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PREFACE

AiResearch Manufacturing Company of Arizona has conducted
a research study for the Office of Naval Research under Contract
N00014-74-C-0317, Task NR 061-221, to develop rapid efficient
techniques for Navier-Stokes solutions. This document reports
the last year's activity. Previous activities have been
reported and are referenced herein.
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SECTION I
INTRODUCTION

Traditional techniques of solving the Navier-Stokes equa-
tions for compressible separated flow have utilized time-
dependent methods. These methods have, with extensive develop-
ment, steadily improved in both accuracy and computational times.
Recently, however, Dodgel and Dodge and Lieber2 have introduced
a new steady-state solution method for incompressible flow that
splits the pressure and shear forces into two separate equations.
One equation is elliptic, and the other nearly parabolic. Con-
tained herein is a description of the first attempt to extend
this method to compressible flow. Application is made to the
interaction of an oblique shock wave with a laminar boundary
layer. The development was guided by the realization that the
ultimate value of such a method lies not in the solution of two-
dimensional laminar shock boundary layer interactions, but rather
in applications to more complete two-dimensional and three-
dimensional geometries. Although more development to improve
accuracy and further reduce computational times is suggested,
the results to date demonstrate the general viability of this
numerical method. The following sections describe in detail the
basic equation development, numerical techniques, results of the
calculations, and suggestions for accuracy improvements.

SECTION II
EQUATION DEVELOPMENT

The basis of Dodge's equation-splitting solution method
lies in the separation of equations describing pressure and
viscous effects. To accomplish this separation, the velocity
vector W is expressed in the following manner:

W=1ve+ 10T (1)
where ¢ = velocity potential

U = velocity vector reflecting viscous effects
(viscous loss velocity vector)

Equations are then required to solve individually for ¢ and
U.

As an initial step, consider the vector form of the momen-
tum equation for steady laminar flow:

P(WeT)W = = UP + V(AVeW) + Ve (udefW) (2)
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where p = density
P = static pressure
u = molecular viscosity

A = second coefficient of

viscosity
defW = VW + (VW)*
(VW) * = transpose (VW)

Equation (1) may then be substituted for W in Equation (2) as
follows:

p VoeV(V) + pUsV (V) + p(W-V)D

b 4 (3)
= = VP + V(AVeW) + Ve (pdefw)

To treat the static pressure gradient in Equation (3), consider
the density to be described by two terms -- one, p¥*, related

to static pressure and the other, Py related to viscous
effects:

p = p* + Py (4)

The density component p* is defined by

=
E y-1 (5)
p¥ = pl{l = i Ak )
I c. T
pI
where

pi = reference condition of stagnation density
Ti = reference condition of stagnation temperature
CP = gpecific heat at constant pressure

Y = ratio of specific heats

e el R R T — - s s A
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Further, one can show that all possible static pressure gradi-
ents may be represented by

- VP = p* V¢V (Vo) (6)

where p* is selected so that the right-hand side of Equation (6)
is irrotational. Substituting Equation (4) into Equation (3),
combining terms, and using Equation (6) yields

(0 = p*)V6V(Vg) + oUsV(Vp) + p(W-V)T
= V(AVeW) + Ve (udefW) (7)
Equations (6) and (7) coyld then provide the basis for
separate equations for ¢ and U, respectively. However, when
Equation (6) is combined with the continuity equation and the
equation of state, it yields a relation that becomes hyperbolic
for supersonic conditions based upon potential rather than

total velocity. To reconcile this difficulty, a different
approach was taken in the development of the potential equation.

The pressure gradient may be expressed in terms of the

equation of state, as

Y 2 2 y-1 (8)
Vp = Vo + e
a vp a O(YR ) VS

where
a = local speed of sound at static conditions
R = gas constant
S = entropy
Replacing the pressure gradient term in the momentum equation,

Equation (2), with Equation (8), and dotting the resulting
expression with W, yields Equation (9).

