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Error Recovery for LR Parsers

by Thomas Julian Pennello

ABSTRACT

A practical algorithm is described that allows an

LR parser to parse past the point at which an error was

detected. By thus parsing, context beycnd the point of

error detection is gathered. We prove several important
properties about this "forward context" and demonstrate
its usefulness in the selection and evaluation of error
repairs. At first specifically restricting our consi-
deration to single occurrences of errors of insertion,
deletion, or replacement of a single terminal symbol,
we show how to use the algorithm and suggest possible
error repair strategies. Then we suggest a generalization
to encompass recovery from any number and type of error.
Our work is related to the similar work of Graham
and Rhodes for simple precedence parsers. We not only
extend their concept to LR parsers but derive properties
about forward context that can significantly assist an

error repair strategy.
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Chapter 1.

INTRODUCTION

Graham and Rhodes [G&R 75] have proposed an error
recovery scheme for bottom-up deterministic parsers that
involves "condensing" context about the point at which an
error was detected. A "backward move" condenses the con-
text to the left of the error point, and a "forward move"
gathers context to the right of the error point. Such
context is valuable input to an error repair strategy.

In their paper they show how the condensation is done
for simple precedence parsers, and give an error repair
strategy that uses the condensed context.

We investigate the condensation problem for LR
parsers (by which we mean to include LR(k) and all
its variants -- SLR(k), LALR(k), etc.). We give a
practical algorithm that allows an LR parser to perform
the forward move, prove several properties about the
algorithm relevant to error repair, and suggest ways that
the "forward context" may be used in an error repair
strategy. We do not treat the backward move since we are
not convinced of its usefulness in LR error recovery.

Chapter 2 introduces terminology, both standard and

nonstandard, to describe the concepts involved in LR
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parsing. Chapter 3 gives a preliminary version of the
forward move algorithm. The algorithm works by carrying
along in parallel all possible parses of the input text
following the error point, halting when the parses do not
agree as to the next move the parser should make, when the
parser must make reference to the context to the left of
the error point in order to proceed, or when another error
occurs. The halting conditions give the algorithm important
properties that can substantially assist an error repair
strategy in the selection and evaluation of repairs. These
properties we prove in Chapter 4. The most important is
that the forward context produced by the forward move
algorithm can be used to efficiently verify that a repair
attempt is in a sense "consistent" with the input text
consumed by the forward move.

In Chapter 5 we give a framework for error recovery:
error recovery algorithm = forward move + error repair
strategy. Limiting ourselves initially to the consideration
of a few (but the most common) types of errors: errors of
insertion, deletion, or replacement of a single terminal
symbol, we show how to use the forward move algorithm to
gather forward context. We suggest ways that the forward
context may be used to assist an error repair strategy,

based upon the properties proved in Chapter 4.

Finally we convert the algorithm in Chapter 3 to an




equivalent but practical algorithm. The algorithm in
Chapter 3 explicitly carries along the parallel parses; in
Chapter 6 we recode the algorithm in terms of additional
states and transitions between them, in essentially the
same way a nondeterministic finite-state machine is con-
verted to a deterministic finite-state machine. The
recoded algorithm carries the parallel parses implicitly,
and is about as efficient as the LR parsing algorithm.

Chapter 7 summarizes and lists further areas of
research.

Druseikis and Ripley [D&R 76] have solved the forward

move problem for SLR parsers; we contrast our technique

to theirs.




Chapter 2.

DEFINITIONS AND TERMINOLOGY

We assume the reader is familiar with LR parsers
and their construction. We establish terminology for
them, both standard and nonstandard. By "LR" we mean to
include LR(k) and all its variants -~ SLR(k), LALR(k),
etc. Those unfamiliar with LR parsers should consult
[DeR 69,71].

A context free grammar (CFG) 1is a quadruple

G = (N, T,5,P) where N, T, S, and P represent the

terminals, nonterminals, start symbol, and productions,

respectively. We define V = NU T and, unless we
otherwise specify, adhere to the following conventions

for Latin letters:

w, Y € V*

A, B e N

s, t A

; * -
We use -+ for the "generates" relation, =~ tor its
. gl = . 3
reflexive-transitive closure, and - for its transitive

closure. Productions are elements of this relation. Thus,

define + on V* x V* as




Wy oW, iff for some A e N, ve T, w, yec V*
w; = yAv and Wy = ywv and A + we P,

This is the rightmost derivation; for the purpose of LR

parsing we are not interested in any other definition of
derivation. Further, we assume that the grammar contains
a production of the form S » S'|, where S and |

appear in no other production, S' e N, and | e T. A

(rightmost) sentential form of G is a string y e V*

+ .
such that S > y. A sentence of G is a sentential form
consisting entirely of terminals.
Associate with each production A - w € P a special

symbol # not in " V. If, for some A€ N, y,we V*

Arw

and v e T*, S +*'yAv + ywv, we define yw#A*w to be

the characteristic string of the sentential form ywv,

and any prefix of yw is called a valid prefix of G.

Each sentential form of an unambiguous grammar has a unique
characteristic string, and the set of all characteristic

strings of a grammar is a regular set. A characteristic

finite-state machine (CFSM) of G is a deterministic

finite-state machine that r2cognizes the characteristic
strings of G ([DeR 69].

A finite-state machine (FSM) is a 5-tuple (K,START,

SIGMA,V,F) where K 1is a finite set of states, START € K

is the start state, F & K is the set of final states, V
i

the vocabulary, and SIGMA the transition function mapping




K x VvV a3nte K. Let G=(N,T,S,P). A CFSM of G 1is the
FSM (K,START,SIGMA,V',F) where V' = NU TV {#p | pe P}
and the states of K are sets of items, marked productions
of the form A +» x.y ('.' is the marker) where A + xy € P.
START contains the item S + .S'|, among others. Each
nonempty state g 1in K has one or more successors under
SIGMA. START has the successor state {S - S'.L}, among
others. In general, a state g has an s-successor for
each symbol s in NWU T that is preceded by the marker
dot in one of qgq's items. If g contains an item A + w.
with a marker to the right of all symbols in the right part
of the production (such an item is called a final item), q

has a # -successor that is the empty set, which is the

A>w
only final state (i.e. F = { {} }). The s-successor of

q 1is called a terminal read successor if s € T, non-

terminal read successor if s € N, or reduce successor if

s € {#p | p e P} The reader should consult [DeR 69] for
the details of the computation of K. We express the fact
that SIGMA(g,s) = q' by the transition g s q’ e All

nonempty states have a unique accessing symbol defined as

follows: if a state g is the s-successor of a state q',
then the accessing symbol of g is s. This definition
does not cover the state START, to which we assign the

accessing symbol |.

