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Introduction

Philip Mandel (1967) has defined ship maneuvering as
"the controlled change or retention of the direction of
motion of a ship and its speed in that direction." The
study of ship maneuvering includes the problem of maintain-
ing a fixed headinag (course-keeping) as well as the problem
of changing the ship's heading (steering).

Traditionally, these problems have been attacked by
assuming that all of the hydrodynamic forces and moments
that act upon the hull can be expressed as functions of the
instantaneous velocities and accelerations of surge, heave,
and sway and the instantaneous angular velocities and accel-
erations of roll, pitch, and yaw. These assumed hydrodynamic
forces and moments are then expanded in a Taylor Series
about a uniform forward motion and, provided that the devi~

ations from the uniform forward motion are small, only the

1]

linear terms of the Taylor expansions are retained. Thi
procedure leads to a set of linearized equations of motion
that provide the definitions of the various "stability
derivatives" as well as the basis for the traditional exper-
imental techniques used in their evaluation. Once the
stability derivatives for a particular ship have been deter-
mined, the linearized egquations of motion are used to predict
the steering and course-keeping capabilities of the ship.

Since this traditional approach to the problem assumes

that the forces and moments are functions only of the

— e - 4 et -
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instantaneous values of velocities and accelerations, any
possibility that the history of the motion might affect the
present situation has been excluded. A new approach to the
problem, which does not exclude the history of the motion,
was introduced by Cummins (1962). Cummins' approach to the
problem, which was improved by Ogilvie (1964) and Lin (1966),
differs from the traditional approach in the description of
the hydrodynamic forces and moments acting upon the ship.

In the approach of Cummins, Ogilvie, and Lin, one
expresses the hydrodynamic forces and moments as pressure
integrals over the entire wetted surface. Although this
approach appears to be much sounder, it is also more diffi-
cult since it reguires a knowledge of the pressure. Even
though one can formulate this problem, it is much too com-
plex to be solved at present. Fortunately, the authors
mentioned provide us with a systematic approximation pro-
cedure whereby one can express the pressure integral in
terms of the same velocities and accelerations used in the
traditional method. However, the form of this expression
is not the same as that given by the traditional method
except under rather special circumstances. The primary
difference is the appearance of convolution integrals that
allow for the possibility that the history of the motion
micht affect the present situation, a possibility that
cannot be handled by using the traditional approach.

There is reason to believe that this memory effect is

often small and that either approach will yield good results
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in the prediction of many standard ship maneuvers. Recent
papers by Fujino and Motora (1975), Nomoto (1975), and
Fujino (1975), support this opinion. One of the objectives
of this project is to determine just how large a role is
played by this memory effect.

In the present work, after a brief description of the
traditional approach, we begin with the linearized expres-
sions for the forces and moments as given by Lin. From
these expressions, we develop a method of experimentally
determining the necessary stability coefficients. The
experimental technigque, while new to maneuvering problems,
is well known in other areas and is often referred to as an
impulse-response technique. It would appear that this new
method makes a more efficient use of the planar motion
mechanism.

An examination of the special case of regular oscilla-
tory motion leads to relationships between the stability

derivatives measured

o
)

traditional experiments and the
stability coefficients found by the impulse-response tech-

nigue. Both types of experiments have been performed and 4

the results are presented and compared.

Ship maneuvers that correspond to a few standard rudder
commands have been calculated by using the traditional
equations of motion as well as the egquations recommended by

Lin. A comparison of the predictions supports the opinion

that the memory effect is often small.




The Traditional Approach to the Problem

To lay the groundwork for the comparisons which follow,
a short description of the traditional approach to the
determination of stability derivatives is necessary. A

more complete description can be found in Mandel (1967).

Equations of Motion

The coordinate system Ooxoyozo (Figure 1) is fixed in

space with 2, taken vertically downward, the (xo,yo) plane
coinciding with the undisturbed water surface, and Xo taken
in the general direction of the motion of the ship. Then

the motion of the ship is completely described by the posi-
tion of the center of gravity (xog(t), yog(t), zog(t)) and

the heading angle y(t). 1In such a system, we can write

the equations of motion from Newton's Laws:

mxog = XoT

(1) myog i YoT
I‘.f:L

ng Voq

where the dots indicate derivatives with respect to time

and
XoT' YoT = total force in x,y direction
Nog = total moment about vertical axis through
the center of gravity
Izg = moment of inertia about vertical axis

through the center of gravity

o p—




The coordinate system Oxyz is fixed in the ship with
the origin on the centerline amidships. The x-axis is
forward, z downward, and y to starboard with the (x,y)
plane coinciding with the undisturbed water surface. The
center of gravity is located at (xc,yg,zg) where Yc is

usually zero. The absolute velocity of the origin is

V = (u,v) and we note that the velocity of the center of
gravity 1is given by (uc,vc) = (lu, VEx ).
In order to convert egs. (1) into the ship coordinate

system, we note that

- = tlp o YR bl I

(OL XT cos Yo Sin l
2 - > 3 L U =
(2) YOT KT sin YT cos U

]

where XT,Y total foreces. 1in x,y directions

T
and = mucos Y = (v + x @) sin Y
og g
GSik v = usin ¥ + (v + x_ ¥ cos u
og ef o
Taking the time derivatives of egs. (3) and substituting
1 into egs. (1) we get
ﬁ m{u - v - x_ P = X
g T
(4) mivy + wif + = W0y = ¥
125 + mx_(v + ul) = N,
‘ where Np = Noq Sy N = vertical moment about the origin
G €
I. =1 + mx - = moment of inertia about the
2 zg g
OFL gin -
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Equations (4) are nothing more than the Newtonian
equations of motion written in the ship coordinate system.

The difficulties with which one is faced result from the

and N_.

inability to specify XT’YT’ T

Linearization of the Eguations of Motion

The forces and moments of the right-hand side of egs.
(4) are composed of several terms and it is assumed that
we can separate these into two parts. The first part con-
sists of all those forces and moments which result from
perturbations of the ship's motion about its mean. The
second part consists of all other external forces exerted
upon the hull: wind, waves, propeller, rudder, etc.

We can write

X = X X
5B E

where X = forces created by small motions
Xg = external forces on ship.

It is now assumed that X 1is function of the variables
u,u,v,v,¥ . And since it is assumed that X results
from small perturbations about the mean motion, we shall

expand X 1in a Taylor series about u = u_t

o)
X = Xtu,u,v,.v,0,9)
aX « X X
= X(UO,Q,O,O,O,C) =3 .«'uT‘,—U‘F U‘é—."" V‘W‘F
u
« 33X . D4 s 3X -
+ v+ Uy -+ 0§ — + (higher order terms)
v Y U

where Au = u - u

Sade o




Noting that X 1is created by the perturbations, we set
X(uO,O,O,O,O,O) = 0. And since the hull is symmetrical

about the (x,2z) plane, X must be an even function of

s X X aX 53X
N,V a0, Therefore TRl T must all equal zero.
Y " S
. : > - D « 93X
If we keep only first order terms, then X = 4u = L
N g

where all partial derivatives are to be evaluated at

(u=uwu,u=0, v=0, v=0, v =0, =0 ).
o
For the lateral force we get
. 3 . 1Y IV
¥ = W 3! ch lz + ii + 0 il
ov e (o L] <
v i .
; ’ 3 3y .
where &(uo,0,0,0,0,0) = 0 and , — = 0 since a change
¥ . p
“u

in forward motion will not produce a lateral force on a

symmetrical hull. Similarly
3 ¢ AN LTS N
o= v B v 98 4 S oS
av [« 55 243 =
v Y {f
Introducing the vaw rate r = ¢ , we define the
Py i . oY IN oY
stability derivatives Y = — , N = —— , Y = — , etc.
% ERY v RRY r or

Since the derivatives are to be evaluated at (uO,O,O,O,O,O),
they are assumed to be constants which may depend upon the
Froude number and the shape of the hull but not upon the
nature of the motion, so long as the motion remains small.

