'Ab-Aﬂkﬁ 609 DOTY ASSQCIATES INC ROCKVILLE MD F/6 9/2 .:

SOFTWARE COST ESTIMATION STUDY. VOLUME II. GUIDELINES FOR IMPRO==ETC(U)
AUG 77 D L DOTY, P J NELSONy K R STEWART F30602-76-C=0182
UNCLASSIFIED TR=151=VOL=2 RADC=TR=77=-220=-yOL=2 NL

&

-

ADAG44609

AUMNALS MNOL & VvITA ADA ADOD SOV e

DDG FILE COPY

RADC-TR-77-220, Volume II (of two)
Final Technical Report
August 1977

SOFTWARE COST ESTIMATION STUDY
Guidelines for Improved Software Cost Estimating

Doty Associates, Inc.

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

——————t

This report has been reviewed by the RADC Information Office (0I) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign nationms.

This report has been reviewed and is approved for publication.

APPROVED: a,szs V). W

ALAN N. SUKERT, Captain, USAF
Project Engineer

ROBERT D. KRUTZ, Colonel, USAF
- Chief, Information Sciences Division

FOR THE COMMANDER% :/f % :

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (DAP) Griffiss AFB NY 13441. This will assist us in main-
taining a current mailing list.

Do not return this copy. Retain or destroy.

|
|

MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(¢3) activities, and in the ¢3 areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

2 WS S S0

o\,UTIO~

eRICAN
G ‘9&1’
2 @
I~ N3 1“3')

>

7276.191°

1 1) 7714 e { L,/ [Sl |
T | 1) TK-77=AAP= ¥ 0
UNCLASSIFIED e |
g SECURITY CLASSIFICATION OF THIS PAGE (When Dula‘f':nlfnwl)’
4 READ INSTRUCTIONS
: REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
/ ’} 1. REPORT NUMBER r 2. GOVT ACCESSION NO | 3 ?I"IENT'S CATALOG NUMBER
) " SIS ./—’ ’.
f i A
E ‘_/{ RADC+TR-77-220, Volume II (of two) _/ i
“fa. TITLE (and Subtitic) > ERIOD.CONMERED
/ i / \ | Final Fechnical Repext,
=2 J SOFTWARE CCST ESTIMATION STUDY » / o \ 23 Feb 76 - 23 Feb 77,
Vi Guidelines for Improved Software Cost Estimating, | ORMING 0 26. REPORT NUMBER
/ .
/ Technical Report No. 151 *
7. AUTHOR(s) B. CONTRACT OR GRANT NUMBER(s)
/ \ | D.L.,Doty, // T i S
’f P.J. /Nelson /. /| F30602-76-C-0182
i K,R., Stewart el - -
- 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Doty Associates, Inc. P
416 Hungerford Drive J,&ZQ}ZF s /
Rockville MD 20850 AL 558111404
11. CONTROLLING OFFICE NAME AND ADDRESS F 7‘3‘ REPORT QTA’IE
Rome Air Development Center (ISIS) // August 1977 §
Griffiss AFB NY 13441 [L’ pAdd-numBER OF PAGES
145
T4 MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) | 15. SECURITY CLASS. (of this report
Same / \] & UNCLASSIFIED ey By
f f 15a. DECLASSIFICATION DOWNGRADING |
SCHEDULE
A N/A 2]
16. DISTRIBUTION STATEMENT (of this Report)
» ~.
4 I~
i e !
: ;
it i '
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
Same
18. SUPPLEMENTARY NOTES
RADC Project Engineer: Captain Alan N. Sukert (ISIS)
15 KEY WORDS (Continue on reverse side if necessary and identify by block number) R)
Software Acquisition Management
Software Cost and Schedule Control
Software Cost Estimating
Software Scheduling
N Software Sizing bl
0 ABSTRACT (Continue on reverse side I necessary and identify by block number) 5 = .
This report contains guidelines for developing estimates of computer software
cost. Consideration is first given to the initial program estimate which is
often made with a paucity of supportive data. Adjustments are presented for
modifying the estimate given the availibility of additional data. Procedures
are presented for assessing the affordability of the resulting estimates.
Emphasis is placed on developing a conservative but reasonable best estimate for
purposes of program budgeting. Separate consideration is given to steps that —
DD . ' in 5, 1473 ECITION OF 1 NOV 65 1S OBSOLETE)
[i : INCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered
/
// Y

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ﬁksnould be taken to bring the program in at or below budget. Frequently recurring
problems are summarized in their time-phased order of occurrence.

|
i

UNCLASSIFJIED

SECURITY CLASSIFICATION OF Tu! p-\:,[_'u'h..u'-l\:;iP:r;M

CONTENTS

Page
i AR DI B EIE RO Fima A 7 e P e R S e i e e . B LRt el SR e Sl 1
O o e)) 5 S e B I LR e s
e N B A G R O aa| aTs at al segprat oo JOe T NN S S e S e s 2
T R 1o X A e e e e s e e 3
1.4 Related directives and other references. 4
1.5 Guidebook organization .« . « = o « 5 & o W o6 w4 e s 5

P APPRAISING THE SOFTWARE DEVELOPMENT EFFORT. . . . « . « . 8

2.1 BEstimating developer €OSES i o & o % o e s w s w e 8
2.2 Estimating software development time . . ., 16
253 Assessing program afferdability. . < o ¢ L. 18
2.4 Resource expenditure evaluation. . « « « &« « = s & = - 21

2 A S chiad e/t R e e AR B e e e 20
2.4.2 Management implementation structure 22
2.4.3" 'Rate of exXpenditure . o o W o sk e s weow s 27

3. SOFTWARE PROGRAM COSTING AND MONITORING 30

3.1 Role of software program cost analyst. 30
3.2 Developing the independent program cost estimate . . . 35

02«1 Development scheduler oo o 0 oo . e o .= w0 35
3242 Developnenticastl sl b ciead s i o W lne e w35
Aol GOV erRNentrCOSEe e iy e g AUt . 36

3:2.2 .2 Contractor cOSER e BN L s w8 e e = 38

3.3 Cost and schedule control considerations 38

4. CONSIDERATIONS IN MANAGING A MAJOR SOFTWARE

DEVEROPMBENT PROGREM & = hc 5 e aie be lo 6w o o s ala oo« 42
4.1 Software development proklem areas 42
4.2 Areas requiring the software cost analyst's input. . . 46
4.3 Monitering Ehe development @ o @ « & o o = « 3 w o sow 4
d.3.1 conceptual phase: « o wix o b & o v oW o e o wow AT
4..3.2 Validation PhaSS: &+ « « & % & & @ o & & % ow w o BES
4.3.3 Full-scale development phase.« « « « « « 50
APPENDICES:
A - DISCUSSION OF REQUIREMENTS DOMAIN FACTORS A-1l
B - DISCUSSION OF SYSTEM ARCHITECTURE/ENGINEERING
(B/BY PACTORS 5.5 5% o + 7.8 % & % % %.% 4 & % % & & % B=L
C - DISCUSSION OF MANAGEMENT DOMAIN FACTORS C-1
D = SOFIWARE SIZING METHODOLOGY « « &« s« « s « s % s » « « « D=1
B = GLOSSARY OF ACRONYMS. & ¢ v & o % % & % « & & % w v & o H=1

FIGURES

Page
1. Software Program Life Cycle OVEEVIEW. o o s s o« o o 5 & o 6
2= Software Development Resource Estimators. 11
3 Suggested Utilization of Estimating Relationships
for Development Manpower. . . e o e S S e e L
4. Software Development Time Estlmator for Overall Usage . . . 17
S Exemplary Analysis of Fiscal Feasibility. 20
6. First Level Project Marnagement Resource Distribution. . . . 23
Te Second Level Project Management Resource Distribution . . . 25
8. Structured Top Down Project Management Resource Distribution 26
9. Desirable Resource Distribution . . . SRS S 29
10, Key Programmatic Areas Requiring boftware Cost
Analysts Expertise. ST e oy N oL S R b |
XY Cost and Schedule Control Report Format SRR S E e s s L s - D)
12 Illustrative Cost and Schedulle) Variances. « « « - « & « « « 4l
13. Software Development Problem Areas. . . « . « « 43
TABLES
Page
&S SOFTWARE DEVELOPMENT MANPOWER ESTIMATING ALGORITHMS 10
2. SOFTWARE DEVELOPMENT MANPOWER ESTIMATING ALGORITHMS
REFLECTING DEVELOPMENT ENVIRONMENT « « « ¢ « . . . 13
Fs RECOMMENDED FORM OF RELATIONSHIPS o g S e e s G
4. ILLUSTRATIVE EXAMPLES OF PROGRAM FISCAL FEASIBILIT
(GENERATL, PURFOSE PROGRAM) = %= 5 % & & @ = = = o = = o . =« a8
5. SOFTWARE MANAGEMENT STRUCTURES . . . et s, [22
©. DESIRABLE DISTRIBUTION OF DEVELOPMENT EFFORT T e S
Fe SOFTWARE DEVELOPMENT SCHEDULE ESTIMATORS . . . o m e e el 36
g% ESTIMATORS FOR APPROXIMATING GOVERNMENT SOFTWARE
DEVELOPMENT COST . . . Ce o e SR e e A T
9. ESTIMATORS FOR APPROXIMATINU A CONTRACTOR'S SOFTWARE
DEVELOPMENT COST . . - - . - ’ R R R R R)
10. SENSITIVITY OF SOFTWARE COSTS TO FACTORS TR e R R |
D=1. SOFTWARE SIZING ESTIMATING ERRORS . &« &« o & ¢ &« s « s &« =« D=5

iv

EVALUATION

The increased importance of software for military applications, coupled
with the increased expenditures by both the military and civilian\communities
for the development of software, has brought about an increased awareness of
the present high cost of software and the consistent inability to accurately
predict the cost of software projects. This need for producing lower cost
software and for more accurately estimating software costs has been expressed
in such documents as the Findings and Recommendations of the Joint Logistics
Commanders Software Reliability Work Group (Nov 1975) and the Summary Notes
of a Government/Industry Software Sizing and Costing Workshop(Nov 1974) (ESD-~
TR-76-166), as well as }n numerous Government and industry sponsored symposia.
As a result, several efforts have been initiated to develop better methods
for estimating software costs. However, these efforts have not adequately
considered the basic underlying factors that affect software sizing and cost
estimates, and have not, in most cases, considered non-linear software cost
estimating relationships.

This effort was initiated in response to the need to better understand
and control those factors that adversely affect software sizing and cost
estimates, and fits into the goals of RADC TPO No. 5, Software Cost Reduction
(formerly RADC TPO No. 11, Software Sciences Technology), in particular the
area of Software Quality (Modeling). The report concentrates on the presen-
tation of guidelines for software cost estimation based upon developed meth-

odologies for controlling over forty factors that have been shown to have an

adverse impact on the accuracy of software sizing and cost estimates, in both

SN (N

the software developer and purchaser domains. The importance of having
guidelines for minimizing these adverse factors is that it will enable soft-
ware cost analysts, as well as software managers, to more accurately predict
the costs of software projects, by recognizing those factors that have to be
considered when making software cost estimates during the various phases of
the software development cycle. This, in turn, will enable software managers
to better control the costs of software projects and thus greatly reduce the
potential for severe cost overruns that presently exists. Finally, the
guidelines proposed in this report will provide methods that future software
cost estimators can use to obtain accurate cost estimates during each phase
of a software development project, which will greatly aid in the preparation
of independent software cost estimates for use in project evaluation.

ALAN N. SUKERT, Captain, USAF
Project Engineer

vi

1. INTRODUCTION

1.1 Purpose

The purpose of this guide is to provide managers and technical person-
nel, through the integration of time-phased analytical models and manage-
ment techniques, with a formalized methodology for improved estimates of
software development costs. This guide can be used by all persons inter-
ested in estimating and controlling the costs of software development. It
does not require specialized capabilities or experience in software develop-
ment. Therefore, it can be used by program management, software development,

and/or fiscal planning personnel to guide their activities.

The purpose of this guide is achieved through:
® Prescntation of a model for estimating contractor software
development costs by type of application;

e Identification of factors having a significant effect on
software development costs;

® Provision of guidelines for mitigating the impact of factors
having an adverse effect on costs;

® Specification of a model for estimating total (including
government) software development costs; and,

- ® Discussion of program management guidance for government per-—
sonnel responsible for software development.

The data used to support the development of the cost estimating models
presented in this guide do not reflect modern programming methods nor ad-
vanced computer technology. Consequently, cost estimates derived from these
models should be used to guide rather than to effect decisions. The methods
presented herein are considered improvements over those proposed heretofore;
however, the relative results are considered more meaningful than the abso-
lute values of the estimates. Nevertheless, in lieu of similar models de- b

rived from more recent data, the enclosed procedure can be considered a

viable tool for management.

1.2 Background

The field of software management and engineering is still in its infancy,
especially as it relates to deriving cost estimates of software development.
The field has evolved to the state where the cost of a software package is
generally developed by estimating the number of delivered source or object
instructions (i.e., size) anu multiplying the size by a cost factor based
on average personnel productivity. The Air Force, other DoD and government
agencies, and commercial organizations have found this method to be inade-
gquate because this simplistic approach has resulted in large cost over-

runs in several software development projects.

Size estimates have been observed to be erroneous in many cases by a
factor exceeding 3, and it is common to have a productivity factor that has
a standard deviation 2.5 times the expected value. With such larage variances
associated with the two factors most commonly used in software cost estima-
tion, it is not surprising that large software cost overruns occur. Of the
two factors, size is the more important since a misestimation in this para-

meter can have an impact on hardware as well as software costs.

Increased sophistication of software applications over the past ten
years has made these erroneous estimates more significant in terms of
absolute costs and the percent impact on total system cost. The erroneous
estimates can be caused by any one or a combination of numerous factors.
Among the most critical factors are changes in the operational requirements,
which affect the functional specifications of the software. However, even
when the specifications have been fixed, it has been difficult to project
the resource requirements accurately. The primary resource--manpower--
varies widely in productivity and quality, and is affected in a complex
manner by the multi-dimensional environment in which the software is i
developed. Secondary resources such as machine time and publications
support are frequently unavailable at appropriate times. In addition,

information with which to develop estimates of resource requirements,

such as program size, program language, and tvpe computer, is not always

2
£

available on a timely basis. And, if these items are described, the system
can be aggregates of so many elements, organizational interactions, logis-
tical considerations, etc., that it is difficult to assess the scope of the

work accurately.

During the past several years, extensive work has been performed in the
development of techniques and guides for the prediction of software costs
and management of software programs. The cost models evolving from these
studies have usually been demonstrated to be inaccurate estimators for the
reasons discussed previously, erroneous estimation of the size of the soft-
ware package and/or of programmer productivity. In addition, management
guides and control mechanisms have not been properly implemented to ensure

adequate management control of software development.

To overcome these deficiencies, more accurate estimators have been
derivedl and integrated into a time-phased management structure to assist
in the derivation of more accurate estimators of software development costs.
Since effective program management and accurate cost estimation are two

dimensions of cost control, both of these areas are addressed in this guide.
1.3 Applicability

This guide is relevant to all Air Force activities responsible for
acquiring software as part of major defense systems, such as command and
control, managed in accordance with the AFR 800 series, and software as
part of automatic data processing (ADP) systems, being managed in accord-
ance with the AFR 300 series. The guide applies to all software develop-
ments regardless of whether or not the program is monitored by the DoD
Defense System Acquisition Review Council (DSARC). For non-DSARC programs,
appropriate adjustments are noted for modifying the schedule and cost

estimates.

1. Doty Associates, Inc., RADC-TR-77-220, "Software Cost Estimation Study,
Vol I: Study Results, Final Report" dated June 1977 (A042264).

1.4 Related directives and other references

A vast collection of Department of Defense and Air Force directives
exist that have varying degrees of relevance to the task of software cost
estimating. Perhaps the best cornpendium of these directives is in the
“"Software Acquisition Management Guidebook: Regulations, Specifications and
Standards" prepared by the Mitre Corporation for the Electronic Systems
Division (ESD). Brief summary descriptions regarding the content of the
primary directives affecting software acquisitions are presented, as
well as a camparative discussion of the AFR 300 and 800 series, which notes
that "the two series are...not mutually exclusive", and therefore, managers
should be familiar with both AFR series. The guidebook is valuable be-
cause 1t helps relieve the new or relatively inexperienced software develop-
ment manager of the immediate burdensome task of reviewing a large number
of applicable directives. Necessary guidance, or at least the identifica-
tion of specific directives to be read in response to a problem, can be

obtained from the guidebook.

The guidebook cited above is one of the "Software Acquisition Manage-
ment Guidebook" series being prepared under the direction of Electronic
Systems Division (ESD), which should be requiféd reading for all managers
involved in software development. Four guidebooks, part of a planned series
of sixteen (16) applicable to software development management, are currently

available:

@ Regulation, Specifications and Standards, ESD-TR-75-91,
AD-A016401.

[Contracting for Software Acquisition, ESD-TR-75-365,
AD-A02044.
° Monitoring and Reporting Software Development Status,

ESD-TR-75-85, AD-A016488.

° Software Documentation Requirements, ESD-TR-76-159,
AD-A027051.

In addition, the following seven (7) guidebooks will be available in the

near future:

® Statement of Work (SOW) Preparation, ESD-TR-77-16

e Life Cycle Events, ESD-TR-77-22

e Software Develiopment and Ma.ntenance Facilities, ESD-TR-77-130
® Software Quality Assurance

e Software Maintenance

e Software Verification

® Software Validation and Certification.
Further, the RADC "Structured Programming Series" (RADC-TR-74-300), con-
sisting of fifteen (15) volumes plus an addendum to Volume VII, is recommended

reading for software development managers.

1.5 Guidebook organization

This guidebook is addressed not only to the software development manager,
but also to the software specialists whose expertise is required throughout
the development. 1In initial phases of the development, these idividuals will
provide inputs for the Required Operational Capability (ROC) and Initial RBud-
geting Estimates. Therefore, it is important that they have a background in

both the technical and costing aspects of the program.

Figure 1 provides a Software Program Life-Cycle overview. Noted on the
overview are four points where it is recommended that cost estimates be pre-

pared. This guide presents methods for making those estimates.

Section 2 presents algorithms for estimating software development re-
sources and time requirements. Techniques are also shown for assessing fis-
cal feasibility of the proposed program. A framework for converting the re-

source estimates into time-phased program costs is presented in Section 3,

NOISIO3a

NOILV?

3137,

TVLSNI

S

43030vyl 403 M
HE VA

dWOD O1 1SOD ATHINOW

MITAIBAQ OTDAD 8FTT weaboxd aIBM3JOS *T a2anbtg

NOISIO3Q

NOILVYDI

JLVWILSI
as4d
a3stvadn

E@I

ISYHJ
1H04dNS B NOILVYHE340

11wy

——y
as4

JLVWILS3 aS4

3 1VSOd0Hd

NOISIO3a
WVHO0Hd4

J1VIANLLST
NOILVaIva

—
NOILVNTIYAI 1VSOdOHd
ALIAILOV NOILYAITVA

S3INOLS3ITIW dHVYSa

Advi3oansg
TYILING
@l S3LVWILS3 1S0D
AIN3ON3d3aNI
IVIIN3ND3S

*

NOILYITVLISNI

3ISVHd INIWJOT3A3a

37vOsS 11n4

3SVHdJ NOILYAITVA

3SVYHd 1VN1d430N0D

and Section 4 discusses pitfalls to be avoided, making use of the cost

estimates in managing the program.

Appendices A, B, and C provide discussions of, and controls for, factors
which can significantly affect the magnitude of the development costs (or
programmer productivity). The factors and their controls have been struc-
tured into three domains: (1) Requirements, (2) Architectural/Engineering,
and (3) Management. The Requirements Domain (Appendix A) addresses elements
of the software requirements; the Architectural/Engineering Domain (Appendix
B) encompasses systems design and operation; and the Management Domain (Ap-
pendix C) includes elements under the control or responsibility of software
development management. Appendix D describes software sizing techniques uced
in preparation of the Initial Budgetary Estimate, which is often made with a
paucity of data. Procedures for updating the initial sizino estimate are pre-
sented, given the availability of additional information throughout the de-

velopment cycle. A glossary of acronyms used in the guide is presented in

prendix E.

2. APPRAISING THE SOFTWARE DEVELOPMENT EFFORT

This section presents algorithms for estimating the resource require-
ments to software development efforts. A framework for assessing program
affordability is presented, giving consideration to the amount of funding
that could reasonably be made available and the uncertainty inherent in the
estimated level of effort. Guides that show desired rate of expenditures in
terms of milestone attainment are presented for the purposes of evaluating
the viability of a proposed resource expenditure plan. Since the resources
expended are most highly correlated with the size of the software program,

methods are described in Appendix D for sizing the software.

