AD-A043 449 CARNEGIE=MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2
PROGRAM STRUCTURES FOR EXCEPTIONAL CONDITION HANDLING.(U)
JUN 77 R LEVIN F44620=73=C=0074
UNCLASSIFIED AFOSR=TR=77-1136
ek

I
'
4

B

1= flz

b
[\
(9}

Is

28 =

315 E:U‘zz
=

35

. IR

o

M

NATIONAL BUREAU OF STANDAROS

MICROCOPY RESOLUTION TEST CHART

b4

ANC FLE copy

\.\

] v

AD No

m:osn.m-vv-lmﬁ ey @

O:
2
)
o PROGRAM STRUCTURES FOR
< EXCEPTIONAL CONDITION
e HANDLING
-
[
<
Roy Levin
Approved for publie release
distribution unlimiteq, y
DEPARTMENT
of
COMPUTER SCIENCE

{16/ S >
4 TITLE (and Sublltla) P o B SERIOD “UVERED
| _ e A ‘ / {
(9 / .
A ?\ _}’RO(‘RA.‘I STRUCTURES FOR EXCEPTIONAL i \,,./ Interxm/ V.o / k
| _CONDIT TON HANDLI\IG * ' ‘.___P_s_.,_mrom,;onc afom' NMEQ
7. Au‘rﬁé;('s)“ — 7 {8 CORTRACT OR G;ANT NUMBER(#) ‘
- ‘/‘ —————— —
{/[j ‘ RO.}V/ESJXI_E_J Sl F44620- 73 C- 0074/
‘ 9. PERFORMING ORGANIZATION NAME AND ADDRESS

SECURITY CLAE& AYION QF THIS PAGE rm--n Deta E“lor)
| L{RERIRT DGCUMEN TATION PAGE P D
% . BEFORE COMPLETING FORM
REFPSRTNPMBER i

N,
%

[5 v 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFOSR{TR- 77-1136 {

10. PROGRAx ELEMENT, PROJECT, TASK

. P . AREA & WORK As ITNUMBERS
Carnegie-Mellon T'niversity

: : o 6l102F ¥/ 7
Computer Science Dept. - // | — /-'
P‘ttsburgh, PA 15213 ',x 44} -%309///\2 \Z-—-—-—--i

1. CONTROLLING OFFICE NAME AND ADDRESS

_~—1-12._REPORT DATE

Defense Advanced Research Projects Agency (//L June 1977 /

1400 Wilson Blvd Y3 RUMBER OF PAGES
Arlington, VA 22209 76

MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of thia report)

Air Force Office of S ientific Research (NM)
Bolling AFB, DC 20332 UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release! distribution nlimited.

G

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NQTES

. KEY WORDS (Continue on reverse aide if necessary and Identify by block number)

20

ABSTRACT (Continus on reverse side if necessary and identity by dlock number)

The goal of much of the current research in the field of
programming

"structured
is to develop a methodology that materially aids in the construction of

clearly understandable yet rigorously verifiable programs. No single methodology

has achieved pre-eminence, but some common threads
contenders.

L

F ORM
DD , JAN 73 1473 EoiTioNn OF 1 NOV 65 1S OBSOLETE UNCLASSIFIFED
S/N 0102-014-6601 |

) SECURITY CLASSIFICATION OF THIS PAGE (When Data n’f
’, v
Sp30¢ 2.

run through all the serious
To achieve clarity of expression, most methodologles postulate a small

R S — - .
e ——l L il e —M

e S
DT ——

e e i A o

g
|

LRITY CLASSIFICATION OF THIS PAGE(When Date Entere’)

20, ABSTRACT (Continued)

‘number of easily-described primitive programming constructs. (By "easily-

described" we mean a construct has both a straight-forward intuitive
characlerization and a precise axiomatic definition of its semantics.) These
}(:onstructs then become the building blocks for programs that exhibit an orderly

arrangement of data and disciplined transfers of control.

To date, progress in this area has mostly been exhibited in successful
"faboratory experiments". With a few notable exceptions (e.g. the New York Times
system [Baker 72]), the demonstrations of the utility of such methodologies
have been small-scale examples or toy systems. We contend that this is not an
accident; we claim that, to date, programming methodologies have largely failed to
address a crucial aspect of vpractir(":g_l program construction: exception handling. The
absence of methodologically sound language facilities for expressing behavior under
exceptional circumstances has limited our ability to describe complex processing
clearly and precisely. The goal of this thesis is to supply those missing facilities. In
the words of the ancient cliche that introduces this chapter, we intend to test
(prove) the "rule" of proposed programming methodologies to discover if they can
be extended to handle both normal and exceptional cases with equal ease and
clarity of expression.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

T

]

i
‘\“!‘C Buff Section [
| mannouncen]
f
|
|
|

nic

CESSION for /
1S White Section 4

Rk

NTIFICATION

TRIRUTION/AVAILABILITY CODES
angd Sor SPECIAL

PROGRAM STRUCTURES FOR

ﬁ 1 EXCEPTIONAL CONDITION

| ~ | HANDLING

Roy Levin

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

June, 1977

Submitted to Carnegie-Mellon University in partiafl

fulfitlment of the requiremeonts for the degree of Doctor
of Philosophy.

This work was supported in part by the Defense Advanced Research Projects

Agency under contract no. FA44620-73-C-0074 and monitored by the Air
Force Office of Scientific Research.

e S o

T————

-

Acknowledgements

It is a pleasure and a privilege to thank Bill Wulf, my principal advisor and
mentor, for his untiring interest and support. Without his insistence | might still be
chasing bugs in Hydra. The collective criticisms and comments of the other
members of my thesis committee - Peter Hibbard, Mary Shaw, and Alice Parker - and
of Anita Jones have significantly enhanced my understanding of exception handling
problems. | am also indebted to Paul Hilfinger, Dave Jefferson, Ralph London, and
Larry Flon, on whose expertise in the field of program verification | have often
relied. Several discussions with fred Pollack and Dan Siewiorek have helped focus

the specific proposals of this thesis.

I am grateful to my feliow Hydrants Hank Mashburn and Sam Harbison, whose
skillful ministrations to the kernel enabled me to find the time to pursue this work.
The appearance of this document is the result of a series of incantations performed

by Brian Reid, a veritable woods wizard in the enchanted forest of document

production.

.27

11
T

PRECEDING PAGE BLANK-NOT FILMED

- -

S —

—

¥
|4

s

CONTENTS

Acknowledgements

Part I: Preliminaries

1 Introduction

1.1 What is an Exception?
1.2 Motivation and Background
1.3 Goals and Scope of the Thesis
1.3.1 Verifiability
1.3.2 Uniformity
1.3.3 Adequacy
1.3.4 Practicality
1.3.5 Summary of Properties

1.4 Synopsis of the Thesis
2 Survey of Existing Exception Handling Mechanisms

2.1 Some Exception Handling Issues
2.2 Sequential Mechanisms
2.2.1 Unusual Return Value
2.2.2 Forced Branch
2.2.3 Non-local GoTo
2.2.4 Procedure Variables
2.2.5 PL/1I ON Conditions
2.2.6 BLISS Signal

—— - -,t

il

-

2.2.7 The MPS Mechanism

2.2.8 Some Proposed Sequential Mechanisms
2.3 Parallel Program Mechanisms

2.3.1 polling

2.3.2 Interrupts

2.3.3 Message Systems
2.4 Summary

Part 1I: A New Mechanism

3 Elaboration of the Goals

3.1 Uniformity
3.1.1 Choice of Language
3.1.2 Propagating Exceptions

2.1.3 Associating Detection and Processing of Exceptions

3.1.4 The Role of the Exception Mechanism
3.2 Verifiability
3.2.1 Using Existing Language Properties
3.2.2 Predicates
3.3 Adequacy
3.3.1 Memory Data Crror
3.3.2 Resource Aliocation Failure
3.3.3 /0 Completion
3.4 Practicality

22

23
26
26
27
28
29

33

34
35
37
39
40
41
az2
a3
a4
a4
a5

a6

k.

.

4 The Mechanism

4.1 Terminology
4.2 Relevant Language Notions
4.3 A Gentle Introduction
4.4 Conditions
4.4.1 Conditioi Names
4.4.2 Parametlers
4.4.3 Conditions and Instances
4.5 Handler Definition
4.6 tandler Eligibility
4.6.1 The Eligibility Rule
4.6.2 Another View of 'Contexts'
4.7 Raising Conditions
4.7.1 Selection Policies
4.7.2 The Raise Statement
4.8 Handler invocation Semantics
4.9 Handler Termination Semantics

4.10 An Informal Recapitulation

4.11 A Postscript: Synchronization Esoterica

-
By - S

83

i8S

Part III: Justification of the Mechanism

5 Uniformity

6.1 Interactions with the Embedding Language
5.1.1 Variable Access and Scope Rules
5.1.2 Shared Data
5.1.3 Parallelism
5.1.4 Synchronization
5.1.5 Protection

5.2 Simplifying the Use of the Mechanism

6 Verifiability

6.1 Assumptions and Conventions

6.2 Predicates

6.3 Notation

6.4 Proof Rules for the Signalling Site
6.4.1 The Broadcast-and-Wait Policy
6.4.2 The Sequential-Conditional Policy
6.4.3 The Broadcast Policy

6.5 Proof Rule for Handler Sites
6.5.1 Transformation Rules
6.5.2 Proof Rule

6.6 An Assessment

-

e L T T e —— i il R L

89

89
90
a1
g2
893
96

99

99
101
103
104
104
106
107
108
108
110
112

7 Adequacy

7.1 Example 1: Symbol Table
7.1.1 The Symbol Table Problem

7.1.2 Assessment

7.2 Example 2: lnconsistent Data Structures

7.2.1 The Inconsistent String Prob!
7.2.2 Assessment

7.3 Example 3: Arithmetic Exc eptions
7.3.1 Floating-Point Underflow
7.3.2 Assessment

7.4 Example 4: Resource Allocation
7.4.1 The Storage Allocation Proble
7.4.2 Assessment

7.5 Example 5. 1/0 Completian
7.5.1 The Real-Time Update Proble
7.95.2 Assessmett

7.6 Summary
8 Practicality

8.1 Handler Bodies
8.2 FEligible Handlers Set
8.2.1 [nabled Handlers

8.2.2 tligible Handlers

e ——————

em

'm

m

137
138
120

141

)
Part IV: Conclusion
9 Summary 149
9.7 Contribution of this Work 148
9.1.1 Specification 149
9.1.2 Abstraction 150
9.1.3 Sharing 150
9.1.4 Programming Flexibility 151
9.1.5 language 154
9.1.6 Verification 152
y 9.1.7 Cost 152
]
9.2 Remaining Issues 153
9.2.1 Selection Poiicy Primitives 153
9.2.2 Verification of Synchronization 153
9.2.3 Usage Paradigms 154
9.2.4 Protection 154
9.2.5 Enforcement 154
9.2.6 Hardware Applicability 155
9.2.7 Uniform Control Structure 155
9.2.8 Sealf Applicability 156
Appendix A: A More Flexibie Hapdler Definition 157
Appendix B: The Alphard Verification Methodology 159
References 163
’

e L R e et et AT

Part |

Preliminaries

1
Introduction

“{t's the exception that proves the rule.”

- Oid chestnut

The goal of much of the current research in the field of "structured
programming" is to develop a methodology that materiallv aids in the construction of
clearly understandable yet rigorously verifiable programs. No single methodology
has achieved pre-eminence, but some common threads run through all the serious
contenders. To achieve clarity of expression, most methodologies postuiate a small
number of easily-described primitive programming constructs. {(By "easily-
described" we mean a construct has both a straight-forward intuitive
characterization and a precise axiomatic definition of its semantics.) These
constructs then become the building blocks for programs that exhibit an orderly

arrangement of data anc disciplined transfers of control

To date, progress in this area has mostly been exhibited in successful
“"laboratory experiments". With a few notable exceptions (e.q. the New York Times
system [Baker 72]), the demonstrations of the utility of such methodologies
have been small-scale examples or toy systems. We contend that this is not an
accident; we claim that, to date, programming methodologies have largely failed tc
address a crucial aspect of ysr(u:ticnj program construction: exception handling. The
absence of methodoiogically sound language facilities for expressing behavior under
exceptional circumstances has limited our ability to describe complex processing
clearly and precisely. The goal of this thesis is to supply those missing facilities. In
the words of the ancient cliche that introduces this chapter, we intend to test
{prove) the "rule" of proposed programming methodologies to discover if they can
be extended to handle both normal and exceptional cases with equal ease and
clarity of expression.

