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ABSTRACT

The solution is given for the problem of screw dislocation in

hexagonal crystals with long range interatomic interactions.

The field equations of nonlocal elastic solids are employed

to determine the anti-plane shear stresses and the elastic

energy for a screw dislocation in the basal plane. Interestingly
f “ encugh, none of the classical stress and energy singularities
‘é are present in the nonlocal solutions. Maximum shear stresses
are calculated for several hexagonal crystals and compared
with the isotropic materials. Theoretical shear stress to
initiate a dislocation with a Burger's vector of one atomic
distance is calculated and found to be in the acceptable range
known from the lattice dynamic calculations.

r—

1. INTRODUCTION
The classical elasticity solutions of Volterra dislocations are well

documented (cf. [1]). The simplest among these is the screw dislocation

SRR e,

in an isotropic elastic solid which exhibits a 1/r.singularity for the shear
stress and a logarithmic singularity for the elastic energy. The classical
elasticity solutions, therefore, fail in a '"core region'" near the center
line of a cylinder. 1In a previous paper [2] we have shown that such

%{ singularities are not present in the solutions based on the nonlocal elasticity

theory. This, rather recent theory [3,4], models the solids much more

]This work was supported by the office of Naval Research
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satisfactorily in that the effect of long range interatomic interactions are
taken into account in the stress constitutive equations. This in return
allows the treatment of geometrical discontinuities and those associated with
the physical inputs (force distributions, wave lengths, energy, etc.) in a
more satisfactory manner. Yet, it is a continuum theory so that all problems
can be formulated as boundary-value problems. The failure of classical
elasticity theory in the dislocation core region has led physicists to invent
various atomistic models to provide an estimate for the state of stress and
energy in this region.

Encouraged with the results of our recent work on isotropic nonlocal

elastic solids [2] we felt that the analysis should be extended to anisotropic

solids, since in anisotropic materials the solution is influenced highly with
the orientational effects. Hexagonal crystals represent technically an
important class of materials with well-known stable dislocation patterns.
Here we give the solution of the screw dislocation problem with the Burger's
vector lying in the basal plane. In section 2 we present a brief summary of
the field equations of the nonlocal elasticity theory. In section 3 we
obtain the solution of the screw dislocation problem leading to expressions
of the stress fields and the elastic energy. In section 4 some results of
computer calculations are presented and the maximum shear stresses that cause
a single dislocation in several hexagonal crystals (Mg, Apatite, Cd, Zn)

are calculated. The shear stress distributions along a radial plane for
these crystals display considerable differences from those for the isotropic
solids. Gratifyingly no stress and energy singularity occur so that by use
of the maximum shear stress hypothesis it is possible to calculate theoretical

shear stress (cohesive stress).




2. FORMULATION
The basic equations of linear, homogeneous, nonlocal elastic

solids, in the static case with vanishing body force, are [3,4]:

(2.1) tkz,k =0
— ]
(2SR E ™ f akgmn(’f"’f)emn(’f )dV()f') 3
v
(2.3) S %(um,n+un,m) s

where the only difference from the classical elasticity theory is in the
stress constitutive equations (2.2) which state that the stress at a
reference point x is a function of strains at all points x'. As usual we
use the summation convention for the repeated indices over the range (1,2,3)

and denote the partial differentiation with respect to x, by a comma, e.g.

k
th,m = a:kg/axm , uk’g(f') = Buk/ax'l
The total strain energy of the body is given by
g R e *f (gt = %f f g1 i i el

v '

From this expression and (2.2) it is clear that the nonlocal elastic moduli
'
akamn(f ’T) possess the symmetry regulations

(2.5) Oy (x"s8) = By (x3) = Ay (XD = Ay, (xux")




Hence there are 21 independent functions for the nonlocal anisotropic solids
that contribute to the total elastic energy. The translational invariance

of (2.2) dictates that for homogeneous materials a must depend on x'-x.

k 2mn

Hence

(2.6) (x'x) = a [ (x! 1)2.(xé-x2)2,(x3—x3)2]

e Lop 4
kimn "~ mn 1

In conformity with the phonon dispersion curves in lattice dynamics we

N £ > '_
can approximate akimn(§ x) by
2 2 2
) ’ n - , [ ¥
(2.7) dk.mn(x x) tkgmnxl(x1 xl) ,(x2 x2) ,(x3 xj) s
where Cromn 2T the elastic constants of the classical elasticity and

1(x"-x) is an attenuation function that depends on x'-x.