2.1 Estimating developer costs

The costs of software development (developer costs) are comprised of

primary (manpower) and secondary (computer, documentation, etc.) costs. Thus,

the costs can be expressed as the following:

=C + C
Ch B o (1)
t, =
bu Cp (MM) Ce (2)
1=n
and, c_ = Zci=kc (3)
i=1 p
Therefore,
C_. = (MM) C€_ (L + k) (4)
D e
where

CD = the total cost of software development, in dollars

C_is the primary cost of software development, in dollars.
C 1is the secondary cost of software development, in dollars.

MM is the total manpower required, in man-months, for the development.

C is the average labor rate, in dollars per man-month, including over-

head, general and administration costs, and fees, as appropriate.
C. is the individual cost of the secondary resource, i, in dollars.

i
k 1is a factor which is the ratio of secondary to primary costs (= .075).2 ?

Total software development costs, which encompass government support

and management costs, are discussed in Section 3.

Table 1 presents algorithms for estimating the total manpower required f
for analysis, design, code, debug, test and checkout of software as a func-

tion of the application. Essentially, the relationships are of the form:

MM = a I (5)

where

MM is the total manpower required, in man-months.

I is the size of the program, in thousands of object words or source
lines, as appropriate.

a and b are constants.

The applications encompass command and control, scientific, business and
utility packages; the "all" category can be used when the application is for
other categories than that shown. Fiqgure 2 presents graphical plots of the

ten algorithms.

2 Iosd., pO. 75

*Spuesnoyl Ul 3PO) IDINOS IO 303[qO IBYIT® UT PIassoxdXd SUOTIONIISUT PIIBATIIP JO IdqUMN = I
INONO9YD pue 3S9] ‘bngop ‘opod ‘ubrssp ‘stsATeue 103 pairnbol SYIUOW-UBKW = WW
’ ‘0T = WW ¢ 6£0°2T = A3TTTAN
L 1S HHm.oH 8L0°0T T°8S mHB.OH 6€£0°CT WW ITITIN
s SiE . *Z = WW ssaulsn
o amh.OH Sev v WW Al vmh.OH S68°C tsng
. S/ = WW . GEP P = OTJT3UaTO
EgL mHo.HH PSSO L Le¢L woo.HH S6v°v WW T3T3USTOS
1% I 680°F = WKW 1w I €LS°7 = WKW Ll
€921 i 8z T Ls = pue puBuMO)
- I ‘S = WKW = I o= WW
L°0S LSO T 8GC°S 2°29 166°0 o6L v 1Y
0113 I03ReWT3SH bleb®icy I03RWTIST
paepuels pIepuels uor3esTTddyY
9poD 32INOS apo) 309(Lqo

SWHLITJOOTY ONILVWILSH HIMOdINYW

INHWdOTIATU HHIVYMLAOS

10

NRPRESSS U

SI03PWI3ISH 30Inosasy JuswdoTaadg dIem3jos -7 aanbrg
DT B T N | S Y R Ty Y
NOHINULSNI 40 ON SWYHOO0Hd T0HINOD B ANVWINOD
106 g 205 * £ 000 SNOHLINHESNI 4O (R
\\\A
\\\
| —507 123w Fe e
\.\ g
2
1=
e e i —

—
SWYHOOHd SSINISN!

SWVYHOOH O141LN310S

e i, . e \.,

— J
SWYHOOHd ALITILN

L

Table 2 also presents algorithms for estimating the manpower require-~

ments for software development. These relationships are of the form:

MM = a I I £, (6)

where

MM 1is the total manpower required, in man-months.

[

is the size of the program, in thousands of source lines.
f. is a constant reflecting the effect of envirommental factor, j, on
the manpower requirements.

a, and b1 are constrants.

Equation (5) estimates manpower requirements, assuming little is
known about the development other than the size of the program. Eguation
(6), on the other hand, reflects the impact of environmental factors, other
than modern programming techniques, considered to have the most signifi-
cant effect on manpower reqguirements. Unfortunately, there was no re-
ported data with which to project the effects of modern programming methods
on software development. As information becomes available, the estimates
derived with these models can be adjusted for anticipated efficiency im-

provements.

Figure ° presents the suggested utilization of the estimating relation-
ships. In tne analysis and design phase of the development, more information
relative to the development environment will become known which will permit
the estimators incoirorating the environmental factors to be used. These
models can be used to support cost estimates derived in subsequent phases of

the development; the following guidelines are offered for their use:

L] In concept formulation, if the size of the program in object
code is known, use the object code estimators. They will give
more accurate estinates of manpower requirements.

e — —
(90 I 060 | 190 | 00t :ﬂ 060 WiNA i,
T | o0t y i i a0t il 0l , H3ILNAWO0I 01 SSITIV HIWWYHIOHA
00t 1 00t (T4} ,V 00t SLL 00t Sz 00t szi | g3 " £l 3LIS INO NVHL JHOW LY INIWG0T13A30
00t vl 00t 0wt | o0t i * 00t 1444 00t LTl €20 Cly H3IINW0I LIV NVHL INIHIZ410 HILNAWOI INIWG0T13IA30
00t 61 00t 6L _ 00t &L | 001 6EL A, 001 61 622 y 311S TYNOILYH 340 LV INIWG013A30
ﬂ 00t el 00t £l ‘ 00t el | o0t e ool e TR L ALITIOVA HIHLONY Lv HILNAWOD INISN B340 13A30
| 00t g0 a0t €80 " 00t €80 , 00't £80 00t £80 g 5 INIW0I3IAI0 NI "ONISSIDO0H HILVE SIA ¥ SIA ‘IHYHS 3WIL
oot SZ1 00t et | oot 1244 00t 91 001 81 €60 8 MH d0V 40 INIWA0T3IAI0 INIHHNINDD
| 001 61 00t 61 ,ﬂ 00t 61 i 00t 61 ” 00t w1 | s 4 Nd3 NO 034013A30 WS L1SHI4
00t we | 001 00l , 00t 9 i 00t 151 ” 00t €€l 28 9 INIVHISNOD 3WIL NdD
oot 8Ll 001 oL | 001 szL | o001 G2l M 00t £Vl v8 5 INIVHISNOD AHOWIW NdD s
T £yl h, 00} 00t “ 00t 191 ﬁ 00’} gL |00l £el 8y * 171 NOILVHI40 IWIL Tv3IY =
00t soL |00t 501 00t 501 , 00t 501 i 00t S0t 5y £ SINIWIHIND3Y TYNOILYH 340 01 3INYHI
00t 00t | 00t 00t 002 001 vl oL | 0L v 1 SINIWIHINDIY TYNOILYHIJ0 50 NOILINIZ30 03v130
004 el 00t 181 f 00t 18 00t e 99 4 AY14S10 1v1234S
oN SIA ON SIA oN S3A oN SIA 39vd
t f | I Tk s S b S =
| .D_ SN _.V_ 3 I 1=t . m | | o v 4O13V3
o 1sr0! WLE e%. srgl 4102 ” zm_ g9zl 1050 _ S.W_ ol 0902 WW H04 HOLYWILSI
EEP e St SN G L e
| ALITILN SS3INISNE J4ILN3I3S g 2 ONYWNO3 % 1V
—_— e s - Ao S e CLN —
NOILYI11ddV

INTWNOYIANT LNIWJOTIAIA ONILOITITY SWHLIHOOTIV ONILVYWILSH YIMOANYW INIWJOTIAZA TEVYMLAOS T FTHVL

zomoduely JuswdoTdAd@ I0F SATYSUOTIRTIY BUTIPWIISE JO UOTILZTITTIN pa3lsahbng ¢ ainbra

000‘0Y < I 30 sweaboad 103 {

b

1=(|

1
< EEEnE Ny A1 BYLC = WW _(000°0T > I 103) |
0 1

U e A
1 I 9201 = WW QINIVYISNOONA INIL vt W1 - I 8L0°0T = Ww I 8L0°

€T pan £ it { i 11870 B8L0°0T = WW A21n0S - |
] € 3 :m.0w BLO'0T = KWW) a-0
H«m.oH BLO0°0T = WW QINIVHISNOD TWIL
L

i
= Wn iol BEO°ZT = WW 393(gp - !
4 |
— . — — — —— — ——— — — | |
T
Tul l} |
E ﬂ4 ¥ H
AU 2 U I T = {
E - 18L°0 |
LA -WW | LT asanos -
< =3 toL-olS6Y Y = W Lo

pep ol S68°C = WH 1salag - |
ul
. — W — ——— — — — — | ! i ik
H r ']
=1 i
s S .,I T10°Z = WA _(000°0T > I 103}
0] 1
Tp1=t Lk 5 = T PSOCL = WW | T 560°L = E L
AU 610 7L VSO'L = WA (000'0T < I 293) " 2K
v 6v" | B e Ak i5plas
890" 1* S6v°b = 40Tt 6r'y = A A
K | ol ¢ L} @ <3
— | A =t
T=C
: J I 0 = WW ¢ 1 10 1 | |
AU 3oL ggeegt 0570 £1000°0T> 1 103 | ,
LA = gynpd OBOTY = aseqd OE0°H = asanos -
AU coz-l 6807 = (000°0T < I 103) £9z°1 €971
mmmJ,H ELS'Y = WA i v,.uu.uﬂ LS Y = Wi | A23{gD -~
N T0213U0) puewwol |
——— —— — o— o— —— — - |
; ; ! !
<3 sipirgegs P08 T gE00RLe € s
- MR ¢ 5, 9 sners @ = AW anar =
AU (poeyl 85276 = WW (000'0T < I 203) i EE
W .
T O6L Y W T Af b om N A3aan =
1660~ 06L"Y = WW Y OBL 3} 5 3
aseyq ubysag pue stsAieuy 3SeUd UOTIPTNWIOZ 138312 ddy
7 35U0D
saseyd { {
iuanbasqng
A IUawdoTaaag 3o VS

L] If accurate estimates of manpower requirements are required in
the analysis and design, and subseguent phases of development,
use Equation (5) in source code for programs of T > 10,000 and
Equation (6) in source code for programs with I < fb,OOO.

° For budgetary purposes, use the equation that gives the higher

estimate.

Table 3 summarizes these recommendations. In evaluating the relation-
ships, Equation (5), in general, was found to estimate higher for programs
with I<10,000 and Equation (6) estimated higher for programs of I 2 10,000.
This perhaps reflected unique facets of the data from which the estimates were
derived. Therefore, to be conservative, it is suggested that, for budgeting

purposes, the equations that give higher estimates of manpower be used.

In summary, the procedure and models used in estimating the cost of
software development are dependent upon what is known about the software
(e.g., application, size, type code) and the software development environ-
ment. Equation 4 evaluates the cost of software development as a function
of the total manpower used in developing the software, the average labor
rate, and the ratio between manpower (primary) costs and secondary costs
(computer, documentation, etc.). Table 1 presents the algorithms that can
be used to estimate the man-months of manpower required to develop software
when minimal information is known about the program (application, size, and
type code). As more information becomes known about the software develop-
ment, the algorithms in Table 2 can be used to calculate the estimated total
manpower required. The environmental constant, fj’ is the product of the
individual factors identified in yes-no assessments of elements of the de-
velopment environment. If the status of some factors is not known, projec-
tions can be made as to their status in order to derive the manpower esti-

mates.

Estimates involving program size in object code should always be de-
rived using the algorithms in Table 1. When the program size is in source
code, the algorithms used are also dependent upon program size. For pro-

grams of less than 10,000 lines of source code, the algorithms in Table 2

15

TABLE 3.

RECOMMENDED FORM OF RELATIONSHIPS

SIZE PROGRAMS

FUNCTION I <10,000 I1>10,000
Budgeting The form that gives The form that gives
higher estimate. higher estimate.
A
b J b
Planning MM = al Il £ M = aI
=l

should be used, and for those of equal to or greater than 10,000 lines of

source code, the algorithms in Table 1 should be used.

The specific algorithms taken from the tables are also affected by

type program (command and control, scientific, business, utility, and all).

As noted previously, the algorithms for "all" software should be used when

the application cannot be categorized or is different than the categories

noted.

If a program encompasses a combination of applications and a pro-

jection can be made as to the mix (e.g., out of 50,000 source lines of

instruction, 10,000 are categorized as business, 10,000 as utility, and

30,000 as scientific), then the appropriate algorithms can be used to esti-

mate the manpower required for those portions of the software.

The man-

power required for the total program is then determined by summing that

required for the individual categories.

2.2 Estimating software development time

Figure 4 presents a graphical plot of an algorithm to estimate the time

required for software analysis and design, code and checkout, and test and

integration.

It should be

noted, however,

that manpower loading can affect

"

1000 1

50 h
[99 25 + 233(1) 567

30
DEVELOPMENT
TIME
(MONTHS)
D

A 1 1 1 1 i 2 1 1 = |

0 100 200 300 400 500 600 700 800 900 1000
OBJECT WORDS (000)

Figure 4. Software Development Time Estimatcr for Overall Usage

this scheduling. This algorithm, derived by applying regression tecﬁniques
to a data base of 74 development proqrams,3 implies customary manlocading.
Schedules based on the use of this algorithm should produce reasonable com-
pletions which avoid the pitfalls inherent in "crash projects" and the un-
necessary time delays resultant from long, drawn out projects. The algo-

rithm for estimating the development time (D) is given as:

1000 I
99,95 + 233(1)"°°

2

where
D = Reasonable development time in months.

I = Number of delivered object instructions.

3. 1bid., pg. 43.

17 d

2.3 Assessing program affordability

During the conceptual phase, it is important to commence examining the
fiscal feasibility of the proposed program. This evaluation should be con-
ducted periodically through the development of the software until program
affordability, or the adeguacy of budgeted funds, has been established.
This is determined by analyzing the resources required over a range of pro-
grammatic assumptions. The estimatcrs developed in paragraph 2.1 can be

used for this purpose.

Estimates of resources can be subject to appreciable error if little
or no information is available to guide the estimation. And, the evalua-
tion of affordability with highly erroneous estimates is of questionable
value. However, the estimates become progressively more accurate as more
information about the software becomes known. For example, having projec-
tions of program size (in source or object code), the portion of code to
be used in data areas (vis-a-vis executable code), the amount of reusable
code, and the language mix (HOL/MOL) of the resultant code can enhance the
accuracy of the resource estimates appreciably. This is demonstrated in
Table 4 which summarizes the resource estimates for two examples. Both
are software programs estimated to consist of 60,000 object instructions.
The sequential improvement in man-month accuracy through the availability
of more information is very clear. The smaller spread in the absolute
velues of manpower estimates for Program A is attributed to the fact that

the amount of code to be written is less than for Program B (Program A

has more code set aside for data areas and has more reusable code).

These examples also illustrate how the potential trends can confirm
affordability of a program, or the need for more information or for a de-
sign change. The data from Table 4 are plotted in Figure 5. Superimposed
on this figure is the level of assumed available funding (in terms of man-
months). This value is developed in dialogue with prospective project
sponsors. The conversion of dollars to development man-months for the

assumed examples is:

*uU933TaAM UOTI
~ONI3SUT 92INOS YOoesa I0F UOT3IONIISUT 303[qO suo ssonpoxd YsTym ('I0W) oSbenbue] pajusTip SUTYDBR °f

*u233TIM
uoT3IONIJISUT IDINOS yded Iad suoT3zonaizsur 3o0a(qo anozy saonpoad ystym (TToH) sbenbued 19pio YbTH °

o~

4

*93ewT3ISS® 3saq jo usoaad se passsadxs 10119 DIPPURIS 8Y] ST ADRINDOOY I0OJBWIRSIH

uotr3atd
(T:T) TOW %L6 m:“j TOW %£8 -uod 3B 0I3Z
(T:%) TOH %E N:nvv TOH %LT 03 butaoxdut 3pod
6ET | 1€ £TL 6L9'6Y 474 00T LZET L99'91 $1S %05 30IN0S M3U Te30l P
(apod (dpoo argesn 9poo argesnax 10
a1desnal %G) -91 %G°L€) seaxe B3ep snurtw
88 082 0TL 0ST‘¥S v | 91T |ecet 000’s¢e %29 3GL spo) 30alqo Te30L € o
(e3ep %G) (e3ep %£¢€) Seaie B3P SnuUTW
18 €92 ZS8 000°LS LS S8T 665 000’ 0% %29 %001 apo) 32alqo Te3zol -2
LS LLe 9peT 000409 LS LLT |9PET 00009 %29 $00¢ spoD 309[qo Te3oL °T
o7~ | Uean oT+ o7~ | uesw oT+ 10213
n:oﬂumEMmmd suoT3dumssy J03PwI3sd | 203313 butzTs
SYy3juou-uey DTABINIELO0Td SYjuou-uep ST3euurexboxg 20INOS Y 93vWIlSy JO StIseg
g weaboag ¥ wexboid H>umu:uu< I03PWTYSH
(Wd90dd dSOoqdNd TYdANTD) ALITILISYII TVOSId WWRIDOId J0 SATAWYXE IATLYALSOATII vy ITIYL

K3TTTqTSESd [EOSTJd FO STsATeuy Azerdwsaxd

ANVE ONIANN S 3T8YTIVAY AINNSSY x5t

G 2anb1g

v ON € ‘ON Z 'ON L ON v ON £ ON Z ON L ON IIVNILSI
t—., :F.
0L- oL L
0L- 0L- ﬁlcor 0oL
NV3IW
o NY3IW
NY3IW
| 002 002
NY3IW e :
NV3IW
NVIW L o0c NVIN ﬁ.oom
NV3IW
0L+
ﬁloov —00v
foom == 005
Tos > = 009 2) i
2 w C
Q] o~
5 S
—-00,L Q =00, ©
oL+ 0L+ H o
g z
g :
—-008 = =008 =
oL+
ﬁoo& = 006
0001 - 000L
) >
\t \f\ v’ /
0L+ vt Et_.; 9vEL
4 3ITdWVX3 V 37dWVX3

T

.
i

A e b o o

I‘
I
F
i
|

M w et o 226800,000 X .6 | o5p povenonthe (8)

K $5,000

where

MM = Full-Scale Development (FSD) effort in man-months required by the
development contractor.

F = $1,800,000 total program funding level in dollars assumed to be
available.

K2 = .6 fraction of total program represented by the contractor's FSD
effort (see paragraph 3.1 for discussion of other program phases).

K3 = $5,000 per month, contractor's average cost per man-month.

In Figure 5, it can be observed that Program A is clearly more attain-
able than Program B, and that Program B should not be pursued in its pro-
posed form. The analysis further provides a basis for examining sensitivity
to key programmatic assumptions such as assumed data areas, reusable code,
and language mix. The example also demonstrates the need for updating the

estimates as additional information becomes available.

2.4 Resource expenditure evaluation

The discussion which follows is intended to assist the software program
cost analyst in evaluating a Development Activity's proposed Computer Sys-
tems Resource Development Plan. Data are presented that show desired rate
of expenditure as a function of milestone attainment for various software

project levels (size, complexity, and management implementation structure).

2.4.1 Schedule. Table 5 summarizes the expected completion times for
various size software development projects. This is offered as a first
check for schedule reasonableness. Should a proposed schedule fall cutside
the bounds noted, questions should be asked as to whether there is some
reasonable basis for it. For example, a development schedule for a program
consisting of large data areas and extensive reusable code may have a large
total object code count which could be completed in less time than that
noted in the table. A second check for reasonableness can be made by com-
paring the proposed schedule with that which is obtained from using Figure

4 (p. 17).
21

2.4.2 Management implementation structure.

Table

5 also lists the

types of implementation structures that are reasonable to apply for various

size software development projects.

each of these structures.4

TABLE 5.

The discussion which follows describes

They include:

SOFTWARE MANAGEMENT STRUCTURES

Management implementation scheme
Schedule, mo. Total object code
Normal pyramid Structured top-down
12-18 <100K First level Savings unknown
project
<40% decrease in
18-24 100-200K level of reguired
Second level effort
project build-
24-36 200-600K by Bnd
bottoms-up
integration Savings unknown
anc test
36-48 600-1500K Gt

First Level Projects.

a
for the duration of
curve fc

)X

loading than second

the project.

level projects.

2 5
bution of resources.

4. Aron, Joel D.,
IBM Corporation,
D Ibid

Figure 6

In many cases,

N

single first level group manager who often assigns his

illustrates

A smaller project that can be accomplished by

personnel as a team

the resource expenditures

these projects tend to have less buildup and decline in manpower

such a distri-

"Characteristics of Systems Development Life-Cycle",
1973.

9

UOTINATIISTA 92IN0S3Y Juawsbeue;. 309loxd [249T 3ISITJ

g aanbrg

SHLNOW ZL ‘NOILVIN3W3TdWI
40 NOILYHNA e 9 :ONINNVIN MVv3d e

H3OVNVYW TIAIT LSHIS o

133rodd 1TVIAS o

~af—— NOILVNINY3L SH1INOW
8L LL 9l Si i €l cL Li 0oL 6 8 L 9) v £ Z L
r iLf 1 1 LI B 1 ! 1 alp 1 1 } i i I T T
1
"
. |

WDMGWM_HDM 1831 _ 2S94 5N83a 3002 _INOIS3d NOIS3a NOIS3a
_ NOILVHI4O — W3LSAS 39V NIVd 1INN LiNn 1 LINN 3OVNIVd W3L1SAS

<

314034

B e i

Second Level Projects. Large projects managed under a normal pyramid

hierarchy require a second level project management group for accomplish-
ing the actual design, coding, system integration, and test. This second
level group is supported by a first level group which is approximately

equal in size to the second level. Figure 7 illustrates such a distribu~

tion of resources.

