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PREFACE

This paper was prepared to document a presentation given during
Session II--Weapons Effects Phenomenology-~of the Defense Nuclear Agency
(DNA) Strategic Structures Division Biennial Review Conference held at
the Stanford Research Institute, Menlo Park, California, on 8-10 February
1977.

The purpose of the presentation was to point out some basic lessons
learned from experience during the past few years about material re-~
sponse characterizafion, to identify some of the outstanding problem

areas as brought into focus'by recent efforts, and to highlight some

of the relevant research currently being pursued for DNA by several

laboratories.

;

The presentation was prepared by Dr. J. G. Jackson, Jr., following

a series of discussions with colleagues at Terra Tek, Inc., Stanford

Research Institute, the Air Force Weapons Laboratory, and his immediate
associates in the Soil Dynamiecs Division of the Soils and Pavements Lab-
oratory (S&PL), U. S. Army Engineer Waterways Experiment Station (WES).
Their many contributions are gratefully acknowledged and very much
appreciated.

Messrs. J. P, Sale and R. G. Ahlvin were Chief and Assistant Chief,
respectively, of S&PL during the preparation of this paper. The Director
of WES was COL J. L., Cannon, CE, and the Technical Director was Mr. F. R,

Brown.
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MATERIAL RESPONSE CHARACTERIZATION

Viewgragh 1

In 1969, I described the relatively low pressure uniaxial strain (UX)
and triaxial shear (TX) test data then being obtained in the laboratory
and the various assumptions and adjustments required to develop constitu-
tive properties for the EIP models that were being used in ground shock
calculations.l A typical application in those days involved an Al-only
calculation of near-surface, superseismic motion.

Comparison of vertical particle velocity measurements from PRAIRIE
FLAT with 2D code calculation results tends to indicate that this rather
simplified material response characterization based primarily on vertically
oriented UX tests is not too bad.2 The 1D code result indicates why, i.e.,
the material at the gage location was essentially being subjected to a
Plane vertical stress wave.

But then we became interested in relatively stiff multi-layered soil/
rock sites, craters and crater-induced effects, outrunning regions and
deep motions.

Viewgraph 2

The so0lid lines show measured time of arrival contours and a vertical
particle velocity wave form from the MIXED COMPANY III event. The preshot
calculated arrivals (dashed lines) indicated that we had some materia
characterization problems--and the wave form comparisons proved it.3s

If there is anything that we should have learned from the MIDDLE GUST/
MIXED COMPANY experience, it is the following:

a. We should not overly generalize or grossly extrapolate our data.
The mechanisms or properties that dominate response in one problem simply
cannot be trusted to dominate response in other problems--especially
ohysically dissimilar ones.

b. We should not rely solely on data of any one type or from any one
source. We need both laboratory tests and in situ tests; both have limi-
tations that we should identify--and errors that we should quantify.

c. We should work as hard at analyzing our data as we do at collect-
ing it--and just as hard at understanding why we get what appears to be a
right answer as we do at what appears to be a wrong one.

The following viewgraphs should amplify these lessons as well as pro-
vide some relevant "material characterization" information with regard to
the outstanding mocdeling problems previously listed by Dr. Sandler.’
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Viewgraph 3

The solid lines show horizontal stress and displacement output from
a postshot MIXED COMPANY calculation performed with isotropic models fit
to vertical UX and TX data and a mean stress tension cutoff criterion.
Because tests on the Kayenta sandstone materials had revealed a definite
horizontal-to-vertical anisotropy,” a transverse isotropic version of
the cap model was formulated and the horizontal stiffnesses were in-
creased in accord with the available data trends’ (e.g., hydrostatic
€p/€z = 0.6 for the weathered rock). Vertical properties remained es-
sentially the same as those for the isotropic model., The transverse iso-
tropic calculation with the same mean stress “ension cutoff {dashed line)
clearly demonstrates, at least for this problem, that anisotropy is an
important material characteristic.

The transverse isotropic calculation was then rerun, but with a
principal stress, rather than a mean stress, teusion cutoff. In the cal-
culation with the mean stress cutoff criterion, whenever the mean stress
at a point exceeded the specified cutoff value, it was corrected and the
deviators were set to zero. In the calculation with the principal stress
cutoff criterion, the principal stresses were monitored and corrected in-
dividually. From a purely physical sense, the principal stress cutoff
criterion is more appealing than the simple mean stress cutoff. In any
event, the dotted versus dashed line comparisons clearly demonstrate the
impact that the somewhat arbitrary choice of a tension failure criterion
can have on calculational events.