From the physics of solids the following properties of a(x'-x) are
obvious.
(a) a(x'-x) attenuates rapidly with x&-xk.
(b) 1In the classical elasticity limit u(x'-*) must become a Dirac
delta measure.
Based on these observations we assume that:
(i) 1(3'-3) is a continuous function of x'-f, with a bounded support
i where a>0.

(i1)

(2.8) a(x'-x)dv(x') =1 .
17}

In an exactly similar fashion to our work [2] we can now prove that (2.1)

and (2.2) are satisfied if and only if




where

2210 ( = C >
(2.10) 'kv chmn(mn

is the classical Hookes' law. This result may be stated as:

Theorem of Correspondence:

The displacement field of the boundary-value problem of nonlocal, anisotropic

elasticity, under the assumptions (i) and (ii), is identical to that of the
classical anisotropic elasticity theory. The stress field is, however,

given by
(2.11) tkP()f) = J “(f'"f)”kﬁ.(i")dv(f’) .
v

These results are valid for any kind of anisotropic solid.

For the hexagonal crystals the number of non-zero independent elastic

constants o is five (cf. [1] p. 428) so that (2.10) has the form:
-
F”n r-"11 g 3 0 0 0 T [y
“22 Si3 %y 0T N €22
(2.12) "“ d €13 “12 ‘11 0 0 0 €4
”23 0 0 0 it 0 0 €54
Oy 0 0 0 0 ey 0 P
‘12 0 0 0 0 0 Chl Le]z
— - e - -




where

3 S 1 5 ARG Lt 170 RS B Tt S £ L 22 2222

£2.13)
55 = ¥(cyy=¢y3)

44
The attenuation function a(x'-x) may also have different rates of decay in
the basal plane perpendicular to the xz-axis than in the xz-direction.
Considering the fact that in the basal plane, hexagonal crystals are

isotropic and recalling (2.7) we must have

(2.16) @ =alGg-x) (-x), G5’ 81,3

B
The specific form of this function can be fixed by the dispersion curves
available in lattice dynamics. A very useful one is the function1
(2.15) a =a_exp[-(k /a)z(x'—x Y (x!-x )-(k /q)z(x'—x )2] B=13

23 S e e B g’ Vg g gl RgTXad 1y F
where a, is determined by the normalization (2.8). The constants k1 and

k., are, respectively, the attenuation factors in the basal plane and along

the xq—nxis and a is the lattice parameter.

&

IWhile this function does not have finite support nevertheless it gives
the Dirac delta measure in the limit a-»0.
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3. SCREW DISLOCATION

A pure screw dislocation in the z-direction in the basal plane of a
hexagonal crystal is possible, Fig. 1. Referred to rectangular coordinates
(x1=x, X7V, x3=z), the nonzero components of the displacement and stress

fields are given by (cf. [1], p. 426)

e DA
(3.1 u, = 5 tan (B “y/ix);
(3.2) g . - AR “—ZX_Z 5
i & Bacecty
33 Uvz = ABb RKha .l
. 2n Bx2+y2

where b=(0,0,b) is the Burger's vector, and A and B are constants related to
the classical elastic moduli Cij by

(3.4) A= [C44(C11—C13)/2]i . B = ZCAA/( o)

S A €

The elastic energy per unit length of a cylinder, with inner and outer radii

rO and R, is given by

(3.5) I/L = —— n (=)

From these results it is clear that the stress field has a 1/r-singularity
and the energy has a logarithmic singularity as ro*O. This, of course, is
the troublesome state, well-known in classical elasticity.
According to the theorem of correspondence we can employ these results
to obtain the solution in nonlocal elasticity. To this end we first calculate

the classical stress fields in cylindrical coordinates. Thus,

e v A
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Ab 1

%z = -0, ,8inb+0  cosb = i
€3.6) i 4 vz r
. - A(B-1)b 1  tand
L 2m r B+tanZe °
where