Rewriting eqgs. (4), retaining only linear terms, we

obtain

m - X)u - X Au =
( U)u N u YE




= @
(m - YG)V - YV v o+ (mxg - Yf)r + (muO - Yr)r = YE
(5)
_.._ T_.. (o -
(mxg Nv)v NV v + (‘z Nr)r + (mxguO Nrk' NE

Note that the surge equation is independent of sway and yaw
rates, i.e. to this first-order linear approximation the
surge equation is not coupled to either sway or yaw. Since
we are concerned here with the effects of sway and yaw, we

can now concentrate on the last two equations of (5).

Evaluation of the Stability Derivatives

Although it is, in principle, possible to evaluate the
stability derivatives from theoretical hydrodynamic consid-
erations, it is not a simple task and the usual procedure is
to evaluate them experimentally, The technique consists of
taking a geometrically similar model of the hull and forcing
it to move in a known trajectory (so that V,Q,r,f are all
known) and measuring the externally applied forces and
moments. Typically, the imposed trajectory is a sinusoidal
oscillation about the mean path, first oscillating in pure
sway and then in pure yaw. We refer to these experiments
as regular-motion tests.

Case A: Pure Sway

Suprose we impose the motion

v = v ¢cos wt, =0, =4
o) o

Then the measured force and moment will also be sinusoidal

functions of frequency w with phase angle ¢




<
I

Y cos (wt + €) Y. cos wt + ¥ sin wt
o 1 in o

ut

]

N

N cos (wt + €_) N. cos wt + N sin wt
o) 2 in out

The equations of motion for sway and yaw become

(m - Y*) (- v _wsin wt) - Y (v cos wt) = Y., cos wt +
v o) v o in
(mx - N+*){(- v_ w sin wt) = N (v. cos wt) = N, cos wt +
g v o v QO in
Nout sin wt

Solving for the stability derivatives, we obtain

Ve
Y = - 0
v v
(@]
o Yout
vV w
(7) .
e in
Nv = T
O
N
N = 2 + mx
vV W g

Case B: Pure Yaw

Let r = g cos wt, v = 0, u = uo, the equations of

motion become

(mx = Y*)(- r w sin wt) + (mu - ¥ ) (r cos wt) =
g r e} o T o
Y oS ! + sin wt
(8) in = wt YOut in w
(I - Ne)(=r w sin wt) + (mx_u_ = N ) (r_  cos wt) =
2 T o g e o o)

N, &858 wt ¥ N sin wt
in cat

——
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and
Y
in
Y = ——o saml 1
e
£ o)
¥
S ro:t + mx
o
q
(2) N.
Nr=-r—lﬂ+mxu
o o
Fast cut + I
o) iV Z

Experimental Technique

The planar motion mechanism (PMM) used to impose the
required motions of pure sway and pure yaw is the same one
used by Paulling and Wood (1962) and a schematic is given
in Figure 2. The PMM is attached to the towing carriage
and two rods which can be oscillated independently connect
the PMM to the model. Goodman (1960) provides a more de-
tailed description of a PMM.

The model is attached at two points, forward and aft
of midships, by means of strain-gauge dynamometers used to
measure the lateral forces. A linear potentiometer connected
to the forward rod measures the lateral displacement.

Since the vibration of the carriage produced an un-
acceptable noise level, it was necessary to pass all three
signals through matched low-pass filters. Although this
resulted in a greatly improved signal-to-noise ratio, the
problem was never totally eliminated. All three signals

were simultaneously recorded on a strip-chart recorder.
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To impose pure sway motion, it is only necessary to
set the PMM so that both rods are oscillating in phase with
each other, but pure yaw is not so simple. To produce pure
yaw, it is necessary that the forward rod lead the after rod

by a phase angle o = 2 tan ! 59 , where d 1is one half

o

the distance between the rods. Therefore, any change of for-
ward speed or frequency necessitates a readjustment of the
phase angle.

For the calculation of the stability derivatives,
knowledge of the amplitudes of the forces and their relative
phase angles are necessary. These gquantities can be read

directly from the strip-chart.

Problems with the Traditional Method
The results of regular-motion tests are dependent upon
the frequency of the oscillatory motion, i.e. the stability

derivatives are not constants, as was presumed, but are

functions of frequency. This frequency dependence has been
observed by Paulling and Wood (1962), van Leeuven (1964),
and others since then. For the calculation of ship

maneuvers, one generally uses the zero-frequency value of
the stability derivatives, but for the study of motions in
rough seas, it 1s necessary to know the extent to which the
stability derivatives depend upon frequency. But in any
case, it becomes necessary to perform a large number of
tests, oscillating the model at different frequencies.

Paulling and Wood performed approximately 650 separate test

—-— . A 4
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runs to evaluate the stability derivatives of a Mariner class
ship at four Froude numbers.

As one attempts to evaluate the stability derivatives
at lower frequencies, it becomes increasingly difficult to
accurately measure the forces and one inevitably reaches a
frequency below which no good results can be obtained. Some
researchers have been further limited by the short length
of their towing tank, since a lower frequency requires a
longer test section. The zero value of the stability de-
rivatives 1is found then by attempting to extrapolate the
values found at higher frequencies.

Another problem which limits the experimenter is the
reflection of the transverse wave. If one tests at too
low a forward speed, the wave created by the oscillatory
motion can reflect off the sides of the tank and interfere
with the model. It has been our experience that this prob-

lem makes it almost impossible to get good results for

low-speed, shallow-water tests.
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Transient-Motion Approach to the Problem

A new apvoroach to the problems of ship maneuvering is
presented and this leads to a new method of determining

the stability derivatives.

Equations of Motion

We shall again start with the Newtonian eguations of
motion written in the ship coordinate system, eqs. (4).
Then, to simplify the problem, we make the following
assumptions: (1) we assume that the ship is sailing in
smooth water where the only disturbances are those created
by the ship; (2) we assume that if there is any rolling,
heaving, or pitching of the ship, the interaction with
surge, sway, and yaw is not significant; {62) the fluid
is assumed to be inviscid and irrotational. As a con-
sequence of these assumptions, the water can act upon the

ship only throuch normal pressure and we can write

2 Sl

m(a - vy - 2 { pn d5 + X
( vy b ) PR, £

g °s
(10) m(v + up + x ) = [ pn _ds + ¥

g E

1]

i < (v { xn - +
I_§ + m,g(v + uy) [4 P! n, yn )dS + N_

where

2
Il

pressure

n , n = Xx, y components of unit normal vector

S = wetted surface

Y = external forces acting on the hull




= A=

The main difficulty is the evaluation of the pressure
integrals on the right-hand side of egs. (10). We now
require some systematic approximation procedure . This
problem has been attacked by Cummins (1962) and Ogilvie
(1964) , and later Lin (1966) provided us with a solid
foundation within perturbation theory. Assuming only a
continuous velocity field and small deviations from a
uniform forward motion (and small disturbance of the free
surface created by the motions), we can linearize the

equations of motion as follows:

0

mu = U B = 5xx3u ~ iAu(t-r)Nxx(r)dr + Xg

m(6+u0@+ xgﬁ) = - Uyy& _Byyv - Z v(it-1) Nyy(r)dr
(11) =y ¥ -BWIL-Z P (t-r)Nyw(T)dT+ Ty

I {+mx (v+u ) = '“wﬁ"e-pwi - Z L(t-r)uw(r)dr

where, consistent with the small-motion assumption, the
non-linear terms on the left-hand side of egs. (10) have
been dropped.

