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ABSTRACT

This paper introduces an important new canonical set of functions for solving
Lanchester-type equations of modern warfare for combat between two homogeneous forces
with power attrition-rate coefficients with "no offset.'" Tabulations of these func-

tions, which we call Lanchester-Clifford-Schldfli (or LCS) functions, allow one to

study this particular variable-coefficient model almost as easily and thoroughly as
Lanchester's classic constant-coefficient one. The availability of such tables is
pointed out. We show that our choice of LCS functions allows one ‘to obtain important
information (in particular, force-annihilation predictiqn) without having to spend the
time and effort to compute force-level trajectories. Furthetmore,.we show from theoret-
ical considerations that our choice is the best for this purpose. These new theoreti-
cal considerations apply in general to Lanchester-type equations of modern warfare and
provide guidance for developing other canonical Lanchester functions (i.e. canonical
functions for other attrition-rate coefficients). Moreover, our new LCS functions
provide valuable information about various related variable-coefficient models. Also,
we introduce an important transformation of the battle's time scale that not only many
times simplifies the force-level equations but also shows that relative fire effective-
ness and intensity of combat are the only two weapon-system parameters determining

the course of such variable-coefficient Lanchester-type combat.




0. INTRODUCTION

In an earlier paperlza] we developed some elements of a mathematical theory for
solving variable-coefficient Lanchester-type equations of modern warfare for combat
between two homogeneous forces and introduced canonical hyperbolic-like Lanchester
functions for constructing their solution. Unfortunately, with only these previous
results one is limited to computing (however conveniently it may be done) force-level
trajectories and cannot gain a real understanding of qualitative model behavior (e.g.
force annihilation) without the excessive labor of extensive numerical computations (and
only then for specific values of model parameters). Since our earlier work important
mathematical discoveries have been made about the qualitative behavior of this combat
model, and we wish to show how these new results allow one to parametrically analyze
combat modelled by power attrition-rate coefficients (see Section 1 below) with some-

(17]

what the same facility as he can study F. W. LANCHESTER's classic constant-coeffi-

cient model. In order to obtain this analysis capability, however, one must redefine

the Lanchester-Clifford-Schldfli (or LCS) functions, which we introduced in reference 24.

In our earlier paper (see TAYLOR and BROWNIZQ]) we gave various examples of
hyperbolic-like Lanchester functions (in particular, the LCS functions, which arise
from power attrition-rate coefficients with "no offset"). Subsequent research by

27] has revealed, however, that these canonical LCS functions must

TAYLOR and COMSTOCK[
be redefined to permit force-annihilation prediction from initial conditions without
having to spend the time and effort to compute forcé-level trajectories. It

then became obvious that the entire topic, of representirg the solution to such Lan-
chester-type equations in terms of general Lanchester functions (GLF) should be
critically reexamined. Thus, the purpose of this paper is to present new general con-
siderations for the selection of canonical Lanchester functions and then apply this
theory to the special case of power attrition-rate coefficients with '"no offset"

(modelling, for example, weapon systems with the same maximum effective range) to obtain

new LCS functions. With the availability of tabulations of these new LCS functions




(see Section 6 below), one can study this model almost as easily and thoroughly as
Lanchester's classic constant-coefficient one.

These power Lanchester (i.e. LCS) functions are significant not only because
they correspond to attrition-rate coefficients modelling a large class of combat
situations of interest but also because they yield valuable information about other
related canonical Lanchester functions, e.g. the offset power Lanchester functions
(see Note 1 and Section 8 below). This information is, of course, equivalent to know-
ledge about model behavior (e.g. force annihilation). As a result of our work here
one can parametrically analyze variable-coefficient Lanchester-type models for combat
between two homogeneous forces with somewhat the same facility as the classic con-
stant-coefficient one. Such models are important for developing insights into the

dynamics of combat (see BONDER and non16!1% | payror(22]

, and Section 1 below).

The organization of this paper is as follows. First, we present the variable-
coefficient Lanchester-type model that we study in this paper. Next, we discuss the
representation of the time history of the force levels for this model in terms of
general Lanchester functions (GLF). We show that there are essentially only two kinds
of GLF, (I) exponential-like GLF and (II) hyperbolic-like GLF, and that the former (I)
provide essential force-annihilation-prediction information about the latter (II).
Then we explain why we have chosen to use the hyperbclic-like GLF to construct the
model's solution and why the power Lanchester (or LCS) functions introduced by Taylor

[24] must be redefined. Next, we show how the analysis of, for example, the

and Brown
X force-level equation is simplified by transforming the independent variable t to
normalize the battle's time scale by the intensity of combat. We then introduce our
new definition of Lanchester-Clifford-Schldfli functions and show how they arise in
solving the transformed X force-level equation. Availability of tabulations of
these new LCS functions is discussed, and some uses of the tabulations are illustrated.

Finally, insights gained into the dynamics of combat between two homogeneous forces

from these developments are discussed.




1. VARIABLE-COEFFICIENT LANCHESTER-TYPE EQuATIONS OF MODERN WARFARE

In this paper we consider the following idealized model for combat between two

homogeneous forces (see Note 2)

dx/dt = -a(t)y, dy/dt = -b(t)x, (1)
with initial conditions

x(t=0) = Xy and y(t=02 = yp,

where t=0 denotes the time at which the battle begins, x(t) and y(t) denote the
numbers of X and Y at time t, and a(t) and b(t) denote time-dependent Lan-

c attrition-rate coefficients. We will refer to (1)"as variable~coefficient

r-type equations of modern warfare in honor of the pioneéering military opera-

[ [21] (241,

ons research work of F. W. Lanchester 7] (see TAYLOR and Taylor and Brown

Other forms of Lanchester-type equations appear in the literature, but we will not con-

[14] [21]).

sider these here (see DOLANSKY and Taylor The Lanchester-type equations (1)

yield the X force-level equation

d2x/dt? - {d ¢n a(t)/dt}dx/dt - a(t)b(t)x = O, (2)
with initial conditions

x(t=0) = x and {[1/a(t)]dx/dt}t=0 e P

0’
Although combat between two military forces is a complex random process, such
an idealized deterministic model of the combat attrition process is frequently employed

9
to provide insights into the dynamics of combat (see, for example, BONDER and FARRELL[ ],

Bonder and Honigtlo]. TAYLOR and PARRY[28] [29]).