Viewgraph b

Terra Tek has developed a set of transverse isotropic properties for
MIXED COMPANY sandstone based on data obtained from both field and labora-
tory experiments. They coupled uphole and crosshole field seismic data
with ultrasonic wave velocities measured in laboratory specimens at varicus
angles to the bedding planes to determine the necessary five elastic mcduii.
They used failure data from TX tests at different specimen angles to deter-
mine values for the five transverse isotropic failure surface parameters.9
This data characterizing the anisotropic response of the upper 30 feet of
Kayenta material should not just be filed away; it should be used in a
MIXED COMPANY ground motion calculation.

Viewgraph 5

An isotropic cap model was recently fit to some WES data from vertically
oriented specimens of Frenchman Flat silt. A plane strain CIST calculaticn
with a -1 bar mean stress tension cutoff and one with a -1 bar principal
stress cutoff gave essentially the same peak radial displacement versus
range profile, even though at the 1/2-metre range in the p-cutoff calculation,
the material was experiencing a totally unrealistic tangential tension of
167 bars, while p was still greater than -1 bar.




The hydrostat data indicated stiffer radial than vertical response,
which was fit with the transverse isotropic cap model without changing
the vertical properties from those specified for the isotropic model., A
transverse isotropic calculation with a p-cutoff decreased the peak dis-
placements significantly; shifting to a principal stress cutoff caused
the displacements to increase. These trends are exactly opposite to those
shown in Viewgraph 3. Results such as these should caution us in regard
to iterative model fitting to be sure that we are iterating on the right
properties.

Viewgraph 6

Assumptions regarding initial or lithostatic stress fields can also
affect calculational results. The easiest thing to do is to assume a
hydrostatic gravity condition, since the actual stresses are difficult,
if not impossible, to measure., Terra Tek, however, conducted a series
of large strain-relieved block experiments in a rock outcrop near the
MIXED COMPANY site and concluded that the near-surface horizontal in situ
stresses could be as high as 700 or 800 psi.l0

In order to get a feel for the possible influence of such a stress
field on a MIXED COMPANY-type problem, WES performed calculations for a
500-ton HE airblast sweeping over an elastic-ideally plastic half space.ll
Initial vertical stresses were purely gravitational, i.e., o = vy7 ;
horizontal stresses were defined by AyZ + B , where AyZ refresents the
gravitational component and B an "excess" lithostatic or "locked in"
component. The solid lines depict tangential stress, radisl stress, and
radial displacement at the R = 110 ft/Z = 5 ft location for the hydrostatic
gravity case (i.e., A =1 and B = Q); first the tangential and then the
radial stress hit the 5 psi tension limit. When an excess lithostatiec
stress of 750 psi was specified, the dashed line results were ocobtained.

It seems clear that lithostatic stresses could have significantly
influenced the MIXED COMPANY results. And, if so, what could they do
to a deep-basing problem? But we ought to avoid assuming that lithostatic
stresses have to be large in order to cause problems. Small lithostatic
stress reliefs can significantly alter the response of laboratory test
specimens--and redistributions around CIST cavities and gage boreholes
may be doing more to us than we realize.

Viewgraph T

Laboratory/in situ property correlations may be influenced by loading
rates. The dynamic and static UX test results reported for a low-modulus
sandy clay stratum with about 10 percent air voids at MINUTEMAN Wing V
Site D-1 are shown by the solid and short dashed lines, respectively.12
The dynamic tests had rise times to pesk stress of 7 and 9 msec; the static
test comparison does not indicate much, if any, rate sensitivity.




AFWL conducted a CIST test at this sitel3 and deduced properties
from their gage measurements (long dashed lines) which compare favor-
ably with the laboratory results.l They also made a stress measurement
in the stratum which indicated a rise time to 1000 psi of about 3 msec,
in reasonable agreement with the dynamic laboratory testing rates.

