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On Scheffe's S-Method: A Review

A, Hedayat
Department of Mathematics
University of Illinois at Chicago Circle
Chicago, Illinois 60680

Introduction: We shall assume throughout the following model:

Q:Y = XB+e
where Y is an n X 1 vector of observations, X is an
n X p known matrix of rank r, B is a p x 1 vector of

unknown parameters, and e is distributed N(O, 021).

Definition 1. A linear parametric function Y = c'B, where

¢ 1is a vector of known constants, is said to be an estimable

linear parametric function if there exists an unbiased linear

estimator a'Y, i.e., such that E(alY) 2 £
The estimability of Y solely depends on the design
matrix X as the following known tests for estimability of

Y show:

(1) Y is estimable if and only if ¢ is in the row
space of X, i.e., if and only if there exists a
vector t such that c’ = th.

(ii) Y is estimable if and only if there exists a vector
k such that ¢ = k X X.

(111) Y 1is estimable if and only if o - c'H, where
B iR XK.

It should be noted that in practice it is not a trivial
matter to check for estimability due to complicated nature of
the design matrix X. This is why the experimenter is well




advised to specify his set of linear parametric functions of
interest and try to collect his data (i.e., chooses his de-
sign matrix X) which guarantees the estimability of his

functions of interest.
Definition 2. We say the design X 4is connected for Y if
Y 1is estimable under X. Otherwise, X is said to be dis-

connected for Y.

Estimation, Test and Confidence Interval for Y.

If Y 1s estimable under X then it's well known that

the best linear unbiased estimator of Y is given by

A A Vi R
Y=CB=C(XX) X e

o
var ¥ = og = c'(x X) ccz.

e Wi = D
An unbiased estimator of ¢ is ¢ (X X) co where

i
A
v
(I

A2 T ‘v x!
0° = m=% Y (I-X(X X)X )Y.

Therefore

¥ ~ N(v, oi).

b

We know that

1 ’ ’ - ’ n=r A2
A A
Y is a linear form in Y and thus Y and Ql are indepen-

~ x2 (n=r).
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dent if

N e o e = iz}
e (B X X [TRLE) X Jme (AKX cexX) xx " 2 -8

’
Now since Y is estimable thus ¢ can be expressed as

'] ’ !
t X. Therefore, by substituting t X for c¢ in the above

expression we obtain:

W o b SR b G T L RE NI i U A MR
e RGeSl et AT X X (XX X

B e S T L
A 2
Since ¥ ~ N(Y, UQ), this imples that

A A
B . ~ N(O, 1).

o olc (XX)- o)

Thus
(Q-Y)/c(c'(X'X)- c:)]'/2 % ?

- Y
[Q/(n-r)] ¥/~ e e 41

A :
o4 |

or equivalently

A 2
( v - Y ) ~ F(1l, n-1).
5

This statistic can be used for testing hypothesis of the form !

Ho: Y = m. This statistic can also be used for constructing !
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confidence intervals for Y.

A
P [1!5%13 <F(ln1)]=1-a
i

or

p[9- GQ(Fa(l,n-l))l/2 <ve¥+ GQ(Fa(l,n-l))l/z] =1-a.

Suppose we have a set of linear paramteric functions

Yl,Yz,...,Yt and we wish to construct 1 - a simultaneous
confidence intervals for these t 1linear parametric functions.
The above confidence intervals give 1 -a confidence inter-
vals for individual VY's., Scheffe's S-method answers this
problem.

But first we need the following definitions.

Definition 3. Two linear parametric functions Yl and Yz }
are said to be algebraically independent if their correspond- 4
ing coefficient vectors cq and c, are independent.

Definition 4. By a g-dimensional subspace L of linear es-

timable functions under the design matrix X we mean the

subspace generated by the coefficient vectors of q indepen-

dent lieanr estimable functions under X. We say Y =c¢c B € L
’

s S - I < 17
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The S-method of multiple comparison is based on

Theorem 1. Under Q the probability is 1l-a that all

estimable functions Y in a given gq-dimensional space L

simultaneously satisfy

(1) ¢ . SGQ ot Q + SGQ 7
where S = [q Fa(q,n-r)]l/z.
One can rewrite (1) in the following form

172

P[IQ-YI < SQ [q Fa(q, n-1)] foriali Y e Ll = 1 = @,

or

2'[
P[(Q-V) Je (X X1 < Fa(q,n-l) forsll ¥ e &) = 1 - a.