A CFSM state having only read successors is called




é

a1

¢
1 "
1
-

£
1

a read state. Any state having one reduce successor and
zero or one nonterminal read successors is called a reduce
state. States having two or more reduce successors or
having one or more reduce successors and one or more

terminal read successors are called inadequate states.

All states in K are covered by these three definitions
except the final state ({}.

A path of the CFSM is a sequence of states
dqr 31, ceer 9 such that there exist transitions

w v
> Qyr veer 9 . g, in the

9o i e

CFSM, and w = WiW, .. wn is the string spelled out by

the path. w e V'* describes a path from 9y to q,

in the CFSM iff there exists a path dgr ==+t q, and
the path spells out w. For brevity we say “qo gets to
q, by w". For any path P, Top P indicates the last
state in the sequence, i.e. if P = Qgr 9yr +++r 9y then
Top P = q,- IE d, gets to q, by w, then [qo:w]

is the sequence of states dgr 9yr <++r 9y that is the
path from qq that spells out w (in a CFSM this path

is unique). w accesses q 1f START gets to gq by w.

We abbreviate [START:w] by [w]. The concatenation of

two paths [q:y] and ([q':y'], where Top [q:y] = q',
is written [qg:yl[g':y'] and designates [q:yy'] (that
is, we do not repeat the state gq' in the concatenation

of the paths).




For parsers with l-symbol look-ahead a look-ahead set
of terminal symbols is attached to each final item in the
states of the CFSM. (Computation of the look-ahead sets
may or may not affect the construction of the CFSM.) We
use function LA(q,A -+ w) to represent the look-ahead set
for final item A + w. in state q. The LR parser for
G 1is the CFSM of G plus a parser decision function

oP U {read}u {accept}

PD mapping K x V into PD(q,s) =

A+w > g

{read | ¢ 2> q' and s e T-{[}}Uu (A +>w ]| q
and s e LA(q,A ~ w)} U {accept |q = {S > S'.|]} and
s = |}. The grammar G is LR iff |PD(qg,s)| < 1 for
all g e K, 8 V. Equivalently, for each inadequate
state, the l-symbol look-ahead sets for final items are
disjoint, and if the state has an s-successor, then s
is in no look-ahead set.

For later reference we present the LR parsing

algorithm, which uses the CFSM, PD, and a pushdown

store called the state stack. By "reading a symbol" we

mean that the parser strips the input text of its first
terminal symbol, exposing the next symbol to be read.

We assume that the last symbol, and only the last symbol,
of the input is |. Parsing is accomplished by the
following:

LR parsing algorithm (LRPA).

Push START on the (empty) state stack
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Repeatedly parse according to the following:
Let h = head of input, g = state on top of
state stack.
do case PD(q,h):
case {read}: Read the symbol h and
push SIGMA(g,h) on the stack.
case {A + wl: Pop |w| items off the stack.
Let g be the new top of stack.
Push SIGMA(g,A) on the stack.
case {}: Halt, signalling an error
and rejecting the input.
case {accept}: Halt, accepting the input.
case otherwise (i.e. |PD(g,h)| > 1):
Halt, confused; the parser cannot decide
between the actions presented it. If G
ie LR, this step will never be
encountered.
end LRPA

We refer to a configuration of the parser as a pair

(2,R) where Z 1is the state stack and R is the remain-
ing (unread) portion of the input. Thus the parser starts
out in the configuration (START,R) where R is the
input. The parser makes transitions from one configuration

to another via moves, members of P\ {read} \) {accept}.

PD maps K x V into a set of moves. We use |- to

o il b s
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indicate the parser's transitions from one configuration
to another, and |%* and |Y as the reflexive-transitive
and transitive closure of |-, respectively. Thus case
{read} of LRPA can be stated as (Zg,hR) |- (2Zgq',R)
where q' = SIGMA(q,h), and case {A > w) as
(Zgqqy --- q|W|'hR |- (2qq, ,hR)  where PD(qlw|'h)

{A > w} and g, = SIGMA(q,A). The parser accepts iff
(START,R) |* ([S'],]); we use the synonym accept for
([s'1,]). We define the relation reduces to as follows:
(z,hR) reduces to (2',hR) iff PD(Top Z',h) 1is either
{read} or {accept}, i.e. all possible reductions on 2
with h as the next of input have been carried out, and

the parser is prepared to read or accept.

ki ool D i, G D il bt

(Many LR parser implementations do not attach look-
ahead sets tec final items in reduce states, but only to
final items in inadeguate states. This allows somewhat
snaller parse tables, a slightly faster parser, and perhaps
less look-ahead set computation time. We regret that
the forward move algorithm precludes the use of this
efficiency technique. However, the payoff is earlier

detection of errors and better error recovery than when

the efficiency technique is employed.)
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Chapter 3.

FORWARD MOVE ALGORITHM

When an error occurs during parsing (case {} of LRPA),
we would like to invoke a mechanism that performs the
"forward move" of Graham and Rhodes, i.e. parses some of
the remaining input without regard to the text already
parsed. In an LR parser, this means that the forward
move proceeds without referencing the left context already

developed on the state stack. For example, the Algol

symbol "do" can appear in two contexts: in a "for" or

"while" statement. If "do" is unexpectedly encountered

aliiad, ) sbehlhe A

by LRPA, the forward move would resume parsing without

knowing which of these two contexts the "do" actually

STUREERCRTTF =R

appears in (if either). We would parse ahead as far as we |

could without referencing the context to the left of the

error point, halting when we can no longer parse independent

of that context, and ending up with a fragment of a |

sentential form representing the text we parsed. A grammar
| : for an Algol-like language appears in Figure 1. Consider
the would-be program in this language

begin integer X, J; J := 0;

end

I
>

for X := 1 step 1 until do begin J

end.
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where we omitted the limiting value in the "for" statement.
Upon detecting the error, LRPA's state stack (writing ?
only the accessing symbols of the states) would appear as

| begin Stmt ; Stmt ; for Id := Exp step exp until
where we have capitalized nonterminals and left terminals ;
uncapitalized. Now, mark the top of the stack with the

symbol ?, and attempt a forward move. We might read as

e

far as the penultimate "end", resulting in the new stack

| begin Stmt ; Stmt ; for Id := Exp step Exp ;

until ? do Stmt i

The forward move halts presumably because the appearance

of the last "end" indicates that we should reduce either
with the production "Stmt » for Id := Exp step Exp until
Exp do Stmt" or with the production "Stmt + while Exp

do Stmt", and we do not know which is applicable without

looking at the stack to the left of the ?. Reducing the

text "do begin X := J end” to "do Stmt" did not require

reference to the context to the left of ?; no matter
whether a "for" or a "while" appears earlier on the stack,
"do begin X := J end" should always be reduced to "do
Stmt". We call the text read during the forward move the

forward text and that phrase fragment to which the text

is reduced the forward context.