, or WEISS The reader may consider (1)
to model combat in which both sides use aimed fire and target acquisifion times are inde-
pendent of the numbers of firers and targets (see Note 3). New operations research
techniques (see, for example, Bonder and Farrelllg]. and CLARKIIZ]) for forecasting
temporal variations in fire effectiveness (caused by, for example, changes in force
separation, combatant postures, target acquisition rates, etc.) have generated interest

in such variable-coefficient combat formulations.

3

i - ————




Without loss of generality, we may take a(t) and b(t) to be of the form
a(t) = kag(t), and b(t) = kbh(t), (3)

where g(t) and h(t) denote the time-varying factors of a(t) and b(t) such that
a(t)/b(t) = ka/kb for g(t) = h(t). In other words, ka and kb denote '"scale"
factors chosen so that the case of constant coefficients corresponds to g(t) = h(t) = 1.

A large class of tactical situations of interest can be modelled with the follow-

ing general power attrition-rate coefficients

a(t) = ka(t+KS)", and. b(t) = kb(c+x<s+x0)", (4)

where KS,KO 2 0. The modelling roles of K
[24)

S and KO are discussed in Taylor and

Brown We will call K the starting parameter, since it allows us to model

S
(with u,v =2 0) battles which begin within the maximum effective ranges of the two

systems. We will call KO the offset parameter, since it allows us to model (again,

with u,v 2 0) battles between weapon systems with different effective ranges. Restric-
tions that must be placed in v and Vv, which are not necessarily integers, are
discussed below.

Let us take a few moments to motivate our above notation and further indicate

possible applications of our results. Consider BONDER'S[4’6] constant-speed attack
on a static definsive position modelled by
dx/dt = -a(r)y = -ao(l-r/Ra)uy, dy/dt = -B8(r)x = —Bo(l—r/RB)vx, (5)

where up,v 2 0 and Ra denotes the maximum effective range of the Y weapon system.

Then the starting parameter and the offset parameter are given by
Ks = (Ra-RO)/v’ and Ko = (RS-R“)/V’ (6)
where R_ denotes the battle's opening range and v > 0 denotes the constant attack

0

speed. Hence, KO,KS 20« RB 2 Ra 2 R

should have no trouble in understanding our terminology for KS and Ko. In the model

0 By considering (6) and Figure 1, the reader

(5) u, for example, is used to model the range dependence of Y's attrition-rate

\

4
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coefficient (see Fijure 2). Observing that range is related to time by r(t) = RO-vt,

we readily see that the longest the battle can last is given by tmax - Rolv, at which

time zero force separation is reached.

When the offset parameter is equal to zero (i.e. K0 = 0), then the coefficients

(4) reduce to

a(t) = ka(t+Ks)u, and b(t) = kb(:+xs)". (7)

We will refer to (7) as power attrition-rate coefficients with "no offset. The purpose
! P

(24]

of this paper is to extend our previous results and introdu.e new power Lanchester
functions that allow more information to be more conveniently extracted from the model
(1) with coefficients (7). Specifically, one would want to obtain information such as:

(Q1) Who will "win'"'? Be annihilated?

(Q2) How do force levels decrease over time and how many survivors will the
winner have? -

(Q3) How do changes in the initial force levels and weapon system parameters
affect the outcome? Is concentration of forces a good tactic?

(Q4) How long will the battle last?

To conveniently answer questions (Ql), (Q3), and (Q4) a redefinition of the Lanchester-~
Clifford-Schldfli (or LCS) functions is required. Moreover, not only are results for
the coefficients (7) of interest in their own right but they also provide much valuable
information about the general case (4).
2. RePRESENTATION OF SoLUTION IN TERMS OF GENERAL LANCHESTER FUNCTIONS

In this section we discuss how to construct the solution to the X force-level
equation (2) in terms of certain basic building blocks that we have chosen to call
general Lanchester functions (GLF). We feel that these GLF should be chosen according
to the guidelines shown in Table I. Special cases of these general considerations have

[24] [27]‘

been given by Taylor and Brown and Taylor and Comstock

Let us introduce the GLF l? = (x1 xz) and Z? = (y1 yz) which satisfy

x = ra(t)Ly, y = (/K)b(e)Lx, (8)
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TABLE I. Requirements for General Lanchester Functions

(R1): They can be used to construct the solutions to the X and Y

force-level equations.
(R2): They should be as "simple'" as possible.

(R3): A given set of functions should apply to as large a class of
battles as possible.

(R4): They should be nonnegative.
(RS): They should reduce to elementary transcendental functions in
special cases such as a constant ratio of attrition-rate

coefficients.

(R6): They should provide as much information as possible about model

behavior.




where without further specification k mway be any positive constant and L is any
2x 2 square matrix such that L2 = I. [The initial conditions for (8) are to be
chosen so that the requirements of Table I are met and are discussed below.] Then p3

satisfies the vector equation
X-{dna(t)/dt}x-a(t)b(t)x = 0. 9

In other words, both 3 and X, satisfy the X. force-level equation (2), and
similarly Y1 and Yy satisfy the Y force-level equation.

Let us now investigate all the possible forms for the above GLF. Intuitively,
we would expect two possibilities (keeping the requirements of Table I in mind):
exponential-like functions (one strictly increasing and the other strictly decreasing)
and hyperbolic-like functions. [We are reminded of these two possibilities by the
well-known constant-coefficient results.] Two such types of GLF appear in Taylor and
BrownIZA] (hyperbolic-1like functions) and in Taylor and Comstock[27] (exponential-like
functions). We will sho& that these are the only two possibilities if the requirements
of Table I are to met and show the relationship between these two types of GLF.

It is readily shown that any 2x 2 matrix such that LZ = I must take one of

five forms.

LEMMA 1: If L2 = I, then L must take one of the following five forms: (A)

a B 1 0 -1 0
( ) with B # 0, (B) ( ), (c) ( ), (D) L=1, or
(1~a2]/8 -a ¥ el Y 1

(E) L=-I, where a, B, and y are unrestricted with the exception that

8 # 0.