Structured Top Down Programming. Structured Top Down Programming is

a practice involving top down design of a program using structured code.
Top down design first involves the design of the software module with the
highest level of control in the program, and then proceeds to the design
of successively lower level modules until the level is reached at which
algorithms are programmed in source code. Structured code is a manner of
organizing the code whereby a program has one entry and one exit point,

and there is careful indentation of the code to show nesting levels.

These practices have been applied to moderately large projects with
considerable success, and savings of up to 40 percent have been reported.
Top down design results in decreased costs because integration and test
of the modules occur as they are developed. Also, if desired, deliveries
on individual modules are possible. Since problems are resolved as they
occur, special integration and test teams are not needed, and the com-

plexity that can evolve in bottoms-up development is avoided. Test cases

are inherent in the design thereby decreasing required support. Docu-
mentation is simplified because it can be easily generated in parallel
with programming rather than being aggregated from unit descriptions dur-
ing the test phase.

Figure 8 illustrates a typical distribution of resources for a moder-

: s ; 8 . ;
ately large project using structured top down programming. Superimposed

e oo

LT

6

UOT3INQTIISTJ 92INOSIY Judwabeuel 303[014d TaAdT PuUCDIS

*L 2InbtJg

NOILVYNINY3IL HLNOW

8L L 9L Sl AN clL L. 0L 6 8 L] v € 4 L 0

G e ! TRiE e e Tl T T T i T T T T
S3ILIAILOY 1H0ddNS AY3IHY3INA0 a3

S3ILIAILOV 13A3T ANOD3S

=
1831 1S31 5N83a_|_ 3003 | N9IS3a NDIS3a NDIS30
ma’ol_’lzuh?m,!_llmo«xui 1NN +.:z:.|+. 1INN P uuqxus_\f_ls_uzii

9l

ve

e

oy

31d403d

"PTAI

uoT3INgrIlsTQ 90IN0Say 3Juswsbeurp 303foxg umoqg dog paxn3ioniis g ainbrg

0T
SHLNOW
1% Ll 9l SL 149 €l ZlL L oL 6 8 L 9 S v £ 4 L 0

' p T T T T T T T = T T T T T T T T T 0
v

8

A

ONINWY HO0Hd NMOA 401 1

a3dynionydis

1 0¢

1 v

18¢
y A%

INIWIDVNVI 1D3rodd
T13A37T ANOJ3S
- 9¢

W31SAS JOVAHIVdI _ 1INN _ 1INN 1INN

1S31 1S31 _ ong3a _ 3009 lzo_mwo|_ NoIS3a | Nois3a _“

-

JOVIIOVd W31SAS

"OT

37403d

103royd

13A371 ANOJ3S

on Figure 8 is the magnitude and distribution of effort required for the
same project, using a Second Level Project Management Structure. Note
that the program milestones apply only to the Second Level Project Struc-
ture. While the milestones are similar in Structured Top Down Program-
ming, they apply to individual modules which are distributed throughout
the development cycle. Whether or not such deliveries are sought by the
customer, it behooves the customer to conduct Preliminary Design Review
(PDR) and Critical Design Review (CDR) at both the CPCI, which is the
Computer Program Configuration Item, and the module level, which consists
of distinct program logic packages as identified by the user, analyst

and/or programmer.

2.4.3 Rate of expenditure. Table 6 lists reasonable distributions
of resources as a function of various development milestones. These data
are presented for a pyramidal hierarchy type management implementation
structure. These same data are shown graphically in Figure 9. Proposed
schedules and expenditure plans can be compared against these norms for
assessing reasonableness. Departures from the norms should be guestioned.
For example, an expenditure rate higher than the norm should result in
earlier than normal milestone attainment. If not, determine the contrac-
tor's understanding of the performance specifications and design. Perhaps
the developer has an inefficient use of resources due to the fact that
people are available for work prior to the time their tasks have been

adequately defined.

Expenditure rates lower than norm imply that the rate must increase
quickly at some point. Where does this occur? Are these increased expen-
ditures compatible with the contractor's proposed milestones? If not, sus-

pect a lack of problem understanding.

Figure 9 also shows expected rates of expenditures for Structured Top
Down management structure. This rate is similar to that experienced for
the smaller, First Level type project management structure. As noted previ-

ously, the phases do not apply to the Structured Top Down approach.

27

w
!
i

$00T
$EL
%8¢
%8¢
%61
$ET
ST

%00T
%08
%LS
%08
X4 4
%GE
%01

1S3l we3sAs 9391dwo)

1S9 abeyoed 239 Tdwod

bpngag 3TUn ©39TAWOD

2poD 3TuUn 939Tdwo)d

(9a@d) ubtsaa 3Tun 9337dwoD
ubtsag obeyoed s32Tdwod
(¥ad) ubtsaq walzsAs a3sTdwo)d

2an3Tpuadxd | oTNpPayss

00T %00T
%8L %18
%65 w79
s6b E374°]
%9¢ £37474
$LT %G €
%S %0T
oanjTpuadxd | aTnpayoss

309foxd TSA3T PUOD3S

309(0xg 124971 3ISATA

310333 JO uOTI3NQTI3ISTQ oTqearsad

Sau03sa 1T 3uswdoToaad

LI0ddd LNIWJOTIAIA 40 NOIINTIHLSIA FTIVIISHA 9 TIGVYL

e Loy

UOTINQTIIST] 8DINOSIY B[URATSdA °6 2INDTI

NOIL3TdWOD 3T1NA3HIS A3INNVd %

o€ 08 0L 09 0§ ov o€ 0c oL
= 1 it 1 L 1 == 1 .
NOIS3d
(378V011ddV LON 19dD

3TNAIHIS) ONINNVYHOOHJ
NMOd dO1 d3"N1ONY1S — — — — NOIS3d

W3 1SAS

3402
LINN

NOIS3a

123ro4dd LINN
T3IA3T ANOD3S
123ro4dd
T3N3 1SHIA

LINN

1831
W3 LSAS

—0¢

—0€

-0V

-0 IHNLIANIIX3
30HN0S3Y

A3NNYd
09

#oN
ﬁow

- 06
0oL
LNOMIJ3IHD
NOILVHOILINI B 1S31 2 ONIGOD NOIS3a \ SISATVNY
44d0 Had ANI U uUmmw W3 1SAS
J3dS 1ONA0Yd J3dS 3ISV3I13y
WVHO0Hd H31NdWOD LN3WdO13A30
AHVNIWITIHd AWvHO0Hd

431N4dWOD

29

3. SOFTWARE PROGRAM COSTING AND MONITORING

This section defines the role of the software program cost analyst
and presents a framework for constructing the program independent cost
estimates. Key areas where the expertise and counsel of the analysts will
play an important role are also identified. The costing framework integrates 3
the resource and schedule estimators into a procedure for estimating program
costs. The resulting cost estimate is time-phased, satisfies the require-
ments of DoD Directive 5000.1, and includes provisions for both government

in-house costs and contractor development costs. As new information is made

available, the estimate is updated.

cycle where the independent estimate is updated are also noted. Acquisition
events and analyses requiring these estimates are also listed. The discus-

sion of cost monitoring covers the Request for Proposal (RFP) phase, system

implementation, and monitoring.

3.1 Role of software program cost analyst i

In addition, points in the development

A

Figure 10 shows areas throughout the development cycle where the
software program cost analyst can make a major contribution to the
program. During the course of the development at least four indepen-

dent estimates will be prepared. These estimates are, in their order

of occurrence:

Software¢ Cost Estimate

Estimate No. 1

Estimate No. 2

Estimate No. 3

Estimate No. 4

Initial Program
Budgetary Estimate
Independent Program
vValidation Cost
Estimate
Independent Full-
Scale Development
(FSD) Cost Estimate
Update of FSD Cost
Estimate

When

Conceptual Phase

Program Decision Phase

Ratification Decision Phase

Preliminary Design Review
(PDR)

Q)

e

osT3aodxd S3SATRUY 3SOD 9IM3IJOS buraTnbay 581V

1447800 04 1500

SONYOMSIHHL WILSAS INOD

L1aNv NO1L
VHOOIANOD TUNOILONNY o

MIAIY ONILSIL I1Dd) @
M3IIAIH 403 e

Clekl)
NDISIQ Y

IIA Y

HAd MIIAITY
NOISIO AHUNIWI1IHd @

N S44030vHL an\

3137dW0I OL 1SOD ATHINOW

NOILVHOI NI
v isiL

SISA TVNY (SO0 403 e

FINAIHYS ¥ 1SOD HOLINOW o

11NOIHIS ¥ 1500 1A0HEdY @
NOd e
QIYINOIY 41 HYS @

T Wd HO 8O0 @

MIiATH
NOILVDIITIYN0 TYWHO4 @
nanv
NOILYHOTTINOD TVDISAHE @

") e

/H@l

SISA YN

SOSILYAILST A THINOW o

SOTOHSIHHL
035040Hd W3 LSAS 10HLINOD
11NA3IHIS % 1S0D 31VNIVAI

- WOd

11V 04N Wd HO 400

uas
SMIIAIE NOISIA WILSAS

LNIWSSISSY ASIH
B ALINIBISVI4 ONINNILNOD

S$S44030VHL IHYMIL A0S
W IHVMAHI4 3HYMOHYH

J1VNILS3
as4 JLVINILST
a3iivadn as4d

N’
“IVA3 1VS0d0Hd
as4

auvmy Hos

NV 1d
ININIHNOOHD
A3DNVAQY

. X INNY

$304N0S3y

) Wd B0 430

. WO4

1dS18D) NV 14

L80ddNS QILVYHOIUINI
S30HNOS3Y ¥3LNdWOD
1HaD

W49 % 149

CEL

NY1d

NO(L 3138 30800
HHOM

. 40 INIWILVIS

HHS) MIIA3Y SINIW
. IHIND3E SW3LSAS

NOILVDI41034S
. IDNVWHO4H3d

JLYWILST
| NOILVAITvYA

NOILYNIVA3 1VSOdOHd
ALIAILDVY NOILVAITVA

or3yeuweaborg A9 [

©

*nT s1nbtd
SLNdNI
AYVIONYNIS
wos o Q3HIND3Y
INIWSSISSY XSiy
W ALINBISVIY @
AR LN
JLVWILST ONI2IS
IHYML 40S TVILINI @ S1NdNI
NOILINI 430 W3LSAS TYIINHIIL
1vN143ON0D @ g3HIND3Y

AHYLIOANE
TVILING
O S31VWILSI 1S0D
1IN3IAN3d3aNI
| IVILNIND 3¢

{
|
|

934t

1YSO040m4 WaLsAs

3SYHJ sstss
1H0ddNS 8 NOILYH3IO
NG VATV SN 3SVHdI LN3Wd013AIa 3SVHJ NOILYAINVA 3ISVHd 1¥N 1d3INOD
31v2S8 17n4
NOISIDI0 NOISID3Q NOISID3a
NOI12Na0Hd NOILVIIdILYY WYHOO0Hd

"

v

S3INOLS3ITIW DHVvSA

31

The initial budgetary estimate is perhaps the most important and
most difficult estimate to make since very little information is avail-
able at this early conceptual stage. If the estimate is too high, the
program probably may not be approved, or if it is approved, Parkinson's

Second law, "Expenditures will rise to meet income," will surely come

into play. If the estimate is too low, the program will incur overruns.

This initial budgetary estimate is a life-cycle cost (LCC) estimate which

is used in several key documents. These include:

® Program Objectives Memoranda (POM) - The POM is used by the
services to obtain program approval and inclusion in the Five
Year Defense Plan (FYDP). The initial budgetary estimate
appears in the POM as a time-phased cost by appropriation
category.

® Advanced Procurement Plan (APP) - The APP is used by the De-
velopment Command to seek procurement approval. Costs are
shown apportioned to respective development activities. Also,
like the POM, the cost estimate appears in the form of time-
phased costs by appropriation category.

® Resources Annex - The resources annex appears in both Decision
Coordinating Papers (DCPs) and Program Memoranda (PMs). Like
the POM, the resources annex presents time-phased costs by
appropriation category. The resources annex is updated each
time the DCP or PM is updated.

During the Conceptual Phase it may become desirable to obtain an
industrial input. This can either be done informally through existing

working relationships, or if done formally, through a Request for In-

formation (RFI). Dollar wise, these inputs are not usually costly.
Most of the government's conceptual studies are accomplished in-house.
This may change over time with the advent of Office of Management and
Budget (OMB) Circular A-109. This requlation is designed to solicit

industrial involvement back to the point of evolving technical approaches

given statements of mission needs.

3
:

R R e iR

R LR oeh s i

o A e nd .

i
" SNl

Once it appears there is goling to be a program, validation planning
efforts begin. This planning activity often takes place prior to the DoD
program decision by the Lefense System Acquisition Review Council (DSARC-I).
In some cases, RFPs are actually released, proposals submitted, and re-
sponses evaluated -- everything short of actually making the award. It
is at this time that the budgetary estimate is updated and an Independent
Validation Cost estimate is made. The Independent Cost estimate is used
to evaluate the reasonableness of the contractor's proposed costs. Planning
documents that the software analyst should help prepare include:

® Work Breakdown Structure (WBS) - The WBS should be prepared

by analysts who have both a technical grasp and an understand-
ing of the cost proposal evaluation process. Considerable in-
formation as to the validation of the contractor's understanding

will be revealed if the government asks the contractor to submit
his cost proposal to Level 3 of the software WBS.

e Performance Specification - The performance specification iden-
tifies the levels of performance which will be required to meet
mission needs. Performance levels that can be considered for
trade-offs should be noted.

® Statement of Work (SOW) - The SOW identifies all of the design,
engineering, administrative, and support tasks that are to be
performed over the contract.

® Government Furnished Information (GFI) - GFI includes all in-
formation released to the contractor. This includes any
algorithms or reusable code that the government may wish to
release.

® Government Furnished Material (GFM) - GFM includes all equip-
ment and material that will be furnished to the contractor by
the government. This would include computer hardware.

e Contract Data Requirements List (CDRLs) - CDRLs list all docu-
ments which are to be deliverable under the contract.

® Source Selection Plan - The source selection plan includes the
procedures and criteria for selecting the winning contractor.

Once a program decision has been made, the contract validation award
is made. For high risk programs, there may be more than one validation

effort. During the validation phase, the software cost analyst should be

33

i F—— ,

preoccupied with suggesting possible hardware/firmware/software cost
trade-offs and in contributing to on-going feasibility and risk assess-
ments. The analyst must become familiar with the contractor's proposed
approaches so that independent FSD cost estimates can be prepared. If
competing approaches vary significantly, it will be necessary to develop
independent cost estimates for each approach. If the program is under
Design-to~Cost (DTC), the analyst will develop DTC targets for the program
and a tentative allocation of that target down to the subprogram level.
Additionally, the analyst is active in preparing selected portions of the
Computer Resources Integrated Support Plan (CRISP). Once validation efforts
are completed and the FSD proposals submitted, the. analyst becomes an active
participant in the cost proposal evaluation. Life-cycle cost estimates are

also updated for presentation to DSARC.

Once the development decision has been ratified (DSARC II), the
analysts participate in Preliminary Design Review (PDR) activites and in
overseeing implementation of the contractor's Cost and Schedule Control
System. Prior to the System Program Office (SPO) approval of the con-
tractor's proposal, the analyst should prepare independent cost threshold
estimates and compare these with those being considered by the contractor.
Once PDR is completed, the analyst will monitor the contractor's cost
and deliveries. 1In addition, the FSD cost estimate will be updated
based on the results of PDR. Monthly independent estimates of cost at
completion (EAC) will be made and compared with those submitted by the
contractor. Significant variances will be called to the SPO's atten-
tion. Independent cost estimates will be prepared for each Class I
Engineering Change Proposal (ECP) and any Class II ECP specified by the
SPO. If the program is a Selected Acquisition Review (SAR) designated
program, the analyst will prepare appropriate cost status information
for inclusion in that report. As the Installation/Production decision
(DSARC III) draws near, the analyst will update his life-cycle cost

estimates.

34

3.2 Developing the independent program cost estimate.

This section presents a framework for estimating software program
development cost and schedule. perations and support costs are not
discussed in this guide, but must be considered in preparation of the

system's Life~Cycle Cost (LCC) estimate.

1.2.1 Development schedule. Table 7 summarizes program develop-
ment times which are considered reasonable for each development phase.
Lower values of the estimators reflect programs that are well planned,
well supported by higher authority, and not 1y complex. The higher
values are more typical of those currently expected because of the trends
towards greater system complexity. 1In the event that the software develop-
ment is not affected by the DSARC process, the program deci-ion time incre-

ments are not relevant.

3.2.2 Development cost. The algorithm for software program develop-

ment cost (C) is given as:
€ = . + C + C (9)
“CF VAL FSD

where

C"F = Conceptual Phase cost in dollars

C = Validation Phase cost in dollars

VAL i | has doll

CFSD = Full-Scale Development cost in dollars

35

TABLE 7: SOFTWARE DEVELOPMENT SCHEDULE ESTIMATORS

Development Phase Estimator, Months

1. Conceptual Phase

(a) Concept definition 6 to 24
(b) Program decision 3 to 9

2. Validation Phase

(a) Solicitation/award 6 to 9 5
(b) Contract definition 6 < .35 D < 18
(c) Ratification decision 3 to 6

3. Full Scale Development Phase 1000 I

99. 281+ 233(1)'66

D=

5

1. Contract definition is that phase of development during which pre-
liminary design is verified or accomplished, and firm contract and
management planning are performed.

2. In general, contract definition will last approximately 35 percent
of the total software development time. However, it 1s estimated
that a minimum of six months and a period of no more than eighteen
months would be required.

3.2.2.1 Government cost. Table 8 summarizes level of effort estimators
that may be used for determining the government's approximate costs during
development. These costs cover the program office and those personnel that
may be in direct support of the program office. Aronll noted that the Con-
ceptual Phase usually requires up to seven people. No people may be assigned
in cases where the project is a logical follow-on to an existing activity.
Decisions in this case are made by AFSC Project Division Managers as a normal
part of their job. The upper limit of seven reflects the fact that, even for
large systems, the system concept should be within the grasp of one person.
With more than seven, it becomes almost impossible for the team to arrive at
a single concept they all understand. Typically the team consists of four
to five people. Only a short time is required to prove the concept, but

the phase may well last a year or two, during which time missions will be

1. 1Ibid.

36

N ———

wrw

*sSuylTtaobre (J) uor3jeanp pue (W) Yjuow-ueuw 103 7 UOT303S 8939
RN . s o Z%) 2 aseuq (asd) 3Iusudorsaag aleds IInd °¢
(WW/3s00) (Wn) (¥ =) (WW) (P (& (P 03 29 = : :
a UOTSTOSp UOT3IRdTITied (D)
(WW/3500) (WW) (2° ©3 1°) (WW) (2° 03 T°) Z o3 19 UOTITUTISP 3IORIJUOD (9)
(R A I pPIeMB/UOTIPITOTTOS (®)
aseyd uor3eprieA ¢ o
(WW/23500) (W) (£9 03 6) €9 03 6 1, 03 € UOTSTO®9p weaboxgd (9)
(WW/3S0D) (WW) (89T 03 0) 89T 03 O L 03 0 uoT3TUII=ap 3dsouo) (®)
aseyd tenzdsouo) I
saelTop ‘3s0D syjuow-uey Touuoszad *oN oseyd juawudorsaasd

LSOO INIWJOTIAZd FTIYMLIAOS INAWNAITAOD ONIIWWIXOUddV ¥OJd SYOLVWILST -

8 dTdYL

defined, organizational attitudes will be surveyed to determine needs, and

management support will be lined up.

During the validation phase the project office effort is estimated to be
10 to 20 percent of the effort that will be expended by the contractor dur-

ing FSD. During FSD project office expenditures can be expected to double.

3.2.2.2 Contractor costs. Table 9 summarizes the Contractor Develop-
ment Activities level of effort estimators for both the Validation and Full-

Scale Development Phases.

The effort required of a single contractor during validation is esti-
mated to range from approximately 10 to 20 percent of the contractor effort
during FSD. If there is more than one competitive contract definition con-
tractor during validation, the cost should be increased accordingly. If
Independent Validation and Verification (IV&V) is to be considered, add

another 20 percent to the contractor's FSD costs.

3.3 Cost and schedule control considerations

Major hardware developments are monitored in accordance with DoD In-
structions 7000.2 and 7000.10, as well as AFSCP 173.5. Figure 11 illus-
trates the type of information reported monthly by the contractors for each
WBS element. The system forces the contractor to report when agreed-to-
cost and schedule thresholds are broken. In addition, the contractor must
identify corrective actions being taken. Figure 12 illustrates an effec-
tive graphic means for plotting cost and schedule variances (+ variances

are good, - variances are bad; by convention).