W lp(We)W) = = a?(@-vp) - a2p(LsL)Revs
= (9)
+ WeV(AVeW) + We[Ve (udefW)]

The vector form of the compressible continuity equation, given
by

Ve (pW) = 0 (10)

ST s SO
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may be expanded and re-expressed as

=y

'VO s OV'W (ll)

Substituting Equation (11) into the first term of the right-hand
side of Equation (9), rearranging, and dividing by p, yields
Equation (12).

e ((We)W] -2 2(Ved) = - a2 X - Lij.ys
i b (12)
+ W-[%V(AV-W)] 4 We (27 (udefi) )

However, Equation (12) may be recast by replacing W in the left-
hand terms of Equation (12) with the velocity components of
Equation (1). Then, placing all terms involving potential on
the left-hand side of the resulting equation, and expanding the
last two terms, yields the following:

We (W) Ve - aZv?p = a29.T - & [ (W-7) )

—a2 =L, we (L W
a ("7§_“)w VS + W [OV(AV W) 1] (13)

+ W) veW) + (defﬁ)%ﬁ}

Equation (13) thus describes pressure effects in terms of the
velocity potential, ¢. The equation will be elliptic or hyper-
bolic, depending upon the local Mach number, defined in terms of
the velocity, W.

The equation for the viscous loss velocity vector is
developed from the momentum equation, as presented in Equation
(7). The terms on the right-hand side of Equation (7) may be
expanded in the_same manner as for the incompressible case pre-
sented by Dodgel. Then, rearranging, and dividing the resulting
equation by p, yields

Gev7 (Vo) + (Wev)T = (%1 - 1)V6-V (V)
vz ((V29) VA + (V-T)UA + (2u + V)V (9%9)
(04 N)V(VD) + uvdD + 2(7(Y6)] " Vu

+ (defU)Vu} (14)
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When expanded, Equation (14) will produce scalar equations
for the viscous loss velocity components, Uj. These equations
may be parabolized by treating the streamwise diffusion term as
a known quantity from the previous iteration, as discussed by
Dodgel and Dodge and Lieber?.

Because the flow is compressible, an energy equation is
also required. In terms of static enthalpy, the laminar steady-
flow energy equation may be given as

2

p(W+V) (h + ) = Ve (AWV-W)

Sls

+ Ve (WeudefW) + Ve(kVT)

where
h = enthalpy at static conditions
k = conductivity of the fluid
T = static temperature

Expressing enthalpy in terms of static temperature, i.e.,

h=c 7 (16)
p

and expanding the left-hand side of Equation (15), yields
Equation (17)

0 (WeT) (C.T) + & p(WeT)W% = Ve (AWV-W)
+ Ve (WepdefW) + Ve (kVT)
Assuming a constant Prandtl number, Pr, given by

ucC

Pr = —& (18)
k
then conductivity may be expressed as
ucC

k = 3;2 (19)
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In addition, specific heat is assumed to be constant. Thus,
substituting Equation (19) into Equation (17), rearranging, and
dividing by ocp, vields

o 1 ucC
(We?)T = —— v+ [(5=2)v1)

(&
"p
= = 1= 3o (Henw? (20)
P

+ Te (AWV+W) + Ve (Wepdefid)]

Expanding the second term on the left-hand side of Equation (20)
results in the following:

I 1 2
(We?)T - 5= [Vu+VT + uv°T]
=L (- L (F.)w? + v AWV
oC 2
p
+ Ve (WepdefW) ] (21)

Expanding the last two terms of Equation (21) yields

S 1 1 2
(WeV)T - b7 (VuevT) s s CHY )
= 5%— - (Weyw? + A(vem)?

