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ABSTRACT

This paper introduces an important new canonical set of functions for solving

Lanchester—type equations of modern warfare for combat between two homogeneous forces

with power attrition—rate coefficients with “no offset.” Tabulations of these func-

tions, which we call Lanchester—Clifford—Schläfli (or LCS) functions , allow one to

study this particular variable—coefficient model almost as easily and thoroughly as

Lanchester ’s classic constant—coefficient one. The availability of such tables is

poi nted out.  We show that our choice of LCS funct ions  allows one to obtain important

information (in particular , force—annihilation prediction) without having to spend the

time and effort to compute force—level trajectories . Furthermore, we show from theoret-

ical considerations that our choice is the best for this purpose. These new theoreti-

cal considerations apply in general to Lanchester—type equations of modern warfare and

provide guidance for developing other canonical Lanchester functions (i.e. canonical

functions for other a t t r i t i o n — r a t e  coeff ic ients) .  Moreover , our new LCS functions

provide valuable information about various related variable—coeff icient  models. Also ,

we introduce an important transformation of the battle ’s time scale that not only many

times simplifies the force—level equations but also shows that relative fire effective-

ness and intensity of combat are the only two weapon—system parameters determining

the course of such variable—coefficient Lanchester—type combat .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~--- - , - —.—-.-- — ---- 
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0. INTRODUCTION

In an earlier paper
[ 24]  

we developed some elements of a mathematical theory for

solving variable—coefficient  Lanchester—type equations of modern warfare for combat

between two homogeneous forces and introduced canonical hyperbolic—like Lanchester

functions for constructing their solution. Unfortunately , with only these previous

results one is limited to computing (however conveniently it may be done)- force—level

trajectories and cannot gain a real understanding of qualitative model behavior (e.g.

force annihilation) without the excessive labor of extensive numerical computations (and

only then for specific values of model parameters). Since our earlier work important

mathematical discoveries have been made about- the qualitative behavior of this combat

model, and we wish to show how these new results allow one to parametrically analyze

combat modelled by power attrition—rate coefficients (see Section 1 below) with some-

what the same facility as he ca; study F. W. LANCUESTER’s~~
71 classic constant—coeffi-

cient model. In order to obtain this analysis capability , however , one must redefine

the Lanchester—Clifford—Schläfli (or LCS) functions , which we introduced in reference 24.

In our earlier paper (see TAYLOR and BROWN 1241) we gave various examples of

hyperbolic—like Lanchester functions (in particular , the LCS functions, which arise

from power attrition—rate coefficients with “no offset”). Subsequent research by

TAYLOR and COMSTOCK127’ has revealed , however, that these canonical LCS functions must

be redefined to permit force—annihilation prediction from initial conditions without

having to spend the tine and effort to compute force—level trajectories . It

then became obvious that the entire topic, of representi~~ th~ solution to such Lan—

chester—type equations in terms of general Lanchester functions (GLF) should be

critically reexamined . Thus, the purpose of this paper is to present new general con-

siderations for the selection of canonical Lanchester functions and then apply this

theory to the special case of power attrition—rate coefficients with “no offset”

(model l ing, for example, weapon systems with the same maximum effective range) to obtain

new LCS functions. With the availability of tabulations of these new LCS functions

_ _ _ _ _ _ _ _ _



(see Section 6 below), one can study this model almost as easily and thoroughly as

Lanchester ’s classic constant—coefficient one .

These power Lanchester (i.e. LCS) functions are significant not only becau.~

they correspond to attrition—rate coefficients modelling a large class of combat

situations of interest but also because they yield valuable information about other

related canonical Lanchester func tions , e.g. the offset power Lanchester tunctions

(see Note 1 and Section 8 below). This information Is, of course , equ ivalent to know-

ledge about model behavior (e.g. force annihil.~tion). A s a  result of our work here

one can parametrically analyze variable—coefficient Lanche~~ er—~ vpc models for combat

between two homogeneous forces with somewhat the same fa-ilcty as the classic con-

stant—coefficient one. Such models are important for developing insights into the

dynamics of combat (see BONDER and HONIG~ ’° ’ , TAYLOR ’221
, and Section 1 below).

The organization of this paper is as follows. First , ~e present the variable—

coefficient Lanchester—type model that we study in this paper. Next , we discuss the

representation of the time history of the force levels for this model in terms of

general Lanchester funct ions (GLF) . We show that  there are essentially only two kinds

of GLF, (I) exponential—like CLF and (II) hyperbolic—like GLF, and that the former ( I)

provide essential force—annihilation—prediction information about the latter (II).

Then we explain why we have chosen to use the hyperbolic—like GLF to construct the

model’s solution and why the power Lanchester (or LCS) functions introduced by Taylor

and Brown h24] must be redefined . Next , we show how the analysis of , for example , the

X force—lavel equation is simplified by transforming the independent variable t to

normalize the battle ’s time scale by the intensity of combat. We then introduce our

new definition of Lanchester—Clifford—Schläfli functions and show how they arise in

solving the transformed X force—level equation . Availability of tabulations of

these new LCS functions is discussed , and some uses of the tabulations are illustrated .

Finally, insights gained into the dynamics of combat between two homogeneous forces

from these developments are discussed .
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1. VARIABLE — COEFFICIENT LANCHESTER-TYPE EQUAT I ONS OF MODERN WARFAR E

In this paper we consider the following idealized model for combat between two

homogeneous forces (see Note 2)

dx/dt ~ —a(t)y, dy/dt —b(t)x, (1)

with initial conditions

x(t 0) x0, and y(t 0) = y0,

where t = O  denotes the time at which the battle begins, x(t) and y(t) denote the

numbers of X and Y at time t , and a(t). and b(t) denote time—dependent Lao—

attrition—rate coefficients. We will refer to (1) as variable—coefficient

-type equations of modern warfare in honor of the pioneering military opera—

[17] [21] [24)
.~.ons research work of F. W. Lanchester (see TAYLOR and Taylor and Brown ) .

Other forms of Lanchester—type equations appear in the literature , but we will not con-

sider these here (see t OLANSKY 1141 and Taylor 12
~~ ). The Lanchester—type equations (1)

yield the X force—level equatlon

d2x/dt2 — {d in a(t)/dt}dx/dt — a(t)b(t)x = 0, (2)

with initial conditions

x(t 0) x0, and {(l/a(t))dx/dt}
~~0 

— —y 0 .