The surge equation is not coupled to the equations of
sway and vaw and will not be discussed any further. The
external force YE and moment NE contain all forces and

moments not contained in the pressure integral. These

might include forces caused by the propeller, rudder, wind,
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waves and, in the case of our experiments, the planar motion
mechanism. The convolution integrals in egs. (ll) represent

the effect of the history of the motion. Defining yaw rate

r = Y, and rearranging terms, the sway and yaw equations
become
(m+u_ )V +8 v + [ v(t-1)N__(t)dt + (mx_ +p_)r
VY3 ¥y o Yy g yv
@
+ (mu 48 yr + [ r(t-1)N_ (t)dr = ¥
o Y = v pV)
(12)
x
fmoe #u v +8 v * [‘wit=7)N, (r)dt * (I_ + p_  )r
SRRy vy \ 4 Hi!
J
@
+ (mxu + 8 J)r+ [ r(t-t)N_ (1)dT = N
by 5 b E
In contrasting egs. (12) with the linearized equations
used in the traditional approach, egs. (5), the major

difference appears to be the presence of the convolution

integrals. This means simply that the present approach

allows for the possibility that the history of the motion

affects in some way the hydrodynamic forces. In the

traditional approach, the forces exerted by the water on

the hull are presumed to be dependent only upon the instan- 4
taneous values of the motion of the ship. It should also

be pointed out that we arrived at eqgs. (1l2) via a system-

atic approximation scheme with its foundation in perturbation

theory and in our opinion this approach is sounder than that

used in the traditional method.

The problem now consists of finding a method of




evaluating the constants Uij' Bij and functions Nij(T). In

principle, these could be found from a theoretical approach,
but we shall follow the, hopefully, simpler path of deter-
mining them experimentally. For this we shall need the

Fourier transform of the equations of motion.

Fourier Transform of the Equations of Motion
The Fourier transform of a function f£(t) can be
defined as

Elw) = [7, £(e) 7™t at

where a sufficient condition for the existence of the
transform is that f(t) be cbsolutely integrable. If f£(t) =0

for t < o, then we can write

£w) = [T £(0)e” " at = [T £(t) cosuwtat
-i [T £(t) sin wt dt
0
= £_(0) - i £ () |

The Fourier inversion theorem gives us

£(e) = 3.7, £wert au

= % fm (_fc(m) cos wt + fs(w) sin wt—J dw

A~

[T f (w) cos wt dw =
Q c

=N

% g fs(w) sin wt dw

We shall also use

Fhe >

() = i w £(w) where f(w) = [ _£(t) e dt




= =

and the convolution theorem:

@ hi(E)

]

fiw glt=t) £{r) ar

Ehi nla) Sl = )

u

1f we take the Fourier transform of the linearized
equations of motion, egs. (12), we get the following pair

of equations:

= -
i wim+tp ) + B + N  (w)iv(w) +
¥y ¥ ¥y -
+}idmxw+ B o) = . + N (W x{w) = Y (w)
L Yy O Yy i SN E
(13)
,l w{mx + u Y + B + N J) viw) +
L g VY Yy _ Al
I AW
+ [dw(Z + u, ) +mx B * 8 + N (w)|rlw) = NE(g)
| A R q C JY R

)

We now define the following "stability coefficients”

noting that they are all functions of frequency :

C (w) = B + W)
1 yy 7\7c
C:(w) = wim + ~yy) = Nyys {w)
C(w =8, +N ()
(14) . 24 Lo
= + U = & )
i O b ™ By ARy Ly
€ (w)y = ma_ + B + N (w)
5 0 yv ywe
= . - N
Cs(u) u(mxg Uyw) yUs (w)
-~ . - _— L
e r— e — -
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= u + g + N
C7(u) ng " By ‘wwc(”)
Cs(w) = w(Iz + uw) - va_ys(w)

substituting into egs. (1l1), we obtain

(¢ "+ 1@ lv. —1L v )=+ e 1€l ~32r)=¥-1i¥%
1 2 Cc S 5 6 e S

LS
(C3 1 C“) (vc
Separating real and imaginary parts., we obtain

A A -~ ~ A

Cl(w)vc(w) & cz(Q)VS(J) + Cs(u)rc(m) F Cs(u)rs(u) = Yc(w)
Cl(u)vs(“) — CQ(J)VC(M) + CS(J)rS(u) - Cs(w)rc(w) = Ys(m)
(15) A 2 A A A

C (Wv _(w) +C (wv_(w) + C (w)r (w) +C (w)r_(w) = N _(w)
3 Cc 4 S 7 c 3 S -

C (v_(w) - C (Vv _(0) + C (WT_(0) - C (W (o) = N_(w)
3 S 4 C 7 S 8 (o S
The importance of egs. (15) is two-fold. First, as we

show in the next section, these equations give us the capa-

bility of evaluating the stability coefficients ¢ ,C ,---,C .
1 2 8

Secondly, and perhaps more importantly, they provide a means
of evaluating the path of the ship given the external forces
and moments. Of course, this can also be accomplished using

the equations of motion (12) if the constants uij Bij and

functions Nij(T) are known. But the evaluation of these
constants and functions requires a knowledge of (or an

assumption about) the behavior of the stability coefficients

as w * ®, since, for example

=L wv)+ie + 1€ )l =11 ) =2N-4iN
S 7 8 e S C S
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,d)
) { C (w) = B ) cos wt dw
v Yy

o] 1

=N

N (t) =
vy

by the inversion theorem. However, for ship maneuvers,

Y (w) and N(w) will go to zero for w > some w ; then if we
1

~

know € ,C ,---,C for o < w < w , we can find v(w) and
1 2 8

1
L
A

r(w) by equations (15) and ultimately, v (t) and r(t) by

the inversion theorem.

Evaluation of the Stability Coefficients

The experimental evaluation of the stability coef-
ficients is accomplished by taking a geometrically similar
model of the hull and giving it an impulsive motion such that
v(t) and r(t) are zero before t =0 and after t = T. Then
the infinite Fourier transform can be replaced by the
finite Fourier transform for 0 < £ < T.

Case A: Pure Sway

Suppose r(t) = o, v(t) = y(t), where y(t) is the

lateral displacement of the model; then eqgs. (15) become

~ ~ ~

CI('AJ)VC(,J) + Cz(Au)VS(-u) = Yc(g)
C (:.J)‘:' (w) - C ('u)\; (w) ={' (w)
1 S 2 (® S

(16) A « A
Ci(au)vc(m) + C‘(LU)VS({L‘) = Nc(;j)
C WV _(w) = C (Wv_(w) = N_(w)
3 5 W (= S

If y(&), ¥Y(t), and N(t) are measured for o < t < @, Lhen
their Fourier transforms can be calculated. Then egs. (16)

can be solved, frequency by frequency, as four simultaneous
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linear equations in the four unknowns CI,CZ,Ca,C“. Note
that, in principle, one such test will give us the stability
coefficients for all frequencies.