If in addition L = LT and ]Ll = -1, then L 1is an orthogonal matrix and must be

of the form

cos ¢ sin ¢
L -( ) (10)
sin ¢ -cos ¢
T
It seems reasonable to give our Lanchester functions symmetry by requiring that L =L .
(24)]

We observe that the hyperbolic-like GLF of Taylor and Brown correspond to




-

LH - (0 1). In order that (R4) of Table I be met for a constant ratio of attrition-
1 0
rate coefficients, i.e.

a(t) = kah(t), and b(t) = kbh(t). (11)

we know (see Taylor and Brown(zal) that we should choose k = ka/ka so that

A" ka/ka a(t)Ll, 1" Vka/kb b(t)y§. (12)
The general solution to the X force-level equation (2) is given by
x(t) = Efﬁ’ (13)
Introducing the 2x2 matrix
;t_T(t)
S(t) = ( ) ’ (14)
T T
X (t)L

we obtain from the initial conditions to (2) that

X

c= s'l(t=0)( . ) ; (15)
% ka/kb Yo
Observing that
i iyt X1 () xT(t)
< |s(t)]| = + ,
dt x?(t)LT i?(t)LT

we readily see that |S(t)| = constant Yt e(t0,+0), where ISI denotes the determinant

of the square matrix S. Thus, we may take

|s(t)| = constant. (16)

Let us also observe that

fu']/ka a(t)|s(t)]| = W(x,,%,), a7

where W(xl.xz) denotes the Wronskian of X, and X,-

Now let us subject the fundamental system of solutions X to linear trans-

formation

- Ax, (18)

>

such that the form of the equations (12) remains invariant, i.e.

10

—




e

4 ®

fz_- A 7k, ao)fy, i- vk T, b(t)ix, (19)

- - -
where L again is such that L = 1I. If L 1is given, it follows that

y = LALy. (20)
Furthermore
sT(t) = as™(v), (21)
so that
]g(t)] = |A]+|s(t)| = constant. (22)
We also observe that W(il,ﬁz) = ]AIW(xl,xz)f Considering the quotient of the two
general Lanchester X-functions (GLXF)
n(t) = xl/xz, (23)

we see that under the linear transformation (18) we have
5 B 2
dn/dt \|A|/(a12n+a22) }dn/dt. (24)

We now show that the only possible GLF that satisfy the requirements of Table I
(corresponding to L = LT) are the exponential ones shown in Table II and the hyper-
bolic ones shown in Table II1I. According to Lemma 1 if L2 = I, then L must take
one of five forms. It is imposéible to have L = -1 and satisfy (R4) of Table I (see
Note 4). If L =1 and we try to specify the "simplest" initial conditions [i.e.
specify initial conditions such that the GLF take the “simplest" form (satisfy (R2) of
Table I)], we find that we may take L to have one of the three remaining forms (see
Note 5). If we require that L be symmetric for simplicity [requirement (R2)], then
L 1is an orthogonal matrix with the form (10). If in (10) we take cos ¢ and sin ¢
equal to -1, 0, or 1 in order that the GLF take the "simplest'" form, we find that
the only two distinct possibilities for L are LE and LH as given in Tables II
and III (see argument given in Note 5). Thus, we have shown that if we wish to con-
struct the solution (13) to (2) by using GLF with the properties given in Table I,

there are essentially only two possibilities: the exponential-~like GLF introduced by

11




Table II. Exponential-Like General Lanchester Functions

N

X (D) = (Ey(65Q%) Ef(£;0%)), yp(e) = (Ey(eiQ®)  Eg(tiQ%)

B(emt) =.(1/Q* 1),  yp(t=e) = 1 Q¥

|sE(c)| = -2

12




Table III. Hyperbolic-Like General Lanchester Functions

1o ox(0) = (5,(8) € (6)), =~ yp(e) = (5,() Cy(e))

2. g;(tao) -l x_:(mo) - (0 1)
oo o
3 L, =
L e
4 [8Ced} = <t

13
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I . RN RS,

-

(27] (24]

Taylor and Comstock and the hyperbolic-like GLF introduced by Taylor and Brown
We call the quantity Q*, which appears in the initial conditions for the

exponential-like GLF, the parity condition parameter. It is chosen so that (see Note 6)

E;(t;Q*), E;(t;Q*) >0 for all finite t 2 t (25)

0°
It may be considered to be the enemy force equivalent of a friendly X force of unit

(27]

strength. Taylor and Comstock show how knowledge of the parity condition parameter
allows one to predict force annihilation from initial conditions without explicitly
computing force-level trajectories. We obsegye that the exponential-like GLF cannot
be computed until one has solved the associated auxiliary parity-condition problem[27]
(i.e. knows how to predict force-annihilation). For this reason and others (see Taylor
and Comstock[27]), the exponential-like GLF are mainly of theoretical importance.
Moreover, in the next paragraph we show how the exponential-like GLF provide valuable
force-annihilation information about the hyperbolic-like GLF.

We now show that the limiting value of the quotient of the two hyperbolic-like

GLXF, n, = Sx/Cx, is equal to the reciprocal of the parity condition parameter,

H
i.e. (30) holds. We know that the two types of GLF are related by a linear transformation

i Afg‘ (26)

From (21) at t = 0, we have

whence
1/2 -1/(2Q%)
o ) an
Q*/2 1/2
Considering (23) and (26), we see that
ny(t) = {allnE(t;Q*)+312}/{a21ng(t;Q*)+a22}- (28)

Recalling that n,(t;Q*) = E;(t;Q*)/E;(t;Q*) and 1lim E;(t;Q*) = 0, we see that
t+eo

14
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lim nE(t;Q*) = 4o, (29)
tto
so that by (27) and (28)
lim n (t) = 1/Q*. (30)
tdoo

This result (30) is highly significant because it leads to a computation method for
determining Q*. Moreover, in the future we will show how the LCS functions introduced
in this paper (see Section 5 below) play a crucial role in such numerical determinations.