¥

1 ' )
cosf = x/(x2+y2)2 5 sinf = y/(xz+y*)

In curvilinear coordinates the physical components of the stress field

t(kz)) is given by (see [2])
[ ' '
AEe2) t(k)(ﬂ) o ”(¥‘—¥)O(k ipﬁ(f')éi zékk'dV(f') ’

g k .
where §  and § W are the direction cosines between the curvilinear

. k k x
coordinates x' and x . In this case we have

o LG T = e ce'. = cos(6'-9) 5 S = e et =]
(3.8)

s = e ‘e'r = sin(6'-6) 5 §,, = e _ce! = -gin(6'-0),

where (e e
e L

B s 07) are the unit vectors of the cylindrical coordinates at x

'
and (e r? g

0'7) are those at x', Fig. 2.

Substituting (3.8) into (3.7) we obtain

1(3'—x) l—n“z(f')sin(H'—9)+nrz(§')vos(n'—H)]dv(§').

(3.9)

(
J
v
t = [ q(f'-f) [uez(f')cos(ﬂ'—ﬂ)+0rz(¥')sin(ﬂ'-ﬂ)]dv(*')
%




The normalization constant « in (2.15) 4is obta
over the infinite space. This gives
! i/ﬁ ) ]
(3.10) t k. k.a
2
[n eylindrical coordinates for the function @ we have
2 2 2 2 ;
1(x'-x) = q vxp[—(k]/n) (z'-2) ]'exp|~(k]/n) r cos 9
2.2 2 2 2 2o ' !
~(k,/a) r sin (1]-exp[—(k]/u) (r'“cos“8'-2rr'cosfcos
D 22 2 ; :
-(k,/a) "(r'“sin“g'-2rr'singsing') ]
[f we note that the function a is even in (8'-8) the integrals in (3.9)
take the forms
w L2
A(B-1)b tanf'
bz ~ “'-77")‘ J( J( a(x'-x) ———— cos(8'-6)de'dr'dz' |,
' b el B+tan 9'
(3.12) s g8 o0
Al - f [ ang' ,
t = | J{. | A" -x)[cos (8" =8)+(B-1) A0 sin(8'-0)]de'dr
v b LT | L
T Se S B+tan" @'
Integration in (3.12) over r' and z' can be carried out leading to
27
Ak b sinf'cosh’
trz s a )'( [{B=1) ~— Sk cos(0'-0)f(p,0,0')de ’
b 0 1+(B-1)cos 9"
13) ;
2m
_ Ak b " sinf'cosh'
t“z = =3/ 5 J [ :os(8'-8)+(B-1) —— ——— 51n(8'-0) 1 £(c,0,0"')d
gl o 1+(B-1)cos” 8"
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kr/a . k=k1 . k,/k‘ = ¥

(cosficosf'+x sinfsinf ')’

2 2
') = exp{-0°[14+(x"-1)sin“fH - e =
I+l =) sin 0

a2
cosfcosf '+ sinfsind’ 1]
1 4

1 I+nrf[. 2 5
[1+(k“-1)sin“6"

7 it
[1+(x“-1)sin“8" )

placement field is given by

-1, -%
Ean (B " tant)

1)
]
~
o
-
-
Ll
N
=

0 that the only non-zero componenet of the strain tensor is

5
: e
(3.16) e = ?’b 4 [1+(B-1)cos 8] ]
bz a4 r

The total strain energy per unit length in the z-direction is now

calculated by

{ R
3 il
(317D 4 T Srb J [14(B-1)cos 0] lt_.?(r,”)dr(lH
r
O

4. DISCUSSION
The shear stress t”7 takes its maximum values at 9=7/2. The non-
dimensional shear stress,

- Ak b
y a

)




is plotted in Fig. 3 as a function of p for various hexagonal crystals.