Although combat between two military forces is a complex random process , such

an idealized deterministic model of the combat attrition process is frequently employed

to provide insights into the dynamics of combat (see, for example , BONDER and FARRELL 191 ,

Bonder and Honig~~
’°1 , TAYLOR and PARRY 1281 , or WEISS~

2
~~ ). The reader may consider (1)

to model combat in which both sides use aimed fire and target acquisition times are inde-

pendent of the numbers of firers and targets (see Note 3). New operations research

techniques (see, for example, Bonder and Farrell 191 , and CL RK~~
2’) for foreca sting

temporal variations in fire effectiveness (caused by, for example, changes in force

separation , combatant postures , target acquisition rates , e t c . )  have generated intere st

in such variable—coefficient combat formulations.

3
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Without loss of generality, we may take a(t) and b (t) to be of the form

8( t )  k g( t) ,  and b( t ) k
b

h( t) ,  (3)

where g(t) and h(t) denote the time—varying factors of a(t) .snd b(t) such that

a(t)/b(t) k/k.0 
for g(t) h(t). In other words , k

a 
and k.0 deno te “scale”

factors chosen so that the case of constant coefficients corresponds to g(t) = h(t) = 1.

A large class of tactical situations of interest can be modelled with the follow-

ing &eneral power attrition—rate coefficients

a( t) = k ( t+K
s
)”, and. b(t) = k

b
(t+K

s
+Ko)

V , (4)

where Ks,Ko 
� 0. The modelling roles of K

s 
and K0 are d iscussed in Taylor and

Brown 1241 . We will call K
s 

the starting parameter, since it allows us to r~odel

(with p ,v ~ 0) battles which begin within the maximum effective ranges of the two

systems. We will call K
0 the off set_ parameter, since it allows us to model (again ,

with ij ,v � 0) battles between weapon systems with different effective ranges. Restric-

tions that must be placed in u and v , which are no t necessarily integers , are

discussed below .

Let us take a few moments to motivate our above notation and further indicate

possible applications of our results. Consider BONDER ’s14 ’61 constant—speed attack

on a static definsive position modelled by

dx/dt — -a( r )y  ~~~~~~~~~~~~~~~~ dy/dt = -~ (r)x = _B
Q
(l_ r/R

B
)
v
x, (5)

where ~~~ � 0 and R denotes the maximum effective range of the Y weapon system.

Then the starting parameter and the of fse t  parameter are given by

Ks — (R —R
0

)/v , and (R~—R )/v, (6)

where R
0 denotes the battle ’s opening range and v > 0 denotes the constant attack

speed . Hence , K0,K5 
� 0 ~ R8 

� R ~ R0. By considering (6) and Figure 1, the reade r

should have no trouble in understanding our terminology for K5 and I(o. In the model

(5) i~, for example, is used to model the range depe~ndence of Y’s attrition—rate

4 -
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coefficient ~~~~ Fi~ ure 2). Observing that range is related to time by r ( t )  = R
0
— Vt ,

we readily see that the longest the battle can last is given by t = R01v , at which

time zero force separation is reached .

When the offset parameter is equal to zero (i.e. K0 0), then the coefficients

(4) reduce to

a( t ) = k ( t+K
s
)
~
” , and b( t) k

b
(t+K

s)
V . (7)

We will refer to (7) as power attrition—rate coefficients with “no~~f_f~~’~~.” Th e purp ose

of this paper is to extend our previous results 124 1 and introdu e new power Lanchester

functions that allow more information to be more conveniently - -.tracted from the model

(1) with coefficients (7). Specifically , one would want to obtain information such as:

(Qi) Who will “win ’? Be annihilated?

(Q2) How do force levels decrease over time and how many survivors will the
winner have? -

(Q3) How do changes in the initial force levels and weapon system parameters
affec t the outcome? Is concentration of forces a good tactic ?

(Q4) How long will the battle last?

To conveniently answer questions (Ql), (Q3), and (Q4) a redefinition of the Lanchester—

Clifford—Schläfli (or LCS) functions is required . Moreover , not only are results for

the coefficients (7) of interest in their own right but they also provide much valuable

information about the general case (4).

2. REPRESENTATION OF SOLUTION IN TERMS OF GENERAL LANCHESTER FUNCTIONS

In this section we discuss how to construct the solution to the X force—level

equation (2) in terms of certain basic building blocks that we have chosen to call

general Lanchester functions (CLF). We feel that these GLF should be chosen according

to the guidelines shown In Table I. Special cases of these general considerations have

been given by Taylor and Brown ’24’ and Taylor and Comstock 1271 .

Let us introduce the GLF ~
T 

— (x
1 x2

) and ~
T (y1 

y
2
) which satisfy

x ~a(t)L~ , j  — ( 1/k)b( t )L~~, (8)6
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TABLE I. Requirements for General Lanchester Functions

(Rl): They can be used to construct the solutions to the X and Y

force—level equations.

(R2): They should be as “simple” as possible.

(R3): A given set of functions should apply to as large a class of

battles as possible.

(R4): They should be nonnegative.

(RS) : They should reduce to elementary transcendental functions in

special cases such as a constant ratio of attrition—rate

coefficients.

(R6): They should provide as much information as possible about model

behavior

8



where without further specification k m ay be any positive constant and L is any

2~ 2 square matrix such that L2 I. [The initial conditions for (8) are to be

chosen so that the requirements of Table I are met and are discussed below .J Then x

satisfies the vector equation

i —  {d £n a(t)/dtlx — a(t)b(t)x = 0. (9)

In other words , both x
1 

and x,. satisfy the X. force—level equation (2) , and

similarly y
1 

and y
2 

sa tisf y the Y force—level equation .

Let us now investigate all the possible forms for the above GLF. Intuitively ,

we woui,d expect two possibilities (keeping the requirements of Table I in mind):

exponential—like functions (one strictly increasing and the other stric tly decreas ing )

and hyperbolic—like funct ions . [We are reminded of these two possibilities by the

well—known constant—coefficient results.] Two such types of GLF appear in Taylor and

Brown 124’ (hyperbolic—like functions) and in Taylor and Comstock~
271 (exponential-like

funct ions) . We will show that these are the only two possibilities if the requirements

of Table I are to met and show the relationship between these two types of GLF.

It is readily shown that any 2 x 2 matrix such that L2 I must take one of

five forms .

LE!D~A 1: If L2 — I, then L must take one of the following five forms: (A)
f ci /1 O~ j— l  0~
4 ( ) with B # 0, (B) ( ), (C) ( ), (D) L = I , or

~(l— a2J/~ —ci ’ \Y ~l’ \ ‘1 1/

(E) L = —I , where ci, 8, and y are unrestricted with the exception that

8 #o .