PRECEDING PAGE BLANK-NCT @

44

INTRODUCTION CH. 1

1.1 What is an Exception?

We cannot give a terse definition of 'exception' that would adequately serve
the intent of this thesis. To claim an exception is a rarely occurring event merely
begs and distorts the question. Frequency only has meaning in a relative sense,
and the same event may occur relatively often in cne context and relatively rarely
in another. As a simple example, consider the operation that looks up & symbol in a
compiler's symbol table. It has two ahvious possible outcomes: 'symbol present' and
'symbol absent'. Althougn we tend to view the former as 'normal' and the latter as
'exceptional', this is purely a psychological prejudice. If the "lookup' operation is
used to determine the interpretation of a symbol in a program body (as opposed to
the declarations), then 'symbol absent' probably corresponds to 'undeclared
identifier' - an exceptional condition in most cases. If, however, the 'lookup'
operation is used during declaration processing, then 'symbol absent' is probably
the 'normal’ case and 'symbol present' (i.e. 'duplicate definition') the exception.
What constitutes an exception evidently depends on the context in which an event

occurs.

Context is not the only factor - the language/system in which computations
are expressed markedly influences the designation of exceptions. Some
structures, notably production systems [Rychener /6] and Dijkstra's guarded
commands [Dijkstra 76], encourage the programmer to define the normal case
and the exceptions with the same syntax. Such 'event-driven' systems obviously
have no need for special language constructs to express exception handling
behavior. Yet they are not ideal in some respects. Because all events are
represented similarly, a reader of a program may experience difficulty in separating
the primary computation from the special cases. Clarity therefore may bhe
sacrificed. Even if it is not, production systems may not provide the appropriate
structure for many practical tasks, which often require the more conventional
facilities of a procedural language. Procedural languages, historically, have
provided few constructs for exception handling (see chapter 2) and will

therefore be the primary vehicle for the mechanism proposed in this thesis

SEC, 1.1 WHAT I5 AN EXCEPTION?

Exceptions are sometimes called 'errors', but we reject the connotations of
that term and strenuously avoid its use. An ‘error' is usually an event whose
occurrence, though not unexpected, is not essential to the correct compietion ot
the primary computation, and may be detrimentai. We prefer o take a broader view
that includes such 'errors' as a proper subset of exceptions, allowing (relatively)
infrequent events to qualify as exceptions as well.l In doing so we deliberately
allow exceptions to spill over into the area of communication facilities. For example
the indication that an /O operation has completed may be viewed as either an
exception (relatively infrequent event) or a communication signal, depending upon
the usage context. We consider the existence of this fuzzy boundary to sugaest
robustness, not sloppiness, in an exception handling mechanism. A sharp line of

demarcation would probably limit the flexibility of programs operating near it

We are led, therefore, to ask what distinguishes exception handling from maore
general communication between program units. Again, because of the overlap, we
cannot make a sharp separation. Generally, the use of an exception handling
mechanism is preferable when a programmer wishes to '‘play down' the special-case
processing in a particular context. An exception mechanism should be able 1o frmiit

the visibility of such processing, suppressing detail where desirable, so that the
b |]

primary computation can be stressed. It may also distribute the costs rather
differently than a general communication facility does. Thus the choice of an
exception or communication mechanism may be a matter of the programmer's taste,

assuming, of course, that both provide adequate function at acceptable cost.

1.2 Motivation and Background

Why worry about exception processing? Anyone who has ever built a large
software system or tried to write a 'robust' program can appreciate the problem. As

programs grow in size, special cases and unusual circumstances crop up with

1 i we look at the evolution of prograrmming, we see that the smignal source of excephions that srograms sought

1o handle was hardware earrors The techniques emple yed were r-,-‘\rl‘.ﬂl)/ caodified in higher -| »! languages, but
we

though they have been extended in some ways, the mechamnisms most languages provide are just the "fall-out"

from 1 & earlies! er handling attempts

INTRODUCTION CH. 1

startling rapidity. Even in moderate-sized programs that perform seemingly simple
tasks, exceptional conditions abound. Consider a tape-to-tape copy program. Any
reasonable programmer will handle an end-of-file condition, since it probably
indicates completion of the copying operation. But what about tape errors? End-
of-tape? Hung device? Record larger than expected? We could enumerate other
possible exceptions, but the point is clear. Exceptions exist even in the simplest
problem, and the complexity they induce in large programs can be mind-bcoggling.
We contend that no mechanism has yet been implemented or proposed that can
control this complexity. A look at the (dis)crganization of existing large systems
should easily convince us that such control is essential if we ever hcpe to make
these systems robust, reliable, and understandable. This thesis provides an

exception mechanism equal to that task.

Although it is obvious that any exceptional condition that arises must be
handled if our programs are to be robust, we might wonder whether we need &
single, general mechanism to do so. Why not simply test explicitiy for an exception
at all possible points in the program where it can occur? |If this is prohibitively
expensive or inconvenient, why not test only at a selected subset of these points?
No special mechanism is required here, and the code to detect these exceptions is

explicit and under the programmer's control.

The objections to this ad hoc approach should be clear. For some classes of
exceptions (e.g. I/0 completions), the condition may occur virtually anywhere in the
program. Obviously, it is impractical to include an explicit test "at all possible
points" where such exceptions can arise. Poliing at "selected" points may be
feasible in principle, but in practice destroys the structural coherence of the source
program. Because of timing considerations, it often becomes necessary (with &
polling scheme) to introduce tests for exceptions into pieces of the program that
have nothing to do with the condition being tested. It is then impossible to read and
understard such a program segment without understanding the entire structure of
which it is a (perhaps very small and localized) part. Explicit polling may suffice in
very limited applications but is clearly inadequate for general use. A techniqus

must be found that preserves structural clarity.

Once we begin to search for a more suitable exception handling technique, we

SEC. 1.2 MOTIVATION AND BACKGROUND

find it useful to subdivide the problem. We may view the process of handling an
exception as consisting of three phases: detection of the condition, transmission of
the notification of its existence, and diagnosis and recovery from the (implied)
problem. Detection, diagnosis, and recovery are exception-specific, although
common techniques may be applied for many exceptions. Indeed, there exist
methodologies that seek to address and codify these techniques [Pollack 77]
This topic is beyond the scope of this thesis; we will concentrate our attention on
the _trria'xl_wﬁvgifgp_n of exception notifications. It will he our goal to provide a general
mechanism to pass information about an exception between the point of its

detection and the points at which it may be processed intelligent!y.

The historical motivation for this work should be briefly mentioned. For many
years | have been annoyed with the incompleteness of the specifications of various
(software and hardware) facilities | have attempted to use. The problems arise not
in understanding the 'normal case' behavior of a facility - that is (nearly) ailways
defined clearly. Discovering the behavior under unusual circumstances is another
matter, since the author of the specifications has rarely bothered to ask himself:
"What if ...". Consequently, the specifications, and often the facility as well, do not
address exceptional conditions. | became painfully aware of the difficulty of
defining exceptional behavior in a large system during the design and construction
of the Hydra kernel [Wulf 74]. The implementation language available (BLISS-
11 [DEC 74]) did not provide sufficiently powerful tools for exception handling,
yet a significant fraction of the operating system code was devoted to detecting,
transmitting, and processing exceptions. This experience convinced me that a
general mechanism was needed that could serve as the basis for the precise
specification of exceptions. But what properties should it have? In seeking to

answer that question, | embarked upon the work reported in this thesis.
1.3 Goals and Scope of the Thesis
For reasons suggested above, we will concentrate on exception handling

facilities in a generally procedural language. The precise syntax and semantics of

such a mechanism will necessarily be influenced by the language and system in

-

INTRODUCTION CH. }

which it is embedded. Nevertheless, we can identify desirable properties that a
general mechanism should exhibit before it can be considered ‘'eligible' for
implementation. These properties will serve as goals to be attained by our
proposed mechanism. We briefly present these goals here; they will be explored in
greater depth in chapter 3.

1.3.7 Verifiability

Any proposal for a new language mechanism should be closely scrutinized to
determine the effect of the proposed facility on program structure. Existing
mechanisms frequently exhibit glaring inadequacies in this respect, and, as a result,
induce complex and confusing program structures. It is difficult to require clarity
and measure it quantitatively, which perhaps accounts for much of the current
debate on language constructs to suppoit structured programming. We maintain
that clarity in an exceptional condition mechanism is of the utmost importance, for
the following reason. If we consider 'robust' programs (i.e. thase that handle most
of the exceptional conditions that can occur in their execution environment), we
find that a large fraction, if not an actual majority, of their code is devoted to
exceptional condition handling.2 Recaliing the oft-quoted observation that a
program spends 0% of its execution time in 10% of its code, we would expect to
find exceptional condition handiing code concenirated in the infrequently executed
90% of the program text. Both the high proportion of exceptional condition handling
code and the infrequency of execution argue strongly for language mechanisms that
strive for clarity. But since clarity is impossible to guarantee in practice, we
demand instead verifiability, believing that constructs that are easily verified are
generally easlly understood.

We will require that a general exceptional condition mechanism be amenable
to formal verification at a level consistent with the other constructs in the
language. This implies that the essential (i.e. language independent) semantics of
the mechanism must observe program structuring principies that have been shown

to facilitate verification, e.g. locality of reference to data structures and disciplined

2 Operating systems are perhaps the most common example of cuch programs

8

|
4

SEC. 1.3 GOALS AND SCOFE OF THE THESIS

transfer of control. Of course, the adaptation of the mechanism for a specific
implementation must also respect these principles Verifiability will be an essential

property of a well-structured exception handiing mechanism.

1.3.2 Uniformity

A fundamental problem with existing mechanisms is that they provide an
acceptable means of handling only limited classes of exceptions. When a large
software system is constructed using several such mechanisms, the interfaces
between different parts become awkward, inconsistent, difficult to understand, and
consequently error-prone. A general mechanism permits a pleasing uniformity of
expression at all levels of the system and for all exceptions, facilitating

i understanding and, incidentally, simplifying verification conditions.® We want ou
exceptional condition handling mechanism to be applicable at all levels in a software
system, from user program to operating system/hardware interface. (This may
force a substantial change in the way we view peripheral devices, but if it permits
a uniform approach, it is worthwhile.) We may be compelled, by the limitations of
I physical implementation, to require only that hardware provide a subset of the
“ general mechanism's facilities; however, that subset in itself will be consistent with

the other goals of the mechanism, namely verifiability and adequacy.

It is important to note that uniformity in application of the mechanism does not
constrain us to live with a single implementation at all levels and for all conditions.
Indeed, the implementation of (the subset of) the general mechanism in hardware
will obviously be different from the implementation in software. The same holds true
for operating system and user; the implementations of a single conceptual facility

may, and probably will, differ. It may even be possible that several distinct

implementations will exist within a single (large) piece of the system (this is true,
for example, in the kernel of Hydra [Wulf 74]). We will require uniformity only

in the functional specification of the mechanism.

3 We might exiand this argument and propose a single, unifiad syntax and semantics for general control fiow,

Indend, this is done in production systems [Rychener 76]. Our reasons for not doing so are discussed in saction

9.2.7.

INTRODUCTION CH. 1

1.3.3 Adequacy

While we may define a mechanism that is uniform at all system levels and that
lends itself easily to formal verification, we do not thereby insure that it is usefu
To be worth impiementing, the mechanism must be capable of solving a variety of
'real world' problems naturally. This last word, "naturally", is the fly in the cintmeant,
since It implies an aesthetic judgment ot a particular problem formutation. Wa da not
hope to prove that the proposed mechanism is 'complete', (that is, that it will solve
all exceptional condition handling problems.) tven if we could do so, we could not
prove that it would do so "naturally". Accordingly, we settle for a notion of
'adequacy', far weaker than compieteness, which merely shows that the mechanism
is indeed good for something. We will demonstrate 'adequacy' inductively by
example rather than deductively by proof. However, as a specific condition on
adequacy, we will demand that the mechanism accommodate parallel as well as
sequential programming, for to restrict it to one or the other is to exclude a major

source of 'real world' exceptional condition handling problems.

