR I NOT USED
I REGISTER STORAG E AREA I

The upper half of the cell holds a poin te r to the
processor register safe—s torage area of the last
K e y w o r d P rocessor t h a t was d i s p a tch e d t o . This a re a
starts at .KREG in the Keyword Processor ’s Pr e f i x . The
value of the pointer is relativ e to the E x e c u t i v e ’ s
LAL. This cell is set by the Dispatcher and is used
du ring fault and interrupt processinq .

7. It

_ ~~~~~~~~ - - -- - - — _____ _

COMMUNICATION REGION

Communication Region Accumulated Counts

Several counters are main tained by the Executive
for use in evalua ting its overall action and
efficiency . The coun ters are separated from the other
Communica tion Region cells since they are not a
necessary par t of the Executive ’s opera ting structure.

The general symbol for an accumulated count is
.ENxxx. A comple te word is dedicated to each counter
with the count always right—justified in the cell. The
accumula ted counts and their content are:

.ENABT Total Abnormal Keyword Processor Terminations

ENCRI Core Reductions for Input Buffer Overflow

. ENCRO Core Reductions for Output Buffer Overflow

.ENDSP Total Dispatches (GELBAR5 Issued)

.EN GI Total GELBAR5 Interrupted

. EN IOC I n p u t B u f f e r O v e r f l o w s Comp leted

. ENLRT Total Lost Read Interrupts

ENLWI To tal Lost Wri te Interrup ts

-j . ENMLA Total Main—Level Core Allocations

.ENMLS Total Main—Level Swap Allocations

.ENNML Total Normal Keyword Processor Terminations

.ENOOC Ou tput Buf fer Over f l ows Completed

.ENRCV Total Transactions Received

.ENRLQ Total executive Relinqui shes

.E NPLT Total Resource Lockup Thresholds

.F NSAR Total Swap Alloca tion Refusals

.FNSWP Total Keyword Processor Swap—outs

7 . 1 7

COMMUN ICATION REGION

.ENTSS T o t a l T r a n s a c t i o n S c h e d u le r S t a l l — o u t s

. E N I B O I n p u t B u f f e r O v e r f l o w s

. ENO BO Ou t p u t Bu f f e r O v e r f l o w s

7.18

- ----~~~~- ----- - -

TASK

TRANSACTION ATTRIBUTES & STATUS KERNEL (TASK)

A TASK is buil t and assigned to each input
transaction received by the Executive. The TASK is used

— to concentrate transaction related information in one
central area , thereby allowing easy access and control
of the transaction ’ s processing specifics.

The TASK is linked to all high—usage internal
queues by assigning the queue—entry within the TASK
itself. With this method , the queues appear as threads
of forward and backward linked TASKs. The TASK concept
aids queue processing by making all transaction
dependent control information appear as if it were in
each queue—entry.

TASK space is generated within the Executive by
means of the .TASK . macro. This space is assembled
under the . .TASK location counter as a con t iguous a r e a
after the Keyword Processor Profiles. This region is
managed by Communication Region cell .ETASK w i t h the
TASK size recorded in the upper half of .ETKSZ.

TASK Assignments

The TAS K is defined symbolically to allow for
future modifica tions and additions. All TASK symbols
are of the form .Txxxx.

The TASK l a y o u t , with current l y assigned o f f s e t
symbols and con tents , is illustra ted on the next page.
The layou t is followed by a brief description of each
TASK entry.

8 . 1

_____ _____________

TAS K

TASK FORMAT

O f f s e t
Notes

0 8 9 17 18

35
.TNUMB TRANSACTION NUMBER

.TSID SOURCE—ID

[L(KEYWORD P R O F I L E)

.T I N TRANS ACTION INPUT TI ME (1/ 64 ms)

.TLAPS ELAPSED PROCESSOR TIME (1/64 ms)

.TTIMS TIME OF LAST SWAP-OUT or
ELAPSED PROCESSOR TIME SINCE LAST LOAD (1/64 ms)

.TTIMQ TIME REMAINING FROM LAST GELBAR (1/64 ms)

.TBAR J CORE LAL ~~~~~~~~~~~~~]T(.KREG) Executive LAL T
IC ~~~~~ Processor LAL

-
I

.T PRIO E FWD DSP—Q PTR or
—

PRIO R ITY
BKWD CORE-Q PTR ____ __________

.TF LAG BKWD DSP—Q PTR
-

Q-SCANNED STATUS FLAGS
SE RVIC E_VECTOR ATTRIBUT E & STATUS FLAGS

.TMEM FWD CORE-MAP PTR Or TCORE-HOLE SIZE or
—

FWD CORE—Q PTR CORE DEMAND SIZE

.TLAL BKWD CORE-MAP PTR CORE PARTITION LAL or
_____ ____________

BYPASS COUNT
.TSWAP *I s wA p_ ~~I LE BLOCK_ADDRESS KEYWO RD PROC ESSO R SI Z E

—~~~

.TMSG LOC OF INPUT MESSAGE or INPUT MESSAGE SIZE or
FIRST OUTPUT ME SSAGE ACCUMULATED OUTPUT
SEGMENT MESSAGE S I Z E

.TMSG2 LOC OF LAST OUTPUT # OF LINKED INTERCOM
MESSAG E SEGME N T

Q—E N T P I E S

.TIDCW PSEUDO INTERCOM DCW
-

~~~

.TE RRM ERROR CODE TNOT USED

.TSPWN I FWD SPAWN TASK PTR I B K W D ~~~PAWN TASK PTR ____

.TW A KE W A K E -U P  T I M E  FOR GEWARF A L A R M  CLOCK __(1/ 64  m s )  
____

.‘rC CV LOC OF COURTESY —CALL I TSX7 COURTESY-CALL
ROUTINE I VECTOR

.TP AD R E S E R V E D  FOR CORE ALLOCATOR

.TAR E G 8 EI S  ADDRESS R E G I S T E R S  SAVED H E R E  ( 8  WORDS )

.TE PL 8 EIS  POINTERS &_ LEN GTH S_ R E G I S T E R S  SAVED H E R E  (8 W O R D S ) T

.TPUS H PTR TO_ .TAr.L Y 
- - 

IRESERVED I DI—MOD
.TPOP I PTR TO .TALLY I R E S E R V E D  I ID—MOD
.TALLY PTR TO (.STAK42+SIZE) —(STACK SIZ }- ) I MHZ
.TSTAK TASL I C & I  STACK 

-

E Even o f f s et
8 0 Mod 8 o f f s e t

8.2 

-- -- ~~~~~~~~ - - - - - - - - ---~~~~- - - ---- U--- 



~~ ~~~~~~~~~~~~~~~~~~~~~~

V

TAS K

Description of TASK Entries

.TALLY — TASK Stack Tally Word

This cell holds the tally word used to
control the TASK stack. It is used for entry
pushdown , popup and s t ack  r e f e r e n c e .  The
address portion of the tally word is
ini tialized to point to the last word in the
stack plus one , since entries are inser ted
from high to low address. The tall y coun t is
initialized to minus the stack size. This
cell always points to the current stack
entry, provided the stack isn ’ t empty, so
that it can be used as an indirect to
reference the stack.

.TAREG — EIS Address Registers

This is an eight word area used to hold the
e i g h t  EIS  a d d r e s s  r e g i s t e r s  if c o n f i g u r e d .
This area must have a 0 mod 8 offset. The
format for word n of t h is  a r e a  is as
fol lows :

BITs 0—23 = c(ARn)
Bits 24—35 = 0

. TEPL  — EIS P o i n t e r s  & Leng ths Registers

This is an eigh t word area used to hold the
eight EIS poin ters and length registers.
T h i s  a r ea  m u s t  have  a 0 mod 8 o f f s e t .

.TNUMB — Transaction number

Binary t ransact ion number assigned to the
transaction described by the TASK.

.TpOP — Popup for TASK IC&I Stack

This cell is an indirec t word that points to
the TASK I C& I s t a c k  t a l l y word at .TALLY
with ID—type tally modif ication. The cell is
used fo r removinq an entry from the TASK
IC&I stack. The point er to .TA LI Y is an
absoLite T l d - I r e S S  r el ati v ~ to TP (tS’ s LAL .

8.3

_ _ _ _ _ _ _ _ _ _  — - -  



- -  
-— - -— -- - - 

_ _ _—_ -

TAS K

.TPUSH — Pushdown for TASK IC&I Stack

This cell is an indirect word that points to
the  TASK I C&I  s tack  t a l ly word at .TALLY
with DI—type tally modification. The cell is
used for making an entry into the TASK IC&I
stack. The pointer to .TALLY is an absolute
address relative to TPOS ’s LAL .

.TSID — Source—ID

Bits 0—19 contain the Source—ID specified in
the transaction heade r .

B i t s  18—35 c o n t a i n  a p a i n t e r  to the  f i r s t
word of the Keyword Processor Profile
associated with the transaction designated
keyword.

.TSTAK - TASK IC&I Stack

This symbol locates the TASK IC&I stack ,
which must be the last entry in a TASK due
to the manner in which the stack size is
established . The size of the stack is set by

~ie .TASK . macro. The stack is used by the
transfer of control macros.

.TIN — Time—In

Transaction input time (in 1/64th
millisecond pulses) when received by TPE.
Time is obta~ned from the transaction
header.

.TLAPS — Elapsed Processor time

Total processor time used by the associated
key processor in 1/64 millisecond pulses.

.TTIMS — Swap Timer

Elapsed processor time since last load or
swap- :n if Keyword Processor is in—core ,
otherwise time of day of last swap—out. Al l
t imes in 1/64 mLll isecond pulses.

8 . 4



-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

TASK

.TTIMQ — GELBAR Time Quantum

GELBAR Time remaining from last ciispatch , in
1/64th m i l l i s e c o n d pulses. Zero if a
timer—runout occurred since last dispatch.

.TBAR — Keyword Processor Base Address

Bi ts 0—8 contain the Keyword Processor ’s
base address (in even multiples of 512
words) relative to the Executive.

Bits 9—17 contain the size (in even
multiples of 512 word) of the core partition
assigned to the Keyword Processor.

Bits 18—35 contain the pointer to the
Keyword Processor ’s register safe—store area
relative to the Executive.

.TICI — Return IC & I

Bits 0—19 contain the instruction counter
relative to the Keyword Processor where
control is to be returned when its next
GELBAR dispatch is paid .

Bits 18—35 contain the Keyword’ Processor ’s
Indicator Register.

.TPRIO — Priority

Bi ts 0—19 can contain a backward Core—Queue
pointer or a forward Dispatcher ’s—Queue
pointer.

Bits 18—35 contain the transaction ’s
prio rity. The offset assignment for this
cell must always be even.

.TFLAG — Bit Flags

B i t s 0— 19 contain a backward
Dispatcher ’s—Queue pointer.

Bits 18—35 contain TASK and Keyword
Processor Status hit flags. Bit d efi n i tions
ar e described later .

8.5

~

-- - - - - - -- . —~~~~~------ - --- - — -
- -

~~~~~~~~

-
---



_ _ _ _ _ _ _ _ _ _ _  -

~~~~~

TASK

.TFLAG+1 — Bit Flag Continuation

Bits 0—19 contain a service vector which
holds the IC of a system service or
functions.

Bits 18—35 contain Status and Attribute bit
flags.

Bit definitions are described later.

.TMEM - Memory

If linked to the Core—Queue:

Bi t s 0—17 c o n t a i n a forward Core—Queue
pointer ,

Bi ts 18—35 contain the core demand size in
1024—word multiples.

If linked to the Core—Map :

Bits 0—17 contain a forward Core—Map
pointer ,

B i t s 18—35 c o n t a i n the size of the f ree
hold following the core partition defined
by this map entry in 1024—word multiples.

.TLAL — Lower Address Limit

If linked to the Core—Queue :

Bits 0—17 are not used ,

Bits 18—35 contain the current bypass
c o u n t of t h i s d e m a n d .

If linked to t he C o r e — ? ~1a p:

Bi ts 0—17 contain a backward Core—Map
poin te r ,

Bits 18—35 contain the LAL of the core
p a r t i t i o n d e f i n e d by t h i s m a p e n t r y . —

8.6

-

TAS K

.TSWAP — Swap—File Information

Bit 0 holds a flag to identify on which file
the Keyword Processor is saved. The $L
load—file is flagged by a zero and the $S
Swap—file is flagged by a one.

Bits 1—17 contain the starting Load/Swap
file block address , in 64—word blocks.

Bits 18—35 contain the number of blocks
needed to hold the Keyword Processor on the
$L Load—File.

.TMSG — Input/Out Message Control

For an input message :

Bits 0—17 contain a pointer to the input
message within the first word after the
applicable buffer map entry.

Bits 18—35 contain the size of the input
message in words .

For an output message:

Bits 0—17 contain a pointer to the first
output message segment within the Output
Intercom Buffer . This points to the ft rst
message word , not the buffer map entry.

Bits 18—35 contain the accumulated output
message size of all message segments
serially linked to the first segment. This
size includes each segment ’s header.

.TMSG2 — Output Message control

Bits 0—17 contain a pointer to the last
l inked output message segment.

Bi ts 18— 35 contain a count of the n u m b e r of
Out put Intercom—Queue entries assigned to
this TASK.

.TI DcW — Pseudo Intercom DCW

Th i s w o r d h o l d s t h e Keywo r d P~ oc ssor ’s

8.7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -~~~~~~~~~~~~ -~~~~~~~~~- --~~~~~~~~~~~~~~~~ - - -~~~~~~~~~~



TAS K

Intercom DCW when inpu t or output Intercom
is requested. The DCW ’s data address is
relative to the Executive LAL .

.TERRM — Error Message Code

Bits 0—17 contain the Executive error
message code iF the TASK or Keyword
Processor L5 abnormally terminated .

Bits 18—35 are reserved.

.TSPWN — TASK Spawn Chain

If zero the TASK does not belong to a Spawn
Chain , o t h e r w i s e:

Bits 0—17 contain a forward Spawn TASK
pointer.

Bits 18—35 contain a backward Spawn TASK
pointer.

.TWAKE - Wake-up Time

B i t s  0— 35 contain the time this TASK’s
K e y w o r d  Processor  is to be a w a k e n e d .  This
cell is set by a GEWAKE.

.TCCV - Courtesy—Call Vector

Bi ts 0—17 contain the location of the
cou rtesy—call routine .

Bits 18—35 contain a TSX7 instruction to
transfer control to the courtesy—call
rou tine and to identify the TASK associated
w i t h  t h e  comple ted  I/O .

.TPAD — S c r a t c h p a d

This symbol is associated with one or more
cells that the end of the TASK , depending on
the assembled TASK size. The first cell ,
th a t  is the  c e l l  a d d r e s s e d  as . TPAD , is
reserved for the Core Allocator.

If the TASK is linked to the Core—Queue:

8.8

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ --- - - -.--


___________________________ -

TASK

Bits 0—17 contain a pointer to the next
lower priority no—pass , or zero if this
TASK is the lowest priority no—pass.

Bits 18—35 contain a pointer to the next
higher priority no—pass or zero if this
TASK is the h i ghest priority no—pass.

I f the TASK ’s Keyword Processor is being
swapped—in :

Bits 0—17 are not used.

Bits 18—35 contain the Keyword Processor ’s
required core size.

If the TASK ’ s K e y w o r d Processor is b e i n g
swapped—out :

Bits 0—17 contain a pointer to the
replacemen t TASK (the TASK to be
swapped—in)

Bi ts 18—35 contain the Keyword Processor ’s
LAL.

TASK STATUS AN D ATTRIBUTE FLAGS

TA SK Status and A tt ribu te Flags are bit f lags. The
bi t position assignment of the flags is defined
symbolically with general symbol formations of B.Txxx
for TASK Sta tus Flags and B.Axxx for Attribute Flags.

O n l y TASK S t a t u s F l a g s a re a l l o w e d in .TFLAG
lower. Flags presen t in .TFLAG+1 are both Status and
A ttribute Flags.

Care should be exerc ised when examining a bit
t iag (s) to ensure that the proper TASK cell , i.e.,
.T F LAG+ 1 , is be ing used .

8.9

-“- - - -~~- - - - - —~~~~~~~~~~~~ -~~~~~~——~~~~ - -~~--~~~~~
rn

TASK

TASK Status Bit Flags

TASK Status Bit Flags are dynamic flags used to
indicate the current state of the TASK and its
associated Keyword Processor. By the state of the TASK
is meant which queues the TASK is linked to.

TASK Status Flags in .TFLAG are called ‘Q—scanned ’
flags. Their usage is somewhat specialized as explained
in the Dispatcher ’s—Queue and Dispatcher ’s—Queue
Service discussions later.

TASK S t a t u s Flags in .TFLAG

B .TABT — In A b o r t

This flag indicates that the TASK and its
associated Keyword Processor (if one exists)
are being abnormall y terminated by the TASK
T e r m i n a t o r .

B . T A B W - In Abort Wrap—up

This flag has been defined , but currently is
not implemented .

B . T DIO — Device I/O Initiated

This flag is set on when device I/O is
requested and subsequently initiated by the
Executive. The flag is used in determining
D i s p a t c h Select and Swap—out elig ibility and ,
d u r i n g a b o r t or termination processing , to
e n s u r e that all device i/O is completed before
core ass igned to t he Keyword Processor is
r + l e a s e d .

- - E1~~i~ hle for Swap

i~ l i i I ndicatE~s that an in—core Keyword
r c f s s o r is eli g ibLr’ to be swapped—out. The
-

~ :s r - ~:j i re d since swapp ing is not
- -~~~ il v initiated when the eligibility

• r ‘ ‘-
~~~~~ ~~~ is ir- cnir . Consequent l y, the flaq

- -~~“n sear .Th m g  for an i n — co r e  Keyword

H .10



_

- -

~ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ 

TA S K

Processor that can be swapped—out and
replaced .

B.TNAB - Need Abort

This flag indicates that the associated
Keyword Processor is awaiting abnormal
term ination processing .

B.TNBS — Need O u t p u t  B u f f e r  Space

This flag indica tes that the associated
Keyword Processor is unable to get its
reques ted amount of Output Intercom Buffer
space. This condi tion suspends the requesting
Keywo rd Processor from further execution until
s u f f i c i e n t  space can be assigned. The
D i s p a t c h e r  w i l l  a t temp t to r e s t a r t the  s e rv i ce
for this TASK during its queue service.

B.TNQE — Need Output Intercom—Queue Entry

This flag is set on when the Output
Intercom—Queue is f u l l  so t h a t  t h e r e  a r e  no
available Outpu t Intercom—Queue entries to be
assigned to the associated Keyword Processor.
This cond i t ion suspends the requesting Keywo rd
Processor from further execution. The
D i s p a t c h e r  w i l l  a t t e m p t  to r e s t a r t  the  s e r v i c e
f o r  t h i s  TASK d u r i n g  i t s  queue  s e r v i c e .

B . T N S T  — Need Spawn TASK

This f lag i n d i c a t e s  t h a t  the  associa ted
K e y w o r d  P r o c e s s o r  is a w a i t i n g  a s k e l e t o n  TASK
in o r d e r  t o  i n i t i a t e  K e y w o r d
Processo r—to—Keyword Processor Intercom
com munica t ion. This condi t ion suspen ds the
req uest i ng  K e y w o rd P r ocesso r f r o m f u r t h e r
ex ecution. The Dispatcher will a t t e m p t  to
res tart the service for the TASK du i ing its
q u e u e  s e r vi c e .

8.11



I

TASK

B.TSWO — Swap—Out in Progress

This  f l a g  is set on when swap—out of the
associated Keyword Processor has been
initiated and turned off when the swap—out has
been completed. The Keyword Processor canno t
be dispatched to when this flag is on , even
though the TASK remains linked to the
Dispatcher ‘s—Queue.

B.TTRM — In Termination

This  f l a g  i nd ica t e s  t h a t  the  TASK and i t s
associated Keyword Processor are being
te r minated by the TASK Terminator.

B.TWAK - Need Wake-up

This  f l a g  is set on when the associated
Keywo rd Processor issues a MME GEWAKE. The
wake—up t ime is kept in TASK cell .TWAKE. The
f l a g  is used by t he  D i s p a t c h e r ’ s — Q u e u e  Se rv ice
to awaken the Keyword Processor when its alarm
clock rings.

TASK S t a t u s  F l a g s  in .TFLAG+1

B.TBIO — B u i l d i n g  In t ~~rcom Ou tpu t

ThL5 flag signals that the Executive has
receiv ed an  o u t p u t  I n t e r c o m  I/O r -e q u e s t  f r o m
the a s s o c i a t e d  Keywo rd P r o c e s s o r and tha t the
TASK messaqe pointe r word .TMSG describes an
o u t p u t  message .  The f l a g  is used to h e l p
de termine whether an output message segment is
the f ir s t se~jinent r eceived or a subsequent
segmen t which must be linked to a message
c h a i n .

B.TFLT — ZOP , CMD , MEM , TAG Kaul t

-rh i~; I r a j  i s  set on wheneve r a K~-vwo r d
Processo r ZOP , CMD , M t M , or TAG f a u l t  o c c ur s .
The fla g is used in suhsequent l i n t

-~ . 1 2

-- - - -~~.-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



TAS K

processing to dete rmine whether control should
be returned to the Keyword Processo r.

B.TINC - In—Core

This flag indicates that the TASK is linked to
the Core—Map and its Keyword Processor is in
core. As such , TASK cells .TMEM and .TLAL are
a Core—Map entry with the upper halves of the
cells holding map link pointers.

B.TITY — Input Message Type

This flag indicates tha t the i npu t  message was
created as ou tput from another- Keyword
Processor and nb t directly by the user. The
TASK message pointer in .TMSG no longer points
to the  I n p u t  B u f f e r  b u t  to the  ( l i n k e d )  o u t p u t
segments in the Output Buffe r . The flag is set
on by the Output Intercom I/O routine after a
TASK has  been b u i l t  fo r  an o u t p u t  message
specifying Keyword Processor—to—Keyword
Processor I ntercom communication.

B .TL CQ — Linked to Core—Queue

When t h i s  f l a g  is on , t he  TASK is l i n k e d  t o
t h e  C o r e — Q u e u e .  As such , TASK c e l l s  .T P R I O ,
. T M E M  and .TL ~~L r e p r e s e n t  a C o r e — Q u e u e  e n t r y
w i t h  t he  uppe r  h a l v e s  of the  f i r s t  two c e l l s
holding queue link poin ters.

B.TLDQ — L i n k e d  to D i s p a t c h e r ’ s — Q u e u e

Th i s  f l a g  -is set on when  t h e  TASK is l i n k e d  to
the  D i s p a t c h e r  ‘ s — Q u e u e .  As such , TASK c e l l s
. T P R I O  and .TF’L AG r e p r e s e n t  a q u e u e  en t r y  w i t h
t h e  u p p e r  h a l v e s  of t hese  c e l l s  h o l d i n g  q u e u e
l i n k  p o i n t e r s .

B . T N U T  — New TASK

T hH  flaq is set on when a skeleton T A S K
bu :lt and  ass~ ~ i ’  i tTo -in input messaqe . The

8.13

:-..1 
~~~~ — -—- - - -- - --- —- ____


-
~ -

~~~~~~ 
--— ---

~~~~~~~~~~~~~
-
~~

-- --
~~~~~~~

—-- -

~~~~~~~~~

-—
~~~~~~~~~~~~~~~~~~

-
~~~~~~~

- - - - --
~

- - - - _ _ _

TASK

flag is used by the set—up swap I/O routine to
determine whether a DCW for the Keyword Prefix
Area (KPA) is to be buil t and by the swap—in
cou rtesy—call to determine if KPA
initialization is necessary. The flag is set
off by the swap—in cour tesy—call. The flag is
also used during termination processing when
the Core—Queue is searched for a new TASK that
can be assigned to a transaction reentrant
Keyword Processor.

B.TOTY — Output Message Type

This flag is set on when the fi rst Interco m
o u t p u t segment of a message has a s i n g l e
destination of ***~~ This destination indicates
Keyword Processor Inte rcom communication;
therefore , this ou tput is designated as input
to another Keyword Processor.

B.TOUC — Output Complete

This flag is set on by the Output Intercom I/O
routine when an EOT (End—of—Transaction)
status is de tected in an output message
segment. The flag is used by the Intercom I/O
Handler to determine if a Keywo rd Processor
has finished processing .

B . T R L Q — R e l i n q u i s h/ R o a d b l o c k R e q u e s t e d

This f lag is se t on when a Keyword P r ocessor
i s sues a 4M E G E R E L C or GEROAD and t u r ned o f f
whenever I/O (device or Inte rcom) is
requested. The flag is used to p r e v e n t the
K eyword Processor from issuing two consecutive
GERELC/GEROAD 5 withou t an intervening I/O.

B.TWSI — Swap—In in Proqiess

This f la q indica tes tha t the assoc ia ted
K e y w o r d P r a c e s s o r i s b e i n g loaded or
swapped—in. The flaq is n s e d d u r i n g a b n o r m a l
te rmination to ensure that all I/I) is complete
before assigned cor- e is relea sed .

8.14

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1’~

TASK

B.TSWD - Swapped-Out

This flag is set on when the associated
Keywo rd Processor has been swapped-out and
thus resides on the $S Swap—File . When the
flag is on a Swap—Map entry has been assigned
to this TASK and TASK cell .TSWAP upper holds
the star ting block number of the assigned
Swap—Fi le  space.

8 . 1 5

_ _ _ _ _ _ _ _ _ _ _ _ _  --- -- -- - --- -~~~~--- -- —- - - - -- -- — - - -  — 



_ _  - - - _

_

-

.

_
I-

~~~~~~
___,__ __ ~~

TASK

Attribute Bit Flags

Attribute Flags are set during the Executive ’s assembly
by the parameters supplied to the Keyword Processor
Profile macro .PRFL. The flag settings within each
profile are static during execu tion.

Every time a transaction is received , all Att r ibute
Flags accessible.

Attribute Flags in .TFLAG+1 and Keyword Profile

B.ADNS — Do Not Swap

This flag indica tes that the associated
Keyword Processor is not to be swapped , hut
shou ld r e m a i n in core u n t i l i t has completed
processing each transaction.

B.ARUS - Reusable

This f l a g s p e c i f i e s that the Keyword Processor
is not disposable , t h a t is , af te r processing a
transaction with normal termination , a new
transaction can be passed directl y to the
Keyword Processor with no external setup or
initialization requir ed.

B . A S E M — Suppress E r r o r Messages

This f l a g causes the transmission of all
Execu tive full text er ror messages to the user
to be e l i m i n a t e d . In t h e i r p lace the E x e c u t i v e
issues a cavea t to inform the user that the
d e s i g n a t e d t r a n s a c t i o n ’ s p r o c e s s i n g has been
aborted. This warning also specifies ~he e r o r
code o r message numbe r

B .AO V L — O v e r l a y s a r e p a r t of t h i s K e y w o ? d P r o c e s s o r

This flag ca rse:~ the Execu tive to search for
o v e r l a y s w h e n a M M E GF :RS TR i s e xe cu t e d . D u r i n g
ini tialization , the Keyword Processor Profile
is b u i l t v i a a m a c r o . I f o v e r l a y s a r e used in

8.16

--

TASK

a Keyword Processor , the Keyword Processor
Prof ile is expanded to accommodate the
necessary overlay information and the B.AOVL
Flag is set.

8 .17

TERMINAL CONTROL BLOCK

Terminal Control Block

A Terminal Control Block (TCB) is allocated and
assigned to each terminal that connects to TPOS. All
ident i f ication, control and status information requi red
to process breaks , I/O and disconnects is grouped into
the TCB. In addition , other information necessary to
link the TCB with a TASK and provide convenient
terminal handling functions is contained in the TCB.

All TCBs are linked together via forward pointers
in .TCTID of each TCB and backward pointers in .TCGSS.
The forward pointers form a true linked chain , while
the backward pointers simply locate the previous TCB to
allow linking/unlinking .

TCB space is gene rated by the .LINE. macro. This
space is assembled under the . . LINE location counter
together with the terminal buffer space. The TCB space
is managed by Communication Region cell .ETCBT. The
.LINE. macro is used as follows :

1 8 16

LINE. NUMBER—OF-TE RMINAL-LINES ,
ETC WAIT-FOR-TERMINAL-RECONNECT-TIME

whe re the r econnect time is specified in seconds.

TCB Assignment

The TCB is symbolically defined to al low fo r
future modifica tions and additions. All TCB references
m u s t be s y m b o l i c . TCB symbols have been a s s i g n e d the
general form of .TCXXX.

The TC B layou t , with currently assigned offse t
symhols an d con tents , is illustrated on the follow ing
page. The l ayout is followed by a brief desc r ipt ion of
each TC B ~‘nt ry.

9.1

-- -- - - —--- - - - - - - —- - -- --- - -~~~---- -- - - - --~~~~~~ - - - --~~~~~-- - —--

1u
~~

T E R M I N A L CONTROL BLOCK

TCB FORMAT

0

17 18 23 24 29 30 35
.TCTID ~FWD TCB PTR ITERMINALITERMINAL ID

I

I TYPE I

.TCGSS I BKWD TCB PTR IGEROUT SOFTWARE
I

I STATUS BIT FLAGS

.TCCCV IRIO CC ROUTINE PTR 1 TSX6 INSTRUCTION-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

INO ADDRESS MODIFICATION
.TCSLP EXT CC ROUTINE PTR I TASK PTR

.TCSTA GEROUT STATUS WORD

.TCDAT CONNECT DATE (MMDDYY)

.TCTIM CONNECT TIME (1/64 ms)
—

.TCBUF B U F F E R PTR TALLY IMBZ

.TCBCW
-

BUFFER CONTROL rAL LYB WORD

.TCWHO USER

TIbE~1TIF~ CATfO&
— - - — — — —

BKWD — Backwards
CC — Courtesy-Call
EXT — Ex ternal
FWD - E~o z w a r d
ID — Identification
LOC — Location
PTR — P o i n te r

r- - — — ---— —- _ _

TERMINAL CONTROL BLOCK

Descript ion of TCB Entries

.TCTID — Terminal Identification

Bits 0—17 hold a forward pointer to .TCTID of
the next TUB , or zero if this TCB is the only
or last TCB.

Bits 18—23 contain the Terminal Type.

Bits 24—35 contain the Terminal
Identification.

.TCGSS — GEROUT Software Status

Bits 0—17 ho ld a backward pointer to .TCTID of
the previou s TCB , or zero if this is the first
TCB.

Bits 18—35 contain status and control bit
flags which are described later.

.TCCCV - Courtesy-Call Vector

Bi ts 0—17 contain the location of the GEROUT
courtesy—call routine .

Bits 18—35 contain a TSX6 with no address
modification. This instruction is used to
identify the applicable TCB when a
courtesy—call is paid and to transfer control
to the approp riate courtesy—call routine .

.TCSLP — Procedure/Structure Pointers

Bits 0—17 hold a pointer to an external
courtesy—call routine which is to be invoked
when RIO receives the ne it cou rtesy—call for
this TCB. If zero , no exte rnal courtesy—call
is to he paid.

Bits 18—3 5 hold a TASK pointer to the TASK
assoc ia ted with thi s TCB , if any.

9.3

- - - 1”II~

TERMINAL CONTROL BLOCK

•T C S T A - GEROUT Status

This word is used to receive all GEROUT I/O
status words.

.TCDAT — Connect Date

This word holds the BCD date , in MMDDYY form ,
when the terminal signed on to TPOS.

.TCTIM — Connect Time

This wo rd holds the time , in 1/64 ms pulses ,
when the terminal signed on to TPOS.

.TCBUF — Buffer Control Word Refresher

Bits 0—17 point to the 64—word buffer assigned
to this TCB.

Bits 18—29 hold a byte tally used to refresh
.TCBCW. The tally count is set to 4*64.

Bits 30—35 are zero.

. T C B C W — Buffer Control Word

This word ho lds a byte t a l l y word used to
control data moved to the buffer assigned to
this TCB.

. TCWHO — User Identification

Two words rese rved for future use to hold the
tesminal user ’s identification.

9.4

___ -
- — - -.- -.-

— —-.- .----~~~~- ---

TERMI NAL CONTROL BLOCK

TCB S t a t u s & Control Flags in .TCGSS

.BTACK — Acknowledging GEROUT 45 Status

This flag is reserved for future use when
acknowledging a status previousl y returned by
the GEROUT generalized remote status inquiry
function (operation code 45)

.BTBRK — Outstanding GEROUT Break Status

This flag is used to record a break sta tus on
the applicable line . The flag is set in
response to a break status returned by the
GEROUT generalized remote status inquiry
function when there is no outstanding I/O to
the terminal. The flag is reset when I/O to
the terminal is requested , at which time the
break status is returned to the caller without
actually attempting any I/O.

.BTCBR — I/O Retry Due to Busy Terminal

This f l a g is used b y RIO r o u t i n e s to a l l o w one
retry of terminal I/O that results in a
terminal busy status. The flag is set on when
retry is in e f fe c t , a f t e r w h i c h it is tur ned
off.

.BTCDW — Waiting for F i n a l D i s c o n n e c t

This flag is set on when a terminal is
disconnected and has passed logon . The flag is
used to reserve t~ie TCB until a specified t ime
interval has passed . This implementati on
antici pates a reconnect function. The flag is
examined by Line Service , which initiates the
final disconnect and release of a TCB.

.BTCIO — Terminal I/O in Progress

This flag is set or whenever terminal I/O is
initiated. The flaa is set off within the

9.5

L --_
_ __ __ _ _ _ _

T E R M I N A L CON TROL BLOCK

applicable courtesy—call routine when paid .

.BTCLO — Logon in Progress

This flag is turned on when a terminal
connects to TPOS and a TCB is assigned . The
f l a g is se t off once the program name question
has been successfully wr itten to the terminal .
This f l a g is used in c o n j u n c t i o n w i t h
d i s c o n n e c t p roces s ing . I f the f la g is on and
the terminal is discon nected , the TC B is
immediately released . If the flag is of f , t he
TCB is placed in limbo for the preset time
~nt-?rc~- l to ai Dw the usei to reconnect. The
reconnect fe a t u r e is not ir r ~~emen ted i n t h e
curren t version.

. B T D I S — O u t s t a n d i n g GEROUT D i sconnec t S t a t u s

This f l a g is used to r e c o r d a d i sconnec t
status on the applica ble line . The flag is set
in response to the r ece ip t of a d i s c o n n e c t
s t a t u s f r o m t he GEROUT g e n e r a l i z e d r emote
status inquiry function. Disconnect processing
is immedia tely initiated for this TCB. The
flag is used in the event that any I/O is
request ed for the terminal while the TCB is
held in lim bo awaiting a possible reconnect.
The f l a g is not r e s e t .

.BTLSW — Line Switch in Progress

Thi s f l a g is set w h e n a l i n e s w i t c h r e iu e s t is
made via the pro gram name LSWIT. The flag is
usLd ~y Line Serv i ce to enable the line swi tch
function for status checkin g purposes. When a
s t a t u s is r e t u r n e d , r e g a r d l e s s of t he l i n e
sw i tch ou tcome , the f l ag is r e s e t .