If in addition L LT and I L l  = -1, then L is an orthogonal mat rix and must be

of the form
, cos $ sin 4~ (10)

sin + — co s~~

It seems reasonable to give our Lanchester func t ions sy~snet ry by requiring that L — LT.

t 

We observe that the hyperbolic -like CLF of Taylor and Brown 1241 correspond to

9
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— (0 1). In order that  (R4) of Table I be met for a constant ratio of attrition—

rate coefficients, i.e.

a(t) — k h(t), and b(t) — k
b

h( t )
~ 

(11)

we know (see Taylor and Brown 1241) that we should choose k — / k.
D

/k so that

x = /k
b
/k a(t)LL, x — ‘

~a’~~ 
b(t)Lx. (12)

The general solution to the X force—level equation (2) is given by

x(t) — cT (13)

Introducing the 2 X 2 matrix

i x~~~t i  ~
S(t) (, T T) 

(14)

~ (t)L

we obtain from the initial conditions to (2) that

x
C = S 1’(t=O)( 

_____ 
. (15)

~
_/k

a
/k
b ~

‘O ’

Observing that

Tx ( t )  x ( t )

~ IS(t)l - 

Z
T
(t)L

T 
+ 
LT~~~L

T

we readily see that I S ( t ) I  — constant Vt c(t0,+co) , where I s I  denotes the de term inan t

of the square matrix S. Thus, we may take

I S ( t )l  — cons t an t . (16)

Let us also observe that

/k*r,/ka a(t)IS(t)I — W (x1, x2 ) ,  (17)

where W(x1,x 2) denotes the Wronskian of x
1 and x2 .

Now let us subject the fundamental system of solutions x to linear trans—

formation

(18)

such that the form of the equations (12) remains invariant , i.e.

10



i v1c~,/k a(t)f~~, j  — ~4C Ik~ b(t)Lx, (19)

where L again is such that L I. If L is given , it follows that

= LAL4~. (20)

Fur thermore

~
T(t) = AST(t) ,  (21)

so that

= I A I I S ( t ) l  = constant . (22)

We also observe that  W( x 1, x 2 ) = J A J W ( x 1,x2 ) . ’ Considering the quotient of the two

general Lanches t er X—func t ions  (GLXF)

n ( t )  = X
1

/X 2 , (23)

we see that under the l inear t ransformat ion  (18) we have

d~ /dt = { A 1/ ( a 12fl+a22 ) 2}d n / dt .  (24)

We now show that the only possible GLF that satisfy the requirements of Table I

(corresponding to L = L
T
) are the exponential ones shown in Table II and the hyper-

bolic ones shown in Table III. According to Lemma 1 if L2 I, then L must take

— 
one of f ive forms . It is impossible to have L = —I and satisfy (R4) of Table I (see

Note 4) .  If L — I and we t r y  to specify the “simplest ” ini t ia l  conditions [i .e.

specify initial conditions such that the GLF take the “simplest” form (satisfy (R2) of

Table 1) 1,  we find that we may take L to have one of the three remaining forms (see

Note 5). If we require that L be symmetric for simplicity [requirement (R2)), then

L is an orthogonal matrix with the form (10). If in (10) we take cos $ and sin •
equa l to —1 , 0, or 1 in order that the GLF take the “simplest” form, we find that

the only two distinct possibilities for L are L
B and L.~ as given in Ta bles II

and III (see ar gumen t given in, Note 5). Thus, we have shown that if we wish to con-

struct the solution (13) to (2) by using GLF with the properties given in Table I ,

there are essentially only two possibilities : the exponential—like CLF introduced by

_ _  
_ _ _ _  ---~~~~~~ - - -~~~~- -~~~~~~~~~~~~~~~~~~~~~_. -a



4

Tab le II. Exponential—Like General Lanchester Functions

1. ~~~(t) (E~~(t;Q*) E
~~
(t;Q

~
))i ~~~(t) = (E~~( t ;Q *)  E ç ( t ; Q *) )

2. ~~~(t—t0
) 

_ .(l/Q* 1), ~~ (t—t0
) = (1 Q*)

jl 0
- 3. E \~ —1

4. IS E (t) l — —2

1

I

12
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-a



Table I I I .  Hyperbol ic—Like  General Lanchester Functions

1. ~~~(t) = (Sx(t) Cx(t))o ~~~
( t) = (S

1
(t) c~(t))

2. ~~~(t=t0
) = (0 1), ~~~(t=t0

) (0 1)

/0 1
3. L (

H 
~~

4. IS}j(t)l = —l

13
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Taylor and Comstock 127 1 and the hyperbolic—like GLF introduced by Taylor and Brown 1241 .

We cal l th e qua nt i ty  Q* , which appears in the initial conditions for the

exponentia l—like GLF , the pa r i ty  condition parameter. It is chosen so tha t (see Note 6)

Ex (t ;Q*) ,  E~(t;Q*) > 0 for all finite t � t0 . (25)

It may be considered to be the enemy force equivalent of a friendly X force of unit

strength. Taylor and Coumstock 1271 show how knowledge of the parity condition parameter

allows one to predict force annihilation from initial conditions without explicitly

computing force—level trajectories. We observe that the exponential—like GLF cannot

be computed until one has solved the associated auxiliary parity—condition problem 1 271

(i.e. knows how to predict force—annihilation). For this reason and others (see Taylor

and Comstock 1271 ) ,  the exponential—like GLF are mainly of theoretical importance.

Moreover , in the next paragraph we show how the exponential—like GLF provide valuable

force—annihilation information abou t the hyperbolic—like GLF.