1.3.4 Practicality

It is not sufficient merely to define a mechanism whose functionality makes it
worth implementing. We must also be able to deliver that functionality with
reasonable efficiency. No programmer will take advantage of the mechanism if the
implementation makes It too costly to use. We must supply the intended function at
a cost that is attractive to the programmer, for otherwise he may employ other
language constructs to accomplish the exception handling function ... and sacrifice
clarity in the process. While the programmer need not, in general, be acquaintad
with the Iimplementation of the exception mechanism, he is entitied to know that it
supplies the advertised function at a cost that Is competitive with alternate
language constructs.

10

SEC. 1.3 GOALS AND SCOPE OF THE THESIS

1.3.5 Summary of Properties

These properties, then, characterize the fundamental requirements for a
general exceptional condition handling mechanism. We assert that e mechanism
exhibiting these properties represents an advance in the state of the art, since no
existing mechanism meets these requirements. (The supporting evidence is in
chapter 2) We are requiring that our new mechanism be able to solve a
collection of practical problems that heretofore have been handled only by a variety
of ad hoc techniques. Furthermore, we require that it do so not by a jumble of
loosely-integrated faclilities, but by a single, uniform mechanism that can be formally
proved to behave in precisely specified ways. Finally, it must be implementable

with low enough cost to be of practical utility.

1.4 Synopsis of the Thesis

We cover the topic of exception processing in four stages, which correspond
to the four major parts of the thesis. Part | introduces the topic in two cha‘plers.
This chapter has established goals for the remainder of the work. Chapter 2
surveys previous approaches to exception processing and evaluates them in terms
of the goals of the preceding section. With this background established, part il
proceeds to s presentation of a new mechanism. First, chapter 3 elaborates
the goals and explores their implications on the structure of the mechanism, then
chapter 4 presents the details of that mechanism, concentrating on an

operational specification in language-independent terms.

Part (Il demonstrates that the mechanism of part Il meets the goals laid down
in part | Chapters &5, 6, 7, and 8 each address one goal in
detail, relating the specifics of the proposed mechanism to the concerns embodied
in the general statements above. Finally, part IV summarizes the content of this

work and considers the remaining unsolved problems and possible future solutions.

11

2

Survey of Existing Exception Handling Mechanisms

My object all sublime
| shall achieve in time -
To let the punishment fit the crime -
The punishment fit the crime.
- W. S. Gilbert, The Mikado

To acquire some perspective on the state-of-the-art in exceptional cond tion
handling, we will examine programming !anguage and system mechanisms that have
been used or proposed for this purpose. Naturally, our survey does not include
every language or construct that has attempted to address the problem, but it docs
cover the techniques that have been applied. We include in our list a fow

mechanisms that have been propeosed but not impiemented.

2.1 Some Exception Handling Issues

Before embarking on a survey of existing exception handling techniques, we
briefly enumerate some issues that will arise frequently in subsequent discussions.
We do not attempt here to explore these issues in depth; we merely list them as
questions to be ac kessed both by the existing mechanisms described in this

chapter and the propc d mechanism presented in chapter 4.

* Specification - How are exceptional conditions defined? Are
their scemantics formally specified? What is the space of
situations to which they may apply?

x

Abstraction and Program Structure - How does the exception
meochanism aid in abistraction? Does it aid in the decampaosition of
programs along abstraction boundaries? Is it possible to process
an exception without knowing the representations employed by

the program that detects it?

13

N

PRECEDING PAGE BLANK-NOT FILMED

- S—_—

SURVEY OF EXISTING EXCEFTION HANDLING MECHANISMS CH. 2

2 Sharing - Does the mechanism recognize shared abstractions? If
an abstraction is shared among several contexts, can exception
processing related to that abstraction be shared as well?

B Programming Flexibility - To what extent does the exception

mechanism infiuence non-exceptional processing? Does it

restrict the set of permissible control and data structures?

x Language - What restrictions and assumptions does the exception
mechanism impose upon the language in which it is embedded?
Are its requirements relatively general or highly language-
specific? How clasely is it bound to alobal language properties,

e.g. sequential processing?

= Verification - How does the mechanism affect the verifiability of
its embedding language? In what ways does the desire for

verification constrain the semantics of the exception mechanism?

i Cost - What is the cost of using the mechanism, and how is that
cost distributed? Is the mechanism competitive with potentially

attractive alternate constructs in the embedding language?

This list Is by no means exhaustive, but it samples the most important issues.
The questions are substantial ones, and are often directly or subtly inter-related.
In the survey that follows, we will not attempt to examine each issue in the light of
each mechanism; rather, we will try only to assess the prominent strengths and

weaknesses of each mechanism in terms of this list.

2.2 Sequential Mechanisms

By far the majority of exception handiing mechanisms address only the

problem of sequential programming, for obvious historical reasons. We will consider

the development of sequential mechanisms in roughly chronological order.

14

SEC. 2.2 SEQUENTIAL MECHANISMS

2.2.1 Unusual Return Value

Perhaps the most primitive form of exceptional condition handling mechanism is
the ‘'unusual return value' from a subroutine invocation, indicating that some
abnormal event has occurred. This technique is as old as the subroutine concept
itself, and is probably best viewed as a degenerate form of exceptional condition
mechanism. Its obvious deficiencies include cost (the condition must be explicitly
checked and 'passed up' at all program levels), poor abstraction characteristics (it
tends to lead to programming puns that are based on internal data structure
representations within the computer), and imprecise specification While the
unusual return value has some utility in very localized contexts, in general it is

heavily over-used and is practically a cliche among exception handling constructs.

2.2.2 Forced Branch

The simplest form of exception handiing mechanism that actually involves a
non-standard control structure is the forced branch. In assembly language this
mechanism frequently appears as a 'skip return' from a subroutine, i.e. the
mstruction immediately following the subroutine call is or is not skipped to indicate
the presence or absence of an exceptional condition. In FORTRAN IV and ALGOL 60
this mechanism is generalized to permit several labels to be passed as parameters
to a subroutine, such labels being treated as possible alternate return points. The
central notion is that the callee detects an exceptional condition and performs
some fixed action (e.g. add one to the return address and exit, or branch to the
location specified by the third parameter), which is used by the caller to initiate a
condition handler. Such mechanisms generally impose little or no overhead in the
'normal return' case, and thus eliminate the cost of explicit checking inherent in the
unovsual return value. However, they raise serious program structuring issues.
Failure by a caller to provide a legitimate handler for every condition the callee can
signal may lead to unpredictable or catastrophic results at run-time. (In some

FORTRAN IV implementations, for example, omission of a second label parameter to a

15

SURVEY OF EXISTING EXCEFPTION HANDLING MECHANISMS CH. 2

subroutine that expects three does not result in a8 compile-time error, and, at run-

A Y time, may lead to the handler for the third alternate return being invoked when the
second was intended ... and without any error message.) Also, the use of simpie

labels to specify exceptional condition handlers (instead, for example, of subroutine
names) encourages programmers to merge where possible the code for such
handlers with the main-line program and other handiers, in a mistaken atiempt at
‘efficiency'. It then becomes extremely difficult to determine how many call sites
reference a particular piece of handier code and what the possible program states
can be on entry to that handler. These undisciplined transfers of control compiicate
the task of verifying the correctness of a subroutine in much the same way as the

general goto does.

2.2.3 Non-local GoTo

A simitar (though less desirable) construct, which appears in ALGOL 60 and
some other block-structured languages is the non-local goto (i.e. a goto that
specities a destination outside the procedure in which it appears). This device has
little to recommend it on program structuring arounds, for it gives the caller very
little control over the choice of handler and further blurs the distinction (in the
calling program) between main-line and exceptional condition handiing code. in
addition, although the non-local _gg_tg permits the exception notification to pass
outside the detecting procedure (a desirable property), it forces the handler (i e.
the target label) to appear in a lexicvallx enclosing block. Such a structure is rarely
appropriate; the _gglll@ block (which may not be lexically enclosing) can normally
supply a more meaningful handler. Furthermore, the non-local goto may abort the
calling procedure without giving it an opportunity to "clean-up" its data structures.

This undisciplined transfer of control exhibited by the general goto is a source of

many verification difficulties in languages that possess it.

SEE. 2.2 SEQUENTIAL MECHANISMS

2.2.4 Procedure Variables

Languages that permit variables to refer to procedures contain the basis of a
primitive exception mechanism. Algol-68 {[van Wijngaarden 75] provides the
most completely developed example of this approach. In Algol-68, input/output
occurs on 'files', which are represented by a data structure that, among other

1 Fach such wvariable is

quantities, contains a number of procedure wvariables.
associated with a particular exceptional condition, e.g. logical end-of-file. When an
exception arises, the appropriate procedure variable is used to locate a procedure
that is to be invoked in order to process the condition. Depending on the (boolean)
value returned by the procedure, the file manipulation prozedure that detected the

exception either completes or "takes same sensible action".

Ihis association of procedures with objects has been called "object-oriented
exception handling" [Gnmiwn(muh 1‘5] and 1s not unique to -Algol-68 (see, e.q.
[Ross 67]). There are a few twists, however, to the Algol-68 approach that
are worth noting. Since a file in Aigol-68 is a 'structured value' (a ‘record' in the
sense of Algol-W [Wirth 66] and a number of other languages), one might
expect that a user of a file could alter the "exception handling procedures" by
storing into the appropriate fields of the 'file' data structure. However, Algol-68
does not permit direct user access to a 'file', and provides instead 'event routines'
that perform store operations into the file's procedure variables. Thus instead of

writing

‘r.(_)rrdl file end f my data file := eof handler

where 'eof handler' is a procedure name and 'iogical file end' is the relevant field of

'my data file', one must write

on logical file endlmy data file, enf handler)

1 Algol-68 does not use the term 'procedure vanable'; rather the notion is a special case of the more general

concept of 'mode'., In this discussion we will betitute more conventional, though less precise, names for the

possibily unfamiliar terminole gy of Algol-68

SURVEY OF EXISTING EXCEPTION HANDLING MECHANISMS CH. 2

Here, the event routine 'on logical file end' perfurins the desired association. We
prefer the latter form as well, but for structuring rather than efficiency reasons. By
forcing the use of event routines, Algol-68 is, in effect, preventing direct external
manipulation of the 'file' data structure. The representation of a 'file' can then be
freely changed without necessitating changes in the programs that use it.2
Evidently, procedure variables are a powerful language facility that can be
pressed into service as an exception handiing mechanism. However, as formulated
in Algol-68, they are not ideal for this purpose. First, the Algol-68 scope rules
require that a procedure's scope be no smaller than the scope of the procedure
variable to which it is assigned. In terms of our example above, the scope of 'eof
handler' must encompass the scope of 'my data file'. While this stringent
requirema2nt helps prevent dangling pointers, it makes practical exception
processing rather inconvenient, since it lmits our ability to construct procedures
that will handle the exception only in a very localized context. Second, only a
single procedure is ever invoked in response to an exception, though there may be
many contexts in which recovery actions may (should) be n\hmm'{od.‘q Although we
can build composite structures that hold more than one procedure variable, we do
not have, in Algol-68, adequate information to maintain this structure without an
undue amount of user assistance. In seeking to acquire that information (e.g. the
contexts in which the user is executing when the exception is detected), we are
again stymied by the rigid scope rules. Third, procedure variables make it difficult
to discover exactly what action will be taken when a particular exception occurs
The body of exception processing code may be (lexically) far remaoved from the
invocation of a function that triggers it. Clarity is essential {see section 1.3) and

should be encouraged in an exception mechanism.

We should not overlook the desirable properties of the Algol-68 approach.

Exception handlers are procedures and thus return to their invokers, permitting the

P
= is fn(‘(‘WUf"’\y that the final report on Algol 68 [\ Wingaarden 75] mtroduces event routines purely to
permit efficient implementation of transput. (The oniginal repoil [van Wijngaarden 69] had no such notion;
exception handling proceduraes were altered by direct assignment.) For structures defined by an Algol-68 user, the

component fields cannol be made inaccessible and thus the use of routines (o alter the fields cannot be enforced

3 We will discuss this 1ssue in detail in chapter 4,

18

e et

SEC. 2.2 SEQUENTIAL MECHANISMS

detector of the condition to respond to the recovery action taken 4 Handlers, being
general procedures, are parameterized, and communication through global variables
is therefore unnecessary (in contrast with PL/I ON conditions, below). Finally,
handlers are associated with the object rather than the operation - an important
step in the direction of proper abstraction. The mechanism of chapter 4 will

build on all of these properties.