Let us further note that (24) reads
- *n- 2
dn,/dt = {2/(Q ngtl)“ldng/de, (31)

so that both nE(t) and nH(t) are strictly increasing functions of t, since

dng/dt = 2Viq [k, a(t)/{E;(t;Q*)}zo

3. CONSIDERATIONS FOR THE CHOICE OF GENERAL LANCHESTER FUNCTIONS

In Table I we give the general requirements that we feel should be placed upon
GLF. These requirements are motivated by the properties possessed by the functions
(namely, the exponential and hyperbolic ones) that one uses to construct the solution
to (1) in the constant-coefficient case.

We ;pecify (R3) so that as few tabulations of GLF as possible will be required.
Consequently, we specify the initial conditions for the GLF at to = max(tg,tg),

where tx denotes the largest finite singular point on the t-axis for the X force-

0
level equation (2) (see reference 24). Thus, a(t) and b(t) are positive continuous
functions VYt c(t0,+w). Since at most one of x(t) and y(t) can vanish in [0,+®)
(see Note 7), we have what the mathematician calls a nomoscilliatory solution to (1).
In this case we can construct the solution to (2) out of nonnegative components and
will find it convenient to do so.

As we have shown above, there are essentially only two types of GLF that
satisfy the requirements of Table I: the exponential-like GLF of Table II and the

hyperbolic-1ike GLF of Table III. We feel, however, that the hyperbolic-like functions ,

are to be preferred for two reasons: (1) they apparently are more convenient for
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parametric studies in which one might, for example, want to vary initial force levels

(24]

or some measure of relative fire effectiveness ; and (2) accurate values of the
exponential-like GLF are, in general, difficult (in fact, essentially impossible for
large values of t) to determine, since their initial conditions depend on the parity
condition parameter Q* (see Note 8). In terms of the hyperbolic-like GLF, the

solution to (2) is given bylza]

x(t) = xO{CY(t==0)cx(t)—sy(t:-«O)sx(t:)}—yov’ﬁa/kb {Cx(c=0)sx(t)-sx(t=0)cx(:)}. (32)

We observe that for t, < 0, for example, Cx(t=0) > 1 and Sx(t=0) > 0 so that

0
except for the quasi-autcnomous case in which a(t)/b(t) = constant (see Note 9), the
solution (32) only simplifies when t., = 0 (see Theorem 1 of Taylor and Brown[zal)

0
(see Note 10).

Unfortunately, the power Lanchester (or LCS) functions introduced by Taylor and

[24]

Brown were inappropriately defined to yield all the information soﬁght about the
combat model (1) with power attrition-rate coefficients (7). In particular, the time
at which a side will be annihilated cannot be determined (without the explicit caICUL
lation of the entire force-level trajectories) from the initial conditions. Subse-
quent work by Taylor and Comstock has yielded a theory of force-annibilation prediction
The purpose of the paper at hand is to redefine the power Lanchester functions in light
of these subsequent results. We also thought it important to present the general
considerations behind this selection of canonical Lanchester functions.

Moreover, the form of the LCS functions is simplified and insight gained into
the dynamics of combat by transforming the battle's time scale. Thus, certain trans-
formations of variables may be desirable in the development of hyperbolic-like GLF,

and the specifications of Table III should be interpreted as being '"symbolic" and not

taken literally.

16
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4, A TrRANSFORMATION TO NorMALIZE THE BATTLE'S TIME ScALE
BY THE INTENSITY oF COMBAT
Let Jt... ds denote an indefinite integral, denote the relative effectiveness
as R(t), 1i.e.
R(t) = b(t)/a(t), (33)

and let K be an arbitrary constant to be conveniently chosen. Then Theorem 2 of

[24]

Taylor and Brown may be stated as follows.

THEOREM 1: A necessary and sufficient condition to be able to transform
the X force-level equation (2) by a transformation of the independent
variable t 1into a linear second order ordinary differential equation with

constant coefficients is that
[d{2n R(t)}/dt]/Va(t)b(t) = CONSTANT,

and then the desired substitution is given by
t
T =K I va(s)b(s) ds.

We observe that Theorem 1 says that we can transform the X force-level equation to
a constant coefficient one if and only if d{2%n R(t)}/dt = CONSTANT. We also assume

T that the following condition holds.

t . t
CONDITION (A): J a(s)ds and I b(s)ds are bounded for all finite

t t

0
tz,t0°

0

If Condition (A) is to hold, then for the power attrition-rate coefficients (7) we
must have u,v > -1.
Motivated by both Theorem 1 and the well-known constant-coefficient results,

we introduce the new independent variable 1t defined by

t
T = I Ya(s)b(s) ds. (34)
%o
17




By Condition (A) and the Cauchy~Schwarz inequality for integrals (see p. 123 of BELLMAN
the integral in (34) is well defined (i.e. bounded). The transformation (34) has an

inverse t(t), since dt/dt > 0V t > to: We also define

T = t(t=0). (35)

We observe that for t. < 0 we have T, 2 0. Recalling the constant-coefficient results,

0 0
we will call the quantity Ya(t)b(t) the "intensity of combat" (see also Taylor and

Parrylza]); since the larger it is, the more quickly the battle is moving towards ter-

i t
mination. The average intensity of combat is given by va(t)b(t) = (1/t) j va(s)b(s) ds.

Then we have 0
t P Pt N
Tty - {@1/¢) J Ya(s)b(s) ds}t = Ya(t)b(t) t. (36)
0
The substitution (34) transforms (2) into
d2x/dt?+ (1/2){d &n R(t)/dt}dx/dt - x = O, 37

with initial conditions

{Rllz(t)dx/dT}Tsr = ~Yo

0

Theorem 1 tells us that unless (37) is a constant-coefficient equation, it is impossible

x(t-to) = Xy and

to transform the X force-level equation (2) into a constant-coefficient equation by
a transformation of the independent variable alone. Also, equation (37) is highly
significant because it clearly shows us that the course of combat depends on just two
weapon-system parameters: (1) R(t) = b(t)/a(t), the relative fire ;ffectiveness
(X to Y) of the two combatants, and (2) I(t) = /Z?EYE?E{, the intensity of combat
(through equation (34), which relates I(t) to 1t). Both these parameters may vary
over time. In particular, from (37) we see that the nature of temporal variations in
relative fire effectiveness will have a significant effect upon the course of combat.
For the power attrition-rate coefficients with no offset (7), the transformed

X force-level equation (37) becomes

18
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e

d?x/dt?+ {(2q-1)/t}dx/dt-x = 0, (38)
with initial conditions

and (/2% Nax/an) = -y AT (Ao / (uar2)) 297,

x(T'TO) = Xg»
where q = (v+1)/(p+v+2) and

p+v+2)/2

T =) (z/kakb/(u+u+z))(c+xs)( (39)

+u+
Gt 2)/2. Let us observe that Vu,v > -1 we have

Hence, Ty = (ZVkakb/(u+v+2))KS
0 <q< 1. Furthermore, q > 1/2 ® dR/dt > 0, i.e. R(t) 1is a strictly increasing
function of time.