A2

o

A ’
Since ¢ - ¢ B, Y = c B therefore it suffices to prove that
’ T ey P

the maximum value of (c'é - cB)/c (X X)” ¢ for all nonzero
c e L is distributed as 02 Xz(q); and this maximum is inde-
2 X2

A
pendent of (n--.l)o2 which is distributed as o (n-r).

To prove this we need the following lemmas.

Lemma 1. Let A Dbe a symmetric matrix of order n. The

{4 ’
maximum value of 2z Az/z z over all nonzero 2z € En 18 &,
the largest eigenvalue of A, and this maximum is attained

when 2z 1s any eigenvector of A corresponding to the root

za
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Proof. First we show that the following two problems are

equivalent.

!
’
(1) maximize 2 ez e ed maximize z Az

z%0 22 z z=1
Let

] ]
max E_éé =m and max z Az = m,

z40  z'z 1 z'z=1

and suppose my is attained for "z = zy and my is attained

for 2z = Zo, Tedes

'
z_ Az /]
1' 1l = my and zzAz2 = M.
Zy2q
Let
zZ, = 1 Z then z.'z. = 1
i /le 3l it 2
10
: _IA_ IA
thus z1 zl o zl z1 o
7 - [} l'

LG
’
Therefore, my < My Also since 2925 = ik Zg ¢ O and

!
zzAz2 EZ
1
o
thus Mo 4 ml. Hence m1 =m,.

4 ’ ’
Note: Since max z Az/z z is equivalent to max z Az and
z40 z'z=1

’
z Az 1is a continuous function of z and {z:z € En’ z2z=1)

'
is a compact set, it follows that max z'Az/z z exists,
240

We shall now present two methods of finishing the proof of




Lemma 1.
Method 1 (Lagrange multiplier method).
We want to maximize z'Az subject to the constraint zlz = 1.
Let
£(z,)) = z Az - A(z'z-1)

where A is a Lagrange multiplier. Since %g =2 Az - 2 Az = O.
this imples that Az = Az so A must be an eigenvalue of A.
On the other hand, if X 1is an eigenvalue of A, then

. 2 Az = z'(Az) = z’(kz) = kzlz,
so that

4 ’
max z Az = max Az z = max A
’ ’
Ze m=l Z2oz=
where A is an eigenvalue of A. Therefore

' s
max 2z Az _ ?ax Z Az = max A = L.
240 7'z 2'2=1

Now suppose Vv 1is any eigenvector corresponding to 4, then

’ ’ ']
YRy vl v by 8w A
L ’ L
v v vV Vv vV v

so that the maximum value is attained for any eigenvector

associated with 4.

Method 2. Since A 1is a real symmetric matrix of order n,
!

there exists an orthogonal matrix P such that P AP = A

where A is a diagonal matrix with the (real) eigenvalues

of A on the diagonal. Let Pj denote the Jj-th column

of P, 3.0y, P = (Pl:Pz:“':Pn)’ then Pj is an eigenvalue




=B=

of A corresponding to XJ satisfying

p'p = [0 when j 3k
A l when J=k °

It follows that

! '
A =P\P = A P.P

’ !
1P1P1 - XZPZP2 +...+ knPnPn

and

{4 /4 ’ 4
= PP = i .
i P PlPl + P2P2 I o Faterts PnPn

The set [Pl,Pz,...,Pn} is an orthonormal tusis for E .

!
Let z € E_, then z = Pw, where w = (wl,vz,...,w ) and

n
wi's are the coordinates of the vector 2z witn respect to

the basis {Pl,PZ,...,Pn]. Therefore

' ’ i " 0 !
z Az _ (Pw) PAP (Pw) _ w P PAP Pw
z'z (Pw) ‘' (Pw) w'P'Pw
2 2 2
e w'Aw s o b AaRs. Eosart Aoty L
é 2 2 G
Wwow wy b Wy FaLt oW

? 7
So maximizing z Az/z z for z % 0, z € E  1is equivalent

to maximizing

Ve 2 z
llwl 5 X2w2 Plewat Xan for w € En
ved Z 2
WS WS Lk Wy

and w # O (since 1z % 0).