For software development projects, it is possible toc impose a similar
reporting scheme on the contractor. This would require that the WBS be
both end-item (software subprograms, documentation, etc.) and functionally
(codina, package test, etc.) oriented. It is recognized that initially
all subprograms may not be identified; however, as the subprograms are

identified, they should be included in the WBS.

38

. : ; Ii“

S A T

*SWY3TIAObT®e (d) uocTjiekaInNp pue (WW) YIuow-UPW IOJ 7 UOTIDSBS 999
i
ZS IO 0 =
AAT dI19Ym a
(WW) /3502) (AAI + T) (WW) (AAT + T) WW WIW Pseyq (dasd) 3Iusudorsasg aTeds IINd ‘¢
s103 =
-0BI3UO0D UOT3TU ; .
—179p 300I3UOD a UOTSTO9p UOT3LDTITII®RY (D)
S0 (e =
(WW/3) (N) (WW) (2 3 17) aaT3T30dWoD 3O (N) WH (2° ©3 1) UOT3ITUTISP 3DeIJUOD (q)
I9qUNU = N 9I9YM
Ieme/UOT3e3TOTIOS ©
(N) (W) (Z* 03 T°) PAHL/UOTRRITITIOR, ()
R oseyd uoT3lepIIRA ‘¢
*3USWUISA05 9Y3z O3 3SOD Ou 3B 3B uoTSIoap wexboxg (9)
9seyq Ten3idsouo) ay3z butainp s3x03Fe I03oeIFUOD ‘ATTROTdAY uoT3TUTILapP 3d9duc) (B)
aseud Tenadsduo) 1

sIeT1op ‘3soDd

T2uuosaad ‘ou

ARSI sbeasay

aseud juswdoraaaq

LS0D LNIWdOTIATA FIYMLAOS S ¥OLOVILNOD ¥ ONILVWIXOdddV #03 Sd0INWILEA ‘6

el e s e e s b

d19Y.L

4OVMINGD OL NOWLVIYD

| & i IS

-~

")

+

ERS L PSS

Fomvikva | G3tia3e | aiiivang

i3y

—t SN PR

MOILI14mO) LY

. —1—

OMITNID AS3 | OWIUAD LD
e =k s

orrcul
LELL I IR R

CIA0NAdY muO4

ey
S

Jewrog 3x0d3y TOIUOD SBTNPAYDS pue 3so) T aanb1g
1 e,
i T il T T T T

_ SHVII00 40 SONVSNONL NI S igind 1Y _ | |
- L. Y CL SR T LTSNS SRR
! 1ONVIEYA LOVEANOD TviI0L
+ ——e——l
m IWIMASNrOY 3 ONVINYA

4 - e | BRI B o |

vi0L

IANITIN INIRIOYNYR

avioiens

—— - —

T 13030 b
RA LTS,]

—=

Olive ul"h

FAVO Y T UL TMNAvYESE

3ivQ 0L IALLVINAND

w
224 ——
0IMNOIuI4 | POEUN

—

11ed :L i ..:»,.\. 334 Lid0N4 ,.:L,.

|
OOMI4 LNOdIN |

JUNLONELS NMOONYINE AHOM

— 44— = -
| LI EELEL L
—~—

|
|

v

EEL LT R

{
pewopsy | DeIPeR
EELTY | e
1502 H ==
IWNLIY 1507 C3i390n0

— 4

NUOB 03Diyaun KiNw

—

WIGRON IWYN AYEOONS | OM 3a L TMAND
- ' 18

LH0d 38 JONYWY03H3d 1500

i

139006 CILnGIMLsIONN

MINOY ONY 3T

JWNLONK LT WAOONYING ¥WOR

REN R L] Silamen

®OILINA0NE (] avice

RO1LY D0

‘* SULIYEANG
.

T T ey

+10

MARGINAL FAVORABLE

SCHEDULE VARIANCE (%)

-20 -15 -10 F -5 35 +1L0
| e
- e g T T =
J /
/
UNFAVORABLE MARGINAL
/
// =+ 5
/
/.
/
/
£ R
-+-10
/ N
/ S
2
£ <
/ @
<
= f +:15 >
/ A A ’D 5
/ M J// 7 / 8
£ —
i~ / An
4 sde’
/ s [20
A
COST SCHEDULE VARIANCE 125
CUMULATIVE PERCENTAGE
Figure 12. Illustrative Cost & Schedule \’an’ances—1
12. U.8. Army Management Engineering Training Agency, “Status, Trends,

and Projections", January 1975.

41

4. CONSIDERATIONS IN MANAGING A MAJOR SOFTWARE DEVELOPMENT PROGRAM

Previous sections of this guide have been addressed to the Program
Manager's Software Specialist. This section speaks primarily to the
Program Manager. It covers pitfalls that should be avoided, use of
Independent Cost Estimates, techniques for successfully monitoring the
development, and a discussion of factors which will materially affect

the magnitude of the development effort.

4.1 Software development problem areas

Figure 13 summarizes those problem areas that are likely to be en-
countered throughout the software development program.13 Problem areas
are grouped horizontally under the appropriate DoD Directive 5000.1 De-
velopment Phase. The flow lines are intended to represent cause/effect
relationships among the problems identified. Problem areas are further
grouped vertically into one of three domains, e.g., Requirements Domain,
System Architecture/Engineering Domain and Management Domain. Appendi-
ces A, B, and C provide discussions of specific factors within these
domains which materially affect the magnitude of the development effort,
and guidelines for responding to the effects of its factors. Table 10

summarizes the sensitivity of development costs to these factors.

The large number of problems that arise during the later stages of
Program Validation and during Full-Scale Development is seen to be the
result of the combined impact of more stringent and growing requirements
on system performance, and the relatively undeveloped state of soft-
ware design and control methodology. The manifestations of these
problems are numerous. In the recommendations that follow most of
1 i @ Fr\leKOf%, A., et al. "DoD Weapon Systems Software Management

tudy", Johns Hopkins University Applied Physics Laboratory,

June 1975.

PI4I “vT

vammwum waTqoxg Juswdoloasd 8IPMIJCO3 €T 9INDTJ

st |
Aojdag o1 sabedi g sabedd ALpaIsA |
Wi anstadn 3 Y1 wesko.iqy 01509 ANPayIg AMLYOG
_ 10 waen
s SUOISIADIG PAPNPUL 10N
ouraien U
Saoe
NIvYWOG
INIWIOYNYIN
1:000nG 3194 W
a1 104 1507 < IICTIETCITINY
buiwwe Boday | 1021987
i
|
A2032%2,05Q() PUP
$1500) butiepdn
™~
~
NIYWOGO
| ONIH3IINIONT FHN1D3LIHOHY
v,, W3ISAS
h
|
{
150D |
buruies | 4
pue 30860 | ﬁ {
SWaGoIg HIPMLOS WASAG
. s NIVANOC
Ay g
Y a _ SINIWIBIND IY

]

SHAPUY Swalsrg |

alenbepe.

D INIWAOT3IAIG ONIEIINIONT D INIWGO13IA 30 QIINYAQY D W30 ALINIBISYIY ONY SISATVNY

ININADI4I0 NOILONAOYd IHVYSO INIWAOI3A3A 3ivIS 1INY HYSQ ISVHA NOILYOI TYA AVHOONG JHY SO NOILY INWBO 4 143DN0D

101500

UOISIACIG ON

-

TABLE 10. SENSITIVITY OF SOFTWARE COSTS TO FACTORS

Factor

Communication

Constrained, CPU Time

Constrained, Program Memory Size

Constrained, Time and Memory

Cost of Secondary Resources

Cost./Schedule Control Systems

,Criteria (C/SCSC)

Data Management Techniques

DagalCollection, Amount and Method
of

Developer's First Time on Specified
Computer

Developer Using Another Activity's
Computer

Development of Hardware, Concurrent

Development and Target Computer
Different

Development Personnel Mix

Development Site

Development Site, Number of

Design Complexity

Design Stability

Instruction, Definition of

Innovation, Degree of

Programmer Testing

Frogramming Facilities

Programming Techniques, Modern

Appendix Software application
reference
page CeCY Sc.) Bs.} Ut. { All
c-25 H H H H H
B-2 M H N H M
B-4 M M M L M
B~7 H H H H H
Cc-15 N N N N N
C-~8 N N N N N
C~19 M M M M M
Cc-~13 N N N N N
C=35 H H H H H
C-30 M M M M M
C~33 H H M M H
C~-23 H L M N M
Cc~10 M M M M M
C-29 M M M M M
=3 M M M M M
B~-10 H H L L M
B-9 H H H H H
Cc-16 H H H H H
Cc-5 I H H H H
C-11 H H H H H
Cc-22 H H H H H
c-21 H H H H H

APPLICATION LEGEND

kﬁ SEE

C&C = Command and Control
Sc¢. = Scientifice

Bs. = Business

Ut. = Utility

SENSITIVITY LEGEND

H = High significant impact
M = Medium significant impact
L = Low significant impact

N = Negligible impact

et

TABLE 10. SENSITIVITY OF SOFTWARE COSTS TO FACTORS

(Continued)

Appendix Software application
Factor reference

page cse | Se. | Bs. | Ut. | All
Requirements, Language .C=27 H H H H H
Requirements, Maintainability A-16 H H H H H
Requirements Changes, Operational A-5 H H H H H
Requirements Definition, Operational A-2 M H N N L
Requirements/Design Interface,

Operational A= H H H H H
Requirements, Quality A-1 H H H H H
Requirements, Reliability A-15 M M M M M
Requirements, Special Display C-36 L L M N L
Requirements, Testing Including V&V C-6 M M M M M
Requirements, Transportability A=22 M) M M M
Requirements, User Considered A-6 M M M M M
Sites, Multiple Software Utilization €=31 M M M M M
Sizing Error c-18 H H H H H
Software Development Schedule €-37 H H H H H
Support Software Availability G2 H H H H H
Specified Response Time A-8 M H H N M
Target CPU Designation B-8 H H H H H
Work Breakdown Structure E=3 H H H H H

APPLICATION LEGEND

C&C = Command and Control
Sc. = Scientific

Bs. = Business

Ut. = Utility

SENSITIVITY LEGEND

20X o
!

= High significant impact
= Medium significant
= Low significant impact
= Negligible impact

impact

45

the suggested approaches lie either in the domain of Software System Archi-

tecture/Engineering or Management, which are different, but related, approaches

to the development of improved software design and control methodology.

An important consideration noted in the flow 1line at the top of
Figure 13 is the inevitable growth and change of requirements throughout
a system's lifetime. For weapon systems, these changes are inherent in
the changing nature of the threats against which most systems must oper-
ate, as well as in the fact that software can be modified without phy-
sical changes to the system. In practice, unless provisions for adapta-
tion to change are designed into a system, the consequences are often

serious.

4.2 Areas requiring the software cost analyst's input

Independent cost estimates, prepared by the team's software cost
analyst, serve an increasingly important role throughout the software
development program. Over the life of the development program, it is
reasonable to assume that at least four different estimates will be
prepared. With each succeeding estimate, additional, more definitive
information becomes known, thereby decreasing the uncertainty associ-
ated with the estimate. The four independent estimates are, in the
order of their occurrence:

Estimate No. 1 -~ Initial Program Budgetary Estimate

Estimate No. 2 - Independent Cost Estimate of Program Validation

Estimate No. 3 - Independent Cost Estimate of Full-Scale
Developrment (FSD)

Estimate No. 4 - Update of FSD Cost Estimate
Figure 10 (p. 31) provides a checklist of technical and financial

documents and/or events requiring inputs from the software cost special-

ist. These documents/events should be well-known to the Program Manager.

46

It is suggested that this list be reviewed and that a continuing dialogue
be developed with the software program cost analyst. In most instances
this individual, or group of individuals, will be qualified both in tech-

nical and costing aspects of the software program.

4.3 Monitoring the development

The discussion which follows is oriented towards the Air Force 800
series regulation and manuals covering research, development, engineer~
ing, testing and production of systems of all types. However, to a cer-
tain degree, the discussion is also applicable to the 300 series. The

cost estimates developed in prior sections are relevant.

Each major development phase is discussed in turn. Questions re-

quiring answers are asked. Do's and Don'ts are listed as appropriate.

4.3.1 Conceptual phase. The objectives of this phase are to de-
velop a system concept, examine trade-offs and conduct feasibility as-
sessments. The principal output of this phase is the initial system
specification which estahlishes the functional baseline. Typically,
according to Aron,lu rhe conceptual team consists of four to five people, 4
but could range from one to seven. In some cases where the project is a ?

logical follow-on to an exlsting activity, the activity staff will perform
the functions of the conceptual team. Decisions in this case are made by
AFSC Project Division Managers as a normal part of their job. Aron has
commented that there is an upper limit of seven above which it becomes
almost impossible for the team to arrive at a single concept they all

understand. Although a short time may only be required to define a).

15. Aron, ops. cit.

concept, the entire conceptual phase may last a year or two during which

mission requirements are delineated and appropriate approval of the con-

16

cept obtained.

16.

QUESTIONS WHICH SHOULD BE ASKED

Has user involvement been a part of conceptual definition?
Have software development risks been identified?

Will the software development project be assigned to a single con-
tractor or will more than one contractor be involved? If more
than one contractor, how will responsibilities be assigned?

What are the technical requirements of the contracts?

Have testing requirements been established? Will Validation and
Verification be accomplished by an independent contractor or by
the project office?

Has there been an adequate evaluation of software versus hardware
trade~offs?

SOME DO'S

Insist on a clear definition of operational requirements (prefer-
ably documented) .

Achieve user participation in concept definition.
Require an analysis of software development risks.
Identify total software life-cycle requirements.

Require the development of plans for the orderly acquisition of
the software such as a Computer Program Development Plan (CPDI
[DI-E(U)695/ESD] and a Computer Resources Integrated Support
(CRISP), which will ensure that the life-cycle requirement
satisfied.

Ibid.

4.3.2 Validation phase. The objectives of this phase are defini-

tion and validation of the system requirements. The principal output
of this phase is the development specification. To achieve this, com-

petitive Contract Definition efforts are desirable wherever feasible.

Validation is accomplished by conducting a thorough requirements
analysis which examines trade-offs between general and special purpose
computers, determining which computer and peripherals should be uti-
lized for specific applications. This analysis is made during the
architectural design of the general and special purpose computers and
their associated software. During this phase, reguirements for each
software package as well as delineation of all external interface

requirements should be developed.

The next step, Software Design Analysis, is the detailed breakout
of each computer software package into functional units or modules.
Response time estimates and memory allocations should be determined
through preliminary design, modeling and simulations, and as a result,

a Design Criteria statement for each software package should be created.

As each step is accomplished, a more definitized functional detailing

of each unit or module will be achieved. 1In this step by step approach
ifications for each unit or module will be completely and accurately
fined. As problems are identified, iterations through prior steps are
;0lve them.

4.

Functional Qualification Test (FQT).

SOME DO'S

Identify roles and responsibilities of all organizations as
early as possible.

Consider flexibility in schedule and cost for possible change
in operational requirements.

Utilize software prototyping and/or parallel development where
significant risks or requirements/uncertainties exist.

Standardize and disseminate algorithms required by operational
requirements by including them in the RFP wherever appropriate.

Use separate validation resources.

Require the contractor to include a Computer Program Develop-
ment Plan (AFR 800-14, Volume 2) in his proposal.

Be wary of target prices which are significantly less than the
Program Manager's independent cost estimate.

Continue negotiations until a mutually satisfactory understand-
ing is reached as to the development activity's approach and
understanding.

Probe proposed subcontractor relationships to find out the ex-
tent of agreements between the prime contractor and the sub-
contractors with respect to responsibilities, technical per-
formance and prices.

SOME DON'TS

Permit language proliferation. Keep it constrained or it will
increase software development costs.

Forget to review the response time characteristics of the sys-
tem.

Hesitate to specify the Central Processing Unit (CPU) once the
validation of hardware/software/firmware trades have been
completed.

.3 Full-Scale development phase. The full-scale development
phase encompasses analysis and design, coding and checkout, and system
test and integration. Analysis commences with the release of the de-
velopment specification and terminates with the successful accomplish-

ment of System Development, Test, and Evaluation (DT&E) or Software

During this phase, various design approaches are considered, analyses

and trade-offs performed, and design approaches selected. The purpose
of the design phase is to develop a design approach including mathe-
matical models, and functional or detail flow charts, if required/de-
sired.17’l8 The design approach should also define the relationship
between the computer program components. This information is contained
in the preliminary computer product specification and is normally pre-
sented and reviewed during the Critical Design Review (CDR). Coding
and checkout commences with the successful accomplishment of CDR. Test
and integration compares the program results against the requirements
specified in the computer program development specification. This test
and integration process includes the individual computer program function

or module tests, and extends through total computer program formal quali-

fication tests.

QUESTIONS WHICH SHOULD BE ASKED

a. Does the FSD program include provision for adequate modern
support tools and facilities, iancluding such items as assem-
blers, compilers, editors, debug aids, data base and library
management systems, and associated operating systems?

b. Have time, resources, and testing aids been properly allo-
cated to permit iterations of unit or module design in the
overall software program planning schedule?

c. What precautions have been developed to alert management of
emerging problem trends? What checkpoints have been estab-
lished in the overall software program planning schedule?

d. Has a formal software Quality Assurance (QA) program been
established by the contractor?

Are there provisions for validating and verifying the soft-
ware development activity and cost by someone other than the
development contractor?

®

17. Thomas M. Kraly, et al., "Structured Programming Series, Volume VIII:
Prcgram Design Study." IBM Corporation, RADC-TR-74-300, May 1975.

18. L. H. Ortega, "Structured Programming Series, Volume VII: Documen-
tation Standards." IBM Corporation, RADC-TR-74-300, September 1974.

Sl

a.

b.

Have provisions been made to assure delivery of the necessary
support software, system resources, and related documentation
to satisfy operations and maintenance support functions?

SOME DO'S

Establish specific development milestones for software programs.

Establish specific decision points during the software develop-
ment phase.

Require reporting of specific software management information
and thresholds.

Impose a design freeze to the maximum extent possible after the
design reaches sufficient maturity.

Monitor early testing to validate the contractor's (often overly
optimistic) progress estimates.

Provide fast response to the development activities' action requests.

Require periodic and open Quality Assurance (QA) reviews with the

contractor.

Require the utilization of developed support software or the
creation of support software prior to the development of the
primary software packages. Discourage the concurrent develop-
ment of support software.

Plan adequate time and resources for design and design itera-
tions.

Progressively test each unit or module software package as it
is completed, as well as the interfaces between completed
modules.

Begin configuration control of the allocation baseline immedi-
ately before PDR.

SOME DON'TS

Permit the development of computer software and hardware con-
currently unless the overall software program plan includes
time and resources for both software and hardware design
iterations.

Divide responsibility for concurrent, related software devel-
opment among several different development activities.

Hesitate to impose a formal cost and schedule requirement on
the developer, wherever appropriate.

Develop the software at more than one location unless the cost
and schedule impacts are acceptable.

————

APPENDIX A ‘
DISCUSSION OF REQUIREMENTS DOMAIN FACTORS |

FACTOR ' PAGE g
1 OPERATIONAL REQUIREMENTS DEFINITION. A=2 j
2 OPERATIONAL REQUIREMENTS CHANGES A=5 i
3 USER REQUIREMENTS CONSIDERED . . . +« « « « « « « « . . . BA=6 '
4 OPERATIONAL REQUIREMENTS/DESIGN INTERFACE. A-7
5 SPECIFIED RESPONSE TIME. « « « « « « « - . . . A-8 ’
6 AVIONICS APPLICATION + o « = & « & & & o 5 o 5 o = o « . B=12 1
7 COMMAND AND CONTROL APPLICATION. . + « « « « « . « . . . A-13
8 MULTIPLE SOFTWARE UTILIZATION SITES. A-14]
9 RELIABILITY REQUIREMENTS + « « « =« « « « - . . A-=15

10 MAINTAINABILITY REQUIREMENTS - . . . « - . . A-16
11 QUALITY REQUIREMENTS . « & v s « o o o o =« o o o & 5 = = B=17
12 TRANSPORTABILITY REQUIREMENTS. . . . « - « « « « « « . . A=22
13 BUSENESS | RPPLICATION o ei e v o eroimin 0 o 00 0 24
14 SCTENTIFIC APPHICATION s e o o e o o e A=26
15 VLI EEY AP E R CADION S 5 Sy te e il el e e e o B2

FACTOR IMPACT CONVERSION

In this appendix, many of the factor impacts are presented as they
affect productivity. In order to convert this impact to a cost multi-
plier for use in the algorithms proposed in this guide, you need only
do the following:

. If the factor impact causes a decrease in productivity, sub-
tract the percent decrease from 100 percent and divide the
remainder into 100 percent. For example, if the factor effect
of a command and control application amounts to a 20 percent
decrease in productivity which accordingly increases the costs
of the program, the cost multiplier can be obtained by sub-
tracting 20 percent from 100 percent, and then dividing the
remainder (80 percent) into 100 percent. The calculations
will result in a cost multiplier of 1.25.