5. LANCHESTER-CLIFFORD-SCHLAFLI FuNcTIONS

Consider the function Fa(x) defined by the power series

-]
F () =T I (x/2)2/0ktT (b)) (40)
k=0
For a # 0,-1,-2,... the radius of convergence for Fa(x) is infinite by the ratio
test for convergence of power series (see, for example, KNOPP[16]). Hence, Fa(z)

is an entire function of the complex variable 2z = x+ iy with an essential singularity

at the point at infinity. Now consider the function Ha(x) defined by the infinite
series

Ho (0 = T@ [ /2% gar (et} (41)
k=0

Observing that

H () = (1/a) (x/2)°F, (), (42)

o+l

we see that for o > 0 the infinite series (41) is uniformly convergent on compact

subsets of the complex plane. From (42) we can readily deduce the recursive relation

(43)

F (x) = F_ )+ {(x/2)%/[a(a+]) ]IF_, (x).

We will call the functions Fa(x) and Ha(x) Lanchester-Clifford-Schlaf!i functions

(see Note 11). Other properties are readily deduced and are given in Table IV.

19




Table 1V. Properties of the LCS Functions Fa(x) and Ha(x).
1. dF /dx = (x/2)' 2%, ()
2. dH /dx = /)P TIE ()
3. Fa(x)Fl-a(x) -Ha(x)H]_a(x) =1 Y x
where @ 1is not an integer (including zero)
&. F, (x=0) = 1
5. Ha(x=0) =0 for o >0
6. dFa/dx(x-‘-O) =0
1 (/%% fax) = 1
8. Fllz(x) = cosh x
9. Hllz(x) = sinh x
20
- — —— .
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i

e . .

The function Fa(x) satisfies the second order ordinary differential equation

szu/dxzi-{(Za-l)/x}dFa/dx-Fa =0, (44)
with initial conditions
Fa(x=0) = 1. and dFa/dx(x=0) =0,
while Ha(X) satisfies
2 Vi - - =
d Ha/dx {(2a l)lx}dHu/dx H, 0, (45)

with initial conditions (for a > 0)

H (x=0) = 0, and (/) %an fax) = 1.
Thus, ({F ,H; .} 1s a fundamental system of solutions to
d?F/dx? + {(2a-1) /x}dF/dx - F = 0, (46)
with Wronskian W(F_,H _ ) = (x/2)Y7%®. Let us observe that (see Table IIT)
Cylt) = Fo(x(e)),  Sy(0) = (il / uwa) )97 (x (e, 7)
Cy(®) = F((e)),  sy(e) = (il vy 1 2% (x (o)), (48)

where p = 1-q. If we define
T,(x) = H, ()/F (x), (49)
then
- - =R 29-1
ng(t) = Ty (t) Sx(t)/Cx(t) (Vi ko / (utvt2) } Hp(r(C))/Fq(r(t)), (50)
where Tx(t) denotes a hyperbolic-like GLF. Observing that 1lim 1(t) = +*, we see

trteo

that Tu(x) is a strictly increasing function of x Vxe[0,+») and

0= Tu(x) < I'(l-a)/T(a) for 0 S x < 4, (51)
with
1im Ta(x) = I'(1-a)/T'(a), (52)
X+
21
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since by the value of Q* determined by Taylor and Comstock 27) for the power attrition-

rate coefficients (7), denoted as Q*(u,v,K0=0), we have (see (30) and (50))
lim T, (t) = 1/Q*(u,v,K=0) = {/k kb/(u+v+2)}2q’1r(p)/r(q).
e .

Comparing (38) and (46), we see that the solution to (38) is given by

x(t) = xo{Fp(to)Fq(t(t))-Hq(ro)Hp(r(t))}

2q-1

—yOVEa/kb{Vkakb/(u+v+2)} {Fq(ro)ﬂp(r(t))-Hp(ro)Fq(T(t))}. (53)

The time to annihilate X 1is determined by x(t=t;) = 0 and thus

a B q-p
Tq(r(tx)) {onp(ro)+y0/§ /kb(/kakb/(u+v+2)) HP(TO)}/

a

q9-p
(xoHy Iy e I (A i/ G2 SPF (), (50)

a

where Tu(t) is given by (49) and from (51)
0s Tq(T) < T(p)/T(q). (55)

For LO = ~Ks = 0, (54) simplifies to

ayy . i P-q
Tq(t(tx)) (xo/y) Vi Tk Gl ko [ (uho+2)) 7 (56)
From (54) and (55) we may deduce the following theorem:

THEOREM 2: Consider combat between two homogeneous forces described by
(1) with power attrition-rate coefficients (7). Assume that these
equations hold for all time and that Y 'wins" when x(tf) = 0 with
y(tf) > 0. Then Y will win if and only 1if

F(@) (xgF (1) 4y T (A / (i) PR (1)} <

a
q-p
F(p) {xgh, (xo)+ygYi, fie (e k7 Gudv2)) TP (1) ).
Tor t. =0 ({i.e. Ks = 0 and 9 = 0), Y will win if and only if

0
xoT(a) < yo/ic Tl (Ve ke / (utvr2)) TP (p) .