Case B: Combined Sway and Yaw

Once the coefficients C‘,Cﬁ,CJ,C“ are known, any im-
pulsive motion which combines sway and yaw will enable us
to find the remaining coefficients CS,CG,C7,C8. In practice
we set the two supports of the planar motion mechanism to

be 180° out of phase. Then if y (t) is the position of the

i

0

forward support and y (t) the position of the after support,

we obtain the following results: y (¢) = -1y (t) ,

2 1

and v(t) = - —% y (t), and r(t) = % §1(t). Measuring

1

A ~

y (), Y(t), N(t) we can calculate r(w), viw), Y(w), N(w).

Rewriting (15) with all known coefficients on the right-

hand side, we find

~ A A

Ca(m)rc(w) + CS(U)rS(w) = Yc(m) - C)(w)vc(u) - Cz(u)VJQJ
Cs(m)rs(w) - Cv(u)rc(w) = §s(”) - Cl(w)vs(w) + Cz(w)vchﬂ

(17) . & b A -
C (w)r (w) + C (w)r (w) = N (w) - C (w)v (w) - C (w)v (w)

7 c 1 S c 3 (= " S
C_(wr (W) = € r (b = N_(W) - ¢ WV () + Ck(w)\:'c(u\

These equations can be solved, frequency by frequency,

as four simultaneous equations in the four unknowns C ,C ,
5 6

C ,C . Now we see that, in principle, we need only one
7 8

sway impulse and one combined sway and yaw impulse to evalu-

ate all eight coefficients over the entire frequency range.
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In practice, the situation is not that simple and more tests
might be required to achieve sufficient accuracy. This

problem will be discussed in a later section.

Experimental Techniques

The model was again attached to the planar motion
mechanism, the only alteration being the disconnection of
the electric motor so that manual power could be used. The
output signals from the strain-gauge dynamometers and the
linear potentiometer were filtered and recorded on a 4

channel FM tape recorder and later digitized at 250 samples/

Operating the planar motion mechanism manually, the
experimenter provided the impetus to initiate the sway or
vaw motion and the mechanism was allowed to coast to a
smooth stop. The resulting impulses varied considerably
between experimental runs, but typically had a duration of
about 1 second and maximum energy at 1.25 Hz and a maximum
lateral displacement of 1 inch. A second series of ex-
periments was run with a slower pulse of 4 seconds duration
and maximum energy at 0.25 Hz. This was the slowest pulse
that would yield forces large enough to be accurately
measured with our equipment.

Another series of experiments was run, during which we
attempted to produce pulses which approximate a step
function. As will be explained later, such pulses yield

the best results for very low frequencies.
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Computer programs were written to calculate the Fourier
transforms of the digitized data and to solve egs. (16) and
(17) for the stability coefficients. All data processing
was performed on the University of California's CDC 6400

computer.

The Existence of the Fourier Transform
A sufficient condition for the existence of the Fourier

transform of £(t) is that f(t) be absolutely integrable:

2, 1£ce) |at < =

(1)

In practice, we require that f(t) be zero for all t < o
and return to zero after some time T > o. For case A, pure
sway, there is no prcblem since any pulse of finite duration
will give us wit), ¥(t), and N(t) egual to zero for £ < ©
and t > T. For case B, however, the only way to achieve
this is to have the centerline of the model coincident with
ug both before and after the pulse. In practice, this is
difficult to achieve.

If we allow the model to come to rest with some non-
zero drift angle, then ;(w), Q(w), and &(w) will all be
non-existent since v(t), Y(t), and N(t) will reach some

non-zero constant value for all t > T. But note that

v(t), Y(t), and N(t) will all go to Zerd for t > T, and

A
.

therefore G(w), Y(w), and N(w) all exist. If we take the
derivative with respect to time of the equations of motion

(12) and then take the Fourier transform of these new




equations, we find that we can still use egs.

% that we replace v(w), r(w),

(17) provided

A

Y io) , Wie) wieh wla): Flol,

It would then appear that we must differentiate the

recorded data before taking the Fourier transform. To see
that this is not the case, consider f(t) = fo for all
B s eollan iR (eI = T for £t > T. Then we find
< . —i ;T . =i
fluy = [ E(Eje 10t 4¢ = [, flt)e et g¢
upon integrating by parts we find
4.\ | e _-’_]T . -.*;
Ew) = [£me™ +  i0 [T goe ¥t at
L e 0
IR T e T B e
0 T (o)
Since we can then calculate f(w) without differentiating
f(t) and since we can rewrite egs. (17) in terms of Q(@),
etc., we can use an impulse which has a non-existent

Fourier transform

accuracy provided

definition of the

pulse by defining

%(w) =

and we see that

%(rg) =

derivative exists.

[T £(t)e v

without additional complexity or loss of
only that the Fourier transform of the
Alternatively, we could extend the

Fourier transform to include such a

LR e B
N} a3 (@]

e

L £ (u))
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It should be pointed out that if one uses this extended

definition of the Fourier transform, it will be necessary

A
to extend the Fourier inversion theorem also. We have
t -
£(t) - £lo) = [O flr)ar
= ft ar 2 [ (u) cos wt dw
0 T ol C
e SN NN e
= fo at = fo f_(w) sin wt do
Noting that £ (w) = wf (w) and £ (w) = - wE (w):
c s s c
B R T
Eteh = 2ol = = [ au fo w £_(w)cos wt dt
=2 fm dw ft—tu% (w) sin wt drt
T ‘o Jo c

After integrating we have the extended Fourier inversion

theorem :
A .
£(t) - £(0) = % [ £_(v) sin ot dw
= &0 & 4 (oo8 wk = T3 6 &
T ‘o

Effect of a Filter

As mentioned earlier, it was necessary to filter the
signals in order to improve the signal-to-noise ratio. If
f(t) represents any of the signals, filtering it with a

linear filter is equivalent to replacing f£(t) with

Tik) = [ £(t-T)W(1) dr

e ——— N——
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where W(t) depends upon the characteristics of the filter.
Then

f(w) = f(w) » W(w)

An examination of egs. (15) shows us that if all the signals
are passed through identical linear filters, the W(w) will

cancel out and no accuracy 1is lost due to the filtering.

A Difficulty in Transient Experiments

As mentioned earlier, since a finite pulse has com~
ponents at all frequencies, it is theoretically possible
to run one sway test and one combined sway and yaw test
and, from this data, solve for the stability coefficients
over the entire range of freguencies o < w < » ., But,
since we are passing the signals through a low-pass filter,
we cannot reasonably expect to obtain accurate results for
frequencies above the cut-off frequency of the filter,
5 Hz in our case. This is not a severe limitation however,
since 5 Hz is a considerably higher frequency than one needs
for almost any application.

Unfortunately we face a more serious problem. When one
solves egs. (16) and (17) for the stability coefficients,

one finds expressions for C ,C ,---,C Which always contain
1 2 8

~ N ~

> ’ 2 2 2 2
a term in the denominator such as (Vc 3% VS )} OF (rc + r, D

For example: .

Vo X iy
C = & G s 'S

1 2

(18) c s
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Suppose we approximate the pulse (for case A: pure

<

sway) by vy(t) = %(1 - cos w £}, 0<t<T=>= . We

shall refer to such a pulse as a "full pulse". Then

A~

viw) =

(SRS

) W Ea s W

(2 sin® @7 = + 1 sin 237 =)
w w

w - W le} I}

(m)=-—;-

~

Notice that Vc(d) has zeros at w = o, 2uo, 3wo, --- and
by 1 3 ”
v_(w) has zeros at w =0, = , =w , 20 , =—-—. Then the

s 2o 2 @ 0
denominator in eq. (18), (vc3 + vsz), has double zeros at
w = o0, 2w_, 3m3, --- . There will exist a singularity

at these points unless the numerator has matching zeros
to cancel it out. The terms in ;s in the numerator provide
only simple zeros, but one assumes that the transforms of
the measured forces will supply the additional matching
ones. In practice, this cannot be realized since §(m)
contains the transform of the signal plus the transform of
the noise, and there is no reason to suppose that the trans-
form of the noise goes to zero at these frequencies.
However, even if this were so, one is still in the position
of dividing two very small quantities at and in the neighbor-
hood of the zeros and consequently one is very vulnerable
to small errors in measurement, which may become very large
relative to the quantities measured.