® If the factor impact causes an increase in productivity, you
would simply add the percent increase to 100 percent and then
divide into 100 percent to obtain the cost multiplier for the
algorithms.

/’\'l

REQUIREMENTS DOMAIN
FACTOR NO. 1

OPERATIONAL
REQUIREMENTS
DEFINITION

QUESTION: How clearly have operational requirements of the Performance

Specifications been defined?

GENERAL IMPACT: For systems which have operational requirements defined
only vaguely or in outline form, one can expect to pay significantly
more, depending on type of program being developed (see Effect on
Productivity on page A-4), than for systems which have operational

requirements well defined.

GUIDELINES:
® Make sure that sufficient detail gets reflected in the require-
ments analysis portion of software development prior to design.
- Identify and delineate all software (S/W) functions.
- Define the operational characteristics of S/W and operational
constraints of S/W.
- Questions to be considered:
e Have S/W algorithms been developed?
e Have hardware (H/W) and S/W trade-offs been made?
e Have firmware (F/W) and S/W trade-offs been made?
e Have functional alternatives to Computer Program Configura-
tion Items (CPCIs) been made?
e Have all requirements for test and evaluation been estab-
lished?
e Has the User activity assisted and approved the operational

requirements definition?

® Approaches that can be taken to ensure the requirements

analysis is adequate are as follows:

A2

REQUIREMENTS DOMAIN
FACTOR NO, 1

OPERATIONAL REQUIRE-
MENTS DEFINITION
(Continued)

GUIDELINES: (Continued)

- Determine if there is a formal requirements analysis language
available for the application area involved. There are, for
example, machine resident languages available for application
areas like Ballistic Missile Defense. The output of such a
language is input to design, again usually a formal language.
If such a language 1s available, then one can use it to assure
that a sufficient level of detail is attained in requirements
analysis. However, the use of the language will not auto-
matically guarantee the level of detail required.

- Determine if an existing requirements analysis language can
be adapted to the application area involved. 1f yes, then one
can expect to reap the benefits such a language provides as
stated above. However, the adaptation of the language will
require additional development dollars, and most likely, an
initial schedule delay. For large developments, the increased
cost may be recouped and further slippage abated throuagh the
use of the language. Assess 1f the language is of use in other
developments. If yes, then one may be willing to accept in-
creased cost on one development if cost will be lessened for
succeeding developments. Determine if the cost of adaptation
is absorbed by a support activity, such as Rome Air Development
Center (RADC) for Electronic Systems Division (ESD) SFO's.

= Determine if a requirements analysis language can be written
for the application area involved. If yes, then the same
trade-offs have to be examined as described above for adapta-

tion. However, the cost of developing a language from scratch

will probably be greater than adapting an existing language.

REQUIREMENTS DOMAIN
FACTOR NO. 1

OPERATIONAL REQUIRE-
MENTS DEFINITION
(Continued)

GUIDELINES: (Continued)

- Determine what non-~formal procedures can be implemented in
requirements analysis to assure adequate detail. There are
no hard and fast rules available, but the project manager
should keep requirements analysis high on his awareness scale.
Don't let design start until both the purchaser and developer
fecl comfortable with the requirements.

® Consideration should be given to how requirements analysis 1is
paid for, especially algorithm development. It can be by the
purchaser or developer, and it may or may not be delineated as

a software cost. Such considerations should be taken into

account when structuring the WBS and making cost estimates.

VAGUE OPERATIONAL REQUIREMENTS

EFFECT ON PRODUCTIVITY :

COMMAND & CONTROL: 35% DECREASE
SCIENTIFIC: 50% DECREASE
U LLETY NO EFFECT*
BUSINESS : NO EFFECT¥*
ALL OF THE ABOVE: 10% DECREASE

* The implication here is that the operational requirements of utility
and business programs are usually defined adequately prior to design.
Thus, no effect was noted.

REQUIREMENTS DOMAIN
FACTOR NO. 2

OPERATIONAL
REQUIREMENTS
CHANGES

QUESTION: How can the effect of changes in operational requirements of

the Performance Specifications be assessed?

GENERAL IMPACT: Costs were observed to be considerably higher for sys-
tems which have undergone requirements changes as compared to those with
frozen requirements. The impact, however, will be highly dependent on

the individual case.

GUIDELINES :

e Ensuring that the original operational requirements are adequate
can prevent some changes.

e Perform tradeoffs between the costs and benefits of change vs.
no-change, and among alternative changes.

e Do not expect to go through a large development without changing
requirements; therefore, provision for change should be made.

® A requirements change will often result in both the discarding
of some existing code and the addition of new code. Sometimes,
however, only the latter is involved. 1In either case, expect
both the cost to increase and the schedule to slip due to the
requirements change. Each change should be addressed independently
in terms of the amount of code to be written to accommodate the
change. The amount of code to be written for the change can then
be used to assess the cost and schedule impact.

e Try to discourage changes, especially major ones, particularly

after the design phase has been completed.

CHANGES IN OPERATIONAL REQUIREMENTS

EFFECE ON PRODUCTIVITY :

AVERAGE : 5% DECREASE
MAXIMUM :)5% DECREASE

2 Sl

REQUIREMENTS DOMAIN
FACTOR NO. 3

USER REQUIREMENTS
CONSIDERED

QUESTION: To what degree are users involved in the development?

GENERAL IMPACT: The impact of not obtaining user participation in early

concept definition can cause a cost increase of as high as 100 percent.

GUIDELINES:

® The project officer or SPO should be completely aware that the
development will be deemed unacceptable if it does not meet user
requirements. Therefore, the end user should be involved as much
as possible in the development.

® The Air Force has guidelines and procedures in AFSCP 800-3 to
ensure that end user requirements are input properly to the
developer, via the SPO.

e Insure that the user is involved in the development of the
operational requirements and that the user is aware of all

changes to the requirements and design.

LITTLE OR NO USER PARTICIPATION
IN DEVELOPMENT

EFFECT ON COST:

SIGNIFICANT INCREASE

A-6

REQUIREMENTS DOMAIN
FACTOR NO. 4

OPERATIONAL REQUIRE-
MENTS/DESIGN INTERFACE

QUESTION: How well do operational requirements interface to design?

GENERAL IMPACT: The impact of this factor has not been measured quanti-

tatively, but is considered to be large.

GUIDELINES :

® A very detailed requirements analysis should be accomplished to
ensure that the operational requirements accurately interface with
the design. This can usually be done by using one of the two fol-

lowing alternatives:

- Impose a formal machine resident reguirements analysis lan-
guage and companion design language on the development, if
available. The advantages and disadvantages of this alterna-
tive are covered under Factor No. 1 - Definition of Opera-
tional Requirements, of this Appendix.

- Have representatives of the intended software developer and

the user participate in the requirements analysis.

INACCURATE INTERFACING
2

EFFECT ON PRODUCTIVITY:

SIGNIFICANT DECREASE

A=T

REQUIREMENTS DOMAIN
FACTOR NO. 5

; SPECIFIED RESPONSE
TIME

QUESTION: What are the response time characteristics of the system?

GENERAL IMPACT: Software that has to respond in real time will cost
more to develop depending on the program application (see Effect on
Productivity on Page A-11). The curve below represents impact as a

function of response time.

)

~—~Real-Time

Cost
Increase
%
i Once per
Day
Response Time (hrs.)
GUIDELINES :

® Factor the software into response time domains, at least to the
point of getting the real-time dependent portion clearly iso-
lated. Use the following guidelines once the total software
development has been partitioned according to response time:
- 1If the real-time dependent portion represents less than 10
percent of the total development, then no special provisions
are necessary. Just expect lower programmer productivity for

that portion of the development.

S

GUIDELINES:

REQUIREMENTS DOMAIN
FACTOR NO. 5
SPECIFIED RESPONSE

TIME (Continued)

(Continued)
~ If the real-time dependent portion represents more than 10
percent of the total development, the the following alterna-

tives should be considered:

Consider a hardware trade-off to minimize costs while sat-
isfying performance requirements. If only one system is
being developed, the additional cost of hardware will
probably be less than the high cost of software (caused
mainly by rewrites) to satisfy the response time require-
ment. If more than one system is being installed in the
field, attempt to determine the break-even point in num-
ber of systems. If the projected number to be installed
is less than the break-even point, consider the hardware
alternative. If the projected number to be installed is
greater than the break-even point, consid~r leaving the
intended task in software.

Consider a firmware trade-off. Software still has to be
developed for this alternative since all firmware origi-
nates as software. Software targeted for firmware is
generally referred to as microcode. Writing microcode to
meet a responcse time requirement will be less productive
per line of source code than ordinary software, but will
not generally reguire the number of rewrites that meeting
a tight response time requirement in ordinary software
would require, since the microcode usually resides in a
faster memory. Depositing critical functions in firmware

will relax Central Processing Unit (CPU) time loading.

A=3

REQUIREMENTS DOMAIN

FACTOR NO. 5

SPECIFIED RESPONSE
TIME (Continued)

GUIDELINES: (Continued)
The firmware option will require an additional hardware
cost for each system, since a high speed memory will be re-
quired for the microcode to reside in. However, this in-
creased hardware cost per system will not be as large as
the total hardware option examined above. For a single in-
stallation development, depositing critical response time
functions in firmware will probably pay off. For multi-
installation developments, use the guidelines presented
above for the hardware opticns for firmware tradeoffs.

- Examine the use of a faster, more power!:. CPU. This will
increase hardware costs, and also impinge cn weight and
volume constraints, if applicable. The guidelines present-
ed in the hardware trade-off above apply.

- Consider a multiple CPU system. This is a possibility if
several real-time dependent functions are vying for CPU
service simultaneously in an interrupt driven system. The
CPU time loading can sometimes be relieved by spreading the
functions across multiple CPUs. If, however, one function
is the driving factor, then this is not a viable alterna-
tive. This alternative will increase hardware costs, and
also impinge on weight and volume constraints, if applica-
ble. The guidelines presented in the hardware trade-off
above apply.

~ Obtain relaxation and/or removal of real-time requirements

(obtain and document user concurrence).

A=-10

REQUIREMENTS DOMAIN
FACTOR NO. 5

SPECIFIED RESPONSE
TIME (Continued)

GUIDELINES: (Continued)

- If required, accept a reduction in programmer productivity

with concomitant increase in software costs.

® This is a factor which is very important for on-board fliaht

programs in avionics software developments. It is much less

important in command and control applications.

REAL-TIME REQUIREMENT

COMMAND & CONTR
SCIENTIFIC:
UPTLITY s
BUSINESS @

L2

ALL OF THE ABOVE:

EFFECT ON PRODUCTIVITY:

2 DECREASE
40% DECREASE
70% DECREASE

NO EFFECT

25% DECREASE

A-11

REQUIREMENTS DOMAIN
FACTOR NO. 6

AVIONICS
APPLICATION

QUESTION: Is the software being developed jor an avionics application?

GENERAL IMPACT: Less programmer productivity than for other types of

software in general, but magnitude depends on mix of on-board flight

programs, simulation, and Automatic Test Equipment (ATE).

GUIDELINES:

Partition software into three categories:

- On-board flight programs,

- Simulation, and

- ATE.

On-board flight programs will be least productive because of
time and memory constraints, and extensive testing. Simulation
will be second least productive, and ATE most productive. Use
separate estimators for each category.

Do not expect a high degree of High Order Language (HOL) imple-
mentation for on-board flight programs; however, expect HOL use
to increase in the future. Expect more for simulation and ATE.
A convenient size estimator exists for ATE. Expect about 1500
lines of source code for each Line Replaceable Unit (LRU).

This is the smallest unit that can be removed from the aircraft.
Large aircraft will generally have more LRUs than small air- -
craft. A mid-range size is about 150 LRUs.

A constrained memory could canse sericus problems.

AVIONICS APPLICATION

EFFECT ON PRODUCTIVITY :

DECREASE

cannchh.

REQUIREMENTS DOMAIN
FACTOR NO. 7

COMMAND & CONTROL
APPLICATION

QUESTION: Is the software being developed for a command and control

application?

GENERAL IMPACT: About 40 percent less programmer productivity on the

average than for all other software applications, in general.

GUIDELINES:

® The applications are usually large, about 500,000 object words
on the average. This size will decrease programmer
productivity.

® Most software will be developed on large main frames targeted
for large main frames. Therefore, the potential for excellent
support software exists, especially for main frames that have
been in the field for a long time.

® Most applications can be implemented with a high degree of HOL
usage. The standard Air Force language 1s JOVIAL. Developers
who propose a small degree of HOL usage should show cause why.

® Due to size and complexity of design in command and control appli-
cations, extra special attention should be directed at accurately
defining the operational requirements, user involvement, and an
acute awareness that changes can cause reprocussions throughout

the overall program package.

COMMAND AND CONTROL
APPLICATION
EFFECT ON PRODUCTIVITY:
DECREASE

A=13

ud

REQUIREMENTS DOMAIN
FACTOR NO. 8

MULTIPLE SOFTWARE
UTILIZATION SITES

QUESTION: Will the developed software have more than a single site

installation?

GENERAL IMPACT: On the average, developing software for a multi-site

installation is 30 percent less productive than developing software

for a single site installation.

GUIDELINES :

If the multi-site software to be developed has no site depen-
dent features, then expect no impact from this factor.

If the multi-site software to be developed has site dependent
features, then expect the cost to increase by the number and

size of such features to be implemented.

If the multi-site software to be developea has 1rter—mach1§é

communication, expect the cost per unit 'inc of code delivered

to be higher than if no inter-machine communication is reguired.

MULTIPLE SITE DEVELOPMENT

EFFECI' ON PRODUCTIVITY :

30% DECREASE

T S

REQUIREMENTS DOMAIN
FACTOR NO. 9

RELIABILITY
REQUIREMENTS

QUESTION: How much reliability is required for the delivered soft-

ware?

GENERAL IMPACT: Higher reliability means higher development costs,

but lower maintenance costs. However, the exact quantitative nature

of this trade-off is not known.

GUIDELINES :

There are currently no standard accepted definitions of soft-
ware reliability.

Meeting reliability requirements, by whatever definition used,
affects the cost in the testing and integration phase of de-~
velopment. The higher the reliability, the higher the cost

for testing and integration.

Break up the total development into reliability categories. Ex-
pect higher cost per unit line of code delivered for high relia-
bility categories than for low reliability categories. Assess
the reliabili%y required in terms of the failure rate that can

be tolerated operationally for each category.

HIGHER RELIABILITY

EFFECT ON COST:

INCREASE

REQUIREMENTS DOMAIN
FACTOR NO. 10

MAINTAINABILITY
REQUIREMENTS

QUESTION: Are maintainability requirements to be imposed on the

development?

GENERAL IMPACT: Imposition of maintainability requirements will in-
crease development costs, but decrease maintenance costs. The impact

is not easily quantifiable, but is considered highly significant.

GUIDELINES:
e Maintainability is largely a function of the following factors

discussed on other guidesheets. Specifically:

- Language requirements,

- Reliability,

- Testing requirements,

- Transportability, and,

- Complexity.

- The most important of these is language. High Order Language
(HOL) is much more maintainable than Machine Oriented Language
(MOL) . Therefore, try to get as much of the development as
possible implemented in HOL.

e Another factor affecting maintainability is documentation.

Adequate manuals and run sheets for the programs directly
affect maintainability. Consider that approximately 30
pages of documentation per 1000 lines of source code delivered
will be required.

e If costs are too high, determine if maintenance require-

ments can be relaxed.

INCREASED MAINTAINABILITY

EFFECT ON COST:

INCREASE DEVELOPMENT
COSIS

A-16

REQUIREMENTS DOMAIN
FACTOR NO. 11

QUALITY i

REQUIREMENTS

QUESTION: What sort ot guality requirements are being imposed on

the development?

GENERAL IMPACT: The imposition of quality requirements will increase

development costs, but decrease maintenance costs. The magnitude of

the impact is not known, but considered to be significant.

GUIDELINES :

® An accepted set of attributes of software quality is:19
- Correctness, - Testability,
- Reliability, - Flexibility,
- Efficiency, - Portability,
- Integrity (security, etc.), - Reusability, and,
- Usability, - Interoperability.
- Maintainability,

® Correctness will be assessed in the Verification and Vvalida-
tion (V&V) portion of testing. V&V will increase testing and
integration costs, but decrease maintenance costs. Increas-
ing correctness is akin to increasing reliability.

® Increasing reliability will increase testing and integration
costs, but decrease maintenance costs. See Factor No. 9 -
Reliability, in this appendix.

® Increasing software operating efficiency is a very costly prop-
osition, since it usually requires rewrites to increase effi-
ciency or going to an MOL. It also has a negative effect on most
other quality factors, thus increasing life-cycle costs. Since
CPU time and memory constraints usually imply the necessity for
efficient coding, the cost impacts of these factors also reflect

19. Richards, P.K., et al., “ractors in Software Quality." General

Electric Company Presentation under RADC Contract F030602-76-C-

0417, December 1976.

A-17

REQUIREMENTS DOMAIN
FACTOR NO. 11

QUALITY REQUIREMENTS
(Continued)

GUIDELINES: (Continued)

the cost impact of increased efficiency. See Factors Nos. 1, 2,
and 4 of 2Appendix B. Since increased efficiency usually has
an adverse impact on life-cycle costs, only attempt to obtain
the absolute minimum level required. System growth may cause
the efficiency to decrease, violating minimum levels. Antici-
pated growth should be accounted for in the initial design and
requirements, thereby decreasing the likelihood that recoding
or other measures will be required during maintenance to at-
tain initially specified efficiency levels.

® Increased integrity will increase the amount of code required
to meet the same set of operational reguirements. This will
increase development costs, but decrease operational costs.
Integrity essentially characterizes how sensitive the system
is to operator error or system error caused by hardware mal-
functions. The project manager has to ask the question, "How
much down time due to operator or system error can be tolerated
in an operational environment?" If a relatively large amount
can be tolerated, then a great amount of integrity is not re-
quired in the software design. If only a relatively small
amount can be tolerated, then a large amount of integrity should
be required in the software design. The amount of integrity
required for certain classes of on-board flight software in
avionics applications is very high. For simulation and Auto-
matic Test Equipment (ATE) for avionics, it is much less. Com-
mand and Control will usually fall between on-board flight pro-
grams in avionics and simulation and ATE for avionics in terms

of integrity required.

A-18

REQUIREMENTS DOMAIN
_FACTOR NO. 11

QUALITY REQUIREMENTS

(Continued)
olitcap i T

GUIDELINES: (Continued)

Usability refers to how well the software satisfies user re-
quirements. ' See Factor No. 3 - User Requirements, of this
appendix.

Increasing maintainability will increase development costs,

but decrease maintenance costs. See Factor No. 10 - Maintain-
ability, of this appendix.

Increasing testability will increase the amount of code re-
quired to meet the same set of operational requirements. This
will increase the cost of the analysis and design, and coding
and checkout phases of development, but decrease cost in the
testing and integration phase. The amount of testability re-
quired should be a function of the size of the development.

It should increase with size.

Increasing flexibility, i.e., making the software more adaptable
to changing requirements, will increase the amount of code re-
quired to meet the same set of operational requirements. This
will increase development cost, but decrease maintenance costs.
The project manager should analyze flexibility requirements in
terms of the expected volatility in operational requirements.
If the volatility of operational requirements is expected to
be low ~ver the life of the system, then great flexibility is
not required. If the volatility of operational requirements is
expected to be high over the life of the system, then engineer

a large amount of flexibility into the software design.

A-19

T A ot v

REQUIREMENTS DOMAIN
FACTOR NO. 11

QUALITY REQUIREMENTS
(Continued)

GUIDELINES: (Continued)

Portability refers to the ease with which the developed soft-
wa~e can be transferred from one hardware configuration and/or
software environment to another. Reusability refers to the ease
with which the developed software can be used in other applica-
tions. These factors are highly interrelated, and are essential-
ly covered in Factor No. 12 - Transportability, of this appendix.
A feature of reusability not covered under transportability is
the packaging and scope of the functions developed. This is
essentially the modularity put into the design. That is, can a
subroutine easily be lifted out and deposited into another develop-
ment without a lot of awkward interfacing problems? Increasing
this kind of modularity will increase development costs, but may
decrease development costs on subsequent developments. This
feature is also related to the following attribute, interopera-
bility.

Interoperability refers to the ease with which the developed
software can couple/interface with another system. Increasing
this attribute will increase development costs, but increase

the potential use of the system and also possibly its life.
Increasing portability and reusability will increase inter-
operability; therefore, factor No. 12 on transportability applies.
A high use of High Order Language (HOL) will increase inter-
operability. Other features that will increase interoperability

are:

A-20

REQUIREMENTS DOMAIN
FACTOR NO. 11

QUALITY REQUIREMENTS
(Continued)

GUIDELINES: (Continued)

- use of standard widely used communications protocols,
- use of standard character representation such as ASCII, and,
- use of standard 32-bit and 64-bit formats for floating
point representation.
e Determine the quality requirements of the software package

and incorporate the requirements into the design at the

earliest feasible point.