Suppose max (Xl,kz,...,xn} = L, then




=y

e AU . i (Pl e A R Y St e G e

S
2 2 2 i
xlwl g Bt A¥n £ 4 15y . 3
A w2 A w2 +..0t A w2 4 g w2
so fernil, gl N e < ok Sl
2 2 FXeg i AL
e e St i R o oW,
1 2 n j=1 *
If 4 =X, then let w, =0 if i + 3 and LF # 0. Then
2 2 2 1
xlw% t AWyt AW ki xlw. B XJ g
Z 2 2 i
Wy + W5 ..o+ WE W

so 4 1is attainable and the maximum is attained for
W o= {o,...,o,wj,o,...,o} or equivalently for ﬁ

Z

Il

Pw = ijj’ wj + 0, i.e., for any eigenvalue of A E

corresponding to 4 the largest eigenvalue of A.

Lemma 2. Let A be a symmetric matrix of order n and

let B be any positive symmetric matrix of order n. The
maximum value of z'Az/z,Bz over all nonzero 2z € En L e
the largest eigenvalue of B—lA, and this maximum is attained

for any eigenvector of B-lA corresponding to the root L.

Proof. First let us solve the following problem. Maximize

Z’ﬁz subject to z'Bz = 1. Using the method of Lagrange's
multiplier let

f(z,\) = 2 Az - x(z'Bz-l)
where, )\ 1is a Lagrange multiplier. A necessary condition is

df/dz = 2Az - 2\Bz = 0

SO
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lAz = N7

So that 2\ 1s an eigenvalue of B"l and z is the corres-

Az = \Bz = B)\z = B~

ponding eigenvector. Therefore,

:
max 2 Az = - max z'(Az) = max zl(sz)

' ' [
z Bz=1 7z Bz=1 Z Bz=1l

!
= max Nz Bz =max o=l
]
Z Rzt

Now we shall show that the following two problems are equiva-

lent:
7 !
(1) max 2 Az | (i1) pax z Az
zeE 2z Bz z Bz=1
z#$0

Proof of this is very much like the counterpart proof given
in the beginning of Lemma 1.
Let
'A ’ ] '
max ET_E = m; and max z Az = m,
z3#0 z Bz z Bz=1
i ! 4

and suppose my is attained for 2z = vq and m, 1is attained

fOI' Z = VZ, ioe-,

’
v.Av ' ' ¢ '
1 1=m; and v,Av, = m, under vVyBv, = 1.
levl
Let e
- RPN i .
' 1/2
(v{Bvy)

|
|
H




M,

then
i
£ v.Bv
v gl
VIBVI? 7 =1,
levl

also

i s ’

levl '3 levl o

G 7 ¥

levl lev1

!

Therefore, my < my. On tEe other hand, since v2Bv2 =1 and

since B is positive definite v, % O,

' ’
vav2 = v2Av2 s
7 G = s
szv2 Jb
thus m, < m,. Hence my = m,.

We shall shortly give a generalization of the preceeding
results. Let L be a vector subspace of En of dimension

q. . Let -the columis of SCi=ies SCs 4 i 1v5C be a basis for L.
12 o]

Lemma 3. The maximum value of z’Az/z'z over all nonzero

z €L is A4, the largest eigenvalue of CC+A, and is attained
when 2z is any eigenvector of Co'A corresponding to the
root /4, where c* is the Moore-Penrose generalized inverse

of G

SR
Proof. € 18 an nx'q matrix of rank ¢ thus (C C) 1
exists and one can check that
Lo o ’
of e (o)™ o,

is the Moore-Penrose generalized inverse of C. Also note

that matrices CD and DC have the same eigenvalues. Now




e RN S (i e i e s e R

XD

let v € E then z = Cv ¢ L, hence

q,
. ¢ '
e 2 éz > S QCVQ'AQCVQ
zeL, Z+0 .02 2 veEq, v40 (Cv) (Cv)

max v'{C'ACQV

{5
’
Since C C 1is positive definite we can use Lemma 2 and con- .

clude that
max vl ClAC v

veEq,v+O v’(C Cc)v

) ' _1 '
largest eigenvalue of (C C) ~ C AC

I

largest eigenvalue of gtac g

R

largest eigenvalue of C(CYA) (see the re-
mark about A

CDh _and .BC)

= 1. ;

To obtain the inequality in the other direction, let 2z € L.

This implies that there exists a v € E such that 2z = Cv,

q
Thus ﬂ
max z Az v 4 max (cv) ‘A(cy ;
ek, 240 7, VeE, v40 (cv) ' (Cv) %

it

largest eigenvalue of CC+A = &,

Now let 2z be any eigenvalue of ccta corresponding to the
] !
root 4. Then CCYAz = 4z which imples z CCY'Az = 4z z
’ ’
which in turn implies 2z Az/z z = £ Dbecause 2z € L implies

+ '

that z'CC =2 ,
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Corollary 1. Let H be any q X n matrix of rank q. Then
the maximum value of z,Az/z'z over all nonzero 2z in En
satisfying Hz = 0 is 4, the largest eigenvalue of (I-H'H)A,
and is obtained when z is any eigenvector of (I-H'H)A cor-
responding to the root 4. Here H" denotes the Moore-Penrose

generalized inverse of H.