We now show that the limiting value of the quotient of the two hyperbolic-like

GLXF , = S~/C~ , is equal to the reciprocal of the parity condition parameter ,

i.e. (30) holds. We know that the two types cf GLF are related by a linear transformation

(26)

From (21) at t = 0, we have

/0 i~ ,l/Q* l~~( J = A (
‘1 01 \ i _Q*!

whence

i 1/2 —l I(2Q *) ~
A _ (  ). (27)

Q*/2 1/2

Considering (23) and (26), we see that

— {all nE(t ;Q*)+a12}/ {a 2lnE(t;Q*)+a22 }. (28)

Recalling that ri~~(t;Q*) — E~ (t ; Q*)/E (t ;Q*) and 

~~~~ 

E~(t;Q*) — 0, we see that

14



lim flE(t;Q*) 
= +~~, (29)

t+4~

so that by (27) and (28)

lim flH(t) — l/Q*. (30)
t~-4-

This result (30) is highly s ign i f i can t because it leads to a computation method for

determining Q*. Moreover, in the future we will show how the LCS functions introduced

in this paper (see Section 5 below) play a crucial role in such numerical determinations .

Let us further note that (24) reads

dn11/dt = {2/(Q*nE
+l) 2)dn

E
/dt , (31)

so that both flE(t) and nH
(t) are strictly increasing functions of t , since

drlE/dt 
2/k

b
/k a(t)/{Ex

(t;Q*)}2 .

3, CoNsIDERATIoNs FOR THE CHOICE OF GENERAL LANCHESTER FUNCTIONS

In Table I we give the general requirements that we feel should be placed upon

GLF. These requirements are motivated by the properties possessed by the functions

(name ly,  the expo nential  and hyperbolic ones) that one uses to construct the solution

to (1) in the constant—coefficient case.

We specify (R3) so that as few tabulations of GLF as possible will be required .

Consequently , we specify the initial conditions for the GLF at t
0 

= max(t~ ,t~),

where t~ denotes the largest finite singular point on the t—axis for the X force—

level equation (2) (see reference 24). Thus , a(t) and b(t) are positive continuous

functions Vtc (t 0,4w). Since at most one of x(t) and y(t) can vanish in [0,4w)

(see Note 7), we have what the mathematician calls a nonoscilliatory solution to (1).

In this case we can construct the solution to (2) Out of nonnegative components and

will flnd it convenient to do so.

As we have shown above , there are essentially only two types of GLF that

satisfy the requirements of Table I: the exponential—like GLF of Table II and the

hyperbolic-like GLF of Table III. We feel, however, that the hyperbolic—like functions

are to he preferred for two reasons: (1) they apparently are more convenient for

-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



parametric studies in which one might , for example , want to vary initial force levels

or some measure of relative fire effectiveness 1241 ; and (2) accurate values of the

exponential—like GLF are, in general , difficult (in fact , essentially impossible for

large values of t) to determine , since their initial conditions depend on the parity

condition parameter Q* (see Note 8). In terms of the hyperbolic—like GLF , the

solution to (2) is given by 1241

x(t) — xo
{Cy(t O)C

x
(t)_ Sy(t~

0)S
x
(t) } — y~ vk~ /k~, {Cx (t=O)S x (t )_ S x (t=O)Cx (t ) ) •  (32 )

We observe that for t 0 < 0, for example, C
x
(t
~

O) > 1 and 
~~
(t1.O) > 0 so that

except for the quasi—autonomous case in which a ( t ) / b ( t )  — constant (see Note 9), the

solution (32) only simplifies when t
0 

— 0 (see Theorem 1 of Taylor and Brown ’241)

(see Note 10) .

Unfor tuna te ly , the power Lanchester (or LCS) functions introduced by Taylor and

Brown 1241 were inappropriately defined to yield all the information sought about the

combat model (1) with power attrition—rate coefficients (7). In particular , the tir~e

at which a side will be annihilated cannot be determined (without the explicit calcu—

lat ion of the entire force—level trajectories) from the initial conditions . Subse-

quent work by Taylor and Comstock has yielded a theory of force—annihilation prediction
[ 27]

.

The purpose of the paper at hand is to redefine the power Lanchester functions in light

of these subsequent results. We also thought it impor tan t to present the general

considerations behind this selection of canonical Lanchester functions .

Moreover, the form of the LCS functions is simplified and insight gained into

the dynamics of combat by transforming the battle ’s time scale. Thus, certain trans-

formations of variables may be desirable in the development of hyperbolic—like CLF,

and the specifications of Table III should be interpreted as being “symbolic” and not

taken literally.

16



14, A TRANSFORMATION TO NORMALIZE THE BATTLE ’S TIME SCALE

BY THE INTENSITY OF COMBAT
ft

Let 
J 

. . .  ds denote an indefinite integral , denote the relative effectiveness

as R ( t ) ,  i .e.

R(t) = b (t)/a(t), (33)

and let K be an arbitrary constant to be conveniently chosen. Then Theorem 2 of

Taylor and Brown 124
~ may be stated as follows .

THEOREM 1: A necessary and sufficient condition to be able to transform

the X force—level equation (2) by a transformation of the independent

variable t into a linear second order ordinary differential equation with

constant coefficients is that

[dUn R(t)}/dtj//a(t)b(tj = CONSTANT,

and then the desired substitution is given by

t K J /a(s)b(s) ds.

We observe that Theorem 1 says that we can transform the X force—level equation to

a constant coefficient one if and only if dUn R(t)}/dt CONSTANT. We also assume

tha t the following condition holds.

(t . çt
CONDITION (A) : J a(s)ds  and J b(s )ds  are bounded for  all f in i te

to to 
-

t � to.

If Condition (A) is to hold , then for the power attrition—rate coefficients (7) we

must have i ,v > —1. 
-

Motivated by both Theorem 1 and the well—known constant—coefficient results ,

we introduce the new independent variable t defined by

— J / a (s )b(s )  ds. (34)

to

17 
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By Condition (A) and the Cauchy—Schwarz inequality for integrals (see p. 123 of BELLMAN 131
),

the integral in (34) is well defined (i.e. bounded). The transformation (34) has an

inverse t ( r ) ,  since dT/dt  > 0 V t > t0. We also def ine

— t (t—O). (35)

We observe that  for to ~ 0 we have � 0. Recalling the constant—coefficient results ,

we will call the quantity /a(t)b ( t) the “intensity of combat ” (see also Tayl or and

Parry 1281 ) ; since the larger it is, the more quickly the ba t t le  is moving towards ter-

mination . The average intensity of combat is given by Ia(t)b’(t) (lit) J / (s)b(s) d~~.

Then we have

- {(l/t) J ds}t /a(t )b ( t) t. (36)

0

The substitution (34) transforms (2) into

d 2x/d r 2 + (l/ 2 ) { dt n R ( t ) / d r } d x / d T — x  = 0, ( 37 )

with  in i t ia l  conditions

— x0, and {R~~
2(t)dx/dt }~~~ — —y0

.

Theorem 1 tells us that unless (37) is a constant—coefficient equation , it is impossible

to transform the X force—level equation (2) into a constant—coefficient equation by

a transformation of the independent variable alone. Also , equation (37) is highly

significant because it clearly shows us that the course of combat depends on just two

weapon—system parameters: (1) R(t) = b( t)/ a ( t) ,  the relative fire effectiveness

(X to Y) of the two combatants , and (2) 1(t) = /a(t)b(t), the intensity of combat

(through equation (34), which relates 1(t) to r). Both these parameters may vary

over time. In particular , from (37) we see that the nature of temporal variations in

relative fire effectiveness will have a significant effect upon the course of combat.

For the power attrition—rate coefficients with no offset (7), the transformed

X force—level equation (37) becomes

18
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d2x/dT 2 +{(2q-l)/T}dx/dr-x = 0, (38)

wi th initial conditions

x0, and ~~~~~~~~~~~~~~ =

where q — (v+l) /(~i+v+2) and

= t ( t )  = (2/k k
b/(u+~

+2))(t+K
S
)

2
~
12

. (39)

Hence , = (2~’ ç/(ii+v+2))K5
(
~~~~

