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MECHANICS OF DUCTILE FRACTURE

G. C. Sih
Lehigh University, Bethlehem, Pennsylvania 18015

INTRODUCTION

There are a number of ways in which a metal can deform and/or break into
separate pieces. Even in a simple tensile test, wide variations can be found in
the mode of failure depending on the material and operational conditions. Single
crystals of soft metals such as lead and gold tend to neck and thin out to a fine
point before separation takes place, Figure 1(a). This process of surface cre-
ation is more appropriately described as deformation rather than fracture and is
relatively simple to analyze which will not be discussed further. At the other
extreme for materials such as glass and hardened steels, very little deformation
is observed before breaking, Figure 1(b). The more common types of fracture are
those occurring in polycrystalline materials which show some necking or deforma-
tion and then break leaving fracture surfaces* with a characteristic shape such
as a cup-and-cone shown in Figure 1(c).

The situation in Figure 1(c) is most complex and cannot be adequately treated
by the classical fracture mechanics theory [1] originally proposed to explain
brittle fracture. Deformation of moderately ductile metals is normally accom-
plished by the formation of tiny cavities or voids that eventually coalesce to
form a macrocrack in a plane normal to the applied load, although this may be a
zig-zag shape on a microscopic scale. As this crack moves towards the free sur-
face, triaxial stresses are set up in the material and the specimen undergoes both
shape change (distortion) and volume change (dilatation). This process continues
until an instability point is reached at which time the crack runs out of the
specimen at an angle to the original crack plane, Figure 1(c). This change of
direction may either form the cone on the upper half and cup on the lower half
of the specimen or vice versa. The choice depends on a small nonalignment of the
crack with the mid-plane of loading as discussed in [2,3].

*The problem of whether the fracture is transgranular or intergranular will not
be addressed here since the analysis to follow will not include the microstructure
of the material.
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Fig. (1) - Types of fracture

A similar phenomenon is observed in the fracture of moderately thick plate
specimens with a through crack such that the combinations of material properties
and plate geometry would not satisfy the ASTM requirements [4] for plane strain
where the smallest geometric length parameter must be greater or equal to
Z'S(ch/oys)z' Here, K1c is the valid critical Mode I stress intensity factor

and °ys the yield strength of the material. Figure 2 shows that the critical
*
stress intensity factor Kc becomes ch or geometry independent only when the

plate is sufficiently thick. The fracture surface appearance as shown in Figure
3(a) 1s almost all flat, i.e., the through crack grows in its initial plane nor-
mal to the applied load. As the plate thickness is decreased, the crack will
initially tunnel and then deviate from its own plane near the plate surfaces
forming “shear 1ips". The crack growth is stable at first advancing from its
initial configuration in a planar fashion marked by the dotted area in Figure

*
Kc should not be referred to as the plane stress fracture toughness value be-

cause the mode of fracture for this specimen is in no way related to the plane
stress plasticity crack solution.
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3(b) with a curved front. Upon reaching the point of instability, the curved
crack breaks through the plate. This can be traced on the loading history curve.
Again local conditions will determine whether the shear 1ip will form on one
crack surface or the other. Further reduction in plate thickness leads to the
dgcreas: of flat surface, Figure 1(c), and a slanted fracture pattern is finally
observed.

In order to predict the aforementioned ductile fracture phenomenon, it is
necessary to have a fracture criterion that is amenable to analyzing mixed mode
crack propagation. The regions of distortion must be distinguished from those
undergoing large dilatation such that prediction on crack trajectory can be made.
On physical grounds, distortion is associated with yielding of the material while
dilatation is associated with crack propagation. Figures 4(a) and 4(b) show that
under symmetrfc loading distortion or yielding is off to the sides of the crack
and dilatation leading to fracture is directly ahead. A description of the duc-
tile fracture process fnvolves the interplay between yielding and crack growth
which is fundamental to the understanding of transition from slow to rapid crack
propagation. That problem is difficult because it not only requires a three-
dimensional elastic-plastic analysis of a finite width and/or thickness specimen
containing a growing crack but a realistic fracture criterion.
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Fig. (3) - Appearance of fracture surfaces
ELASTIC-PLASTIC STRESS ANALYSIS

In order to gain insight into the shear 1ip formation process, a two-dimen-
sional elastic-plastic stress analysis [5] is carried out to investigate the
phenomenon of crack turning during the last ligament growth when it approaches
the specimen surface. :