With such a pulse, one cannot avoid the problem at

w = o0, but one can choose a large enough w, SO that the

remaining zeros are outside the range of interest. For
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example, if the duration of the pulse T = 1 second, then

w, o= 27 and we can expect reasonable results for o < w<4 T,

but, 2Ff . T

4 seconds we can expect reasonable results only

A
»

for o < w < w., Figure 3 gives the value of (vc“ + vsz) for

these two pulses.

One way to avoid the problem at w = o might be to

select a pulse which does not return to zero, such as y(t) =

1 m : i
= z(1 - cos g, T, @ € & 6 = where y(t) = 1 for & > —
< 0 s == w
We shall refer to such a pulse as a "step pulse". Then
K \ ¢ i Yo Tw ! . W
viw) = y(w) = - £ ————— (1 + cos — - 1 sin — )
2 2 2 " w
We-w o) 5)
Notice that VC(J) has zeros at w = w_, 30 _, 5w_,~=- and
that vs(”) has zeros at w = o, ZW\, 3w _,=---.Then the
denominator in eq CLET <Vc: . vs‘), has double zeros
at w = 3mo, 5&01 7uo, --- . Therefore, such a "step pulse"
should provide good results for o < @ < 3w _. The denomin-
ator for a step pulse with w_ = 27 is shown in Figure 3.

v

A comparison of the full pulse and the step pulse as
used in our experiments is shown in Figure 3a.

There is another way to avoid this difficulty, although
it has the disadvantage of requiring more experiments.
Suppose we perform the same maneuver several times with

slightly different values of w_, say w < w < w . Then

Q | ~ 3

1 2

we can sum the results of the individual runs to form

i




A

v(w) = ; + ; + ;
Q(m) = ‘} +‘; +‘}
;X(m) = I; +I?I + N
If the three runs have only slightly different values of

A ~

w_, one can show that (vc2 - vsz) is not likely to have
any zeros near 2wo. This procedure has been followed and
Figure 4 compares results obtained from individual runs

aind the result of the combined runs.




Relationship Between Traditional Method and Transient Method

Note that the equations of motion used in the impulse
test assume nothing about the motion other than the require-
ment that the motion be small perturbations about a uniform
motion. It is of interest to examine the case used in the
traditional method, i.e. regular-oscillatory motion about a
uniform forward speed. Let v = vocoswt, u o= uo, r = 0 and

substitute into egs. (12):

N — . 3 R -

(m+uyy)( vouSant) + Nyy(vocoswt)

+ f v_cosw(t-T)N (1)dT = Y
Ao vy

v

(mx +u ) (-v wsinwt) + B, 6 (V_coswt)
g vy o vy o

Py

+ [ w(t=T T)dT = N
! vocosw(t )va( )d E

Examining the convolution integral, we find
Yy

o0 oo
f V _cosw(t-T)N (T)dTt = f v_coswtcoswt N (1)dTt
. o ©° Y

<

+
(o

v sinwt sinwtN (t)dr
o Yy

A A

= v _coswt N (w)+v _sinwt N (w)
o) YyyYyc< (o] Yys

Using this relationship and separating the force and moment

into their in phase and out of phase components, we obtain




A

N ( -\ 1 { + 8 +N (
[w(m+uynyyys(u)]( VoSlndt) t o yyc(w)]vocoswt
(19) = Yin coswt + Yout sinwc

~ A

[m(mxg+u, ) =N S(u)](-VoSant)+[Dwy+wac

by oy (m)]VOCOSut

= N. coswt + N sinwt
in out

Comparison with eqs. (6) gives the following relationships:

Y =-8_ - N_ ()
v YY yyc
Y = -u +@—1vas(“)
N ¥y e
20 :
(20) e i ]
v Ty P
Ne = = “+ C— N (J)
¥y vys

and a similar examination of oscillatory yaw motion yields

r v vy
Y = =1 + u—l~ q w
r yU vUs
(21) X
[ R R (i
= by Yve
& S wd !A—I‘A G
N = By * 0 ‘bvs(d)
Finally, a comparison with egs. (14) yields
Cl(ﬂ) = -YV
C« (J)) - A(m-Y\',)
C ((‘)) = =N
3 v
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S
C (w) = w(mx_ = N=«)
4 g v
C (w) =mu =-Y
5 o] e
(22) CG ((D) = w(mxg - Yi)
C7(w) ='mxguo - Nr

Cs(w) = w}Iz - Nf)

If, as presumed by the traditional method, the

stability derivatives are constants, then Nyyc(w) must be

a constant and Nyys(w) must be zero everywhere. This means

that Nyy(r) can be written as a delta function

N (1) =N §(t) where N = constant
Yy Yy Yy

Then the convolution integrals appearing in the equations

of motion can be written as

O“—8

v(t=t)N d§(t)dTt = N vw(t)
Yy Yy

and any dependence upon the history of the motion is lost
and indeed the equations of motion take on a form which is
identical to that used in the traditional approach. There
is, then an equivalence between the dependency of the
stability derivatives upon the frequency of oscillation and
the dependency of the instantaneous forces and moments upon
the history of motion. Therefore, the fact that previous
studies have shown that the stability derivatives are

frequency dependent, forces one to conclude that the




traditional equations of motion are not adequate to describe
all situations and that the convolution integrals should be
included in the equations.

Equations (22) give us a means of comparing the results
of the two experimental techniques, i.e. regular-motion
tests vs. impulse tests. Therefore, rather than present
the results in terms of the stability coefficients
c,C, ---, C , we chose to present everything in terms of

1 2 8

the more familiar stability derivatives Yv' Y&, -, Ni .

Low-Frequency Behavior

Noting that the Fourier cosine transform is always an
even function of frequency and that the sine transform is
odd, an inspection of egs. (20) and (21) leads us to con-

clude that all the stability derivatives must be even

functions. Therefore, if we express the stability deriva-
tives as a Taylor expansion about w = o, we have
:vlyr
1 2 v
Y =Y (w=0) + = w + —==
v v 7

It is now apparent that, when one attempts to extrapolate
regular-motion test results to w = o, one may assume that

the stability derivatives approach a constant value with

zero slope. Furthermore, there must exist some range of
frequencies o0 < w < £ over which the approximation
YV = Yv(ﬂ=o) is usable. Obviously, if the forces and

moments applied to the hull have frequency components which
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are primarily within this range, then there should be little

error in using the traditional approach.