2 2
. Let us observe that Vu ,v > —l we have

o < q < 1. Furthermore , q > 1/2 ~ dR/dt > 0, i.e. R(t) is a strictly increasing

function of time .

5. LANCHESTER-CL IFFORD-SCHLAFL I FUNCTIONS

Consider the f unc tion Fn(x) def ined by the power series

F (x) = r (n )  

k=O 
(x/2)2~/(k!r(k+a)}. (40)

For n ~ 0,—l ,—2 ,... the radius of convergence for Fa(x) is infinite by the ratio

test for convergence of power series (see, for example, KNOPP I16]). Hence , F (z)

is an entire function of the complex variable z = x+iy with an essential singularity

at the point at infinity. Now consider the function 11 (x) defined by the infinite

Series

110(x) r(a) 
k=O 

(x/2)2~~~~~/{k!r(k+ v4-l)}. (41)

Observing that

Ha(x) (l/ n) ( x/ 2) 2aF~~1(x), . 
(42)

we see that for a > 0 the infinite series (41) is uniformly convergent on compact

subsets of the complex plane. From (42) we can readily deduce the recursive relation

F ( x) — F~~1(x) + {( x / 2 ) 2/[a(a+l)J}F~~2(x). (43)

We will call the functions F (x) and 11 (x) Lartchester—Clifford—Schläf1i functions

(s.e! No te 11). Other properties are readily deduced and are given in Table IV.



Table IV. Properties of the LCS Functions Fn
(X) and

l~ dF /dx (x/2)~~
2a
Ha(x)

2. dH /dx = (x/2)
2al Fa(x)

3. Fa(x)F i a (x)_H
a(x)H i~~

(x) 1 Vx

where a is not an integer (including zero)

4. F(x O) = 1

5. H (x O) = 0 for a > 0

6. dF/ dx(x O) 0

7. ((x/2)l2a dHa
/dx}x O  

— 1

8. F
112

(x) cosh x 
-

9. H
112

(x) = sinh x 
-

20
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The function F
a

(x) satisfies the second order ordinary differential equation

d
~
Fa/dx

2 + ((2a_l)/x}dF
a/d

x_ F
a — 0 , (44)

with initial conditions

F (x=O) = 1, and dF /dx (x 0) = 0,

while 11 (x) satisfies

d2Ha/dx
2 _ {(2a_1)/x}dH

a
/dx_ H

a 
= 0, (45)

with initial conditions (for a > 0)

H
a
(x=O) — 0, and { (x/ 2) 2adHaldx} ,,,O

Thus, {F
a~
Hi_a} is a fundamental system of solutions to

d2F/ dx2 +((2cz—l)/x)dF/dx—F = 0, (46)

with Wronskian W(F ,11
1
) = (X,2)

l_2a
. Let us observe that (see Table III)

Cx(t) = F
q
(T(t))~ sx(t) = {/ ~~~~/(Ij+v+2)}2C1

_
~H (t(t)), (47)

C~ (t) = F~ (t(t))~ S~~(t) = ~~~~~~~~~~~~~~~~~~~~~~~~ (48)

where p — l—q. If we define

T (x) H
1

(x)/F (x), (49)

then

n~
(t )  — Tx(t) = Sx (t) /Cx (t)  = { v .~;i~

•/ (~i+v+2))2~~ lH
p
(T(t))/F

q
(t(t)), (50)

where Tx(t) denotes a hyperbolic—like GLF. Observing that i ( t )  — 4~~, we see

that T (x) is a strictly increasing function of x Vxc[O ,+~o) and

0 ~ T (x) < r(l—a)/r(a) for 0 ~ x < 4w , (51)

with

u r n  T (x) — r(l—a)/r(a), (52)
a 
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since by the value of Q* determined by Taylor and Comstock 1271 for the power attrition-

rate coefficients (7), denoted as Q*(~ ,v ,K0~
O),  we have (see (30) and (SO))

~~2 

Tx(t) — lIQ* (~j ,v ,K0=O) =

Comparing (38) and (46), we see that the solution to (38) is given by

x(t) — X
0

(F
p
(T
0

)F
q
(t(t))~~Hq

(•t
0

)H
p
(T(t))) -

(53)

The time to annihilate X is determined by x (t~ t~) 
= 0 and thus

Tq(~t(t~))  —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (54)

where Ta
(t) is given by (49) and from (51)

0 ~ Tq (t ) < r (p ) / r ( q ) . (55)

For to = _ K
~ 

— 0, (54) simplifies to -

- 
Tq (t ( t~)) — (x

0/y0
)/~~/k~ (/k~1%

/(p+v+2))P~~. (56)

From (54) and (55) we may deduce the following theorem:

ThEOREM 2: Consider combat between two homogeneous forces described by

(1) with power attrition—rate coefficients (7). Assume that these

equations hold for all time and that Y “wins” when x(tf
) — 0 with

Y(tf) > 0. Then Y will win if and only if

~or — 0 (i.e. K8 
— 0 and 0), Y will win if and only if

x0r (q) <

22
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6. TABULATIONS OF LCS FUNCTIONS
Tabulations of the Lanchester—Clifford—Schl~ f1i functions are available In two

of the authors ’ reports , also available from the National Technical Information Servir.~

(see references 25 and 26). These reports contain five—decimal—place tables of the

hyperbolic—like LCs functions F (x), Hi a (x)~ 
and T0(x) for values of the argu-

ment x = 0.00(0.01)2.00(0.1)10.0 and various values of the order a. The short

table 1251 contains tabulations for a l/2,l/3,2/3,l/4 ,3/4,l/5 ,2/5,3/5,4/5,3/7, and

4/7 corresponding to ~i , v = 0,1,2,3; while the longer tab1e~
261 contains tabulations

for a = 1/2 ,1/3,2/3 ,1/4 ,3/4 ,1/5 ,2/ 5 ,3/5 ,4/5 ,2 /7 ,3/7 ,4/7  ,5/7 ,4/9 ,5/9 ,3/1l ,5/ll ,6/ ll ,

8/11,5/13,8/13,5/ 17 ,12/17,5/21 , and 16/21 corresponding to ~i ,v 0,1/4,1/2 ,1,1 1/2 ,

2,3. As we have seen above In Section 1 (see (5) and Figure 2), such values of ~i aud

v allow one to analyze , for example , a wide variety of range capabilities for weapon

systems in Bonder ’s14 ’61 constant—speed attack model (5). These tables have been

calculated by the recursive methods given in Section 8 of Taylor and Brown ’241 .