We have selected the value of « as the ratio of elastic constants (= /c

22° 11
with the consideration that the attenuation in a given direction is probably
proportional to the elastic modulus in that direction. The elastic
constants used are taken from [5] and they are listed in Table 1 together
with ¥ and the maximum value of 7”2 and the PP at which it occurs. The
t_,'L“ is also shown on Fig. 3 as a function of p for the isotropic crystals.
It is clear that the maximum shear stress and its location is greatly
affected by the anisotropy. In particular, for Cd and Zn the maximum
shears are nearly one half of that for the isotropic solids. 1In Figs. 4
nd 5 we display the non-dimensional shear stresses t andiw =t [t as
0z LSS EZE O
unctions of ® for magnesium. The maxima occurs at p=1.10, 8=n/2 for
and p=1.40, 8=n/4 for t
TZ
For engineering purposes it may be useful to give the ratios of shear
stresses to those for the isotropic solids. These are shown in Fig. 6 as
functions of p at 6=n/2. These curves may be used to make estimates for
other hexagonal crystals with different . Since trz is much smaller than
ty, ve have not provided corresponding curves for trz'
Unlike the results in the classical theory the shear stresses possess
no sin,ularity but acquire maxima. Consequently we can equate the maximum
shear stress to the cohesive shear stress to obtain the condition to produce
a dislocation of single atomic distance. Thus taking b/a=1 we have
calculated the ratio of theoretical shear stress to the shear modulus €t
These are listed in Table 2 for different attenuation constants k=1, 1.25

and 1.50. The value k=1.50 makes the dispersion curve for the plane shear

waves obtained theoretically by using (2.15) nearly coincident with those
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obtained from experiments of Joynson[6]. It appears that the theoretical
shear stress calculated is about twice the value based on lattice dynamics
calculations (cf. [7]’ p. 19) for Zn. Considering the inaccuracies
involved in the estimate of interatomic force laws, it is clear that the
present results are in the right range. In fact, if one takes k somewhat
smaller than 1 and « slightly different, it is possible to lower these

ratios. However, one cannot place any great faith in these values in the

absence of experiments sufficiently accurate for the atomic scale phenomena.

The total energy given by (3.17) may be expressed as
(4:2) L = Ab'LL
where EO depends on «,B and P=kR/a. For various materials Zo is calrulated
and listed in Table 3. The case of isotropic materials agree very well

with the result given in [2]1. Zo grows indefinitely with the radius R

becoming infinite for R=» as expected.

1In [2] eqs. (4.2) and (4.3) contain a typographical error. Right-hand
side of 7 should be multiplied by % in both (4.2) and (4.3).
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Table 1.

1%

Maximum Shear Stress

‘Elastic Constants | "1”'““"'"' T .
IMaterial | ci1 | Cy0] €1l €on | € | k= T = t z |
. ERENERNEN e | z | °nm
f xlO”dyn/cm2 (€g9/043) (tg,/t, ’ (Prm/”)’
= ,#_ S A e 4
| |
Zn | 16.5 15.0 13.1 6.2 |3.96 0.376 0.3370 I 2.65
| |
Mg 5.93{2.14(2.57(6.15|1.64 1.037 0.6555 | 1.08
| 4
Cd i1.4 4.0 [3.94]5.08[2.0 0.446 0.3911 } 2.25
; l ’
|Apatite 16.7 |6.6 [1.31(14.0 [6.63 0.838 0.5871 | 1.29
{ (
Ice 1.34(0.53{0.65|1.45]0.313 1.082 0.6824 i 1.03
t |
, |
PERi et T o e N ST
Table 2. t“z/CA&
j k
| Materfal ———— -
. 1.00 1,25 1.50
S —— -T--,._..‘..*, ....... o SE—
|
Zn 0.0698 0.0872 0.1049
Mg, 0.1056 0.1320 0.1584
Cd 0.0850 0.1062 0.1275
Apatite 0.1007 0.1258 0.1510
Ice 0.1140 0.1425 0.1710
|- ————e S SN — I
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FIGURE CAPTIONS

Screw Dislocation in Hexagonal Crystals
Coordinates in (x,y) - plane

Non-dimensional shear stress TH7 versus p

Non-dimensional shear stress versus 6 for Mg

%z

Non-dimensional shear stress Trz versus O for Mg

The ratio of shear stress t X to shear stress for isotropic bodies
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