Almost Steady Motion

Since it has been shown that the traditional approach
to maneuvering problems will yield reasonable results for
many standard ship maneuvers, it is of interest to examine
the conditions under which the traditional equations of
motion (5) become a good approximation to the preferred
equations of motiorn (12). For the sake of simplicity, con-
sider the sway equation for the case where r = o. Then

eq. (5) becomes

(23) (M, = Yoo = ¥ w = Y

v v E
where YQ and Yv are to be evaluated at w = o. Note that
there is nothing in the derivation of egs. (5) which allows

one to assume that the zero-frequency value of the stability
derivatives should be used. However, when examining ship
maneuvers, one is dealing with very slow motions which

suggest a similarity to very low frequency regular-motion

tests.
Taking the zero-frequency limit of egs. (20), we see
that
b4 = g e )’“ N (,)d-
v ¥¥ Yo Xy
(24)
Y- = = o= )ﬂ T.\] \ )J'




Substituting egs. (24) into the traditional sway equation

(23), we find

(25) (m o+ - jj zNyy(r)dr)& + B # j: N, (Da0)v
=YE
The transient-motion sway eguation is
(26) (m + uyy)& s iyvv + [T v(t-r)Nyy(r)dr = Yo

We now ask ourselves, "Under what conditions will the
solution of eq. (25) be a good approximation to the solution
of eg. (26)2°

Let V1(t) be the solution of eq. (26) and v_(t) be the
solution of eq. (25), given the same initial conditions and

forcing functions for each. Subtracting eqg. (25) from
g g €9

eg. (26) and rearranging terms, we find

m+ v - [T N (1)) (VY - V)
VA o My 1 2
(27)
+ (8. + [CN_(n)dT)(v = v ) = g(t)
Yy oy 2
where
(28) gt) = [ |Lv (&) = v (t=1)) = v (&) [N ax
> 1 1 1 .| Db
If we assume that v = v at t = o and if we define
the error E = v -~ v, then the solution to eq. (27) is of
the form




= I8 =
t
at f N =0T
oA o erNyydT
S f? N dr
where g = = 44 = Ji S0
m + U - [N drt
Y AR AT
From this follows
| e”t(-1) (7o)
|E| < max |g(t) | =
m + u = = dr
yy ‘o'tyy
or
1 - ejt
(29) |E|] < max |g(t) | -
Be,.. + [N dt
Y SAE R

Suppose we are willing to accept an error equal to eV,
where V 1is the maximum value of |v(t)| and ¢ is some
small positive constant. Note that it was necessary, in
the linearization of the equations of motion, to assume that
V is always small relative to u, - We now define a constant
T which has the units of time and is dependent only upon

the system. Let

- N T | 3~
JolT Ny, (T)[dr
(30) T = 84
o
B, NGl
¥ e ¥y
Since the memory function N__ (1) must approach zero for
J
large values of 1, it is possible to define a critical time
—————————— 4 e - ;\—m




tc, such that

=
I c -
3 =€ T N dr =
(31) 5 fo | .

V¥ ftc ¥y
Apparently, the smaller one chooses ¢ (smaller acceptable
error), the larger the value of t. will become. Let us
examine the result of placing the following restrictions

upon the acceleration:

(32) lvit) | <

N| =
Hl<
H
(0]
Lo
joV]
A
t

(33) |¥(8) - V(t-T)| < 3eq4 for T <t

By the mean-value theorem

v (t) —v (E-1T) =1v (t - at)
1 1 1

where 0 < a(t,r) < 1, so that the definition of g(t),

eqg. (28), can be rewritten as

(34) g(t) = fj L}l(t—dT) - Ql(tlJ TN AT
= ql(t,tc) - qz(t,tc)
where
tc . -
= t-at) - 1 d
2 fo E’l( Gt} = ¥ )]r Ny 42
and
a, = ftc E;l(t-m) - vl(t)jr Nyy drt

PN S—

aliadie




Making use of eq. (33), we see that

e ¥ 'tci N |de < e = /7 |t N_|dT
LTJO 15 vy i o y'

o] -

. !gl! <

and using egs. (31) and (32), we can see that

lg | < ¥ Tl lar = e o ftc {T B Jde
ek LR 2 %
or
1. Mo
' ‘ e = N dr
lgzl S D= TJJ | T ly’
Therefore
| | V e
e)l £ e =5 f Iz N {dz
i g ! T ‘¢ vy
or
fg (el | < v & B + [T N dr)
YY
from the definition of T. Substituting the maximum value of
g.(t) into eg. (29) we reach the following result:
) eV \_L‘t,)?t) eV

Therefore, if the maximum acceptable error is to be €V,
and if the acceleration meets the requirements of egs. (32)
and (33), then one may use the traditional equations of
motion with the coefficients evaluated at w = 0.

A different approach to this problem can be found in

Wehausen et al. (1976).




The Experiments

A large number of experiments have been performed at
the University of California in an attempt to perfect the
impulse-response technique. This section outlines the
various attempts which led to the currently favored method.

In all cases, the experiments were performed at the
University's Richmond Field Station. The towing-tank is
approximately 200 feet in length, 8 feet wide, and 6 feet
deep (the water level was maintained at the maximum depth
throughout the experiments). The planar-motion mechanism

Danllines~ I W
rauililing 1000 WOOK

Q.
L

which was used is the same one use

(1962) . The model that was used is a light-we t woodi
model of a high-speed ship (DE type) and in al 1ses the
tests were performed using the model without proepeller or

rudder. It should be pointed out that the¢

propeller and rudder in no way affects the experimental
technique and in fact another researcher here Douglas
Loeser) has performed impulse tests using a Mariner model
equipped with propeller and rudder [see Wehausen et al.

(1976)]. The dimensions of the model are as follows:

L - 5.0 feet
B = 0.585 feet
& = 0.19 feet
CB = 0.492
M = 0.239 slugs
’ 1 = 0.468 slug - ft’

{
{
|
|
|
1
|




As mentioned earlier, egs. (22) give us the ability
to present the results of both regular-motion tests and im-
pulse tests in terms of either the traditional stability
derivatives, Yv’ Y;, N ,... , or the stability coefficients

v

[ el S G R In order that the present results might be
1 2 3

more easily compared with the work of other researchers, we

present all results in terms of the traditional stability

derivatives. The stability derivatives are made dimension-

less with 1, ¢ L, and u following the "prime system" used

2
by Mandel (1967). Two dimensionless forms of the frequency
are used:
wu
PR o
g
and ot = 2h
4 u .
o
We note that T = F ? w’

Regular-Motion Tests

In order that we would have data with which to compare
the results of the impulse-tests, it was necessary to per-
form a number of regular-motion tests. These experiments
were performed by Tomas Frank (1974) using traditional
planar-motion mechanism techniques. Since each regular-motion
experiment yields the value of the added mass and damping
coefficients at one particular frequency, the results of
these experiments appear as individual data points and no
attempt at curve-fitting has been made.

Note that there is a range of low fregquencies (see

'
¥
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Figures 5-12) in which no results are given. This is an
inherent problem of regular-motion testing. As mentioned
earlier, one inevitably reaches some frequency below which
accurate measurements are impossible.

Due to limitations on the accuracy of the measurements,
the results of these tests are likely to contain errors on

the order of 10-15 per cent and therefore, in the compari-

sons which follow, the differences between the results of
the two experimental techniques should not be regarded as

a measure of the inaccuracy of the impulse-test procedure.

Full-Pulse Impulse Tests

The first series of experiments from which we received
reasonable results employed a full-pulse, as described
earlier (Figure 3a), with a duration of approximately one
second and a lateral displacement of one inch. Such a pulse
has its peak energy at about 1.25 Hz and will yield
reasonable results for some range of frequencies centered
about this point. In a previous section, it was explained
that such a pulse will lead to results which are singular
at w = 0, and indeed this problem was encountered.

In an attempt to obtain better results at lower fre-
quencies, a second series of experiments was run. This
time, we used the longest-duration pulse for which we could

still measure the forces accurately with our equipment.

These pulses averaged four seconds in duration, peak energy

at 0.25 Hz, and one inch lateral displacement.