. BT W AI — Ter -ninal in Wait Status

This flag is set on when a wait r? luest is
made v ia the prog r am name WA IT. The f lag is
t~~~r - - i -y L~ ne Se rvice to enable the wa i t
t u n c t i o n , s ince it I)t r tod ical.ly ‘ r a t t l e s ’ t h e

9 . 6

_ _ _ _ _ - -

ND—AO’4’e 612 HONEYWELL INFORMATION SYSTEMS INC MCLEAN VA FEDERAL ——ETC FIG 9/2
TRANSACTION PROCESSING OPERATING SYSTEM CTPOS).(U) N
AUG 77 R EWING. U BIELSKI F30602—76—C—0277

UNCLASSIFIED RADC—TR—77—276 NL

2 cc3
AO~C448 F 2

U

a 4:;

rip’,..- ~~~~~~
- --- —---— -- -.- .-

~~~~~~~~~~~~~~ • —

~~

--— 

~~~~~~~~~~~~~~~~~

TERMINAL CONTROL BLOCK

sleeping terminal to reassure the user that
his line is still connected . The flag is
turned off when a break or disconnect is
received on the line.

9 .7

r ~~

KEYWO RD PROCESSOR PROFILE

KEYWORD PROCESSOR PROFILE

Prof i le Function

Each Keyword Processor Pro f ile contains the
necessary information , both use r supplied and
internally generated , to uniquely identif y the Keyword
Processor , to locate the prog ram elements on the $L
Load—File , to specify the attributes of the Keyword
Processor and to declare the keywords that are to be
associated with the Keyword Processor. A profile must
be defined for each Keyword Processo r that is to be
installed or attached to the Executive.

Profile Generation

The .PRFL . macro is used to generate the profiles
into one contiguous area of the Executive under the
.PRFL location counter and to generate the Keywords

list in to another contiguous area under the . . KEYL
location counter. A .PRFL. macro statement must be
supplied for each Keywo rd Processor that is to be known
to the Executive.

Each pro file is defi ned as follows:

8 16

.PRF’L. Keyword—Processor—ID ,

ETC Max irnurn—Output—Message—Size ,

ETC Maximum—Input—Message—Size ,

ETC Default—Pt lority ,

ETC (Keywo rd— l (Pr ior ity(Bypass—Count)),

ETC Octal—Attribu te—Flags ,

~TC (Keywo rd— Processo r—Att ribute -- l ,

10.1

~

.. _ ..— ~~
—

~~
— — — - -

-~~~
- .-

KEYWOR D PROC ESSOR PROFILE

ETC Keyword—P rocessor Attribute— J)

ETC (Keywo rd—n(Priority(B ypass—Count))),

ETC (Ove r lay-Name—i ,... ,Overlay—Name—M)

where the profile pa rameters ar e fur ther explained
below .

The Keyword—Processo r— ID is a three character BCI
identification , which is unique among all Keyword
Processors assigned to the Ex ecutive.

The maximum input and output message sizes include
all headers that prefix the segments making up the
messages. The message sizes are given in words .

The default priority is inserted into an 18—bit
field. This value should be assigned in consonance with
the default prioritie s assigned to the other profiles.

The Keyword Processor- at tributes are designed to
describe the type and characte ristics of the Keyword
Processor and to specify which TPOS options are to be
applied to the Keyword Processor. The attributes are
specified in the macro call by attribute names , which
are :

‘Reusable ’ = Reusable Keyword Processo r
‘Do—No t—Swap ’ = Do Not Swap Keyword Processor
‘Suppress—Msg ’ = Suppress Er r or Messages

Each at tribute name has a c r responding B.AXXX
attribute bi t flag assigned to it. The attribute bit
flag values are summed together and this value is
inserted into the profile. There is r oom for nine
at tributes in the profile , four of which are cu rrently
used . Th ree are expl icitl y named in the macro call ,
while t~re Fou rth (B.AOVL) is implicitly inse r ted

10.2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



KEYWORD PROCESSOR PROF ILE

whenever overlay names are specified . See the TASK
description for flag explanations.

Each keyword is supplied with an associated
priority and bypass count. If the keyword priority is
nu iled , the default priority assigned to the profile is
used .

The bypass count must be a positive integer or
zero. This count has a gross effect on the Core
Allocato r ’s handling of all Keyword Processors awaiting
core assignment ; consequently, the count should be set
to zero for only the most urgent keywords. See the Core
Allocator discussion.

The Keyword Processor Profile macros must be
inserted as a group into the Executive prior to
assembly.

Profile Usage

The appropria te profile must be referenced for
every legal tx3nsactLon received by the Executive. At
this time some of the pro file information is copied to
the TASK assigned to the transaction.

The Keyword Processor Profiles are located via
Communication Region cell .EPRFL. This cell also
contain .~ a count of the number of profiles. Similarly,
the Keywords List is located via cell .EKEYL , which
also contains the total number of keywords for all
profiles.

~~~ word Processor Profile as Assembled

Keyword Processor - Profiles are assem bled into a
contiguous block using the dedicated location coun ter
• .PRFL with entry definitions formatted via the •PRFL.
mac ro as follows:

10.3

_ _ _ _ _ _ _ _ _ _

‘1

KEYWORD PROCESSOR PROFILE

0 17 18 26 27 35
I PTR TO NEXT PROFILE KEYWORD—PROCESSOR-ID
T~AXIMUM INPUT MESSAGE SJZE~~T~A~ I MUM OUTPU T ME SSAG E S I Z E J
IMBZ

-
I PTR TO FIRST KEYWORD

DEFAULT PRIORITY IFLAGS* IME3 Z

* Keyword Processor Profile Attribute Flags. See the
TASK discu ssion for an explana t ion.

In add ir ion , if overlays are used in the Keyword
Processo r , the following is also added :

0 7 17 18 35
lOC* I

* Overlay Count

In addi t ion , the following thr ee wo r ds are added
for EACH overlay:

0
—

1 7 1 8
_ _ _

35
I ~~~~ OVEPLAY T~~~~ ~~~~~~~~~~~~~~I I
I MBZ I MBZ

MB Z I M H Z

Keyword Processor Prof il e at Execu t ion Time

Du r ing init ia li~~~t ion the Keyword Processors are
GECALLed by the Executive usini the
Keyword— Processor—ID and wr itten out to the $L Load— .
The Load—File blo ck address , Keyword Pr oce~~~o r size in
64—word blocks and entry address are filled Lfl this Lug
th ~~ ~)r oce~;s. If the assembled Keyword Pr ocessor
Pr ot ile L ; .r n a c c e p t ab l e or the Keywol d Pr ocessor cannot
be written to the Load—File , the second word of the
prof il e is set L I ,.er 0.

~0.4

_____ —~~--- ~~-..-- -.-~~~~~~~~~~~~~ -~~~~~~~~~~~~ - ~~~~~~~ -—~~~---~~~~~~ ,-—-~~~~~~~~ .- - ~~~~

KEYWORD PROCESSOR PROFILE

0 17 18 26 27 29 30 35
I NOT USED ______ - - I KEYWORD -PROCESSOR—ID I
I 0ILOAD-FIL~~~~I~OCK ADDRESS IKEYWO RD PROCESSOR I
I I

_ _ _ _ _ _ _ _ _ _ _ _ _ _
I S I z E I I

I ENTRY ADDR ESS I PTR TO FIRST KEYWORD I
I DEFAU LT PR IORIT Y I FLAGS

-

I # NEW TASKs I
I ______________________ I IN CORE—Q I

If the Keyword Processor contains overlays, they
are GECALL’ ci by the Executive using the overlay name(s)
and written out to the $ L Load—File. The Load—File
block address on the $ L Load—File , overlay entry
address , origin and size are written in the Overlay
entry. Each overlay entry then contains the following :

0 17 18 35
I OV E R L A Y I N AME
I O R I G I N _______________I S IZ E (I n W o r d s) I
I ENTRY ADDRESS F STARTING BLOCK * I

Keywords List

The Keywords List is generated by the Keyword
Processor Profile macro. Keywords for all the Keyword
Processors form a contiguous table since the • .KEYL
location counter is dedicated to the list and invoked
by the .PRFL. macro. The format for an entry in the
Keywords List is as follows :

0 17 18 35
IKEYWORD (BCD CHARACTERS 0—5) I

I KEYWORD (BCD CHARACTERS 6-7) I

I PTR TO KEYWORD PROCESSOR I USAG E COUNT I
I PROFILE

I _____ _______

I
T~~YWORD PRIORITY 1 BYPASS COUNT

- -_ _-~~~~~
-__ _ _ _ __ _

~~~~~~~~~~

-

~~~~~~~

--

The usage count represents the numbe r of transactions
rece ived that designated the related keyword.

1 0 . 5

- ----- ~~-- -~--~- - - ---- -~~~~~~ - - - -.- - ~~~ -~~~~~ - . — - - - - - -~~~--- - -- —-- — - -.

QUEUES

QUEUES

Queues are required by the system functions when
their initiation would be untimely and must be delayed
or when they are unable to provide or comp lete their
furict ion

Criteria for queue assignment to individual system
functions includes the need for a particular
queue—entry format and/or the need for optimized or
specialized queue mechanics . As a result some system
modules have the ir own queue , such as the Core
Allocator ’s Core—Queue , while other modules do not ,
such as the TASK Terminator.

The necessary queues for the latter functions are
combined as logical sub—queues into one physical queue.
Such is the case with the Dispatcher ’s—Queue. This
queue not only holds TASKs waiting for processor
assignment , but also those TASKs requiring termination
and selected faul t requested system services.

Core—Queue

The Core—Queue links all TASKS awaiting core
allocation in a forward and backward linked chain. The
TASKs are order - ed from highest to lowest priority
(.TPRIO lower) in the forward (.TMEM upper) queue
pointer direction. Pointers to the head and tail of the
queue along with number of TA SKs linked to the queue
are contained in the base of the queue at cell. •EC ORQ
in the Communication Region.

The Core—Queue entry for all TASKs resides wi thin
the TASK itself. The general fornat for an entry is:

11.1

- . -- - - - - --

QUEUES

0 17 18 25 26 35
•TPRIO IBKW D CORE—QUEUE PTR I PRIORITY I

I I
_ _ _

I

.TMEM l EWD CORE—QUEUE PTR CORE IMBZ I
I

I DEM AND I

_ _ _ _ _ _

•TLAL INor 115E0
-

BYPAS S COUNT I
I

_ _ _ _ _
I I

where the core demand is the required core size in
multiples of 1024—word blocks.

It should he pointed out that a TASK cannot be
linked to both the Core—Queue and the
Dispatcher ’s—Queue , since TASK cell .TPRIO is used in
both queue entries.

Dispatcher ‘s—Queue

The Dispatchers—Queue links all TASKs waiting for
p r ocessor assignment , fault requested system services
or Executive administ rative functions into a forward
and backward li nked chain. The TASKs are ordered from
highes t to lowest priority (.TPRIO lower) in the
backward (.TFLAG upper) queue pointer direction.
Poin ters to the head and tail of the queue are
contained in the base of the queue at cell .EDSPQ in
the Communica t ion Regio n .

Queue en tr ies are embedded wi thin the TASK they
r epres e ut . The general forma t of an entry is:

0 17 18 35
.TPRIO IF ’~ D DSP-QUEUE PTR IPRIORITY

I I
. TFLAG Ti~K~IJD [)S t~—QU E U E PTR 1 0- SCANNED STATUS FLAGS

I I
T E i ~Vf c r~ Vi~ ro~

-

- — - - - - -
I F’I AGS

- — - — — — — i

TASK c el l • rPRro mu st he def ined w i t h an even

1 1 . 2

~

~~~~~~~~~~ . _ - - - - - - - -  - — - — -~- ---- — -~~~.



— _ - - - _ ----— - -. — ‘----- ,,-- - _ --- ----~~~~~--- ---- — - . -~~~~~~~~~~ _-- _ --——- -~-_-- -——_ - -- _ _ _

QUEU ES

offset so that cells .TPRIO and .TFLAG form an even
word pai r. This is done to facilitate the queue
processing of the ‘Q—scanned TASK Status Flags.

Output Intercom-Queue

All Inte rcom output messages waiting for
transmission are queued in priority sequence to form
the Output Inte rcom—Queue. Each queue—entry describes a
comple te output message , which can Consist of several
message segments ; the priority assigned to the message
and a pointe r to the TASK , if any , associated with the
message.

The queu e is forward linked by message pr iority
and backwa r d l inked by originating TASK . Poin ters to
the head and tail of the queue ar e maintained in cell
.ECQP in the Comunication Region. Management of the
available queue—en try space is accomplished via cells
.ECOMQ . Queue en try format is:

0 
________ ____ 

17 18 35
T~WD OUTPUT INT ER COM-Q I P R I OR I TY 

- -

I P TR I I
I PTR~~~O FIRST MSG SEG I N0T USED 

- - - 

I

I B K W D  O U T P J r  I N r E R C O M - Q  I PTR TO OR I G I N A T I N G  I
I PTR TASK or ZERO I

1 1 .3  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ ~~~~~~~~~~~~~~~~


----~~--~~~~~~~ - __ — -~~~~~

CORE & SWAP—FILE MAPS

CORE & SWAP-FIL E MAPS

The Core and Swap—File Maps are dynamic partitio n
maps that record usage by en try—defined partitions
ra ther than static partition maps that indicate fixed
pat titL on usage.

The dyna m ic na ture of the maps is enabled by us ing
forwa rd and backward link pointers within each map
ent ry. The link pointers thread the map entries within
their assigned spaces. The forward poin ters link the
ent r ies in order of increasing partition origins , i.e.,
by core or Swap—File partition lower address limits.

Each ent ry descr ibes the starting block address of
a core or Swap—File partition and the number of free
blocks at the end of the partition. The format for the
general map entry is:

0

17 18

35
1 FORWARD MAP POINTER # OF FREE BLOCKS AT THE !
I

___ -
END OF THE PAR TIT ION I

LBACKWARD MAP POINTER 1P~~~~iTfl)N ORIGIN T
I

_ _ _ _ _ _ _ _ _
I I

The star ting block address for the f i r s t f r e e
block within a partition is found by subtracting the
num ber of free blocks at the end of the partition from
the origin of the next partition , which is con tained in
the succeeding or forward pointed map entry.

Two speci.i l ‘nag entries that are not
usage—defined , bu t assembled into the maps are the
initial and final map ent r ies. The initial entry is
r equi r ed to desc r ibe those blocks at the beginning of
core or the Swap—File that do not belong to a usage
defined par tition . The final entry is necess itated by
the mechani cs of making and releasing map entr ies.

The fo,m,i t for the base map entries , which are
assembled ad jacent to one another , is as f o l l o w s :

1 2 . 1

—- -~~~~-~~—~~ _ -

T~

I
CORE & SWAP-FILE MAPS

U 17 18 35
r FORWARD P O I N T E R TO

—

I # OF U N A TTA C HED F R E E I
I n i t i a l J FIRST MAP E N T R Y I B L O C K S I
Entry ‘

~ MBZ I C O R E or S W A P — F I L E O R I G I N I
L I

_ _ _ -
I I_____ ____ - - ____________________

Final BACKWARD POINTER TO I CORE or SWAP-FILE UAL I
Entry L. I LAST MAP E N T R Y I

- -

where UAL represents the upper address limit.

The base map entries are located in the
E x e c u t i v e ’ s Communication Region with the symbolic
t a g s :

.ECMA P Base Core—Map Entries ,

.E SMAP Base Swap—File Map Entr ies.

Co re— ~~ p Part iculars

E n t r i e s f o r the C o r e — M a p a r e loca ted w i t h i n the
TASK d e f i n i n g the p a r t i t i o~ a t TASK cel ls .T M EM and
.TLA L. Thus t h e r e is no need to ex p l i c i t l y o b t a i n a
free entry when making a new map entry.

The block size used in the Core—Map is 1024 words.
Block addresses are always positioned within a word as
multi ples of 1024 words.

The core or igin and UAL are dete r mined du r ing
initializa tion using cell 3l[1 0J in the Executive ’s

-

Slave Program Prefix. At this time the Core— Map base
ent r i es a r e defined , so the origin and UAL are me r ely
i n s er t . ?d i n t o them .

Sw~p—Fi le ~~p Particulars

A c o n t i g u o u s b lock of m e m o r y is r e s e r v e d f o r the

1 2 . 2

~~~~-_ - -- - _.- .- -_ - ---- __-— ~~~~~~~~~~— - -~~---- --- 
_ _ ,- - - _ 

~~~~_


—- -._--- -
_- . --~~~— - --— -- ~~~~~~

- ---
~~~~~ - _ _ _ .- _ -_ - -

CORE & SWAP-FILE MAPS

Swap-File Map entries during assembly by the .SWAP .
macro. The boundaries of the assigned area are recorded
in Communication Region cell .ESMAC by storing the
beginning map address in the lower half of .ESMAC and
the last map address+1 in the upper half of .ESMAC .

During execution free entries in the map are
chained together to avoid a serial search of the map
area for an available entry. A pointer to the first
free entry is maintained in .ESMAC lower.

The block size used in the Swap—File Map is 64
words. The first available block on the Swap—File is
assumed to be zero.

At startup time GCOS is queried via a MME GEFADD
to de termine the allocated size of the Swap—File. The
number of blocks returned is placed in the lower half
of .ESMAP , as the numbe r of una ttached blocks at the
start of the file , and .ESMAP+3 , as the UAL of the
file.

12.3 

- 



~~—_ ~~~ - 

.

INTERCOM BUF FER MAPS

INTERCOM BUFFER MAPS

The purpose of the Input and Output Intercom
Buffer Maps is to make management of available buffer
space possible. To th is end , the maps describe buffer
usage in terms of partit ion pointers and available or
free hole sizes.

With two exceptions , each entry in the maps
specifies the available space that follows a message or
message segment in the buffers. Thus the maps record
buffer usage by means of message—defined buffer
partitions rather than by usage of pre—defined fixed
buffer partitions.

There are two permanent map entries that are not
usage—defined. These are the base map entry and the
last map entry. The primary purpose of the base map
entry is to describe unattached space at the beginning
of the buffer , while the last map entry is necessitated
by map mechanics.

Unlike the other maps employed , all buffer map
entries , except the base map entries , reside within the
buffers at the beginning of the partition they
describe . Therefore , the location of a map entry is
also the origin of the partition.

The general forma t of a buffe r map entry iS:

0 17 18 
___________ 

35
I FORWARD MAP LINK POINTER I# OF FREE WORDS AT THE
I ____ 

l END OF THE PARTITION
IBACKWAR D MAP POINTER IMBZ
I 

_ _ _ _ _ _ _ _ _ _  
I

Both maps a re forward linked with backward
po inters. Only the forward pointers are linked as a
chain. The backward pointers within each ent ry point to
the first word of t~ e previous entry and as such , t h e y

13.1

—---

~ 

~~~—- — - - —~~~~~~~~~~— ~~~~~~~
_——- -—-——. - - - --

- ~~~--- - - - - ~~~~~~~~~~ - - . ---- - - - ~~~~~~~~~~~~-- - -_ ~~~~~~~~~~~~~~~~~ - - - - - _ - --

INTERCOM BU FF E R MAPS

do not form a linked chain. The only need for the
backward pointers is to facilitate the reassignment of
ouffer space to the previous entry when the space is
eleased .

The base and last map entries along with the size
of the buffers are defined by the .BUFF. macro. This
mac ro also reserves the requested amount of buffer
space.

The base map entries are assembled into the
Communication Region with the symbolic tags :

.EIMAP Inpu t Intercom Buffer Map,

.EOMAP Output Inte rcom Buffer Map.

The format of the base map entries is :

0 17 18 35
I LOC OF NEXT TO LAST BUFFERI# OF UN ATTACHED FREE WORDSI
ICELL IAT START OF BUFFER I
T1~~~~~~~~t~AST B U F F E R CELL I R E S E R V E D
I I I

The lower half of the first base entry word is
assembled as the total size of the buffer minus 2 (to
account for the last map entry , which is always
present)

The last map ent ry is assembled into the last two
cells of the buffer with the following format :

0 17 18
-

35
IMB Z

-

I
IPOI NTER TO BASE MAP ENTRY I RESERVED

I

It should be poin ted out th~~t the forward map
poin ters are always greater - (addres s--wise) than the
location of the map entries in which they lie , sinc e
the m a p e n t r i e s r e s i d e at t he b e g i n n i n g of the

1 3 . 2

- _ — ~~~~~~~~~~ _- -— ~~—-~~~~~~~
- - --- - ——- - - -~~~~~~~~~ —

—-~~~~~~~~~~~~~~~~

- - _ _ _

INTERCOM B U F F E R MAPS

parti tion they describe and the forward chain
corresponds to increasing buffer addresses.

The location of the map entry or the assigned
buffe r space , in which an input transaction or output
message lies , is kept in the TASK associated with the
transaction or message.

B u f f e r ~~p Usage

For the Input Intercom Buffer Map, entries are
released and can be built at the main—level ; while
entries are built and excess space is reassigned at the
courtesy—call level.

For the Output Intercom Buffer Map, entries are
built at the main—level and released at the
courtesy—call level.

For both maps the na in—level code that references
the maps must be inhibited to avoid link pointer
confusion within the maps in the event an interrupt or
time—runou t occurs. Since both maps share the same
build and release map entry routines , it is necessary
that the routines be interrupted .

Inpu t Intercom Buffer

The Input Intercom Buffe r is used for collection
of input transactions received via Intercom I/O from
TPE.

Pr ior to issuing an Intercom r ead r equest , the
Transaction Scheduler scans the Input Intercom Buffer
Map to find the smallest availa ble hole in which the
largest expected message , as determined f r om .EM XSZ ,
will fit. If a hole is found , a new map entry is buil t
to describe the space and the location of the map entry
is recorded in cell .TMSG of the skeleton TASK , which
was previo r~~ly obtained by the scheduler. A DCW is
built wi th i dat -i address pointing to the third wor d of

13.3

r

INTERC OM BU FF E R MA PS

I

the available space , i.e. , the fi rst word past the nap
entry, and the Intercom is issued .

Upon completion o f the I/O , the space descri ption
for the partition into wh ich the input message was
read , is adjusted to reflect the actual size of the
message as determined from the data address reside in
the second Status Return word. The actual message size
is also placed in cell .TMSG of the skeleton TASK
allocated for this transaction.

After a Keyword Processor has requco;ted the
transaction via a trapped MM E , the transaction—defined
buffer partition is released by cornL~~ n i r q it w i th the
available space of the previous (lower address) or
backward pointed partitio n and the m~ o ent r y is
unlinked .

Ou tput In tercom Buffer

The Output Intercom Buffer is used for collec tion
and Intercom buffering of output message segments
destined for TPE. Since message segments with differen t
transaction numbe rs cannot be intermixed when sent to
TPE , all so-ime nts for each transacti on must be
collected and lin ked t ogether in the Output Intercom
Buffer , until an End—of—Messa ge or End—Of—Transaction
status is detected . At this time , an Ou tput
Intercom—Queue entry is obtained and buil t for the
message. The Ou tput Intercom Processor will issue
successive Intercom writes to pass the message seqTn~ nts
to TPE.

Message segmen ts are th r eaded by transact ion
number wi thin the Output Intercom Buffer by p lac in- j a
l ink3Je word in the first word of each message segment.
The linkage fo r ma t is :

0 17 18 35
IPOINTE R TO NEXT S~-

~~~M ENT FOR ISIZE OF THIS SEGMENT TN
ITHIS MESSAGE or ZERO WORDS

13.4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



r - -  _
~~~~~~~~~~

_
_—.-4 — —- - - —

INTERCOM BUFFER MAPS

The beginning and ending addresses of each thread
are recorded in TASK cells .TMSG and .TMSG2 of the
generating Keywo r d Processo r ’s TASK.

Buffer Threshol d Entries

A t initialization , a portion of the available
memory for the buffers is set aside to serve as a
threshold area. Should the reduced buffers not have
enough space fo r addi tional messages , TPOS will attemp t
to grant an addi tional 1024—word block of memory to the
buffer. Since the memo ry (which must be contiguous to
the buffer area) may be in use , the threshold area will
be used to serve as an immediate and temporary relief
until the full 1024 words can be obtained . See the
illustration on the following page.

1 3. 5

-- - - - --- --—---

- - —
~~~~~~~~:~~~~~~~~~~~~~~~~ 

- -

I N P t R COM B U F F E R  MAPS

INPUT I
I B U F F E R  I

LAST E N T R Y  ~~~~ 

- 

-

I PTR TO I I
I.EIMA P RESV I

INP UT B U F F E R  I T H R E S H  I
TURESIIOLD I I

N U M B E R  WORDS I N U M B E R  OF I
AT I N I T .  I WORDS NOW I

I I I
I PTR TO 

- - 

I UNUSED I
ISFART BU Ff ER I I
I I N P U T  I

BL J FE ’ER I
-ri-i 1~I~sI1OLD I

AVA t i~A~~I~~ I
I CORE I

A V A I L A B L E
I COlo - I

~ 

-

I UU1~ - U~ I

H U L l E R
T H R E S H O L D

I OUTPU T I
I B U F F E R  I

LAST ENPR~ I

I PTH i~~ 

- 

I 
- - - - 

I

I .  EO M A P
T H R E S H O L D  ~I 
EN ’i’RY I I

I N U M B E R  ~~ RI)~ I NL~’1HER 1 1 - ’

I AT I N I’! . I ~~-~RDS N O~

I P i ~~ TO I UNt~SI-I )
I STARP BU FI-E< I I

1 3.



r - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~ - - - --—~~~~--  —~~~~~~~~~ -~~~~~~~

KEYWOR D P R E F I X  AREA

KEYWORD PREFIX AREA

The Keyword Prefix Area ([(PA) of a Keyword
Processor is analogous to the Slave Program Prefix
(SPA) of a TPAP. This arrangement allow s a TPAP to
execu te within the Executive as a Keyword Processor
wi th no special restrictions.

The KPA is intended to be the commo n communication
a r e a  be tween  the E x e c u t i v e  and t he  K e y w o r d  P roces so r
analogous to the SPA . It is also used to hold
transaction related information whenever the Keyword
Processor is not in execution . For example , the DCWs
used for a core—load or swap—out are built in the KPA ;
also the processor register values ar-e safe—stored in
the KPA whenever the Keyword Processor is taken out of
e x e c u t i o n  by the Executive.

No control information can be stored in the prefix
when  i t s  G ELBAR is in e f f e c t , since the KPA is wi thin
the GELBAR boundaries of its associated Keyword
Processor.

SPA Cells Supported as KPA

Cer ta i n S PA cel ls suppor ted by GCOS a r e  not suppo r t ed
by the Executive because the cells may only be
necess a r y  fo r GCOS administrative functions or MME
func tions which are inappropriate , disal lowed or
l e gi t i m a t e  hut not incorporated .

Keyword Processor fault vectors are f u l l y
suppo r ted. The only o the r KPA cel l  tha t is d i rec tly
supported is the equivalent of the GELOAD limits , i.e.,
cell 3 1 1 1 1) 1 . The latter cell is set after a Keyword
Fr  oc ~~~~ or cor  e~~load  in  case . SETU is not  a t t a c h e d  and
the  load l i m i t s  a r e  u~~ -d .

The l o w e r  load l i m i t  is deve loped  as t he  K e y w o r d
P r o - ~~;so r size in TASK cell .TSWAP lower plus the [(PA

iS ~y:nboli cally equated to .EPRFX . That is the
f l PX t r~~ii1- rh1’~ l o w e r  a d d re s s .  The uppe r  load l i m i t  is

14 . 1  -

~~~ --—~~~~~~~ -- - -


KEYWO RD PR EF IX A REA

set to the assigned core—size minus one , where the
cor e—size was saved ~~Y) .TPAD lower during the
core—load. If the lower limit is greater than the uppe r
limi t, it is set to the latter .

14.2

—- _ _ _ _ _ _ _ _

—-~~~~~~~~~~~

MODULE & R O U T I N E

Executive Module & Routine Descriptions

An overview of the major Executive modules along
with the descrip t ions of each module ’s componen t
routines are on the following pages. In order to
simplify and standarize the routine descr iptions , t he
notation below was used :

EPn — E n t r y P o i n t n

RRn — Routine Return n

This type of re tu rn passes or re tu r ns control
back to the calling routine.

RTn — Routine Tr ansfer n

This type of re turn passes contro l to a
prede termined routine.

CPn — C a l l i n g P a r a m e t e r n

RPn — R e t u r n P a r a m e t e r n

L () — L o c a t i o n of

Call — Loca t ion or IC from which the call to a
r o u t i n e was made .

15.1

_ -- --~~~~ - ----

F- -
~~~~~~~~~~~

-
~~

--  — -
~~~~

.-- — —--- -

~~- - - - -- --- -- ~ ---~~

GELBAR FAULT HANDLER

GELBAR Fault Handler

When interrupts and faults occur while a GELBAR is
in effect , GCOS passes control to the Executive Fault
Handler via the GELBAR fault vector located in cell
19[10] of the Executive ’s SPA . Faults occuring outside
of a GELB AR are not processed by this handler.

The major functions of the GELBAR Fault Handler ,
when given control by GCOS , are to:

(1) Safe—store the processor regis ters , as se t by
the interrupted Keyword Processor , into its
KPA using Communica tion Region cell .ETREG ,

(2) Safe—store the IC & I and remaining GELBAR
time in the interrupted Keyword Processor ’s
.TICI and .TTIMQ TASK cells , respectively

(3) Identify the cause and type of the fault
indicated by the GELBAR Accumulated Fault
Status in the Execu tive ’s SPA ,

(4) Call the Dispatcher to reissue the GELBAR if
it was broken by an I/O interrupt ,

(5) Safe—store EIS address registers and pointers
and length registers into TASK areas .TAPEG
and .TEPL respectively.

(6) Pass control to the applicable fault
processing routine if a true fault.

If the GELBAR was broken by a true faul t, the
elapsed processor- time for the affected Keyword
Processor is updated in TASK cell .TLAPS and the
dispatch time remaining is saved in cell .TTIMQ .

Fault Processi~~

Processing of all faul t type s except a MME fault ,
is done wi thin the GELBAR Fault Handler pr oper.

16 .1


~~~~~~~ -- -~~~~ - ---—~~~~~- - -~~~~~~~~~~ -

G E L B A R  FAULT H A N D L E R

For Lockup (LUF) , Par ity (PAR) and Op Not Complete
(ONC) faults , the fa ulting IC&I is saved in cell 10 (10]
of the  K e y w o r d  Pr oce sso r ‘s KPA and abnormal termination
of the Keyword Processor is initiated .

Fo r D i v i d e  Check  (DVC ), Derail (DRL) and Overflow
(OFL) faults , the faulting IC&i is stored in the first
wo rd of the applicable [(PA Fault Vector. The second
Fault Vector cell is checked to see if it is zero~ i f
so , t he  Keywor d P rocessor  is abor ted. Oth e r w i s e TASK
cell .TICI is adjusted to point to the second word of
the Fault Vector  and the D ispa tche r is cal led to
reissue the GELBAR to the faulting Keyword Processor .

The first occurrence of Zero Op Code (ZaP),
Command ( C M D )  , Memory ~MEM ) a nd Fa u l t  Tag (TAG ) f a u l ts
is t r e a t e d  i d e n t i c a l l y  ta-~ t he  p r e v i o u s  g r o u p  of f a u l t s
r e l a t i v e  to the  a p p l i c a b l e  K e y w o r d  P r o c e s s o r  F a u l t
V e c t o r s .  However , the  f a c t  t h a t  one of these  f a u l t s  has
occurred is stored in the TASK. This is accomplished by
setting the B.TFLT bit flag on in TASK cell .TFLAG .

Subsequen t ZOP , CMD , MEM o r TAG faul ts wil l  be
p r ocessed only if the f i r s t  F a u l t  Vec tor ce l l  has been
zeroed by the K e y w o r d  P r o c e s s o r . This  is i n t e r p r e t e d  to
mean  t h a t  t h e  K e y w o r d  P r o c e s s o r  w a n t s  to p r o c e s s  these
faul ts itself. Determination of whether this is the
fir st fault occu rrence is made by testing the B.TFLT
bit flay in TASK cell .TFLAU lo t an ‘on ’ sta te. If the
c e l l  h a s  not been clea red , t h e  E c y w o r d  P r o c e s s o r  is
ab o r  ted .