22
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6. TaBuLATiONs oF LCS FuncTtions
Tabulations of the Lanchester-Clifford-Schldfli functions are available in two
of the authors' reports, also available from the National Technical Information Service
(see references 25 and 26). These reports contain five-decimal-place tables of the
hyperbolic-like LCs functions Fu(x), Hl—a(X)’ and Tu(x) for values of the argu-
ment x = 0.00(0.01)2.00(0.1)10.0 and various values of the order a. The short
eable!23) contains tabulations for a = 1/2,1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5,3/7, and

[26]

4/7 corresponding to wu,v = 0,1,2,3; while the longer table contains tabulations

for a =1/2,1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5,2/7,3/7,4/7,5/7,4/9,5/9,3/11,5/11,6/11,
8/11,5/13,8/13,5/17,12/17,5/21, and 16/21 corresponding to u,v = 0,1/4,1/2,1,1 1/2,
2,3. As we have seen above in Section 1 (see (5) and Figure 2), such values of u and
v allow one to analyze, for example, a wide variety of range capabilities for weapon

[4,6]

constant-speed attack model (5). These tables have been
(24]

systems in Bonder's
calculated by the recursive methods given in Section 8 of Taylor and Brown
A representative tabulation of the hyperbolic~like LCS functions Fa(x),
Hl-a(x)’ and Ta(x) for a = 3/5, similar to those that appear }n references 25 and
26, is given in Tables V and VI. The values of the argument x are the same as those

used for the tahulation of the hyperbolic functions by ABRAMOWITZ and STEGUNII]. W

e
observe from Table VI and (52) that the limiting value of Ta(x) as x > +° (here
a = 3/5) is quickly reached, with three—decimal-plaée agreegment by x = 4.5.
7. NuMERICAL EXAMPLES
In this section we examine a couple of numerical examples to show some of the
insights that may be gaiﬁed into the dynamics of combat between two homogeneous forces

(4,6] model

from our new results. As in references 21 and 24, we consider S. Bonder's
(5) for the constant-speed attack against a static defensive position. We will focus
on the new results of this paper [in particular, the prediction of battle outcome from

initial conditions without explicitly computing the force-level trajectories (cf.

questions (Ql) and (Q4) of Section 1)]. From the input data given in Table VII, we

23
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Table VII. Input Data for Numerical Examples

p=1l, v=2

ay = 0.06 X casualties/minute/Y unit

8. = 0.6 Y casualties/minute/X unit

0

R = R, = 2000 meters
o B

v = 5 miles/hour

26
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compute the parameter values shown in Table VIII. We observe from Tables VI and VIII
the predicted agreement between TI(l-a)/T(a) and the limiting value of Ta(x) as
x *> +» (see (52)) for a =q = 3/5. We now consider two cases: (I) Ro = 2000

meters, and (1I) RO = 1250 meters.

When RO = 2000 meters (see Figure 3 of Taylor

TO = 0. The maximum time that the battle can last is tmax = 14.91 minutes, since at

this time the attackers reach their final objective (i.e. the defensive position).

[21]), we have KS = 0 and

We now consider the qualitative behavior of the u= 1, v = 2 force-level trajectory

[21]. Theorem 2 tells us that X can be annihilated

shown in Figure 3 of Taylor
® xo/y0 < 0.420. By (56) the annihilation time of the X force is given by

a i = ay
Tq(t(tx)) 3.544 xolyo. For x. = 10, Yo * 30, we have Tq(tx) 1.18122 so that

0

from Table V (using linear interpolation) we obtain T; = 1.009. Hence, (39) yields

t; = 14.24 minutes and r; = 89.8 meters. Further results are given in Table IX.

When R0 = 1250 meters (see Figure 3 of Taylor and Brown[24]), we have

Ks = 5.5923 minutes, 5 = 0.0975, and B ™ 9.32 minutes. Jn this case (again,
for p=1, v =2), X can be annihilated & xO/y0 < 0.382 with [from (54)] the
annihilation time of the X force given by Tq('r;) = (3.565 u+0.223)/(0.156 U +1.004),
where Y, = xolyo. Some further numerical results are given in Table X. Again, these
parametric results should be contrasted with the single u =1, v = 2 force-level
trajectory shown in Figure 3 of reference 24.
8. Discussion

In Section 7 above we have seen how our new definition of power Lanchester
functions (guided by the general requirements for GLF given in Table I) allows one to
conveniently obtain much valuable information about the modél (1) with attrition-rate
coefficients (7) without explicitly computing the entire force-level trajectories (see
Note 12). Previously we were limited to only computing force-level trajectories.

Now we can tell who 1is going to be annihilated and when without explicitly computing

the trajectories (see Note 13). Not only did we answer questions abouat qualitative
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Table VIII. Parameter Values for Numerical Examples

ka = 4.0233 x 10-3 X casualties/(minute)u/Y unit
kb = 2.6979 x 10—3 Y caSualties/(minute)vIX unit
p=2/5, q=3/5

T(p)/T(q) = 1.48951

28




Table IX. Annihilation of the X Force as a Function

of the Initial Force Ratio for

gxolzo)

0.333
0.250

0.200

E;Sminutésk
14.24
11.61

10.19

29

Ro = 2000 meters

E;gmeters)

89.8
443.2

633.2




Table X. Annihilation of the X Force as a Function

of the Initial Force Ratio for Ro = 1250 meters

Sxolzo) Eggminutés) Eigmetersg
0.333 10.63 t
0.250 7.56 235.9
0.200 6.17 422.8

’.

¢ = 9.3 ainutes and x, * x(r=0) = 1.35.
max f
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model behavior (e.g. force annihilation) for specific values of, for example, initial
force levels but also for a range of values of the initial force ratio (i.e. parametric
analysis of model behavior). The results of this paper may be used for other para-
metric analyses (see Note 14), e.g. parametric dependence of battle outcome on attri-

[24]

tion-rate coefficients. Thus, our extension of past results allows one to develop

important insights into the dynamics of combat between two homogeneous forces with

[25,26] of tabula-

temporal variations in fire effectivenesses. With the availability
tions of the LCS functions, one can now analyze such combat modelled by the power
attrition-rate coefficients (7) with somewhat the same facility as he can for the
constant-coefficient case (see Note 15) and thus aid in parametric analyses.