Figures 5 through 12 show the results of these two

series of experiments, as well as the results of the regular-

motion tests, for Fn = 0.30.

The graphs show that, though

the longer-duration pulses did yield slightly better results

for low frequencies, the improvement was limited to a dis-

appointingly narrow range of frequencies. It also becomes

evident that, if one desires information about the zero-

frequency limit, a different sort of pulse is required.

The Step-Pulse Impulse Tests

As was pointed out 1n an earlier section, a pulse which

approximates a step-function does not have the problem of

singularities at w = 0. Therefore,

another series of

experiments was run using the step-pulse (see Figure 3a).

The results of these experiments

are presented in Figures 13 through

Figures 21 through 28 for F

These graphs indicate that all of

cients are well behaved at w

an inch displacement)

for E. = 0,30 and
n

the damping coeffi-

<

the case of pure

sway, the added masses are similarly well behaved. However,

the two added-mass terms Y; and Nf' which are calculated

from the case of combined sway and yaw,

still "blow=up'' Lox

w = 0. Therefore, a further examination of this case appears

necessary.

The Zero-Frecquency Correction

In order to understand the behavior of Yf and N} at




zero frequency, it 1s necessary to return to egs. (17) from
which we calculated C6 and Cs, the corresponding stability
coefficients. For the sake of simplicity, only C6 will be
examined here, since the examination of C8 follows a similar
path.

Since the step-pulse leads to a non-zero force before
and after the pulse, we shall deal with the Fourier trans-
form of the derivative of the force, which exists in the

conventional sense. Rewriting the first pair of egs. (17),

we obtain

c, (W) (w) + cs(mffsu) = ¥ () - C () v (@) - C_ (@) v (),
C@F ) - C W w) = Y () - C ()i (w) +C ()Y, (W)
and solving for Cﬁ(m), we find

ce(i-c2 SlE A Y : - Y, T, - & (\:lc;s - é-séc)

€35 ¥ C; (Gsés ¥ chc)

If y(t) is the position of the forward support and -y (t)

the position of the after support, we have

u

DA - . X
vit) = 3 i) r(t) 3 y(t)
and A D
. st _o - :
v (I,A)) == d Yc(u)
(36) % u .
vs(m) = - EQ Yg (W)




’:_=£?
rc(w) 3 ys(w)
rolw) = - 3y (W
An examination of egs. (36) shows that —Gsfs = Gcic , and

therefore, the last term on the right hand side of eqg. (35)
is identically zero for all frequencies. Substituting

egs. (36) into (35) we find

~ A~ ~
. . .

For the case of zero frequency, it is a simple matter to

show that both is and is will go linearly to zero as w goes

to zero. However, both Yc and 4 approach non-zero limits

which are equal to the difference between their initial

and final steady-state values:

A

chm=0) =¥p = X,
§C(w=0> B ¥ vl
Therefore, when w = 0, we have
O el = e o =g i - R T PR
6 W yT—yo 1

Returning to the equations of motion (12), we can see that,

for the steady-state case Vs = 3

yO and r = 0,




- 44 -

¥¥Y o o ‘0 Yy o

or

Yo
(37) - Cl(w=0) i T
and similarly

Yo
(38) = Cl(m=0) = ¥y 5 4
Finally we see that C (w=0) = 0. However, in our calcula-

tions Y Y , v and ¥ are all measured quantities and

o gt !
it is apparent that an error, no matter how small, in any
of these quantities will cause the singular behavior ob-
served in the stability coefficients.

Since it is impossible to obtain measurements of infin-
ite accuracy, the following scheme was adopted, referred to
as the zero-frequency correction. Let the measured value

of the force be designated by lm and the value of the noise

Yn. Then we have

During the period prior to the impulse we can measure Ym
and the displacement y (we assume that we have the capa-
bility to measure the displacement with greater accuracy
than the force). Equation (37) gives us the value of Y

for this period, so that we can calculate Yn and subtract

it from Ym at every point in time. We now make a finite
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Fourier transform of Ym(t) - Yn from t=0 until t=T,
where T 1is the time when Ym(t) - Yn has stabilized at a
value approximately equal to YT as defined by eq. (38).
The assumption is made that Y 1is exactly equal to YT for
all time t > T.

In terms of the extended definition of the Fourier

transform

. . i
Y = [T yere e - L (v - v )

this assumption is equivalent to the replacement of the
measured values of the force before and after the impulse
(which necessarily contain some error) by their values as
calculated by egs. (37) and (38).

It should be noted that a similar assumption has already
been made for the case of pure sway. In this case the
assumption is that the force must be identically zero both
before and after the impulse.

The results of the combined sway and yaw runs were
calculated a second time using this zero-frequency correction
and are presented in Figures 29 through 36. The change in

the damping coefficients is slight and, finally, we obtain

good results for all coefficients in the zero-frequency limit.

A Test on the Linearity of the System
The linearization scheme which led to the equations of
motion (12) requires that the lateral and angular velocities

be "small" in comparison with the forward velocity. If this




requirement is met, the experimental results should be ince-
cendent of the exact nature of the impulse given to the mcdel.
Since both the lateral and the angular velocities depend
upon the peak-to-peak amplitude of the pulse, a series of
experiments was run using variocus amplitudes. Manning (1976)
nresents the results of the entire series of experiments,
with amplitudes of 0.40 to 1.00 inches and Froude numbers of
0.20 and 0.30, using both the full-pulse and the step-pulse.
Up to one inch amplitude (the maximum possible with our PMM)
no systematic variation of the results could be observed.
It would appear then, that the one-inch amplitude does not
violate the linearization assumption, and since it produces
the best signal-to-noise ratio, it is the "preferred" pulse.

Figures 37 and 38 are typical results of this test.
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The Prediction of Ship Maneuvers

Once one has a complete set of the stability coef-
ficients for a given ship, it is possible to predict the
lateral and angular motions of the ship for a given set of
external forces and moments. Alternatively, one could pre-

dict the forces and moments necessary to produce a given

path.

In the present study, the forces and moments produced
by the rudder were the only ones considered. The problem
then becomes one of finding the path of the ship for a given

rudder command.

The Rudder

Since the model which was used is not fitted with either
a rudder or a propeller, it was necessary to make some
assumptions about the rudder forces. The presence of a
rudder has quite a significant effect upon the overall
stability of the ship and the selection of a particular

rudder can cause a radically different behavior of the ship

if the rudder's contribution to the damping coefficients
causes the ship to become stable rather than unstable.
However, i1f we consider two rudders, both of which lead to
a stable ship, the predicted maneuvers will differ in ab-
solute value but not in their generaj behavior. Therefore,
if we are careful to select a rudder which is large enough

to insure the stability of the ship, we will be able to




predict the general behavior of the ship and to compare
predictions made by the traditional approach with the
transient-motion approach, even though the absolute vaiue
of the predictions may differ somewhat from predictions
made for the rudder which is actually on the ship.
Therefore, we shall assume that the ship is outfitted
with a spade rudder which has an aspect ratio of two and
an area equal to 2.2 per cent of the length times the draft.
Assuming a taper ratio of 0.45, the dimensions of the rudder

(the length of the full-scale ship is 314.5 feet) are:

Area = 83 f£t*
Span = 20090 (L
Section = NACA 0015
Sweep Angle = 0

Max. Chord = 8.9 £t
Min. Chord = 4.0 Bt

where the maximum chord is measured at the intersection of
the rudder and the hull, and the minimum chord is measured
at the tip of the rudder.