M ME I d e n t i f i c a t i o n/ V a l i d a t i o n

~~~ Ide n t  i f  icat ion/V~T~ 1 i d a t  ion is a sepa r a t e
rou t ine that is qrou oed with t h e GELBAR Fault Handler.
Control pa:~ses to this routin e ~hen the Accumul ated
F a u l t St a t u s in d i c a t e s t h a t a MMF t au T t I y~ e has
o c c u r r e d . T h i s r o u t i n e f i r s t i d e n t i f i e s t h e r e o i i e s t e d
M~ t i - ~o r vI ce by e x a r r l i n i n q t h e u p p e r h a l f of t h e K e y w o r d
Pr ocessor ‘ S M~~}- i n s t r U C t i o n . I f t h e a d d r e s s is l eg a l
and specifies an ‘lNv function that has - - - n
inco rpo rat I i n te t h e E x e c u t i v e , c o n t r o l is passed to
t h e ap p r ap i t a t e NM ~- p r o c e - s i n c j r o u t i ne . ‘~ t h e r w i n e t h e

lb .2

- ~~~~~
_ — - - - - --

~~~
--- -—--- -- —. — --,— ~“—- -. — — -

- -

GELBAR FAULT HANDLER

K e y w o r d  P r o c e s s o r  is abo r t e d .

O R L  I d e n t i f i c a t i o n/ V a l i d a t i o n

D R L I d e n t i f i c a ti o n/ V a l i d a t i o n  is a s e p a r a t e
r o u t i n e  t h a t  is g r o u p e d  w i t h  the  GELBAR F a u l t  H a n d l e r .
C o n t r o l  passes to  t h i s  r o u t i n e  when  t h e  A c c u m u l a t e d
F a u l t  S t a t u s  i n d i c a t e s  t h a t  a DRL f a u l t  type  has
o c c u r r e d .  Th i s  r o u t i n e  f i r s t  i d e n t i f i e s  the  r equested
DRL s e r v i c e  by e x a m i n i n g  the  uppe r h a l f  of the  K e y w o r d
P r o c e s s o r ’ s DRL i n s t r u c t i o n .  I f  the  a d d r e s s  is legal
and s p e c i f i e s  a DRL f u n c t i o n  t ha t  has  been i n c o r p o r a t e d
i n t o  the  E x e c u t i v e , c o n t r o l  is passed to the
appr opr i a te  DR L p r o c e s s i n g  r o u t i n e . O t h e r w i s e  the
Keyword Proc esso r is abo r t ed.

GELBAR Fault Handler

FUNCTION :

T h i s  r o u t i n e  s e r v e s  the  E x e c u t i v e  by i d e n t i f y i n g
the  r ea son  f o r  a b r o k e n  G E L B A R  and r o u t i n g  c o n t r o l
to t h e  appr o p r i a t e  fault processing routine . The
e lapsed  p r o c e s s o r  t i m e  f o r  t he  a f f e c t e d  K e y w o r d
P r o c e s s o r  is u p d a t e d  i f  a t r u e  f a u l t  o c c u r r e d .

E N T R I E S :

EP — G E L B A R  F a u l t  H a n d l e r  ( F L T 0 0 0 ) .

C o n t r o l  is passed to  t h i s  e n t r y  p o i n t  v i a  the
GELBAR F a u l t  V e c t o r s  ( l o c a t e d  in w o r d  19110]  of
t h e  E x e c u t i v e ’ s SPA)  by GCOS.

No c a l l in g  p a r a m e t e r s .

R E T U R N S :

C o n t r o l  is r o u t e d  to  t h e  a p p l i c a b l e  f a u l t
p r o c e n n i n q  r o u t i n e  a c c o r d i n g  to  t h e  f a u l t  t ype
w i t h i n  t he  G E L B A R  a c c u m u l a t e d  F a u l t  S t a t u s
(located in wo rd 25[ 10J of the Executive ’s SPA).

16.3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~ F I B A R [‘Au I T H A N D L E R

G E L B A R M ME V a l i d a t i o n

F U N C T I O N :

T h i s r o u t i n e i d e n t i fi e s and v a l i da t e s t he
r e q u e s t e d MME p a r a m e t e r w i t h i n t h e f a u l t i n g
K e y w o r d P r o c e s s o r . I f t he p a r a m e t e r is i l le g a l or
r e s t r i c ted , t h e K e y w o r d Pr o c e s s o r is m a r k e d f o r
abor t w i t h t h e appr opt i a t e e r r o r code s t o r e d in
t h e TASK. I f t he p a r a m e t e r is l e g a l , c o n t r o l is
passed to the r e q u e s t e d MME pr ocess ing r o u t i n e v i a
a MME vec tor table .

E N T R I E S :

EP 1 — G E L B A R N o n — r e t u r n a b l e c o n t r o l passes to t h i s
r o u t i n e e x c l u s i v e l y f r o m the G E L B A R F a u l t
H a n d l e r

CP 1 — L (T A S K) a s s o c i a t e d w i t h t h e f a u l ti ng
K e y w o r d Pr ocessor

RETURNS:

RT 1 — Dispatch er ‘ s—Queue Service

If an illegal or r es tr ~cted MME parameter .

RT2 — App l i c a b l e M H E R o u t i n e .

I f a l e g a l MME p a r am e t e r

RP 1 — L (T A S K) request ing MME s e r v i c e .

16 . 4

-— ~~~~~~ - -~~~~~~ S -- --— -— -~~~~~~~~~~~~~~~~~

—‘--- —-
~

. -- ww—-- ~~~~~~~~~~~~~
—,--_ — - - -

TRANSACT IO N

Transac tion Scheduler

Function

The Transact ion Scheduler is responsible for
managing t ransact ion input , validating Keywords and
queueing new transaction processing requests for the
Core Allocator.

The scheduler and main—body of the Executive
execu te virtuall y independent of one another.
Consequently, they must inter face to communicate new
t r ansac t ion p r ocess ing r e q u e s ts. The in te r f a c e is the
Core—Queue , wi th each processing request identified by
its assigned TASK.

In t i oduct ion

The s c h e d u l e r is i n i t i a l l y enab led by the
D i s p a t c h e r a t the m a i n — l e v e l . An I n t e r c o m read to TPE
is issued a t the m a i n — l e v e l f o r the f i r s t t r a n s a c t i o n,
after which control is returned to the Dispatche r. From
this point on the scheduler ’s processing is essentially
cour tesy—call driven. That is, when a transact ion is
passed to the Execu tive and the Intercom courtesy—call
is paid , a subsequen t Intercom read for the next
transac tion is issued within the courtesy—call to
maintain GCOS dispatches di rectly to the scheduler at
the courtesy—call level. In this contex t , the
T r ansaction Scheduler and the remainde r of the
Executive run asynchronously.

The scheduler can be fo r ced to disable itself.
This occurs when internal conditions make it impossible
tot the schedule r to issue an Intercom r ead. In this
case it must terminate its courtesy—call without an
outs tanding Intercom read request and , consequen t ly ,
the schedulet ‘s cou r tesy—call processing is also
termina ted. When this occurs , the Tr ansac t ion Schedule r
is said to have ‘stalled—out.

The Dispa tcher periodica lly enables the scheduler

17.1

_ _ _ _ - -~~~~~~ -- , - - - -~~~ -- -~~~~~~~~~~~~~~~ -- --.- - --
~~~~

-- - -
~~~~~~~~~~~~~~~

TRANSACTIO N

at the main—level , regardless of whether the scheduler
is functioning normally at the courtesy—call level or
is stalled—out. The scheduler uses the enable in an
attempt to restart itself in the event it is stalled;
othe r wise , it ignores the enable by immediately
r e turning con tr ol to the Dispa tche r .

Stall—Out

The s c h e d u l e r is f o r c e d to e x p l i c i t ly ‘ r emember ’
w h e r e i t s t a l l s — o u t , because i t c a n n o t r e l i n q u i s h
control. If enabled at the main—level , it mus t return
control to the Dispatcher so that any other r emaining
Executive processing can be acted on. If enabled within
cour tesy—call , a reli nquish is not allowed . As a
resul t , the sche dule r cannot imp licitly suspend itself ;
it must terminate itself.

The scheduler stores its IC&I in Communication
Reg ion cell .ESTAL , the sta l led Scheduler Vector ,
eve rytime it e n t e r s a phase of Intercom read initiation
which it may not be able to successfully complete. If
it stalls—out , .ESTAL will point to the phase where the
schedule r should be restarted . If the scheduler
successfu l ly passes a problem phase , it retains the
accumulated controls in case it stalls—out later. When
the schedule r successfu l ly co mple tes all phases , . ESTAL
is zeroed and th~ r e ad can be issued .

Ichen the scheduler is enabled by the Dispatcher at
the ma in—level , it examine s .ESTAL to see if it is
zero. If so the scheduler returns control and thus
i-sno res the enabLe. Otherwise , it attempts to restart
i t s e l f by t r a n s f e r r i n g c o n t r o l to t h e IC~~I pr e v i o u s l y
saved in . ESTAL. S u c c e s s f u l or no t , t he s c h e d u l e r
r e t u r n s c o n t r o l to t h e D i s p a t c h e r a f t e r t h e r e s t a r t
a t t e m p t .

I n t ’ - r c (nl Read I n i t a t i o n

Th . ‘Fr ansact i o n Scheduler m u s t obt a in suf I ~cien t
i n p u t but fer space and an ur iassi in ed TASK pr i o r to
i s su in s i n T n t - e r corn r oT) l to TPF ~or t h e f i r s t or

17.2

- _ -_ - -~~~~~~~~~~~~~~~~~~ - _ ---~~ -_ - - -- - -— -- --- --- - -~~~~~~ --— a--

- - -

TR ANSAC T ION

subsequen t input messages.

The amount of input buffer space required for a
new message is always presumed to be the size of the
largest possible input message , as recorded in
Communication Region cell .EMXSZ. The necessary buffer
space is obtained by searching the input buffer space
map, based at .EIMAP , for a buffer hole in which the
larges t possible message can fit. The scheduler stalls
if suf f ic ient space cannot be found , otherwise , a
buffer map en try is built for the allocated space and
the location is stored to prevent its loss in an
ensuing stall—out.

An attempt to get an unassigned TASK is made once
buffer space has been obtained . The TASK Space
managemen t cells at .ETASK are queried to determine if
an available TASK exists. If none is available , the
schedule stalls out ; otherwise , a skeleton TASK is
buil t in the assigned space and the location of the
pr eviously obtained inpu t buffer space is saved in TASK
cell .TMSG. An Intercom read can now be initia ted with
a courtesy—call pointer to the Intercom read
termina tion routine .

Intercom Read Termination

When the courtesy—call is paid , the Intercom I/O
Status Ret urn is first checked. The Intercom read is
reissued if a lost interrupt was returned ; otherwise ,
t he new t r a n s a c t i o n ’ s k e y w o r d is e x t r a c t e d and
vali dated . This is accomp lished by t ry ing to ma tch the
k e y w o r d a g a i n s t t he K e y w o r d s List , which is based in
communica tion cell .EKEYL. If no match exists , the
t ransac t ion proper is disca r ded by eliminating all
references in the assigned TASK to the buffer space in
w h i c h t h e messaqe l i e s . Th i s is done so t h a t t h e space
can be used fo r t he n e x t I n t er c o m r e a d . The TASK
a s s i g n e d to t h e e r r o n e o u s messages is t h e n l i n k e d to
the Dispatcher ‘s—Queue and flagged fo r abort. This w ill
cause the appropraite er ror message to be returned to
the user .

1 7 . 3

- - -~~~~~ -- ---—--~~~~~~~~~~~~~~~~~~~~~ - --~~-- --- -~~~~~~ - - ---
~~~~~~~

—-- -
~~~~~~~~

---—--- --- -- -

TRANSACTION

I f a m a t c h is found , the input buffer space
assigned to the new message is adjusted to reflect the
a c t u a l message s i ze as d e t e r m i n e d f r o m the d a t a address
residue in the Status Return. The prior ity associated
with the matching keyword in the Keywords List is
assigned to the transaction via its TASK and the
Keyword Processor Profile is located . Selected profile
informa t ion is also cop ied to the TASK .

The scheduler then calls the~ Core Allocator to
link the new transaction ’s core demand to the
Core—Queue. Depending on the return taken by the link
routine , an optional attempt can be made to allocate
core to the TASK designated Keyword Processor within
the courtesy—call.

At this point the scheduler has finished its
processing of the new transaction. Notice tha t either
the assigned TASK has been linked to the Core—Queue or
the core—load of the designated Keyword Processor has
been initiated. Thus the new transaction processing
request has been passed on to the Executive ’s
main—body .

The Intercom read termination then calls the Intercom
initiation routine to attempt to start the next input
request. Successful or not , control is returned and the
courtesy—call is terminated. If the initiation routine
stalled—out , it will try to restart itself at the
main—level when the Dispatcher enables it.

1 7 . 4

----— —--- -- - - - - -— - - - - - -----— ------—----—-—-—-------- ---— - --- -— ----~~~~~ - — --——--- -- --- ___

- -~~~~~~~~ - -~~~~~~~~~~---~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
-- -- — - - - -

~~~
-

TRANSACTION

Transaction Scheduler Ent~~ Points

Symbol Title

SCH100 Initiate Intercom Read

SCH11O Initiate Input Wi tbin Courtesy—Call

SCH12O Initiate Input Within Courtesy—Call

With Buffer Space

SCH 1 3O Reissue  Intercom Read

SCH200 Input Intercom Courtesy—Call

SCH400 Get & Build Skeleton TASK

SCH500 Get Profile Specifics

SCH51O Get Profile Specifics Given Keyword

17 .5  

~~~~~~~~- -~~-- - -



~~~~~~~~~~~~~~~ TT ~~~~~ 
- -

~~~~~

-

~~~

--

~~~

- - - -

TRANSACTION

Initiate In tercom Read

F U N C T I O N :

T h i s r o u t i n e o b t a i n s i n p u t b u f f e r space f o r the
lar gen t inpu t message the Executive can handle ,
bu i l ds a s k e l e ton TASK , and issues an Intercom
read to TPE.

ENTRIES:

EP1 — Init ia te Intercom Read (50-1100) .

EP2 — Init iate Input within CC (SCH11O)

This entry :s called by the Input Intercom CC
rout ine to drive the Transaction Scheduler at
the cour tesy—call—level.

EP3 — Initiat e Input within CC with Buffer Space
(SCH1 20)

T h i s entr y is c a l l e d by t h e I n p u t I n t e r c om CC
routin e when t h e p r e v i o u s message was in
. - r r or a n t t h e b u t t e r space can be reused.

CP I - P o i n t e r to input buffer map entry+2.

E P 4 — I~e i s s ue I n t e r c o m Read (S C H 1 3 O) .

R E TU E N S :

R e t u r n is made to the C a l l + 1 . I f input buffer
Sf ac~:- or a fI r cc TASK c a n n o t be f o u n d , t h e
T r a n s a c t i o n S ch e d u l e r is m a r k e d is b e in g s t a l l e d
b- v’ plac r n q t h i t I C & I i n . ESTAI..

i 7.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — LLI.J

F,-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~

----- - — — -

TRANSACTION

Input Intercom CC

FUNCTION :

This routine is the courtesy—call serviced by GCOS
at completion of the Transaction Scheduler ’s input
Intercom . Transaction related information is
inse r ted into the skele ton TASK , the keyword is
isolated and the Executive ’s Keyword List is
scanned for a match to locate the associated
Keyword Profile. If a match is found , Keyword
Profile specifics are copied into the TASK , excess
b u f f e r space is reass igned , the new TASK is l inked
to the Core—Q with a possible attempt at core
a l loca t ion , and Intercom input is initiated to
receive the next message queued by TPE. If a match
cannot be found , input buffer space is reassigned
f r o m the TASK , the TASK is marked for abort with
the appropriate error code , and Intercom input is
initiated using the reassigned input buffer space.

ENTRIES :

EP1 — Input Intercom CC (SCH200)

This entry is driven by courtesy—call.

RETURNS :

Return is made to GCOS via a MME GEENDC .

1 7 . 7

_ _ _
~~~~~~~ - -~~~~- - - - - - - - -  



TRANSACTION

Ge t and B u i l d  Ske le ton  TASK

FUNCTIO N:

This routine attempts to obtain a free TASK. If
one is found , the TASK is cleared to zeros and a
Tr ansfer—Set—Index instruction is stored as the
Courtesy—Call Vecto r in cell .TCCV of the skeleton
TASK. In addition TASK stack cells .TPUSH , .TPOP
and .TA LLY a re in i ti a l i zed .

ENTRIES :

EP1 — Get and Build Skeleton TASK (SCH400)

No c a l l i n g  p a r a m e t e r s .

RETU RNS :

RR1 — Call+1 , Fr ee TASK not available.

RR 2 — C a l l +2 , Skeleton TASK built.

1 7 .



--

TRANS ACT ION

Search Keywords  Lis t

FUNCTION :

This routine searches the Executive ’s Keywords
List to tind a match with the designated keyword.

ENTRIES :

EP1 — Search Keyword List (SCH41O).

CP1 — Keyword to be matched .

RETU RNS :

RR1 — Cal l+ l , No—match.

R R 2  — C a l l + 2 , Keyword  ma tch  found .

RP1 — Pointer to matching entry in the Keywords
L i s t .

17. 9 

------.‘- — ~~~~~~~~~~~~~~~~~~~~~~ -~---—-~~~~~~~~ - --—‘--‘-—--- ———~~~~~~~~~~~ —-—‘--- —‘-‘-—-~ --‘-— ~.—- ‘--.-———~~~~~~



- - - 
-- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

---

~~~~~~~~~~

—

~~~~~~~~~~ 

_ _

TRANSACTION

~~~~~

FUNCTION :

This routine searches the Executive ’s Keyword List
given a message keyword. If a match is found , the
k e y w o r d usage coun t is up dated , the Keyword
Profile is located and profile specifics are
lnserte ci into the TASK. If no match is found or
the requested Keywo rd Pr ocessor could not be
pr oper ly initialized during startup, t he TASK is
l i n k e d to the Dispa tcher ’s—Q for abort with the
appropriate error code inser ted in the TASK.

E N T R I E S :

Common c a l l i n g par ame te r s a r e :

CP1 — L(TASK)- .

CP2 — (input message) .

EP1 — Get Profile Specifics (SCH500) .

EP2 — Get Profile Specifics given Keyword (SCH51O).

CP3 — Keyword.

R E T U R N S :

RR1 — C a l l + 1 , No k e y w o r d m a t c h .

R R 2 — C a l l +2 , Successful.

17.10

_____________ ____


~~~~
-.--‘- - - - -- 

~~~~~~~~~~~~ I.~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

CORE ALLOCATOR

CORE ALLOCA TOR

In t roduc t ion

The Core Allocator is responsible for managing
available core and TASK core demands , assigning core to
reques ting TASK on a priority basis and loading and/o r
swapping the applicable Keyword Processors into core.
The major design objective for the Core Allocator is to
maximize the use of assigned core space while
preserving the priority structure of the Executive.

Concept & Definition

Allocation means the assignment of a selected
available resource to a selected resource demand . The
a l loca t ion a l g o r i t h u m must speci fy the demand/ re source
order and the selection method for both the demand and
the available resource.

Core allocation within the Executive can assume
one of two basic forms. Depending on whether the demand
or r esource is selected f i r s t , the form is either :

1. a specific (selected) demand is effectively
matched against all avai lable core resources ,
or

2. a specific available core resource is
effectively matched against all cu rrent
demands.

In both forms the matching process is synonymous with a
selection method.

The f i r s t f o r m of a l l o c a t i o n is ca ll ed ‘demand ’ or
‘load ’ allocation since it r esults in the simple load
of a Keyword Processor. The second form is called
‘available resource ’ allocation. It is also called
‘swap resource ’ or j u s t ‘ swap ’ a l l o c a t ion when it
results in a Keywo rd Processor swap—out.

18.1

C O R E AL LOCA TOR

r n d e p e n d e n t of t h e tyb e of a l l o c a t i o n emp loyed ,
t h e se ts of c u r r e n t d e m a n d s and a v a i l a b l e r e s o u r c e s ~. re
c a t a l o g e d i n t o t h e C’ ore—Oueue and C o r e -N a p
r e s p e c t i v e l y . D e m a n d - - r e s o u r c e s e l e c t i o n is e f f e c t i v e l y
made f 1 0 1r these s e t s .

Core— Map : The Resource

A l l TASKs t h a t have been a s s i - in e d c o r e space a r e
l i n k e d t o g e t h e r v i a t h e i r . T M E M and .TLAL c e l l s to f o r ;r
t h e C o r e - N a p . Each e n t r y i t - ~ t h e map s p e c i f i e s t h e l o w er
address limit (L A I r) of it s a s s o c i a t e d c o r e p a r t i t i o n
a l o n g w i t h the size of an-: u n u s e d c o r e space a t t h e ena
or b o t t o m of the p- ar ~ it ton. Cor c— Nab entr ies a r e
o r d e r e d ~n a s c e n d i n g sequence ny the LAL ot t he c o re
space they descr ibe when following the po in t .r s ~n
.T M EM (c a l l e d t h e f o r w a r d d i r e c t i o n)

The C o r e — M a p is a d y n a m i c p a r t i t i o n map s ince t h e
n u m b e r of map e n t r i e s and t h e s izes of t he p a r t i t i o n s
t h e y d e f i n e a r e v a r i a b l e . Because of t h i s d y n a m i c
n a t u r e , the f i r s t and l as t e n t r i e s a r e p i e — d o t m e d b y
a s s e m b l i n g them i n to the ‘base ’ of t he C o r e — N a p a t
C o m m u n i c a t i o n R e g i o n ce l l . E C M A P . The f i r s t b a s e map
entry descri bes the free core—hole (if any) at the
s t a r t of as~-iqned core. ‘lse last base map en t r y :s a
d umrn v .

The u n u s e d c o r e spaces (h o l e s) a t t h e end of t h e
d y n a m i c p a r t i t i o n s r e p r e s e n t a v a i l a b l e c o r e r e s o u r c e s .
core—spaces assigned to swap—eligible TASKs are also
considered t o be availab le resour - ces. However , these
resources are peculi ar in that the spaces are not
r e f l e c t e d as f r e e h o l e s in t he Cor c — N a p f o r pr i c r i ty
r e a s o n s . They a r e c a l l e d ‘ swap ’ r e s o u r c e s so t h a t t h e y
can he d i f f e r e n t i a t e d f r o m t h e n o r m a l f r e e — h o l e
r e s o ur Ce. t h e D i s p a t c h e r ‘ s — Q u e u e is s c a n n e d f o r
s w a p — e l i f i b l e TASKs w h e n i t is n e c e s s a r y to l o c a t e and
e x a m i n e t h i s spec ia l r e s o u r c e .

1 8 . 2

_ _
- -~~ -- ~~~~~ -—- .- --~~ --- -- ---a--- - ~~~~~~~~~~~~ —

— — .- -- TWm~~

CORE ALLOCATOR

c~ ir—Que~~ : The Demand

A l l TASK s aw~~1 t r n q c o r e a l loca t ion a r e l i n k e d
t o g e t h e r v i a t h e i r . T P R I O and . T M E M c e l l s to f o r m t h e
C o r e — c .u eu e . A q u e u e — e n t r y c o n s i s t s of ce l l s . T P R I O ,
. T M E M and . T LA L f r o m each l i n k e d TASK. Each e n t r y in
the q u e u e s p e c i f i e s t h e pr i o r i t y of t he demand
(. T P R I O) , t he r e q u i r e d c o r e s i ze f o r t he K e y w o r d
P r o c e s s o r d e s i g n a t e d by t he TASK (. T M E M) and an
a l l o c a t i o n bypass c o u n t (. T L A L) , w h i c h is e x p l a i n e d
l a t e r . The q u e u e e n t r i e s a r e l i n k e d by demand pr i o r i t y
such that the priority sequence is descending when
following the thread pointers in .TMEM (called the
forwa rd direction) and ascending when following the
t h r e a d p o i n t e r s in .TPRI O (c a l l e d th e b a c k w a r d
di rection).

D u r ing c e r t a i n phases of a l l o c a t i o n it is
necessa ry to know the logical Q-index of t~ e Core—Queu eent r ies so tha t an e x p l i c i t compa r ison of th e i r o rde r s
can be made . The logica l Q—index of an entry is its
posi tion within the Core—Queue relative to the forward
q u e u e p o i n t e r s. T~ds is an implici t relationship since
the chosen queue construction means Lhe queue entries
a r e th r eade d toge the r by l i n k poin te r s to fo r m t he
q u e u e . The l o g i c a l Q — i n d e x is f o u n d by c o u n t i n g t h e
number of entries linked from the base of the
C o r e — Q u e u e (. E C O R Q) up t h r o u g h t h e e n t r y in q u e s t i o n ,
in t he f o r w a r d d i r e c t i o n . Because of t h e m e t h o d used to
d e t e r m i n e the l o g i c a l Q — i n d e x of an e n t r y , i t is
a l t e r n a t e l y c a l l e d the e n t r y ’ s ‘ Q — d e p t h ’ .

R e s o u r c e S e l e c t i o n

R e s o u r c e s e l e c t i o n is the s e l e c t i o n of an
available cor e resource from the Cor e-Map or a swap
resource from the Dispatche r ‘s—Queue. The c r i t e r i a f o r
resource selection is dependent r~pon t he
d e m a n d/ r e s o u r c e s e l e c t i o n o r d e r . For demand a l l o c a t i o n ,
r e s o u r c e s e l e c t i o n is ‘b e s t — f i t ’ , i . e . , t h e se lec ted
availab i ’ core resourc e is the smallest available that
satisfies the s e l e c t e d d e m a n d . For r e s o u r c e a l l o c a t i o n
t h e s e l e c t i o n m e t h o d is c i r c u m s t a n t i a l . T h i s is b est
e x h ib i t e d when t he a v a i l a b l e r e s o u r c e is to be c r e a t e d
by swapp i n g — o u t an in—core Keyword Processor and

18. 3

~

- — - - - -—- --- -~~- --‘


~~~~~~~--~~~~- - --~~— --~~~~~~~---- — 
— - - - -  ___

COR E ALLOCA TOR

c o m b i n i n g  th e  a d j a c e n t  c o r e  ho les  (if any ) wi th the
swap—t ree d core. In this case the r esource is
implicitly selec ted according to the swap—elig i b i l i t y
of some K e y w o r d  P r o c e s s o r .

Demand Se l ec t i on :  Bypas s/No—pass  Logic

Demand Selection is the selection of a particular
core demand from the Core—Queue. It is a design
objective to make demand selection priority dependent.

Since  t he  C o r e — Q u e u e  o b s e r v e s  p r i o r i t i e s, i.e.,
its entries are priority linked to the queue , priority
demand selection simpl y results in the sequential
selec t ion of demands , sta r t i n g  w i t h  the h i g h  p r i o r i t y
tai l  of the q u e u e .  R ig i d  a d h e r e n c e  to such a selec t ion
method would result in a p r e — e m p t i v e  a l l o c a t i o n
p r o c e d u r e .  Th i s  is undes i r able  because  poor core
utiliza tion is a likely side effect.

Bypass  l o g i c  is employed in demand s e l ec t ion  to
a l l o w  the  C o r e  allocator to pass over large core demand
TASKs w i t h i n  the  C o r e — Q u e u e  f o r  w h i c h  it is u n a b l e  to
f i n d  s u f f i c i e n t  core , and to a s s i g n  c o r e  to s m a l l e r
demand , lower prio rity TASKs.

Though bypass logic is a batching princ iple in
that it attempts to maximize resou rce utilization and
t h r o u g h p u t , i t s  n e c e s s i t y  in a c o m p r o m i s e d  i n t e r a c t i v e
env ironment with limited resources is deemed both
reasonable and necessa ry.

Nega t ing  bypass logic is no—pass logic. This is
r equi r ed to e n s u r e  t h a t  the  h i g h  c o r e  d e m a n d  TASK w i l l
even tu a l l y he b rought into core. Bypass/no—pass
dec i s i ons  depend on the b ypas s c o u n t  assign ed to a TASK
and consequently its Core—Queue entry when it is linked
to the queue. This count is presently obtained from the
demand associa ted Keyword Processor Profile.

The bypass coun t repre sents the number of t imes a
TASK can he passed ove r by the Core Allocat o r before it

1 8 . 4  

_ _ _ _



CORE ALLOCATOR

stops the Allocator from selecting lower priority
demands . This coun t is decremented by one every time
core is allocated to a lowe r p r i o r i t y  demand  in the
Core—Queue until the bypass count has runout. A TASK or
Core—Queue entry whose bypass count has runout (is
z e r o )  is c a l l e d  a no—pass  s ince  i t  is l o g i c a l ly t r e a t e d
as the end of the queue. A no—pass r emains  u n t i l  it is
allocated its requited core.

It is possible for more than one no—pass to be
presen t  in  t he  C o r e — Q u e u e  a t  the  same t i m e .  For t h i s
reason no—pass TASKs are linked together in descending
pr i o r i t y  sequence v i a  the  .TPAD ce l l  w i t h i n  the  no—pass
TASKs. A poin ter to the highest priority no—pass TASK
along with its Core—Queue depth is maintained in the
E x e c u t i v e  C o m m u n i c a t i o n  Reg ion  cell .ENPQD.

Bypass/ no—pass  logic  does not  a l t e r  the  s e q u e n t i a l
demand selection , it o n l y  c o n d i t i o n s  the  p r i o r i t y
nature of selection so that it is possible to ‘go
a r o u n d ’ a demand  t h a t  can ’ t be s a t i s f i e d, r a t h e r  t h a n
h a v i n g  to stop . I t  is w o r t h  n o t i n g  t h a t  by s e t t i n g  a l l
bypass  c o u n t s  to z e r o  t he  by p a s s/n o — p a s s  logic  is
f u n c t i o n a l ly de sengaged , t h u s  r e s t o r i n g  t h e  C o r e
A l l o c a t o r  to p r i o r i t y  p r e — e m p t i v e  demand  s e l e c t i o n .

N o r m a l l y  when a l l o c a t i o n  is a t t e m p t e d , t he
a l l o c a t o r  s i f t s  the  C o r e — Q u e u e  up t h r o u g h  the h i g h e s t
p r i o r i t y  no—pass  e n t r y ;  h o w e v e r  , when  a new demand  is
l i n k e d  to the  C o r e — Q u e u e , bypass logic  makes  i t
pos s ib l e  to l o g i c a l l y  s h i f t  the  queue  by e x a m i n i n g
c e r t a i n  a l l o c a t i o n  c o n t r o l s  w h i c h  a r e  d e s c r i b e d  l a t e r .
In  t h i s  case the  q u e u e  need not  be p h y s i c a l l y  s e r v i c e d
s ince  the  c o n t r o l s  a r e  s u f f i c i e n t  to g u a r a n t e e  t h a t
a l l o c a t i o n  to the  p r e c e d i n g  old demands  w o u l d  not  be
p o s s i b l e .  A new d e m a n d  t h a t  is selected in t h i s  m a n n e r
is t e r m e d  ‘Q — el i g i b l e ’ .

Demand R e s o u r c e  A s s ign m e n t

Demand  r e s o u r c e  a s s i g n m e n t  c on s i s t s  of c o r e — h o l e
p o s i t i o n  a s s i g n m e n t  and cor e — h o l e  a s s i g n m e n t  in t h a t
o r d e r .  C o r e — h o l e  p o s i t i o n  a s s i g n m e n t  r e f e r s  to w h e r e  in
the  s e l e c t e d , a v a i l a b l e  c o r e — h o l e  t h e  r e q u e s t e d  cor e is

18 .5

~ 

-—~~~~~~- -~~~~~~~~~~- - - -----~~~~~~~— —-- -~~~~~~~~~~~~~~~~~ 

_ _ _
~
__~J



-~~~~~~~—----— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

CORE ALLOCATOR

to be pos i t i oned .

For demand allocation the selected resource is the
best fit of all availables. However , even with a
best—fit it is likely that the selected resource will
be larger than the size of the demand . In this case the
demand is positioned at the top of the hole if the
Core—Map entry describing the available resource is the
first base map entry or lies in a TASK that is not
eligible for swap. If the map entry lies in a TASK that
is e l i g i b l e  fo r  swap, the demand is positioned at the
bo t tom of the available core—hole. This procedure
pr even ts  t he  f r e e  c o r e — h o l e  c r ea t ed  by a swap—out  f r o m
becoming fragmented since any unused space in the
available hole continues to be described by the
previous map entry. Thus the demand is positioned at
t he  top of t he  ho le  if the p r evious  ( lower  add res s)
core par tition is not a ‘swapable ’ r e s o u r c e , and a t  t he
bo t tom of t he  ho le  if the  p r e v i o u s  is ‘ swapable ’ .

For swap r e s o u r c e  a l l o c a t i o n , the  swap hole  is
combined  w i t h  the f r e e  core—holes above and below it
and the  demand  is pos i t ioned  at  the  top of the
r e s u l t a n t  c o r e — h o l e .

C o r e — h o l e  a s s i g n m e n t  is the  a c tu a l  r e s o u r c e  to
demand a s s i g n m e n t .  T h i s  is accompl i shed  by u n l i n k i n g
the  demand  f r o m  the  C o r e — Q u e u e , b u i l d i n g  a C o r e — M a p
e n t r y  to d e s c r i b e  the  c o r e  p a r t i t i o n  be ing  a l l o c a t e d
i n c l u d i n g  any  f r e e  space be low the  demand , and l i n k i n g
the  new e n t r y  ( a n d  t he  TASK in  w h i c h  i t  l i es)  i nto  the
Cor e— M a p .

C or e —
~~~p A nomaj y D u r i~ 9 Sw~ p Re so u r c e A l l o  cat  ion

W i t h i n t he d e m a n d r e s o ur c e a s s i g n m e n t phase of
swap r e s o u r c e a l l o c a t i o n , i t is d e s i r a b l e to p o s i t i o n
t~ie s e l ec t ed d e m a n d a~ t he top of t h e swap h o l e .
B e c a use t h e f r e e ho l e above (l o w e r a d d r e s s) t he swap
h o l e p r o p e r c o u l d g r o w w h i l e t he swap h o l e is b e i n g
f r e e d — u p , i . e . , w h i l e the K e y w o r d Processo r occupy in g
t he h o l e is b e i n g s w a p p e d — o u t , a c t u a l r e s o u r c e
a s s i g n m e n t is not mad - to t h e demand u n t i l t h e swap
h o l e is f r e e . I f t h e d e m a n d is l a r g e r t h a n t h e s ize’ of

18.6

- - - _ _ - -- - - --- --- --— - - -- — ---_--— _ _ _ _ _

_ _- - --
-~~ -

CORE ALLOCATOR

the swap hole proper , it is unclear how much of the
f r e e c o r e — h o l e (i f a n y) below the swap hole w i l l be
needed.

Th i s p r o b l e m is reso lved d u r i n g the i n i t ia l
a l l o c a t i o n (b e f o r e the swap hole is f r ee d up) by
c o m b i n i n g the swap hole w i t h the f r e e ho les above and
below it via the Core—Map entry desc r ib ing the swap
hole and specifying that there is no free hole at the
end of this par tition. The map anomaly occurs here
since the size of the combined core—holes could be
g r e a t e r t h a n d e m a n d . This means t h e r e m i g h t be a f r e e
hole of unknown size at the end of the partition.

The map anomaly is rectified when the swap hole
has been f r e e d up and t r u e a s s i g n m e n t can be made to
the demand . At t h i s t ime the swap hole is combined w i t h
the f r e e ho le above it (i f a n y) and the C o r e — M a p e n t r y
is a d j u s t e d to r e f l e c t the a c t u a l hole s ize at the end
of the p a r t i t i o n . Though the f r e e hole at the bottom of
the par tition is lost during swap—out , t h i s m e t h o d
ensures that the largest possible hole will be created .

CORE AL LOCATO R LOGIC

I n t r o d u c t ion

The Core Allocator is a modular structure
consisting of allocation routines , such as the
d e m a n d/ r e s o u r c e s e l e c t i o n and a s s i g n m e n t p r o c e d u r e s ,
and t he n e c e s s a r y s u p p o r t r o u t i n e s , such as l i n k i n u or
unlinking a demand to the Core—Queue , upda te bypass
coun ts , r e l e a s e co r e , mar - k c o r e e l i g i b l e f o r swap, load
Keyword Pr ocessors into core , e t c . The a l l o c a t ion
rou tines represent different selection criteria that
mee t specific needs and respond to key events , a l l in
order to minimi ze response time and allocation
o v e r h e a d . The s u p p o r t r o u t i n e s a r e e f f e c t i v e l y
in d e p e n d e n t of the d i f f e r e n t a l l o c a t i o n m e t h o d s and
c O f l s e q u e r) t l y a r e consi de r e d ‘ common ’ routi nes.

Ex - o u t ion Phases

18 .7

CORE ALLOCATOR

The Core Allocator has been designed to alloca te
core and thus to execute at main and courtesy—call
levels. Main—level allocation is dedicated to servicing
all demands in the Core—Queue , up to the h i g h e s t
priori ty no—pass , in priority order. Courtesy—call
allocation is dedicated to an event selected demand or
r e s o u r c e such as a newly rece ived demand or a f r e e
core—hole created by a swap—out.

In addition to multi—level execution , the Core
Allocator allows the selective interruption of
main—level allocation by courtesy—call allocation. This
is permitted so that the Core Allocator will be as
respons ive as posible. Of course , demand p r i o r i t i e s a r e
still observed .

Phase Interruption

Interruption creates pr ocedural problems and
constraints on the allocator ’s routines and the
handling of the Core—Queue , Core— Map and control
information. In particular , common r ou t ines m u s t be
effectively r eentrant~ queue , map , and cont r ol
informa tion must be effectivel y ga ted ; and the
cou r tesy—call allocations must be interlaced with the
main—level allocations so their efforts are compatible
and w e l l — d e f i n e d .

The f i r s t two p r o b l e m s a r e r e s o l v e d by i n h i b i t i n g
the code in the s u p p o r t r o u t i n e s ~ od a n y m a i n — l e v e l
code t h a t alters the Core—Queue , Co r e—Map or control
i n f or m a t i o n . I n h i b i t i n g is f u n c t i o n a l l y e q u i v a l e n t to
p r o g r a m m e d g a t i ng . F u r t h e r m o r e , ga t e d code can be
h a n d l e d as reentrant code.

The c o u r t e s y — c a l l , m a i n — l e v e l i n t e r l a c e is
a c c o m p l i s h e d by i n t e r l a c e c o n t r o l s (d e s c r i b e d l a t e r)
and by j u d i c i o u s l y i n h i b i t i n g the a l l o cat i o n p r o p e r
r o u t i n e s . I n t e r r u p t b r e a t h e r s a r e strategically
p o s i t i o n e d w i t h i n t he se r o ut ines to a l l o w the
i n t e r r u p t i o n s . At these points , the m a i n — l e v e l
a l l o c a t o r ‘ s s t a t e is k n o w n and w e l l — d e f i n e d b y t h e
i n t e r lace c o n t r o l s ; f u rt h e r m o r e , t h e int er r u p t
b r e a t h e r s are chosen to be suf fic ie ntl y clo se ,

18. 8

—— - -
~~~~ -— - - — -~~ -- -~~~~~~~~~ - — - — -  — - --- ---- -- - --- - ——



CORE ALLOCATO R

execution time—wise , so a l o c k u p  f a u l t  w i l l  not occu r
because of the inhibited code.