2.2.5 PL/I ON Conditions

We now come to mechanisms that provide a means of passing over dynamic
program levels. The PL/I ON condition mechanism [IBM 70] was perhaps the
first attempt to provide a true exceptional condition mechanism in a aeneral purpose
high-level lanquage. 'Conditions' are explicitly declared (actually, they are called
'events'), and triggered by a special statement Handlers are also explicitly
specified and associated with particuiar conditions. A number af built-in conditions
(e.g. arithmetic overflow, end-of-file, conversion error) are signalled by the
implementation, but may be handled by user-supplied handlers in much the same
way ds programmed conditions. When a condition is raised, the most recently
encountered handler in the dynamic nesting of program blocks (usually) recelves

the notification.

Although the basic notion behind ON conditions is sound. it does not mesh well
with other language facilities and seems to have been conceived largely as a
means to allow programs to trap a collection of system-defined run-time errors.
While it attempts to accommodate programmer-defined condit:ons and even parallel
processing (within an inherently hierarchical process structure), the foundations are
weak and the mechanism remains awkward for all but the original specialiced
conditions. Specifically, ON conditions suffer from reliance upon the non-local goto,
absence of parameters to handlers, and a glaring lack of uniformity in the actions
handlers are permitted to take. We have already considered the shortcomings of

the non-local goto. The absence of parameters to handlers forces them to

a

As=zuming, of course, that the exception handling procedure doss not perform a non-local qoto. The evils of thes

constryct have alteady been evamined

19

—

SURVEY OF EXISTING EXCEPTION HANDLING MECHANISMS CH. 2

communicate with the signaller through shared global variables. This undisciplined
access to data engenders many of the same verification problems that the general
goto does. In short, the weaknesses of the ON condition mechanism overshadow its
desirable properties. The primary contribution of this first attempt at high-level
exception handling has been its influence on subsequent systems (e.g. BLISS
[DEC 74], MPS [Lampson 74]) that built on the ON condition notion.

2.2.6 BLISS Signal

The BLISS 'signal-enable' construct [DEC 74] is perhaps the simplest

means of passing over dynamic program levels.®

Though the actual mechanism is
slightly more general than described here, signal-enable provides, in essence, an
explicit means of defining an exceptional condition and supplying & handler to
respond to its detection. The handler is defined by an enable declaration, which
names the condition and specifies a piece of program text to be executed when
the condition is raised via a signal statement. Handlers are associated with a
lexical block (in the ALGOL sense), but are maintained at run-time in a LIFC stack,
so that the most recently encountered handler (in the dynamic block nest) for a
signalled condition will be invoked. A handler itself is allowed to signal, which
permits propagation of the signal to a higher-level block. Normal (i.e. non-signalling)
termination of a handler terminates the block in which the handler Is defined. Thare
is an important additional form of enap_l_e that defines a handler capable of
processing any signalled condition. The signal-enable mechanism provides no
facilities for parameter passing (from signaller to handler) and does not permit
resumption of the signaller upon completion of the handler's actions. Furthermore,
no 'passed over' intermediate program levels are informed of the signalled
condition's occurrence; these blocks must include appropriate enable declarations
for exceptional conditions which may affect their execution. In spite of these
weaknesses, the explicit definition of handlers and special syntax for signalling
conditions represent important advances over the mechanisms previously
mentioned.

5 %
A functionally similar mechanism is described in [Bron 76].

20

SEC. 2.2 SEQUENTIAL MECHANISMS

The BLISS mechanism, while adequate for many applications, has some
shortcomings. The inability to pass parameters from signaller to handler leads to
awkward global variable usage, which in turn destroys the potential for well-
modularized programs. Aiso, because it does not permit a handler to return to the
program context in which the signal accurred, this mechanism is only useful for
'fatal' errors; that is, conditions that cannot be corrected by the handler without
invalidating the interrupted computation. The BLISS mechanism, in keeping with the
philosophy of the language, is designed to provide substantial function at minimal
cost, but as these two limitations suggest, it is not suitlable for all exceptional
condition handling situations. As an example, consider the position of a genera.
storage allocator in a complex system. if it is unable to satisfy an aliocation
request using its own resources, it will raise the 'out-of-starage' condition,
requesting other system modules to release some storage. It cannot make this
request via a BLISS signal since the current invocation of the 'get-storage’ routine
will be terminated, and the allocator will then have no opportunity to satisfy the
request even if some 'oul-of-storage' handler releases adequate space. The
allocator is forced to use an explicit subroutine call, implying that it knows the
names of the routines (in effect, handlers) in other system modules that can
potentially release storage. But this suggests that every time a new module that
uses the allocator is introduced into the system, an additional routine call should be
included in the allocator to invoke this new module's 'try-to-free-some-storage'
routine. We see what violence this does to the specifications of the allocator by
introducing an awkward circularity. By allowing resumption of the signaller upon
handler termination, we can eliminate many such structuring problems. This leads to

the MPS mechanism, which we examine next.

21

SURVEY OF EXISTING EXCEPTION HANDLING MECHANISMS CH. 2

2.2.7 The MPS Mechanism

MPS [lLampson 74]6 solves the problems inherent in the BLISS
mechnnlsmr by treating handler invocations as subroutine calls made from the
signaller's context. The important distinction trom normal subroutine calls is that
the signaller does not know what 'subroutine' he is invoking. In fact, MPS specifies
that an ordered list of handlers be consulied, with each one being passed the
condition name and an argument record (in the ALGOL-W [Wirth 66] sense)
composed of parameters supplied by the signaller. If a handler 'rejects' the signal,
the next handler in the list is consulted, but if a handler corrects the condition, it
may resume execution of the signaller by a simple subroutine return (including a
return record, if desired). Finaily, the handler may raise the system signal unwind,
which implies that the (original) signalier and all 'passed over' program levels are
about to be terminated. Fach such level has an opportunity to process the unwind
signal (by providing an unwind handler). after which the level is deieted. This
mechanism permits a more natural structure for the storage allocator example, one
that eliminates several of the difficuities mentioned above. 1t also provides some
facilities that permit definition of 'defauit' handiers, i.e. handlers that are invoked

only if no higher-level handier resoives the signalled condition.

In a sense the MPS mechanism represents the "culmination" of the work in
sequential program exception mechanisms, since littie has been done 1o extend its
applicability. If we review our list of issues (section 2.1), we find that it addresses
most of them quite well. Exceptions are explicitly defined. The unwind mechanism
helps preserve abstractions by guaranteeing that no executing context will be
unceremoniously aborted by an exception. The mechanism meshes well with other
language facilities and seems easily transferable to most conventional procedural

languages, with acceptable cost. Why, then, is it not ideal for exception handiing?

6 rhe exception handling proposals of MPS have found their way inte the MESA language [Geschke /7]

L We should note that, contrary to the time sequence implied by the organization of this chapter, the BLISS signal-
enable construct was actually derived from the MPS mechanism with deliberate simplifications to strteamhine

implamentation,

N
nN

SEC. 2.2 SEQUENTIAL MECHANISMS

Perhaps the most serious shortcoming of the MPS mechanism is its failure to
accommodate shared abstractions. When an exception is raised in MPS, the only
possible source of handlers is the dynamic execution nest, i.e. the process's stack.
This stack is searched in LIFO order until a handier is located that will 'accept' the
exceptional condition. Hence there is a built-in assumption that the only contexts
in which handlers can (should) be found occur in functions that have been initiated
but not completed. Yet we can identify contexts in which the exception might be

mtelligently handied but which happen nct to appear in the current cail stack’.8

in
essence, exception transmission in MPS and all the above mechanisms is forced 1o
follow the "calls" hierarchy [Parnas 74]. yet there is good reason to suppose
that other hierarchies are appropriate as well. Indeed, it is the contention of this

thesis that the "uses" relation is central to exception handling, and that the "calls"
relation has been (mistakenly) applied instead because the two frequently coincide.
When sharing of abstractions occurs, the relations diverge and the former becomes
more desirable for exception processing. We will discuss the issue of sharing

further in section 3.1.3.

2.2.8 Some Proposed Sequential Mechanisms

All of the exception handling mechanisms discussed above have been
implemented in at least one system. We now consider briefly three mechanisms
that, like this thesis, are proposals. Where implementations of these proposed
facilities exist, they are confined to experimental systems and are not present in

generally available systems or lanquages.
2.2.8.1 Parnas's Proposal

Parnas proposes a mechanism [Parnas 72c¢, Parnas 76] for ertor
handling as part of his formal method of module specification [Parnas 72b]. His
technique is to invoke externally defined error subroutines, which he views as
analogous to hardware 'traps'. Thus each function of a module includes as part of

its specifications a list of names of subroutines (which the user of the module must

8

A speaific evample must await later tein g see section 3.1.3.

23

——

| S————— - "
’ e ——— e e e -~

SURVEY OF EXISTING EXCEFPTION HANDLING MECHANISMS CH. 2

provide) and defines the conditions under which each such routine will be called.
This approach addresses several of our exception handling issues (section 2.1)
nicely. Exceptions are explicitly and formally specified and are closely allied with
levels of abstraction. Because errors (Parnas also uses the term "undesired
events") are handled by subroutines, control may return to the detecting module
after error processing has completed - a desitable property. Propagation of
exceptions across levels is explicit, forcing the preservation of abstractions at
each level. The mechanism is clearly language-independent and, because of its
formal specification, likely to be verifiable as well. Parnas also recognizes the
value of the "uses" hierarchy in preference to the "calis" hierarchy. Indeed, many

of his suggestions are in line with the mechanisin we propose in chapter 4.

Where, then, does Parnas's proposal fall down? Primarily in the absence of
specifics. While advocating the "uses" hierarchy for exception transmission,
Parnas gives no details about the binding of handler to exception, which crucially
assumes a definition of the "uses" rvt;-tum.g e also faiis to specify important
details of control flow, e.g. how the choice is made, after handler completion,
whether to resume the signaller, abort the signalier, or retry the (failing) operation.
it is, therefore, impossible to assess fully the merits of Parnas's proposal, and we

must regard his exception handling mechanism as in<:omplete.1o
2.2.8.2 Goodenough's Proposal

Goodenough [Goodenough ¢5] proposes a facility that in many ways
closely parallels the MPS mechanism discussed above. Conditions are explicitly
declared lanquage entities and are raised by one of several special statements.
These statements define the resumption requirements of the signalling context and
are designed to be checkable at compile-time. Goodenough also predefines several

special-purpose conditions for signalling loop termination, defauit handier invocation,

9 Wis notation, however, suggests that at most one handler is bound to each exception, a restriction we strongly

oppose. See sections 3.1.3 and 4.6.

10 wascerman [Was<serman 77] has extended the ideas of Fainas along lines somewhat similar to our ‘flow*

conditions (chapter 4), but ralies solely on the “calls" hierarchy

24

-

SEEC. 2.2 SEQUENTIAL MECHANISMS

unwind, and other exceptions. Unfortunately, the Iinteraction of these many
conditions is difficult to understand, although their intended purpose is tc simplity
control flow and enhance clarity. We believe that Goodenough's mechanism, while
properly limiting implicit propagation of conditions, fails to impose adequate
constraints on the actions that handlers may take, particularly with respect 1o
control flow.11 Because it follows the MPS approach of using the dynamic context
stack as the sole source of handiers, Goodenough's proposal suffers many of the
same disadvantages with respect to shared data structures in addition,
Goodenough does not permit the passing of parameters to handlers (essential in our
view), though he recognizes the desirabiiity of doing so and acknowiledges ihe

deficiency of his mechanism in this respect
2.2.8.3 Recovery Blocks

One other proposed mechanism should be noted, thouagh its goals are rather
different from those of the mechanisms previously discussed. The 'recovery block'
approach of Horning et. al. [Horning 74, Randell 75] permits the
specification of an ‘acceptance test' for a body of program text. 1If the test
succeeds, well and good, but if it fails, an 'alternate block' is invoked and, upon its
completion, the acceptance test is performed again This cycle continues until
either the test succeeds or all alternate blocks have failed, in which case the
'failure' condition is propagated to the enclosing recovery block scope. One key
point must be observed, however: alternate blocks are entered with the program
state identical to that which existed at entry to the primary (or previous alternate)
block. Thus all record of a failing block's execution is obliterated. (Efficient means
for doing so are discussed in [Horning 74].) We see, therefore, that alternate
blocks are not 'handlers' in the sense of MPS or BLISS, since the program state that
led to the failure of the acceptance test has been lost. It is clear, then, that
recovery blocks are not really intended as an exception handling mechanism.
Indeed, the proponents of this facility are primarily concerned with capturing
'residual software errors' (bugs), not with handling unusual conditions that the

software may legitimately detect.