A representative tabulation of the hyperbolic—like LCS functions

and Ta(x) for a = 3/5 , similar to those that appear in references 25 and

26, is given in Tables V and VI. The values of the argument x are the sa~’e as those

used for the tabulation of the hyperbolic functions by ABRANOWITZ and STEGUN 111 . We

observe from Table VI and (52) that  the l imit ing value of T0 (x) as x -
~ 4- (here

a — 3/5) is quickly reached , with three—decimal—place agr.e~ nent by x = 4.5.

7. NUMERICAL EXAMPLES

In this section we examine a couple of numerical examples to show some of the

insights that may be gained into the dynami~s of combat between two homogeneous forces

from our new results. As in references 21 and 24, we consider S. Bonder ’s
14 ’61 model

(5) for the constant—speed attack against a static defensive position. We wil1 focus

on the new results of this paper [in particular , the prediction of battle outcome from
- t

initial conditions without explicitly computing the force—level trajectories (cf.

questions (Qi) and (Q4) of Section 1)]. From the input data given in Table VII , we
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Table V I I .  Input Data for Numerical Examples

p — i , V — 2

0.06 X casualties/minutelY unit

0.6 Y casualties/minute/X unit

R R 2000 meters
a 8

v 5 miles/hour
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compute the parameter values shown In Table VIII. We observe from Tables VI and VIII

the predicted agreement between r(1—a)/r(a) and the limiting value of T (x) as

x ~ +~ (see (52)) for n = q = 3/5. We now consider two cases : (I) R
0 

— 2000

• meters , and (II) R0 1250 meters.

When R0 2000 meters (see Figure 3 of Taylor [2h1), we have K
~ 

0 and

— 0. The maximum time that the battle can last is t — 14.91 minutes , since at0 max

this time the attackers reach their final objective (i.e. the defensive position).

We now consider the qualitative behavior of the u= 1, V 2 force—level trajectory

[21]shown in Figure 3 of Taylor . Theorem 2 tells us that X can be annihilated

~ x0Iy~ 
< 0.420. By (56) the annihilation time of the X force is given by

Tq
(t(t~)) = 3.544 x

0
/y
0
. For x

0 
C 
~o, y0 

= 30, we have T(t~) = 1.18122 so that

from Table V (using linear interpolation) we obtain r~ 1.009. Hence, (39) yields

= 14.24 minutes and r~ = 89.8 meters. Further results are given in Table IX.

When R0 1250 meters (see Figure 3 of Taylor and Brown~
241), we have

K 5.5923 minutes, t = 0.0975, and t = 9.32 minutes . ,In this case (again,
S 0 max

for p — 1, v 2), X can be annihilated ~ x
0

/y
0 

< 0.382 with [from (54)] the

annihilation time of the X force given by T(t~) = (3.565 u0+Q.223)/(O.l56 u0
+l.004),

where u
0 x01y 0. Some further numerical results are given in Table X. Again , these

parametric results should be contrasted with the single p = 1, v — 2 force—level

trajectory shown in Figure 3 of reference 24.

8. Discuss ioN
In Section 7 above we have seen how our new definition of power Lanchester

functions (guided by the general requirements for GLF given in Table I) allows one to

conveniently obtain much valuable information about the model (1) with attrition—rate

coefficients (7) without explicitly computing the entire force—level trajectories (see

Note 12). Previously we were limited to only computing force—level trajectories.

Now we can tell who is going to be annihilated and when without explicitly computing

the trajectories (see Note 13). Not only did we answer questions abocit qualitative