P
> -+ > >
+ u [Ve(WedefW) - We (VedefW)]

+ We [V(AVeW) + Ve (udefW)]} (22)

Substituting the momentum equation in the form of Equation (7)
for the last two terms in Equation (22) gives the final form of
the laminar, steady-flow energy equation in terms of static
temperature:

- 1 2
(We7)T - 5%; (Vue¥T) = 5= (u7°T)

- ok e B otil.orvet iy 2

—p—C-—{Z(WV)W +X(V)
P

+ u [Ve(WedefW) - We (VedefW))

+ pWe [Ue9(Ve) + (W)U

* B %1)v¢~v<v¢)1} (23)

ow ll.l-l-‘v!' ST —— “ - - e O e . ~—w——
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As with the equation for 6, Equation (23) may be parabolized by
treating the diffusion term as a known quantity from the previous
iteration.

Equations (13), (14), and (23) comprise the system of equa-
tions that must be solved to yield ¢, U, and T. In conjunction
with these equations, a set of boundary conditions is required.
Figures 1 and 2 illustrate the boundary conditions on the solu=-
tion space for the elliptic/hyperbolic and parabolic equations.

In Figure 1, the potential velocities Vi, Vmq, and Vg are
determined, based upon the oblique shock equations. The value
of ¢g 1s determined by integrating the values of 3¢/9x] to the
downstream boundary.

The upstream values of U and T in Figure 2 are dependent
upon the corresponding value of W, which is initialized using an
arbitrary boundary layer profile similar to a Pohlhausen profile.
An isothermal plate is assumed, with plate temperature equal to
the reference stagnation temperature.
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SECTION III
NUMERICAL METHODS

Two major numerical solutions are required to implement the
above algorithm: a solution to a mixed elliptic/hyperbolic
potential equation, and a solution to a nearly parabolic viscous-
shear equation. Murman and Cole3, in a pioneering paper,
developed a technique for modifying a difference star with Mach
number, and then using conventional relaxation to solve a
similar e;quation. Modifications to the Murman and Cole method
have been necessary to improve its accuracy, and allow its use
in totally supersonic flow. Dodge4r5 describes such a method
and its application to supersonic inlet, subsonic exit compressor
blades. Murman®, in a subsequent paper, reported further improve-
ments in the basic methods to account for differencing across
discontinuities. From these works, a list of ideal characteris-
tics can be assembled for the supersonic portion of any such
algorithm.

o Region of influence of difference star matches
precisely the region of influence of the
differential equation.

o Across a potential slope discontinuity, the
method must preserve the proper jump conditions.

o The method remains integrally conservative in the
non-discontinuous portion ot the flow field.

Unfortunately, such a numerical method does not now exist.
To assist in the evaluation of the importance of each of

the above criteria, the one-dimensional potential Equation (24)
was studied.

(24)

where
a = sound speed
-
Ve &
¢ = velocity potential
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For the solution to be other than trivial, the flow must enter
supersonically, undergo a jump, and exit subsonically. Boundary
conditions then consist of an inlet Mach number and an exit
potential. By integrating Equation (24) and assuminao an

ideal gas, a jump condition can be derived that relates down-
stream velocity to inlet velocity.

v,") (25)

where
a' = stagnation speed of sound
Yy = ratio of specific heats
V1 = velocity ahead of the jump
V, = velocity behind the jump

The analytical solution ahead of and behind the jump is obviously
that of constant velocity. Jump location is determined by
matching to the exit potential boundary condition using

Equation (26).

EXIT ~ '2 (26)

where

position of the jump

total length of the solution
region (X = 0 is the inlet)
bpxrT = exit potential

*J
L

Consider what happens when the original Murman and Cole method
is applied. Upstream of the assumed jump location, the differ-
ence star is cast in a backwards direction.

(¢i - 2¢i_1 + ¢i—2) =0 (27)
where

¢i = potential at the ith node

10 | ' #
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Note that the value of V2 - a? is immaterial since it is a
non-zero constant at any particular node, and thus divides out.
Downstream of the assumed jump location, the equation is
elliptie.