IMPROVED QUALITY

EEFECT ON COST:

INCREASE IN
DEVELOPMENT COST

REQUIREMENTS DOMAIN
FACTOR NO. 12

TRANSPORTABILITY
REQUIREMENTS

QUESTION: What transportability requirements are to be imposed on the

software to be developed?

GENERAL IMPACT: Increasing transportability, if the language mix re-
mains constant, will increase development costs. Generally, this cost
can only be recouped if there is a change of CPUs over the life cycle
or the code can be transported to other developments. There are sec-
ondary cost benefits in training and documentation by using standard
versions of standard languages, which inherently makes the code more

transportable.

GUIDELINES:

- 1Identify other potential uses of the code.

- Assess probability of change in CPU.

- Perform cost tradeoffs to evaluate benefit of transportability.
- Code written in an High Order Language (HOL) is more transport-
able than code written in a Machine Oriented Language (MOL) .

- Code written in a standard version of an HOL is more transport-
able than code written in a non-standard version.

- Code written in a widely used HOL is more transportable than
code written in a less widely used HOL.

- The code required to solve a given problem in a standard version
of an HOL will generally be greater than that required in « non-
standard version, because the non-standard version 1is almost
always a superset of the standard version, offering the pro-

grammer more options in solving the problem.

A-22

REQUIREMENTS DOMAIN
FACTOR NO. 12

TRANSPORTABILITY
REQUIREMENTS
(Continued

GUIDELINES: (Continued)

Since transportability is almost solely a function of language
requirements, see Factor No. 17 - Language Recuirements, in
Appendix C for additional considerations.

Avionics software 1s much less transportable than Command and
Control software, since so much of it has to be implemented in
MCL. Most command and control software can be implemented in

a standard version of an appropriate HOL, such as JOVIAL.

INCREASED TRANSPORTABILITY

EFFECT ON COST:

INCREASE IN
DEVELOPMENT COST

e

P VU ST

REQUIREMENTS DOMAIN
FACTOR NO. 13

BUSINESS
APPLICATION

QUESTION: Is the software development a business application?

GENERAL IMPACT: Business applications are more productive per unit

line of delivered code than non-business applications.

GUIDELINES:

20.

Most business applications can be implemented in either COBOL
or RPG. It is difficult to justify implementation in an MOL,
since efficiency requirements, the major reason for MOL imple-
mentation, are seldom severe.

Since business applications generally have a high degree of I/0O
relative tc computation, sizing or costing algorithms based on
the number of I/0O items can be quite effective.

A number of business application programs are written on the
basis of transaction oriented processing to update files. In
these cases, the number of transactions can serve as an esti-
mator of size and cost.

Most business applications for the Air Force are implemented
under the control of the Air Force Data Systems Design Center
(AFDSDC). The primary language used is COBOL. A forualized
procedure for development exists, and is documented in Design
Center manuals.20 It covers all life-cycle phases from analysis

through operation. A management information system for resource

Air Force Data Systems Design Center Manual 300-8, Gunter AFS,
Alabama.

REQUIREMENTS DOMAIN
FACTOR NO. 13

BUSINESS
APPLICATION

planning and utilization exists called PARMIS (Planning and Re-

source Management Information System).

BUSINESS APPLICATION

EFFECT ON PRODUCTIVITY:

INCREASE

T

REQUIREMENTS DOMAIN
FACTOR NO. 14

SCIENTIFIC
APPLICATION

QUESTION: Is the software development a scientific application?

GENERAL IMPACT: Scientific applications are more expensive per unit

line of delivered code than non-scientific applications.

GUIDELINES:

Most scientific applications, except in a real-time environment,
can be implemented in an HOL. The widely used languages orient-
ed around batch development are FORTRAN, ALGOL, PL/I, ard JOVIAL.
PL/I has the additional advantages of having features which are
applicable to business applications. The widely used languages
oriented around interactive development are BASIC and APL. It
is difficult to justify the use of an MOL for scientific appli-
cations in anything other than a real-time environment.

Probably the largest scientific developments in a non real-time
environment are Monte Carlo simulations. If the simulation is
event driven, then the number of events can be used to estimate
size.

For real-time scientific applications, see the guide sheets on
response time (Factor No. 5), and CPU time and memory constraints

(Appendix B, Factors Nos. 1 and 2).

SCIENTIFIC APPLICATION

EFFECT ON PRODUCTIVITY:

DECREASE

A-26

S —— o PSP

<

REQUIREMENTS DOMAIN
FACTOR NO. 15

UTILITY APPLICATION

QUESTION: Is the software development a utility application, such as

tape to line printer, code conversion, or a sort/merge program?

GENERAL IMPACT: In general, if the software is a utility application,
the cost per unit line of delivered code will be less than that of other

applications, excepting business applications.

GUIDELINES:

® Developing support software that operates in the utility mode
such as converting information from one medium to another (tape
to disk, etc.), listing programs, code conversion (ASCII to
BAUDOT, etc.), and sort/merges is more productive in terms of
cost per unit line of delivered code.

e If this type of software represents less than 10 percent of
the total development, there will be no effect on cost or

productivity.

UTILITY APPLICATION

EFFECT ON PRODUCTIVITY:

INCREASE

et A

FACTOR

~N OO bk W N

APPENDIX B

DISCUSSION OF SYSTEM ARCHITECTURE/ENGINEERING (A/E) FACTORS

CPU TIME CONSTRAINED . . . « « . . .
PROGRAM MEMORY SIZE CONSTRAINED. . .
ON-LINE OPERATION . « « « « « « + .
TIME AND MEMORY CONSTRAINED
TARGET CPU DESIGNATION
PESTIGN STABILITY o o « » o« s s o o @
DESIGN COMPIEXITY .+ « » « = s + o &

B=9
B-10

FACTOR IMPACT CONVERSION

Refer to note on page A-1

A/E DOMAIN
FACTOR NO. 1

CPU TIME CONSTRAINED

QUESTION: Is it projected that the CPU will be in a time constrained

mode?

GENERAL IMPACT: If the CPU is projected to operate in a time constrained
mode, the cost is expected to increase. A time constrained mode is de-
fined as more than 80 percent utilization of available CPU time for the

most demanding task.

ACTION CONSIDERATIONS :
e This factor is highly correlated with the response time factor (see
page A-8), since the constraint is most often present in real-time en-
vironments. However, not all real-time environments will present the
constraint. For example, a mini-computer controlling machine tools will
be in a real-time environment, but the time-constraints are not severe.
In contrast, navigation, fire-control, and signal processing computers
in an avionics subsystem will most definitely be affected by the con-
straint.
e Factor the software into time constrained and non-time constrained
tasks using the 80 percent CPU loading rule. Use the following
guidelines after the software has been partitioned in this manner:
If the time constrained portion represents less than 10 percent
of the total development, then no special provisions are necessary.
Just expect lower programmer productivity for that portion of the
development.

- 1If the time constrained portion represents mcre than 10 percent

of the total development, then use the alternatives presented for

A/E DOMAIN
FACTOR NO. 1

CPU TIME CONSTRAINED
(Continued)

ACTION CONSIDERATIONS : (Continued)
Factor No. 5 - Response Time, in Appendix A.

; - Consider hardware tradeoffs to determine if a faster
CPU is available, and if it would be a cost effective
alternative.

- Consider relaxation of the response time requirements

(user concurrence should be requested and documented).

CPU TIME CONSTRAINT

EFFECT ON PRODUCTIVITY:

COMMAND & CONTROL: 35% DECREASE

SCIENTIFIC: 40% DECREASE
UTLLITY ¢ 55% DECREASE
BUSINESS: NO EFFECT

ALL OF THE ABOVE: 25% DECREASE

Mt 4 el -

QUESTION :

A/E DOMAIN
FACTOR NO. 2

PROGRAM MEMORY
SIZE CONSTRAINED

Is the program memory size of the processor a constraint to

the software development?

GENERAL IMPACT: If the software development is constrained by the size

of the processor program memory, then costs are expected to increase

over what one would expect without the constraint.

ACTION CONSIDERATIONS :

e Determine size requirements of the program memory.

If the estimate of reguirements is less than 60 percent of total
memory, assume little or no effort.

If the estimate is greater than 60 percent and less than 80 per-
cent of total memory, anticipate increased costs (15 to 20
percent as appropriate.)

If the estimate is greater than 80 percent, assume major impact

on costs (an increase of as much as 200 percent can occur).

' memory utilization is greater than 60 percent,

consider hardware and firmware trade-offs as discussed under
Factor No. 5 ~ Response Time, of Appendix A. The least
expensive hardware alternative is to add memory to the
proposed Control Processing Unit (CPU). If, however, the
proposed CPU is fully configured with memory. then this will
not be a viable alternative,

consider relaxation of operational requirements to decrease
memory vequirements (user concurrence should be requested and

documented) ,

Sdalamacasi gt alan b

A/E DOMAIN
FACTOR NO. 2

PROGRAM MEMORY
SIZE CONSTRAINED
(Continued)

ACTION CONSIDERATIONS: (Continued)

- if required, accept a reduction in programmer procductivity for
the necessary extra effort required to make the software fit,
with concomitant increase in software cost.

® Determine if additional memory or a larger CPU is available, and

if it would be cost effective to implement the change(s).

e o

PROGRAM MEMORY SIZE CONSTRAINT

EFFECT ON PRODUCTIVITY:

COMMAND & CONTROL: 20% DECREASE

SCIENTIFIC: 20% DECREASE
UTILITY: 15% DECREASE
f BUSINESS: UNDETE RMINED

ALL OF THE ABOVE: 30% DECREASE

A/E DOMAIN
FACTOR NO. 3

ON-LINE OPERATION

QUESTION: Does the program operate in the orn-line or utility mocde, such

as scientific subroutines or code conversion routines?

GENERAL IMPACT: If the program operates in an on-line or utility mode
in conjunction with the other significant effects, expect a decrease in

costs of 70 percent in the portion of the software that affects this mode.

ACTION CONSIDERATIONS:

e Developing support software that operates in an on-line or utility
mode, such as scientific subroutines, code conversion routines,
and standard listing programs, is more productive in terms of cost
per unit line of delivered code.

e If this type of software represents less than 10 percent of the

total development, no special provisions are necessary.

ON-LINE OPERATION

EFFECT ON PRODUCTIVITY:

LA OB o M SV B¢

oy

Soaa o

TERENT

A/E DOMAIN
FACTOR NO. 4

TIME AND MEMORY
CONSTRAINED

QUESTION: Is it projected that the CPU will be in both a time and memory

constrained mode?

GENERAL IMPACT: If the software development is constrained in both the time
and memory domains of the CPU, then costs are expected to increase by 150

percent over that expected with either constraint taken individually.

ACTION CONSIDERATIONS :

® Use the guidelines presented under Factor No. 1 - Time, and
Factor No. 2 - Memory, of this Appendix, treated individually.

e This factor is very important for on-board flight programs in
avionics where the combination of quick reaction real-time process-
ing and weight and volum2 restrictions usually means both constraints
are present.

® Determine if a faster ard laraer CPU is available and if it would
be cost effective to implement a change.

e Determine if respcnse time can be decreased and the software program

reduced or modified.

TIME AND MEMORY CONSTRAINT

EFFECT ON PRODUCTIVITY:

60% DECREASE

-AD-AO44 609

UNCLASSIFIED

2ore

AD .
AD44809

DOTY ASSOCIATES INC. ROCKVILLE MD F/6 9/2

SOFTWARE COST ESTIMATION STUDY. VOLUME II. GUIDELINES FOR IMPRO=-=-ETC(U)

AUG 77 D L DOTY, P J NELSON» K R STEWART F30602-76-C~0182
TR=151=VOL=2 RADC=TR=77=220-V0L=-2 NL

A/E DOMAIN
FACTOR NO. 5

TARGET CPU
DESIGNATION

QUESTION: At what point in the schedul. is the CPU or CPUs to be

specified?

GENERAL IMPACT: The later in the schedule the CPU or CPUs are specified,

the larger the impact on software development costs. The major impact,

however, is on total development costs. The magnitude of the impact is

not well known quantitatively, but it is considered significant.

ACTION CONSIDERATIONS:

In many large weapon systems developments, software turns ocut tc

be on the critical path, since major efforts on the software cannot

start until the source selection for hardware has been completed.

Guidelines to cushion the impact of the time at which CPUs are speci-

fied in the schedule are as follows:

-~ Specify, in the performance specification, which CPU 1s tc be used.

~ Force the hardware contractor to select from standard military
hardware, thereby greatly reducing software develcpment uncertainty.

~ Develop as much software as possible in standard High Order

el

Languages (HOLs), thereby greatly reducing hardware dependence.

LATE DESIGNATION
OF CPU

EFFECT ON COST:

VARIABLE

A/E DOMAIN
FACTOR NO. 6

DESIGN STABILITY

QUESTION: How stable is the design?

GENERAL IMPACT: Instability in design can cause cost increases as large
as 100 percent. If requirements change, causing design changes, see

Factor No. 2 - Changes in Requirements, in Appendix A.

ACTION CONSIDERATIONS:

® Since 60 percent of the errors discovered in testing are usually
caused by faulty design, some instability in design should be assumed.

® There is no iron-clad way of ensuring an initial stable design.
The use of formal requirements analysis and design languages, as
discussed in Factor No. 1 - Operational Requirements, in Appendix A,
may tend to increase design stability.

® The use of modern programming may also increase design stability.

® For large projects, design changes are probably inevitable; therefore,
leave some flexibility in both schedule and cost to account for this

eventuality.

® Work closely with the user to insure that the initial design is as
definitized as possible, and that the design is stahilized to the
maximum extent to preclude subsequent design changes once coding has

been commenced.

DESIGN STABILITY

EFFECT ON PRODUCTIVITY:
p 50% DECREASE OVER SPEC-

TRUM FROM NO DESIGN CHANGES
70 COMPLETE REDESIGN

A/E DOMAIN |
FACTOR NO. 7

DESIGN COMPLEXITY

QUESTION: How complex is the design, that is, how complicated and in-

volved are the logic and software/hardware 1interfaces:

GENERAL IMPACT: Increased complexity decreases productivity, but no

successful rating scales have been devised for measuring it.

GUIDELINES:

® The complexity of a project has a significant adverse effect on
programmer productivity. General rules of thumb to keep in mind
in this venue are:

- Operating systems are more complex than compilers, and com-
pilers are more complex than applications software. Support
software, in general, is more complex than applications soft-
ware.

- Real-time applications are more complex than non-real-time
applications.

- Interrupt driven multi-tasking software is more complex than
non-interrupt driven single tasking software.

o Complexity can be looked upon as an overview of a number of items
covered by other factors. Once the design has been approved after
Critical Design Review (CDR), then it will probably be of benefit
for the project director to break up the software by levels of

complexity, and cost each portion separately.

INCREASED COMPLEXITY

EFFECT ON PRODUCTIVITY :

DECREASE

FACTOR

Sow N

'
20
) e
14.
15,
16.

23,

24.

APPENDIX C

DISCUSSION OF MANAGEMENT DOMAIN FACTORS

SUPPORT SOFTWARE AVAILABILITY. . « & « » o &= o » @
WORK BREAKDOWN STRUCTURE . <« o o o o o s o o o o
DEGRER OF ENNOVARTON G S8y e e e s .
TESTING REQUIREMENTS INCLUDING VERIFICATION

AND VALIDATION

COST/SCHEDULE CONTROL SYSTEMS CRITERIA (C/SCSC). .
DEVELOEMENT PERSONNEIDL MIX. < < o ¢ & & s e o = o
PROGRAMMER TESTING < < & o = & o & & # = & =
AMOUNT & METHOD OF COST DATA COLLECTION.
COST QF SECONDARY RESOURCES. . < & & o« < @« & = o
DEEEINITION OF INSTRUCTIONL < < o « & = o & = = = =
SEZING ERROR @« o W a o e

DATA MANAGEMENT TECHNIQUES « . « « .« &
MODERN PROGRAMMING TECHNIQUES. « « .
PROGRAMMING FACILITIES &
DEVELOPMENT AND TARGET COMPUTER DIFFERENT.
COMMUNICATIONS <« o & s o ¢ & @« = w ' @ @

LANGUAGE REQUIREMENTS.

DEVELOPMENT SITE

DEVELOPER USING ANOTHER ACTIVITY'S COMPUTER.
NUMBER OF DEVELOPMENT LOCATIONS.

CONCURRENT DEVELOPMENT OF HARDWARE

DEVELOPER'S FIRST TIME ON SPECIFIED COMPUTER
SPECIAL DISPLAY REQUIREMENTS

SOFTWARE DEVELOPMENT SCHEDULE.

Al ame i i i e L S e 4 2o e o sl g

T LV R e PP T

FACTOR IMPACT CONVERSION

Refer to note on page A-1

MANAGEMENT DOMAIN
FACTOR NO. 1

SUPPORT SOFTWARE
1 AVAILABILITY 3

QUESTION: What sort of support software is available for the develop-

ment?

GENERAL IMPACT: The availability and quality of support software has
a large impact on development costs, but its magnitude is not easily

quantifiable.

GUIDELINES:

e If either the development computer or the target computer or
both are new, expect to pay a considerable amount for support
software relative to operational software, compared to a develop-
ment where these conditions do not exist.

- 1If possible, try to avoid using a new computer as either the
development or target machine. If a new computer is chosen,
the advantages it provides should clearly outweigh the addi-
tional cost that will be required to develop adequate sup-
port software.

e With the larger main frames for the target computer, expect the

gquality and availability of support software to be better. This

will be the case for command and control applications.

e 'lith minicomputers and microprocessors for the target machine,
expect the quality and availability of support software to get
poorer. This will primarily be tt- case for avionics applications.

SUPPORT SOFTWARE
___ AVAILABILITY
BEFERCT ON CoOST:
VARIABLE

MANAGEMENT DOMAIN
FACTOR NO. 2

WORK BREAKDOWN
STRUCTURE (WBS)

QUESTION: Is the Work Breakdown Structure (WBS) adequate for collect-

ing software costs?

GENERAL IMPACT: It is possible that a Work Breakdown Structure (WBS)
with only a single element for software will capture only 20 percent

of the actual cost of developing software.

GUIDELINES:

® The structure of the Work Breakdown Structure (WBS) is critical
in measuring the actual development cost of software for an
embedded computer system. The WBS for a system with embedded
computers will contain much more than elements related to soft-
ware. Systems with embedded computers are the general rule for
both command and control and avionics appl. cations. Therefore,
it is essential that the WBS be constructed properly to isolate
actual software cost.

® Guidelines to ensure that software is reflected properly in

the WBS are as follows:

- A single element in the WBS for software will very seldom
account for the total software development cost. Usually, a
single element in the WBS for software will only account for
coding and checkout costs, normally about 20 percent of total
software effort. Software will not appear above level 3 in the
WBS, if MIL-STD 88lA is adhered to. Therefore, to account for
software adequately, deeper levels of the WBS will be required.

- It is imperative that analysis and design, and testing and
integration be reflected in the WBS. Since the WBS for most
systems with embedded computers will be oriented around prime

mission equipment elements, the portions of each prime mission

MANAGEMENT DOMAIN
FACTOR NO. 2

WORK BREAKDOWN STRUC-
TURE (WBS) (Continued)

GUIDELINES: (Continued)
equipment element targeted for software implementation shoula
have separate scftware elements for analysis and design, coding
and checkout, and testing and integration.

- Make sure that management and support costs for software de-
velopment are adequately reflected in the WBS. 1In order to
do this, it is usually at least necessary to put software
elements in the System Engineering/Project Management por-
tion of the WBS. These elements should be partitioned by
the software life-cycle phases.

- Factoring hardware from software in a satisfactory manner in
the WBS is very difficult for many developments. Many engi-
neers, especially in avionics applications, are dually quali-
fied in both hardware and software. Partitioning their time
accurately among the various WBS elements is very difficult.
This is especially difficult in the testing and integration
phase, since the root of many problems encountered is not
known as to hardware or software cause until they have been
resolved. The only solution appears to be constant super-
vision so that labor costs are partitioned as accurately as

vossible botween the hardware and software elements in the WRBS.

WBS FRAMEWORK

EFFECT ON COSTS:
VARIABLE

MANAGEMENT DOMAIN
FACTOR NO. 3

DEGREE OF
INNOVATION

QUESTION: How much innovation will be required in the development?

GENERAL IMPACT: This is essentially a catchall factor covered else-
where. It includes special displays, concurrent development of other
ADP components, a new development or target CPU, and new languages.
The impact of these factors taken individually or in combination is

large.

GUIDELINES:
e Anything that falls into the category of being new or innova-
tive will have an adverse impact on software developﬁent costs.
@ If existing hardware, techniques, or languages can be subsitut-
ed for new innovations, then the proposer of the innovations
should show cause why the new innovations are required.
® Consider trade-offs to show the cost effectiveness of all inno-

vations.

DEGREE OF INNOVATION

EFFECT ON PRODUCTIVITY:
DECREASE

B et e L S ———

MANAGEMENT DOMAIN
FACTOR NO. 4

TESTING REQUIREMENTS
INCLUDING VERIFICA~
TION AND VALIDATION

o P g L o e

QUESTION: What testing requirements, including verification and vali-

dation, are to be imposed on the development?