Allocation Controls

Allocation controls are classified by usage into
primary controls that di rectly control allocation
initiation or govern demand/resource selection
c r i t e r i a , secondary  c o n t r o l s  tha t  suppor t  the
allocation process , and interlace con trols that
coordinate independent allocation phases. Several
controls are necessarily multi—type .

P r i m a r y  C o n t r o l s

The objectives of pr ima ry controls and their
associated logic are to eliminate unnecessary
alloca tion passes and to streamline demand/r esource
selection. These objectives are met via the
Core—Queue/Core—Map Fence and the Static Dampers.

Core—Queue/Core—~~p Fence

In  i ts  s imples t  fo r m , allocation consists of the
selection of a demand or r esource followed by a s e r i a l
scan of available resources or cur rent demands in order
to selec t one , subject to some criteria such as
first—fit , best—fit , etc. This procedure would be
repeated for each demand or resource . During design of
t he  a l l o c a t o r  i t  was  c o n c l u d e d  t h a t  the  t i m e  by a
strai qht forward allocation method , as above , woul d
r e s u l t  in an u n a c c e p t a b l e  o v e r h e a d  bu r d e n  on th e
Execu t ive , even with a small numbe r of demands. This
c o n c l u s i o n  was based p r i m a r i l y on t h e  e x p e c t e d
f r e q u e n c y  and d e s i r e d  speed of t he  a l l o c a t i o n  p r o c e s s .

The Core— Queue /Core—Ma p Fence was devised to
mi nimize allocation and selection passes. The fence is
an essential allocation control that functions as a
s e l e c t i o n  f i l t e r  f o r  bo th  d e m a n d s  and r e s o u r c e s , a l o n q
wi th other uses described later .

18.9 



1’

CORE ALLOCATOR

To give meanin g to the fence , the illus tr a t ion
below depicts the sets of demands and available
r esou r ces p lot~~ed on a scale of app ropr iate resource
u n i t s .

A v a i l a b l e  R e s o u r c e s )  ( R e s o u r c e  D e m a n d s

Low ( R e s o u r c e  U n i t s  Sca le)  H i g h

Wheneve r the set of demands meets the set of
avai la b les , alloca tion would be possible. However ,
c o n s i d e r a b le ove r head can be spent  in de te rm i ny when  o r
if this condition exists. For example in the simple
f o r m  of a l l o c a t i o n  g i v e n  above , this de terminatio n can
o n l y  be made by e x a m i n i n g  each e l e m e n t  in one set
a g a i n s t  a l l  t h e  e l e m e n t s  in t h e  o t h e r  se t .  The pr ob lem
t h e n  is to m i n i m i z e  t h e  a l l o c a t o r  ‘ s o v e r h e a d  by
s i m p l i f y i n g  t h i s  f e a s i b i l i t y  d e t e r m i n a t i o n .  T h i s  is
a c c o m p l i s h e d  v i a  t he  C o r e — Q u e u e / C o r e — M a p  Fence .

The C o r e — Q u e u e / C o r e — M a p  Fence is a l o g i c a l  b a r r i e r
t h a t  l i e s  be tween  the  set of a v a i l a b l e s  and  t he  set of
d e m a n d s , s u b j e c t  to t h e  c o n s t r a i n t  t h a t :

Avai lab le Resources  Resour ce Dem ands
Low (Reso u r c e  U n i ts Sca le ) H i gh

w h e r e  t h e  f e n c e  is l o c a t e d  a t  sy m b o l  . F Q M I N  i n  t h e
C o m m u n i c a t i o n  R e g i o n .

When a demand vrolate s the c o r r s t i  a i n t  by cr  o s si n q
over t h e  f e n c e  ( < )  , either a d emand  a l l o ca t i o n  a t t e m p t
is i n d i c a t e d  or  , i t  a l  loca t  ion is p r o g r e s s , t h e  d e m a n d
is s e l e c t a bl e  f o r  f u r t h e r  c o n s t d e r a t i c n .  C o n v e r s e l y ,
w h e n  an a v a i l a b l e  r e s o u r c e  c r o s s e s  over  t h e  f e n c e  ( > )

e ; o u r  cc a l l o c a t i o n  is m d  i c i t e d  or this esour cc is
s e l e c t a b l e .  E i t h e r  way  t he  I ence  a l lows a r e a d y che k
of a I loca t  ion fea s  il -  i 1 i t y ,  thou gh by no m e a n s  does i t
g u a r  -in t ee  i t s  su c c e s s .

The f e n c e  is i n i t i a l i z e d  d i r  r u g  t h e  Ex - c u t i v e ’ s
i n i t i - T i l i z a t i o n  to the si,~e of  a s s iq n e d , s w a p a b - l e  c o r e
a 1 loc i  t - I  to h . -  E x e c u t i v e .  D u n  i ng  ~‘x e cu t  ion , t i r e  fence
is •il ju st -d ~n t h r e c -  p o s s i b le  w -i~’s:

1 8 . 1 0  

~~~~~~~~ ---~~~~~~~~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- - 


-~~~~~

COR E ALLOCATOR

1. ~uien a demand crosses the fence but cannot be
allocated core , the fence is set to the demand
size minus one resou r ce unit ,

2. When an available resource crosses the fence ,
the fence is set to the available resource
size , or

3. During main—level demand allocation , the fence
is set to the larq c— st available hole size if
there are four or mor e demands elig ible for
al loca t ion .

A n addi t i o n a l i n t e r p r e ta t ion tha t s h ou l d be
applied to the fence arises from the above methods of
ad jus tme n ’ . Du r ing dem a nd alloca t ion , t h e f e n c e is
tr ea ted as an uppe r bound on the larges t avai lab le
core—hole and is used as a demand selection filter
Notice that the first adjustment method suppor ts this
view because it tends to r efine the upper bound
pr ope rt y. Si m i l a r l y, resource allocation treats the
fence as a lower bound on the smallest demand in the
Co r e—Queue. In this case the lower bound pr opert y rs
ref i ned by fence adjustments.

Because demand alloca t ion is the mos t preva len t
t ype , main—level ‘swap ’ resource alloca tion uses the
fence as a starting bond only. Subsequent adjustments
th at w ould normally be applied to the fence a r e
actuall y applied to a tr ue demand lower bound int erna l
to the resource allocation routine. This is done to
pres er ve the ava i la b le r esource upper bound proper ty
that re su lt~ - l f rom the demand allocation pass.

I n sum m a r y , the fence i nter pr etation is biased
towards thc’ rpp c - r re source bound p r o p e r t y , w i t h the
r~lat lOn

J A v a i l i l - l e < C o n e — Q r r u e / C or e — M a p
Cor e-Ma~ Co r c-Hole Si zesj Fence

il.~ ryS be i nq t r re. How -y r , i t is p o s s i b le f o r a d r - s a n d
to t e r T i p o r a r il - i cross the fence , since it will only
i l r .- r the fence af t n an unsu ccr ssful all o cat io n

18. 11

-- — --
~~~~~~~



- - -—~~~~~~~~~~~~~~~~~~ — —-‘~~~-‘ —---- ‘-~--- _ _ _ _ _ _ _

CORE ALLOCATOR

attempt.

18. 1 2 

-~~~~ -- - -- -~~ -- -  --- - 



CORE ALLOCATOR

Dampers: General

The Core Allocator can execute in virtuall y
asynchronous allocation phases because it is both event
driven and event cued . The latter case occurs by design
at the main—level in order to centralize global calls
to the allocator and to eliminate untimel y allocation
passes.

The combination of cued and immediate allocator
enables requires the periodic testing for the presence
of a cued enable and the gating of some allocation
functions until the enable is activated . The latter
requirement is necessary to protect the effect of the
event on the gross allocation state.

The statis dampers were devised to control and
interlace the external driven and cued calls to the
allocation processes and to etim inae main—level
allocation passes , while the gross demand/ resource
state remains static , by signaling when a ‘favorable ’
change of state has occu rred.

Dampers: Meaning

There are two dampers at .EDAMP , each occupying
one cell. These are called the Static Core—Map Damper
and the Static Swap Damper in that order . The dampers
are two—valued with t.e damping or ‘on ’ s t a t e
represent ed by a non—zero value , w h i c h  is the I C & I  of
who last turned the damper on.

The Static Core— Map Damper summarizes the
rel a tionship between the set of demands and se t of
availabl e (but not swapable) core—holes by means of the
Cor e—Queue/Cor e-Map Fence. When t he  d a m p e r  is on , c o r e
assigned to the Ex ecutive is comp ac t (packed tigh t ) .
This means no current demand in the Core—Queue up to
and including the highest pr ior ity no—pass wiU fit in
any curren t free core—hol e described by the Core—Map
given the current hole di stribution. This is the basic
interpretation of the damper . When the damper ’s state
is tes ted , the question being asked is whether or not

18 .13



CORE ALLOCATOR

c o r e  is compac t , o r whe the r o r not a logical
consequence of either compact allocation state is t rue.
The dampe r is particularly effective when the
init iation of deman d al locat ion is in doubt. In this
case an alloca tion attempt would be fruitless if the
dampe r- is on since free core is compact.

The events associa ted with a possible change in
the dampe r ‘s s ta te a r e the r elease of core , the
linking/unli nking of a demand to/from the Core—Queue ,
or the completion of demand allocation. Specificall y,
the damper is turned off whenever a core—hole crosses
the Core—Queue/Core—Map Fence , a demand c ross es t r e
fence and no attemp t is made to allocate core to it , or
the highest priority no—pass is unlinked from the
Core—Queue ; the damper is turned on when main—level
demand a l loca t ion comp lete; i.e., has serviced the
Core—Queue up to the highest priority no—pass.

This damper is gene rally altered by Core— Map
changes , so a static Core—Map results in a static
damper state. Because of this relationship, the dampe r
is called the Static Core—Map Damper.

The Static Swap Damper summarizes the relationshi p
between the set of demands and the set of ‘swapable ’
core—holes , also by means of the Core—Queue/Core—Map
Fence. When this damper is on , co r e assigned to the
Executive is compact up to any ‘swapable ’ holes and
their adjacent free core—holes. This is the basic
in terpretation of the swap damper . Even though this
dampe r ’s meaning and func t ion a r e simil a r to the S tat ic
Co r e—Map Damper , the swap damper is required because
‘swapable ’ co r e r esources  a r e  no t desc r ihed by the
Co r e—Map.

The swap damper ’s stare is affected by t i c -  r e l e a se
of core and the linki n g-unlink i n g of a demand t o ; f r o m
the Cot c—Queue similar to the Cot c—Map damper . In
ad dit ron ,the state can he a l t e r e d  by d e s i g n a t i n g  an
assigned area of cone as ‘swapa b le ’ or by ‘swap ’
esou r ce ii location. Spec if ic il ly, tie:- dampen is tu r ned
I wheneve r a ‘ SWa p -od e ’ co r e—hole includin g adjacent

In ce holes cr osses r he Cot e—Qu . ue/Coi e—N p 1-ence
demand all ocation to a newly link ed demand is not

1 ~~~. 1 4



COR E ALLOC ATOR

possible or unsuccessful and swap r e s o u r c e  alloca t ion
is not attempted , or the highes t pr iority no—pass is
unlinked from the Core—Queue; the damper is turned on
when main—level resource allocation is initiated .

For reasons analogous to the Static Core—Map
Damper ’s rela tionship to the Core—Map, the Sta t ic Swap
Damper generally mir r o r s  any periods during which
‘swapable ’ cor-e resources r emain static.

Both  d a m p e r s  a r e  set on i f  the r e a re no demands
p r e s e n t , that is the Core queue is empty, since core
assigned to the Executive is considered to be compact
In this case.

Damper ~~~~ e: Gene r al

The static dampers are concerned with the gross
al loca t ion pr oblem , i.e. , the se ts of demands and
a v a i l a b l e s  and th e i r  r e l a t i o n s h i p.  In th i s  c o n t e x t the
dampers are used to flag when allocation should be
initia ted and to gate the execution of selected
alloca tion processes when an external event creates an
alloca tion condition that must be logicall y preserved
u n t i l  t he  a l l o c a t o r ’ s r e s p o n s e  is a c t i v a t e d . -

The m a i n — l e v e l  C o r e  A l l o c a t o r  is invoked  w h e n  t h e
dampers are off. Recall that an allocation pass throuyh
the Core—Queue would be futile when the dampers are on
sin c e  c o r e  is compac t  up  to both f r e e  and ‘ swapab l e ’
holes. Specific dampe r usage is described in the
alloca tor phase overviews that follow.

Nutice that for any specific allocation case (when
a demand or r e s o u r c e  has been selec ted ), the dampers
a r e  m e a n i n q f u l  in  d e c i d i n g  w h e t h e r  to a t t e m p t  the
a l l o c a t i o n , hut they a r e  meaningless wi th i n the
alloca tion process itself because they have no bear ing
on demand/ resource selection.

The l a s t  d a m p e r  comment  is a word of caution.
Since  the dampers d i r ec t l y effec t allocator initiation ,

18 . 15

_  _ _  _ _



- --- -
~~~~~~~~

~~
-

~~~~
--

~~~--~~~~
- ‘

CO RE ALLOC ATO R

t h e d a m p e r s e t t i n g s m a st be ca r efully maintained . If
t h e y a r e i n a c c u r a t e t h e core Allocator will suffer from
an e x c e s siv e n u m b e r of f u t i l e a l l o c a t i o n passes or a
c r ippling lack of a l loca t ion passes.

Main—Level Allocation

M a i n — l e v e l c o r e a l l o c a t i o n i n c l u d e s both demand
and swap r esource allocation phases. Demand selection
in both phases is made from the whole Core-Queue up to
t he h i g h e s t pr i o r i t y n o — p a s s .

I f bo th a l l o c a t ion me thods a r e to be i n it ia ted ,
demand al loca t ion always precedes the r esou r ce
alloca tion. This means that free core will be filled
before any swap—outs are i n i t i a t e d . M a i n — l e v e l
al loca t ion phases are so o rde r ed because swapping is
considered to be a d ras t ic alloca t ion measure.

Demand Al loca t ion Phase

The demand a l l o c a t i o n phase is enab led by the
Dispatcher every time it completes its queue service.
The demand allo cator first queries the Static Core—Map
Damper to see if free core is compact. If t h e damper is
on , the demand allocator enables the swap resource
phase by passing the processor to it. If the damper is
o f f , free core is not compact; therefore , demand
a l l o c a t i o n is in o r d e r .

Pr ior t a startin g demand selection , a Core—Queue
selection depth tally is initialized to the Core—Queue
d e p t h of t he h i g h e s t p r i o n i t y n o — p a s s i f one is p r e s e n t
or z e r o i f t h e r e is n o n e . Th i s t a l l y is used i n demand
s e l e c t i o n to i n d i c a t e t he lo g i c a l end of the
Con e — Q u e u e .

The C o r e — Q u e u e / C o r e — M a p Fence is t h e n used as a
demand selec tion filter such that a demand is
s e l e c tab l e if it crosses (is <) the fence . Not ice t h a t
the f ence is b e i n g used as an uppe r h o u n d on t h e
la rgest free core hole. If a demand is selected , the

18.16

C O R E ALLOCATO R

Core—Map is searched for the best—fit free core—hole.
This search is the resource selection .

If no fit is found , the fence is adjusted so that
the selected demand does not c r o s s i t . An i n t e r r u p t
b r e a t h is then t a k e n to a l l o w cour t e s y — c a l l
i n t e r r u p t i o n s and demand selection is restored with the
firs t demand following the pr eviously selected demand.

If a bes t—fit core—hole is found , the hole is
assigned to the demand and the designated Keyword
Processor ’s core load is ini tiated. During the load the
size of the demand is saved in .TPAD lower if its
associated TASK since the Core—Map entry built by
demand ! resource assignment occupies the same TASK
cells that the Core—Queue entry describing the demand
used . The demand size is used to build the BAR af ter
the load successfull completes.

Bypass counts of a-Il demands skipped over or
preceding the selected deman d are then updated . If the
upda te forces a no—pass , the demand al loca t ion phase is
terminated and swap r e s o u r c e al loca t ion is enabled ;
o therwise , an interrup t breath is taken to allow
cour tesy—call interruptions , fo l lowed by the resump t ion
of demand selec tion.

Demand alloca tion terminates when either the
C o r e — Q u e u e s e l e c t i o n d e p t h t a l y r u n s — o u t or t he end of
t he C o r e — Q u e u e is d e t e c t e d . Pr ior to e n a b l i n g t h e swap
r e s o u r c e phase , the Static Con e-Map Damper is set on.
This mus t be done since there are no eligible demands
that will fit in any of the r emaining free core—holes ,
i .e. , f r ee co r e is compac t . Not ice tha t the
Core—Queue/Core—Map fenc e has been adjusted as a
resource upper bound during this allocation phase.

Secondary COntrOlS Associated w i t h Demand All ocation

Our inq initialization the Core Allocator ‘s
main—level execu tion phase cell (.EAIXP) is set to one.
This cell is a courtesy—call/main—level inter lace
control. The r i p p e r half of the cell is used by the

18.17

CORE ALLOCATOR

cou r tesy—call allocation routines to maintain a
negative count of no—pass ’s eithe r linked to the
C o r e - Q u e u e or f o r ce d by bypass coun t upda t e s d u r i n g t he
i n t e r r u p t i o n of t he m a i n — l e v e l demand allocator . This
c o u n t is e f fec t ively ze r oed at the completion of the
m a i n — l e v e l demand phase . The lower h a l f of t h i s c e l l
contains the main—level execu tion phase setting . This
is zero when the main—level allocator is not enabled ,
one where main—lev el demand allocation is enabled , and
two when main—level ‘swap ’ r esource alloca t ion is
enab led.

W h e n e v e r a demand is se lec ted , the al locato r ‘s
C o r e — Q u e u e p o s i t i o n and C o r e — Q u e u e dep th t a l l y a r e
saved in c e l l .EACQS f o r r e s u m p t i o n of the demand
s e l e c t i o n . The C o r e — Q u e u e pos i t i on is a p o i n t e r to the
s e l e c t e d d e m a n d , in p a r t i c u l a r the C o r e — Q u e u e e n tr y
i t s el f . The C o r e — Q u e u e s e l e c t i o n dep th tally has two
poss ’hle interpretations. If the t a l l y is p o s i t i v e, it
r e p r e s e n t s t h e r e m a i n i n g n u m b e r of demands e l i g i b l e f o r -
selec tion. This count includes the highest priority
n o — p a s s . I f t he t a l l y is n e g a t i v e , i t r e p r e s e n t s t he
n e g a t i v e C o r e — Q u e u e depth of the selected demand.

One o the r - c e l l set as a r esul t of a successful
s ele c t i o n is the m a i n — l e v e l demand a l l o c a t o r ’ s c u r r e n t
Cor e — Q u eu e dep th (. E N U Q I)) . Thi s is the dep th of the
s e l e c t e d demand. The depth is found by subt racting the
t a l l y in .EACQ S f r o m the C o r e — Q u e u e d e p t h of the
h i g h e s t p r i or i t ” n o — p a s s w h i c h is k e p t in . E N P Q D lower .
The l a t t e r d e p t h is z e r o i f t h e r e a r e no no—pass ’ s. The
a l l o c a t o r ’ s C o r e — Q u e u e d e p t h is used f o r c o u r t e s y — c a l l
main—level interlace.

Sw~ p R e s o u r c e A l l o c a t i o n Phase

The swap r e s o u r c e a l l o c a ti o r phase is enabled by
t h r - ’ m a i n — l e v e l demand a l l o c a t i o n p h a s e . The swap
allocato r first checks the Static Swap Dampen to see if
core is compact up r o swap~ b le h o l e s . I f the damper is
on , core is compact , so con trol is returned to the
D i s p a t c h e r . O t h e r w i s e t h e d a m p e r is set on and t h e swap
a l l o c ato r c h e c k s .E SWP~ fo r a nonzero value to
det ermine if there are any swapahie core—holes. If
the r e a r e none , control is returned to t h e D i s p a t c h e r ,

18 .18

- “-- - -~~~--.---- --- --- --

CORE ALLOC ATOR

otherwise , the swap allocator initializes itself.

Prior to searching for a swapable hole , an
internal resource selection filter is set to the
Cor e—Queue/Core--Map Fence size. This filter is
maintained internall y by the swap allocator as a lowe r
bound on the smallest demand so tha t the fence will
remain the best uppe r bound on the available core
resources.

The D i s p a t c h e r ’s—Queue is then searched for the
lowest priority Keyword Processor that is eligible for
swap. This search is the resource selection since the
TASK associated with the swap—eligible Keyword
Processor contains the Core—Map entry that descri bes
the swap hole.

When a swap hole has been found , the swap hole
size is combined with the size of any adjacent free
core—holes. The total size is then compared against the
internal resource selection filte r to see if it is
potentially larger than the smallest demand. If the
size is not greater than the filter , resource selection
is resumed . O t h e r w i s e demand se lec t ion commences w i t h
the t o t a l swap ho l e s ize used as a selection filter
The Core—Queue is scanned from high to low p r i o r i t y .
All entr ies up to , and including, the highest pr iority
no—pass are considered in the scan. The demand
selection criteria is ‘first—fi t ’.

If no fit is found , the interna.l resource
selection fil ter is set to the total size of the
previously selected swap hole , an interrupt breath is
taken to allow courtesy—call inter ruptions , and
resource selection is restar ted .

If a fit is fou nd , an attempt to get a free
Swap—Map ent ry and sufficient swap—file space is made.
An~ unsuccessful at tempt r esults in an interrupt breath
and the resumption of resource selection. However , if a
map -~ntry and space are available , ini t ial r e s o u r c e
assig n m e n t is made to t he ~-e 1ected demand by a l t e r i n g
the Core—Map entry describing the swap hole to include
t h e a d j a c e n t f r e e c o r e — h o l e s . The t r u e LAL of t h e swap

18.19

CORE ALLOCAT OR

hole (tha t ~s the LAL of the K e y w o r d P ro cessor
occupying tI~~ .3wap hole) is saved in .TPAD lower of the
TASK desc r~~ -~ ng the swap resource because of the map
modificatio n , In addi tion , a pointer to the replacemen t
TASK is sa— -~~~~ in .TPAD upper of the TASK to be
s w a p p e d — o ut ~

Swap— c of the Keyword Processor occupy ing the
swap hole L t h e n i n i t i a t e d and the bypass counts of
those demancL which were skipped over are updated. Swap
allocation terminates if this bypass co unt update
forces a no—pass. Otherwise an interrupt breath is
taken and r esource selection is res tarted f rom the
pr eviousL y selected resource in the Dispatche r ’s—Queue.

Swap resource allocation terminates when either a
no—pass is forced or the resource selection search
detects the end of the Dispatcher ‘s—Queue . In either
case , control passes to the Dispatcher .

Second~~ y Con trols Associated w i t h Swap Resource
A l l o c a t i o n

T h e r e a r e two s e c o n d a r y con tr ols a f f e c t e d by
main—l evel r~wa p al locat ion. The fi r st is the Co r e
A l l o c a t o r ’ s e x e c u t i o n phase cell (.EAIXP) . This cell is
set to two at t he onse t of swap r e s o u r c e a l l o c a t i o n and
z e r o w h e n t h i s a l l o c a t i o n p h a s e is c o m p l e t e d .

The other cell aft -cted is the swap r esource
s e l e c t i o n ’ s d i s p a t c h e r ‘s—Queue position (.ESDQP) .
W h e n e v e r a r e s o u r c e is se lec ted , a p o i n t e r to t he n e x t
h iqher p r iority entry in the Dispatcher ‘s— Queue is
saved in t he u p p e r h a l f of t h i s c e l l . This pointer is
used f o r r e s u m p t i o n of t h e r e s o u r c e s e l e c t i o n ’ s scan of
t h e D i s p a t c h e r ’ s — Q u e u e and f o r c o u r t e s y — c a l l / m a i n — l e v e l
i n t e r l ace .

Each r ime a swap r e s o u r c e is s e l ec t ed , d e m a n d
s e l e c t i o n is s t a r t e d a t t h e b e g i n n i n g of t h e
Core—Queue. Interrupt breaths are positioned aft -n
demand se l ec t ion (successful or not) , hu t before
r e s u m p t i o n of r e s o u r c c - s e l e c t i o n . C o n s e q u e n t l y no

1 8 . 2 0

4

--- ~~~— -

CORE ALLOCATOR

Core—Queue position controls are required for
courtesy—call/main—level interlace as is the case for
demand allocation.

Courtesy—Call Allocation

There are two courtesy—calls in which core
allocation can take place. These are the courtesy—calls
at tached to the Transaction Scheduler ’s Intercom r ead
to TPE and the Keyword Processor swap—out I/O caused by
swap resource allocation.

New Demand Allocation

The first courtesy—call allocation is called ‘new
demand ’ allocation. This is concerned with a new
transaction ’s core demand. When the new demand is
priority linked into the Core—Queue , its allocat ion
eligibility relative to the Core—Queue is determined . A
demand—not—eligible return from the link rou tine
results in the suspension of this allocation attempt.
In t h i s case the demand w i l l have to be s e r v i c e d by the
main—level allocato r. If the demand is eligible for
further allocation consideration it is called
‘0—eligible ’ . In this case an attempt to allocate core
to t h e new demand m u s t be made because the l i n k r o u t i n e
adjusts the interlace controls under the assumption
t h a t such an a t t e m p t w i l l be made .

Demand alloca tion will be attempted if the
main—level allocator was in terrupted in its demand
phase or the Static Core—Map Damper is on and if the
new demand crosses the Core—Queue/Core—Map Fence.
Allocation is permi tted and necessary dur ing
in terruption of main—level demand allocation because
t h e ‘Q—elig ibili ty ’ of the demand implies that the
main—level allocato r ‘s queue posi t ion is pas t the new
demand . I f n o t h i n g is done an i n d e f i n i t e d e l a y in
allocation to this demand could result. Since the
Static Core—Map Damper will be set on at tine end of
main—level demand allocati on phase.

Mlocation is pe rmitted when the damper is on

18.21

COR E A L L OCA TOR

because f r e e c o r e is compact and ‘Q—eliqibility ’ in
t h i s case means the new demand ’ s pr iority is greate r
than that of any no—pass present in the Core—Queue.
When the damper is off no allocation attempt is made
since t h i s damper s t a t e impl ies t h a t a ‘ f a v o r a b l e ’
Co re—Map change has occurred. This change might be
sufficient to allow main—level allocation to a demand
whose priority is greater than that of the new demand.
Even though bypass logic would allow allocation to the
lat ter demand , it is a sense of ‘fa i r play ’ that
dicta tes the wait in this case.

Resource selection cri teria is best fit. If no
available r esource f i ts , the fence is adjusted so that
the new demand no longer crosses it. Otherwise having
successfu l ly selec ted a resou r ce , core assignment is
made , t h e t r a n s a c t i o n d e s i g n a t e d K e y w o r d Processor ’ s
c o r e— l o a d is i n i t i a t e d and t h e bypass c o u n t s of
higher—priori ty demands in the Core—Queue are updated .
If a no—pass is forced by the update , the upper half of
the main—level allocator ‘s execution phase cell
(.EAIXP) is decremented by one . Control is then
re turned to the Transaction Scheduler.

If demand alloca tion was not allowed or not
s u c c e s s f ul , swap a l l o c a t i o n is c o n s i d e r e d . The
main—level allocator ’s execution phase cell (.EAIXP) is
q u e r i e d to check if a n o — p a s s was f o r ced or l i n k e d
w i t h i n a c o u r t e sy — c a l l . I f a n e g a t i v e no—pass coun t
exists , t h e mc i n — l e v e . l a l l o c a t o r ’ s phase c h e c k s a r e
bypassed . O t h e r w i s e t h e m a i n — l e v e l ’ s phase is examined
as f o l l o w s .

If the main—level wa s interrupted in its demand
phase , t he S t a t i c Swap D a m p e r is t u r n e d o f f to f o r c e a
mai n—l evel swap allocation attempt. This is done
because swap allocati an w i t h i n t h e c o u r t e s y — c a l l c o u l d
t r e e z e — u p f r e e c o r e — h o l e s , m a k i n g t h e m i n a c ce s si b l e to
the main—level.

I f t n (- ma in— lev el wa.; in te r r upted in the swap
ph a;~~, t h e p o s i t ion of i t s ‘ sw-np ’ t esour ce select ion
w i t h i n t h e Di ~~p :n t e -h e r ‘ s — Q u e i - (. E SD QP) i s r ese t to t i n e
start of the lun e- . Thrs is lone so - ill . - w n p h o l e s w i l l
he r c—examined in 1 ight of t h e n w (leriland .

1 8. 2

- - -— ~~~~~~~~~~~~~ —-——- ~~—~~~~~---- —~~ -— -~ - - - - ~~~~~- - --

CORE ALLOCATOR

In eithe r case of main—level allocator
interruption, control is returned to the Tr ansaction
Scheduler.

At this time the Static Swap Damper is checked to
de termine if swapable core is compact. If it the damper
is o f f , indicating that it is not compact , a l l o c a t i o n
is suspended and c o n t r o l r e t u r n e d to the s c h e d u l e r .
Otherwise swap resource selection is initiated for the
new demand . Resource selection criteria is firs t—fit.
If a resou r ce is found , swap—out of the Keyword
Processor occupying the swap—hole is initiated and
bypass counts are upda ted . If a no—pass is forced , the
courtesy—call no—pass count in .EAIXP upper is
decr e rr i en ted by one.

Whe ther or not the swap allocation is successful ,
control is returned to the Transaction Scheduler.

Swap—Out Allocation

Swap—out courtesy—call allocation is concerned
with the free core hole created by a Keyword Pr ocessor
s w a p — o u t as a r e s u l t of swap r e s o u r c e a l l o c a t i o n . T h i s
core—hole requires special handling because it can be
t h e sum of n o n — c o n t i g u o u s f r e e c o r e — h o l e s p l u s p a r t of
the interve ning swap—hole.

The major complica t ion occurs when the Keywo r d
Processo r ’s swap—out cou r tesy—call inter rupts the
main—level in its demand phase. If the free hole
c rea ted by the swap—ou t is larger than any existing
hole , it is conceivable tha t a demand already rejected
by main—level dema nd selection could fit within this
h o l e . I f n o t h i n g is done , t h e passed over demand coul d
lose—out to a l o w e r p r i o r i t y d e m a n d ye t to be exa mined
by main—level demand selection. Even though bypass
logic would permi t this to happen , it definitel y is not
the purpose on inten t of such logic , par t icula r ly since
the higher pr iority demand m iqht fit in the new hole.

T h i s p r obl em ca n be r e c tif ied in two w a y s . The
main— level demand allocator ’s Co r e—Queue position could

18.23

_ _ _ _ _ _ _

~~~~--~~——-~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _



CO RE ALLOC ATOR

be r epositioned via the interla ce control. .EACQS to
the start of the queue. This would result in all
demand s be in g  reconsidered in light of the new
core—hole. The sel ected method is to try to allocate
the new hole to those demands alread y re jec ted or
passed ove r by the main—level. This method was chosen
fo r t iming r easo ns only.

During the swap—out courtesy—call , the LAL of the
swap par tition is adjusted to the upper address limit
(UAL ) of the previous (lower address) core partition.
This is equivalent to combi n ing the swap parti t ion wi th
the free hole below it. True core assignment to the
demand to be swapped—in can then he r ade. At this time
the free hole resul ting from the swup—out is known and
descr ibed by the Core—Map entry built for the demand
being loaded. The size of the hole is compared to the
Co r e—Queue/Core—Map Fence to see if it is the largest
f ree core—hole. If the hole size does not cross the
fe nce (>) , this indicates that it is not the largest
and that core allocation need not be attempted .
O t h e r w i s e , t h e  C o r e — Q u e u e  is c h e c k e d  to  see if any
demands are present. If it is empty the fence is set to
the size of the free hole and of course no allocation
is attempted.

If there  a r e demands , resource  alloca t ion wil l be
attempted . In this case , the main—level allocator ’s
execution phase must be queried . If the main—level was
in terrupted in its demand allocation phase , a demand
selec tion tally is set to the Core—Queue depth of the
ma~~ri— lev el allocator ’s dema nd selection. This tally is
used so o n l y  those de~~an ds  a l r e a d y  rejected by the
m a i n — l e v e l  w i l l  be c o n s i d e r e d . I f  the main—level was
l n t e r r u p t e d  in  i t s  swap r e s o u r c e  phase  or not
int e rrupted at all , the demand selection tally is set
to the Core—Queue depth of the highest prio rity no—pass
or z e r o  i t  n o n e .  I n  t h i s  case  a l l  e l ig i b l e  d e m a n d s  w i l l
be c o n s i d e r e d .

R e c a l l i n q  t h a t  r h e  obj e c t i v e  is to a l l o c a te  t h e
sw a p  c r e a t e d  h o l e , demand  s e l e c t i o n  commences .
S e l e c t i o n  cr  i~ n a  is f i r s t — f i t .  I f  a f i t  is f o u n d ,
r e s o u r c c  a s s i i n m e n r  is m i l e , c o r e — l o a d  of t h e  d e m a n d
a s s o c i a t t - d  K - ; w r r d  P r  0 - e ;s or  is m i t  i~ated , and l v p i s ~
c o u n t s  a: e updat ed . I f  a n —p -iss is f o r  ced , t he c ou n t .