11

Specifically, handlers may have the option of aborting the signalling context - an unnecessary a d dangerous

P

freedom in our view. (See section 4.9))

— g P — - -

SURVEY OF EXISTING EXCEPTION HANDLING MECHANISMS CH. 2

2.3 Parallel Program Mechanisms

We now turn our attention to existing structures for handling exceptional
conditions in a parallel program. PL/| has already been mentioned as one of the few
languages that attempts to combine sequential and parallel condition handling. We
shall see that parallel and sequential program mechanisms have historically
appeared fundamentally different, and that no real attempt has yet been made to

combine them.

We should recall the remarks of chapter 1 about the differences between
normal interprocess communication and exceptional condittons. The distinction, cnce
again, is only a matter of degree. In a highly parallel system with only cccasional
interprocess communication, every such transaction might be regarded as signalling
an unusual event. On the other hand, communication may be frequent with only a
small subset of the interactions reflecting unusual events In addition, the
interactions, though frequent, may have little or no relationship to he
computation(s) in progress at the instant of communication. Because of these
vague distinctions, identical mechanisms have generally been used for both normai
and exceptional interprocess communication, and our mechanism will be equally
applicable as well. 12 Accordingly, we survey the major communication mechanisms

in use, concentrating on their behavior as exceptional condition mechanisms.

2.3.1 Polling

Polling is perhaps the simplest forin of interprocess communication. Processes
using polling share a data structure in which they set status indicators from time to
time. Status enquiries are made by explicit tests of the indicators, and
synchronization is achieved by busy waiting Polling can be used in any system in

which (conceptually) parallel tasks and shared data are supported and thus is easy

12 This again raises the issue of a single, unified view of control flow., We postpone discussion of this iccye until

seclion 9.2.7.

26

' ri . T TR, . '

n
o
o
N
W

PARALLEL FROGRAM MECHANISMS

to implement, though frequently expensive to use. The objections to polling as an
exceptional condition mechanism are analogous to those mentioned above in
sections 2.2.1 and 2.2.2. No explicit structure is present, except that provided by
other language mechanisms, so the identification of conditions, signallers, and
handlers is purely ad hoc. The same holds for the techniques used to pass
parameters between signaller and handler and to resume execution (conditionaliy)
upon termination of the handler. Furthermore, the implicit sccess by multiple
processes to the shared data structure enormously complicates understanding and
verification of the behavior of the entire program. Fimnally, unless the processes
possess and share knowledge about the underlying scheduling policies of the
system, they will almost certainly waste processor time using busy waiting to
achieve synchronization of signalier and handier. In short, polling is a seriously

flawed exceptional condition handling technique.

2.3.2 Interrupts

Polling depends on the eventual inspection of shared data structures to
initiate changes in control flow. An alternate method is to force the change by
means of an interrupt, generated at the time an exceptional condition is detected.
This is the traditional method used in hardware; a peripheral device notifies a
processor of an exceptional condition (e.q. I/O completion) by causing a forced
branch to a predetormined location. This differs crucially from the forced branch of
section 2.2.2 in that the processor state at the time of the interrupt is saved as a
side effect of the branching action. In addition, some of that state is replaced with
new values taken from an area of memory associated with the interrupt location.
When the interrupt handler has completed its work, the saved state may be

reloaded and the interrupted program resumed.

Interrupts have two evident advantages over polling. First, the handlers are
clearly identifiable and localized. Second, the need to test continually for the
presence of the exceptional condition is eliminated, substantially reducing overhead
cost. However, several problems remain. The shared data structure that

complicates verification is still necessary, since parameters are not usually passed

e

SURVEY OF EXISTING EXCEPTION HANDLING MECHANISMS CH. 2

with the interrupt. Also, the possibility of arbitrary interruption is intolerable to most
programs; critical sections usually exist during which a crucial property (invariant)
assumed by the interrupt handler does not hold. This leads to the notion of
temporarily disabling, or masking, interrupts. In this way a program can prevent
interruptions until it explicitly enables them. But then what happens |If two
interrupts arrive during a masked period? Are they queued separately or are they
merged into one? If the latter (most common in hardware), how does the handler
eventually discover that fact? And if the former, where are the queues
constructed and how are they managed? |Is it possible to mask each interrupt
individually or are they grouped into classes which are masked or enabled as a
whole? If the latter, is the grouping static or dynamic? These design issues and
others have been extensively studied, since interrupts have been present in nearly
every computer designed in the last 15 years. Scme are appropriate for an
exceplional condition handling mechanism with the properties we seek, others are
not. We will close our discussion of interrupts by examining one useful extension to

the basic notion.

Interrupts in their simplest form cause the flow of control to be transferred to
a particular physical location, without any regard to the executing process. It is
frequently more useful to be able to force a transfer of control to a particular
virtual location within a specific procass. That is, the interrupt is sent to a process
(which is presumably interested in handling it), not to a processor. This notion is
often available in software, but rarely in hardware, because of the absence (in
general) of the notion of 'process' at the hardware level. However, it Is obvious
that an interrupt of this style is a much truer form of interprocess communication
than the basic one previously discussed. In fact, it leads naturalty into message-

based communication. ¢

2.3.3 Message Systems
Message systems dispense with the notion of (physical) processors entirely,

and view communication as occurring between either processes or intermediate

objects called maiiboxes. Message system facilities are quite diverse

28

ittt

r

SEC. 2.3 FARALLEL PROGRAM MECHANISMS

[Brinch Hansen 71, Waulif 78], and actually span a wide space extending
from generalized polling to generalized interrupts. However, there are two important
aspects of exceptional condition handling embodied in nearly all message systems:
explicit parameter passing from signaller to handler, and implicit queuing (instead of
merging) of distinct signals. By restricting the flow of data between processes to
the well-defined channels of the message-passing mechanism, we remave many of
the barriers to verification. If we use a message system in which the handler
blocks its execution untii awakened by the arrival of a message (i.e. it is not
interrupted when a message arrives, but must explicitiy ask the system for any
outstanding messages), ve further localize for verification purposes the
interprocess communication. Retaining the identity of individual arriving messages
also helps us prove that the processes synchronize in particular ways. In short, a
message system appears to have the most suitable coliection of properties {among

existing mechanisms) for a irallel exceptional conditicn handling facility.
-l I)

Some difficulties remamn, however Many message systems provide only
unidirectional message flow, with no facilities tfor an implicit reply upon completion of
the handler's (receiver's) actions. Thus the notion of resumption of the signaller
must be built explicitly with a second "treturn path' to the signaller. As we have
seen, such unenforced explicit structures are harder to understand and verify than
mechanisms which embody resumption in their semantics. More seriously, message
systems are traditionally software structures supplied by the operating system or
some subsystem. Thus they are not generally available for use at the hardware
level or within the system itself, where much of the parallelism is likely to be. A
different technique must be used within the system, introducing an undesirable non-

uniformity in the exceptional condition structure

2.4 Summary

As the preceding sections show, existing mechanisms for handling exceptional
conditions in sequential and paraliel programs differ considerably. We observe
substantial overlap betwe exception handling and general communication, and

some of the existing mechanisms cater more directly to one than to the other. The

SURVEY OF EXISTING EXCEPTION HANDLING MECHANISMS CH. 2

mechanism proposed in chapter 4 respects that overlap while recognizing that
certain concessions must be made if the coals of section 1.3 are to be attained.
Now that we have both those goals and previous exception handling attempts in

mind, we can proceed to a synthesis that will yield our proposed mechanism.

f

: ;
| Part 11
g A New Mechanism
i
|
i
i
;
f
i
|
}

.
31

3
Elaboration of the Goals

In chapter 1 we presented the goals of this thesis. They can be restated in & s
single sentence. We seek to define a program structuring facility that permits ti
uniform handling of exceptional conditions, is amenable to rigerous verification, and
naturally accommodates a variety of practical problems with reasona

We have seen how existing mechanisms fail to satisfy these goais and thus h:

acquired some understanding of the undesirabie properties embodied in U
facilities. In this chapter we establish the groundwork for the presentation) f
new mechanism that meets the stated goals

Throughout this chapter the discussion will be atl a gene al and informal le !

4 AL

postponing details until subsequent chapters. We cannot supply specific d: finitio

4 and "exception" until

for such crucial terms as “context", "module", “function",
have available to us the structure of a particuiar language Chaptler 4 will
provide us with that structure; until then, we must content ourselves with intuitive

notions and somewhat vague terminoiogy.

3.1 Uniformity

The desire to exhibit a single, unife

rinly apphcable mecnamnism derive

s fror

f 1T

attitudes about program structuring. We prefer to buiid programming systems
small number of primitive concepts and to obtain expressive power from he
interactions. Modern désign precepts stress the organization of programming

vstoms around a few elementary constructs whose semantics are catefully choss

and precisely defined. These primitives then permit us to build composite

structures whose semantics are equally precisely defined 1
f'.-‘-m Wijngaarden I'f)] We are moving away from the "“patchwork quit"
approach to language definition, which produces unmanageable | jrami 1
nystoms assembled from disparate parts whose interfaces are jagged and

frequently clash [IBM 70]. The mechanism of this thesis is intended to be one
primitive semantic element of a modern programming system and may be impossible

to stitch into the quilt of some cxisting languages

33 ’ %

ZCEDING PAGE LANK-NOT FILMED

ELABORATION OF THE GOALS CH. 3

3.1.1 Choice of Language

We were careful in the preceding paragraph to use the term “programming
systems" because we are deliberately proposing a mechanism that extends, in
many ways, directly to the hardware level. As was stated in section 1.3.2, the
implementation may vary with the system level, but this does not concern us.
Cornceprtrug_i uniformity is our goal, with identical semantics regardless of
implementation level and technique. However, the primary application of this
mechanism will be within programming languages (though not necessarily application-
level programming languages), and therefore the bulk of the presentation in this
thesis will be expressed in programming language terms. Jo do so, of course, we
will need a language consistent with the precepts mentioned above. Several
lanquages would be adequate for our purposes; the fundamental characteristic we
require is encapsulation. This principle, also known as information hiding
(Parnas 72a] or necessary access ("need to know"), staies that programs
receive only the minimum amount of information necessary to perform their specified
functions. Founded on this principle is the program structuring methodology known
as modular decomposition [Parnas 72d], which groups & data structure and the
functions that manipulate it into a single entity called a module. The behavior of the
functions is precisely specified in terms of abstract operations on the date
structure; no information about the implementation of these operaticns or the
representation of the manipulated structure is ever provided to a user of a module.
Because we are concerned with the semantic integrity of our exceptional condition
mechanism, we want to embed it in programming languages that stress abstract
semantics rather than representational issues. languages that prevent the spread
of representation information (and thereby permit considerable flexibility in the

choice of implementation) are thus well-suited to our purposes.

Given a choice of several acceptable languages, we see no reason 1o
construct a hypothetical one expressly for the purposes of this thesis. We will use
Alphard [Wulf 76a] for several reasons:

1) it supports the notion of encapsulation directly (through !gr_rgs).

34

SEC. 3.1 UNIFORMITY
2) it addresses the issue of verification {(see 3.2, below),

3) it is not yet completely specified, hence our proposal may be of

practical value to its continuing development,

This last reason has two distinct facets. By casting our proposal in the context of
an incomplete language, we may suppress or alters details that are not of central
importance to our mechanism. At the same time, we may sj acify certain propetrties
for lanquage elements that are as yet undefined (e.a. p iralielism). In both ways we

hope to contribute to the process of refining a new languaqge's specifications

without doing violence to any of its essential notions

3.1.2 Propagating Exceptions

A basic reason for the existence of exceptional conditions is the realication
that the program context in which an unusual event occurs or is detected may not
be the best context in which to process it. Consequently, this unusual condition is
given a name, an exception, and the knowledge that it has been detected passes
from the context that made the discovery to the context(s) that can process it.
Generally, the point of detection and the point(s) of processing reside in distinct
"

modiules. so that the act of '"raising the exce tion" causes information to flow
) i I

between modules. In view of the comments of the preceding section, we should
require that this information be consistent with the abstractions involved; that is,
the detecting module should express the exceptional condition in terms of the

abstraction the module defines.

it may not be possible for the recipient of an exception to process the
condition completely. Often, the occurrence of the exception may have a serious
effect on its behavior, forcing it to raise an exception as well. In accordance with
the principle of maintaining abstractions, this sec nd exception must be expressed
in terms of the recipient's abstraction; it cannot simply restate the condition raised
by the original detecting module. Thus, as a condition crosses an "abstraction

boundary" (i.e. a module), it must be transformed to reflect the external semantics

1
|
|

ELABORATION OF THE GOALS CH. 3

and specifications of the module {t is leaving. In this way, representational

information remains captive within a module.