_ _ _  - -_ _ _ _ _ _ _ _ _ _ _  - -—• - - ~~~~~~~ 
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— —..- a . A_ __
~~~~~~~~~~~~ 

- — ________________________________________ - -

Table VIII. Parameter Values for Numerical Examples

— 4.0233 x 10 3 X caaualties/(minute)1’/Y unit

0 2.6979 x l0
3 Y casualties/(minute)”/X unit

p — 2/5 , q — 3/5

r ( p ) I r ( q )  — 1.48951

- 0
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Table IX. Annihilation of the X Force as a Function

of the Initial Force Ratio for R0 — 2000 meters

t~(minutes) r~ (meters)

0.333 1.4.24 89.8

0.250 11.61 443.2

0.200 10.19 633.2

29 
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Table X. Annihilation of the X Force as a Function

of the Initial Force Ratio for R0 
— 1250 meters

t~ (minutesI 
r~~~eters)

0.333 10.63 _____t

0.250 7.56 235.9

0.200 6.17 422.8

— 9.32 minutes and X
f 

— x(r 0) = 1.35.
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model behavior (e.g. force annihilation) for specific values of , for example, initial

force levels but also for a range of values of the initial force ratio (i.e. parametric

analysis of model behavior). The results of this paper may be used for other para-

metric analyses (see Note 14), e.g. parametric dependence of battle outcome on attri-

tion—rate coefficients. Thus, our extension of past resuits 12
~

1 allows one to develop

important insights into the dynamics of combat between two homogeneous forces with

temporal variations in fire effectivenesses. With the availability 125 ’26’ of tai>ula—

tions of the LCS functions , one can now analyze such comba t modelled by the power

attrition—rate coefficients (7) with somewhaf the same facility as he can for the

constant—coefficient case (see Note 15) and thus aid in parametric analyses.

In his classic 1914 paper~~
7’ Lanchester assumed that the combatants ’ fire

effectivenesses (as expressed by Lanchester attrition—rate coefficients) were constant

over time and deduced his famous square law

3{x~j -x2 ( t ) }  = c z {y ~ —y
2(t)}, (57)

where ~ and 8 denote constant attrition—rate coefficients. It follows from (57)

that (provided there is no “time limit” for the battle)

X will be annihilated ~ x~ /y~ < ~~~ (58)

Thus, we see that equality of Lanchester—type fighting strengths depends on two param-

eters: (I) initial force ratio , and (II) relative effectiveness . When the timing

of military actions is considered , we add a third parameter , the intensity of combat =

to this list of significant combat parameters. No such simple relationship like

the square law (57),  which yields (58), holds in general for~variable attrition—rate

coefficients when a(t)/b(t) # constant. However , by transforming the independent

variable t to normalize the battle ’s time scale by the intensity of combat, we found

(see equation (37)) that the course of such variable—coefficient combat depends on

only two weapon—system parameters : (I) relative fire effectiveness , R(t) — b(t)/a(t),

and (II) intensity of combat , 1(t) — /a(t)b(t). Moreover , we extended (58) to combat

31
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modelled with the power attrition—rate coefficients with “no offset” (7) (see Theorem 2).

This is the first time that such a generalization of the square law has been obtained

for the variable—coefficient Lanchester—type model (1) with a(t)/b(t) # constant. We

observe that for K
~ 

> 0 this “exact” outcome—prediction relation (i.e. necessary

and sufficient condition for force annihilation) involves higher transcendental functions

(here, the LCS functions) and is complementary to the sufficient condition (involving

only elementary functions) given by Taylor and Parry 1281 for Ks 
> 0.

Work by B0NDER 15 ’7~ , Clark~~
21 , and others 12 ’9~ on the prediction of Lanchester

attrition—rate coefficients (see Taylor and B~rown 124
~ for further discussion and

references) has generated interest in variable—coefficient Lanchester—type models .

Interest in the power attrition—rate coefficients with “no offset” (7) is provided by

S. 8ondcr~s
[4
~
6I model (5) and h-is examination of predicted attrition—rate for various

weapon systems (see pp. 196—200 of reference 9). However useful our results may be

in their own right , they have far greater import: (I) they are a model for the treat-

ment of other Lanchester functions and their tabulations , and (II) they may be used in

the numerical determination of the parity—condition parameter
[27] 

Q* for related

attrition—rate coefficients (for example , (4) with K0 > 0). In the future we will

show how our tabulations of the LCS functions play a key role in the numerical deter-

mination of the parity—condition parameter Q* for the general power attrition—rate

coefficients (4) with positive “offset” (i.e. K0 > 0).

We have extended our mathematical theory 1241 of variable—coefficient Lanchester-

type equations of “modern warf are” for combat between two homogeneous forces in order

to be able to more thoroughly analyze such models. The classic ordinary differential

equation theories (see, for example, HILLE~~
51) were inadequate to supply all the

answers sought about such combat models (cf. questions (Ql)—(Q4) in Section 1 above).

The mathematical theory of the model (1) with coefficients (7) is now nearly as complete

as that of the constant—coefficient model. Such results as w~ have given here are very

useful for understanding the dynamics of combat , i.e. how the trading of casualties
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will be projected over time . H. K. WEISS 1301 has emphasized that such a simplified

model of a combat situation is particularly valuable when it leads to a clearer

unders tand ing of significant relationships that would tend to be obscured in a more

complex model. As is always the case, however, the insights geined into combat

dynamics are no more valid than the models themselves.

9. SUMMARY

In this paper we have introduced new mathematical functions (Lanchester—Clif ford-

Schläfl i, or LCS , functions) that allow important information (in particular , force—

annihilation prediction) to be obtained without explicitly computing force—level

trajectories for the variable—coefficient Lanchester—type model (1) with power attri-

tion—rate coefficients with “no offset” (7). Our development was based on new theoretical

considerations: we gave a new general discussion of representing the solutions to the

X and Y force—level equations in terms of general Lanchester functions (GLF) and

gave the general properties that these GLF should possess; we showed that there are

essentially only two kinds of GLF that satisfy these requirements (exponential—like

GLF and hyperbolic—like GLF) and that the hyperbolic—like functions are to be preferred .

Moreover , the exponential—like GLF are an essential theoretical construct , since they

play a key role in determining force—annihilation—prediction conditions (i.e. showing

that the reciprocal of the parity condition parameter is equal to the limiting value

of the quotient of two hyperbolic—like general Lanchester X—functions) . We stressed

that such building blocks should be chosen to yield as much information as possible

about the model (and as conveniently as possible). We saw that the analysis of , for

example, the X force—level equation was facilitated by transforming the battle ’s

time scale and that the only two weapon—system parameters affecting the course of

combat are the relative fire effectiveness and the intensity of combat. These results

extended and unified our mathematical theory of variable—coefficient Lanchester—type

equations of “modern warfare” (see reference 24).
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We then applied our general mathematical theory to the special case of combat

modelled by power attrition—rate coefficients with “no offset.” Our new definition

of Lanchester—Clifford—Schläfli (LCS) functions was required for these power attrition—

rate coefficients in order to answer questions about battle outcome without explicitly

computing force—level trajectories (i.e. to predict battle outcome/force annihilation).

The mathematIcal theory of this variable—coefficient Lanchester—type models of “modern

warfare” (modelling, for example, weapon systems with the same effective range) is

now nearly as complete as that of the constant—coefficient model. With tabulations

of the new LCS functions now available, one c~an study this variable—coefficient model

almost as easily and thoroughly as Lanchester ’s classic constant—coefficient model.

NOTES

1. Following terminology introduced in reference 24, we will refer to Lanchester

functions corresponding to the power attrition—rate coefficients (4) with K0 > 0 as

offset power Lanchester functions (see Section 1). The power Lanchester (i.e. LCS)

functions correspond to K
0 

0, i.e. to the power attrition—rate coefficients with

“no offset” (7).

2. The equations (1) are only valid for x ,y > 0. The first , for example , becomes

dx/dt O for x 0 .

3. Further information on sets of circumstances that have been hypothesized to yield

the combat equations (1) (with constant coefficients) may be found in BRACKNEY 1111

~29]and Weiss

4. It is impossible for all a(t),b(t) > 0 satisfying Condition (A) to have

> 0 for i — 1,2 and all t > t0 
such that — 

~
/k
b

/k a(t)y~ and y
~

~~~~~ 
b(t)x

1 and x1,x 2 are linearly independent. If it were possible, then

IS U ) l  — — x 1y 2 + x 2y1 — C
S 

and without loss of generality we may take C~ > 0.
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Introducing u
1 