1 8 . 2 4



COR E ALLOCATOR

of cour tesy—call no—pass ’s in .EAIXP is negatively
incremented . Notice that the Core-Map entry b u i l t  by
demand r esource assignment for the selected demand
descr ibes any residue of the f ree  hole that was in
excess of this demand .

Resource allocation continues until the demand
selectio n tally r uns out or the free core—hole residue
no longer crosses the Core— Queue/Core—Map Fence . In the
fo rmer  case , the hole residue is compared to the fence
since it could still cross it. If the core residue does
cross the fence , then the fence is set to the size of
the residue hole.

When r esource alloca t ion has terminated or if no
alloca t ion was attemp ted , a check is made to see if the
r emaining free core—hole lies below (lower address) a
swap hole. If it does the total size of the swap hole
is computed and compared to the fence. If the total
hole size crosses the fence and the main—level
alloca tor was not int~~~~~j~~~d or in the
demand phase, the StatiR Swap Damper is turned off.
This will trigger the main—level swap resource phase ,
which will try to allocate the swap—hole. If the
main—level’ s phase is neithe r of the above , it must be
in its swap resource allocation phase. In this case ,
the main—level’ s resource selection position within the
Dispatche r ‘s—Queue (.ESDQP) is reset to the beginning
of the queue so that all swap holes will be re—selected
and examined. A straightforward check of whether the
main—level is past the swap hole in question is not
possible. This is because the Dispa tcher ’s— Queue Is not
l inked s e r i al l y  and no queue depths a r e  main tained for
its entries. Consequentl y any r epositioning mu st be to

the star t of the queue.

At t h i s  t i m e  the  swap  c r e a t e d  h o l e  has  been
i n c o r p o r a t e d  i n t o  the  g r o s s  a l l o c a t i o n  s t a t e .  A l l  t h a t
r e m a i n s  is to p rocess  t he  s w a p p e d — o u t  K e y w o r d
P r o c e s s o r ’ s demand . The a s s o c i a t e d  TASK is l i n k e d  to
t h e  D i s p a t c h e r  ‘ s — Q u e u e  a t  t h i s  t i m e . I f  t h e  TASK is
marked for abor t or if i t  is GEWAK~; ’d , i t is l e f t
l i n k e d  to t he  q u e u e  and t h e  c o u r t e s y — c a l l  i s
t e r m i n a t e d .  O t h e r w i s e  i t  is u n l i n k e d  and  s ub s e q u e n t l y
l inked to the Core—Queue.

1 8 . 25  

~~~~~~~~~~~~ ~~~~~~ - —-- - - —~~~~~~~~~~~~~ —— ——  


CORE ALLOCATO R

If the link routine specifies that the demand is
‘Q—e ligihle ’ , an allocation attempt must be made. This
is accomb lished by ca i l i n g t h e ‘new demand ’ al loca t ion
m u c h l i k e t h e T r a n s a c t i o n Schedu let does. Upon return
t h e c o u r t e s y — c a l l is e n d e d .

Tht s w a p p e d — c u t demand is p u r p o s e l y l i n k e d to the
C o r e — Q u e u e ~ t t e r t h e swap c r e a t e d ho l e has been
allocat ed. This order is followe d because a Keyword
P r o c e s s e n is g e n e r a l l y m a r k e d e l i g i b l e f o r swap as a
r e s u l t of e x c e s s i v e r e s o u r c e u s ag e .

I H . 2~-

L _— — —- - — _____________ .~~~~~~.

- ~~~

CORE ALLOCATOR

Core Allocator Entry Points

Symbol Title

CALO1O Link New TASK to Core—Queue

CALO11 Link Old TASK to Core—Queue

CALO6O Unlink TASK from Core—Queue

CALO9O Main—Level Core Allocator

CA L12O New TASK Alloca tor

CAL14O Allocate Core Start Load

CAL15O Alloca te Core Start Swap

CALI6O Upda te Bypass Counts

CAL164 Get No—pass Q—depth

CAL17O Initialize Swap—Eligible TASK Search

CAL171 Resume Swap—Eligible TASK Search

CAL18O Load/Swap—in Courtesy—Cal l

CAL1 9O Swap—out Courtesy—Call

CAL22O Release Core & Ad just Al locator ’s Controls

CA L23O Calculate & Check Size of ‘Swap ’ -Jole

C A L 2 4 O M a r k TASK E l ig i b l e f o r Swap

CAL25O Check Swap/Load I/O Status

AIO lOO Setup & Do Swap—in I/O

A IO 11O Setup & Do Swap—out/Swap—in I/O

A I O 12 O S e t u p & Do S t a r t u p R o l l o u t

1 8 . 2 7

_ _ _ _ _ _ _ _ - —~~~~

CORE ALLOC ATOR

Link to Core—Queue

FUNCT ION:

Th i s r o u t i n e l i n k s a TASK v i a ce l l s .TMEM and
.TPRIO to the C o r e — Q u e u e a c c o r d i n g to the pr i o r i t y
assigned to the TASK in .TPRIO. Affected Core
Alloca tor controls are updated . The routine also
de termines the allocation elibigility of the newly
linked TASK relative to any no—pass present in the
Core—Q ueue and to the main—level Core Allocator ,
if it was interrupted within its Demand Phase.

ENT RIES

Common calling parameter is :

CP1 — L(TASK) to be linked to the Core—Queue.

EP 1 — L i n k New TASK to C o r e — Q u e u e (C A L O 1 O) .

Th i s e n t r y c a l l s an o p t i o n a l r o u t i n e to
assign an initial priority and bypass count
in . T P P I O and .TLAL r e s p e c t i v e l y .

EP2 — L i n k Old TASK to C o r e — Q u e u e (C A L O 1 1) .

Th i s e n t r y uses e x i s t i n g v a l u e s in . T P R I O and
.TLAL.

RETURNS :

RR 1 — C a l l + 1 , Not e l i g i b l e f o r a l l o c a t i o n .

RR2 — Call+2 El ig ibl for allocation .

1 8 . 28

-— —

~

- - -

~

--“ -~~~~.---- ~~~~— - - - - --. —~~~~~~~~~~~~~

_ _ _ _ _ - ~~~
-
~~~~~~~~

.-
~~~~~~~~~

—
~~~~~~

-
- - . - ~~~~~-~~-

CORE ALLOCATOR

Unlink Core-Q Entry

FUNCTIO N:

This routine unlinks cells .TMEM and .TPRIO of the
designated TASK from the Core—Queue. Core
Allocator controls are updated .

ENTRIES :

EP 1 — Unlink Core—Queue Entry (CALO6O)

CP1 — L(TASK ) to be unlinked from Core—Queue.

RETURNS :

Return is made to the calling routine at Call+l.

18.29

_ _  - 
_ _  _— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ______


-~~~~~~

CO RE ALL OCATOR

Main—Level Core Allocation

FUNCTION :

This routine attempts to allocate core from
e x i s t i n g f r e e c o r e — h o l e s (demand a l l o c a t i o n)
if the Static Core—Map Damper (.EDAMP) is
o f f . The r o u t i n e a lso a t t e m p t s to a l l o c a t e
co r e f r om holes that would be created by
swapping—ou t swap—eligible Keyword Processoi s
(swap r esource al location) , if the Static
Swap Damper (.EDAMP+l) is off. In both cases
the C o r e — Q u e u e is se rv i ced up t h r o u g h the
h i g h e s t p r i o r i t y no—pass , if any , or the end
of the queue.

ENTR IE S:

EP1 — Main—Level Core Allocator (CALO9O) .

This e n t r y is ca l led e x c l u s i v e ly by the
Dispatcher after its queue service.

RETURNS :

R e t u r n is a l w a y s to t h e D i s p a t c h e r .

18 .30

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ _ _ _ _  
- - . - - ~~~~~~

---
~~~~

-- --

CORE ALLOCATOR

New TASK Allocation

FUNCTION :

This routine attempts to allocate core to a
new TASK received by the Transaction
Scheduler or spawned via a Keyword
Processor—to—Keyword Processor communication
r eques t . Th i s r o u t i n e assumes t h a t a l l
Core—Queue eligibility criteria have been met
by the designated TASK . Both demand and swap
are conditionally attempted . This routine
generally executes at the courtesy—call
level.

ENTRIES :

EP1 — New TASK Allocation (CAL12O) .

CP1 — L(TASK) to allocate core to.

RETURNS :

Return is made to the Call +l.

18.31

--

-- - - - — ~~~--— ---~~~--~~~~~~~~~~~~~~~~~~~ -~~~~~-————------ --_ _ _

CORE ALLOCATOR

Allocate Core Start Load

FUNCTION:

This routine unlink s the designated TASK from
the Core—Queue and allocates core to the TASK
by building a Co r e—Map entry in .TMEM and
.TLAL. Core is normall y a l loca ted at the top
of the specified hole except when the hole is
above (higher core address) a swap—eligible
TASK. In the latter case , core is allocated
at the bottom of the hole . Lastly, the
routine starts the necessary load/swap—in
I/O.

ENTR I ES:

EP1 — Allocate Core Star t Load (CAL 14 O)

CP1 — L(TASK) to which core is to be
allocated to.

CP2 — L(Core—Map entry) which holds the
core—hole to be allocated .

RETU R NS:

Return is made to the Call+l .

1 8 . 3 2

— --— - - - -— - — -

CORE ALLOCATOR

Allocate Core Star t Swap

FUNCTION :

This routine attempts to get Swap—File space
and a free Swap—Map entry in which to reserve
the space for the designated swap—eligible
TASK. If successful , the free core—hole lying
above the swap—eligible Keyword Processor is
combined with the core parti tion described by
the swap-eligible TASK ’s Core—Map entry and
the swap—out of the swap—eligible Keyword
Processor is initiated .

ENT R IES :

EPI — Allocate Core Start Swap (CAL15O)

CP1 — L(TASK) to be swapped—out.

CP2 - L(TASK) to be swapped-in.

RETURNS :

RR1 — Call+l, Insufficie nt swap—file space to
start swap.

RR2 — C al l+ 2 , Swap—ou t started .

18. 33

- ~~~ .- ~~~~~~~~ -~-~~~.~~~~~~~~~~~ -- — — —- - -~~~~~~~~ — - —-—- - -- - — — -~~ -~ — — — — — —-- -.--- A

CORE ALLOCATO R

Upda te ~ yp~ ss C o u n t s

F U N C T I O N :

This r o u t i n e d e c r e m e n t s the bypass coun t of
each TASK in t he C o r e — Q u e u e s t a r t i n g w i t h the
TASK po in t ed to by .TPAD upper of t he
designated TASK and co nt inuing to the start
of the C o r e — Q u e u e . No—pass TASKS (TASKS whose
bypass c o u n t s have r u n o u t) t h a t a r e f o r c e d by
the u p d a t e a r e l i n k e d v ia the upper h a l f of
t h e i r r e s p e c t i v e .TPAD ce l l s in h i g h to low
p r i o r i t y s equence . The base of the no—pass
c h a i n is r e c o r d e d in .ENPQD. L a s t l y , the
C o r e — Q u e u e dep th of the h i g h e s t p r i o r i t y
no—pass is c a l c u l a t e d and saved in . ENPQD
lowe r

E N T R I E S :

EP 1 — U p d a t e Bypass C o u n t s (C A L 1 6 O)

C P1 — L (T A S K) h o l d i n g b a c k w a r d s C o r - e — Q
p o i n t e r f o r u p d a t e .

EP2 — Get N o — p a s s Q — D e p t h (C A L 16 4)

No c a l l i n g p a r a m e t e r s .

RE ’r U P N S :

RR1 — C a l l + l , N o — p a s s p r e s e n t in . E N P Q D .

R R 2 — C a l l + 2 , Bypas s .

For EPI , 3 n ew h i g h e r pr ior it y n o — p a s s was n o t
f o r c e d b y t h i s b y pa s s c o u n t u p d a t e , b u t
an ol d no—pass mi qli t be in effect.

For EP2 , no no—p~iss i s in e t f - c t .

~
—-

~

CORE ALLOCATOR

Swap—Eligible TASK Search

FUNCTION :

This r o u t i n e sea rches the D i s p a t c h er ‘s—Queue
for a TASK that is flagged as eligible to be
swapped in its .TFLAG cell. This condition is
indicatd if the B.TESW bit flag is on. If a
TASK is found , the number of free core blocks
(1024 w o r d s) , which would be freed up if the
TASK were swapped—ou t, is calculated .*

ENTRIES :

EP1 — Initialize Swap—Eligible Search
(CAL 17O)

This ent ry initializes the search
relative to the current disposition of
the Dispatcher ‘s—Queue.

No calling parameters.

EP2 — Continue Swap—Eligible Search (CAL171)

This en try resumes the search using the
l a s t p o s i t i o n saved in C o m m u n i c a t i o n
Region cell .ESDQP.

No calling parameters.

* The number of freed—up core blocks is the sum of
the cu rrent core part ition size and the size of
the previous available core—h ole.

1 8. 3 (j

_ -~~ -~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~ ~~~- - -~~~~~~-~~~~~~~~~~ -.- ~~~~~~~~~ “ - ---- ~~~~ - - ~~~~~~~~~~~~ -

_ _
~~~~~~

CORE ALLOC ATOR

RETURNS :

RR1 — C a l l +l , No swap—eligible TASKs.

18. 3e

_ _ _ _ _ _ _ _ _ _ _  _ _  -~~~~~~ - - . —~~~~~~~~~~~~



CORE ALLOCATOR

- 

~~~2—Eligible TASK Search

- RETURNS :

RR2 — Call+2 , Swap—eligible TASK found.

RP1 - L(Swap-eligible TASK).

RP2 — Number of core blocks that would be
freed—up by a swap.

1 8 . 3 7

- —a-- -

- j.-_ ~~~~~~~~~~~~~~ — --
-.

~~~~~~~~~~~~~~ —



CORE A LLOC ATOR

Load/Swap—in Cour tesy—Call

FUNCTION :

This routine initializes a new or previously
swapped Keyword Processor after it has been
loaded into core. If necessary, swap—file
space is released . The BAR and other controls
are constructed if the load was successful
and the TASK is linked to the
Dispa tcher ‘s—Queue.

ENTRI ES:

This routine is Cou r tesy—Call dr iven.

RETURNS :

R e t u r n is made  to GCOS v ia  a MM E GEENDC .

18.38

~

- - -

~ 

- - ~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~ - -: _______________________________-
~ 

-~~r 

CORE ALLOCATO R

Swap-out  C o u r t e s y — C a l l

FUNCTION :

This routine deallocates core from the
swapped—out TASK , combines the freed—up core
with any adjacent available core and
allocates the total to the TASK to be
swapped—in. Swap—in is then initiated and
the swapped—out TASK is unlinked from the
Dispatcher ’s—Queue and linked to the
Core—Queue , if it is not marked for abort.
Lastly , an attempt is made to allocate the
core—hole resulting from the swap. If the
main—level Core Allocator was interrupted
during its demand (load) allocat ion phase ,
only those TASKs already serviced by the
main—level, allocator are cons idered.

ENTRIES :

This routine is Courtesy—Call driven.

RETURN S:

Return is made to GCOS via a MME GEENDC .

18.39 



CORE ALLOCATOR

Release Co r e & Adjust A llocato r ’ s Con t ro ls

FUNCTION :

This routine releases all core assigned to the
designa ted TASK. It is subsequently adjusts the
Co r e Al locato r ‘s Core—Queue/Core—Map fence
(.EQ MIN) and Static dampers (.EDAMP) as required .

ENTRIES :

EP1 — Release Core & Adjust Allocator ’s Cont r ols
( C A L 2 2 O )

CPI — L (TASK ) from which core is to be
released .

RETUR NS :

Return is always passed to the Call+1 .

18. 4i)



CORE ALLOCATOR

C a l c u l a t e  & Check Size of ‘Sw ~p ’ Hole

FUNCTION :

This rou tine calculates the number of contiguous
core blocks tha t would be freed—up if the
designated TASK were swapped—out. (Core—holes
above and below the designated TASK are combined
with the core space assigned to the TASK to get
the resulting hole size). The size of the ‘Swap ’
hole is then compa red to .EQMIN , the
Core—Queue/Co r c—Map Fence.

ENTRiES :

EP1 — Calculate & Che ’~c Size of ‘Swap ’ Hole
( CAL2 3O )

CP1 — L(Swap—eligi ble TASK)

RETURNS :

RR1 — Cal +1, ‘Swap ’ hole size <= .EQMIN.

RR2 — Call +2 , ‘ Swap ’ hole size > .EQMIN.

18 .41

- - - - _-

~

- - - - - -~~
_
~~~~ — —~~~~- - ---—- --—- --———--- - — - -  - —-- - ~~~~~~- -—-~~---- -~~-


-

~~~~

CO RE ALLOCATOR

Mark TASK Eligible for Swap

FUNCTION :

This  r o u t i n e  is in t ended  as a o n e — s t o p  c a l l  t n
flag a TASK as eligible for swap and t o  adju~~t
any affected Core Alloca tor controls. Convenience
aside , this routine exists to minimize code that
adjusts the Core Allocator ’s Dampers.

Caution: Once a TASK is marked eligible for s w a p ,
i n h i b i t e d  code m u s t  be used to p r e v e n t  t he  swap
f r o m  poss ib ly  h a p p e n i n g  a t  the  c o u r t e s y — c a l l
level. Therefore , either (1) all processing that
r e q u i r e s  the  TASK to be i n — c o r e  s h o u l d  be done
before calling this routi ne or (2) inhibited code
shou ld  be employed d u r i n g  such p r o c e s s i n g  a f t e r
retu r n from this routine.

E N T R I E S :

EP I - Mark TASK Eligible fo r Swap (CAL24 O )

CPI  — P o i n t e r  to TASK e l i g i b l e  f o r  swap.

RET U R N S :

R e t u r n  is a L w d y ~ ii~ade to c al l +l .

RP 1 — Size  of the  ‘ swap ’ h o l e  t h a t  w o u l d  he
c r e a t e d  b y swapping—out the designated TASK.

18. 4

_ _  _ _ _ _ _ _ _  __ _



~ -

~~~~~~~~~

CORE ALLOCATOR

Check Sw~rp/Load I/O Status

FUNCTION :

This routine checks the major status code for all
Keyword Processor swap/load I/O. If the status is
bad , the affected TASK is flagged for abort and
the appropriate error code is inserted into the
TASK.

ENTRIES :

EP1 — Check Swap/Load I/O Status (CAL2SO)

CP1 — Code to identify the calling routine
(currently either the Load/Swap—in
Courtesy—Call or the Swap—out
Courtesy—Call)

CP2 — L(TASK).

CP3 — Core—LAL of the associated Keyword
Processor.

RE TURNS :

Return is always to the Call+l.

18.4 3

-- -~~~- - ——~~~~---—---. ~~~~~~~~~~~~

CORE ALLOC ATO R

Check Swap/Load I/O S t a t u s

FUNC TION :

This rou t ine checks the major sta tus code for all
Keyword Processor swap/load I/O. If the status is
bad , the affected TASK is flagged for abort and
the appropriate error code is inserted into the
TASK .

ENTRIES :

EP1 — Check Swap/Load I/O Status (CAL25O) -

CP1 — Code to identify the calling routine
(currently ei ther the Load/Swap—in
Courtesy—Ca Ll or the Swap—out
Courtesy—Call)

CP2 — L(TASK).

CP3 — Core LAL of the associated Keyword
Processo r.

RETU RNS :

R e t u r n is a l w a y s to t h e Ca l l+ l .

18 . 4 -1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 
-- -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

CORE ALLOCATOR

Do Core Allocator I/O

FUNCTION

This routine performs disc I/O for the Core
Allocator by building the I/O Select— Sequence
and necessary DCWs , depending on the entry
point. A pointer to the appropriate
courtesy—call routine is inserted into the
Courtesy—Call Vector (.TCCV) in the TASK .

ENTRIES :

EP1 — Swap—In (AIOlOO) .

CP1 — L(TASK) to be swapped—in.

EP2 — Swap—Out/Swap—in (AlOllO)

CP1 — L(TASK) to be swapped—out.

CP2 — L(TASK) to be swapped—in.

EP3 — Startup Roll—Out (AIO12O) -

CP1 — L(Pseudo TASK) used by
Initialization Routine .

RETU RNS :

Return is always to the Call +l.

18.45


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~— -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r~~’- ’

DI SPATCHER

DISPATCHER

Func tion

The Dispatcher functions pr imarily to select
eligible TASKS for dispatch on a pr iority basis ; to
monitor the status of system functions , gross Executive
resource utilization and TASK system requests ; and to
enable system functions and services.

Introduction

The Dispatcher is the control focal point of the
Executive because control is always passed or returned
to it. As a result it is responsible for monito ring all
other internal Executive functions and for periodically
or reflexly enabling them . Through its queue all TASKs
eligible for dispatch or requiring a system service are
known .

The normal sequence of events within the
Dispatcher is to service its queue ; conditionall y
enable system functions ; and select , then dispatch to
an eligible Keyword Processor.

Dispatcher ’s Queue

All TASKs eligible f o r  d i s p a t c h  or r e q u i r i n g  an
Executive service are linked together to form the
Dispa tcher ’s—Queue. A queue—entry pr oper consists of
TASK cells .TPRIO , .TFLAG and .TFLAG+1. The queue is
forward and backward linked with pointers to the head
and tail of the queue a long with the number of TASKs
linked to the queue maintained in Communication Cell
.EDSPQ.

The TASKS are chained together according to the
prio rities assiqned in the lowe r half of their .TPRIO
cell s. When following the forward queue pointers in the
uppe r h a l f  of t h e  q u e u e — e n t r y  ( . T P R T O  c e l l s ) , t h e
p r iority sequence is ascendinq , and when following the

19 .1

-—

~ 

-



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ -~~ .-- -— -~~~~~ -~~~~.----~~~~~~

DIS PATCH ER

backward queue poin ters in the upper half of the
queue—entry (.TFLAG cells) the pr iority sequence is
descending .

Queue entry cells .TFLAG lower and .TFLAG+l lowc~r
contain at tribute and status bit flags. Attribute flags
define the characteristics of the Keyword Processor
designated by TASK cell .TSID. These flags are cop ied
from the Keyword Processo r Profile when the transaction
is firs t received by the Executive . Status flags define
the current processing state of the Keyword Processor
and which queues the TASK is linked to.

The bit f lags in .T FLAG lower are further labeled
‘Q—scanned ’ flags. This label serves to differentiate
between those flags used by the D i s p a t c h e r ’ s—Queue
Service and Dispatch Select , and those that aren ’t.
This grouping of the bit flags is a consequence of the
method used to scan the q u e u e .

Specif’.cally, the .TPRIO cell of all TASKS 15
assembled w i t h an even o f f s e t f r o m the o r i g i n of the
TASK. Furthermore the space assigned for TASK
construction in the Executive has zero origin mod 2. As
a r e s u l t , TASK ce l l s . T P R I O and .TFLAG form an even
w o r d p a i r s ince .TFLA G a l w a y s f o l l o w s .TPRIO. Th i s is
done to allow logical operations on the bit flags in
.TFLAG lower to be e x e c u t e d w i t h a m i n i m u m of
inst ruct ions when following either the forward 0
ba c k w a r d Dispa tc h e r ‘s— Queue pointers.

B i t f l a ~j s t h a t a r e to be used to ‘ s i n g l e — o u t ’ a
TASK when examining the queue as a whole are placed in
.TE’LAG lower. Since these flaci s are used when the queue
is processed or searched , they are called ‘Q—scanned ’.
Pit flaqs that are queried relative to a known TASK or
queue—ent ry are placed in .TFLAG+l.

N o t i c e t h a t TASK c e l l . T P R I O is uci bo th in a
D i s p a t c h e r ’ s — Q u e u e e n t r y and a C o r e — Q u e u e e n t r y .
C o n s e q u e n t l y , a TASK c a n n o t be l i n k e d to b o t h q u e u e s
simultaneously.

19. 2

~~~~~~~~~~~~~~~~~~~~~~~



_____________

DISPATCHE R

Dispa tcher ’s-Queue Service: Introduction

Some Executive services and functions , which are
direc tly identifiable with a specific TASK , cannot be
initiated when their need is indicated or cannot
complete their function when given control. For
example , TASK termina tion cannot be initiated within
courtesy—call and requests for buffer space migh t be
unsuccessful. When these service conditions occur , it
is necessary to queue the request in order that the
function can be either initiated or res tarted ,
whicheve r the case.

A queue is not defined for each such service since
the necessary queue—entry information would be
essen tially the same ; thus independent of the
particular service. A generic queue—entry would contain
a pointer to the TASK that was being processed and the
IC&I where the service is to be given control.

Only one queue is required and this queue is
embedded as an integral part of the Dispatche r ’s—Queue.
Relative to this queue , the only queue—entry parameter
is the service IC&I in which the queue—entry lies and
thereby identifies the TASK being processed by the  4
service.

The D i s p a t c h e r  ‘s—Queue Service detects and enable s
the TASK associated service requests as dicta ted by its
queue.

I ~ . 3



.—- - .,- —-- ---, - —~~ ~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ 

—--------

~

-------,--- -- ---——.-- ..
--——-- —.- - - — --- - ,_- _ — - - -, -

- ---,--,-,--—--_-— ---.-_—— ------. --.- - .- - -

DISPA TCHER

Dispatcher ’s Dynamic Queue Service Mask

The service mask is used to select those queue
entries wi thin the Dispatcher ’s—Queue that are waiting
to be serviced. The mask is positioned at symbolic
location .EDQSM within the Communication Region.

The service mask is the logical sum (OR) of those
‘Q—scanned ’ bits which flag a service request. Notice
that this can be formed as a binary sum since the
applicable bit flag definitions (B.XXXX) do not
over lap.

During the Dispatcher ’s—Queue Service , the mask is
serial ly ‘ANDed” to the “Q—scanned ’ bits in .TFLAG
lower of each queue—en try. If the product is non zero ,
one or more of the ‘Q—scanned’ bits being queried by
the mask has been set on (is one) . This means the
queue—entry unde r examination is waiting for a service.

The service b i t mask can be d y n a m i c a l l y a l t e r e d to
allow the conditional selection of some services. The
idea h e r e is to let the mask reflect an internal
‘ go/nogo ’ s e r v i c e s t a t u s so t h a t when a s e r v i c e c a n n o t
be prov i ded , the wai t ing queue en tries a r e not de tected
(i g n o r ed) in the queue scan .

Not all services can be summarized so succiently.
H o w e v e r , i t is the n a t u r e of some s e r v i c e s t h a t a l l o w s
t h e d e t e r m i n a t i o n of w h e t h e r f u t u r e r e q u e s t s can be
s a t i s f i e d . These s e r v i c e s e f f e c t i v e l y d i s a b l e
t h e m s e l v e s w h e n t h e y can no l o n g e r accomp l i s h t h e i r
f u n c t i o n . In t h e s e cases , t h e r e is a c o m p l e m e n t a r y
s y s t e m f u n c t i o n f o r each s e r v i c e t h a t d e t e r m i n e s when
t h e s e r v i ce can he e n a b l e d .

An exampl e of such a ser v ic e is t h e p r o c e s s i n g o f
I n t e r c o m — Q u e u e e n t r i e s . W h e n an a v a i l a b le e n t r y is
requr- -r e d and there is only one r emaining , i t is c l e a r
t h a t once this en t r y is a s s i g n e d , f u t u r e q u e u e r cqu e s t s
w o u l d be f r u i t l e s s . t~r i ’n ev e r t h i s o c c u r s , t h e s e r v ic e
w o u l d s u s p e n d i t s e l f . t~h en a q u e u e — e n t r y i s r e l e a s e d by
the cum ple rm-nt - i ry service and it is t he only

1 9 .4


~~~~~
‘
~~~~~~~~~~~~ :‘::~~~~~ ;:~ ~

- --

~~~~

-— - - -

~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~

- -