We describe an algorithm that achieves this forward

move by carrying along in parallel all possible parses of
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the forward text, as long as all parses agree as to the

next move to make, and no parse refers to context to the

left of the error point. For this algorithm we have not
states but sets of states appearing on the stack. (In
Chapter 6 we convert the sets of states to states them-
selves and recode the algorithm so that it is practical.)
The algorithm has two initialization steps, followed by
repeated parse steps.

Forward Move Algorithm (FMA)

Push?: Push ? = K on an empty stack.
Readh: Let h = head of input.
Push {q' | g e S g* and gq e 7}
on the stack. Read h.
Parse repeatedly according to the following rules:

Let h = head of input, Q = state set on top of stack.

Let PD = q\E}Q PD(q,h).
do case PD:
case {read}: Read h and push
ta' | & by g' and gq € Q}.
| case {A » w}: Perform a reduction:
| Ensure that there are at least |w| state
sets on the stack following the ? (i.e.

ensure that the entire right hand side w

resides on the top of the stack).

iE not, nalt.
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Otherwise, pop |w| state sets off the stack.
Let Q be the new top of stack.
Push {q' | g g8 q* and q e Q}.

case {}: Halt, signalling an error.

case {accept}: Halt; we have consumed all but
the |.

case otherwise (i.e. |PD| > 1): Halt.

end FMA

FMA essentially follows all paths starting at any state in
the CFSM that allow the parsing of the input text, halting
(1) when two different paths end up in states that disagree
as to how to continue the parse (this difference is caught
in case "otherwise”" of FMA), (2) when all paths end up in
states requiring a reduction over the ? (case {A -+ w}),
(3) when we read the entire input (case {accept}), or (4)
when we encounter another error (case {}), i.e. no path

can be continued.

We illustrate the halts of case {A » w} and case
"otherwise" by Examples 1 and 2 below, where the grammar
involved is a simple arithmetic expression grammar.

Figure 2 contains the grammar and its CFSM augmented

with LALR(l1) look-ahead sets.

Example 1. Let the erroneous input string be
g
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LRPA stops with state stack
S ins]
The following displays the execution of FMA on the

remainder of the input

FMA step Stack after
just made FMA step Rest of input
Push? ? B 1
Readh ? {(o} o i 7
{read} 2 {(p} {i,) 8
{p + i} 2 {(p} {py} ) |
{T > P} ? g, {74} 8
{E +~ T} 2 {(y} {E;} ) |
{read} ) T G |
{p+ (E)} 2 {py} 5
{? + p} 2 {Ty, Ty, Tyl 4
The algorithm halts here because
PD(Ty,]) U PD(T,,[) U PD(T,,])
=« (B> EBEL T, TP "™ O E+ T
Example 2. Input is () ].
LRPA halts with state stack [(].
FMA step Stack Rest of input
Push? ? Fed

Readh 2 Oy} 1

Halt: PD(),,]) = {P > ( E )}, and there are less than

three items on the stack above the ?.

Ty T R PRO S I S e
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In Example 1, we face the possibilities of reducing
by three different productions. E + T is the proper
reduction only if what immediately precedes the T is a
"(" or the start state; E > E + T is the proper reduc-
tion only if what immediately precedes the T is "E +";
and T + P ** T is correct only if "P **" precedes the
P thel A2 o {To,Tl,Tz}'s left indicates no knowledge
of what precedes the T. Thus we cannot continue parsing
without making a guess, and must halt. In effect the three
different places in the CFSM in which a T can be read
yield three different decisions as to what to do with the T.

In Example 2, we attempt to reduce with P + ( E ),
but find that " ( E" does not precede ")" on the stack.
The attempted reduction gives us an indication of what the
user intended, however, and provides useful information
for an error recovery algorithm, as we shall see later.

The second initialization step Readh of FMA
guarantees that the algorithm produces a forward context
of length at least one. If we did not force FMA to read
the first symbol, then it might also consider reductions
that have the first input symbol in their look-ahead sets;
possible choices between a read and some reductions might
have caused FMA to halt immediately in case "otherwise",

making no progress whatsoever. (We assume also for the

remainder of this paper that we never invoke FMA on the

N oyt ¢

i i
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input consisting only of l, otherwise we would immediately
read | in step Readh.)

FMA computes state sets dynamically; there is no
reason why these state sets and the transitions between
them cannot be precomputed, resulting in an FSM. This
is formalized in Chapter 6. Meanwhile, we can use Chapter
6's results to extend the concepts of transitions and paths
to FMA's state sets. Hence, if FMA consumes forward
text u from string uv and produces forward context U,
we may write (?,uv) |* ([?:U],v). U represents a
"condensed" or "partially parsed" version of u: U wr u
(we may write U - u instead of U »* u since |u] 2 1).
To prevent confusion between LRPA and FMA, we prefix

moves of FMA by "FMA:", as in FMA:(?,uv) |%¥ ([?:U],v).




Chapter 4.

THE WEAK VALID FRAGMENT PROPERTY AND FMA

Suppose FMA: (?,uv) |1 ([?:U],v). Relative to the

string uv from which FMA reads u, the forward context
satisfies an important property called the "weak valid
fragment property." First, we define the "valid fragment
property" and then weaken it. Informally, for some suffix
uv of a sentence, U ¢ V* is a "valid fragment" of uv
iff U +* u and for every y such that S »* yuv,

s ~* yuv +* yuv,
and yU is a proper prefix of the characteristic string
of yuUv. That is; if 'S »>* yuv not only must u be
derived from U in the generation of yuv (if it is not,
then the grammar is ambiguous), but the derivation step
deriving yUv must involve the last symbol of U. We

define this formally in terms of parser actions:

Definition. For some suffix uv of a sentence,

Ue V¥ is a valid fragment of uv iff U +* u and for

every valid prefix y such that ([y]l,uv) |% accept,

(yl,uv) |% ([yv),v).
In other words, any state stack [y] satisfying the

conditions of the definition must cause LRPA to read all
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of u and develop the valid fragment U on its state
stack, i.e. reduce u to U.

In the context of error recovery, this concept has
the following significance: Suppose LRPA encounters an
error and halts in configuration (Z,uv), with uv a
suffix of a sentence. (We deal with the case where uv
is not a suffix in Chapter 5.) Let us propose that by
substituting [y] for Z we could cause LRPA to accept.
How could we verify this proposition? By running LRPA,
to be sure. But if we had many such strings [y] to try,
running LRPA could be costly. Now, suppose that we had
some valid fragment U of uv. A necessary (not suffi-
cient) condition that ([y],uv) |®* accept is that a path
starting at Top [y] spells out U, 1i.e. there exists
some path ([Topl[y]:U], implying that (since U +* u)
(lyl,uv) |* ([yl(Toplyl:Ul,v) = ([yU]l,v). Thus, valid
fragments give us a useful tool with which to limit our
selection of [y]'s.