By following the technique recommended by Taplin (1960)
and using the data compiled by Whicker and Fehlner (1958),
it is found that for small rudder angles, the lateral force

exerted on the hull by this rudder can be avproximated by
YF = 3000 1lb. per degree rudder angle.

Taking the distance between the center of gravity and the




rudder's center of effort to be 144 feet, we approximate the

moment by

Np = - 432,000 ft-1b per degree .

Change in Stability Coefficients Due to Rudder

Since our experiments were run using a model without
either a rudder or a propeller, and since the rudder can
contribute significantly to the added mass and damping
coefficients of the ship, it was necessary to add a correc-
tion term to the experimentally determined coefficients.
Mandel (1967) suggests a method of finding the correction
terms. Mandel assumes that the correction terms are not
functions of frequency and, of course we would rather not
make this assumption since we wish to compare predictions
made with frequency-independent coefficients to predictions
made with frequency-dependent coefficients. However, we
would expect the added mass and damping coefficients of a
deeply submerged body to be frequency-independent and there-
fore the frequency dependence of the rudder correction terms
is not likely to be too great. Therefore, we have followed

the method outlined by Mandel and have reached the following

results:

8 %Y = = 0019
v

A ¥Ys© = <~ ,00014
v

AN~ = 4+ ,00088
v

A N+~ = + ,000066
v




®

A Y, = + ,00088

A YeT = 4+ .000066
B

AN - =. - .00040
X

A N~ = - .000030
r

These correction terms have been added to the experi-
mental results and the (dimensional) stability coefficients

for the full-scale ship were calculated.

Methods of Prediction

One of the standard techniques used to find the solu-
tions of eqgs. (l12), i.e. the equations of motion which allow
for "memory effects", is the Fourier transformation. The
equations of motion are transformed into the frequency do-
main, and ;(u) and ;(J), the Fourier transforms of v(t) and
r(t), are found by a frequency-by-frequency solution of egs.
(15). The inverse Fourier transform then provides us with
the ability te find ¥(t) and ¥ (€).

There are two major sources of error in such a solution.
The first source 1is simply the inaccuracy inherent in the

R

inverse Fourier transformation of a discrete function v (w).

A

One must be careful, therefore, to choose the distance Aw
between the discrete values of v(w), to be sufficiently
small. The second source of error is more difficult to con-

trol. As mentioned earlier, we can evaluate the stability

coefficients for 0 < w < w where w is finite. Therefore,

— \ .

we must replace the infinite integral in the Inversion




Theorem by a finite integral and v(w) must be of such a form

that

o5 A i & L aht 3
jo win) e ey 2 | Lv(w)e “Raw .
Since the velocities of a ship are unlikely to co-tain signi-

ficant components at high frequencies, this condition was

assumed to hold with sufficient accuracy.

The traditional eguations of motion, egs. (5), are much
simpler to solve. In fact, if one assumes constant coeffi-
cients (stability derivatives evaluated at w=0) it is

possible to find the exact solution to the problem. Further-
more, it 1is also possible to solve the equations using the
Fourier transformation. Thercfore, if we solve egs. (5)

by both methods, exact and Fourier transform solutions, we
shall have a measure of the accuracy of the computeyr program

that calculates the inverse Faourier transform.

A Check on the Accuracy of the Computations

A computer program has baen written that 1s capable of
solving both the traditional equations of motion, egs. (3),
(where the stability derivatives are assumed to be constant
and equal to their zero-frequency value) and the transient-
motion equations (12). The program uses the Fourier trans-
form to solve both sets of equations.

A comparison of the solutions of egs. (5), as computed
by the program, to the exact solutions of egs. (5) provides

us with a check on the accuracy of the program itself.




Such comparisons were made for two different rudder commands.

Letting & be the rudder angle in degrees, the first command
was
0 e < 0
(&) = 1.5 £, & £t < 1@
; 5, t>10

i.e. the rudder angle is increased linearly to a maximum
angle of 15 degrees in ten seconds. The second rudder
command was an lnstantaneous increase in rudder angle to

the same 15 degree maximum.

G A
L 5= {15 , £t >0

For both rudder commands, it was found that the error
in the computed solution, relative to the exact solution,
was less than two per cent. In terms of the overall accuracy
of the experimentally determined stability derivatives, the

accuracy of the computer program is quite good.

The Predicted Maneuvers

The two rudder commands already defined, § and & ,
1 3

correspond to the maneuver known as the turning circle. 1In

addition to these two commands, predictions were made for a

simple change of course, § and for the initial phases of
J

a zig-zag maneuver, ¢ . Where
L




——— |
j’ 0 p t < 0
3 LoEe 0 <& <16
§ A8k = 15 '’ 10 < £ < 20
t‘.‘S—l.St a0 < = 38
0 ' £ > 30
and 1
( 0 , t <0 |
1.5¢ . 0 <t < 10
_ Y5 , Lo <G < D0
§ LBE = ¢ gxy 2p ' 38 < ® < 40
=15 v 40 < t < 60
~105%1.5¢ , 60 < £ = 70
0 , £ 5 70

Hh
Hh

In order to examine the effect of the frequency depen-
dence, predictions were made for each rudder command, based
upon the traditional eguations of motion (5) as well as the
transient-motion equations of motion (12). Let vs(t) be a
computed solution of egs. (5), v (t) a computed solution of

egs. (12), and ve(t) an exact solution of egs. (5); then we

found the remarkable result:

v (£) - v (£)] < |v (£) = v_(&)]
S 1.2 £ e

for aiL. t and for each rudder command. In other words, the
differences between predictions based upon the different
eguations of motion were always less than the error inherent
in the computational technique, which is quite small.

The predictions for the various maneuvers, based upon
eqgs. (12) are shown in Figures 39 through 42 Pre-
dictions based upon egs. (5) are not shown since the differ-

ences are too small to be seen graphically.

"—u—.:
- e —————— K — -




Conclusions

Even if we set aside the guestion as to which set of
linearized equations of motion is the correct one and under
what circumstances it is correct to use the simpler tra-
ditional approach, we are of the opinion that the impulse-
test method is a superior means of evaluating the stability
derivatives.

First of all, the impulse technique, even if repeated
runs are made to avoid the previously mentioned difficulties,
requires substantially fewer experiments than the regular-
motion technigque to obtain the same results.

Secondly, the regular-motion technique is incapable of
evaluating the stability derivatives at very low frequencies,
and since this same frequency range is of paramount importance,
static-sway tests and rotating-arm tests (if one has the
facilities) are used to supplement the data. However, even
if these additional tests are performed, they assist only in
the evaluation of damping coefficients and contribute little
to the evaluations of added masses. The impulse test has
the capability of accurate measurement all the way down to
zero freguency.

Third, since the impulse test requires measurement of data
for only a very limited time, it becomes a more versatile
method. Problems such as wave reflection can be avoided
simply by recording the data before the reflected wave has

time to encounter the ship. Similarly, a short towing tank

4
.7 4




ceases to present a problem.

However, once a complete set of the added masses and
damping coefficients has been determined, it would appear
that the choice between the two sets of linearized equations
of motion is of little significance in the prediction of ship
maneuvers. Even the idealized case of instantaneous rudder
response, a severe test of the effect of frequency dependence,
led to predictions which differed only slightly.

Recent papers by Fujino and Motora (1975), Nomoto (1975),
and Fujino (1975) have all expressed the opinion that the
memory effect is often small and that the traditional equa-
tions of motion will yield good results for many standard

ship maneuvers. The results of the present study support

this opinion.
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TURNING CIRCLE
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Figure 39: Path of a turning circle, § (t), predicted from
1

the transient-motion equations. Fn = 0.30.
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