GENERAL IMPACT: The imposition of specific testing reguirements, such
as Independent Verification and Validation (IVaV), can increase de-
velopment costs by as much as 20 percent. However, because of the
associated higher quality, these requirements should result in reduced

maintenance costs.

GUIDELINES:

® Independent V&V should increase the quality of delivered soft-
ware, but expect it to increase development costs by 20 per-
cent. Independent V&V should probably not be a requirement
for small projects, but should be given serious consideration
for large projects. '

® Testing requirements dre usually specified in terms of some
percentage of logié paths explored. The number of possible
logic paths will increase geometrically with the size of de-
veloped code. Therefore, expect to explore a greater percent-
age of logic paths in a small development than a large develop-
ment. Expect testing costs to be directly proportional to the
percent of possible logic paths explored. Do not select the paths
at random. Select on the basis of their expected frequency of use

in an operational environment. Test those which are expected to

occur most freguently.

MANAGEMENT DOMAIN
FACTOR NO. 4

TESTING REQUIREMENTS

INCLUDING VERIFICA-

TION AND VALIDATION
(Continued)

GUIDELINES: (Continued)
® Since the correction of errors discovered in testing reintro-
duces the probability of error (i.e., there is a 40 percent
chance that correcting an error will reintroduce a new error),“l
regression testing requirements are sometimes imposed. This
involves testing some percenﬁage of the logic paths which are
dependent on the path where the initial error was discovered.
Follow the same guidance as above for primary paths.
® For on-board flight programs in avionics applications, expect
to test a high percentage of possible logic paths, especially
for software which is classified life critical. For simula-
tion, expect the percentage to bhe lower, and for ATE, expect
the percentage to be yet even lower.
@ Testing requirements for command and control usually fall
between on-board flight programs for avionics and simulation

for avionics.

2l. Barry W. Boehm, "Software Reliability and Measurement,' TRW
Corporation, Presentation given at Software Management Confer-
ence, Washington, D.C., March 22-23, 1976, sponsored by Ameri-
can Institute of Aeronautics and Astronautics.

TESTING REQUIREMENTS

S———— —— e

EFFECT ON COST:
INCREASE FOR TESTING
& 20% INCREASE FOR IV&V

MANAGEMENT DOMAIN
FACTOR NO. 5

COST/SCHEDULE
CONTROL SYSTEMS
CRITERIA (C/SCSC)

QUESTION: What is the Cost/Schedule Control Systems Criteria

(c/scsc) setup for the system?

GENERAL IMPACT: The impact of C/SCSC, or its non-formal equivalent,
is directly dependent on the Work Breakdown Structure (WBS) for the

development. See Factor No. 2 - WBS, in this Appendix, for impact.
GUIDELINES:

® The C/SCSC, or its non-formal equivalent, is the principal
mechanism for determining if the project is deviating from
planned cost and schedule. The reporting vehicle for C/SCSC
is the Cost Performance Report (CPR). C/SCSC will only be
as effective as the WBS for the development. If only one
software element is in the Work Breakdown Structure (WBS),
then C/SCSC will not be effective for software control.

e If the CPR, or its non-formal equivalent, contains more than
one software element, then constant surveillance of cost and
schedule variance should be maintained. There are a number
of techniques for analyzing cost and schedule variance to

. 5 : 22
affect project control which should be implemented.

22. "Analysis of Measurement Data for the Surveillance of Cost/
Schedule Control Systems Course (SVS 361)," Department of Man-
agement Techniques, School of Systems and Logistics, Air Force
Institute of Technology, Wright-Patterson AFB, August 1975.

MANAGEMENT DOMAIN
FACTOR NO. 5

COST/SCHEDULE
CONTROL SYSTEMS
i CRITERIA (C/SCSC)
(Continued)

CGUIDELINES: (Continued)

A simplified ruie of thumb can be used as another cost con-
trol mechanism. It is the 40-20-40 rule: 40 percent of de-
velopment effort in analysis and design, 20 percent in coding
and checkout, and 40 percent in testing and integration. This,
however, may be altered somewhat with the imposition of modern
programming techniques. The first of these development phases
has a milestone usually associated with it, the Critical Design
Review (CDR). If the CDR, which signals the end of design, has
not been completed by the time 40 percent of the funds has been
expended, then one should be aware that there may be a potential

cost overrun in the offing.

C/SCSC

EFFECT ON COST:
VARIARLE

QUESTION:

analysts on the development?

GENERAL IMPACT:
to programmers and analysts will increase cost per unit line of delivered

code by 25 percent.

GUIDELINES:

The expected mix of support personnel (management, clerical, etc.)

MANAGEMENT DOMAIN
FACTOR NO. 6

DEVELOPMENT
PERSONNEL MIX

What is the mixture of support personnel to programmers and

Each 10 percent increase in support personnel relative

to programmers and analysts is 20 percent support personnel to

80 percent programmers/analysts.
on project peculiarities.

this occurs.

If the developer has a mix sharply different from the expected,

Deviations from this mix depend

Expect the impact indicated above when

have the developer show justification for the mix.

PERSONNEL MIX

EFFECT ON PRODUCTIVITY:

25% DECREASE FOR EACH
10% INCREASE IN SUP-
PORT PERSONNEL

-

il
%

C}»’,‘sg’.-!i:i{v';" o

MANAGEMENT DOMAIN
FACTOR NO. 7

PROGRAMMER TESTING

e

QUESTION: Are programmers given hands-on computer availability for

their own testing?

GENEAL IMPACT: Submitting programs to be tested and run by a separate

comp. er operations staff is about 50 percent more productive than giv-

ing programmers hands-on computer availability.

GUIDELINES:

This factor only applies to batch environments on large main

frames. It does not apply to time-sharing or where the develop-

ment Central Processing Unit (CPU) is either a mini- or micro-

computer.

If the development CPU is a large main frame operating in a

batch environment, then:

- a developer who has a separate computer operations staff and
limits programmer hands on CPU availability should be put in
a more favorable light than one who does not;

- attempt to keep the programmers confined to programming and
preparing test runs, and let the computer operations staff
make the runs on the computer;

- if a large percentage of machine checkout and testing is
done by programmers instead of the computer operations staff,
then expect lower programmer productivity and a concomitant
higher cost.

There is a fine balance between bench checking and machine test-

ing programs in terms of achieving optimum productivity. Two

runs per day in a batch environment seem to be about optimum

for machine testing.

MANAGEMENT DOMAIN
FACTOR NO. 7

PROGRAMMER TESTING
(Continued)

GUIDELINES: (Continued)

to arise.

a minicomputer or microcomputer environment.

This factor is of small importance in avionics since it is usually

For command and control applications, this factor is very likely

e o alacEi ol

EFFECT ON
LIMITED COMPUTER
INCREASES

PROGRAMMER TESTING
BATCH ENVIRONMENT
_ON LARGE FRAMES

PRODUCTIVITY :
ACCESS
PRODUCTIVITY

]

()% 1

J
|
I
‘-—-_J

-u---n--uﬁ--h---iIilll.llll.ﬂu---n-in-t

MANAGEMENT DOMAIN

FACTOR NO. 8

AMOUNT & METHOD
OF COST DATA
COLLECTION

QUESTION: What is the amount and method of cost data collection?

GENERAL IMPACT: Increasing the amount of cost data collected will in-

crease development cost. Manual collection of data is more costly than

methods which depend on automated means. Costs associated with data

collection may be recouped in a smoother running project. If an exist-

ing cost collection system is to be used, then there is no impact on

cost.

GUIDELINES:

If the existing cost collection system, in place at the developer,

is considered adequate, data collection costs should be minimal.

Contractors which lack an acceptable in-place cost collection

system should be required to implement one, and accordingly may

require additional funding.

The amount of data to be collected is a direct function of the

Work Breakdown Structure (WBS) and the Cost/Schedule Control Sys-~

tems Criteria {v/?ﬁSCJ.setup for the development.

If additional data is requested that is not part of the devel-

oper's ordinary cost data collection practices, then the follow-

ing should be considered:

~ Determine if the expected increase in development costs to im=~
plement new cost collection practices can be recouped during
the current development, assuming the implementation is not
required. If not, determine if the new practices implemented

will be beneficial to other subsequent developments.

e st L

MANAGEMENT DOMAIN
FACTOR NO. 8

——

AMOUNT & METHOD COF
COST DATA COLLECTION
(Continued)

GUIDELINES: (Continued)
- Assess if the new cost collection practices should be imple-
mented by manual or automatic means. Manual implementation
will cost less to develop than automatic, but will carry a
higher operational cost. The trade-off should he examined
carefully, especially its carryover to subsequent developments.
Some cost collection practices will not be easily amenable to
implementation by automatic means. 3
® Serious consideration should be given to the collection of prod-
uct information, such as instruction count, as well as cost in-
formation. It helps to have something to measure cost against

in terms of product standards and status.

MANAGEMENT DOMAIN

FACTOR NO. 9

COST OF SECONDARY
RESQOURCES

QUESTION: What secondary resources are being used in the development?

GENERAL IMPACT: Secondary resources on the average amount to about 7.5
percent of total development costs. They include primarily computer

time and documentation production costs.

GUIDELINES:

e On the average, expect about 4 to 5 hours of computer time per
man-month in a batch single partition environment. Costs will
be equivalent, but time will not be the same, in terminal orient-
ed or multi-programming environments.

e On the average, expect about 5 pages of documentation per man-
month.

® If secondarv resources are to be accounted for accurately, then
the WBS has to be structured properly to account for then.

® Any algorithm used to estimate secondary resources should be
consistent with the WBS. For example, if the algorithm esti-
mates only computer time and documentation production cost,
then the WBS should have specific elements for these items.
often, secondary resources will be buried in overhead or other
non~-software elements in the WBS. In these cases, it will be
virtually impossible to measure the actual cost of secondary
resources. Therefore, any algorithm used to estimate them will

prove of little use, since there will be little to compare them

to.

[SECONDARY RESOURCES

EFFECT ON COST:
7.5% OF PRIMARY
RESOURCE COST

MANAGEMENT DOMAIN
FACTOR NO. 10

DEFINITION OF
INSTRUCTION

QUESTION: If instruction count is being used as the sizing parameter

for cost estimation purposes, which of the mary definitions of the

word "instruction" is being used?

GENERAL IMPACT:

Worst case 1is 300 percent (the expansion ratio) error

when using object words in a Cost Estimating Relationship (CER) devel-

oped on the basis of source statements, or vice versa. Other additive

errors can occur in treating delivered vs. non-delivered code, support

software, the handling of comment and copy statements, etc.

GUIDELINES:

e To estimate costs

instruction count

in developing the

- If

the CER was
instruction

handle data

reliably, the definition on which the
is based must be consistent with that used

Cost Estimating Relationship (CER).

developed on the basis of object code, then;
count should be in object code,

areas and constants consistent with the CER,

handle reusable code consistent with the CER,

handle deliverable vs. non-deliverable code consistent

with the CER, and,

handle support vs. operational software consistent with

the CER.
the CER was

instruction

developed on the basis of source code, then;

count should be in source statements,

handle comment, copy, and declarative statements consistent

with the CER,

C=1¢€

MANAGEMENT DOMAIN
FACTOR NO. 10

DEFINITION OF IN-
STRUCTION (Continued)

sUIDELINES: (Continued)
e handle reusable code consistent with the CCR,
e handle deliverable vs. non-deliverable code consistent
with the CER, and,
e handle support vs. operational software consistent with

the CER.

DEFINITION OF INSTRUCTION

BEFFECT ON COST:
VARIABLE --
WORST CASE = 300% ERROR

'lr

MANAGEMENT DOMAIN
FACTOR NO. 11

SIZING ERROR

QUESTION: What is the effect of a sizing error on the cost estimate?

GENERAL IMPACT: If the cost per instruction method is used for the
cost estimate where size is the number of instructions, then the ef-
fect of a sizing error has a direct impact on the error in the cost
estimate. Since sizing estimates can be off by as much as 200 percent,
an error of greater than 200 percent can be injected into the cost
estimate.
GUIDELINES:
® Sizing error will get smaller as the project moves toward
completion.
® Since the error associated with programmer productivity changes
as a function of the instruction count, the appropriate sizing
parameter should be selected as a function of where this program
is in its develcpment. Use the following guidelines for selec-
tion:
- Conceptual Phase - Initial Budgetary Estimate.
® Total size in object words (greater than 200% error).

- Validation prior to release of RFP. -

® Size in object words minus data areas (greater than 100% error)

- After receipt of proposals through PDR.
® Size in new object words minus data areas after adjust-
ment for reusable code (greater than 75% error).
- From PDR through remainder of development.
® Size in new source statements (initial 50% error im-

proving to 0% at completion).

SIZING ERROR
EFFECT ON COST:
VARTIABLE

MANAGEMENT DOMAIN
FACTOR NO. 12

DATA MANAGEMENT
TECHNIQUES

QUESTION: What kind of computer data management techniques are to be

used for the development?

GENERAL IMPACT: The impact of using a Data Base Management System

(DBMS) versus a File Management System for computer data handling is

not known quantitatively, but it is expected to be significant.

GUIDELINES:

® A File Management System will reduce development costs, but

increase maintenance costs.

A DBMS will increase development costs, but decrease mainte-
nance costs.

If there is not expected to be much volatility in the types and
format of data to be handled over the life of the system, then
opt for a File Management System.

If great volatility is expected, then opt for a DBMS.

Expect to pay an efficiency penalty in both the CPU time and
memory domains when using a DBMS.

If the choice is left in the hands of the developer, the pro-
ject manager should be aware of the trade-off between develop-
ment and maintenance costs.

This is not a factor of importance for avionics applications,
since any data management that will be required can usually be

handled easily by a simple File Management System.

C=19

GUIDELINES: (Continued)

MANAGEMENT DOMAIN
FACTOR NO. 12

DATA MANAGEMENT TECH-
NIQUES (Continued)

® For command and control applications, this factor can be

important, especially for a system with large data manage-

ment tasks.

C=

[\S)

DATA MANAGEMENT TECHNIQUES
EFFECT ON COST:
VARTABLE

it S i e A el

MANAGEMENT DOMAIN
FACTOR NO. 13

MODERN PROGRAMMING
TECHNIQUES

QUESTION: Are modern programming techniques to be used for the

development?

GENERAL IMPACT: Structured top-down design along with all the associ-
ated disciplines can decrease cost by up to 40 percent over the same

development using non-structured, non-top-down design methods.

GUIDELINES -

® The maximum benefit from modern programming techniques will
be realized from large programs, in general 100,000 lines of
source code and greater.

® The benefit derived from the use of modern programming techni-
ques will be a function of the number of associated disciplines
implemented, such as Chief Programmer Teams, Programming Support
Libraries, and Hierarchy Input Process Output (HIPO). +The impo-
sition of some of these disciplines may involve additional invest-~
ment costs. For example, the development comruter proposed may
not provide Programming Support Libraries. 1In that case, an 1in-
vestment would have to be made in support software development
to provide Programming Support Libraries for the development

computer.

MODERN PROGRAMMING

» e S

EFFECT ON PRODUCTIVITY:
67% INCREASE

MANAGEMENT DOMAIN
FACTOR NO. 14

PROGRAMMING
FACILITIES

QUESTION: What sort of programming facilities are available for the

development?

GENERAL IMPACT: The quality and availability of programming facilities,
such as computer facilities, support software, and personnel, have a large

impact on development costs, but the magnitude is not easily quantifiable.

GUIDELINES:

® Let the developer control the programming facilities to as
high a degree as possible. This includes:

- development at the developer's site instead of a purchaser
selected site, (e.g., operational site) and.

- development on a developer controlled dedicated computer
instead of a computer run by another organization.

e There may be extenuating circumstances where this is
impractical. For example, the cost of supplying the develop-
er with the development CPU may be large compared to making
time available to the developer on a non-developer controlled

computer.

PROGRAMMING FACILITIES

e

EFFECT ON PRODUCTIVITY:
VARTABLE

MANAGEMENT DOMAIN
FACTOR NO. 15

DEVELOPMENT AND
TARGET CCMPUTER
DIFFERENT

QUESTION: Is the target computer different than the computer on

which the software is to be developed?

GENERAL IMPACT: If this occurs alorng with other significant ef-
fects, the ccsts are expected to increase depending on the program

application.

GUIDELINES:
e If the target computer is the same as that on which develop~
ment is to be performed, no effect is anticipated.
e If computers are different, the following steps should be
taken:
~ If adequate support software is not available for the
target computer, then it is better to utilize the devel-
opment computer proposed.

~ 1If adequate support software is available for the target
computer, have the developer show cause why the software
is not being developed on the target computer.

e If coded on a large computer, expect slightly more efficient
coding (on smaller computers, expect less efficient coding).
This is a potential reason for having the development and tar-
get computer different.

@ Be prepared to accept increased costs and schedule slippages
(including the development of support software for the target

computer) .

MANAGEMENT DOMAIN
FACTOR NO. 15

DEVELOPMENT AND TARGET
CCMPUTER DIFFERENT
(Continued)

—

GUIDELINES: (Continued)

® Regarding the target computer, as one moves toward larger,

more powerful main frames, the likelihood of adeguate sup-

port software increases, thus increasing the likelihood

that the target and development computer will be the same.

This is primarily the case for command and control applica-

tions. As one moves toward minicomputers and microprocessors,

the likelihood of adequate support software decreases, thus

increasing the likelihood that the target and development

computer will be different. This is primarily the case for

avionics applications.

DEVELOPMENT AND
TARGET COMPUTER DIFFEREMNT

TARGET

COMMAND & CONTROL:
SCIENTIFIC :
UELLITY S

BUSINESS:

ALL OF THE ABOVE:

"EFFECT ON PRODUCTIVITY :

55%

109

30%
NO

20%

DECREASE
DECREASE
DECREASE
EFFECT

DECREASE

MANAGEMENT DOMAIN

FACTOR NO. 16

COMMUNICATIONS

QUESTION: What degree of effective communications have been

established between the developer, purchaser, maintainer, and

end user?

GENERAL IMPACT: The impact cf this factor is not known quantita-

tively, but it is expected to be considerable.

GUIDELINES:

In some developments, the developer, purchaser, maintainer,
and end user are all separate and distinct parties. In
others, two or more of the functions may be combined in a
single party. For example, the purchaser and end user may

be the same party. For software developed by the Air Force
Systems Command, each function is performed by a separate
party. The developer is usually a contractor, the purchaser
is a SPO residing in the Systems Command, the maintainer is
the Air Force Log..tics Command, and the end user is an oper-
ational command, such as SAC.

The developer has to satisfy the requirements of the purchaser,
maintainer, and end user. It is usually the purchaser's
responsibility that the maintainer's and end user's require-
ments qeticommuntcated to the developer. Do not permit direct
contact between the maintainer or end user and the developer.

The Air Force has set up guidelines and procedures to insure

MANAGEMENT DOMAIN
FACTOR NO. 16

COMMUNICATIONS
(Continued)

GUIDELINES: (Continued)

that the end user's and maintainer's requirements are communi-
cated through the purchaser to the developer, in accordance
with AFSCP 800-3. These guidelines and procedures should re-
main high on the SPO's awareness scale because of their im-

portance to effective software development.

INEFEFECTIVE
COMMUNICATION

EFFECT ON COST:
INCREASE

.

MANAGEMENT DOMAIN
FACTOR NO. 17

LANGUAGE
REQUIREMENTS

QUESTION: What language or languages are to be used in the

development?

GENERAL

IMPACT: A complete Machine Oriented Language (MOL) develop-

ment can cost up to 400 percent more than an entire High Order Language

(HOL) development.

GUIDELINES:

The percentage of High Order Language (HOL) versus Machine

Oriented Language (MOL) should not be an edict at the cuatset.

If possible, simply specify that 100 percent of the develop-

ment should be in HOL. For certain types of software, HOI

generates intolerably inefficient object code in both tche

time and memory domains on the target CPU. When this 1s the

case, MOL is the only choice. With this consideration in mind,

the following steps should be taken:

- For each function to be performed, assess the efficiency
requirement. If the particular task can be performed
efficiently by an HOL, select the HOL for that function.

If not, assign it for an MOL implementation. For the

larger more powerful main frames, the necessity for MOL
implementat:ion is less, as is tre case for command and
control applications. For minicomputer and microprocessor
implementation, the necessity for MOL increases; primarily in
the case of on-board flight programs in avionics applica-

“tions.

MANAGEMENT DOMAIN
FACTOR NO. 17
LANGUAGE
REQUIREMENTS

(Continued)

GUIDELINES: (Continued)

- Once the functions in the development have been categorized
into HOL and MOL implementation, the amount of source code
required and the resultant development cost can be deter-
mined.

® For command and control applications, expect a high degree of

HOL implementation. For on-board flight programs in avionics

applications, expect a low degree of HOL implementation at pres-

ent but expect it to increase in the future. For simulation and

ATE in avionics applications, expect a higher degree of HOL im-

plementation, but not as high as for command and control applica-

tions.