— x~ /y~ and A u
2
-u 1, we would have IS(t)I y1

y
2
A — C~ > 0 and

A = /k
b
/k b(t)(u

1
+u
2

)A /~~/k b(t)A 2 > 0 for  t > to so that A (t) > 0 is strictly

increasing for t � t
0
. It would follow that l/A (t

0
) — l/ A ( t) � [k,~/k J b (s) ds ,

to
which is impossible for b(t) such that lim J b(s)ds = 4~~.

t44w to

5. To keep x
1
, x2 , y1, and y

2 
as “simple” as possible we specify that their initial

values at to to be either 0 or 1. In order that IS (t) I x
1
y2 -x 2y1 # 0, we

mus t therefore  have either x
1
(tt

0
) = y

2
(t=t

0
) = 0 and x

2
(tt 0

) = y
1
(tt

0
) = 1, or

x
1
(t—t0

) = y
2
(t=t

0
) = 1 and x

2
(tt

0
) = y

1
(t= t

0
) = 0. We consider the first possi-

bility with similar arguments holding for the second . In this first case examination

of the differential equations with initial conditions shows us that x
1 

= S~~, x
2 

= C~~,

C,~,, and y
2 

= S,~,, i.e. the functions coincide with the hyperbolic—like GLF of

Table III. Thus, we need not consider L = I, since the same results may be ob tained

by using another one of Lemma l’s feasible form s for L.

6. We conjecture that some condition like lim t (t) = 4w is sufficient to guarantee
t-’-f°’

that Q* is unique .

7. This intuitively obvious result may be proved by observing the identity

~~{b(o) 2(o)+a(a)y2~~~}dc x(s)y(s) -x(t)y(t).

A less obvious fact is that unless at least one of a(t)dt and £‘
~ 

b( t )d t is

unbounded , then neither x(t) nor y(t) need ever be annihilated (see Hille ).

As an example of this situation , consider the batt.le with attrition—rate coefficients (7),

Ks 
> 0, and j — v < —1. Then x(t) x

0
cosh e(t )_y0/k /k.~

sinh 0(t), where 0( t )

{ l/(~+l)) {l/K
5

”
~~~ 

— l/(t+K
~
)
~~
”
~~ 

. Let e (_l/(v+1)}{l/K
~~~~~~~

} > 0 and

finite, It follows that v ~ —l and K
5 

> 0 can be chosen so that even though

< YOV’ka / k b we have x(t) x
O coshO

_ y
O
Ii
~~
/k
b
sinh 0,, > 0. 
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8. In general , the value of Q* will not be known exac !ly. Unfortunately, errors

in the initial conditions for the exponential—like GLF become exponentially magnified

over time. The situation is even worse for flE(t;Q*) 4x(t;Q*) — E
~
(t;Q*)/Ex(t ;Q*),

which is used to determine the time that the X forc4~ will be annihilated .

9. The term quasi—autonomous was coined by Taylor ’221 (see also TAYLOR 12 31 ) to denote

a system of differential equations that may be transformed to an autonomous system (see,

for example , p. 163 of PETR0VSKI~~
81) by a change of the time scale. Special cases

of such Lanchester—type equations have been considered by, for example , Farre1l~
9
~’ and

TAYLOR 1201 . More general (possibly nonlinear) quasi—autonomous Lanchester—type equa—

[22],[23] [241
tions have been studied by Taylor (see also Note 4 of Taylor and Brown ).

10. If we were to specify the initial conditions of the CLF at t — 0 i ns tead  of

t to, then (32) would reduce to x(t) = x
0
C
~
(t) — 

~
‘O 7~b 

sx (t~~ Howeve r , when the

initial conditions for the hyperbolic—like CLF are not given at t0, a separate tabu-

lation of , for example , 
~ x
(t) must be used for each different value of t

0

(i.e. = 
~x

(t;t o)).

11. Although the solution to the X force—level equation (2) with the power attrition—

rate coefficients (7) may be expressed in terms of knocrn higher transcendental functions

(see Taylor~
211 , Taylor and Brown 1241

, and Taylor and Comstock’271 ) ,  we have chosen

to introduce the LCS fu nctions , since tabulat ions of these other funct ions are not

available for the full range of parameter values of interest in Lanchester combat

theory . For example, we can construct such solutions with modified Bessel functions

of the f i r s t  kind of fractional order , but tabulations of these (see , for example ,

Abramowitz and Stegun 111 ) only exist for a restrictive set of values of the order p

(i.e. p = ±1/4, ±1/3, ±1/2, ±2/3 , ±3/4), where p — (p+l)/(p+v+2). Furthermore ,

tabulations of functions corresponding to the quotient of , for examp le , two GLXF do

not apparently exist at all. Consequently , we have introduced otr new LCS functions ,

which provide much of the information desired about such battles. The naming of our

LCS functions follows from the facts that a function similar to F (x) was introduced
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by LUDWIG SCHLA FLI U9I (1814—1895) in 1867, while a related one appears in ~ posthumous

fragment of the great English geometer William Kingdon Clifford (1845—18) ) ( - : ~~~ pp. 343—

348 of CLIFF0RD~~
31 ) .

12. In his well—known survey paper on the Lanchester theory of combat , Dolansky 1141

suggested the development of outcome predicting relations without solving in detail

and/or computing force—level trajectories as one of several problems for future research.

Our Theorem 2 is a step towards this problem ’s resolution (see also references 22, 27 ,

and 28).

13. Bonder and H-~nig110~’ point out , however , that force annihilation may not be the

appropriate criterion for evaluating many military operations , especially when force

[9)
annihilation does not occur. See pp. 192—242 of Bonder and Farrell for a detailed

Lanchester—type analysis of an attack situation for which other “end of battle cond i-

tions” play the major role in the evaluation process. Never theless , it is of interest

to know when and why force annihilation will occur .

14. S. BONDER 181 has suggested that an increased emphasis be placed on parametric

analyses in systems analysis studies (see pp. 21—22 of reference 8).

15. One significant exception is that the outcome of fixed—force—level—breakpoint

battles (for example, Y “wins” when Xf 
x(tf) X

8~~ but Yf 
> 

~BP ’ where t
f~

X
f~ Yf denote final values and XBP denotes X’s breakpoint) with XBP YBP 

> 0 and

a(t)/b(t) # constant cannot apparently be analyzed in the manner described in this

paper (see Taylor and Coms tock ’271 ).
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