It turns out that since FMA reads as its first
step, the forward context U that it provides does not
quit= satisfy the valid fragment property. It is, however,
a "weak valid fragment" and can be used in a testing pro-
cedure similar to that described above. Informally, for

some suffix wuv of a sentence, U € V* is a "weak valid

fragment" of uv iff U +* u and for every y such
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that S +* yuv, there exists y' e V* such that

s +* y'Ov +* ytuy +* yuv,
and y'U is a proper prefix of the characteristic string
of y'Uv. That is, if S »* yuv, not only must u be
derived from U, but there exists a y' such that
y' »* y and the derivation step producing y'Uv involves

the rightmost symbol of U. Formally:

Definition. For some suffix uv of a sentence,

Ue V¥ is a weak valid fragment (WVF) of uv iff U ¥y

and for every valid prefix y such that ([yl,uv) [%

accept, there exists a y' ¢ V* such that
(yl,uv) |2 (Iy'l,uv) |2 (Iy'vl,v).

In other words, any state stack [y] that causes
LRPA to accept uv must cause it to reduce [y] to some
[y']l, read all of u and develop the weak valid fragment
U on its state stack. We shall prove that the forward
context returned by FMA satisfies the WVF property.
The reason for the complication of reducing [y] to [y']
.8 because FMA does not consider reducing as its first
move.

Suppose now that LRPA encounters an error in con-
figuration (Z,uv), and that uv is a suffix of a
sentence. If we propose that replacing Z by [y] could

cause LRPA to accept, the forward context U of uv
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provided by FMA gives us a necessary condition on
the validity of [y] as a replacement. (lyl,uv) |%
accept only if there exists y' such that ([y],uv)
li ([y'l,uv) (by a series of reductions), and there
exists a path from Top(y'] that spells out U, i.e.

(ly'l,uv) [%

(ly'l[Toply'l:Ul,v) = ([y'U],v).

We shall now show that the U returned by FMA
satisfies the WVF property. In Lemma 1 we explore the
nature of the state sets manipulated by FMA. We use this
lemma to prove Theorem 1, which establishes the WVF
property as a corollary. Theorem 2 gives us the additional
result that FMA in some sense tries as hard as it can
by consuming the longest possible forward text. Theorem 2
is not essential to our error recovery techniques but
reassures us that the techniques perform as well as they
can.

Lemma 1 captures the fact that if LRPA starting
with any left context on its stack makes the same series
of moves as FMA does in parsing string uv, then FMA

has kept track of LRPA's state stack in its state sets.

Lemma 1. Suppose FMA:/?,uv) lﬁ vEs Iﬁ (?Q; Q,
1 s
L o sy
eee Qo V). If ([y'l,uv) lMl ‘e er (z,v), then

Z = [y'] dy 9y -+ 9y where q; € Qi' ) I . A

|
|
|
i

sl oSl . i b b SR

et ' B
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Proof. By induction on . PFor r = 1l: M, = read

1
by step Readh of FMA, and FMA has stack ? Q-

LRPA, after making move Ml' has stack [y'] qy where
u
1

q) = SIGMA(Toply'l,u;). Now 0, ={q' | g > q' and

q € K} by Readh, hence q; € Q-
Assume the hypothesis true for r = k; thus FMA

has halted with stack ? Ql Q2 S Qm' and LRPA has

stack [y'l] 9y 9y +e+ Qg Consider move Mk+1'

(1) Mk+1 = read; let the symbol to be read be s.

Then LRPA pushes state = SIGMA(qm,s)

In+1
by case {read} of the parsing algorithm.

FMA pushes state set Q ., = {q' | ¢ == q'

and q € Qm}. But since 9, € Qp

In+1 € Ome1c

(2) Mk+l = A+ w

FMA pops {wl state sets, leaving stack

oy Wy s Gl Tl

where m -~ |w| > 0 (since there are at least

|w| state sets above ? on the stack). It
' = ' __A_> '

then pushes Q- || +1 ig* |'g q' and

LRPA pushes state

q e Q q1;1—|w|+1 .

I'A) on the stack. Since

m-|w|}'

qm'|W| € Qm-|w| by the inductive hypothesis,

qt;1-|w|+1 % Q$—|w|+1'
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(3) M = accept; the stacks remain the same for

k+1
both FMA and LRPA.

Theorem 1. Suppose FMA: (?,uv) Iﬁl N lﬁ; ([?:U],v).
Let h = head(v). Then for every y and 2 such that
(lyl,uv) |* (2,v) and PD(Top Z,h) is either {read} or
{accept}, there exists y' such that ([y],uv) |*

(ly'l,uv) |% (ly'Ul,v).

Proof. Choose some y and 2 such that ([y],uv)

X (z,v) and PD(Top Z,h) is either {read} or {accept}.
We let [y'] be such that ([y]l,uv) reduces to ([y'],uv).
Thus, ([yl,uv) |% ({y'l,uv) and the first move LRPA
takes out of configuration ([y'l,uv) is read (=M1).

We now prove by induction on r that LRPA's next r
moves from configuration ([y'],uv) are Ml Sieie Mr'

For r = 1: M, = read by step Readh of FMA. We

il
know that LRPA must read as its first move from configu-
ration ([y'l,uv), by our definition of y'. Now let
the theorem hold for r = k. By Lemma 1, FMA's stack

after move Mk is

? Ql 02 o Qm

and LRPA's stack after move Mk is
]
y'l 9; 95 - q,

where q; € Qi’ 1 & i S m, Let the next symbol in the

input be s (s 1is either in u or is the first symbol
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Consider LRPA's

af v). FMA now makes move Mk+1’ 3

possible actions:
(1) It makes no move at all.
If s is in u, then this case is impossible
if since ([y],uv) ]1 (Z.v). If sg'=%; *hen if
s # |, then LRPA must be able to move since
PD(Top Z,h) = {read} or {accept} implies
that LRPA eventually accepts or reads h;
if s =], then the only way LRPA cannot
move is if its previous move was accept; but
then FMA's previous move (by induction)
would have been accept, and it cannot then
make move Mk+l'
(2) It makes move Mﬁ+l # Mk+1'
Then Mi+l = PD(qm,s).
But then q\E,Qm PD(q,s) would contain both
and M/

k+1 k+1
case "otherwise" of FMA, FMA would not make

M since q € Qm. Hence by
move Mk+l‘ This contradicts the fact that

FMA makes move Mk+1‘

Thus we have shown that the next r moves LRPA
makes from configuration ([y'],uv) are M1 ‘s Mr‘ But
by Lemma 1,

FMA: (?,uv) |= ...