~~~

-

~~~~~~~~~~~~~~~~

-_ —-

DISPATCHER

queue—entry available , queue requests woul d again be
enabled.

All services that can be dynamically
enabled/disabled via the service mask must be assigned
dedicated ‘Q—scanned ’ bit flags. The remaining services
that are not so conditioned could be lumped together
into one bit flag . This is seldom done , howev-?r , since
the  ‘Q—sca nned ’ bits also serve to describe the state
of the Keyword Processor represented by the
queue—entry.

Recognition of a particular service ’s reques t is
disabled by ‘A ND ing ’ the Dispatcher ’s—Queue Service
Mask with the 1’ s—comp lement of the services ’s related
‘ Q — s c a n n e d ’  b i t  f l a g .  T h a t  is s e t t i n g  the  approp r iate
bi t off in the mask. Recognition is enabled by simply
‘ORing ’ the  ‘Q—scanned ’ bit flag back on in the service

mask -

Queue Service: When and How

The Dispatcher ’s—Queue Service is enabled whenever
a Keyword Processor timer runout occu rs or an initial
system service or f u n c t i o n  ~~ quest c an n o t  complete  ox
does not r e t u r n  to the  K e y w o r d  P r o c e s s o r .  When
initia ted , the lower half of the Dispatche r ‘s—Queue
Service Position cell (.EDQSP) in the Communication
Region is set to a non—zero value. This half word is
used to indicate that the queue service has been
activated and is in progress.

At t h i s  t ime  t h e  TASK A l a r m  C l o c k  ( . E T A C K )  is
checked  to set if  i t  has  been set , t h a t  is not  — 1 .  i f
s~ the time of day is obtained and saved in
C o m m u n i c a t i o n  Re~i i o n  c e l l  . E T I M E .  I f  t he  TASK A l a r m
Clock  is r ing t ng ( . E T ~ CK . E ’ r I M E )  , the
Dispa tche r ‘s—Queu€ Service ~1ask is a dj u s t e d  so t h a t
GWA K E ’d TASKs linked to the Dispatcher ‘s—Queue will he
d e t e c t e d .  A c t u a l  scan  of t he  q u e ue  is t h e n
ini tiated , star-ting with the high ’~st pr iority entry or
TASK l i n k e d  to i t .  The scan is c o n t i n u e d  v i a  t h e
backwa rd ]ueire pointers in the upper half of  the
queue—en tr -/ .TFLAG cells . The queue ser vice mask is

19.5 

-~~-~~~~~~~ —~~~~~~~~ - - ~~~- --~~~~~~~~~~~--~~~~~



— - -- -~~—-~~~~~~-— - —-—~ - -~~~~
-
~~~~~~~~~~~~~~

-
~~~~~

---
- 1

DISPATCHER

used , as explained earlier , to recognize those entries
awaiting service.

When an entry is found , a pointer to the nex t
queue—entry is saved in cell .EDQSP upper for later
resumption of the scan. This cell is also necessary to
protect the queue serv ice from getting ‘ los t’ , since
the Dispatcher or the service routine it enables might
be interrupted by a courtesy—call that links or unlinks
an e n t r y  to the D i s p a t c h e r ’s — Q u e u e .  In t h i s  c o n t e x t
.EDQSP functions as a main—level/courtesy—call
interlace control.

The queue service is terminated when the scan
detects a zero backward Dispatcher ’s—Queue pointer , or
resumption of the queue service finds .EDQSP upper is
zero. The latter case occurs if the lowest prio rity
queue—entry was last recognized for service so that the
next backward queue—entry pointer , saved in .EDQSP ,
w o u l d  be z e r o .

Serv ice Init iat ion/Res tart

The Dispatcher ’s—Queue does not attemot- 4-e

determine what’ ~~~~~~~~~~~~~ - eeded by t .~. ~~~~ c~ t~u queue
entr~ ~~ Lue ~~—scanned ’ bits set on in the entry.
The basic reason for thi s design appr~~’~ch s ~woLo_ ci :(1)  t~~: ~~~~~~~~~~~~~~~ service or f u n c t i o n  is the  l og i ca l  p lace
wherein internal and service related TASK status shoul d
be examined and the necessary processing course plot ted
w h e n  the  f u n c t i o n s  c a n n o t  be i n i t i a t e d  or comp leted ,
since all necessary information is known at that point;
and ( 2 )  t he  D i s p a t c h e r ’ s desi gn r e m a i n s  o p e n— e n d e d  w i t h
t h i s  m o d u l a r  s e r v i c e  a p p r o a c h . As a r e s u l t  t h e
D i s p a t c h e r  is not  b u r d e n e d  w i t h  h a v i n g  to a r r a n g e  and
c lass i f y the d i f f e ren t bi t flag com b inations that may
be p r e s e n t  in  t h e  q u e u e — e n t r y .

A s e r v i c e  vec to r  in .TFLA G+l  upper  of the  e n t r y  is
used to e n a b l e  t h e  p r o c e s s i nq  f o r  a s e l e c t e d  e n t r y .  The
vector is the IC of where the service is to be g i ven
c o n t r o l .  When  t h e  D i s p a t c h e r  ha s  d e t e c t e d  a q u e u e — e n t r y
wai ting for service , i t  saves  t he  p o i n t e r  to t h e
associated TASK and checks the service vector to make

19 . 6

-~~~ -~~~~~~~~- rn - r n  .-- 
j



DISPATCHER

sure it is not zero. If zero , the TASK is abo r ted;
otherwise the IC is saved and the service vector is
zeroed . At this time the service is enabled.

Only the TASK pointer is currentl y supplied for
the service , no other cells set by a dispatch are
supported.

Service Considerations and Restrictions

When a service is unable to complete its function ,
it is the service ’s responsibility to:

(1) Ensure that the associated TASK is linked to
the Dispatcher ‘s—Queue ,

(2 )  Set the appropriate ‘Q—scanned ’ bi t flag on
in the TASK so the service can be restarted ,
and

(3) Set the service vector in .TFLAG+l to point
to the loca t ion  w h e r -e t he  s e r v i c e  wi shes
control to be returned when it is later
enabled to attempt to complete its function.

There are two rest rictions that must be observed
by the  s e rv i ce  f u n c t i o n s  when i t  is n e c e s s a r y  to use
the Dispatcher ’s— Queue Service. Only one level of IC
depth is allowed the service when it disables itself.
This means that if control is one or more levels
removed from the service routine proper wh en the
determination of service dysfunction is made , control
must be returned up to a point wher e one IC defines the
service ’s p o s i t i o n , i.e., to where the se rv i ce  becomes
reusable. This problem is currently unavoidable with in
the Execut ive ’s modular s t ruc tu re  since there is no
service IC stack within the TASK .

The other restriction app lies to da t-i st ora -~e for
the service routine when it cannot complete . The only
stora ge area allowed the service is the TASK space ira - u
.TPAD+l through the end of the TASK. The size of t h i s
area is v-iriab le depending on the values supplied t h e
.TASK m acso dur ing the Executive ’s assembly. All TASK

19.7

~ 

-- - -~~~~--~~~~~~ --



DISPATCHER

or Keyword Processor related data must be saved in this
area , however it is intended that the amount of data be
a minimum . If a service is frequently requested and its
dysfunction judged to be likely, consideration should
be g iven to defining additional TASK cells to hold the
necessary information.

When the service is enabled by the
Dispatchet t s—Queue Service , it is the service ’s
r esponsibility to turn o f f  the “Q—scanned ’ bit which
was used to flag a ‘need service ’ state within the
designa ted TASK. Failure to do so could result in a
subsequen t attempt by the queue service to process the
original r equest. In this case , the service vector
would be zero from the or iginal enable so the TASK
would be abor ted .

Service Returns

Service rou tines that cannot complete their
function or do not return con trol to a Keyword
Processor must return to the Dispatcher at symbolic
l o c a t i o n  TATh~~~n ~h i s  o c c ur s , t he
Dispatcher ’s—Queue Service is either ini tiated or
resumed.

Ser- vice routines that can be initiated o r
r e s t ar t e d  by the queue ser-vice and that successfull y
comple t-~ their func t ion must re turn to DSP3O2 if they
return cont rol to a Keyword Processor. When such a
retu rn occu r s , t h e  D i spa tche r ’s—Queue Service Position
(.EDQSP ~,s checked to see if the queue service is
enabled. If so , the seniice is res tarted where it left
o f f , otherwise a GELBAR is reissued to the Keyword
Processor that was serviced . Thus a GELBAR or dispatch
is n e v e r  issued to a successfully serviced Keyword
P r o c e s s o r - w h e n  t he  s e r v i c e  was  e n a b l e d  by t he
Dispatcher ‘s— Queue Service.

Sys tem F u n c t t o n  E n a b l e s

When  t h e  D i s p a t c h e r  h-i.; couLJlete d its queue
ser - vice , it enable the Ti ansact ion ~chedu let , Cot e

19. 8



DISPATCHER

Alloca tor and Remote I/O Supervisor

The Transac t ion Scheduler is enabled both to issue
the first Intercom read to TPE at startup time and to
restart the scheduler in the event it has stalled—out.
Recall that once the scheduler is enabled , it con t inues
to request transactions from TPE at the courtesy—call
level until it cannot obtain a free TASK or sufficien t
input buffer space , both being required for each read
that it issues. When this occurs the Scheduler is said
to have stalled—out since it must terminate its
courtesy—call withou t issuing an I/O .

Normally the Transaction Scheduler ignores the
enable by sim ply returninq control to the Dispatcher.
Howeve r , if the scheduler has stalled—out as indicated
by communications cell .FSTAL , t h e  enab le  causes  t h e
scheduler to try to restart itself.

The Core Alloca tor treats the Dispatcher ’s ena b le
in much the same fashion. That is , the enable may
resul t in an allocation attempt or it may be ignored.
Decisions in this case are based on the static dampers
at Communication Region cell .E DAM P .

The Remote I/O Supervisor uses its enable to
perfo rm line service functions wh ici cannot be event
drive n or initiated . ThIS includes new connect
processing and ‘ s leep ’/t ime disconnecting processing .

p~~~~_~~p ~~~~~~

The function of rispatch— Select is to select that
hi qhest priorit y TASK linked to the Dispatcher ’s—Cueue
whose Keyword Processor can make immediate use of the
processor. A Keyword Processor can qain control only by
hei n i selected .

i n  cieneral , dispa tchin q select loqic is a two
nhase nrocess . The phase~ are the priority selection of
a T)~~K followed by a d e t e r m i n a t i o n  of rrocessoi
eljqi~ il ~~tv for the chosen T A S K .  The  se l e c t  r - r o c e c~u r r

H . 9

L—~ _ _ _ _  _-

~

-

~

- - - ~~~~~~ - _ _



[)ISPATCHER

consists of first selecting a TASK from the
D ispatcher ’s—Queue according to a priority alqorithu rn .
Havinq chosen a priority—eligible TASK , a test is then
ma de to see if the TA SK rela ted Keyword Processor can
make immedi ate use of the processor. If so , a d i s p a t c h
can he p a i d  to the Keyword Processor; otherwise the
select er ocedure must he repeated , this time selecting
the next hiqhest priority TASK linked to the aueue.

Within the Execu t ive , Dispatch—Select priority
loqic is priority pre—ernpti ve. This choice results in
t h e  p rio rity select ion being implic it ly accomp lished by
p r o c e s s i n g  t h e  D i s p a t c h e r ’ s — Q u e u e  f rom high to low
p riority, i.r. , by fol lowing the backward  queue
poin ters. Thu s whenever Dispatch—Select is initiated ,
p r i o r i t y  li~SK selection always starts with the highest
p r i o r i t y  TASK linked to the queue , even if it was the
last TASK that was dispatched to.

Once a l A S K  h a s  been  p r i o r it y  s e l ec t ed , i t s
processo r e li - ;ibilrt y is determined with the
Dispatche : ’ n ~v - l e c t— El i y ibilit y ~ask. This mask
fu nctions iu~ n t i e a l l y to the Dispatcher ’s— Queue Service

~1ask. The ma - ;k rs applied to the ‘0—scan ned ’ bits in
.T~’LA (~ of t h e -  e~ ‘~ected uueue— entry. This is the second
use of the “0—sc anned ” hits. In this context the
app licabl e i - i t  I l r i ~ a r e  u sed  to  in d i c a t e  t h o s e  K e y w o r d
Processor e n d  t r u n s  wh rch make it m e l  iqible for
r r o c e s s o r  ass rsn :~- .-o-

-~ctual s atcf —~ e1ect ~cs accosnhished by scannino
t h e  risratch * ’s— nueue free hui h to low p r i o r i ty  u s i n q
t h e  P i s e at e h e t ’ s S r - l ~~c t — t ’ l i o~~h t l i t v  ~‘a s k .  ~~i t h . i n  t h i s
scan , a ou f-u n— e nt : v is 1’eL ’ct-lf le t -, r dispatch if t h e
lou i ca I p :oduct of the m a s h :  and  the entry ’s ‘0— scanned ’
b i t s  is zero.

r ; i s p at c h

,~ h<nyw or~ I-r ~~cessor 515 j IC :  c a n  r e s u l t  I ion a
Ii i ;pu t en lect , an I/O inte: w t r h a t  ~ e k S  i

a~~.;uatc h or the successful coo , let ion of an in itial
aul t S ’ - ~ v ice request

I 3 . I U



~ —-—-~ ------- ----~

DISPATCHER

Dispatch to a Keyword Processor is effected by a
M M E  G E L B A R .  As such , a dispatch consists of :

(1) Adjusting the BAR to the Keyword Processor ’s
memory bounds ,

(2) Loading the timer register with the dispatch
time quantum ,

(3) Restoring the processor registers and EIS
address registers , pointer and length
reg isters as last set by the Keyword
Processor , and

( 4 )  Transferring control to the Keyword Processor
at its last interrupted location.

Al l informa tion required by the GELBAR is
main tained in TASK cells .TBAR, .TICI and .TTIMO except
for the processor register values which are safe—stored
at symbolic loca tion .KRFG in the Keyword Processor ’s
Prefix and in TASK areas .TAREG and .TEPL. Notice that
a pointer to .KREC, is maintained in the lower half of
.T RA R .

The GELBAR time quantum is set to a literal
cons tant of 64 ins within the Dispatcher except when
cell .TTIMQ of the selected TASK is not zero. In the
latter case the time quantum is Set to the time
remaining from an earlier dispatch as saved in .TTIMQ .

Dispatching with variable time quantu rns of less
than u4rn s (for uniprocessor system) is currently not
e t fecirve and not done within the Executive. The reason
is tha t .- ~FALT does not differentiate between a GELBAR
timer rur rout (THO) and a normal TRO . In either case ,
the Ex ecutive will he taken out of execution and the
crocessor reassigned. Consequently, any time re ma ininq
from the GCOS dispatch to the Executive is lost.

F’ x e c u t i v ’-  c o m m u n i c a t i o n  c e l l s  . FBAS 5 , .t- I DSP ,
.~“rr~c and .~~~TP~-i’~ are set at ea ch  d i s n a t c h .  These c e l l s
i d e n t i f y  t h e  K e y w o r d  P r o c e s s o r  d i s n at c h e d  t o  and
fa cilitate fault n n d  i n t e r r u p t  h at ,dlr nq .

1 9 . 1 1  

—-------- -*- — ---- -- — - —~~----- 
--,

~~
, —

~~~
.-~---- - g_—__

F— ~~~

DI SPATCH ER

!:Lg~
q
~ y2 ~~~~~

The purpose of Lockup Logic is to monitor the
E x e c u t i v e s g ross s t a t e , w h e n it . is una b le to find
anything to do even thouqh the Dispatcher ’s—Queue is
not e m p t y , and to prevent it from slippinq into a
comatose state of successive relinauishes. Lockups are
classifie d as temporary, resource and unkno wn.

A t e m p o r a r y l o c k u p is one that normal processing
will remove , t h u s it. is c o n s i d e r e d an a c c e p t a b l e
Execu tive state. As an example , such a lock up could be
caused by one TASK , l i n k e d to the Dispa tcher ’s Queue ,
that is waiting for the completion of device I/O. This
type of lockup always results in the Executive
relinquishing control.

A r e s o u r c e l o c k u p r ep r e s e n t s a d e a d l y e m b r a c e
among two or more Keyword Processor over some Executive
alloca tea resource. T h i s type of lockup will not be
remove d by nor m al processing . Curren tly resource lockup
can occur because (1) available output buffer space is
exhauste d and output . Intercom is not executing to flush
t he b u f f e r , t h u s d e a d l o c k i n g t hose K e y w o r d P r o c e s s o r s
requesting additional buffer space; or (2) TASK space
is exhaus ted thus deadlocking the Transaction Scheduler
and those Keyword Processo r s request ing spawn TASKs.
R e s o u r c e l o c k u p can p o s s i b l y be r e m o v e d by s e r i a l l y
a b o r t i n g those P e y w o r d P r o c e s s o r s in t he e m b r a c e .

U n k n o w n l o c k u p is a c a t c h a l l . T h a t is , i f t h e
r x e cu t i v e is dead and i t can not he d e t e r r r i n e d w h y , t h e
l o c k up is u n k n o w n . In t h i s e v e n t , t h e F x e c u t i ve is
un crrac iou slv aborted by t h e n i 3 p a t c h e r .

P r i o r to a t t e r r i o t i n q to i d e n t i f y t h e n a t u r e of t h e
l o c k u r - , t h e a c c ur u l a t e d s t at u s of all TASKs linkes to
t h e D i s p a t c f i e r ‘ s— Y u e u e is f o r i r c d by ‘O~ m g ‘ t o q e t h e r
t h e i r “ Q — s c a n n r s : ‘ h i t f l - i q s . Th e l o q i c a l sum is t h e n
u scu f o r l o c k u p t h r e s h o l o t e s t s .

If the loc~cj c . i s t r - i . ~~o: c i t y t h e i x e c u t ive
relinquishe s control. Othe: w i s e i t r .; a s ! ;u 1 e o t h a t •~

1 — . 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -~~~~~~ -~~~ -~~----


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- -- 

~

- - - - - -

~~~

-

~~~~~

- 

1~’~

DISPATCHER

lockup threshold exists and the resource lockup flag
(.ERLUF) is examined for a nonzero value. The flag is
used to indicate , by a nonzero value , tha t there has
been two consecutive unsuccessful Dispatch—Select
attempts and consequently, two consecutive enables of
lockup logic. If the flag is zero , it is set on and
control is passed to the Dispa tcher ’s—Queue Service for
a one—pass attempt to unlock the threshold , If it is
successful and the subsequen t Dispatch Select finds an
eligible TASK , the resource lockup flag is turned off.

If the flag is non—zero , an attempt to determine
the threshold type is made from the accumulated TASK
status. If the threshold is identified , thw lowes t
priority TASK in the deadly embrace is aborted. When
the TASK termination is complete , control is returned
to the Dispatcher ’s—Queue service. This queue service
pass will determine if sufficient resoure was freed—up
to make a Dispatch Select possible. If not , lockup
logic will again he enabled and the lowest priority
TASK of those remaining will be aborted. This sequence
of events could continue until all TASKs have been
aborted in which case the threshold would have been
ineffectively removed.

If a known threshold cannot be deter mined or does
not exist , the lockup is unknown and the Execu t ive is
aborted by the Dispatcher.

19 . 1 3  

~~~~~~~~~~~~~~~ - . --- - -~~~~~~~~-~~~~~~~~~~~~~~~ - ~~~~~


- - - - -- - -
~

-
~

- -
~

-- - --

~~~ 

- - -

~~~~~~ 

-

~~~~~~~

-

~~~~~~~ ~

_
i

DISPATCHER

Dispatcher Entry Points

Symbol Title

DSP1O1 Dispatch After GELBAR Time r Run—Out

DSP1O2 Service Dispatcher ’s—Queue

DSP3O1 Startup

DSP3O2 Reissue GELBAR After Service

DSP3O3 Reissue GE CRAR After Fault

DSP3O4 Reissue GELB AR After Fault (With Time Quantum)

DSP3O5 Reissue GELBAR After I/O Interrupt

DSP600 Link TASK to Dispatcher ’s—Queue

DSP800 Unlink TASK From Dispatcher ’s—Queue

19.14

r~
- -— ~~

- —

~~~

-

~~~~~~~~~

~~

-

~~~~~~~

--

DISPATCHER

D i s p a t c h e r  Fn~~~~ Poin ts

The Dispatcher allows nine entry points , none of
which return control to the original routine that
transferred control to it.

ENTRIES :

EP1 — Startup (DSP3O1).

Con trol is transferred to this entry point at
the comp letion of ini tialization.

EP2 — Dispatch after GELBAR TRO (DSP1O1)

Control is transferred to this entry point
whenever a timer runout occurs within a
GELBAR. TASK and Dispatcher ’s—Queue
accounting are performed via this entry
point.

CP1 — PTR to faulting TASK .

EP3 — Service Dispatcher ’s— Queue (DSP1O2).

Con trol is transferred to this entry point by
abort/termination rou tines and by Keyword
Processor service routines that cannot
complete the requested service. This entry
ei ther initiates or resumes the
Dispatcher ’s—Queue Service depending on
.EDQSP.

EP4 — Reissue GELBAR after Service (DSP3U2)

Control is transferred to this entry point by
Keyword Processor service routines that
comple te the requested service. It the
service was ena bled by the Did- patcher ’s— Queue
S er v c ic e , c o n t r o l  is r o u t e d  t o r e s u m e the
queue service; otherwi se , a GELBAR is
reissued to the serviced Keyword Processor.
This entry should onl y f e usen by services

19 .15



- -

DISPATC HER

tha t can be initiated or restarted by the
Dispatcher ’s— Queue Service.

CPI - Pointer to serviced TASK.

EP5 — Reissue G 1-:LBAR after Fault. (DSP3O3).

Con trol is transferre d to this entry point by
services tha t cannot he initiated or
restar ted by the Dispatcher ’s—Oueue Service.
This entry reissues the GELBA R after a
Keywo rd Processor fault or service reauest
has been successfully serviced .

CP1 — Pointer to TASK.

EP6 — Reissue GFLBAP af ter Faul t (DSP3O4)

This entry is identical to EP5 , except the
GELBAP time quantum must be specified for
this entry poin t.

CP1 — Pointer to TASK.

CP2 — GELBAR t ime quan tum.

E P 6 — Reissue GELBAR after I/O Interrupt (DSP3U5)

Control is trans ferred to this entry point b~:
the Fault Handler whenever a GELBAR is broken
by an I/O in terrupt. The Dispatcher reissues
the GF’ LR AJR w i t h  the time set to the time
remaining from the ori qinal dispatch.

CP1 — P o i n t e r  to  TAS K .

CP2 — Time cuantun rer’a ininq from last
(
~Pr, P?’R.

lu . to



AD’.AQ’I’e 612 HONEYWELL INFORMATION SYSTEMS INC MCLEAN VA FEDERAL ——ETC FIG 9/2
TRANSACTION PROCESSING OPERATING SYSTEM CTPOS).cu)
AUG 77 R EWING. ii BIELSKI F30602—76 C—0277

UNCLASSIFIE D RADC —T R—7 7— 276 NL

3~~3
~n4&~45l ~

a

PuEND
DATh

- 
FIL~~~



_______ 1’~

DISPATCHER

Link TASK to Dispatcher ’s—Queue

FUNCTION :

This routine links a TASK into the
Dispatcher ’s—Queue using the TASK priority present
in TASK cell .TPRIO lower.

ENTRIES :

EP1 — Link Task to Dispatcher ’s—Queue (DSP600) .

CP1 — Pointer to TASK to link .

RETURNS :

Return is always to Call+1.

19.17



DISPATCHER

~~~~ ~~~ P 2 ~~~~~’~~~Y~~!

FUNCTION:

This routine unlinks a TASK from the
Dispa tcher ’s— Queue and updates TASK Status Flags
and Dispatcher ’s—Queue controls .

ENTRIES :

EP1 — Unlink TASK from Dispatcher ’s—Queue
(DSP800)

CPI — Pointer to T?’~ K to unlink.

RETUPNS:

Re turn is always to Call+] .

19. id

_
_ _ _ _ _ _ ___ -

DISPATCHER

Select TA S K for Dispatch

FUNCTION :

This routine searches the Dispatcher ’s—Queue for
the hiqhest priority TASK that is eli qihie to be
dispatched to. Eligibilit y is determined by
checking the status flaqs in TASK cell .TFLAG
lower. Currently, a TASK is selectable if the
following sta tus flags are off:

— Device I/O

— Swapping—Ou t

— In abort

- In Term

- Need Abor t

— Need Output Buffer Space

— Need Output Intercom—Queue Entry

— Need Spawn TASK

— Need Wake—Up

ENTRI FS:

FPI - select TASK for Dispatch (DSPSFL) .

No Calling parameters.

RETURNS:

— Ca ll +l , No eligi ble TASKs.

— Call +2, L~lt gihle TASK found .

RP1 - Pointer to cell .Tflay of the selected TASK.

19.19

_ ~~~ ~~
- -

~
-

~~~~~~~~



TASK TERMINATOR

TASK Terminator Function

The TASK terminator functions to release allocated
resources back to the Executive, reassign a reusable
Keyword Processor , queue Executive messages to the •usér
or TPE and to complete wrapup measurements.

The terminator is called for both norma l and
abnormal TASK terminations and always returns control
to the Dispatcher. It is written to execute at the
main—level only.

Abnormal Termination

Abnorma l termination can be called not only to
abort an in—core Keyword Processor , ~xt also to abort aTASK whose Keyword Processor has been swapped—out or
possibly never loaded into core.

Assigned buffer resources are first released by
removing the input transaction from the Input Buffer ,
if present or removing all output message segments from
the Output Buffer , if any . TASK cell .TMSG2 is checked
to see if it. has any queue entries linked to the Output
Intercom Queue . If so, the queue is searched to find
those entries which specify the abort TASK as the
originating TASK. Each such queue—entry is unlinked
from the queue and the Output Buffer space assigned to
the queue—entry—defined message segments is released.

TASK cell .TSPWN is examined to determine if the
TASK belongs to a spawn TASK chain. If it does , all
other TASKs linked to the chain are flagged for abort
and linked to the Dispatcher ’s—Queue , if necessary.
Notice that TASKs Linked to a spawn chain cannot be
identified by a unique transaction number , i.e., all
chained TASKs specif y the same transaction number so
that this numbe r only identifies the chain as a whole
and not the individual TASKs. As a result , spawn chain
orocessina dictates that the spawn chain itself must be
aborted if a chain member aborts.

20 .1



IASK 1~ RMINATOR

Abnormal termination processing is complete at
this point and the rema ining termination is
accomplished by the norma l termination phase. However ,
all device [/0 or Keyword Processor load/swap—out I/O
must he allowed to comple te before the normal
termination can he initiated . If any I/O is
outstan dinn , the TASK is linked to the
D i s o a t c h e r ’ s — O u e u e  ~3nd the TASK Service Vector is set
f o r  n o r m a l  t e r m i n a t i o n  so t h a t  t h e  p r o c e s s i ng  can be
completed later.

~“ormal Term m a t  ion

Norma l Termination assumes the terminating TASK ’s
Keyword P:ocessor is in—core , u n l e s s  t he  TASK was
:ece~ ved trom abnormal termination. For a ‘true ’ norma l
t trmi na tt on , a check is first made to see if the
Keywora Processor is ‘reusa b le ’ . This means that the
Keyword Processor can be assiyned to a new TASK for
subsequent j rocessing of the latter ’s transaction.

If it is , the terminating TASK ’s Keywo rd Processor
Profile is located and examined to see if there are any
new TASKs awaiting core allocation ; i.e., linked to the
Core— Queue. If there are none , the TASK is treated as
if its Keyword Processor was not reusable. Otherwise ,
the Core—Oueue is searched from high to low ~‘riori ty to
find those TASKS which identify the sane profile as the
terminatinq tmASKs . When one is found , i t s  sta tus f l ag s
are checked to see if i t is a new T A S K .  I f  i t  is an old
T~ SV it is discarded , otherwise its allocation
el ii iibi l ttv relative to t h e  h i g h e s t  pr ior  i t v  n o — p a s s
(see (‘oru ’  A l  l o c a t o r  d i . ~c i s s  i o n )  is  d e t e r m  uii’d . I\ TA SK

w h i c h  i s no t  elinib l e, stops the search and t he
t e r m i n a t i n q  TA SK is a q a t n  t r e a t e d  as not  r eu s ab l e .
~1owever , an e l i c i i h le  TAS K r e s u l t s  in  t h e  assiqnrent of
the terr nin at in q TASKs Keyword Processor to the new
TASK. Affected Core ,~llocator con t rols are updated
since this assignment represents Cole allocati on to the
new TASK.

If the ter ininat inq TASK is not reu sabl e , c h e c k s
a :e  i1~ade to se,.~ t t  i t rs lin ken to the Co :e—Queue CL

i t s  < eywo U P: ~coss or & i n — c o t  e ot s w ap j ’e  o — o u t  . ‘l’he
TA SK i. s cono  it  ion~ i I l  y un  1 r nk  e( i  t i o~ i t he queue or  i t . s

:~u. ~

— .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- .— - - ~~~~~~---- -. — ~~---—---— —— —



TASK TERMINATOR

assigned core/swap—file space is released .

A check is then applied to all terminating TASKs
to determine if they belong to a spawn TASK chain. If
riot , an Executive message is queued for Intercom ou,tput
to TPE and possible the user. This message can be an
error message or just an output message header
specifying an End—of—Transac tion status for the
transaction number assigned to the terminating TASK
(see Intercom I/O Handler discussion) .

Lastly, the TASK is unlinked from the
Dispatcher ’s-Queue and the TASK space is released .

20. 3 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


TASK TERMINATOR

~~~~~~~~~~ ~~~~~ ~~~~~~

~~~~~

TRM100 Start TASK abort

TPr~370 Restart TASk Abort

TRr~400 Start TASK Termination

TR!’~720 Restart TASK Termina t ion
(Need O u t p u t R u f f e r Space)

TRM74C) Restart TASK Termination
(Need Output Intercom—Oueue Fntry)

EX~1lu 0 1 xecutivc Message Inlercom

ETX100 Convert e. V d i t Transaction Number

2 u . 4

—~ -~~~~~~~~~~-~~~~~~~~~~~ --- - ~~~~~~~~~~~~ ---—~~ - - ~- . - :

TASK TERMINATOR

Terminator Fnt~y P o i n t s

The Terminator handles both normal and abnormal
TASK terminations. The Terminator allows five
entry points all of which uLtime ly transfer
control to the Dispatcher ’s—Queue Service.

ENTRIES:

Common calling parameters for all entry points are:

CP1 — L(TASK) to be aborted or terminated .

EPI — Start TASK abort (TRM100).

Control is transferred to this entry point
when t.he designated TASK is to be a b o r t e d .

Cell .TERRM in the TASK must hold the error
code.

EP2 — Restart TASK Abort (TRM37O)

Con trol is transferred to this entry point by
the D i s p a t c h e r ’ s — Q u e u e Se rv ice w h e n a
p r e v i o u s a t t e m p t to a b o r t a TASK c o u l d not be
c o m p l e t e d .

EP3 — Start TASK Termination (TR t4 4 00)

Con trol is transferred to this entry point
when a Keywo rd Processor has successfully
completed its processing of a transaction.
Core and swap—file space are released it~ theK e y w o r d P roces so r is not r e u s a b l e or t h e r e
a r e no o u t s t a n d i n g messages r e q u i r i n g the
Keyword Processor. A ROT message is sent to
TPE and the TASK is unlinked from the
necessary aueues with op t ional accounting .

2 0 . 5

~~
-fl - —

~~~
•--—- -- — -- r —--- —, -

TASK TERMINATOR

EP4 — Restart TASK Termination — Need Output Buffer
Space (TRM72U).

Control is transferred to this entry point by
the Dispatcher ’s—Queue Service when prior
attempts to terminate a TASK were roadblocked
by insufficient Output Buffer space.

EP5 — Restart TASK Termination — Need Output
Intercom— Queue Entry (TRM74O)

Control is transferred to this entry point by
the Dispatcher ’s—Queue Service when prior
attempts to terminate a TASK were roadblocked
by lack of an Output Intercom— Queue Entry.

R E T U R N S :
R e t u r n  is a l w a y s  to t h e  I)ispatcher ’s—Queue Service

20.6



—-~ --- --~ - -~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OUTPUT INTERCOM PROCESSOR

Initiate Output Intercom

The Executive ’s Output Intercom Processor is
responsible for controlling and sending all Intercom
output that is to be written to TPE. The output
processor is func tional ly in terfaced to the Executive
by means of the Output Intercom—Queue. Its component
routines issue the ‘true ’ Intercom output requests
necessary to transfer the waiting messages to TPE.

Introduction

The Output Intercom Processor executes at the
courtesy—call level once it has been enabled. It
remains enabled at this level as long as there is an
output n~essage request waiting in the Output
Intercom—Queue. When the queue has been emptied , the
output processor disables itself. This mode of
opera tion resu lts in the as~jnchronous execution of the
Output Intercom Processor and the remainder of the
Executive.

Output Message Request

When an Intercom output message is ready to be
written , it must he passed to the Output intercom
Processor via the Output Intercom—Queue. This is done
by first requesting an available aueue—entry.
Unassigned oueue entries are managed by communication
cell .ECONO.

In the event that there are no free entries , the
request must be periodically repeated until satisfied.
The Dispatcher ’s—Queue service is the norma l means used
to enable or restart a request. This procedure allows
any other Executive processing to be acted on in the
interim.

Once a free queue—entry can be assigned to the
message, the entry is filled—in with message specifics.
In particular , the queue—entry holds a pointer to the
first segment of the message , the priority assigned to

21.1

--

~

-- ~~~~~~~~~~~~~~~~~~~~~~~~~ --- - -- -“- -- - -- - - -~~~~~ - --



_

O UTPUT INTE R COM PR OCESSO R

the  message  and the  l o c a t i o n  of the  o r i g i n a t i n g  TASK ,
if o n e .  A l l  c o n t r o l  i n f o r m a t i o n  r e g a r d i n g  t h i s  message
is d e l e t e d  f r o m  t h e  o r i g i n a t i n g  TASK a f t e r  a
queue—entry is built for it.

The output request is effectively communicated to
the  O u t p u t  I n t e r c o m  Processor  by l i n k i n g  the  p r e v i o u s l y
buil t queue—entry to the Output Intercom—Queue. The
queue en tries are linked according to their assigned
priorities with pointers to the first and last linked
entries main tained in Communication Region ce lL .ECQP.
If the output message has an ori ginating TASK , the
number of assigned and linked queue entries is
incremen ted in cell .TMSC2 of the applicable TASK .

f~~PiiQ~ ~-~s Output Intercom Processor

The O u t p u t  I n t e r c o m  P r o c e s s o r  m u s t  he e x p l i c i t l y
enabled at the main—level to initiate output
processin g. The output processor must he enabled
w h e n e v e r  a new e n t r y  is l i n k e d  to the  O u t p u t
I n t e r c o m — Q u e u e .  I f  t he  e n a b l e  does not  i m m e d i a t e l y
follow the call to the link routine , the intervening
code must be inhibited.

The output processor ulways returns control when
enabled at the iuai n—l .~ve1 . The m ain—level enable is
iynored if the OUL~-UL ~rucessor is already executing a t
the courtesy—call level. The output—processor
aeterinines its courtesy—ca ll state by testing
communication cell .ECONO . V~hen this cell is non—zero ,
the ou tput processor is enabled at the courtesy—cal l
level , so that all currentl y link ed oucue entries wil l.
be processed.

2 1 . 2  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _


OUTPUT INTERCOM PROCESSOR

Overview

Once enabled , the output processor retrieves and
u n l i n k s the h i g h e s t p r i o r i t y O u t p u t I n t e r c o m — Q u e u e
e n t r y u s i n g c o m m u n i c a t i o n c e l l .ECOP. I f the
queue—entry has an associated TASK , the count of linked
queue entries within the TASK is decremented . The
contents of the queue—entry are copied and the
queue—entry space is released via the .ECOMQ cells.

Starting with the first message segment , the
output processor issues an Intercom output request to
transfer the segment to TPE. The DCW word count for the
segment is obtained from the lower half of the first
word of the segment. A courtesy—call is attached to the
Intercom I/O so that the output processor will be
d i r e c t l y enab led by GCOS when the c u r r e n t I n t e r c o m has
completed .

When the courtesy—call is paid , the Intercom
Status Return is tested to see if the Intercom was
successful. If not successful , the Intercom is
reissued . Otherwise , the first word of the written
segment , the message segment linkage word , is copied
and the Output Buffer space assigned to the segment is
released . The upper half of the copied linkage word is
then examined to determine if there is another segment
in the message.

The l i n k a g e w o r d h o l d s a p o i n t e r to the n e x t
seqment of the messaqe if it is nonzero: otherwise , the
linka qe was extracted from the last ~essage segment. If
there is another segment , an Intercom output request is
i ssued f o r i t w i t h an appended c o u r t e s y — c a l l as b e f o r e .
When this Intercom completes , a check is made to
deter mine if there are any more scu~cnts as

(
~escribe d

above.

i~ius tue 1cssaye sc-~iu e n t s u r e s e r i a l l y yr ii ten
u n t i l t t L l3st se~J~~e nt is O e t e c t u u ~no , c o n s e q u e n t l y ,
th e w h o L e message has been s e n t . ~. L L n t h i s o c c ur s , t h e
o ut j . u t j r ocessor r e t u r n s to t h e O u t p u t I n t e r c o m — Q u e u e
ano ~.~~a i n f e t c h e s the h i g h e s t p r i o r i t y q u e u e — e n t r y .
Th i s proce~~u r e is r e h ~e ar e u u n t i l t h e q u e u e is em p t y . At

2 1 . 3

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ - - . ~~~~~~~~~-~~ -~~~~~~~~~~ -

OUTPUT I~~TFPCOr~ PROCESSOR

this time , the output processor disables itself by
termina tin q the courtesy—call with in an outstanding
I n t e r c om I/ O .

N o t i c e that . the O u t p u t I n t e r c o m Processor w i l l
a g a i n be e n a b l e d a t the m a i n — l e v e l when an o u t p u t
r e q u e s t is l i n k e d to the O u t p u t I n t e r c o m — Q u e u e .
F u r t h e r m o r e , any r e q u e s t s l i n k e d to the q u e u e , w h i l e
the o u t p u t processor is enab led , w i l l be retrieved and
processed a t the c o u r t e s y — c a l l l e v e l . In the l a t t e r
case , the m a i n — l e v e l e n a b l e s a s soc ia ted w i t h the newly
l i n k e d q u e u e — e n t r i e s w o u l d be i g n o r e d .

Outpu t I n t er c o m Ent fy P o i n t s

I:,
110120 Initiate Output Intercom

110221 Output Next Messane

110130 Output Next r’~essage Segment

110131 Reissue Output Intercom

110140 Output Intercom CC

110150 Check Intercom I/O Status

110160 Link Output Intercoi~—Queue entry

11u17U Unlink Output Intercom—Queue Entry

FUNCTION :

This routine initiates out b ut Tnterco ii to TPF
p r o v i d e d t h a t o u t n u t to i n t e r c o m is not a l r e a d y
runnin e. Ou tput is seouenced by the eriority
ass ic in ed to each mess~~~e w h e n i t s e u e u e — e n t r v was
l i n k e d to t h e O u t n u t I n t r ~r coi,~— f l u e u e . f l rce s t a r t e d ,
0u tn’it Intercom is driven at th~ cour trsy—cal l
level until the Outnut Intercom—Queue has heen

F— -
~~~

OUTPUT INTERCOM PROCESSOR

emptied . The Output Intercom routine empties the
Output Intercom—Queue from its high priority tail.
(It is worth noting that each queue—entry can
represent several message segments within the
Output Buffer , each requiring its own Intercom I/O
to send the complete message to TPE)

ENTRIES:

EP1 — Initiate Output Intercom (110120)

This entry starts output Intercom with the
highest priority entry linked to the Output
Intercom—Queue.

No calling parameters.

EP2 — Output Next Message (110121).

This  e n t r y  r e t r i e v e s  the highest priority
q u e u e — e n t r y  to s t a r t  o u t p u t  of the next
message. The entry is used on ly  when the
Output Intercom Processor is at the
courtesy—call level.

EP3 — Output Next Message Segment (110130).

This entry builds the necessary DCW to output
the next message segment within the
queue—entry being serviced.

CP1 — Pointer to next Output Buffer message
segment.

EP4 — Reissue Output Intercom (110131)

This entry reissues the Intercom output
request with the same DCW used in the
previous issue .

No calling parameters.

R E T U R N S :

}~eturn is always to the Call+1 .

21.5 

- - -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - 
______

OUTPUT INTERCOr~ PROCESSOR

Output Intercom CC

FUNCTION :

This routine che~jks the Intercom I/O status of the
previous GEINOS . It the status indicates that an
error has occurred in the previous transmission ,
the previous Intercom request is reissued to GCOS.
Otherwise , the output Buffer space assigned to the
successfully written message segment or message is
released , and Intercom I/O is issued for either
the next message segment or the first segment of
the next highest priority message linked to the
Output Intercom—Queue. This routine is
courtesy—call driven and continues until the
Output In tercom—Queue is empty.

EN T R I  E S :

EP 1 — O u t p u t  I n t e r c o m  CC ( 110140)

Control passes to this entry point when GCOS
services the courtesy—call.

R ETU RNS:

heturn is rrou~ tc CCG~ via a MME GEENCC .

21. 6 

- —- - . - -~~--



OUTPUT INTERCOM PROCESSOR

Check Intercom I/O Status

FUNCTION :

This routine checks the termination , major status
and lost interrupt positions in the first Status
Return word of the specified Intercom I/O request.

ENTRIES :

EP1 — Check Intercom I/O Status (110150).

CP1 — First Intercom I/O Status Return word.

RETURNS:

RR1 — Call.+1, Bad Status Return.