(17]

In his classic 1914 paper Lanchester assumed that the combatants' fire
effectivenesses (as expressed by Lanchester attrition-rate coefficients) were constant

over time and deduced his famous square law
B{x2-x2(1)} = a{y3-y2(t)}, (57)

where a and B denote constant attrition-rate coefficients. It follows from (57)

that (provided there is no "time limit" for the battle)
X will be annihilated xO/yo < Ya/B. (58)

Thus, we see that equality of Lanchester-type fighting strengths depends on two param-
eters: (I) initial force ratio, and (II) telativé effectiveness. When the timing
of military actions is considered, we add a third parameter, the intensity of combat =

ﬁﬁi, to this list of significant combat parameters. No such simple relationship like

the square law (57), which yields (58), holds in general for®variable attrition-rate

coefficients when a(t)/b(t) # constant. However, by transforming the independent
variable t to normalize the battle's time scale by the intensity of combat, we found |
(see equation (37)) that the course of such variable-coefficient combat depends on

only two weapon-system parameters: (I) relative fire effectiveness, R(t) = b(t)/a(t),

and (II) 1intensity of combat, I(t) = va(t)b(t). Moreover, we extended (58) to combat
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modelled with the power attrition-rate coefficients with "no offset" (7) (see Theorem 2).
This is the first time that such a generalization of the square law has been obtained

for the variable-coefficient Lanchester-type model (1) with a(t)/b(t) # constant. We
observe that for Kg > 0 this "exact'" outcome~prediction relation (i.e. necessary

and sufficient condition for force annihilation) involves higher transcendental functions

(here, the LCS functions) and is complementary to the sufficient condition (involving

only elementary functions) given by Taylor and Parrylzs]
[5,7) [12] {2,9]

> 0.
for KS 0

Work by BONDER » Clark , and others on the prediction of Lanchester

[24] for further discussion and

attrition-rate coefficients (see Taylor and Brown
references) has generated interest in variable-coefficient Lanchester-type models.
Interest in the power attrition-rate coefficients with '"no offset" (7) is provided by

(4,6] model (5) and his examination of predicted attrition-rate for various

S. Bonder's
weapon systems (see pp. 196-200 of reference 9). However useful our results may be

in their own right, they have far greater import: (I) they are a model for the treat-
ment of other Lanchester functions and their tabulations, and (I1I) they may be used in

(27] Q* for related

the numerical determination of the parity-condition parameter
attrition-rate coefficients (for example, (4) with Ko > 0). In the future we will
show how our tabulations of the LCS functions play a key role in the numerical deter-
mination of the parity-condition parameter Q* for the general power attrition-rate
coefficients (4) with positive "offset" (i.e. K, ;10).

[24]

We have extended our mathematical theory of variable-coefficient Lanchester-
type equations of ''modern warfare'" for combat between two homogeneous forces in order
to be able to more thoroughly analyze such models. The classic ordinary differential

[15]) were inadequate to supply all the

equation theories (see, for example, HILLE

answers sought about such combat models (cf. questions (Ql)-(Q4) in Section 1 above).

The mathematical theory of the model (1) with coefficients (7) is now nearly as complete
v

as that of the constant-coefficient model. Such results as we have given here are very

useful for understanding the dynamics of combat, i.e. how the trading of casualties
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will be projected over time. H. K. WEISS[30]

has emphasized that such a simplified
model of a combat situation is particularly valuable when it leads to a clearer
understanding of significant relationships that would tend to be obscured in a more
complex model. As is always the case, however, the insights geined into combat
dynamics are no more valid than the models themselves.
9. SuMMARY

In this paper we have introduced new mathematical functions (Lanchester-Clifford-
Schldfli, or LCS, functions) that allow important information (in particular, force-
annihilation prediction) to be obtained without explicitly computing force-level
trajectories for the variable-coefficient Lanchester-type model (1) with power attri-
tion-rate coefficients with '"no offset" (7). Our development was based on new theoretical
considerations: we gave a new general discussion of representing the solutions to the
X and Y force-level equations in terms of general Lanchester functions (GLF) and
gave the general properties that these GLF should possess; we showed that there are
essentially only two kinds of GLF that satisfy these requirements (exponential-like
GLF and hyperbolic-like GLF) and that the hyperbolic-like functions are to be preferred.
Moreover, the exponential-like GLF are an essential theoretical construct, since they
play a key role in determining force-annihilation-prediction conditions (i.e. showing
that the reciprocal of the parity condition parameter is equal to the limiting value
of the quotient of two hyperbolic-like general Lanchester X-functions). We stressed
that such building blocks should be chosen to yield as much information as possible
about the model (and as conveniently as possible). We saw that the analysis of, for
example, the X force-level equation was facilitated by transforming the battle's
time scale and that the only two weapon-system parameters affecting the course of
combat are the relative fire effectiveness and the intensity of combat. These results
extended and unified our mathematical theory of variablejcoefficient Lanchester-type

equations of "modern warfare'" (see reference 24). .
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We then applied our general mathematical theory to the special case of combat
modelled by power attrition-rate coefficients with "no offset." Our new definition
of Lanchester-Clifford-Schlidfli (LCS) functions was required for these power attrition-
rate coefficients in order to answer questions about battle outcome without explicitly
computing force-level trajectories (i.e. to predict battle outcome/force annihilation).

"

The mathematical theory of this variable-coefficient Lanchester-type models of '"modern
warfare'" (modelling, for example, weapon systems with the same effective range) is
now nearly as complete as that of the constant-coefficient model. With tabulations

of the new LCS functions now available, one can study this variable-coefficient model

almost as easily and thoroughly as Lanchester's classic constant-coefficient model.

NoTEs

1. Following terminology introduced in reference 24, we will refer to Lanchester
functions corresponding to the power attrition-rate coefficients (4) with Ko > 0 as

offset power Lanchester functions (see Section 1). The power Lanchester (i.e. LCS)

functions correspond to KO =0, i.e. to the power attrition-rate coefficients with

"no offset" (7).
2. The equations (1) are only valid for x,y > 0. The first, for example, becomes
dx/dt = 0 for x = 0.

3. Further information on sets of circumstances that have been hypothesized to yield

1
the combat equations (1) (with constant coefficients) may be found in BRACKNEY[1 ]

and Weiss[zgl.

4., It is impossible for all a(t),b(t) > 0 satisfying Condition (A) to have

XYy > 0 for 1i=1,2 and all t > to such that x, = -v'il /ka a(t:)yi and Y -
-Jia/kb b(t)xi and xl.xz are linearly independent. If it were possible, then
[s(e)] = -x

+x = C. and without loss of generality we may take CS > 0.