We can see an obvious analogy in the well-known problem of providing
intelligible run-time diagnostics for a high-level programming language. Hardware-
detected exceptions will be expressed in terms of addresses (the abstraction
provided by the hardware), which generally have no meaning to the high-level
language user. It is the responsibility of the language "module", which implements
(through a compiler and run-time system) the abstraction inherent in the language
semantics, to transform such addresses into the control and data structures of the
program being executed. Most conventional systems transform only a subset of the
exceptions the hardware can raise, and handle the remainder by printing a cryptic
message (in terms of the abstraction supplied by the b&r_dware) and terminating
execution. Should the programmer be unfortunate enough to receive such a
message (e.g. "Fatal Run-time Error: Memory Parity Error at 472106"), he cannot
assign any meaning to it, since it is not expressed in terms of the abstraction (the
language) he perceives. FEqually cryptic messages can arise from software-
detected exceptions as well;1 in both cases an abstraction has not been

maintained.

This example lllustrates two errors in the design of the language module: its
failure to express an exception in terms of the proper abstraction, and its unilateral
decision to terminate execution rather than propagate a condition. We have just
seen how useless an exception expressed in improper terms can be, but we should

understand that the failure to raise an exception at all is just as serious.

Suppose that our hypothetical programmer has implemented a data-base
system using the given high-level language. Because he is concerned with high
reliability in his system, he has gone to considerable lengths to organize his data
structures to permit recovery from various failures. However, he depends upon the
language to provide him with exceptions ‘or all conditions that it cannot handle

internally. In the context of our previous example, we will assume that if the data-

} £.g. "Negative argument to LOG routine” triggered by (he source-level expression Xt(1./3.), where "t" denotes

exponentiation and X is negative,

36

mn
m
(@]
w
—

UNIFORMITY

base system is informed (by an exception notification) that a particular datum has
been destroyed, it may be capable of reconstructing that datum either from
redundant data or recomputation. If it can do so, the fact that a datum was
(temporarily) destroyed will be complietely hidden within the data-base system and
no exception will be transmitted to the user of that system. Should the data-base
system be incapable of repairing the damaaed item, it will probably report to its user
some exception in terms of the abstraction the user sees (e.g "fransaction for
March 15, 1974, inadvertently destroyed"). All of this clearly desirable behavior
depends crucially on the language module reflectina all exceptians to its user (the

data-base system) in terms that the system recognizes.©

3.1.3 Associating Detection and Processing of Exceptions

We have already emphasized that an exception will generally be processed
outside the module that raises it. A module that raises an exception will therefore
not possess the knowledge to determine what program context(s) should receive
notification of the exception; indeed, it wili not even be able to name such possible
contexts. The exceptional condition mechanism is therefore responsible for
transmitting the exception to the proper context(s). Furthermore, the module
raising the exception may need to synchronize with the context(s) processing the
exceplion in order to determine when and if the difficulty has been resoilved.
Obviously, the mechanism must assume responsibility here as well, since the
detecting module cannot explicitly name or enumerate the contexts with which it
must synchronize. The means by which the exception mechanism performs these
vital services are described in chapter 4, we concern ourselves here with

several implications of our chosen methodology on the properties of this mechantsm.

Informally, we can say that the contexts that require notification when an
exception arises in a given abstraction are precisely the users of that abstraction.

A careful definition of "users of an abstraction" depends on specific language
I I (

2 Consider the havoc that the language module may wreak if it aborts execution of the data-base sysiem instead
of rarsing an exception, Crucial files of the data-base may be left in an mconsistent state, potentially causing
further erroneous behavior when the data-base system s later rectarted
-
37

ki i

'
'
i

ELABORATION OF THE GOALS CH. 3

constructs, but we can give a characterization that depends on methodological
views alone. We consider a context to be using an abstraction (or module) If it
possesses the ability to invoke the functions j ided by that abstraction. This
definition is not quite vacuous; il permits a context to be using a module even
though that context may not be currently executing "Use" in this sense thus has
both a static and a dynamic component: a ntext may be an executing program
that can invoke the given module or it may be a data structure that is implemented
in terms of that module. The former is a context defined by control flow, the latter

is one defined by data flow, and of course the two are interrelated. In more careful

terms, a context is using a module if it possesses a capability [Lampson 69]
for that module Thus, in order for th exception mechanism to notify the
appropriate contexts of an exception raised by module M, it must be able to locate
all capabilities for module M 3 This does not i ply that it will necessarily reflect the
exception to all contexts holding such ¢ pability, but merely that all such

contexts will initially be consids

It is this notion of "possessing a capability” that defines, for our purposes,

the "uses" relation mentioned in section 2.2.7. Several contexts are sharing an
abstraction if each possesses a capability for it. We establish the "uses" relation,
not the "calls" relation, as the basis for exception transmission by our mechanism.
To see the difference in a specific example, consider the following situation (which
reappears, thinly disguised, at several points in subsequent chapters).

Suppose we have a storage allocals ihat provides an abstraction called a
"sool". This pool is shared by a number of users who may or may not be aware of
each other's existence. Suppose that th illocator defines an exception, "poal-
low", that it raises when insufficient resc cs are available to satisfy an allocation
request. We might reasonably expect each user to release some storage when the
poo! becomes depleted, or at least, to attempt to do so by appropriate compaction

of its private data structures. Thus, all usars should have an opportunity, at lteast,
to eliminate the pool-low condition when it is detected. Yet only one of the users

will have performed the 'allocate' call that led to the detection. We see, therefore,

3 In a sense, we aa g ralizing hiect ented excapt indling" (sea [Goodenough 75}. p. 685.) to "user-

of-object-oriented” « ‘ f a

that the "calls" relation and the "uses" retation do not coincide i [T nce of
shared abstractions, and that the "uses" reiation 1s intuitively nd ajrp e, at
least in this case, for exception transmission. In later sections, part larly iny
chapter 7, we will acquire additional practical support for this vy
3.1.4 The Role of the Exception Viechanism

From the preceding discussion, it appears that the exceplion n f 0l
supply a collection of services that permit moduies to communicals e de! el
and processing of exceptions among themselves urther, the it 1S)
jeopardize (and indeed should encourage preservation of} ihe al i { ¢
the modules provides. Let us consider, then, some desiialii i eard C t
mechanism.

Modules that must operate correctly in spite of xceptional b IO } Ve
abstractions they use should be designed with the principle of "mutual suspicion
[Schroeder 72] clearly in mind Simply stated, this principle asserts that

interacting modules validate (in terms of abstract specifications and

possible) the transactions between them.

Normally, this principle

function invocation, when one module explicitly calls another. 3

applies in exception handling. The mq
with contexts that are expected to j
and certain actions on behalf of the d¢
assurances that the contexts receiv
resuming execution; that is, it expects

control during exception processing. At

dule. i
crform
tecting
imna th
' Y m

receive notification of an exceplion want ase

control if the exception is raised. We

cona!

aising an exceptio

1 modu (.
S x (AR AL Aalic

[i n ¢ nit { ra
1t { L onte \ that 1
urances that they will in

ude that the meche

the mutually suspicious design of interacting modules and must i

design at the exception handling interface

The mechanism must not constrain the

designer chooses to define, as long

as tl

et the

irsm

ot ¢t

insofar as s

is applied at

same notion

» form of the abstraclions a modula

ey are consistent

with

the general

ELABORATION OF THE GOALS CH. 3

methodological principle of information hiding. Whether a module provides a
computational or structural abstraction is a matter for the designer; he should not
be forced to choose a particular one because of the facilities provided by the
exception mechanism. From this principle we infer that the mechanism should

support with equal convenience exceptions related to flow of data and control.

We expect to justify the properties of the mechanism in terms of the
information hiding methodolegy. We also expect the mechanism to fit neatly into the
embedding language and to interact reasonably with other language properties. In
particular, the mechanism must not require the language to provide specific
facilities (e.g. synchronization) for the mechanism alone, but it must function
predictably in the presence of such facilities. Parallel processing, shared data
structures, synchronization, and protection are all ianguage (system) notions that
inevitably interact with exceptional condition handling, and we must demaonstrate

that the mechaniam does indeed respond reasonably to all of these facilities.

The issues mentioned thus far in this chapter all concern the requirements
imposed on the exceptional condition mechanism by the assumption that it is to be
embedded in a language supporting encapsulation as a fundamentai design principle.
The generalities of this section will be translated in chapter 4 into specifics in
the context of Alphard, and the reader will then be ablie to judge whether the goal

of defining a uniformly applicable exception mechanism has indeed been realized.

3.2 Verifiability

Of the three primary goals established in section 1.3, verification has perhaps
the most significant effect on the structure of the exception mechanism. The
ability to verify programs in a particular language is enhanced by strong statements
about global properties of the language, e.g. statements limiting the possible side-
effects of out-of-line code. When we seek to extend that language with an
exception handling mechanism, we must be careful not to weaken or invalidate any
of these global assertions. In practice this means establishing strict rules for

access to variables and transfers of control. It is often the case that two distinct

40

SEC; 3.2 VERIFIARBILITY

designs will supply essentially the same operational facility, yet one will be easier
to verify than the other. That is, for the purpouses of present-day proof techinology,
it may be possible to characterize formally the semantics of one mechanism more
easily than the other. In the course of desianing the mechanism to be presented in
chapter 4, such situations have frequently ansen. We examine in this section
the implications of the verification requirement on the mechanism; in chapler 6

we pursue the details of verification in the Alphard context.

3.2.1 Using Existing Languaqge Properties

Because effective verification, with current technology, relies heavily on
complete knowledge of the interactions of language faciiities, we must approach ocur
verification requirement in the context of a specific fanguaage, Aiphard, We weave
our mechanism into the language by borrowing the semantics of existing pieces of
the language and modifying them as htile as possible. In some cases this produces
a design noticeably different from one that might evolve in the absence of a
verification requirement, but as long as adenguate function results, the appreach

succeeds.

Specifically, we borrow heavily from the notion of functions. Since conditions
are detected and processed in separate modules, we cannot generally expect to
have both detecting and handling code avallable simultaneousty at verification time.
When we verify a module, we expect to have only a characterization (in terms of
predicates) of the semantics of the (external) functions and abstractions it
employs. We use those predicates as we construct verification conditions for the
invocations of those functions. If the extemmally-defined abstractions raise
exceptions, it seems only natural to expect a charactierization of the semantics of

those conditions as well.

If we recall (from section 3.1.4) that the code to process an exception is
required to return control to the module (function) detecting the exception, then we

see a natural similarity between such code and a function body. The essential

difference is that the "caller”" (i.e. the module detecting the exception) defines

ELABORATION OF THE GOALS CH. 3

what the '"callee" (i.e. the code processing the exception) may assume at entry

and must ensure at exit. As long as tl o characterizing predicates are available in
both modules, however, the v ficat aradi is quite similar to that for normal
functions. Indeed, the prooi s developed in chapter 6 are, In essence,
slightly altered versions of Ve na! proof rules for functions.

Thus, the verification requir ent { 15 to choose an exception
mechanism that resembles » 3 invocation mechanism. In so
doing we are able to ust ; f existing ¢ f rules without developing entirely
new constructs or pre net § Alth] ¢ may sacrifice some efficiency
in the operational behavi f tt ha i, we obtain instead an enhanced

4

language that remains verifiable xchange is a profitable one.
3.2.2 Predicates

Without upstaging ¢ ¢ n hapters 4 and 5 we
present briefly t f] unction-like view of exception
processing. As stat Ve v ifving @ module that handles
an exception, the availa ty of i i i s that characterize the action to be
taker Specifically, wte It req that > ptions be named explicitly, and that
every exception have two wela | edicates. These predicates are pre- and
pos ' -conditions on the abstract 1t red the exception; that is, they define,
respectively, its state before ai 1fter handling code has been executed.
From the viewpoint of the e { { ndales the exception, the pre-condition may
be assumed at entry, and the | t t t be satisfied at exit.