The Intercom I/O must be reissued.

RR2 — Call+2 , Successful.

2 1 . 7

—~



~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

OUTPUT I NTERC OM PROC ESSOR

L ink O u t r u t r r t e r c o n i — ç u e u e Fntrv

FPNCT ION:

This routine Unks the designated Intercom—Queu e
entry to the Output Intercom—Queue according to
t he p r i o r i t y a s s i gn e d to the queue—entry. The
Output Interco i:i-Queue i~~ ordered by ascend ing
E - L l o r r t y v a l u e s in th~ to rw ard pointer uirecilon.
(See Queues uLscussion tor the queue—entry
lorinat). Lastl y, the count of linked
Interc o~ —~~ueue entr1 e~;, in cell .T~:SG2 lower of
the i.ndicated TASK (it any) , is increinentea.

ENT~ I ES:

EP1 — L i n k O u t p u t l n t e r c o u — Q u e u e I~n t r y (1 10 1 6 0)

CP1 — Pointer to Queue—entry to he linked .

CP2 — P o i n t e r to a s s o c i a t e d TA SK , if one;
o t h e r w i s e , z e r o .

P F 1 U P N S :

P e t u r n r s a l w a y s to C a l l + l .

2 1 . 8

OUTPUT INTERCOM PROCESSOR

Unlink Ou~Q~t. Intercom-Queue Ent~~

FUNCTION:

This routine unlinks the designated queue—entry
from the Output Intercom—Queue. The count. of
linked queue—entries , in cell .TMSG2 lower of the
TASK specified by the queue—entry (if any) , is
dec rem en ted by one.

ENTRI ES:

FP1 — Unlink Intercom—Queue Entry (110170).

CP1 — Pointer to queue—entry to be released .

CP2 — Pointer to t h e associa ted TASK , if one ;
otherwise zero.

R ETU I~NS:

Return is always to the Call+1..

21 . 3

EXECUTIVE ERROR MESSAGES

EXECUTIVE ERROR MESSAGES

Introduction

Executive error messages are defined by the .EMSG .
macro. This macro builds a table of message DCWs along
with a table of the variable length messages. Message
DCWs are assembled under the . . EXEC location counter ,
and the actual message texts are assembled under the
.MSG location counter.

Each message is identified by an associated
message code , which is used as an index into the list
of message DCWs. All references within the Executive to
a particular message are made with the error code. This
code is normall y placed in TASK cell .TERRM upper and
is used by the TASK Terminator to determine which
message , if any , is to be sent to TPE f o r a t e r m i n a t i n g
transaction.

There are two special or reserved message codes.
Code—i is used to indicate that no message is to be
sent when the TASK is terminated. TPT5 code is only
used when the TASK belongs to a spawn TASK chain. It is
necessary to prevent a message with an
End—of—Transaction (BOT) status from being sent to TPE ,
since this would terminate the transaction ’s
out st— ~ndinq status within TPE.

Code 0 is used to indicate that only a message
header specifying an EOT status is to be sent.. This
code is used for TASKs that terminate normall y and do
not b e l o n g to a spawn TASK c h a i n . I t s e f f e c t is to
change TPE ’s processing status of the terminating
transaction to ‘conipleted ’.

2 2 . 1

EXECUTIVE ERROR MESSAGES

~~~ ~~~~~~~~~~~~~~~~~~~ C i

Error Jnessayes must be detined in order of their
assigned code , i.e., in message code sequence. There
can be no missing cooes. The .ENSG. macro , wi th
descriptive parameters , is invoked as follows:

1 8

. EM SG . M e s s a g e — C o d e ,

FTC Message—Size ,

ETC (Messaqe Text)

where the eessaqe size is qiven in words and must be 9
w o r d s  or  l~’ss

22 . 2



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EXECUTIVE ERROR MESSAGES

Executive Error Messages

Currentl y used messages , along with their message
codes , are listed below :

Code Error Message

1 Illegal MME

2 Restricted MME

3 I/O Select Sequence File-Code Address Out
of Range

4 I/O Select Sequence Seek DC~ Address Out
of Range

5 Illegal Seek DCW

6 DCW Data Address Out of Range

7 I/O Select Sequence Status Return Address
Out of Range

8 I/O Select Sequence DCW Address Out of
Range

9 First DCW a TDCW

10 DCW Address Out of Ranae

1]. Two Successive TDCWs

12 Intercom I/O Status Return Address Out of
Range

13 Intercom I/O DC~ Address Out. of Range

14 Intercom I/O DCW Not an IOTD

15 I n t e r c o m  I/O DC~ Da ta  A d d r e s s  O u t  of R an g e

Output Initia ted Before Input Requested

17 Input kequested After Received

22.3 

-- -~~~~~~~~~~ ----- -- —-- . -  - - - --~~~~~~ ~ --~~- --- - -- -- ---—



E X E CU T I V E E P R O P  MFSSAG F~

18 illegal File—Name

19 Intercom ~crit e DCW Word Count > 128 Words

2U Output Transaction ~ Not Equal
To Input Transaction ~

21 Input Reque.;tea Alter Output Initiated

2:  rI’Ap—To—TPAP Me~;o tJe Destination Count Not 1

23 TP/~P—To—TPAP Message Keyword Unknown

24 flutpu t ~1essaqe Segment Destination CountsDisaq ree

(
~u t ~~u t  ~essaqe ~T c ’qm ent  r ) e s t i n a t i o n — I D s
Di saq tee

(~tItput ‘~essaqe Size Creater Than Execu-tive ’s Profi le

27 Input ~e~ saoe Re’!oord Unknown

28 Peciuested TPAP Not Available

29 F a t a l  ~‘.rror Duri ng Load

i ’ a tal Er roi flu e ~nq ~wa~~— Out

31 I n v u  t~ Ser ~ i o u  Vu~~tor

32 Log i c a l — i D  Not  3 C h a r a c t e r s

33 ~;e S SJ g C  Trx c.. Lenyth — Character Count
I. r tot

34 KE t O  i~P t~ 5~ -J ’ 4C Loyic~~l— iD t .rrot

3
5 

Il le qal Inturcon I/t

3~ (‘ U t n u t  R t  t u l r ) t u o  A f t o t  VC1 ~ C C O i V e ( i

37 Out t ) U t ‘rex r T o  not h > ‘ o~;s.n~e DCW Count

Outnut ~1 radet TnCCn’Tl’te

3() PP— nP N~~~~1 ( ’~~~V ~~~~~~~~~~~~~~~~~~~ 
P~~ t_ i L ~

2~ 4 

----- -_.--- _ -- .-“, 



EXECUTIVE ERROR MESSAGES

40 F1—KP Fault Tag Fault

41 F2—KP Command Fault

42 F3—KP I)erail Fault

43 F4—KP Lockup Fault

44 F7—KP Undefined OP Fault

45 F8—KP OP Not Complete Fault

46 F9—KP Overflow/Underflow Fault

47 IP—KP Divide Check Fault

48 <<Reserved>>

49 F6—KP Memory Parity Fault

50 Consecutive GERELC/GEROADs With No Inter-
ven ing 1/0

51 File Control Block Out of Range

52 Aborted By Keyword Processor Code xx

53 Aborted <xx>

54 Invalid MME Parameter

55 R e s t r i c t e d  MME Option

56 R e s o u r c e s  E x h a u s t e d  — Try A g a i n

57 GEFSTR File—Code Not FT~

58 No Overlays Declared In Profile

59 No Overlays Present In Profile

60 GERSTR Call ~:ame Unknown

61 GERSTE Data/Load Origi n Too Large For
Assenibled ~emory

62 GERSTR I/O Error

63 Illegal DRL

2 2 . 5  

—.  -~~~. .,—~~



.- ,- . --.- -—--- -  

~~~~~~ 11
EXECUTIVE ERROR MESSAGES I
64 R e s t r i c t e d D R L

22.6

—.- --- - ..‘.. --~~~~~~~~~~~~~~~~~~~~ ——-

--
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ____,__J~_ 

—~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ —,.—-

EXECUTIVE ERROR MESSAG ES

E x e c u t i v e  I n t e r c o m  E n t r y  P o i n t s

Symbol Title

EXM100 Executive Message Intercom

ETX100 Convert & Edit Transaction Number

22 .7

- .  - - -~~~~~~ -- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - -. -~~~~~ -~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~



EXECUTIVE ERROR MESSAGES

Fxecu t ive Messaqe In tercom

F U N C T I O N :

This routine builds an output message header using
the Transaction number and Source—Il) in the
d e s i g n a t e d  TASK.  The T r a n s a c t io n  n u m b e r  is
converted to BCD and inserted into the first two
words of message text. Output buffer space for the
complete message is requ ested and the header and
text ar e written to buffer.

E N T R I E S :

EP1 — Executive T’~essage In tercom (EXM1 00)

CP 1 — L ( T A S K )  to which message applies.

CP2 — r~essage  te x t  D CW. ( I f  z e r o , o n l y  a
message header will be built and passed
to the output buffer).

CP3 — ~e~~~aqe Status (FOS , FOts~, or FOT)

PrrU P~ S:

— C a l l+ 1 , Sufft cient Output Ruffer space not
n y u  i l a h i c .

I~R2 — Ca ll +2 , i~cs:~~ e successfully writte n to the
Output r u t [ e r .  TASK cell .TMSG holas a
pointer to the assigned buffer location.

RP1 — Pointer to l.~st assigned buffet cell tot this
m essdye +1.

22.8



-~~~~~~~~~~~~~~~~~~ ~~~~~ -

EXECUTIVE ERROR MESSAGES

Convert & Edit Transaction Number

FUNCTION :

This routine converts the binary transaction
number in TASK cell .TNUMB to BCD and edits it
into the form #—xxxxxxxxxx , where the number is
left justified within the x field.

E NT RI ES:

EP 1 — Convert & Edit Transaction Number (ETX100).

CP1 - Pointer to TASK whose .TNUME3
transaction numbe r is to be edited.

R E T U R N S :
4

Return is always to caLl+1 .

RP1 — Edited transaction number.

22.9



EXECUTIVE SUPPORTED MME SERVICES

EXECUTIVE SUPPORTED MME SERVICE

Selected MME functions are supported by the
Executive in order to mimic GCOS MM E processing for the
Keyword Processors. An attempt has been made to provide
a basic set of functions which are normally requited
and appropriate to the operating environment provided
by the Executive . The design of the Executive ’s MME
Identification/Validation routine and of the existing
MME handlers is open—ended so that additional MME
functions or MME options can be readily incorporated .

The support provided by the MME handlers varies
from completely processing the function internall y to
basically reissuing the MME to GCOS after preprocessing
the MME parameters in order to maintain the in tegrity
of the Executive ’s operating structure. Of those MME5
currently supported , various restrictions or
limitations also apply to the options which are
otherwise provided by GCOS.

Control is passed to the requested MME handler by
the MME Identification/Validation routine within the
GELFAR Fault Handler.

2 3 . 1

-- —- - - -  —-—-~~~-.. .~~~~~~~~ . - — . -- —— - .  . , -— _ _ _ _ _ _ _  _ _ _ _



.~
‘
~~~~—,—.“y- “

~1

EXECUTIVE SUPPORTED MME SERVICES

~~~~~ ~~~~~~~~~~~~

Entry point symbols for the MME services are
obtaineu from the stanoard GExxxx by replacing the ‘GE ’
w i t h  ‘ .G ’ , i.e., .Gxxxx. This is done to avoid
d u p l i c a t e  s ymb o l s .

Symbols internal to the MME processors have been
assigned the forms M~1E nnx or Mnnxxx , where nn is the
symbolic decimal value of the applicable GExxxx symbol.

M MF Se r v i c e  Descriptions

Descriptions of selected MME services are found on
the  f o l l o w i nq  paces .  D e t a i l e d  d e s c r i p t i o n s  a r e  include d
onl y f o r  those  M ME processors which a r e  s o m e w h a t
i n v o l v e d  or whose incorporation into the Executive
r e a u ir e s  a multi—faceted interface.

Desct  ip t  ions  f o r  th e  r e m a i n d e r  of t h e  ‘1~ E
processors consis t of a function statement along with
any necessary sup~ orting information.

2 3  . 2 

, —--—---— -~~ --.. .- -~~ 



. .-— —~ 

—

EXECUTIVE SUPPORTED NNE SERVICES

GEINOS HANDLER

I/O Feauest Pecoqnition

The M~ 1 1 ’ Identification/Va l idation routine passes
all T<eyword Processor ~~ 1fl GEI NOS f a u l t s  to the  I/O
Peouest Recognition routine in order to determine
whether the request is for device or Intercom I/O .
Prior to resolvin g the I/O type , a check is made to see
if a r~~F GFPFLC/GFROAD was requested by the Keyword
Processor . This is indica ted if the B.THLQ bit flag is
on in TASK cell .TFLAG+1. If either a GERELC or GEROAD
has leen requested , the TASK Status Flag is set off.

The r e q u e st e d  I/O type  is t h e n  d e t e rm i n e d  by
exai~in1n g the File—Co oe in the Keyword Processor ’s
Select Sequence to see if it is the ‘ :: ‘ Intercom
F i l e— C o d e .  C o n t r o l  is s u b s e q u e n t l y  passea to t h e  Device
or Intercom I/O Handlers as dictated by the designated
File—Code.

2 3 . 3



- — - — -~~
- ---

~~~~~~

~~~~~~~~~~~~~~~~ 
— -

~~~~~
--

~~~
.-—-

~~~~
..

EX E C U T I V E SUPPORTE D M M E SERVIC ES

D EV I C E I/O H A N D L E R

MME GEINOS Preface

FU NCTION :

This routine classifies Keyword Processor MME
GEI NOS requests as device I/O or Intercom I/O. It
also adjusts the ‘MM E GERELC/GEROA D Reques ted ’
TASK Status Flag (B.TRLQ) prior to routing control
to the appropriate handler .

ENTR I E S :

EP1 —
~‘~ F GFINOS Preface (.(~INOS).

CP1 - Pointer to the Keyword Processor ’s
M~ E+l relative to the Executive .

CP2 — Pointer to the TASK reuuestinq I/O .

l~ETURNS:

RT I — Intercom I/O Efan uler

it the request is for Interco m I/O .

RT2 — iev ice I/O han ler .

I f uc request is for aevice I/O.

2 1 .

.- ~~~-— - .--, -

EXECUTIVE SUPPORTED MME SERVICES

Need fo r E x e c u t i v e C o n t r o l

Device I/O is initiated by the Executive for the
Keyword Processors , since they cannot be allowed to do
their own [/0. The reasons for this restriction are:

(1) All Keyword Processor I/O Select Sequence
parameters are relative to the Keyword
Processor ’s GFLBAR , not the Executive ’s LAL ,
and

(2) The Select Sequence parameters might violate
the Keyword Processor ’s assigned memory
boundaries , consequentl y there would be no
protection for any other in—core Keyword
Processors or the Executive itself.

To overcome these problems it is necessary for the
Executive to preprocess the Select Sequence parameter
and reissue the I/O request to GCOS .

Executive I/O Administration Requirements

Several administrative requirements are placed on
the Executive in order to supervise and monitor all
Keyword Processor device I/O and to maintain the
integri ty of the operating environment it provides.
These recuirements are introduced below in terms of
their respective needs.

It is im perative that the Executive know which
in—core Keyword Processors have outstanding device I/O
requests to allow the reloase or reassignment of a
Keyword Processor ’s assiqned core space. In conjunction
wi th this requirement is the need for the Executive to
know when each I/O completes so that the outstandin g
I/O status of the affec ted Keyword Proces ror ca n be
adjusted . This control must he exp licitly given to the
Executive when each I/O comp letes. Notice that since
the Executive initiates I/O for all the Keyword
Processors , i t cannot implicit ly determine when an I/O
completes by suspending itselt with a relinqui sh or
road block.

2 3 . 5

kg.
- _ _ _ _ _ _ _ _ _ _ _ _ —~~~.-- - - - — _ _ _ _ _ _ _ _ _ _ _

EXECUTIVE SUPPORTED MME SERVICES

Lastly, the Executive must be able to determine
which Keyword Processor ’s I/O is completed when i t is
given control.

Mult~p]e Outs tanding I/O Requirements

Prior to describing the actual design of the
Execu tive ’s Keyword Processor I/O handling , the
problems associated with allowing multiple outstanding
I/O need to be addressed.

If more than one active I/O request is to be
allowed each Keyword Processor (rather than suspendinc
its execution from I/O request to comp letion) , a l l
Keyword Processor Select Sequence parameters and DCWs
mus t be copied to an Executive area. This is necessary
to prevent the Keyword Processor from altering the
Select Seauence parameters or DCW5 while the I/O is
active. Copying the Keyword Processor ’s DCW list would
be a problem , since the lists can be of variable
l e n g t h .

In addition to identifyin g the originatinq Keyword
Processor when an I/O completes , the Executive must
also de termine which of the identified Keyword
Processor ’s outstanding I/Os it is. This is necessary
in or der to know which of the copied DCW lists is to be
released.

~~ & o~

I t was aeciaea d u r i n g t h e u s ~~g n L h d su t h a t
mu lt iE le Keywor o Processor I/Y would not L~ i nhii ~~11 y
allowed. Th us a l l Keyworo i’ t oc~~ssor s ~~ sus~~~no~~m tro~
execution whe n they request devie~ I/O u n t i l l i e I/O
has comp inted. This dccl sLon was ~. ased pr iir a~~i1 y on t h e
observat ion that if o avi r ai e or nonr a I sIav~ I/O
processi nq re~ u le s tn a r- 1nl? u 1 :~h l r i ~~ r~~

(h i
~

a 1~~er an i/O is i n i t i a t .~~d . Th~~s ~~~~~~~~ d ec i s~
no t r r e c l ud e the inco rt~~rat1on 01 ~ u (f . a ! a t i ~~. .

The I/O n~1 r i n i c ’ ‘ - i t i v r ~ r ’ m ~~r , r ~ + ’ f l ’ ,t~ , f f ~ ~~~

3 .

_ _ _

- ~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~
-- - - — - - - - ----

~~

-

EXECUTIVE SUPPORTED MME SERVICES

within the Executive by attaching a courtesy—call to
all reissued Keyword Processor I/O requests. The
purpose of the courtesy—call is to:

(1) Act as a software interrupt to indicate that
some Keyword Processor I/O has completed ,

(2) Identif y the Keyword Processor that requested
the completed I/O, and

(3) Update Keyword Processor status flags and
optional I/O related measurements.

The first function is a consequence of the definition
of a courtesy—call.

The second function ~.s accomplished by the
Courtesy—Call Vector with in each TASK. When the
Executive reissues the Keyword Processor ’s I/O , it
attaches a courtesy—call address to the
Selec t—Sequence. This address points to cell .TCCV , the
TASK associa ted with the requesting Keyword Processor.
The loca tion of the true courtesy—cal l routine is
p laced in the Courtesy—Call Vector.

When the courtesy—call is paid , control is passed
to the TASK Courtesy-Call Vector. The Courtesy—Cal l
Vector first sets an index register to point to cell
.TCCV+l of th e associa ted TAS K~ i t then passes con trol
to the actual courtesy—call routine. This routine
identifies the aff ected TASK via the oreviously set
index regis ter , prior to perform ing the third
courtesy—call func tion.

Executive I/O Pandlin o Overview

The Device I/O Handler is functionally divi ded
in to the categories of I/O initiation processing and
I/O ter mination processing.

Ini tiation is trigger ed by a Keyword Processor ’s
I/O request. Its function is to validate ana adjust the

23. 7

• - -
-

~~~~
-

~~~~~~~~~~~~~~ 

EXECUTIVE SUPPORTED MME SERVICES

K eyword Processor ’s Select—Seciuence parameters , fill in
a skeleton Select—sequence within the Executive , attach
a Courtesy— Call pointer to the applicable TASK
Cou~~tesy— Call Vector and to issue the I/O to GCOS. TASK
Status Flag }3.TDIO in TASK cell .TFLAG is set on at
this time to indicate that the Keyword Processor has an
outstandin g device I/O and is not eligible for
processor ass igniaent.

Termination is invoke d when the reissued I/O
completes. This processing is performed by the
Courtesy—Call rou tine that is attached to the reissued
I/O request via the TASK Courtesy—Call Vector.

Device I/O Initiation

The mrajor functions of the Initiation routine are
to:

o Validate the File—Code , DCW and Status Return
Select Seauence point ers relative to the
Keyword Processor ’s (~F EU ~7\F ,

o Ensure that the Status J~cturn is not in the
EPA ,

o \‘er ify that the pC’~ c~cf m e d da ta address
areas lie within the G i i~~AS and above the
EP A ,

o E c l a t iv i z e t h e LC~ d~i t a ~I O n t e ~~; (eS) ~ i t h i n
the <eywor o Processor to the 1 x ecuttve ’s hAL ,

o Fill in t i e Fx ecut ly e ’ s ~ik~ Icion
S e l e c t — S e q uen c e w i t h a l l h u 1 n t e r ~ L~~~l u t l V (10
the Executive ’s LA I ,

o Insert the addres~; of the TASK Courtery— Ca il
Vector into the skeleton Selcct— ~ equence 3M _ i
the address of the C o ur t eA y— C~1 ll routine i n
t~~~~~e C our t esy—C a ll VeCt~~t,

EXECUTIVE SUPPORTED tIME SERVICES

o Set the ‘Device I/O in Progress ’ bit flag on
in the TASK , and

o Reissue the I/O via the skeleton
Select—Sequence .

Device I/O Termination

The major functions of the termination routine , which
executes at the courtesy—call level , are to:

o Locate the affected TASK via the index
register set by the TASK Courtesy—Call
Vector ,

o Re—relativ ize the DCW data address(es) with in
the Keyword Processor to the Keyword
Processor ’s LAL ,

o Rela tivize the Status—Return data address
residue to the Keyword Processor ’s LAL , ana

o Turn off the ‘Device I/O in Progress ’ bit
tiag in the previously identified TASK.

Keyword Processor R e s t r i c t i o n s

There are two restrictions that apply to the
Keywor d PrOCeSSOrS in regard to device I/O. First ,
cou rtesy—calls are currently not processed by the
Fxecutive . Second , all device I/O commands are allowe d
except multi—record transfers for a card punch , car d
reader and print er .

3 . 9

EXECUTIVE SUPPORTED MME SERVICES

Pevice I/O Handler

FUMCT ION,

This rou tine serves the Executive in handling all
device I/O requested by the Keyword Processors.
All I/O Select—sequence parameters are validated
(except the courtesy—call pointer) , relative to
the Executive , and inserted into a skele ton
Select—Sequence used to issue the I/O request to
GCOS. The DCW list is validatea and mace relative
to t he E x e c u t i v e . A p o i n t e r to the Device I/O
Courtesy—Call Routine is inserted into the
Courtesy—Call Vector (.TCCV) in the TASK , and tne
location of the TASK Courtesy—Call Vector is
placed in the skeleton Select—Sequence as the
cour tesy—call address. A true I/O request is then
issued to GCOS .

EP 1 — Device I/O Handler (DIO1UO)

CP1 — LAL of requestinq Keyword Processor.

CP2 — L(TASK) associated with the Keyword
Processor.

CP3 — L (t ~~’E) r e l a t i v e to t h e E x e c u t i v e .

RETUR’JS :

C o n t r o l r a s s e s f r o m t h i s r o u t i n e as f o l l o w s :

—
~~ rvice hi~~~atcher ’s—~~ueue .

If h o - aevice I/O was successfully init iateo .

— S t a r t jASK Aoort ..

it ther e was an errer in the I/O request .

23. lU

-

~

~~~~~~~~ --— -— ~~ -- —-~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~ —~~~~~~~~ -~~~~-— ••~~~~~~~~~~ ----•-~~~~
• -



EXECUTIVE SUPPORTED MME SERVICES

Validate DCW List

FUNCTION:

This routine follows the DCW list given the
poin ter to the first DCW from the Keyword
Processor ’s I/O Select—Sequence. For each DCW in
the list , its location and the boundaries of the
region defined by its data address and word count
are checked to ensure that they lie within the
Keyword Processor ’s BAR. Furthermore , the data
address region is checked to ensure it does not
intersect with the Keyword Prefix Area. The data
address is then relativized to the Executive and
stored back in the DCW list. Any errors cause the
TA SK to he marked for abort.

E N T R I E S :

EP1 — Valida te DC~ List (D10300)

CP 1 - L ( f i r s t  K e y w o r d  P roces so r  DC W ) .

CP2 — P o i n t e r  to TASK requesting device I/O.

RETURNS:

RR1 — Call +1 , Successful validation.

RT 1 — St a r t  TASK A b o r t .

If there was an error in the I/O request.

~3 . 1 1



E X E C U T I V E  SU PPORTED MME SE RV ICES

Device I/O Courtesy-Call

F(J t ’J CTI OF ’~:

This routine re—relativizes each DCW in the
Keyword Processor ’s DC~ lis t to the Keyword
Processor ’s PAP and stores the rcw hack into the
Keyword Processor ’s PC~ list. The d a t a  a d d r e s s
te S i d U C  in  t h e  second status Return word is also
r elativize u to the Keyword Processor ’s liAR and
store d according to the location specified in the
Keywor d Processor ’s I/O Select— Sequence. Lastl y,
the ou tstanding device I/O bit flag in TASK cell
.TFLAG (3.TDIO) is turned off.

ENTkIES:

EP1 — Device I/O Courtesy—Call ~DIO4Ui )

Control passes to this entry point when GCOS
services the courtesy—call. The loca tion of
the affected TASK is recovered from the Index
Register set by t he  C o u r t e s y — C a l l  V e c t o r  in
cell .TCCV of the TASI~.

RETURN S:

C o n t r o l  is r e t u r n e d  to CCPS v i a  a ‘~‘~ f ~

2 3 . 1 2



~ •-•—•— _ .- —_  
-•~~~_ -~~—--—-~—•

EXECUTIVE SUPPORTED MME SERVICES

INT ER CO~1

Introduc tion

All Keyword Proc essor Intercom is treated as a
pseudo Intercom internal to the Executive. That is , a
core— to—core transfer either from the Input Intercom
Buffer to the Keyword Processor or from the Keyword
Processor to the Output Intercom Buffer.

Intercom Status Flags

Several TASK Status Flags have been defined to
identify the various Keyword Processor Intercom
processing and message states . These flags are used in
conjunction wi th TASK cells .TMSC , the Intercom message
descriptor; .TMSC,2, the output message descriptor
extension ’ and .TTDCW , the Pseudo Intercom DCW to
describe and cont’ol each Keyword Processor ’s input and
output Intercom processing .

The processing TASK Status Flags are the ‘Pu ilding
In tercom Output ’ flag , symbolically denoted R.TBIO,
and the ‘ In tercom Output Complete ’ fla g, deno ted by
B.TOU t l~~ is set on when the Keyword Processor first
r e q u e s t s  I n t e r c o m  output. The ‘Intercom Out p u t ’ f l a g  is
set on wr~en an End— of—Transaction (EOT ) rtatus ~s
oetecleu ~n an output Intercom message.

lA SK cell .1~1SG locates and describes an input or
outhut Intercom message , aepena iny on the Intercom

~roce ssir1g status flays , whenever the cell is non- ze ro.
TASK cell .TMSG2 holds a pointer to the ~ist link cu
Intercon’ out~~ut message segment and the number of
l i n k e d  O u t p u t  I n t e r c o m — Q u e u e  e n t r i e s  f o r  t h i s  TASK .
Th is count is explained in the Output Processor
discu ssion. Lastly, .TIDC~ hol ds the Keyword
Pr ocessor ’s pseudo In tercom flC~ when it resuests
Inter coir I/O .