M (?Q1 Qy +vv Qo v)

l rites
1 Mr
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and
([y ]'UV) Iﬁl . e |E‘r ([Y'] ql q2 .o qm, V)
where q; e Q;, 1 < i <m.  Since ? 0 Q, --. Q =

(2:01, [y'l qq 9, --- q, = [y'] [Toply'l:U] = [y'U].

Corollary. If (lyl,uv) |% accept, then there exists
y' such that ([yl,uv) [% ([y']l,uv) |% ([y'U]l,v) (the

WVF property for U).

Proof. If ([yl,uv) | accept, then there exists
Z such that ([y],uv) LA (Z,v) and PD(Top Z,head(v)) =

{read} or {accept}. The corollary now follows.

The next theorem is not essential to the correct
fragment property, but reassures us that FMA goes as
far as it can without making a decision based on context

to the left of the ? state set.

Theorem 2. Consider suffix wuv of a sentence. If
there exists a sequence of moves Ml cee M (r > 1) such
that

A1) Ml = read,

[ii) there exists a valid prefix y such that
([yl,uv) Iﬁl P ‘E; ([yul,v)
and LRPA never pops any of [y] from the

state stack,
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(iii) there do not exist valid prefixes vy, y'
and k < r such that

(z',R")

([Y]luv) |— “e e |'—' (ZIR) I_
Ml Mk M

k+1

(Y,R) (y',R'")

El

iy ), uv) le  oe.
N, k+1

e
P
and Mg, # Mg

then FMA: (?,uv) ([?:U],Vv).

l= «.. |=
Ml Mr
Proof. By induction on r. For r = 1: FMA makes
move Ml = read by step Readh. Let the theorem hold for
r = k, and let y be the valid prefix of hypothesis (ii).
By Lemma 1,
FMA: (? ,uv) |ﬁ i |ﬁ (2 0,0, +.. Q.+ R)

It k
and

(lyl,uv) |ﬁl ‘o lﬁk (lylg; 9, -+ Qs R)

where q; € Qi‘ Let the next symbol of input be s (s
is either in u or is the first symbol of v). We show
that FMA makes move Mk+1' Consider the possible
actions of FMA.
(1) Mo is A + w, but FMA cannot make that
move because there are less than |w| state
sets following ? on the stack. This contra-

dicts hypothesis (ii): LRPA would then have

to pop some of ([(y] from the state stack.
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(2) FMA makes some move Mi But by

17 M-

Lemma 1, M € \~/ PD(g,s) and thus FMA

k+1 q e Qm

has a choice of at least two moves to make.

[
Thus FMA cannot make move Mk+l'

(3) FMA halts due to another error, i.e.

q\E/Qm PD(q,s) = {}. This cannot occur,

since by Lemma 1 M € PD(q,s) .

k+1 q E€ Qm

(4) FMA halts in case "otherwise" because it has a
choice between two or more moves (one of them
Mk+l)' Let one of the moves, different from
Mk+1’ be Mi+l° Then there is some path
Qgr 9y 100 9 such that q; € Qi' LX4dcm,
PD(q ,s) = M.}, and 9y € ?. Let y'
access q. Then for some Y, Y', and R'Y,

(Y,R)

(ly'},uv) lﬁ e |F-4' (Y',R'").

1 k+1
This contradicts hypothesis (iii).

l._.
M

We have shown possibilities (1) through (4) to be
contradictory, thus the only possibility left for FMA is

to make move Mk+1' and the inductive step is proved.

Theorem 2 is somewhat tedious, but proves that FMA

simulates LRPA in all the (possibly infinite) situations

in which LRPA has already parsed some valid prefix vy




P LRy ST e G i a5t s T LT VS h e 3 P e g

28

that causes LRPA to read head(u). Thus the ? state
set can really be regarded as representing the set of all
such valid prefixes.

Parts 1 and 4 of the case analysis demonstrate how
FMA proceeds without any knowledge of left context. In
part 1, reducing would cause FMA to interrogate context
to the left of ? to determine what state to go to on non-
terminal A. In part 4, we have 2 or more choices for FMA;
the correct choice depends on left context. Parts 2 and 3
capture the fact that the choices FMA is presented with
contain all choices that LRPA would ever consider.

In summary, if LRPA encounters an error in configu-
ration (Z,uv), and FMA reads u from uv producing
forward context U, we know that FMA makes as many moves
as possible and U satisfies the WVF property. We can
verify that some proposed replacement of [y] of 2
satisfies a necessary condition for ([y].,uv) |1 accept
by the following process, which we call CHECK_VALID and
which takes as arguments [y], uv, and U:

CHECK_VALID

Determine y' such that ([y],uv) reduces to
([y'],uv). (Note: there may not be any such y',
in which case we fail, i.e. [y] is unsatisfactory.)

Determine that a path [Toply']l:U] exists. This

can be accomplished in the following fashion:
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Let U = a; a5 ... an -

Let Stack = [y'].

for 1 := L te m . do

a.
if Top Stack -

> q exists for some ¢
then push SIGMA (Top Stack,ai) on Stack
else we fail

We succeed if the for loop runs to completion.

end of CHECK_VALID

CHECK_VALID 1is a simple, efficient test to check the
viability of a proposed stack repair. The essential tactic
that guarantees this result is that forward moves never
proceed after FMA encounters an inadequacy, a reduction
over ?, or another error. Making some arbitrary choice
between the alternatives in an inadequate transition in an
attempt to continue parsing is a serious mistake; it makes
an unwarranted assumption about the context to the left of
the error point. The assumption has no foundation and is
just a guess that may be wrong.

The WVF property of a forward context U gives us
the CHECK _VALID procedure, but there is still another
property of U that can aid error repair. If uv 4in
the suffix of some sentence, and FMA: (?,uv) |1 ([?:U],v),
then FMA cannot halt in case {} (the error step): the

possible set of moves PD will never be empty. The moves

in PD can give us information relating to the class of
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valid prefixes y such that S »>* yuv. We elaborate on
the use of this information in the subsequent chapter, but
prove a property about it here. Theorem 3 states the

property and needs Lemma 2 for its proof.

Lemma 2. Let FMA:(?,uv) [* ([?:U],v) = (?Q; ...
Qm' v). For any path [y'U] in the CFSM where p =
Toply'l, [Toply'l:U] =p 9 --- 9, and q; € Q,,

1<4is¢sm,

Proof. Let p = Toply'l] and U = a a

l “ e e m-

P € ?, hence by step Readh or case {A + w} of FMA,

a
q, = SIGMA(p,a)) € 0, = {q' | g 1. g' and qe ?}.