= = 8
ji+l 2¢i + @i_l 0 (28)

The solution to both Equations (27) and (28) 1s a linear varia-
tion in ¢. An initial guess “or potential would be made.
Equation (27) is solved starting at node 3, and simply broadcasts
forward the initial velocity gradient until a node is reached,
which was initially assumed subsonic. At this point, the sub-
sonic solution proceeds as a boundary value problem with ¢ at

the change-over (supersonic to subsonic) point established by
Equation (27). There is, however, no communication between
upstream and downstream. Thus, the location of the jump never
changes, and the value of the velocity at the jump is only con-
trolled by the initial guess of jump location and potential
variation. No aspect of the physical problem appears in the
numerical solution at the jump. To overcome this, special condi-
tions at the jump must be invoked, as pointed out by Murman® .,

It is, however, immaterial what form is used away from the jump.
A conservative form results in a solution that is no different
from a nonconservative form.

When actually applying methods to introduce upstream-
downstream communication, two classes result. The first class,
into which Murman's method falls, allows the downstream flow to
be adjusted based on upstream conditions. This class allows
only for jump propagation in the forward direction. The second
class, permits the jump to retreat by allowing the upstream flow
to be affected by downstream conditions. Whether the jump needs
+o retreat or go forward is only dependent on the initial guess,
and thus, for complete generality, both classes must be combined
into a single method. For one-dimensional flow, such techniques
are readily generated, the results of which are shown in
Figure 3 for a forward propagating jump and Figure 4 for a
retreating jump. The jump-node region is treated by the fol-
lowing algorithm

bow xhg iy ¥ Beuy = lex) 4y = @

1+l

applied to the node ahead of the jump if D >0,

Ll

3
d
1
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applied to the node behind the jump if D <0

“DOWN
“up

a = vVia'? - 'f’;—l v2)

where DOWN and UP subscripts refer
to downstream and upstream of the
jump.

It is necessary to evaluate the velocity away from the jump,
since values at the jumn, particularly for intermediate ite-
rations, are in significant error.

When the flow field is multidimensional and jumps are other
than normal, the proper procedure is complicated by the lack of
accepted numerical solutions. Murman's method assumes an
oblique jump passing through the grid system at an arbitrary
angle. However, this derivation looses sight of the fact that
the differential equation is left behind when solutions are made
to the finite-difference grid. Discontinuities on a fixed
orthogonal finite-difference system can only have one of three
forms, illustrated by Figure 5. A physically oblique wave must
be made up of discrete components of the three jumps. The normal
jump causes little or no problems, but the other two result in
differencing across a discontinuity. To be totally correct, as
Murman points out, any difference scheme applied to any combina-
tion of the above discontinuities must be integrally (summation
in difference system) conservative of the desired jum» condition.
Even if such a system existed, however, practical problems, such
as detecting a jump and determining proper upstream and down-
stream conditions away from the perturbed region of the jump,
intervene to prevent reliable treatment of jump conditions.

The method by Dodge4 avoids some of the difficulty by only
differencing along characteristic lines, and not differencing
across oblique jumps, which may explain some of its good results.
However, it requires a nonstationary grid system that is diffi-
cult to implement in two dimensions, and is nearly impossible in
three dimensions. Thus, after comparing other methods, such as
the two by Murman, to a range of six supersonic and supercritical
cases, it was decided to mix a nonorthogonal and orthogonal
difference system, staying with a fixed orthogonal grid system.

13
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The degree of mixing was determined as a function of local
Mach number, based upon a criterion developed from a stability
analysis of the basic relaxation difference equation. Figure 6
illustrates the difference stars utilized. 1In simplified form,
the mixing of difference operators is accomplished in the following
following manner:

2 2 2 a2
C i_g + C2 2_2 = [Cl i—z + C2 ——%](fﬂ)
1 ax 3y ox oy
2 2
+ [cl é_% + C, é——%]"f - fH)
X 0%

where f,, represents the fraction of hyperbolic difference opera-
tor uti?ized, and (l-fy) represents the fraction of single-spaced
implicit difference operator. The local value of fy was deter-
mined for supersonic flow to be

fg = =-Cp/C, for (-C,/C;) < 1.0

or

fH 1.0 for (“Cz/cl) i 1,

based upon a stability analysis.