The numerical calculaticn is based on a two-dimensional finite element pro-
gram employing the twelve node isoparametric element. A special crack tip element

is employed where use is made of *he singularity solution [6] for the stresses and
strains

K
01J = —-T7-(—1——)-r mn Oys f”(e)
(1)

K" %ys
€13 = 17(T+n) £ 95(0)
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while the displacements

up = K0PV TS () (2)

are finite as r+0, the crack tip. When the power hardening exponent n=1, the
functions f1j(e). 913(9) and hi(e) reduce to those for the elastic case with 6

being the polar angle measured from the line of expected crack extension under
symmetric loading. For the elastic-plastic problem, the coefficient* K does not
have the same meanfng as stress (or strain) intensity factor used in the elastic
case. In Eqs. (1) and (2), E is the Young's modulus and a is a material parameter
employed in the Jz deformation theory of plasticity:

n-1
1+v 3 Oaff 9y
€3 " F Si5° el : B oe:f]SiJ (3)

where Oofs is the effective stress. The strain and stress deviators are given by

1 = 1

with €op " [(I-Zv)/E]opp and v is the Poisson's ratio. Hence, the particular

elastic-plastic material behavior is completely determined by specifying E, o and
n.

CENTER CRACK SPECIMEN

For the purpose of numerical calcuation, a center crack specimen with dimen-
sfons of 4 in by 4 in is considered. The specimen contains a crack of length 2a
while 2b designates the specimen width. The far field stress is oriented uni-
axially normal to the crack with a magnitude o.. Material parameters are se-
lected to take the fo11owing values: -

E =1 psi, qy

a=0.5 v=0.3and n = 5.0

g ™ 1 psi

;fhe choice of using K, K" or some combination of K and K" as a fracture criterion
is not clear. It should be cautioned that the form of the singular solution in
Eqs. (1) and (2) was made possible only by assuming that the material in a small
circular or core region surrounding the crack tip yields uniformly. This is ob-
viously not the case. The consequence of such an assumption as to how it would
affect the results in a qualitative and quantitative manner has not been studied
and is sti1l not known. Hopefully,the finite element solution based on Eqs. (1)
and (2) would not be affected seriously at a distance sufficiently far from the
core region.
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Figures 5 show a central crack penetrating through eighty percent of the speci-

men width (a/b = 0.8) while its side has necked in about five percent of the
crack length. The different degrees and pattern of yield are illustrated by the
sequence of line drawings in Figures 5(a) to 5(f) in which O/ %ys is varied from

0.20 to 0.42. Yielding is assumed to take place when the effective stress Ooff

in a material element exceeds the yield stress o

ys’

i.e., Ooff > Opc- The

ys

squares, triangles, etc., are used to signify the various intensities of yield-
ing and the ranges within which they cover are defined as

Square:
Triangle:

Plus symbol:

Multiplication symbol:

=. s T e, n———t

1
Oys < %eff < § (omax'oys)

1 1
3 (omax'st) SY%pr 2 (omax'oys)

(Omax~9ys) < %eff < Tax

3
(omax'°ys)-5 Oeff <72 (omax'oys)

(5)
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Note that the plus and multiplication symbols represent intensified yielding and

. they occur in a region confined close to the crack tip. The intensity of yield-

ing decreases with distances away from the crack tip until no yielding occurs.
For oo/oyS = 0.20 and 0.24, the specimen is still elastic at large except for a

localized zone. As the applied load is increased, the region next to the necked
boundary begins to deform plastically leaving a path of elastic material at an
angle. This is shown in Figures 5(c) and 5(d) where OO/OyS = 0.27 and 0.29.

Further increase in % leads to yielding of the entire section as indicated in
Figures 5(e) and 5(f) for OG/OyS = 0.36 and 0.42. It is important to note that

yielding is not uniform. The higher intensities occur near the crack tip and the
necked boundary.

LAST LIGAMENT FAILURE

The pertinent question is whether the crack would run through the region of
maximum plastic deformation (i.e., highest intensity of yielding) toward the
specimen boundary or would attempt to avoid the deformed material, growing into
the elastic zone in front of the tip and then diverging from the line of sym-
metry to break through the last ligament at an angle*. The strain energy density
criterion [7] has been applied to predict the phenomenon of mixed mode fracture.
The path of minimum strain energy density consistently lies between the region
of maximum plastic yielding and the horizontal axis that connects the crack tip
to the free surface for several specimen configurations. Figure 6 gives the re-
sult for a typical calculation where co/oys = 0.28 and a/b = 0.60. The theory

predicts crack propagation along a path next to the inner elastic-plastic bound-
ary intersecting the surface at an oblique angle.