By a simple induction on m, we have the result.

Theorem 3. Let uv be a suffix of a sentence,

FMA: (?,uv) |* ([?:U],v), and PD = PD(q,

q € Topl[?:U]
head (v)). Then

(1) [PD| 2 1

(2) For every y', Z', v', M,

(y'ul,v) |§ (z',v') implies that M e PD.

Proof. If PD were empty, then there could be no
y 8such that S +* yuv, and hence uv would not be a
suffix of a sentence. Hence conclusion (l1). Consider now

iy'0l. Topl[y'U] € Top[?:U)] by Lemma 2, hence

PD(Toply‘U] ,head(v)) & PD. Hence conclusion (2).
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Thus if LRPA halts in some configuration (Z,uv),
and uv 1is a suffix of a sentence, applying FMA to uv
yields a set of moves PD such that if we propose some
substitution [y] for 2, there must exist some y'
such that ([y],uv) Ii (ly'ul,v) lﬁ (Z’ ,v') and M ¢ PD.
Suppose, for example, that PD = {A - w} ard that
|w| > |U|]. Then M =A > w, and some suffix y'' of
y' must be such that y''U = w. Hence we know something
explicit about y'. We delay application of this until
the next chapter. We call the property guaranteed by
Theorem 3 the "next move" property.

In summary, we have shown the following three
properties to hold of FMA when applied to a sentence
suffix: the returned forward context is a WVF; it parsesz
ahead as far as possible; and it halts with a non-empty
set of moves, one of which must be taken next. We have
seen how the first property yields an efficient algorithm
for validating proposed error repairs, and have hinted at
the value of the next move property. 1In the next chapter
we learn how to use FMA to gather forward context in
particular error situations and how to use the next move
property as an aid to error repair.

We emphasize finally that the results of this chapter

do not define any error recovery strategy, but merely

provide useful tools that any strategy may use.
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Chapter 5.

USING FMA IN AN ERROR REPAIR ALGORITHM

In this section we concern ourselves with determining
the best way to use FMA to gather forward context in
conjunction with some error repair strategy. As mentioned
in the introduction, we restrict ourselves at first to
considering only a single occurrence of one of three types
of errors: insertion, deletion, and replacement of a
single terminal symbol. We note that the errors in the
sample test program of Graham and Rhodes [G&R 75] are all
of this type. We call this assumption the "simple error
assumption."

We can describe these three situations in the follow-
ing manner (X%, z & T*, and s, t'e T):

Insertion error: S +* xz but SAH* xtz.
Deletion error: s +* xtz but S-H" xz.
Replacement error: S +* xsz but Sfa* xtz.

We view an error recovery algorithm as being composed
of two phases: (1) the gathering ~f forward context, and
(2) the application of an error repair strategy (which uses
the forward context). Given the simple error assumption,

we first investigate how use FMA to acquire forward

context. Then we show how an error recovery strategy might
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use the forward context, leaving the error recovery
strategy itself unspecified, but providing general hints

as to how it might work.

Gathering forward context. We investigate the

different situations LRPA encounters when it detects

an error, determine how best to gather forward context in
each case, and develop an overall strategy based upon the
case analysis.

In the insertion case, LRPA may detect the error
before or after reading t, i.e. it may halt in confi-
giration (2,tz)  oriin  (Z;z%) (2" is a suEfix'ofs z]).
In the latter case, the inserted symbol t has been
absorbed into the left context =z. The possibilities
are the same for the replacement case. 1In the deleticn
case, LRPA halts in (Z2,2') (again, 2' is a suffix
aof Z¥. We consider halting configurations (Z,tz) and
(z,z') separately.

We distinguish between the concepts error and error

symptom. When LRPA encounters an unexpected symbol
(case {} of the LR algorithm), we say that it detects

(the existence of) an error and that the symptom of the

error is that LRPA fails on the symbol. It is the goal

of error recovery to eliminate the symptom.

Cas= (Z2,tz). (We have an insertion or replacement




error).

Where Graham and Rhodes and Druseikis and Ripley

resume the parse by immediately performing a forward move,

we do not. Since the symbol t heads the input, such an

action would necessarily start us off in the wrong context.

We instead delete the t from the input, and then invoke

FMA. Since our simple error assumption guarantees that

z 1is a sentence suffix, the forward context developed is

both a WVF and satisfies the next move property.

Case (Z,z'). Either LRPA has absorbed t on its

stack (in the replacement/insertion case), or a deletion

error occurred. LRFA halts in configuration (2,2').

Since t has been absorbed onto the stack, z' |is

a sentence suffix and we merely submit 2z' to FMA.

Combining the case analyses. Since we cannot know

a priori which case is the actual circumstance when an

error is detected, we must combine case strategies into

one. This combination works as follows: Not knowing

whether the unexpected symbol is in error or not, we

always initially skip over it, then perform the forward

move. By the assumption that the program is mutilated

by only a single error, this forward context is derived

from a sentence suffix. Then we determine if the un-

expected symbol can be attached to the front of the
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already developed forward context. If it can, it is most
likely not in error (we are thus in case (Z,z')); if it
cannot, then with an exception (case "otherwise" of RCA
below) we are most likely in case (2Z,tz). Therefore,
assume LRPA halts in configuration (Z,suv), where
seT, u, ve T+ (uv is a sentence suffix). Compute

the forward context by the following algorithm:

Right Context Algorithm (RCA).

Determine U such that FMA: (?,uv) = ([2:U] ;7).

Then, try to attach s to the front of U as

follows:

Determine s' such that (?,suv) |— ([?:s],uv)

li ([?:8'] ,uv) where FMA has made as many
moves as it can without reading head (u).

Let PD = PD (g,head (u)).

g e Topl?:s"]

do case PD:

case {read}: Determine if path [?:s'U] exists.

suv 1is a sentence suffix only if the path

exists. If it does not, then discard s

we are in case (2,tz), with s = t.

it does, then try to continue the forward

move farther from configuration ([?:s'U],

v), 1i.e. determine U' such that

([2:s'U],v) |& ([2:0']1,v").

—

e e e e e R

if

i i d Ko i RS K aindh ¢ . i el




i o o

It is likely (but not certain) that we
are in case (%,z').

case {}:
We may conclude that s is a bad symbol,
and discard it; we are in case (2,tz),
with s = t.

case otherwise (i.e. |PD| > 1):
We cannot conclude anything definite about
S. We then end up with two forward con-
texts, {8'l and  [U].

end RCA

RCA sometimes can tell us whether we are in case
(z,tz) or (Z2,z'), and in most situations produce a
single forward context with which to validate potential
error repairs. The single exception is case "otherwise"
where we have two. But in all situations we have a forward
context (U or U') that is a WVF and satisfies the
next move property, since it is the result of applying
FMA to a suffix of some sentence.