Proof. Hz = O if and only if 2z ©belongs to the column

space of I-H*H. This is seen as follows:

If Hz = O, then z is in the column space of I-H'H, i.e.,
there exists a w such that (I-H'H)w = z. Set w =z then
(I-H*H)z = z - H'Hz = z - H'(Hz) = z - HY(0) = z.. On the other
hand, if 2z 1s in the column space of I-H'H then

Hz = H(I-H*H)w = Hw - HH'Hw = Hw - Hw = 0. Now the proof

follows from Lemma 3.

Lemma 4, Let B be a positive definite matrix of order n.
Then the maximum value of z’Az/z'Bz over all nonzero 2z in
L is 2, the largest eigenvalue of C(C'BC)'lc'A, and is
attained when 2z is any eigenvector of C(C'BC)+C'A corres-

ponding to the root 4.

Proof. An argument similar to the one used in the proof of

Lemma 3 gives us

4
max 2 Az - max (Cv) A(Cv) .
zeL, z40 To veEq, v#$0 (Cv)'B(Cv)




Tl

By an earlier result one gets

< 2
3 max v C ACv _ largest eivenvalue of [(CIBC)+ C'AC]
f veE , v#0 R

q v C BCv

]

]
largest eigenvalue of [C(C BC)+ C'A] = A
3 (recall the argument about CD and DC).

’ 4
Now let 2z be any eigenvector of C(C BC)+ C A corresponding

to the root 4. Then
= g
C(C BC)" C Az = 4z which implies that
’ ’ + ’ [
z BC(C BC)' C Az = Az = Lz Bz, which implies that

z’Az/z'Bz = 4, since 2z € L implies that
z'Bc(c'B)t ¢’ = 2. t

This latter claim is seen as follows. Since 2z € L then
there exists a w such that Cw = z, i.e., 2  is a linear
combination of the columns of C which generate L. Then

’

' ’ 1 7 ' ’ ’ ’
2z'Bc(c’Bc)t ¢’ = wic'see’'B)t ¢ = wic! = (cw) = 2',

' '
Lemma 5. The Moore-Penrose of X 1is given by (X X)+X where

A+ denotes the Moore-Penrose of the matrix A.

Proof. By definition K 1s the Moore-Penrose generalized

’
inverse of A if AKA = A, KAK = K, (AK) = AK and

’
(KA) = KA. Therefore, we shall check these four conditions

for X+. In what follows we use the following well known

!
facts: i




G

BLgieaod ) ‘ )
Fy: X(X X)X is symmetric and X(X X)+X = X(X'X) X  where
l —
(X X) is any generalized inverse of (X'X).

’

X .

]

AN g
Fo: X(X X)X X =X and X X(X X)X

X,

(1) xxtx = x(x'x)"x'x = x(xx)x'x
() et e el e et ey e
Gy oty = GE'oie) = @ e ) - 2T - xxx)

L

]
(x)%'x) = @) since (x'X)Y is the

Il

(iv) (x™x)’
f ] ’ ’
Moore-Penrose inverse of X X and thus (X X)+X X
is symmetric.
’
Lemma 6. The Moore-Penrose generalized inverse of X is (X+)'

Proof.

(1) XY .qmiE e 2] X,

sy Nyt <Etaty =ty

(111) (x"(xh ")’
() gty 2"y

Il
Il
Il

T s

x")'x".

Lo ok

- i MARSET . Gyl

]
Il
]

4
Lemma 7., If Xt 1is the Moore-Penrose of X, then XX'(xV)

ooy b
= (X7) .

+ I+l
Proof. From Lemma 5 X = (X X) X . Thus

xtach)’ = xx 0% (Y’

Txx) 23 x5y
)t (2'xe'nt
x(x0F (xxx'x)'1"] vy Lemma 6

il




~16=

' ' !
x(x x)* (x'x(x'x*7 by a property of Moore-
Penrose

= x(x'x)+ generalized inverse
0 %" = a1
= [(x'1)x) - (x5,
Lemma 8. The set of nonzero eigenvalues of DC coincides

with the set of nonzero eigenvalues of CD.