Although the foregoing results must be regarded as preliminary, they are
nevertheless helpful in gaining insights into the ductile fracture behavior of
metals. An interpretation of fracture modes associated with the relative de-
grees of material ductility is given in Figures 7(a) to 7(d). The fracture path
for a relatively brittle material is mostly flat with yielding localized to the
crack tip region, Figure 7(a). In such a case, energy is dissipated predominant-
1y due to the creation of a free or crack surface. The more ductile behavior
will exhibit appreciable deformation through necking as in Figure 7(b). The path
of fracture will tend to curve as the specimen boundary is approached. Since both
Figures 7(a) and 7(b) show that crack extension prevails in the elastic portion
of the material, the energy required to extend a unit crack extension at global
instability must then be the same. This means that the same fracture toughness
value must apply to the same material that exhibits either brittle or ductile
behavior owing to changes in specimen size. In other words, material constants
should not be sensitive to changes in geometry and size of specimens. A more
detailed discussion on this topic can be found in [8,9]. For the very ductile

‘}; a cylindrical tensile bar, this last ligament forms the cup-and-cone as shown
in Figure 1(c).
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Fig. (6) - Last ligament failure predicted by the strain energy
density criterion

materials* that undergo extensive deformation, it is possible to achieve net

section yield, Figure 7(c).

In that case, the fracture pattern will again be

developed in accordance with the distribution of distortion and dilatation which

can be predicted from the strain energy density theory.

This is being referred

to as the second degree of yielding in Figure 7(d).

Refer to Figure 5(f) for

the details of an actual elastic-plastic stress calculation.

of course be necked considerably by this time and the cup-and-
will be much smaller in size than that of the material in Figure 7(b).

The specimen will
cone when developed
Continuum

mechanics analysis is 1imited to sorting out the regions of distortion (yielding)

from those of dilatation (crack growth as assumed in the strai

*Ductility is known to increase with decreasing specimen size.
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theory [7]). It is the proportion of energy dissipated through plastic deforma-
tion (micro surface creation) and fracture (macro free-surface creation) that
determines the final fracture mode. Generally speaking, it is desirable to bal-
ance these two energy dissipations and hence structural members are often called
to operate in the transition region, Figure (2) for plate specimens and Figure
7(b) for bar specimens.

An extensive amount of experimental work has been done [10] in the past to
show that the critical strain energy density (dw/dV)c is characteristic of the

material undergoing both elastic and plastic deformation. Once (dw/dV)c is

known, analysis may be carried out to predict the allowable load and net section
size of structural members that deform elastically and/or plastically. The re-
lation (dN/dV)c = Sc/ro can also be used to locate the distance r from the

crack front at which failure initiates. The quantity Sc has been known as the
critical strain energy density factor [7].

THREE DIMENSIONAL CRACK GROWTH PREDICTIONS

A three-dimensional finite element program for a through crack in a finite
thickness plate has been developed [11] to examine the phenomenon of crack tun-
neling. The crack front may either be straight or curved depending on the con-
straint* of the plate surfaces. Calculations have been made for various crack
front shapes in conjunction with crack growth modeling based on the strain en-
ergy density criterion. The stress distribution near the crack front is found
to be sensitive to the details of the specimen geometry, material properties and
loading. This suggests that the crack may adapt itself into a natural shape at
which unstable fracture can occur**. Information on the size and shape of this
crack at instability is pertinent to resolving the little understood problem
of thickness size effect.

The aim of this work is to model the stable growth process in a ductile ma-
terial by separately analyzing the influences of crack front geometry and the
contributions from material nonlinearity. The influence of crack front curva-
ture is first examined with the aid of a three-dimensional elastic finite element

e In the more ductile material where shear 1ips are developed the crack profile
can be curved and grow appreciably before instability.