This completes the discussion of how to gather right

context.

Error repair suggestions. We do not intend to

provide a complete error repair strategy. Rather, we

offer only some suggestions and indicate how the forward
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context might be used to aid the strategy.

In case (Z,tz), the obvious thing to try is the
deletion of the unexpected symbol and the replacement of
it with all other terminals; the former is achieved by
applying CHECK VALID to the existing stack 2Z and the
forward context U of RCA, the latter by applying it
to 2 modified by appending to it all possible terminals.
Given the simple error assumption we must be able to hit
upon the proper correction.

In case (Z,z'), since t (or its absence) is
buried in the stack Z, complex stack modifications may
be required to repair the error. We illustrate this
with the following, where a deletion causes LRPA to
erroneously reduce the stack into a "higher context."
Suppose that the text "if I=K then I=J else I=L"
were altered to "I=K then I=J else I=L". Rather
than detecting the deletion of "if", LRPA assumes it
is parsing an assignment statement, and halts when the
unexpected "then" is encountered, in configuration
((Left_part = Exp], then I=J else I=L|). Were
the "if" not omitted, upon encountering the "then"

LRPA would be in confiqguration ([if Bexp], then I=J
else I=L|;. We need a stack modification to transform

[Left_part = Exp] to [if Bexp] =-- a tall order. This

example illustrates how erroneous reductions greatly
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complicate error repair.

(The occurrence of such erroneous reductions is the
reason that we are not convinced of the efficacy of the
backward move espoused by Graham and Rhodes and Druseikis
and Ripley. The backward move seeks to cause just such
reductions.)

To aid the invention of stack repairs, we suggest the
use of the next move property, which says that after FMA
halts, we have a set PD of moves, one of which must
eventually be made. (Although if erroneous reductions
have occurred, the "easiest" repair may not include any
of those moves.) If FMA terminates in case {A + w}
with an attempted reduction over ?, then (given our
simple error assumption) we know what phrase was intended
and what move we must make (viz., the reduction). In the
previous example, suppose the forward context U' computed

in case {read} of RCA was such that (?, then i=J else

I= L]) |* ([then Stmt else Stmt],|), with FMA halting
in case {If _stmt » if Bexp then Stmt else Stmt}; we then
know that, in this example, [Left part = Exp] must be
modified to "if Bexp". After thus modifying the stack we
can effect the reduction and resume normal parsing. As an

approximation to this we could simply search for some state

preceding the ? that reads the nonterminal If_stmt;

after finding such a state g we delete all states on top
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of it and push SIGMA(q,If_stmt) on the stack. In the
example, we would delete the top three states, leaving
only the start state (=q) on the stack, and resume
parsing in the new configuration ([If_stmt],|). While
not correcting the actual error, we in effect modify
LRPA's stack so that it behaves as if the error were
corrected. We call this technique SF for "stack forcing",
because it tries to "force" a production to fit the stack.
If FMA terminates in case "otherwise", we are given
a choice of one or more productions to try to use or
possibly a read transition. Only some of these choices
are of practical use in improving a repair strategy, as
follows. Classify the productions as either "long" or
"short" depending upon whether reduction by them would
gonsume the ? state. Long productions give us an indi-
cation of what the stack preceding the ? should be; we
can submit each of these to SF, in the hope that at least
one can be forced to fit. Short productions can also give
us some information with regard to this portion of the
stack; this information is not explicit but is buried
within the CFSM transitions and the items in the states.
A way to extract it is to perform the reduction and continue
parsing, awaiting a long production that can tell us some-
thing explicit. We believe such an approach may be too

cumbersome to be useful.

|
!
| 3
!




If a read transition is among our choices, let the

items associated with the read transition be Ai X, .ty

where t is the symbol to be read. If we choose to read
t, then one of the strings X must match the top of the
stack, and we can verify this before reading ¢t. There
are both long and short such strings X and the long
strings can give us information about the stack preceding
?. Unfortunately, to use the read items we must keep the
actual items around during parse time, a requirement that
is uneconomical in space.

Among all of the possibilities presented when FMA
halts with an inadequate transition, the next move property
tells us that one must be the "correct" choice. As we have
noted, long productions may be of immediate use, but we do

not see obvious or simple ways of using the other choices.

Summary. Thus, an error recovery algorithm incor-
porates (1) the gathering of right context, which RCA
outlines how to do, and (2) the application of an error

repair strategy, which we have not specified, but for

which we have made some suggestions. We further suggest
that if the strategy fails to succeed, then we apply the
algorithm recursively, again gathering right context and
attempting error repair in the hope that some later correc-

tion can repair more than one error. The recursive approach




ensures that we never stop trying to parse the input,

therefore preventing the algor thm from totally failing

when we cannot correct some error, or when there are

multiple errors in the input.
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Chapter 6.

MAKING FMA PRACTICAL

In this section we show how to convert the state sets
manipulated by FMA into other states and precompute the
transitions between these new states.

We have described FMA as an algorithm that manipu-
lates sets of states in an attempt to keep track of many
state stacks at once. FMA computes state sets dynamically
by referring to the CFSM; e.g., cases {read} and
{A - w} compute the next state from the previous state
Q by calculating {gq' | g —=> q' and g e Q} (s is
h or A). There is no reason why we cannot precompute
these state sets and the transitions between them; this

gives rise to an error recovery FSM (ERFSM). For a grammar

G, let (K,START,SIGMA,V',F) be its CFSM. The ERFSM

of G is the 6-tuple (K',?,ERSIGMA,V',F') where ? =K

and F' = {{f} | fe F} ={ {{}} }. K' is computed as

follows: Begin with K' = {?2}. Repeatedly add to K'

the successors of state sets in K', where if s ¢ V',

the s-successor of Q ¢ K' is {q' | q L g* and ¢ ¢ Q).

Thus for Q, Q' ¢ K', s e V', ERSIGMA(Q,s) = Q' iff Q' ;

is the s-successor of Q in the ERFSM. We can in a

simple way specify the look-ahead function LA(Q,A + w)
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for elements of K'; ILA(Q,A » w) = qxsz LA(g,A > W).
The parsing decision function can now be computed as for
the CFSM; due to the construction of the ERFSM, we can
show that for Qe K', s ¢ V', PD(Q,s) = q\E/Q PD(g,s).
Figure 3 shows the ERFSM for the CFSM of Figure 2.

FMA now need not do dynamic state computation; we can

use the ERFSM and algorithm FMA' below to achieve the

same effect:

FMA'.

Push?: Push ? on the stack.
Readh: Let h = head of input.