If the variable supersonic difference star is examined in
relation to the location of local characteristic lines, it may
be seen that, as Mach number increases, the difference star
becomes weighted to more closely reflect the region of influence
of the characteristic lines (refer to Figure 7), eventually
becoming totally hyperbolic.

Admittedly, such a system does not meet all the criteria
for a potential equation solver set out above, but represents a
workable compromise between complete agreement with the above
criterion, and the practical constraints of computer code
development.

The viscous equation, on the other hand, represents a much
easier form to implement. Dodgel and Dodge and Lieber? have
discussed many of the difficulties associated with marching
equation solution. For this program, the streamwise diffusion
term was determined from the previous iteration. In separated
flow regions, the difference star for the convection term was
turned upstream, utilizing the values established on a previous
iteration. With these adjustments, the solution to the viscous
equation proceeds as a normal marching solution to a parabolic
equation. The component of velocity normal to the wall in the

15
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region between the wall node and the first relaxation node was,
however, determined from the continuity equation. This was
found in past studies by Dodgel to produce somewhat more
accurate results.

The program developed to implement this numerical solution
method consisted of a modularized code written in a structured
FORTRAN language. A basic logic diagram for the program may be
found in Figure 8.

17
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SECTION IV
CALCULATION RESULTS

The numerical method discussed herein has been utilized to
predict separation of a two-dimensional laminar flat-plate shock
boundary layer interaction flow. The test case used was that of
Hakkinen, et al’, consisting of a laminar flat-plate flow with
an upstream Mach number M, = 2.0, and a Reynolds number
‘ Re;, = 2.96 x 10°, where

| and

13 = freestream inlet velocity
(Wy = 1664 ft/sec)

‘ y) = freestream inlet value of kine-
matic viscosity at static con-
} ditions

' L = distance from leading edge to
shock intersection with plate
(L = 0.1624 ft)

32.59°, intersects

An oblique shock wave, with shock angle 6
the flat plate as indicated in Figure 9.

The grid system employed in the numerical solution consisted
of a linear relaxation grid and a marching grid composed of the
relaxation nodes, with an additional nonlinear grid segment near
the wall. This scheme permits a coarse grid to be used for
the relaxation solution, and yet provides a more finely-spaced
grid within the boundary layer for the viscous marching equation
solution. Figure 10 illustrates the relative spacing of the
relaxation and marching grid nodes within the boundary layer.

Results of the present numerical method were cowpared with
both the experimental data of Hakkinen, and results of the time-
dependent scheme of MacCormack8.

R === ——————————T

Figure 11 compares surface pressure distribution for the
three sets of data. Clearly, the pressure plateau in the region
of the shock/plate intersection is not indicated by the present
method. A much sharper pressure rise is predicted than
evidenced by experiment.
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As a consequence of this too-sudden rise in static
pressure, the predicted values of skin friction coefficient,
C¢, shown in Figure 12, fail to decrease as far upstream as the
experimental data. The predicted region of reversed flow is
also much smaller than that indicated by Hakkinen's data.

The predicted values of Cg¢ are presented as average values
within a bandwidth of error representing the standard devia-
tion of Cf as calculated at as many as 8 nodes within the con-
stant pressure and density portion of the boundary layer. The
skin friction coefficient is defined by

oW

e e gt
ot W W h2 8x2 -
£ 1 2
5 Pl

where the subscript w refers to condition at the wall, and the
subscript = refers to the freestream. A considerable fluctua-
tion in values of 5W;/3x, takes place, apparently due to the
nonlinear character of tﬁe grid system near the plate.

Figures 13 through 15 are comparisons of boundary layer
velocity profiles between the present steady-flow method and
MacCormack's technique. In general, agreement is fair; however,
once again it is apparent that the present method predicts a
smaller region of separated flow, and generally larger displace-
ment thicknesses. Discrepancies in the assumed inlet boundary
layer profile are also apparent. Note that dimensions in the
Xy direction have been normalized by Hf (where Hf¢ = 0.003 ft) --
a grid parameter used in MacCormack's data presentation.