**Experimental observations [13] in the fracture of moderately thick plates
loaded monotonically show that stable crack growth is first initiated in the
specimen interior thereby increasing the front curvature. Instability or rapid
crack propagation is observed to occur at about the time when the shear 1ips
(nonplanar crack front growth) are developed.
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analysis* [12] in conjunction with a local growth criterion to predict incre-
ments of crack growth and corresponding changes in crack front shape. In gen-
eral, both the direction and magpitude of local crack growth from the current
crack front are expected to vary with position along that front. The strain
energy density field surrounding the crack front is the basis for the develop-
ment of the lccal crack growth criterion [8,14]. It is postulated that the path
of growth from each point along the crack edge will follow the minimum strain
energy density path emanating from that point. Further, growth at points along
the current crack front will initiate when the strain energy density at a "core"

distance Fa along the minimum path reaches a preset vaiue (dw/dv)c.

Hence, the continuous growth of the crack front is approximated by discrete
increments of growth. The amount of growth at a point along the crack front in
an increment is taken to be the distance along the minimum strain energy density
path, (dw/dv)min’ to the point where (dW/dV)m].n reaches a preset value**, (dW/

dV)c, which depends on the material properties. Fiqure 8 gives a descriptive

A Plate
2/h=0.0 Surface

i: B
n C  Predicted
= D Growth
o E Increment
g F'M' ane
f id=Plane
zZ
= ()
Z \dV
- ¢
o'
’—
n

o)

RADIAL DISTANCE

Fig. (8) - Crack growth prediction based on strain energy density

A The effect of material nonlinearity due to plasticity will be presented in
another communication.

*'This value of (dw/dv)c can be determined experimentally for a particular ma-
terial [11].
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plot of strain energy density (dw/dV)m1n against the radial distance r in a plane

" normal to the applied load from the associated points A, B,---, F on the crack

front. The new crack profile is*determined from the various values of r and
z/h on the graph where (dw/dV)C intersects. The selected value of (dH/dV)c

will obviously affect the magnitude of growth and shape of the subsequent crack
fronts.

The numerical results for a specific example are shown in Figures 9 to 11.

z2/h=0.372
P
«~N
o 0.440
» 0.460
3|> 2~ 0.476
b B Straight Crack Front
w|~b° aake (ro/a=0.025)
>-
=
n
Z
w
=R
>-
©
@
w
=
W
Z
- 1 | | i | "PEERD
E 0 0.5 1.0 1.5 2.0

-2
CRACK FRONT RADIAL DISTANCE —::— x 10

Fig. (9) - Strain energy density variation along a straight crack
front
The normalized strain energy density (E/o;)(dw/dV) is plotted as a function of

r/a for different values of z/h where z is the thickness coordinate measured
from the mid-plane. z/h = 0.5 locates the plate surface. Note that for a pre-
set value of (dw/dv)C less changes in r are observed as z/h is decreased. This

implies that the crack profile undergoes relatively small change in the specimen
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Fig. (10) - Strain energy density variation along a curved crack
front - first increment of crack growth

interior while large changes are observed in regions close to the surface. Fig-
ure 12 displays the predicted crack front geometry with each increment of growth.
The load level is kept constant during this period. The more pronounced crack
curvature near the plate surface is indicative of the fact that the distortional
component of strain energy density increases as the free surface is approached.
This increase occurs even more rapidly for curved crack fronts than straight
ones.

The results in Figures 9 to 12 explain in part why the material near the
plate surface is more likely to yield and to cause tke development of shear 1ips
which in turn provide the constraint to contain crack growth. Crack tunneling
is a consequence of this surface constraint, Figure 13(a). The point at which
the crack overcomes this constraint corresponds to global instability, Figure
13(b), of the specimen; that is, when the specimen looses its structural in-
tegrity. It should be cautioned that nonlinear load-displacement response in
the global sense may not always correspond to material nonlinearity. In this
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Fig. (11) - Strain energy density variation along a curved crack
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case, the influence can be attributed to changes in crack geometry. As men-
tioned earlier, the contribution of material nonlinearity is currently under
study.

At this point, a few remarks with regard to adding a crack-length increment
(that is equal to the calculated one-dimensional plastic-zone size? onto the
original crack length may be in order. This is the usual procedure in fracture
mechanics to correct for plasticity effects. In view of the results of this
investigation, it might be more appropriate to add an average half crack length

a, as in Figure 13(2) with 2(a+ac) being the effective crack length. The cor-

rection a. can be obtained simply by equating the shaded area inside and outside

the tunnel crack. Once the phenomenon of ductile fracture is understood and the
shape and size of these tunneling cracks are calculated for a variety of situa-
tions, there is no difficulty in establishing simple engineering formulas for
design applications.
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