23 . 1 3



EX E C U T I V E  SUPPO RTED tINE SERVICE S

Status Flags & Intercom 
~~~~~~

When a Keyword Processor requests Intercom output ,
a check is made to see if any outpu t has already been
sen t. This is done by testi ng the ‘Building Intercom
Ou tput’ flag in the associated TASK. If the flag is
o f f , .T~”~G is checked to see if t he i npu t message has
been requested (i.e., is zero). If .T~”SG is not zero ,
the input transaction is still in the Input Intercom
P u f f e r : t h u s , t he Keyword P r o c e s s o r is a t t e m p t i n g to
wri te Intercom output before reQuesting the input
transaction which it is to process. This is not
allowed , so the Keyword Processor is aborted.

If the input transaction has been requested , i.e.
.TMSG is zero , the ‘Building Intercom Ou tput ’ flag is
t u r n e d on to i n d i c a t e t h a t I n t e r c o m o u t p u t has been
initiated by this Keyword Processor. When on , this flag
is additionally interpreted to hean that the i n p u t
t r a n s a c t i o n has been successfully passed to the K e y w o r d
Processor and t h a t TASK c e l l .TN SG describes an output
In tercom message.

For subsequent Intercom output requests by this
K e y w o r d P roces so r , the on s t a t u s of t he ‘Buildin g
I n t e r c o m O u t p u t ’ f l a y imp l i e s t h a t .TNS G cou ld a l r e a d y
d e s c r i b e t h e beginnin g seqrrents of an o u t p u t m e S S a ge .
T h e r e f o r e , i f .Ty SG is no t z e r o , t h e message b e i nq sen t
by t h i s K e y w o r d P roces so r r e q u e s t w i l l be l i n k e d to t he
last seamen t received . The latter segment is l o c a t e d
via TASK cell .Tr~SC2 upper. If .TMSC i s zero , the
messane being sent w i ll be treated as the first or only
seci n ’ent of a new message , dependin g on th~ rnessaoe
s ta t u s .

When an Intercom outnut mess3qP SCcwer~
soecifyin g an EOT s ta t u s is r e c e i ve d , t h e ‘ In t r r c o r r
flutput Complete ’ fla g is set on in the associated ~~~~
The renuestin q Keyword Processor is still ~ l i~~jhle for
processor assignm ent , even thou~ih it has sent i ts l a s t
IfltE :rCoo OutLu t iressa~ e. Thi:; is done to a l l e~: ~ to
f-er for ri any n e c c Sn 3 r wra p up process in g

2 3. 1 4

-- ——V —

EXECUTIVE SUPPORTED MME SERVICES

S t a t u s F la~~ & Intercom ~~ put

When a Keyword Processor reques ts Intercom input ,
the ‘Building In tercom Output ’ flag is tested to
determine whether TASK cell .TMSG describes an input or
output message. If the flag is off , TASK cell .TMSG is
checked to see if it has been zeroed (indicating that
the inpu t transaction has already been requested) . If
.TMSG describes the input message (not zero) , the
message is transferred via pseudo—Intercom to the
Keyword Processor . However , if the message has already
been requested , the Keyword Processor must be aborted .

If the ‘Building Intercom Output’ flag is on , i t
is also necessary to check the ‘Intercom Output
Comple te ’ flag. If the latter flag is on , the Keyword
Processor ’s transaction processing is considered to be
complete. Consequently, the Keyword Processor is
terminated normally. If the latter flag is off , the
Keyword Processor would he aborted because it is trying
to process a new transaction before the Intercom ouput
processinq of the original transaction has been
comp leted .

~1essaqe S t a t u s F4~s

The remaining Intercom messag e status flags are
t h e I n p u t and O u t p u t Message Types , w h i c h a r e d e n o t e d
by TASK S t a t u s F l a g s B . T I T Y and B.TOTY , respec tivel y.
The I n p u t Message Type f l a g specifies that the input
t r a n s a c t i o n l ies in t he I n p u t B u f f e r w h e n o f f , or t h e
O u t p u t B u f f e r , w h e n on . An i n p u t message in the O u t p u t
B u f f e r ~eans t h a t the message was g e n e r a t e d as a n o t h e r
K e y w o r a P roces so r ’s o u t p u t .

The O u t p u t Message Type f l a g s p e c if i e s t h a t t he
output message is to he sent to TPl ~, w h e n o f f , or to
another Keyword Processor , w h e n o n . Th i s f l a g ~5 Se t on
whe never on output message has a single destination—Il)
of ‘ * * *‘ (Keyw ord Processor—to—Keyword Processor
communication) . This flag is adjusted for each output
me ssao e as r e q u i r e d .

2 3 . 15

~

~
_ _

EXECUTIV E SUPPORTED flME SERVIC ES

In tercom Request Overview

All Keyword Processor Intercom I/O requests are
passed to a common validation routine. This can be done
since the format of both the read and write
Select—Sequences are identical. The validation routine
performs GELBAfl boundary checks on the Select—Seauence
parameters and the DCW defined data region. If the
request is error free the Titercom DC t1 , always an IOTD ,
is relativized to the Executive ’s LAL and stored in
cell .TIDC~il of the associated TASK.

At this time each Intercom recuest is classified
as a read or write according to the I/O command in the
Keyword Processor ’s Select—Sequence.

In tercom Read Overview

A Keywora Processor Intercom read is always
considered to be a request for its input transaction ,
i.e., the transaction it is to process.

When a read request is received , the Intercom
processing status flags are tested , as previous ly
described , to ensure that the request is legitimate. If
it is , the ‘Input Message Type ’ flag is ex~;~ ined to
determine whether the input. message is in the Input or
Output Intercom Buffer. If the input. message is in the
input buffer (the flag is off) , a pseudo Intercom
routine is called to move the mesraqe to the Keyword
Processor. TPSK cell .TMSC holds the pseudo—Interco m
‘from ’ rcv and cell .TI1~Ct~T holds the ‘to ’ rC~ for the
tran sfer. vhen the move is compl ete , the Input Intercom
p u f f e r 5eace a s s ir t n e d t~~ the reonested inrut
t r~~nsact inn is rr~le~ sed (<-cc Int~ut/ Putnut Intcrcon
Puffer Mars Piscussion), TA SK cell .‘r~’~ p is 2c’roed , a n t
a du~~rv f t a t u s P o t u r n is b u i l t and n l a ce d in U n
Pevword ProcesFor according to its ~olec t—fcournce . T~ie
T r t e r c o r I/O Handler then returns control to ~h’~
Di.~~atch~~r so that a CELFtAR cm he r e i s s u ed te the
Keyword Processor.

I! lb.’ i n; u t m .es~~ay e L S in the ou L U t Lu~ t r (t

23. hi

EXECUTIVE SUPPORTED MME SERVICES

message type flag is on) , the input messaqe represents
Keyword Processor communication . In this case , an input
message header is built using the output header of the
first message segment in the output buffer. The header
is moved to the Keyword Processor , after which the
first segment is edi ted to remove any leading blanks
and Logical—ID which may preceed the message keyword.
The firs t segment is then moved to the Keyword
Processor. All charac ter counts which precede the
message strings that make up the segment , are stripped
arid , consequen tly, not ttansferred as part of the in~ ut
message. When all message string s in the segment have
been moved , the Output Intercom Buffer space assigned
to the segment is re leased .

All message strings of the remaining input message
segments are also serially transferred to the Keyword
Processor much as the first , un til either the latter ’s
DCW word count runs out or the entire input message has
been sent. At this time TASK cell .TMSG is cleared and
a dummy Status Return is built and stored in the
Keyword Processor as dictated by its Select—Sequence.
The Intercom I/O Handler returns control to the
D i s p a t c h e r when a l l p roces s inq has been c o m p l e t e d so
tha t a GFI,RAP can be reissued to the Keyword Processor.

I n t e r c o m Y r i t e O v e r v i e w

All Keyword Processor Intercom Output requests are
assumed to be ou tput destined for TPE or for Keyword
Processor to Keyword Processor communication.

~hen a writ e request is received , the lnte rcou
processing status flays are tested , as pr eviousl y
described , to ens ure that the request is legitimate. I t
it is , the ‘Building Intercom Output ’ iiay and TASK
c e ll .TM SG a r e e x am i n e d to d e t er m i n e i f the beginnings
of un o u t p u t m e s s a g e h a v e a l r e ady been r e c e i v e d , i t t h e
f l a g is off , i.e., this is the first Intercom outp ut
request , or the flay is on hut .TNSG is zero , i.e. ,
t h i s is a n I n t e r c o m o u t p ut r e q u e s t to s t a r t a new
o u t) u t n e s s ag e , t h e :U C ’Ssaqe s e g m e n t ’ s d e s t i n a t i t n — I ~~ is
checked t o see i f i t is ‘ ~~~~~~~~~ . This destination—ID is
u sed to i n d i c d t e K e y w o r d P r o c e s s o r — t o - E e y w or d P r o c e s s o r
communi cation. If it is such a message , t h u d *~~: t t n a t t o n

23. 17

EXECUTIVE SUPPORTED MME SERVICES

count is checked to ensure that there is onl y one
destination—I D , and the message keyword is extracted
and verified against the Executive ’s Keywords Lis t,
which is locate d via communications cell .EKEYL. If the
des tination count or keyword are in error , the Keyword
Processor is aborted; otherwise , the processing of this
o u t p u t r e q u e s t r e j o i n s t h a t of a l l o t h e r o u t p u t
messages.

I f the ‘ [;u i l d i n a I n t e r c o m O u t p u t ’ f l a g is on and
.TMGSC is not zero , one or more message segmen ts have
already been wri tten by the Keyword Processor. In this
case , the destination count and destinat ion— IDs of the
new segmen t a r e m a t c h e d a g a i n s t those in the f i r s t
rressaqe segment to ensute that they are the same. If
there is a difference , the Keyword Processor is
aborted ; otherwise , the processing of the output
r e qu e s t r e j o i n s t h a t of a l l o t h e r o u t p u t messages.

For all output requests , the size of the new
message segment is added to the accumulated ou tput
message size in TASK cell .TMSG lower. The accumulated
size includes all message segment headers and would be
zero for the first segment of a message. The resul t is
used to determine if the cumulative size of all active
outp ut message segments exceeds the maximum allowab le
size in .EMXSZ upper. If the size is exceeded , the
Keyword Processor is abortea; otherwise , Out 1~ut
Intercom Buffer space is requ estea for the new seym€n t.

I f s u f f i c i e n t b u f f e r space c a n n o t be o b t a i n e d , t ie
executive will a ttempt to enlarge the output buffer
a r e a by a l l o w i ng i t to a n n e x a b l o c k of c o r e f r o m m
c o n t i g u o u s f r e e co re ar e a . T h i s w i l l he s u c c e s s f u l
unless the contiguous core area is being used .

If suff icient buffer space cannot ic obta iner , the
‘ t Tp n d Output Intercom fluff er Snace ’ TASK Status Plaq
(P .T~’P~~) is t urned on and the TJ\ST(Service Vector is
s~’t so that ‘J’’~ pr ocessinq of the nutr u t recuest can he
resumed at r latr ’ r t i m e when the Intercom I/O I’andl er
is enab led iv the Pin~- mtc her ‘ s—çueue Serv ce. The
handler then r e t u r n s control to the Pispa t cite r . since
t u rt he r processing t s r o t pos5ihl e .

2 3 . 1 c~

— . .-~~~~ - V — ~~~~~~~~~~~~~~~~~~~~~~~ . - - ,~~~~~~~~~~ - - ,— - —~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~ - —-~~~~~~~

-V. - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— -V.-- V~~~V.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——- -V -V.

EXECUTIVE SUPPORTED MME SERVICES

If sufficient buffer space is available , the space
is reserved by building a buffer map entry and the
seqment is then transferred from the Keyword Processor
to the Output Intercom Buffer by the pseudo Intercom
routine. The actual size of the message segment is
stored in th e lower half of the first word of the
m e s s ag e . T h i s size is required by the Outpu t Intercom
Processor , which is described later.

If the new segment is not the first message
segment , as determined by TASK cell .TMSG , a pointer to
the new segment is placed in the upper of the last
l i n k e d s e g m e n t , w h i c h is located by cell .TMSG2 upper.
Thus all output message segments are linked together
‘v- l u the upper half of the first word of each message
se~ tr,ent .

For all output requests , the message segmen t
stat us is examined. If the status is End—of—Segment ,
the In tercom I/O Handler returns control to the
Dispatcher. If the status is End—of—Transaction , the
‘ Inter com Ou tput Complete ’ TASK Status Flag is set on
and the message status is changed to an End—of—Messaqe
(EOM) Status. Fv en after this output message has been
sent to TPF , t r e cha nce of messaqe status allows the
Fxecutiv e t e also send an Intercom message to TPF.,
which des~~,nate the s~i”~

-
~ ~ra nsacrion numb er as that

a s F i ln e d t o ‘ i c !.~~anra c ’ i~~n Lt -’i n q p rocessed by t h e
r e o r i e s ’ i n o V e y wo r i P r o c e s s o r .

Proccssin m con’ i n t e s for a ll rressace seoments that
specif ied an i~~ ’ stc ’ur or ~hos~- f l t c~~ UF w a s c han q e d to
EO~’ . F i r s t TA?K c ’l l ~~~~~~~ u r t , r is c l e a r e d , s i n c e t h e
la s ’ se r e n ’ p o i n t e r is no lori .’r r e qu ir ed f o r t h i s
m e s s ag e .

It t he r e~~~~~i o ’ i~~; a ‘ t r i o .’ ’ O U t , U t T iessa~~e for TP E ,
an ar! : t a t r et ’ C u t E U! Ir ittrc o ii —~ ueut entry is
r ade . It t f l t ~~t tt I I i~ ~s u n su e c s sf u l , the T1., SJ< i s
adjusteo so th at t i e r c t ;slny can be later r e s u m e d by
t u e r ; l sp a t c s r ‘ s — ~~u m e ~.; rvi ~- . O Lh t - ;w ise , the
q ueu~ — e n t r y is t i l l d — i n and ii ued t O ‘ c qu ’ t u ~ and
th e Ou tpu ’ Inte rcor P ’ u c e - or is ‘n d lee . (~—~ee t h u

u t i i ’. In ’ erco Procr’ssot d is cu r -i sion tot a further
ex~ I nn at ~cn .) I m t ly, TT\bK ce ll .T’~ d i~~ c l ’ ~ite d for a

2 . 1 i

- --V V - V -— . -~~~~~~~-- — — -~~~~~~- - V .- - - -

-

ExECuTIvE : 5up~s)I. r ~ ~P E SELVIC iS

new message request and control is passed to the
D i s p a t c h e r .

If the message designa ted Keyword
Processor— to—Keyword Processor coimunication , an
at tempt is made to obtain an unassigned TASK , called a
spawn TASK , is m a d e . I f unsuccessful , the origina ting
TASK is adjusted so that the Dispatcher ’s-Queue service
can re—enable the processing at. a l a t e r t i m e .
Otherwise , a skeleton TASK is built in the free TASK
and selec ted cells are copied from the originating TASK
to the spawn TASK.

The keyword is then extracted from the output
message so t h a t t h e d e s i q n a te d K e y w o r d P r o c e s s o r
Profile can he located and profile specifics inserted
i n t o th e spawn TA SK . ~ t t h i s t i m e , t h e ‘ I n p u t ‘~essage
Type ’ TJ~S~ Status Flag is set on in the spawn TASK and
the Output message is assigned to it via its .TMSC
cell. The spawn TASK is then linked to the Core—Queue
and a conditional attem pt to allocate core is made
depend ing upon the return taken by the ‘Link to
Core— Queue ’ routine. Finall y, cell .TY SC~ of t he
orig inating TASK is cleared for a new output message
and c o n t r o l is passed to t h e D i s p a t c h e r .

23.

EXECUTIVE SUPPORTED MME SERVICES

Intercom I/Q Handler

FUNCTION :

This routine is responsible for reading and
writing Intercom messages to and from a requesting
Keyword Processor using a MME GEINOS
Select—Sequence. For input , the message is passed
from the Input or Output Intercom Buffer to the
Keyword Processor via pseudo Intercom. After all
input is passed , the buffer space assigned to the
message is released. For output , an attemp t to
obtain Output Intercom Buffer space is made and ,
if successful , the message segment is moved to the
output buffer and linked to the previous message
segment , if any . If the message segment status is
End—of—Message or Transaction , an attemp t is made
to obtain an Output Intercom—Queue entry and , if
successful , the queue—entry is linked to the queue
and the Output Intercom Processor is enabled.
Keyword Processor—to—Keyword Processor
communication is also handled by this routine.

ENTRIES :

Common calling parameters are:

CPI — Pointer to TASK associated with the
Keyword Processor requesting Intercom
I/ O.

CP2 — L(MME)+1 relative to the Executive.

EPI — Intercom I/O Handler (110010)

E P 2 — Restart Intercom I/O, Need Output Buffer
Space (1 10 0 5 2) .

Control passes to th is entry point from the
Dispatch er ’s—Queue Service.

EP3 — P e s t a rt I n t e r c o m I/O , Need Spawn TA SK

2 ~.21

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ‘-- V - - i—-- - - - -

~w~~~~~~~~~~~~~~~~~muuU1

EXECUTIVE SUPPORTED MME SERVICES

(110082).

Control passes to this entry point from the
Dispatcher ’s—Queue Service.

EP4 — Restart Intercom I/O , Need Intercom Q—Entry
(110083).

Control passes to this entry point from the
Dispatcher ’s—Queue Service.

RETURNS :

Control passes from this routine as follows:

RT1 — Reissue GELBAR After Service (DSP3O2).

Intercom was successfully completed .

RT2 — Service Dispatchers—Queue (DSP1O2).

Intercom could not be completed.

RT3 — Start Task Abort (TRM100)

Error in request.

RT4 — Start TASK Termination (TRM400).

Intercom read after all Intercom output has
been completed .

23.22

-~ -~~~~ - -- -~~~~~~~ - - ~~~~~~~~~~~~~~~~~~
..

‘
~ - . - --- -- - , . , .

EXECUTIVE SUPPORTED MME SERVICES

Validate Intercom I/O

FUNCTION :

T h i s r o u t i n e v a l i d a t e s the I n t e r c o m I/O
Select—Sequence parameters , relativizes the
Keyword Processor ’s IOTD DCW data address to the
Executive and saves the DCW in the associated
TASK ’s .TIDCW cell. Lastly, the IC in TASK cell
.TICI is bumped to point to the first word
following the Select—Sequence.

ENTRIES:

EP1 — Validate Intercom I/O (110090).

CP1 — L(TASK) requesting Intercom I/O.

CP2 — L(MME)+l relative to the Executive.

RET U R N S :

Return is made to the calling routine as follows:

R R 1 — Call-f l , Error in request.

HR 2 — C a l l + 2 , Successful.

23 .23

_

~ V
-

E X E C U T I V E SUPPORTED M ME SERVICES

Pseudo Intercom

FUNCTION :

This routine effects a core-to—core data transfer
as dictated by the designated ‘from ’ and ‘to ’
DC~ s. At the coLripletion of the transfer , the data
address and w o r o c o u n t of both DCl’~s are adjusted
to r e f l e c t the move . The wora c o u n t used in the
transfer is always the smal ler of the two DCW word
c o u n t s , w h e r e a w o r d c o u n t of z e r o is t a k e n to be
ze ro u n l i k e a n o r m a l DC~&.

ENTR I ES:

EP 1 — Pseudo Intercom (110100)

CP1 — Pointer to t he ‘ f r o m ’ DCW .

CP2 — P o in t e r to t h e ‘ to ’ D CW.

RE T U R N S :

R e t u r n is a l w a y s made to th e C a l l + l.

RP 1 — n u m b e r of word t r a n s f e r r e d .

2 3 . 2 4

_ _ _ ~~~~~~~
rn’,-V. . ..- -’. - —-

EXECUTIVE SUPPORTED MME SERVICES

Pseudo In tercom Wrapup

FUNCTION : -

This routine builds a pseudo Status Return for a
Keyword Processor that has requested Intercom I/O.
The result is stored in the Keyword Processor
usinq the Status Return pointer given in its
Select-Seonence.

ENTRIES:

EN - Pseudo Intercom Wrapup (110110).

CP1 — Pointer to Status Return in the
requesting Keyword Processor.

CP2 - Pointer to the Keyword Processor ’s DCW
used in the pseudo Intercom

CP3 — Pointer to the associated TASK.

RETURNS :

Return is made to the Call+1 .

2 3 . 2 5

L - -

EXECUTIVE SUPPORTED MME SERVICES

~ME CFFCON Handler

FUNCTION:

Th is rou t ine follow s the chain of File Con trol
Blocks (FCB), if any , starting with the FCB
poin ted to by Q—uppe r in the designated Keyword
Processor ’s register storage area (.KREG). For
each FCI3 , i t s r a n g e f r o m LOCSYM—7 to LOCSYN and
its ‘next FCB pointer ’ in LOCSYM—l are checked to
ensure that they are with in the Keyword
Processor ’s BAR. The ‘next FC L3 pointer ’ is then
rela tivized to the Executive ’s LAL . The FCB chain
is followed until the ‘next FCB pointer ’ is zero
or points to the first FCB.

when all FCB pointers in the chain have been
relativized to the Executive , a true t ’tPE GE E CON is
issued . Upon return , alt FCB p o i n t e r s in the chain
are re—re lativi zed back to the Keyword Processor ’s
LAr~ and the CFLRAR is reissued.

FNTPI n’S:

FP 1 — “~‘F GFFCO r H a n d le r (.r~FCN).

CP 1 — Pointer to T~~SI(r e c t ue st i n q t h e ~~iFGE ECON .

PE T U R N S :

kTl — keissue GELF3AR At tot Fault (DSI’3U3) -

If a vat id request.

RT2 — Start TASK Abort (T I . r-~1u U)

I f an e r r o r in t h e r e nu e s t .

2 3 .

-V- V . —-- - - -~~- . -.--- . - -V . .-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V -
~~~~~~~~



- - ——~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— ‘ -
~~~~~

-

EXECUTIVE SUPPORTED MME SERVICES

Z*IE GEINFO Bandler

FUNCTION :

This routine processes Keyword Processor MME
GEINFO List Function requests. The SSA Copy
Function is not allowed .

The Ke~y ‘ord Processor ’s Directive List boundaries
are checked to ensure that the list lies within
the assigned core area. Each directive is then
processed with the directive ’s information address
(1 word) and specified option validated.

Currently, only Option 10 , Configuration data from
.CRFIG , and Option 12 , Program Number from SNTJMB
are implemented . For the latter option , the SNUMB
is restricted to $ TEAK .

ENT R IES :

EP 1 - MME GEINFO Handler (.GINFO) .

CP1 - Pointer Keyword Processor MME+l .

CR2 — Pointer to associated TASK.

RETURNS :

RT1 - Reissue CFLRAP After Fault (DSP3O3) .

If a valid request.

PT2 — Start TASK Abort (TRN100)

If an error recuest.

2 3 . 2 7


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~V_ V_~~V.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.1u
~~~~~

EXECUTIVE SUPPORTED tAME SERVICES

MMF GELAPS Handler

FUN CTION:

Elapsed processor time for the requesting Keyword
Processor is cop ied from the .TLAPS cell of the
associated TASK to word 5 of the Keyword
Processor ’s processor register storage area at
.KREG in its Keyword Processor Prefix.

E N T R I E S :

EP1 —
~1ME GELAPS Handler (.GLAPS).

CP1 - Pointer to the TASK associated with the
reques ting Keyword Processor.

R E T U R N S :

Return is always made to the ‘Reissue GELPA R A fter
Fault ’ (D5P303) entry point in the Dispatcher.

23. 2~3

—-.

~

-- -- ---— -—,-—~~~~~~~~~~~~~~ — ~~~ _~~~~~~~~~~~~~~

__
—----- --4

-- ~~~~~~~~~~~~~~~ .V.V ~~~~~ ~~~~~ ~~ -‘----V ~~~~~~~ • - V- VV_ —~~

EXECUTIVE SUPPORTED MME SERVICES

MME GERELC/GEROAD Handler

FUNCTION :

This routine handles Keyword Processor MME GERELC
or GEROAD faults. The ‘MME GERELC/GEROAD
Requested ’ flag (B.TRLQ) setting in the associated
TASK is checked first. If off , the flag is set on
and control passes to the Dispatcher to reissue
the broken GELBAR. If the flag is on , the Keyword
Processor is flagged for abort.

The ‘~~MF GERELC/GFROAD Requested ’ flag is turned
off by the M~1E G E I N O S P r e f a c e w h e n e v e r I/O is
reaues ted .

EN T R I E S :

EP1 - MME GERELC/GEROAD Handler (.GRELC or .GROAD) .

Entry is always made from the GELBAP Faul t
Handler -

CP1 — Pointer to Keyword Processor N1~E+l .

CR2 - Pointer to associated TASK .

RETURNS :

RT1 — Reissue GELBAR Af ter Faul t (DSP303).

If TASK Status Flag B .TRLO is off.

P T2 — Start TASK Abort (TPN100)

I f F . T R E O is o n .

2 3 . 2 9

_
_ V. ’_ ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EXECUTIVE SUPPORTED MME SERVICES

MME GETIME Handler

FUPJ CT IO~!:

A true MMF GETIMF~ is issued for the requesting
Keyword Processor with the resulting date and t ime
stored in words 4&5 of the Keyword Procesor ’s
processor register safe-storage area (.KREG).

E N T R I E S :

EP 1 — ~1~’1E GETIM E H a n d l e r (. G T I M E) .

CP1 — Pointer to requesting TASK.

RETURN S:

Return is always made to the ‘Reissue GELBAR After
Fault’ (DSP3O3) entry point in the Dispatcher.

2 3 . 3U

-, ~~~
—~~~~~ ‘-~~_ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

EXECUTIVE SUPPORTED MME SERVICES

MME GEWAKE Handler

FUNCTION :

This routine mimics a true MME GEWAKE by
suspending the requesting Keyword Processor from
execu tion for the specified time interval. If the
t ime interval is greater than 1 second , the
Keyword Processor is marked eligible for swap.

ENT R IES :

Common calling parameters are:

CP1 — Pointer to TASK requesting a GEWAKE.

FP1 - MMF GEWAKE Request Handler (.c-WA~KE).

This entry is used to service the initial
G E WAKF r e q u e s t .

EP2 — Awaken Keyword Processor (MME283) -

This en try is used to awaken a Keyword
Processor when the TASK Alarm Clock (.ETACK)
rings.

RET U R N S :

RTl — Start TASK Abort (TRM100)

If an error in the request.

ET2 — Reissue GFLP.AI? after Fault (DSP3O3).

If zero wait time interval.

RT3 — Srrvice rispatchc r ’r~ Cueu e (DSP].02).

J f n o n — z e r o w a i * t i rr e interval.

2 3 . 3 1

- — - - - --V - - - - - V -- V.--V- -~~~~~~- - - -‘ - -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.. V.~~~~~~-~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~. —_---~~~ -~-- - -

EXECUTIVE SUPPORTED MME SERVICES

Prototy~~ MME GEROUT Handler

FUNCTION :

This routine processes MME GEROUT requests.
Presently, only the Direct Access Output (operation
code 3) and the Direct Access Output/Input (operation
code 4) functions are handled. The routine is designed
to allow easy incorpora tion of suhprocedures for
processinq other operation codes.

~hen a GEKOIIT request is received , address and
coundary checks a r e app l i ed to the GEROUT record
p o i n t e r , ttat us return word pointer and input buffer
pointer , if appropria te. The ‘Peir ote I/O ’ TASK status
bit , B.TRIO , is set true , after which the Remote I/O
S u p e r v i s o r is ca l l ed to i n i t i a t e the GER OUT f u n c t i o n .
Upon return , control is transferred to the Dispatcher
since the ~ royram requesting the GEROUT canno t be
alloweo to execute until the I/O is complete.

The GEROUT handler again regains con trol when it
is paid its courtesy—call by the Remote I/O Supervisor.
At this time , any GEROUT paraireters which were made
absolute prior to starting I/C are made relative to the
requestinq program ’s LAL , the GEROUT s t a t u s r e t u r n is
inser ter~ accor ding to the ~WE GEPOUT s t a t u s r e t u r n
pointer , the ‘Remo te I/O ’ TASK status flag is set false
and the faul ting program ’s IC is positioned pas t t he
~i~.rr calling sequence.

Fr’JTRIES

EN -
~~‘E C F R O U T H a n d l e r (. C P O U T)

CP1 — Pointer to faultin g program ’s NNF+1.

CR2 — Pointer to associatco TASK.

EP2 —
~M [GEROUT Cour te sy—Cd ll (.~~3O5~J) -

CP1 — ‘~er~~i r u l Control Block Pointct .

2 3 . 3~

- . . ~~~~~~~~~ --- - V.-- . , . - , ‘ -,- V. ’ . . -- -~~~~~~~~~- V

- — ---~~~~~- - - .---- - -~~--. -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~~
- .--- _

EXECUTIVE SUPPORTED MME SERVICES

CP2 - GEROUT Status.

CP3 — GEROUT Status Offset.

This offset reflects the bit position ,
relativ e to the least significant bit ,
of the most significant bit set. true in
the status.

RETUR NS:

RT1 - Service Dispatcher ’s—Queue (DSP,2)

RT2 — Start TASK Abort (TRM ,1)

23. 3 3

‘ — V .-- _ _ _ _

EXECUTIVE SUPPORTED MME SERVICES

MM E GERSTR Handler

FUNCTION :

This routine handles Keyword Processor MME
GERSTRs. The Eeyword Processor requesting the GERSTE
must have the overlay declared in the Keyword Processor
Profile.

The overlay entries are scanned for the requested
overlay name. If found , the origin and size are
determined using the norma l GCOS conventions. Then the
origin and size are checked to ensure that the overlay
will reside within the assigned core for the Keyword
Processor. The overlay is then loaded and processing
continues according to GCOS conventions.

EN T RI ES :

EP1 - NME GERSTR (.GRSTR)

Norma l GECOS calling parameters are assumed .

CP 1 — Pointer to TASK requesting a GERSTR.

R E T U R N S:

Returns follow the normal GCOS conven tions for
‘CF’RSTR ’ processing .

PT1 — Reissue CELPAP after Service (PSP302) was
successfully comp leted .

FT2 — ~~~~ Task Abort (TP~ 100) if an error
occurred and there was no er ror h and l in ;
capa~- i l it y in the GE KS’fR request.

2 . 3

_ --~~~~-V-.- . - . .

INITIALIZATION

INITIALIZATION

Introduc tion

The Executive performs a one—pass initialization
of its control functions and the Keyword Processors it
is to manage. The Initialization Routine is attached to
the main body of the Executive as a linked module , that
is by means of a S LINK control card. This is
intentionall y done to force all System Library
subroutines , which are called by the Executive proper ,
to be loaded directl y behind (above) the Executive ’s
main body and before (below) the Initialization
Routine . At the end of the initialization phase, the
core space used by the Initialization Routine becomes
par t of the swap core area. Any error conditions
detected during the Executive ’s ini tialization are
communica ted to the console typewriter via error
messages. When and if the Executive is ready to begin
processing , a start message is sent to the console
indicating that the initialization was successful. Due
to this procedure , it is suggested that the Executive
be initiated from the system console.

Overview

The major functions performed by ini tialization
are as follows:

- Get $TRAX program number
— Initialize the fault vectors
— Initialize the LOAD and SWAP files
- GECALL the Keyword Processors
- Upoate the Reyword Processor ProfiLes
- Write Keyworo processors to the LOAD-File
- Ee ’Lease excess LOAD—File space
- Set controls for the Core ano Swap tabtes
— Assign input buffer space
— Assign core space
— Assign output buffer space
- Send messages to the console

The GELBAR fault vector within the Slavo Prefix

24 .1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~-.-— — V.- 

-. -. .~~~— —-- .~~~~~~- — :  -~~~~~~ -.-‘ — —



_  -

INITIALIZATION

Area (location 19/10) is enabled in the Executive in
order for it. to process any prog ram errors that are
detected in its Keyword Processors. This is necessary
because the Keyword Processors are operating within a
GELBAR environment , and aborts have to be controlled by
the Executive. Recall that the GCOS operating system
knows and would abort a program by its program number ,
which in this case is assigned to the Executive. A
precaution was added to the Intercom (F/B) logic in TPE
to enhance the security and control of interprogram
communication. This control necessitates that the
program number , which is to be communicated with , be
inserted into the Intercom Select-sequence I/O command .
The program number is renuested by SNUMB ($TRAX) using
Option 12 of the ~~~ GEINFO . ‘the number is set into the
necessary Intercom Select—Seouences with the Executive.

The LOAD—File and SWAP—File are attached to the
Executive via the $ FILE control card. The file codes
for these files are ~L and $5 respectively. Both files
should be allocated to the fastest device available
which has a block size of sixty—four words. The
LOAD—File is used to save an initial or clear copy of
the Keyword Processors which are GECALLed (see next
paragraph) by the Executive . The SWAP—File is used to
save the working copies of Keyword Processors and their
Keyword Prefix Area when they are susjended from
execution. The f i l e  ~i t t r i b ut e s  of bo th  f i l e s  are
obtained during initialization via MNE GEFIiDDS . If the
file does not exist , a 1~NE GEMORE is requested to yet a
new file. It is suggested ti at a large number of blocks
be allocated to the LOAC_ I?ile , so that the space will
not he exhaus ted during initialization . If the space
runs ou t , addi t ional space is reques ted via a
GE [~CEE~ however , such a request could be denied . Any
excess LO A D-File space wilt be released via a ~ME
GERFLS after dli Keyword Processors have been copied
on to the file.

The startinq address of the Eeyword Processor
F r o f i l e  T a b le  is l o c a t e d  i n  c e l l  . P P E ’FL of t h e
Vxecut ive C o r r r r u n i c a t i o n  Pecl i . ) n .  Th~ s i z e  of t h e  o r o f i t e
entr ies are fixed . The ~raxim un input and out;~ut ~r essaqr
size s r-xpe cte-1 hv each  Keyword Prcccssor are i n . e r t e i
in the ~ rcfi les at generation c with the .P l ’ F [
s~~c~ 0.  t)oth siz es nu st 1 e co~~~a r u : to  th.:  n a x i  s i ze
all’ w .’d by the 1xccu tiv c , as tcCer~~eU L f l  ~~~~~~ ~o

24.2

-. ‘V ~~~~~~~~ - ::: -‘ 

~~~~~~~ — ~~~~


- -V ~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘-— -- .‘
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

V. ~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

INITIALIZATION

verif y that they are not larger. If either size is
larg er , the Keyword Ptocessor is rejected and a message
is sent to the console to that effect.

The i d e n t i f i c a t i o n  of t he  Keyword  Processors  to be
managed by the Executive are assembled into their
respective Keyword Processor Profiles during the
generation phase. The Keyword Processor IDs are used
within a MME GFCALL to load the program into the
Executive ’s high—core The $L seek addresses are placed
in the respective profiles for future reference by the
Executive . The rationale behind this LOAD—File
arrangement is that. subsequent I/O requests for the
Keyword Processor can be made with a MME GEINOS r a t h e r
than a ~1ME GECALL. This is beneficial since the GECALL
m u s t  s ea r ch  a c a t a l o g  in o r d e r  to loca te  the
appropria te DCWs to load the named file. On a
n o r m a l  GECALL r e t u r n , the  p r o g r a m  s ize  is checked to
determine if it will fit the maximur i core requirements
based on the numbe r of DCW5 that can be built in its
Keyword Prefix Area. If it cannot be built , it is
rejected and a message is sent to the console. If it
can , the Keyword Processor ’s profile is updated to
reflect its size and entry address along with the
LOAD—File address.

The program size is then checked agains t the
remaining number of blocks (LLPLVs) in the LOAD—File to
determ ine if there is suffic ient space. If space is not
s u f f i c i e n t , a GF~1OI?F is executed to obtain additional
blocks. ~ dummy TAS K is f o r m a t t e d  i n  o r d e r  to use t h e
Core Pllocator ’s I/O Roll—out routine to write the
Keyword Processor to the LOAD— [-’ile . The fiel ds that
irus t be set in the TASK a r e  t h e :

(1) ‘~.ew TA~~~’ i.it [lay (~~ . TN U ~i)  i n  .TFLAG+1

(2) SL S C C K  a d u re s s  in .TS~~AP up p e r  anu t n e
p r o y r d n  si z e  in  .TS ’.A t ~ Lu~ I~~

(i) G E C A L L  LA L i n . 1 L i ~L l o w e r .

In a o o i t L e r V ,  a ~~ G L L M ~C i~; p Liceo in ~i~;i~ cell
.T CCV , t t e  C o u r t e s y — C a l l  V e c t o r , s i nce  a c o ur L e s ~~- c u l l
is not Z 4 c U I t ~~~~ . ‘~o c o p le~~e t~~is p t o c c S Sin q  phase , a

2 4  . 3

— - — —.----~---‘-~= —V.- ‘~~~



_ _

INITIALIZATION

call to the Roll-out routine is made ano the
Initialization Routine is roadblocked awaiting the
completion of the write.

If there is an error in the GECALL or Roll—out ,
the profile is cleared arid a message is sent to the
console. When all the profiles have been cycled the
excess LOAD—File space is released via a MME GERELS .

The Executive Communication Region is updated with
the parameters needed to control the utilizati on of the
Swap—File and the swap core area. For the Swap—File ,
the number of free 64—word blocks is placed in .ESMAP
as the size of the Swap—File and also as the upper
address limit of the file. .ESMAP is a four word field
that contains the base Swap—File Map entries.

The TPOS Executive then establishes the following :

o Input buffer area
o Available core area
o Output buffer area

The s t a r t i n g  a d d r e s s  f o r  t he  i n p u t  b u f f e r  is
calculate d by determining tne address of releasable
core. The coae in the TPOS Initialization k<outine is
ulviocu into two areas:

o Code to create the available areas
o Code to perfor i the other initialization functions

The b e g i n n i n g  ad dr e s s  of the input buffer area is set
a t  the  b e g i n n i n g  of ‘Code to p e r f o r m  the  o th e r
initialization functions ’. The amount of space needed
is calculated as follows:

Recommended Input rntercom Puffer Space (See Site
(Re ference)

+ 1.5 * maxi m um input message S17e
+ the nuoher of words to round to the H q t r n i n o  of the

n e x t  10 2 4 — w o r d  b l o c k
T o t a l  used f o r  t h e  i n p u t  P u f f e r  sF-ace

Ill __V ,__ V _ __~~~~~~~~~~~~~~~~ — — V.



- - -- -~~~~~~~~~~~~~~~~~~~~~~~~ -‘—-~~~- -—--_——--V.
~~
-- ’-—— .. V -’~~~~- - V V. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -~~~~~~~~

INITIALIZATION

I INPUT
I SUFFER I

LAST ENTRY T~~~~~~~~~~z

I PTP TO I I
I . F I~4A P

I RES V I

I NP U T BU F F E R I —

THRESH
- V—

I
THRESHOLD I — — — — I

INUMBER WORDS T NUMBER OF
IAT IN IT. I W ORDS NOW I

I — _ _ I
I PTR TO I UNUS ED I
I ST ART BUFFER I
I I N P U T I
I B U F F t ~R I
I T H RESHOLD

1
I CORE I

AVAI LABL E
CORE

_ _ —-~~~~~

I OUTPUT I
P U F F F P

T!TPESHOLI)

I OUTPUT V

I PUFFER I

LAST P~~TR Y M R Z I

IPT~ TO
I.EC~ AP I
I 1l ~I~L,~~fl I

E N T R Y
- - —

I NUNd’Ei~ ~ORDS I ~UMUER Cl I
It- i’ It ’ IT . I ~CRDS NO\i I

IPTl~ TO I UNUSCI)
I S’I /d-CI’ i~UFF’ER I I

‘~~~1
‘- Vt

V. -‘ -— ~~~

INITIA l IZATION

The ending address of the Output Intercom Buffer
is the UAL (found in word 31 (decirral) of the slave
prefix area). The beginning address of the Output
Intercom Buffer is calcula ted as follows:

The UAL
- the recommended size of the Ou~~~ t Intercom Buffer

Subtotal
— The number of words necessary to round

down to the next even 1024-word_ block
Be~Ti~~Tng address

A threshold area is created for both the Input and
O u t p u t Intercom areas. The threshold is currently set
to 1.5 t i m e s the m a x i m u m i n p u t/ o u t p u t message s i z e .

The size of the threshold area is subtracted from
the input buffer upper address limit. The
initial i za t ion of the input buffer and input buffer
aueue is cor~nleted .

The core a r e a is t h e n r e s e r v e d and t he co re-oueue
and m a x i m u m core s i z e a r e initialized.

The Output Intercom queue , the output threshold area
and the Output Intercom area are then initialized.

At the completion of the Executiv e ’s
I n i t i a l i z a ti o n , a s ta r t ui~e s saye is sen t to t he
op e r a t o r ’ s c o n s o l e .

241

-- -

I N I T I A L I Z A T I O N

Initializa tion Console Messages

Several messages can he issued to the console in
response to various conditions that can be encountered
during initialization . A list of current messages
follows . The SNtJF1fl is that assigned to the Executive.

SNUMP**P FSTA RT TRAX

SNUMP*INSUFFICIENT LOAD-FILE FOP TPOS EXEC

SNUMP*NO SWAP FILE FOP TPOS EXEC

SNU~ B*K.P.S .xxx INPUT BUFFER TOO LARGE

SN U N B * K . P . S . x x x OUTPUT F U F F E R TOO LARGE

SNUMB*K .P.S .xxx TOO LARG E

S N U M B * K . P . S . x x x GECALL ER R O R

SNUMB*K .P.S.xxx LOAD-FILE ERhOR

SNUMB*NO ACTIVE K.P . FOR TPOS EXEC

SNUMB*TPOS EXECUTIVE IN ITIATE D

t:here xxx is the ~eyword Processor ’s ID.

7

— - V . - —— - V ~~~~~~~~~~~~~~~~~~~ - V V . _ _ _ _ _ _

~

MISSION
of

Rome Air Development Center

RM~ plans and conducts research , exploratory and advanced
developnent programs in command, control, and communications
(C3) activities, and in the C3 areas of informatior4 sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliab.Llitq, maintainability and
compatibility.

~tJTSO ~

V .- ---- - —-- -- - V.--V- V - - V

ATE
LMED