Push ERSIGMA(?,h) on the stack; read h.
Parse repeatedly according to the following rules:
Let h = head of input, Q = state on top of stack.
Let PD = PD(Q,h).
do case PD:

case {read}l: Read h and push ERSIGMA(Q,h).

case {A + w}: Ensure that |w| states reside

on the top of the stack following the ?
state. If not, halt.

Otherwise, pop |w| states off the stack.
Let Q be the new top of stack.

Push ERSIGMA(Q,A) on the stack.

case {}: Halt, signalling an error.
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case {accept}: Halt; we have consumed all
but the |.
case otherwise (i.e. |PD| > 1): Halt.

end FMA'.

The fact that FMA and FMA' are equivalent should not

be difficult to see based on the construction of the ERFSM.
Note that FMA' is much like the normal parsing algorithm
in that it manipulates only states.

Now that FMA' manipulates states rather than state
sets, we can suggest a space optimization on the ERFSM.
Suppose for some q € K, {g} € K' (this occurs often;
see Figure 3). If g > q' 1is a transition of the
CFSM, then {gq}'—2—> {q'} is a transition of the ERFSM.
Once FMA' pushes a state {g} on its stack, and until
it sometime later pops {q}, it will behave as if it had
pushed state g on its stack. Thus we may "share" state
{g} in K' with state g in K; states in K' having
transitions into {gq} can be modified to instead have
the same transitions into q. Such sharing reduces the
storage in the final parser + error recovery package. The
ERFSM may share every state {q} with its corresponding
state g in the CFSM. The following criterion, satisfied
by (but not only by) the singleton states in K', determines

whether an ERFSM state can be shared with a CFSM state:

(State sharing criterion) for any q € K, Q € K', Q may
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share with q iff for every y e V'*, if q gets to p
by y and Q gets to P by y then PD(p,h) = PD(P,h)
for every h e V. Phrased differently, if y describes
a path from g to p in the CFSM and a path from Q
to P in the ERFSM, the parsing decisions that P and
p make must be the same. States in K' other than
singleton sets satisfy this criterion. To see this, let
ty = {A > t.} and t; = {a > t., B~> t.}, both members
of K. Let {t,,t;} € K'. Note that toU £ =ty
Then if PD(t;,h) = PD({to,tl},h) for every h e V,
{to,tl} may be shared with t;. This is the same as
requiring that the look-ahead for production A + t in
state to be a subset of the look-ahead for production

A+t in state ¢t Non-singleton states that can be

1
shared occur in practice, but they are non-trivial to
check for. Singleton states are very easy to check for
when generating the ERFSM, and the LALR generator at
UC Santa Cruz does this. Figure 4 shows the shared ERFSM
for the ERFSM of Figure 3.

For grammars we have run, which include a grammar
for PASCAL, from 60 to 80 percent of the ERFSM states
may be shared, resulting in a substantial savings in space.

FMA' resembles the technique of Druseikis and Ripley.

However, they (1) do not have a unique start state with

which to begin the forward move, (2) do not consider states

T _—.

ey g o




in the ERFSM to be sets of states in K but rather
actual item sets (our research independently started out
that way but study revealed that the item sets were unions
of item sets of states in K, so that ERFSM states were
conceptually better modelled and computed as sets of states
in K), (3) handle the probiem only for SLR grammars
(they claim that the generalization to LALR is straight-
forward, but their paper does not indicate the greater
difficulty in computing LALR look-ahead sets for the
ERFSM; they merely attach SLR look-ahead sets to every
production in the ERFSM, and SLR look-ahead sets are
computed independently of the state in which the final
item appears). Our technique works in general for LR
parsers of any type, handling SLR as a special case. 1In

addition, the number of states in our CFSM plus the number

of states in our ERFSM can be up to |V]| - 1 fewer than

the number of states needed by Druseikis and Ripley to
implement the parser and error recovery machine; this is
due to the |V| start states needed by their error recovery

machine.
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Chapter 7.

CONCLUSION

We have provided a method to do the forward move
of Graham and Rhodes for LR parsers in a practical and
efficient manner. We have shown that our algorithm FMA
carries the forward move along as far as it possibly can
before halting, and that the results of it are useful in
selecting and validating error repairs. Given the simple
error assumption we have described how FMA can be used
to gather forward context, and have indicated how an error
recovery strategy might employ the gathered context. At
UC Santa Cruz an error recovery strategy using forward
context is in development which so far has proven success-

ful in practice.

Further research. We have left unexplored many areas

related to FMA. 1In particular, some of them are

(1) How large is the ERFSM in comparison to
the CFSM?
Are their sizes linearly related?
How is this related to the grammar?

(2) On "the average", how much forward text does

FMA consume?




(3)

(4)
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What circumstances permit FMA to consume a

lot of forward text?

How are these circumstances related to language
constructs?

We define a grammar's "robustness" to be pro-
portional to how much forward text FMA consumes
on "the average".

Is there an algorithm that indicates weak spots
in a grammar, i.e. where the grammar is not
robust?

What better or other ways may forward context

be used in error repair?




[A&U

[DeR

[DeR

[D&R

[G&R

[OHa

75]

71)

69]

76]

451

761

49

REFERENCES

Aho, Alfred V. and Jeffrey D. Ullman,

The Theory of Parsing, Translation and Compiling,

vols. I and II, Prentice-Hall, 1972.

DeRemer, Frank,
Simple LR(k) Languages,
CACM, July 1971.

DeRemer, Frank,

Practical Translators for LR(k) Lanqua es,
PhD. thesis, Dept. of Electrical Engineering,
MIT, Cambridge, Mass., 1969.

Druseikis, Frederick C. and G. David Ripley,
Error Recovery for Simple LR(k) Parsers,
Dept. of Computer Science, Univ. of Arizona,
Tucson, Az. 85721, 1976.

Graham, Susan L. and Steven P. Rhodes,
Practical S¥ntactic Error Recovery,
CACM, Nov. 1975.

O'Hare, Michael F.,
Modification of the LR(k) Parsing Technique
to Include Automatic Syntactic Error Recovery,

senior thesis, Univ. of Calif. at Santa Cruz,
Santa Cruz, CA. 950€4, 1976.




T, e SRR Ly

50

S + Program |

Program + Stmt .

Stmt >

=3

-

Exp -

-
Id =¥
int =

integer Id list,

Id := Exp

for Id := Exp step Exp until Exp do Stmt
begin Stmt list ; end

while Exp do Stmt

Id

Int

' <IDENTIFER>'

'<INTEGER>'

Figure 1. Grammar for a simple Algol-like language.

'<IDENTIFER>' and '<INTEGER>' represent the generic
classes of identifiers and integers respectively.

"A list B" means a list of A's separated by B's.
Capitalized strings are the only nonterminals.
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A simple arithmetic expression grammar.




Figure 2b. CFSM for grammar of Figure 20.
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