Yo" % " Y
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Introducing u, = xilyi and A = u,-u;, we would have |S(t)l = ylyzA =C. > 0 and

i S
A = v'kb/ka b(t)(u1+u2)A > v’kb/ka b(t)a2 > 0 for t > t, So that A(t) > 0 {is strictly
t
increasing for t 2 to: It would follow that 1/A(t0)— 1/A(t) = »'kb/ka J b(s)ds,
t
0

t
which is impossible for b(t) such that 1lim I b(s)ds = 4=,
ttoo to

5. To keep STRSTR T and y, as "simple" as possible we specify that their initial
values at ty to be either 0 or 1. 1In order that |S(t)| = XY, "%y, # 0, we
must therefore have either xl(t=t0) = yz(t=t0) = 0 and xz(t=t0) = yl(t=t0) =1, or
xl(t-to) = yz(t=t0) =1 and xz(t=to) = yl(tFtO) = 0. We consider the first possi-
bility with similar arguments holding for the second. 1In this first case examination
x> 5" 5% |
i.e. the functions coincide with the hyperbolic-like GLF of

of the differential equations with initial conditions shows us that x1 =S

y1 = Cy, and y2 = SY’

Table III. Thus, we need not consider L = I, since the same results may be obtained

by using another one of Lemma 1's feasible forms for L.

6. We conjecture that some condition like 1im t(t) = 4» 1is sufficient to guarantee
t>+o
that Q* 1is unique.

7. This intuitively obvious result may be proved by observiﬁg the identity

t
I {b(0)x%(0) +a(o)y?(o)}do = x(s)y(s) - x(t)y(t).
8 pos 00
A less obvious fact is that unless at least one of 'L) a(t)dt and L) b(t)dt 1is

unbounded, then neither x(t) nor y(t) need ever be annihilated (see Hillells]).

As an example of this situation, consider the battle with attrition-rate coefficients (7),

-

K. >0, and u = v < -1. Then x(t) = x.cosh e(t)--you/kalkb sinh 8(t), where 6(t) =

S
-1/ (1) Ha sk~ * Sogiicd

0

- 1/ (t4K Let 6_ = {-1/(w1)}{1/k V) > 0 and

finite. It follows that v < -1 and Ks > 0 can be chosen so that even though

x, < yoJEa7kb we have 1lim x(t) = x, cosh 8,y

vk /k, sinh 6 > 0.
(1] s a kb ©

0 0
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8. In general, the value of Q* will not be known exactly. Unfortunately, errors
in the initial conditions for the exponential-like GLF beccome exponentially magnified
over time. The situation is even worse for nE(t;Q*) = E;x(t;Q*) = E;(t;Q*)/E;(t:Q*).
which is used to determine the time that the X force will be annihilated.

(23]

9. The term quasi-autonomous was coined by Taylorlzz] (see also TAYLOR ) to denote

a system of differential equations that may be transformed to an autonomous system (see,
for example, p. 163 of PETROVSKIIIB]) by a change of the time scale. Special cases

of such Lanchester-type equations have been considered by, for example, Farrell[gl'and

[20]. More general (possibly nonlineaf) quasi-autonomous Lanchester-type equa-

k28l

TAYLOR

tions have been studied by Taylorlzz]’[23] (see also Note 4 of Taylor and Brown

10. If we were to specify the initial conditions of the GLF at t = 0 instead of

t=t then (32) would reduce to x(t) = xOE;(t)-yoVka/kb g%(t). However, when the

O’
initial conditions for the hyperbolic-like GLF are not given at tO’ a separate tabu-
lation of, for example, E&(t) must be used for each different value of to

(i.e. Cy = Cx(t;to)).

11. Although the solution to the X force-level equation (2) with the power attrition-
rate coefficients (7) may be expressed in terms of known higher transcendental functions

(21] [24], and Taylor and Comstock(27]), we have chosen

(see Taylor , Taylor and Brown
to introduce the LCS functions, since tabulations of these other functions are not
available for the full range of parameter values of interest in Lanchester combat
theory. For example, we can construct such solutions with modified Bessel functions
of the first kind of fractional order, but tabulations of these (gsg, for example,
Abramowitz and Stegunll]) only exist for a restrictive set of values of the order p
(l.e. p = t1/4, +1/3, *1/2, +2/3, +3/4), where p = (u+l)/(u+v+2). Furthermore,
tabulations of functions corresponding to the quotient of, for example, two GLXF do
not apparently exist at all. Consequently, we have introduced our new LCS functions,
which provide much of the information desired about such battles. The naming of our

LCS functions follows from the facts that a function similar to Fa(x) was introduced
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by LUDWIG SCHLXFLIllgl (1814~1895) in 1867, while a related one appears in a posthumous
fragment of the great English geometer William Kingdon Clifford (1845-18/5) (sce pp. 343-
348 of cLIFForp!'3)).

12. 1In his well-known survey paper on the Lanchester theory of combat, Dolansky[]b]

suggested the development of outcome predicting relations without solving in detail
and/or computing force-level trajectories as one of several problems for future research.
Our Theorem 2 is a step towards this problem's resolution (see also references 22, 27,
and 28).

{10]

13. Bonder and Honig point out, however, that force annihilation may not be the

appropriate criterion for evaluating many military operations, especially when force

(9]

annihilation does not occur. See pp. 192-242 of Bonder and Farrell for a detailed
Lanchester-type analysis of an attack situation for which other "end of battle condi-
tions'" play the major role in the evaluation process. Nevertheless, it is of interest

to know when and why force annihilation will occur.

(8]

14. S. BONDER has suggesied that an increased emphasis be placed on parametric

analyses in systems analysis studies (see pp. 21-22 of reference 8).

15. One significant exception is that the outcome of fixed-force-level-breakpoint

", " = =
: battles (for example, Y 'wins'" when Xg x(tf) Xpp but Ye > Ygp? where tes
| 1 p -
xf, yf denote final values and Xpp denotes X's breakpoint) with xBP,yBP >0 and
a(t)/b(t) # constant cannot apparently be analyzed in the manner described in this

r
paper (see Taylor and Comstock'27]).
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