Figure 16 presents static pressure contours over the solu-
tion space, based upon the results of the steady-flow method
discussed here. The incident and reflected shocks are apparent,
along with a spurious downstream reflection from the upper bound-
ary of the region. The effect of the reflection is clearly
visible in the downstream portion of the skin friction and sur-
face pressure curves.
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Figure 14. Velocity profile in region of shock wave.
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SECTION V
HOW TO IMPROVE ACCURACY

Because of time and fiscal constraints, the development of
this method halted with the results shown above. It is the
opinion of the authors, based on an analysis of the computed
results to date, that considerable improvements in accuracy are
possible by improving the accuracy of both the relaxation and
marching numerical methods. The relaxation nodes need only be a
subset of the total grid. However, relaxation 1is responsible for
satisfying the continuity equation. The effects of the increased
displacement thickness downstream of the shock are propagated
forward through the subsonic region of the flow field, creating
the shock spreading observed above. It is of primary importance
that this effect be properly accounted for. Figures 17 and
13 show the results of the above calculation on the mass balance
of each grid element. In the relaxation grid, agreement is very
good; but inside the marching-only region, substantial error
occurs. This error comes about from several sources associated
with the nonlinearity between the last relaxation node and the
wall. A finite-difference approach to numerical method deriva-
tion assumes that a match of appropriate derivatives at a point
yields a reasonable estimate of the founding equation in the
vicinity of the match point. This is only true when variations
in dependent variables are nearly linear, or at most quadratic.
In a boundary layer, such as shown above, this assumption is in
doubt. Substantial errors can occur in the numerical grid trans-
formation, the evaluation of the source term for the relaxation
equation, the evaluation of derivatives across the jump, and the
like. The continuity error shown in Figures 17 and 18 is the
result of the sum total of these effects. Undoubtly, a similar
momentum and energy error also occur. The cure is to first
produce a marching system that is derived from an integral
equation. Thus, it can be integrally conservative through rapid
changes in dependent variables. Secondly, an integral average
for a source term of the potential equation must be established.
As an example, for the position shown in Figure 17, V + U, part
of the source term, differs by a factor of 9 between the wall
and the first relaxation node. The net effects of the source are
not then well modeled by utilizing its value at the relaxation
node, but rather a weighted average across the span would be
needed. A grid system that is more nearly uniform would also
help. It is obvious when examining the skin friction coeffi-
cient, as an example, that for W to deviate so far from linear
very near the wall, there must be substantial error in the com-
putation of the numerical transformation functions. The super
position of two fixed-spaced grids, as utilized by MacCormack,
would substantially alleviate this difficulty.
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SECTION VI
CONCLUSIONS

The purpose of this program has been to compare a unique
method of numerically solving the steady-state Navier-Stokes
equations with experimental data unconfused by turbulent model
cholce. This goal has been met. On the plus side, the follow-
ing can be stated:

o The method has met its rapid speed
potential, with run times in the
vicinity of 1 manute on a €DHEC
7600 for a 3060 node problem.

Run times could be improved sub-
stantially by more careful pro-
gramming, and better selection of
the grid system.

o A suitable method for solving the
mixed elliptic-hyperbolic potential
equation has been developed.

o Iteration between marching and
potential equations converged
rapidly.

o A simple method for handling both

separation and diffusion terms within
the framework of a single-pass marching
equation has been utilized successfully.

o Calculated results are in general agree-
ment with experiment, although pressure
rise is not spread over as great a distance
as experimentally observed.

o A method has been developed that could
easily be extended to three-dimensions.

Agreement with experimental data could, however, certainly
stand improvement. It is expected that the route to such improve-
ment is through a more care® il treatment of the numerical
details involved in the solution technique, and does not reflect
any fundamental limitation of the method.
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