LANGUAGE REQUIREMENTS

EFFECT ON COST:

ALL MOL UP TO 400%
MORE THAN ALL HOL

MANAGEMENT DOMAIN
FACTOR NO. 18 |

DEVELOPMENT SITE

QUESTION: Is the software development to be performed at the

developer's facility or an operational site?

GENERAL IMPACT: If the software is to be developed at the devel-
oper's facility, the cost could be expected to be 45 percent less

than if developed at an operational site.

GUIDELINES:

e If software is to be developed at the developer's facility,
rather than at an operational site, anticipate lower costs.

e If the software is to be developed at an operational site
(government facility), re-evaluate the requirements for this
because of the associated increase in cost (e.g., security
requirements, SPO required on-site interface, joint develop-
ment, etc.).

® Perform trade-offs of cost and benefits of alternative sites.
Benefits could involve the development and target computer
being the same, and mitigation of CPU time and memory con-

straints which could occur on developer's processor.

DEVELOPMENT AT

OPERATIONAI

MANAGEMENT DOMAIN

FACTOR NO. 19

DEVELOPER USING
ANOTHER ACTIVITY'S
COMPUTERK

QUESTION: Is the computer, upon which the software is being develop-

ed, operated by an activity other than the software development activ-

ity?

GENERAL IMPACT: If the development computer is operated by another

activity, the cost is expected to increase by 45 percent.

GUIDELINES:

@ If the software developer is using a computer at another
activity, e.g., at a government facility, for the software
development, anticipate lower programmer productivity (high-
er costs).

e If software development is being performed on a computer
at the developer's facility, anticipate no impact on

costs or schedule.

DEVELOPMENT COMPUTER

EFFECT ON PRODUCTIVITY:
30% DECREASE IF AT
OTHER ACTIVITIES

1 c=30

QUESTION:

MANAGEMENT DOMAIN

FACTOR NO. 20

NUMBER OF
DEVELOPMENT
LOCATIONS

Is the software being developed at more than one site

(location)?

GENERAL IMPACT:

site,

GUIDELINES:

o

If the software is being developed at more than one

costs are expected to increase by 25 percent.

If the software is being proposed to be developed at more

than one site,

then the following should be considered:

Have the developer justify multi-site development. Pecu-

liar end-user requirements where each installation has

site dependent software, and the developer has to be on-

site is a possible justification. The
structure of the developer as a reason
justify.

A developer who proposes a single site

have an advantage over a developer who

software team spread over different loc

internal corporate

will be harder to

development should

has his proposed

ations.,

Examine the feasibility of having the developer bring his

entire proposed software team together at one site.

For large systems, the likelihood of multi-site develop-

ment increases. In many cases, avoiding it may be im-

possible.

c=-31

MANAGEMENT DOMAIN
FACTOR NO. 20

NUMBER OF DEVELOPMENT
LOCATIONS (Continued)

GUIDELINES: (Continued)
- If multi-site development occurs, expect increased costs

and some slippage in schedule.

MULTISITE DEVELOPMENT

EFFECT ON PRODUCTIVITY:
20% DECREASE

MANAGEMENT DOMAIN
FACTOR NO. 21

CONCURRENT DEVELOPMENT
OF HARDWARE

QUESTION: 1Is the software being developed concurrent with the hardware?

GENERAL IMPACT: 1If there are concurrent ADP hardware and software de-
velopments, costs are expected to increase depending on the program

application.

GUIDELINES:

e If the software is being developed concurrently with the hard-
ware, determine what percent of the software is affected by
this concurrent hardware development.

- 1If less than 10 percent of software is affected by the
hardware development (90 percent of software can be de-
veloped without effect), the effect will be minimal.

- 1If greater than 10 percent, expect increased costs and

maiitain a manaqemént reserve of funds.

® Determine if off-the-shelf hardware can directly perform
the fuiction of the developmental hardware.
- 1If yus, assess resultant softyare and hardware cost im-

pacts, as appropriate.
- 1f no, determine whether off-the-shelf hardware can be
adapted or modified for use. (Assess the cost impact of

hardware and software modifications, as appropriate).

c-33

GUIDELINES: (Continued)

FACTOR NO.

MANAGEMENT DOMAIN

21

CONCURRENT DEVELOPMENT
OF HARDWARE (Continued)

- If no, also determine the percent of software affected by

available hardware.

CONCURRENT DEVELOPMENT

OF ADP HARDWARE

EFFECT ON PRCDUCTIVITY:

COMMAND & CONTROL: 40%
SCIENTIFIC: 55%
UTILITY:: 20%
BUSINESS: 25%

ALL OF THE ABOVE: 45%

DECREASE
DECREASE
DECREASE
DECREASE
DECREASE

MANAGEMENT DOMAIN
FACTOR NO. 22

DEVELOPER'S FIRST
TIME ON SPECIFIED
COMPUTER

QUESTION: Is this the first time the developer has used this com-

puter to develop a software program?

GENERAL IMPACT: If this is the first time the developer has used
the computer, the cost is expected to increase by 100 percent, and

programmer productivity is expected to decrease 50 percent.

GUIDELINES:

@ If this is the first time the developer has used this com-
puter to develop a software program, anticipate a slippage
in schedule and increased costs.

e If this is the first time the developer has used this com-
puter to develop a software program, consider having develop-
er use a computer with which he is familiar, but also con-
sider the impact of Factor No. 15 - Development and Target

Computer Different, in this appendix.

FIRST TIME
ON COMPUTER

EFFECT ON PRODUCTIVITY:

50% DECREASE

MANAGEMENT DOMAIN

FACTOR NO. 23

SPECIAL DISPLAY

e REQUIREMENTS
QUESTION: Is there a requirement for special displays?

GENERAL IMPACT: If the portion of the total software requirements,
as represented by special displays, is more than 10 percent, the cost

is expected to increase depending on the program application.

GUIDELINES:
® What portion of the total software requirements is required
for special displays?
- If the software requirements for special displays are less
than 10 percent of the overall software require ~-nts, the
effect on costs and schedule should be negligible.

- If the software requirements for special displays are great-
er than 10 percent, consider utilization of existing dis~
plays (with currently available supporting software) to

reduce the requirements for special displays.

® Consider possible':gduction and/or elimination of display com-
plexity, if teasible, without seriously degrading coverall opera-

tional performance.

® Expect a schedule slippage and increased costs.

SPECIAL DISPLAY

EFFECT ON PRODUCTIVITY:

COMMAND & CONTROL:

10% DECREASE

SCIENTIFIC: 10% DECREASE
UTILTEY': NO EFFECT

BUSINESS: 30% DECREASE
ALL OF THE ABOVE: 10% DECREASE

C=36

MANAGEMENT DOMAIN
FACTOR NO. 24

SOFTWARE
DEVELOPMENT SCHEDULE

QUESTION: What is the planned schedule for the proposed development,

and what 1s the planned distribution of cost over the schedule?

GENERAL IMPACT: The impact of deviation [rom optimum schedule
and resource distribution is not known exactly, but it is expected

to be considerable.

GUIDELINES: ‘
e The actual schedule (development time) to complete a soft-
ware project is highly correlated with the size as measured
by number of instructions.

® Use the curve or equation below to estimate the expected develop-

ment time as a function of size.

10
50 = —_io..L_E.G?.
99.25 + 233(1):
—
40 |
30 |
DEVELOPMENT
TIME
(MO THS)
D
20 t
o}
0 b s ! s i "]
0 100 200 300 400 500 600 700 800 900 1000

OBJECT WORKDS (000)

~ -
=3/

GUIDELINES:

MANAGEMENT DOMAIN
FACTOR NO. 24

SOFTWARE DEVELOPMENT
SCHEDULE (Continued)

(Continued)

e Expect some cost impact for deviations from the expected

schedule.

® Expect the distribution of resources over the schedule to

follow the approximate shape of the curve below.

® Expect some cost impact for deviations from the expected

distribution of resources.

COMPUTER
PROGRAM PRELIMINARY
DEVELOPMENT COMPUTER PROGRAM
LAELEASE SPEC PRODUCT SPEC.
SESTEMISERGAS A —/\POR CDR
ANALYSIS / DESIGN oNes TEST & INTEGRATION
100
90
7
80 7,
SYSTEM
7 o A2
70 cPCl s
TEST >
r
PLANNED UNIT #
RESOURCE DEBUG
EXPENDITURE g v
. FIRST LEVEL v
PROJECT i
40 7 b
y SECOND LEVEL
UNIT s PROJECT
30~ DESIGN ™~ /|
‘e
e
20 - \ UNIT
= ~ CODE
SYSTEM St
10- DESIGN e = = = — STRUCTURED TOP DOWN
LG PROGRAMMING (SCHEDULE
— DESIGN NOT APPLICABLE)
0 T T T 2] - T T T
0 10 20 30 a0 50 60 70 80 " 100 @

% PLANNED SCHEDULE COMPLETION

DEVELOPMENT SCHEDUI ’P,_.

EFFECT ¢
SEE CURVES AEOVE

c-38

APPENDIX D
SOFTWARE SIZING METHODOLOGY

This appendix describes and demonstrates methods currently used to
estimate the size of software programs. They are not sophisticated, nor
are they particularly accurate. In addition, analytical models are pre-
sented which can be used, in lieu of better guidance, to estimate the size
of software. The models are not considered good because their statistical
performance parameters are low. In addition, several variables contained
in the estimators are descriptors of the processor and its associated data
base, information not always available in early phases of software develop-

ment.

Relationships for estimating the resource requirements of software
development invariably have program size, in object or source code, as an
independent variable. But estimating the size of software programs has
proven to be the most difficult aspect of, and the source of greatest error

in, analyses to project resource requirements of software development.

There are several reasons for this occurring. Inadequate emphasis
has been given to the development of techniques for estimating program size.
Consequently, data has not been collected which would support the develop-
ment of these methods. This dearth of data prevents the development of ana-
lytical techniques, as well as inhibits the ability of the software develop-

ment community to draw analogies from prior developments.

Another source of error is inadequate preparation on the part of the
developers to support size projections. Too often, size projections are
made with little or no design analysis, the detailed study of what the soft-
ware is to do and how it will do it. Expericnce has shown that software de-

velopers can undercstimate size by a factor of three if insufficient atten-

tion is given to analyzing the software requirements. If development contracts

are awarded on the basis of cursory projections, drastic cost and time
overruns will occur. Design analysis significantly improves the accuracy
of software size estimation. And, to ensure that adequate consideration

is given to the design requirements, the developer, as a minimum, should
be required to provide a software Work Breakdown Structure (WBS), a func-
tional flow diagram, and estimates of software sizes for each work package
prior to initiation of the development. If possible, algorithms to be pro-
grammed should also be provided by the developer; this is a method of in-
suring that adequate thought has been given to the complexity of the prob-

lem.

In estimating software sizes by drawing analogy to prior development,
care must be taken to ensure that the programs from which analogies are be-
ing drawn perform similar functions in a similar manner as the proposed
proadrams. For example, in software developed by a contractor for several
systems of the same type, the functions performed by software modules and
routines, although identified by the same functional title, were different.
To draw analogies accurately for proposed new systems of this type, it was

necessary to review the software at the subroutine level.

Another source of sizing error, although not considered appreciable, is

the different capabilities of the programmers which result in various degrees

of code efficiency. If a developer is writing code in a memory constraint

environment, his code efficiency will tend to be maximal. On the other hand,

in a non-constrained environment, less experienced personnel may be utilized,

ind less efficient code and larger programs can result.

Thus, the potential causes of error in estimating software size are
numerous, and they can be controlled best by allocating adequate time and

resources to system requirements analysis.

3
T

D.1 System requirements analysis

If the software is being developed as part of the development of a
hardware system, the system requirements analysis will be performed in a

slightly different manner.

In conjunction with hardware system development, the system configura-
tion is defined as distinct units with identified interfaces, of which any
unit or system may contain computer processing or control. Requirements
must be specified for each unit, with interfaces and relationships amona the
units clearly defined. Then, the system is analyzed functionally, with the
functions performed by each unit delineated. This results in a functional
block diagram and a listing of all functions performed by the system. From
this, the functions performed by the software are identified, and are de-~

fined from the functional and requirements analysis.

As part of a software development program, say for command and control,
in which software performs most, if not all, functions, the requirenents analy-
sis would be restricted to defining the functions and interfaces of the soft-

ware modules.

The projected software sizes are thus based on the more comprehensive

and definitive data evolving from these analyses.

D.2 Alternative approaches to software sizing

There are two methods used for sizing software early in the concep-
tual phase of development. The specific approach used is dictated by
the experience of the estimator, and the extent and relevance of avail-
able historical data. Each of the approaches assumes that the mission
analysis is complete, the operational requirements and major configura-
tion constraints are identified, and that the operational concept, in-
cluding its support concept, is understood. The methods entail the fol-

lowing:

e Specified computer hardware. The software sizing estimate is
achieved by summing the core memory of the specified computer
hardware, and adjusting the sum for assumed core overlays and
expected core utilization.

e Software analogy. The software sizing estimate is derived by
partitioning the software down to the functional subroutine
level, and then estimating the size of each work package by
analogy with similar programs/subroutines/work packages in past
development projects.

Sizing software by analogy, which requires the availability of relevant
historical data, is considered the more accurate procedure. However,

the success of the approach is highly dependent on the accuracy and
relevancy of the data from which the analogy is being drawn. Software
development activities are becoming increasingly aware of the need for
such historical data, and steps are being taken to assure its collection.
If sufficient data exists, it is recommended that more than one approach

be utilized and the results of the estimates compared.

Software sizing in the Conceptual Phase is made in terms of total
object code. This is because object code can be estimated early in the
development with greater accuracy than source code.* If both source
and object code sizes were known, then one would chuoose source code be-

cause the error would be less.

Like the initial conceptual estimate, most subsequent estimates to

'DR are made in object code. At that time there is sufficient information
available to begin estimating in source code. Updates are made to the ini-
tial estimate by subtracting out data areas and reusable code as these fac-
tors become known. A final update takes place once the target computer and
language mix are finalized. This is the point where the estimate is made
in source code. Table D-1 summarizes the points in the develcpment cycle
where software sizing wstimates a:e usually reyguired.

*se of source code at this early conceptual stage requires the estimator
to make premature subjective judgments relative to the target computer,
language mix, amount of reusable code, etc.

D~4

»

PABLE D=1,

SOFTWARE SIZING ESTIMATING ERRORS

Software estimate When Sizing basis % Error
1. Initial program Conceptual phase Total object code up to 200%*
budgetary estimate
2. Independent program Validation prior Total object minus| up to 100%
validation cost to RFP release data areas
estimate (Executable Code) /
3. Independent FSD Completion of Total object minus | up to 75%
cost estimate system Spec data areas with ;
through PDR adjustments for °*
reusable code
4. Update of FSD PDR through Total source code up to 50%,
cost estimate remainder of improving

development

to zero at
completion

*The actual may be 200 percent of the estimated or the estimated

percent of the actual.

may be 200

Estimating code in source lines can be accomplished with some confi-

dence given the successful completion of the Preliminary Design Review

(PDR) .

guage mix and the extent to which reusable codes will be available.

At this point the target computer is known as well as the lan-

The

algorithm for converting from object code (Io) to source code (I) is

shown in the following illustrative example:

where I

I

, 250,000

e}
o
i H (

H
/

E. =41)

1 4 .167(4-1)

166,670 instructions

s 250,000 object instructions
z}{ = .167, the fractional amount of HOL
E_ = 4, the expansion ratio for HOL.

(1)

D.2.1 Analysis of size by estimating core requirements.

The follow-

1ng relationship, although derived from data with deficiences, can be used

to estimate memory size requirements:-

0.337 0.147
NF W
M= 0.177 k s
0.770
t
c
(R2 = .52, SE = .086 1ln units)

where
M = Memory size, in thousands of words of object code
N, = Number of major functions to be performed by the software
wS = Word size, in bits
tc = Cycle time of processor, in microseconds*
k = A constant dependent on application = 2.573 for signal
processing
2,727 for missile fire
control
2.781 for interfacing
3.412 for communication
3.565 for navigation
4.046 for command and i
control
4.451 for weapon fire

Perhaps the variable NF'

control

number of major functions, is defined best by ex-

amples--target tracking, target identification, navigation, system monitor-

ing, display, steering, parameter measurement, tuning, target data entry,

*The time to either retrieve or store a word in the processor memory.

firing sequence control, etc. The variables tC and wS are essentially
dictated by the CPU in the application. Based on the type applications,
most of which are in real-time, few overlays would be expected. 1If, as
in most cases, the core utilization can be assumed to be approximately

80 percent, the expression represents an estimator for software size.

D.2.2 Sizing by analogy. It is generally recommended that esti-
mates of software size be derived through extrapolation from previously
developed software. If the aprlication is of the same type, e.g., com-

mand and control, and the functions of the system appear to be the same,

direct projections with little adjustment for changes can be made. If
the new application appears more complex (requires additional software
functions), comparisons of the numbers and types of software functions
will permit adjustments to be made to the words per function and to

the number of functions.

There is evidence that within software modules, the sizes of major
functions of the module appear to decrease cumulatively at a nominal ____
80 percent slope.* That is, if the number of functions doubles, the
average size per function decreases 20 percent. If the program size
and the number of major functions performed by software can be deter-
mined from analogous data, estimates can be made as to the size of

new software as follows:

*Based on limited data in an analytical study of software packages for
electronic equipment by Doty Associates, Inc. (DAI), in 1977 under Navy
Contract No. N0O0039-76-C-0320,.

I is the size of the analogous software, in object words
12 is the size of the proposed program, in object words

N is the number of major functions performed by the analogous
1 software

N_. 1is the number of major functions to be performed by the new
2 software

D.2.3 Other models. Estimators of software size were developed

from data available in the literature.23

Variables considered as poten-
tial determinants of program size were selected from the data and the

following relationships were derived using multivariate regression:

0.018_ 0.3 =6
e I = .449 [wd Nc I fj
l.t 0.173, 0.105 j=1
a o)
2 - ;
(R = .45, SE = 1.26 1ln uhits)
Factor Yes No

Hh
I

Special djisplay 0550 1£.00
On-line application f_ = 1.420 1.00

Software interfaces f§ = 1,453 1.00
Application involves more than
one ADP Center f4 = 1.947 L. 00
Inncvation reqguired Eo = 2527l 1.00
Real-time application fe 6913 1.00
23. Kossiakoff, A., et al. "DoD Weapon Systems Software Management
Study," Johns Hopkins University Applied Physics Laboratory, June

1975, .

0.005. 0.334. 0.117 0.379. 0.373] ij=6
.017 Fd N £ e "]

o I = a S S mf.
5)
l 40145 je1
o
2 :
(R = .45, SE = 1.26 ln units)
Factor Yes No
Special display fl = 0.498 1.00
On~line application f2 = 1.316 1.00
Software interfaces f3 = 1.658 1.00
Application invclves more than
one ADP Center f4 = 1.885 1,00
Innovaticn reguired f5 = 2.163 1200
Real-tim. application f6 = 7.217 1.00
where
I = Program size, ir. thousands of lines of source code
wd = Size of data base, in thousands of words
Nc = Number of classes of items in data base
L Add time of processor, in microseconds
wS = Size of memory wcrd, in bits
Qe Core size, in thousands of words
MO = Number of message output types

The consistency in the values for the state variables, fj' and in
the exponents of the variables (except for ta) in the two relationships
reflects the relative insensitivity of these variables to the addition

or removal of the other variables.

Unfortunately, the variables c Ws, and ta are dictated by the
processor used, and values for Wd énd Nc are not likely to be available
early in the software design. Also, the variables in the relationships
are poor descriptors of the variance in size (R2 is low), and adding
variables has no apparent effect on the R2 or the standard error. There-

fore, the relationships are not considered satisfactory for use in

sizing software, unless no other guidance is available.

ADP
APP
CDR
CDRL
CPCI
CPU
CRISP
c/scsc
DCP
DID
DSARC
DTC
ECP
FCA
FOR
FSD
GFI
GFM
HOL

HQ AFSC
HQ USAF
V&V

MOL

PMD
PMP

APPENDIX E

GLOSSARY OF ACRONYMS

Automatic Data Processing

Advance Procurement Plan

Critical Design Review

Contract Data Requirements List
Computer Program Configuration Item
Central Processing Unit

Computer Resources Integrated Support Plan
Cost/Schedule Control Systems Criteria
Decision Coordination Paper

Data Item Description

Defense Systems Acquisition Review Council
Design to Cost

Engineering Change Proposal

Functional Configuration Audit

Formal Qualification Review

Full-Scale Development

Government Furnished Information
Government Furnished Material

High Order Language

Headquarters Air Force Systems Command
Headquarters United States Air Force
Independent Verification & Validation
Machine Oriented Language

Office of Secretary of Defense
Physical Configuration Audit
Preliminary Design Review

Program Memoranda

Program Management Directive

Program Management Plan

SDR
SOW
SPO
SRR
WBS

Program Office

Program Objective Memoranda
Request for Information

Request for Proposal

Required Operational Capability
System Design Review

Statement of Work

System Program Office

.
Sy stem Requirements Review

Work Breakdown Structure