Viewgraph 8

There were three field tests in the clay stratum just below the
groundwater table at the Pre-DICE THROW II site. SRI fired two 256-1b
spherical charges at a depth of 3.7 m, and used their LASS technique to
deduce pesk radial stress/volumetric strain points.15 Spherical loading
behavior is essentially UX, and if the material is rate independent, the
connected points define UX stress-strain relations. Loading times ranged
from 10 to 24 usec. AFWL conducted a CIST at the Pre-DICE THROW II site
and deduced a UX relation for the 3.7-m depth.16 They also had a stress
gage at the 2.4-m range which indicated a rise time of about 0.1 msec to
0.29 kbar (crossc).lT WES conducted dynamic UX tests up to 3.5 kbars on
specimens from two different borings and obtained another relation.l
The laboratory loadings reached their peaks in 40 to 60 msec.

The data seem to be consistent and of good quality, with the only
obvious difference being the loading rates. The key question then is
"what are the loading rates in the event being calculated?" An SRI stress
measurement at the 1.9-m range and 3.7-m depth in Pre-DICE THROW II
Event 1 hit a peak of 8.9 kbars in 20 usec (triangle),l9 in good agreement
with the LASS data. A WES measurement at the 24.L4-m range hit a peak of
0.24 kbar in about 0.3 msec (square),20 in reasonable agreement with the
CIST measurement., But the WES multi-millisecond laboratory loadings are
definitely too slow for water-shocked soils. A UX device with a 1/10 msec
rise time capability is currently being developed which should help. It
would also help to have more data regarding the actual stress rates being
experienced by the earth materials in various regions of interest during
specific explosive events.

Viewgraph 9

High pressure shear failure also deserves attention. Our usual as-
sumption that shear failure envelopes reach a von Mises-type limit at a
pressure generally associated with air void closure does not fit the
static TX data for MIXED COMPANY sandstone obtained by LLL.21 Failure
was defined by LLL as the maximum stress difference if that occurred be-
fore the axial strain reached 5 percent, or the stress difference at
5 percent axial strain. The solid circles indicate maximum stress dif-
ferences obtained by Terra Tek which occurred at axial strains of 15 to
20 percent;22 their stress difference values at 5 percent axial strain
fall on the LLL envelope.23

The LLL data for MIDDLE GUST weathered shale show a dramatic in-
crease in strength at pressures above a kilobar.2% The stress difference




values given for 5 percent and 10 percent axial strain illustrate how a
tailure envelope can vary with the definition of failure. The WeS TX
test data on unweathered MIDDLE GUST shale indicate a lot of "cnaracter"
that cannot possibly be describe " by a single point in v3J! versus p
space.‘25 The dynamic test reached peak lcad in about 25 mSec; SRI is
currently dJdeveloping an oblique plate impact technique which, hopefully,
will provide some high pressure shear data for usec loadings.2

Viewgraph 10

Post-failure response or residual strength is in vogue since AFWL
indicated that their crater calculations correlated better with both
xOA and MIXED COMPANY observations when, after an initial failure, the
failure surface was lowered by eliminating the cohesive strength com-
ponent.27 The physical rationale for this is that some initial loading
(such as an early airblast-induced pulse) fractured the material and
that subsequent waves (direct induced or deep reflected) passed through
oroken rather than intact coral or sandstone.

WES has recently completed a series of residual strength tests for
AFWL on HARD PAN sedimentary rocks. The sandstone specimen was failed
under a confining pressure of 64 bars; then the failed specimen was dy-
namically retested under the same confining pressure. The three lime-
stone tests show a continual degrading of strength with post-failure
strain, which indicates that not only the magnitude of the initial fail-
ure load, but also its duration will affect response to a follow-on wave.
The shale test was conducted on a specimen that already conteained dis-
continuities in the form of horizontal bedding planes. To see what kind
of strength the "fresh joint" could support, a multi-stage static TX test
was run on the failed specimen and a residual strength envelope plotted.
This type characterization may help with jointed rock, block motion and
interface slip studies.

Viewgraph 11

Of more current concern to those developing constitutive models for
MX is the residual strength of alluvial sands due to a breakdown of ce-
mentation. Dynamic UX tests and static TX failure data are available for
a cemented, fine-to-coarse sand with gravel from Luke Bombing and Gunnery
kange (LBGR). AFWL ran a CIST test at NTS Area 10 in a similar material?
and deduced similar properties for use in their baseline MAP calculations.29
After an initial failure, the MAP model failure envelope is dropped to a
parallel line passing through the origin, to represent a loss of cohesion
or breakdown of cementation. In this case cohesion is small, SO the re-
sidual failure envelope in the model is essentially the same as the intact
envelope.