Naturally, the pre | t plied by the module defining the
abstraction can only x : ert it abstraction The code that handles
the exception will have pre- and post nditions as well, but these predicates will
W o | i R e e iR entatior ercoma some polential losses in afficiency
ncurred by this € ge. [1 the language may encourage a user (o express
f) ¢ A) 4 over "optimizations" (hat restore iost
efl ¢

include information about other abstractions in use besides the one that raised the

exception. The proof rules of chapter 6 relate these predicates to each other

to establish the formal semantics of the exception transimission and processing.

Two side issues should be briefl noted. First, we are using a proof
3

methodology that derives directly from Hoare's axiomatic method. [Hoare 69]
We do so because Alphard does and we need to be consistent with the methodology
of the specific embedding lanquage. This does not imply, however, that other
techniques are unsuitable. Indeed, there may be more etegant formulations that
make verifications involving exception handling more cenvenient. We do not explore
that possibility here, satisfying ourselves only that a particular well-known proof

methodology can be used to verify programs using this mechanism.

Second, we should also note that the specific form of the predicates
mentioned above depends on other language faciiities [If the language provides
machinery for explicit state characterication of abstractions, the predicates will
very likely be expressed in terms of such states. Otherwise, the state information
will be implicilly encoded in the data structures used to implement the abstraction,
and the predicates will reflect those encodings There is disagreement among
researchers regarding the value of expiicit state characterizations for verification

purposes; we do not pursue that issue here

3.3 Adequacy

Since we claim that the mechanism of chapter 4 is adequate for the
solution of practical problems, we need a collection of real-world exception handling
problems to use as examples. These examples should demonstrate the scope of
the mechanism's power and should include some problems that cannot be soilved
reasonably with the existing mechanisms discussed in chapter 2. Let us briefly

examine several such problems, all of which are treated in detail in chapter

problems

a3

ELABORATION OF THE GOALS CH. 3

3.3.1 Memory Data Error

General-purpose computing systems rarely handle memory errfors in an
intelligent manner. Typically, a memory error within a user program causes that
program to be stopped and receive a message. A memory error within the operating
system generally induces a crash. (We have already discussed the undesirability
of such behavior in section 3.1.2.) Special-purpose systems have developed
particularized mechanisms for recovering from memory errors, but such mechanisms
rely on the structure of the application, not general principles of program
organization and information flow. We want the facilities of the exception
mechanism to encourage coverage of detected errors (both hardware and
software). Perhaps the lack of an adequate mechanism has fostered the defeatist

approach that is embodied in most present-day systems.

3.3.2 Resource Allocation Failure

The issues related to exception handling in a resource allocator (e.g. a
primary memory allocator) have been briefly mentioned in section 2.2.6. We may
summarize the discussion by identifying three distinct exceptions that an allocator

might reasonably raise and observing their different properties.

- In the course of satisfying an allocation request, the allocator
may detect that its resources, while adequate to meet the
current request, are running low. Such a condition should
probably be propagated to all contexts where resources might
conceivably be made available to the aliocator. Yet there is no
reason to suspend the current allocation request while the
condition is being handled; the two actions are logically
independent and should proceed (conceptually, at least) in

parallel.

a4

-‘————-—-'i oo ~ i ‘v“ : e ————— ’:

¥ = The allocator may find 1t impossible 1o satisfy a resource request

and may raise a condition expressing ; urgent need for storage
Naturally, the request will remain pending while this exception is

being processed

- The allocator, even after raising (he previous ndition, may not
possess adequate resources 1o satisfy the request. In this 1S e,
it must raiSe "an exception signifying its inability to meet the
requestor's demands
We note the differences in synchronization and MUt tion requirements
among these conditions and their handliers. Doubtiess we couid postulate oli
[.|,|H‘\|l»]p conditions that the il itor could raise conditions with still different
processing needs. Existing exception andling me inisms do not provide the
i

facilities required by these various situations; we will demonstrate in chapter

7 that the proposed mechanism solves the allocator problem completely and

naturally

3.3.3 1/0O Completion

The preceding examples embody situations in which the exceptiocn being

raised is not crucial to normal program be VIOl That is, if the condition never

occurred, the program would execute just as well (perhaps better!) and terminate
normally. However, we can identify conditions that are essential for normal

termination, e.q. the knowledge that a pre wsly initiated i/« operation has

completed. By proposing that our exception mechanism provide natural means of
handling conditions that arise during normal processing we are overlapping
somewhat into the area of general inter-program communication. We do not claim
that our mechanism is adequate for general communication, but we observe that it is

sufficiently robust to handle situations in the gray area between exceptions and

communication. We consider an example from this domain.

T T T T

oL e

ELABORATION OF THE GOALS S CH. 3

Suppose we have a collection of processes that maintain a display of various
quantities computed from data supplied by external sensors. Such a collection

s

might be part of an aircraft contra!l system. Naturally, some quantities (e.g. altitude)

are more crucial than others (e.g. cabin temperature) and consequently are to be
recomputed as soon as new sensor data arrives. We may choose, for example, to
assign these high priority computations to a specific subset of the processes,
allowing them to participate in the less important computations only when they have
fuifiled their primary responsibiiities. Shouid such processes be performing low-
priority calculations when new sensor data arrives, we will want them to switch

back to high-priority calculations, using the new data.

This system could be (and probably has been) programmed without any
exception handling mechanism, but would undoubtedly use knowledge specific to
i g Y ¢

the task to construct the necessary communication and synchronization facilities.

The exception handling mechanism ¢t chapter 4 is sufficiently general to
permit this problem to be solved without additional special features; in particular,
without assuming any explicit process synchronization mechanisms. By solving this

problem (and related ones involving relatively infrequent synchronization), the
mechanism demonstrates its adedauacy in specialized areas of inter-program

communication.

3.4 Practicality

Practicality in a language facility implies the existence of an efficient
implementation. However, efficiency can be an elusive notion. By removing a single

instruction from a program, we undoubtediy increase its speed, but the degree of
that increase depends crucially upon the frequency with which the instruction had
been executed. Furthermore, the frequency in executions per second is not
interesting; rather, we want {o determine frequency of execution relative to the
entite program. That is, we measure the speed-up (or should measure it) in terms of
the original execution time. This is perhaps an elementary principle, but one often

ighored by programmers, who have been known to "optimize" sections of a program

that were responsible for oniy a small percentage of the total execution cycles

consumed,

a6

' T e -

SEC. 3.4 PRA ICALITY

How is this observation relevant to exception handliing? We are concerned
that the cost of setting up handlers for conditions that occur infreguentiy (in a
relative sense) not be excessive. In particular, for an exception mechamsm to be
practical, it must be competitive with other language faciities that might otherwise
be used to achieve the same effect. If our mechanism i1s too expensive to use

programmers will find other means to achieve the desired effect, probably

3

~

decreasing program clarity at the same time.” Thus we measure the elfi ncy of

our exception mechanism as its cost of use relative to other language constiucts.

The cost of a language feature may be subdivided into two components. One
cost is incurred whenever the feature is used explicitly, such as dynamic allocation
of wvariables or procedure invocation. The second cost is distrthuted over the
implementation so as to fessen the first cost at the time the feature ‘s explicitly
invoked. The distributed cast will be incurred whether or not the feature is used
An example is the non-local qoto in ALGOL-60, which when used ncurs a
considerable expense (compared to a local antg), The variable dispiay must be
"unwound" to restore the context at the destination of the goto. However, the
very means used to maintain the display in order to handle a non-local golo
represent a distributed cost of this facility, since additional processing is needed at
block entry and exit. A distributed cost is normally the result of interacting
language features rather than a single facility, as in this interaction of variable
allocation and non-local transfer of control in ALGOL -60. We will want our exception
mechamsm 1o minimize the distributed costs of its implementation, hence we will

carefully control its interactions with other language facilities

When the lanquage implementor is faced with alternative realizations of a
lanquage feature that distribute the costs differently, he tends to favor one or the
other on the basis of anticipated use. Such a bias can occur in the design process
as well Though the exception handling mechanism of chapter 4 may be

suitable, in principle, as a more general communication mechanism, its design has

(&)) .) !
An example of such behavior occurs in the "real-world" use eof PL/l. FProcedures are an impeortan! program

structuring device, yet the prohibitively high cost of procedure invocations in some implementations of Pl /! bhas

caused programmers to avoid using them, The resulting programs have long, mult function procedures, which are

difficult to understand and mamntamn

a7l

—— .- \ +

Mo

Lo i

ELABORATION OF THE GOALS CH. 3

been influenced substantially by its intended application to exceptions. Thus, in
practice, it might prove more costly than is necessary or desirable in a
com:muﬂgat_iog mechanism. The design emphasizes the view that one is willing to
pay a considerably greater cost to transmit an exception than to perform most
"normal case" operations. Thus the specifications for the semantics of raising an
exception will probably force a more costly implementation than that of, say,
function invocation. At the same time, the design recognizes that the action of
"enabling" a handler (i.e. providing a body of program text that, in a particular
context, is willing to process a given exception if it arises) is itseif a "normal case"
operation, and thus the specifications of the mechanism permit this action to be

implemented reasonably inexpensively.

As a final observation on the subject of impiementation efficiency, we recall
that the implementation of the exception mechanism need not be uniform at all
levels of a system. The notion of "context" inside the operaling system may permit
a more efficient realization of the exception mechanism than does an arbitrary high-
level programming language. The specifications of the general behavior of
exceplions will be consistent; the language-specific details (concerning interaction
with other facilities) will vary. It is also conceivable that the full generality of the
mechanism may not be needed within a particular language (e.q. tFre ability to handle
exceptions in an environment that supports paralliel processing). In such a case, a
consistent subset of the mechanism's facilities may be Iimplemented, with a
potential saving in execution cost. The relative cost of the mechanism will
therefore vary depending upon the other facilities available in the environment; the
design only ensures that, for a broad class of "reasonable'" languages, the relative

cost is acceptably low.

48

>

4
The Mechanism

This chapter concentrates on the specifics of the proposed exceptionat
condition handling mechanism. We will examine the functional semantics of the
mechanism and relate them to the facilities of a particular programming language,
but the exposition is nevertheless relatively language-independent. We posipone

s

until chapter 7 examples that require specific syntax for their presentation.

4.1 Terminology

in preceding chapters we have used a variety of terms to suggest the
different notions associated with exceptional condition handiing. Before proceeding
to a careful definition of our mechanism, we must agree on a particular set of names
to identify the concepts we will discuss. Here is a list of these terms with their

intended connotations:
f

Condition - We use this term to identify an exception, in the
sense of section 1.1. Normally, conditions will have names
suggestive of their interpretation, e.g. 'memory-data-error'. The
problem of name conflict will be discussed later (section 4.4 B
Occasionally, the term exception will be used synonymously with

condition.

Signaller - A program that raises a conaition s alled a
.s«g/m//er.1 Generally, we will prefer to say that a dgiven program
"raises a condition” than to say that it is a signaller, but we will
find it convenient to have a single word to contrast with ‘handler!
(see below). 'Raiser'., though consistent, seems too awkward to

bear frequent repetition.

The term 'signaller’ derives from the signal-enable macha nof F {zpe soclion 2.2 6).

a9

THE MECHANISM CH. 4

% Handler - A piece of program text that is intended to process a
specific condition is called a handler. As we shall soon discover,
handlers may appear in many places within a program, and the
selection of the handler(s) that will actually receive notification
of a given condition (when it is raised) is a crucial issue. A
particular handler is associated (statically) with a single
condition, although various language mechanisms may be

employed to share program text among handlers.

Eligible - When we refer to a handler as eligible, we mean that,
if the condition with which the handler is associated is raised at
this instant, the handler will be among those considered for
execution. Whether it is actually invoked depends upon the
selection policy for the condition, a property we will cover in
section 4.7.1. A handier that is not ehligible cannot be invoked,
regardless of selection policy. The precise circumstances that

determine eligibility are discussed in section 4.6.