Proof. Let Al and A2 be the set of nonzero eigenvalues
of DC and CD respectively.
If (DC)x = Ax = C(DC)x = XCx
» CD{Cx) = A(Cx) = CDy = 1y,
so if A 1is an eigenvalue of DC it is an eigenvalue
o -Ch;

= A CA Similarly, AZCA

1505 - Thus A

2 3 1 e’
Proof of Theorem 1.

(1), max c'é-cl G max, . (%'Xé;a'Xﬁzz :
GELs (5 %) aef[ (X )7C) 2'x(x' X)X a

4
Reason. ¢ B 1is estimable = § an a such that

’

'] : q ’ '
¢ =& X, But celLwe =k tiei, e =0

!
iX, c;'s

! ]
were chosen =2 ¢ =L t

' ’ !
biX = [2tibi]x =aX so a

i

is a linear combination of bi's. But from
’ !

’ ' !
c; = byX = [Etibi]x =aX so a 1s a combination

’ '
of b.'s. But from ¢. = b'x % X b, =.0C

1 = R 5 JE

: i il i i




e

(2). (a xé i xg) Gila g§7x2 X Y'a ‘%812 = (a'x(x'x)*x'v-a"x8)?

? a X(X X)X a a X(X X)X a a X(X x)"x'a

F
|
i
F' 'S (a XX Y -a Xﬁ) . Reason. See Lemmas 5 and 6.
n a XX a

I

(3) (a'%"v-a"xp)" (a'Y-?'Lﬁﬁ _ 8 (r-x8)(¥-X8) 'a .
a XX a a a a a :

i

’
Reason. Since a € £[(X )+C] =» a € column space of
’ . ’ 7
4 (X )+, i.e., ¥ an f such that a= (X )f=(x") ¢
! ! ’ ’ l
] Wk 2 b X T aX et et s,

(%) From (1) and (3)

VR ' '
t max (c B-c K max a (Y-XB)(Y-XB) a
} s ’ [
el o (X'X)"e ael[ (x )¥c) aa
5 | , '
1 = max a Aa , A= (Y-XB)(Y-XB)

I + s A
aef[ (X ) C) a a

= largest eigenvalue of [(X')+C][(X')+C]+(Y-XB)(Y-XB)'
by Lemma 3. '
' '+ 't o+
= largest eigenvalue of (Y-XB) [(X ) C][(X ) C] (Y-XB)

by Lemma 8, but this is a scalar,
‘ ! 4 l++
= (¥-X8) ((x)'c)((x)Tc)"(¥-XB) = @, which is a
quadratic in (Y-Xg) ~ N(O, 021).

The claim is that Q ~ 02Xz(q). This will be the case
[
if we prove that [(X )Tcjr(x")*c)t is idempotent and

its rank is q. The idempotency is obvious since in




T T T T

=8

general (BB+)(BB+) = BB'BBY = BBT. We shall now show

that rank [(x ) cyr(x’)tert

q. This can be seen

as follows:

[ (x ) e x)fert ¢ r(x")te) < rle] = a,

on the other hand,

=} (X ) TepE e Vet stV ex Fer K e

> r[(x)*e] = (xM) e) = 2% 171 = rx(x"0)) 0]
> X x[(x%)% ey = X x(x'%)Y)x'K) since ¢ = x'k

= XXX K] = 00X %) K] = 2xx(x %)% 'K)
S HE K] = 0] =g

The proof of Theorem 1 will be complete if we show that Ql

and Q2 are independent where,
L ’ I
Q, = (n-r) 8% = ¥ (I-X)X'X)7X )Y

= (¥-%8) " (z-x(x'x)"x")(¥-X8).
It is sufficient to prove that ]
(z-x(x %) x @Yo yfert = pz-xx ) x i@t ‘et ) 'ert= 0, 8

by Lemma 6

Z

Ty BT R R 2y oty e

ity e eyt < 2x @ ottty op?

|

LY ety ‘egt - xtexty e xt) fert

txh e x®) ey - (xh'erx*) ey = o.
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. % 19-
4
i
T The relation of the S-method or S-intervals for Y in L ‘
i ]
i and the standard F-test of the hypothesis s
‘ g
; Hy: Yl =¥ = ... = Yq =0 i
|
T is stated in ;
; :
F Theorem 2. Under 0 the a-level F-test of H, will ,
? accept H, if and only if for all ¥ in L the intervals ¢
h ;
i (1) in Theorem 1 cover zero. {
i f
;
, 1
;
|
f
| i
§
§
| |
i 2
; |
f i
i

T

|
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