WES just conducted a series of tests on the LBGR material after
it had been thoroughly pulverized to remove the cementation and remolded

Lo o
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to the in situ density. 'lhe results tend to confirm the relative.y neg-
ligible etfect on residual strength; but they slsu inudicate that post-
failure stress-strain behavior should be given some consideration by the
modelers.

Viewgraph 12

g And last, but not least, is pore fluid eftects. Effective stress

i theory is a proven concept used in engineering practice to explain tuae
mechanical response of saturated soils and rocks to low pressure louadings.
It simply states that the total stress acting on an element of soll or
rock with interconnecting pores is equal tc the pore fluid pressure pius
the intergranular or effective stress. In these recent tests on MIX:L
COMPANY sandstone, Terra Tek shows that the effective stress law holds
for pressures up to 4 kbars during both hydrostatic and shear loadings.V
"Dry" in tnis instance means an initial saturation of about 50 percent,

so presumably the structure is lubricated as it would be in the conven-

tional "saturated-drained" case.

Viewgraph 13

Having noted that in calculations of spherically symmetric wave prop-
agation from an underground cavity that the strain response at some distance
from the source is predominantly radial compression in UX followed by
lateral extension at approximately constant axial strain (CX),31 Terra Tek
applied UX load-CX unload conditions to specimens of dry and saturated tuff
and to dry and saturated MIXZED COMPANY sandstone.32 In both cases, they
observed that upon initiation of CX unloading, the dry paths went up on a
negative slope in accord with elastic theory until they reached and followed
an apparent limiting failure surface. The szturated paths, on the otuer
hand, unloaded on a positive slope, which elastically implies negative shear
moduli, etc.

In terms of effective stress, however, the results are gquite logical.
The dashed line is the MIXED COMPANY sandstone effective stress failure en-
velope replotted from Viewgraph 12. The dry rock path indeed moves up untix
it reaches this envelope and then follows it. The saturated path never left
it, i.e., the confining pressures being applied and released simply increased i
and decreased the pore pressures. An "elastic" analogy is Jjust not adequate :
for this two-phase benavior.

Viewgraph 1k

AFWL's CIST-deduced model for a sand stratum below the groundwater table
at the Pre-DICE THROW II site has two failure surf‘aces,l but the physical
rationale for intact-residual failure surfaces is not obvious for this case.
lievertheless, as indicated by the horizontal velocity wave forms calculated
for the 25-ft range, using the two-surface model gave the best fit to the
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CIsT Jatg.33 As indicated by the Mohr stress circles, WiD total stress
TX Jatal® tend to contirm the CIST-deduced initiaul failure surface,

The profile shows in situ stress conditions at the site. At gage
depth, the total stress is approximately 1.5 vbars, the pure water pres-
sure 0.5 bar, and the intergranular or effective stress approximately
1.0 bar. A Mohr stress circle with a minor principal stress of 1.5 bars
was constructed tangent to AFWL's initial failure surface., This circle
was then translated to an effective minor principal stress of 1.0 bar
and a postulated effective stress envelope drawn tangent to it and through
the origin; the resulting etffective @-angle of 35.60 is quite reasonable
for this material.

In order for this effective stress envelope to explain AFWL':c ob-
served loss of shear strength {i.e., down to something on the order of
0.6 bar), the intergranular stress must drop below its initial value of
1.0 bar. A reasonable postulate is that as the CIST pulse propagsated
out through the saturated sand, the overlying soils tended to move up
and relieve the gravity-induced initial intergranular stress, thus causing
the strength to drop and the sand to flow, i.e., blast-induced liguefacticn.

If a stratum of this same sand were to be located at a depth of 330 ft
and subjected to loadings from a nuclear burst, as is being assumed in the
baseline MAP calculations,2 it may or may not experience a similar flow.
it mignt nelp us find out if we were able to perform effective stress
calculations.

Viewgraph 15

The closing comment from the 1969 presentation is quatel;l it stilz
seems to be an appropriate closing, even for 1977.
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