Context - Perhaps the most overworked term we shall need to
use is context. For the purpose of exception handling, we shall
normaily apply the term context to the execution environment of a
piece of program text that is under consideration Thus, for
example, we may refer to the "context in which the memory-
data-error handler is invoked", i.e. the control operations and
data accesses permitted when the specified handier executes.

The terms "domain" and "environment" are roughly synonymous,

but generally refer to a broader, more stowly changing notion (e.g.
"protection domain") than "context", which includes the more
local connotation of flow of control along a particular path. Our
most frequent application of the term will be to the execution

onvironment of an ehgible handler.

A considerable number of additional terms will arise in the course of this

chapter, but most of them have not suffered the extensive history of varied

SEC. 4.1 TERMINOLOGY

application of those above. We will horrow freely from Alphard terminology to avoid

creating a vocabulary from scratch.

4.2 Relevant Language Notions

Throughout the remaining sections of this chapter, we will examine the
detailed structure of the exception mechanism. Although the discussion will use
Aiphard where reference to language specifics is necessary, we can best
demonstrate the language-independence of the mechanism by falling back on
Alphard details as infrequently as possible. In this section we introduce some
programming language notions that will appear frequently in the sequel and relate

them to specific Alphard constructs

We will use the term module to refer to the general urit of program
structuring. A module provides an abstractly-defined service or implements an
abstract concept, e.g. symbol table, stack, or rectangular matrix. Modules provide
abstract specifications of their behavior and hide the implementation of that
behavior. Thus we are directly borrowing the term 'module' from Parnas, as
previously discussed in section 3.1.1. Modules are sometimes called types, type
modules, forms, modes, clusters, protected subsystems, and other things, although
these terms do not all carry precisely the same connotations. Depending upon the
emphasis placed on issues such as protection, formal specification, verification, and
hierarchical structure, one of these terms may be more appropriate in a particular
discussion than others. We will skirt these semantic pitfalls by using module
exclusively, except when we refer specifically to the Alphard construct, which is

called a form.

Modules provide their services to their users through functions, in Parnas's
terminology. We will adopt the term function, although we want to strip away the
mathematical connotations that are inappropriate for programming. Functions are

essentially subroutines® whose names are known outside (i.e. to the users of) a

>
‘

Even 'subroutine' has undesirable connotations. We do not preclude macros, out-of-line procedures, or
i

synchronous interprocess communication,

P i i e S

THE MECHANISM Xl

module. Specific languages may provide the notions of "internal"” and "external”
subroutine; our functions correspond most closely to the latter. However, functions
are more than just externally visible subroutines, for their behavior is precisely
specified to the user in terms of the abstraction implemented by the module
Alphard also uses the term function for this notion, and thus our general and

specific terminoiogy coincide.

The concept of sharing is fundamental to the handling of excepltional
sonditions. Issues related to sharing arise commonly in discussions of operating
system facilities, for example, whether or not two users may share a resource (g
file, a page, a peripheral). implicit in these discussions is the concept of /nstance;
there is (say) a single notion 'file', but many instances of that notion, some of whicl
may themselves be shared. Translating this into our previous terminology, & m
provides an abstraction which may be instantiated many times. Each instance
be. available (accessible) in one or more contexts, in the sense of section 4.1. For
example, a file containing accounting data might be accessible only in contoxts th

exist within the module providing login/logout functions.

When we instantiate a module, we produce, at least conceptually, 8 Copy
everything it contains. Thus all the functions of the module and ail the internal data
structures are duplicated according to a rule supplied by the module itself. iIn
implementation terms, copying a function generally does nothing more than supply
the address of that function; that is, because the code is usually not modified, the
implementation permits the textual body of the function to be shared iow e r
conceptually, each instance provides a distinct copy of the function text. A je:
trivial example is the internal data structure of a module, which frequentiy i
physically copied for each instance of the module's abstraction. Thus
'stack' module is instantiated, a separate top-of-stack pointer and stack segm t
are created. Distinct stacks naturally have distinct top-of-stack pointers. Note
however, that copying of data in a language that permits indirect references (so
called ref modes) may simply imply that distinct instances have distinct pointers 1o
a single shared structure. That is, sharing arises from copying references to

structures rather than the structures themselves.

3
Thereafter, of course, separate instances are independent hanges ih one do nol induce correspo e ANe S

in the others.

-

SEC. 4.2 RELEVANT LANGUAGE NOTIONS

We should also recognize that the term instance may be applied to both data
flow and control flow. When we instantiate a file, we create a copy of it (more
precisely, we instantiate the module 'file'). When we instantiate a function, we

invoke it. Thus if two distinct users simultaneously invoke the 'file-read’ funcition
A

’

we refer to them as having distinct instances™ of that function. In a sense, each

user is executing his own "copy" of the function. Within this meaning of 'instance’

as applied to control flow, there is no room for sharing. We may easily see what

sharing of data instances means: multipie contexts possess the ability to acces:

the same data instance. However, every separate locus of control at every instant

of time resides within precisely one function instance (by definition), and ihus the
%

sharing of such instances is impossible. This peculiar asymmetry of data and contro!

instances will be explored further in section 4 5

Alphard has no specific terminology for the notions of instance and invocation.
We note, however, that specific notation does exist to control the instantiation
process for an individual form (the "rule" alluded to above). Within a form, each
data element (i.e. the internal data structure of the form) is identified as unque (ie.
private) or shared. When the form is instantiated, copies are made of all unique
data elements; shared elements are common to all instances of the form. We note
in passing that certain kinds of sharing are not permitied by this method, although
some not directly available may be derived by appropriate layering of forms and the
use of ref variables. These details are not relevant to discussions of the exception
mechanism, since its design supports all classes of sharing consistent with module
structure of the kind previously described. The Alphard facilities meet that

requirement.

4.3 A Gentle Introduction

We now have acquired the necessary background to discuss the details of
the proposed exception handling mechanism. To aid in the understanding of the
specifics presented in subscquent sections, we provide here a sketch of the main

features of the mechanism, with forward references to the detailed text.

"Activations" 1s perhaps a more familiar term

53

THE MECHANISM CH. 4

Refer to figure 4.1. We define two modules, T1 and T2, with the former
using the abstraction provided by the latter. That is, for every instance of T1,

there is a distinct instance of 12, which is referenced inside the body of T1 by the

L

name 's'. These semantics derive from the standard Alphard declaration on line 3.
1 module T1
2 beqgin
3 unique s: 12
‘ function f =
5 l»i:'}‘trj
S gls)
7 end [c: hiv)]
8 end
3 module T2
108 beqgin
11 condition clv:integer)
¥z function gt: T2}
13 beqgin
14 raise c(l17)
156 end
16 end

Figure 4.1: A Simple Example

Although this simple example in no way illustrates the general flexibility and
power of the mechanism, by "walking through" it we can acquire a sense of the

workings of the mechanism. Suppose, then, that within some instance of module T1,

54

o=

SEC. 4.3 A GENTLE INTRCDUCTION

function 'f' is executing. That is, some user has declared a 71 and is applying 'f' to
it. Suppose that 'f' has invoked function 'g', in module T2. At the moment that we

turn our attention to the example, 'g' is about to execute line 14.

An exceptional co. dition has been detected by 'g'. The declaration on line 11
defines the condition to have the name 'c' (details in section 4.4). This name is
made available to the users of 12's abstiaction {e.g. T1) in the same way thai the
names of the fun-tions (e.g. 'g') are. The statement on lne 14 raises the condition
1

. . £ .
c', which causes the user of the abstraction to be notified. 2 This means some code

is to be executed to handle the exceptional condition. We see this coue on jne 7

represented by 'h'. Of course, the detector of the exception may wish to pass

additional information to the handler besides the condition name. Such a parameter
is defined in the condition declaration (line 11) to be an integer 'v'. Its actual value
at the time of detection (line 14) is '"17', and it is transmitted with the condition
name to the handler 'h' (line 7), which we presume is a procedure appearing

elsewhere within T1.

Immediately, a wealth of questions arises. How was the code on line 7
determined to be the handler for this condition? (See section 1.6.) Could other
handlers be invoked instead or as well? (Yes - see sections 4.6 and 4.7.)
What information does 'h' have available to it and what is its execution
environment? (See sections 45 and 4.8) How does 'h' influence the
subsequent behavior of ‘qg* and 'f'? (See sections 4.8 and 4.9.) These

questions, and others, will all be addressed in the course of this chapter.

Returning to our example, we have passed the exception 'c' to the handler
'h', together with some parameter information. We (usually) view this notification as
a subroutine call; that is, 'g' is temporarily suspended while 'h' executes. (See
section 4.8.) 'h' performs whatever recovery actions it chooses (consistent, of

course, with the semantics of 'f' and 'c'!) and terminates. Control then returns to

g' immediately after line 14. (See section 4.9.)

£
= Just what constitutes "the yser" and how does the notification ocowr” We'll address those issues in seclions

a.6ff,

THE MECHANISM CH

More questions arise. Must 'h' always return control to 'g'? (See seclions

4.7 and 4.9)) Must 'g' always wait for 'h' to complete? (See sectior
4.7.) Can 'h' alter the data or control flow in 'f'? (See section 4.8.) How

the answers to these questions affected by sharing T2's abstraction among

many

separate instances? (See sections 4.5 and 4.7.) What about simultane
parallel execution of 'g' by more than one process? Parallel executions of 'f'?
(See sections 4.6 and 4.11.) We see that there are a considerable number of
imiortant issues to address in defining an exception handling mechanism. It is 1
intent of this example to raise these issues; It is the task of subsequent seclions
to handle them
4.4 Conditions

What is a condition? That question has a philosophical component, which
have already examined (see section 1.1). In this section we concentrati n i
fundamental aspects of defining conditions within a chosen programming fangua
4.4.1 Condition Names

We declare conditions in much the same way that we declare t
structuring elements. In Alphard we might write

nedition no-space-left

thereby defining an exception. Such a declaration would appear W«
"specifications" portion of an Alphard form, which contains information |
exported to the form's users. (In later sections of this chapter, we will exted
declaration to include additional information necessary for proper handlhing oOf

exceptions,)

Conflicts between condition names in a particular form and names exported

other forms are handled in the same way that function name confiicts are

1

2
™
a
IS
o

CONDITIONS

Where ambiguity can arise, the language must provide a "qualifying" notation to
permit the user (programmer) to specify the intended interpretation of a symbol.
The concept of name qualification to remove ambiguity is well understood and not
really relevant to the definition of an exception mechanism. Suffice it to observe
that whatever technique is used eisewhere in a tanguage to resolve conflicts wili

serve for condition names as well.

4.4.2 Parameters

Frequently, a handler requires more information about a condition than simply
its name. The signaller may wish te transmit additional information to a handler, and
may do so by means of parameters associated with the condition. in this reaard, the
specification of a condition appears rather similar to thal of a function; in Alphard

we might write

condition illegal-sumbol (bad ymbo | : string)

This notation indicates that a handler for condition 'illegal-symbol' may expect a
sinale parameter (of type ’-,trmu""'), which (presumably) is relevant to the handling
of the condition. As we shall see later, a handier may be viewed as a subroutine
that is invoked when a particular condition is raised. Thus our use of function-like

notation to describe parameter lists is deliberately suggestive

4.4.3 Conditions and Instances

When an exception is raised by a function within a particular module, the user
of the module must know whether the exception refers to a condition that now
exists within the module's internal structure or applies only to the function
invocation itself. The distinction is most important when multiple users share the
same abstraction (module). As an example, consider a module that implements a file

abstraction. The 'file-write' function specifies two conditions (among others) that it

6

l.e. defined by form 'string'

e bt s o

SEC. 4.4 CONDITIONS

When we define an exception in Alphard, we do not explicitly specify its class
as a structure or flow cumhtion.g Instead, we name the instance(s) on which the

condition may be raised. For example, the 'file-write' function above might begin

function file-urite(f:file)
raises file-inconsistent on f
o

raises file-read-oniy on file-urite

This notation indicates that 'file-inconsistent’ is raised an a structural entity (a fite)
and is therefore a structure class condition, while ‘file-read-only' is raised on a
function instance (file-write) and is therefore a flow class condition If more than

one file might be subject to the 'file-inconsistent’ condition, we might write

function file-compare(f, g:filel
raises file-inconsistent on f,g

The raises clause is always associated with a function specification and is naturally

exported to the users of the function (actually, to the users of the form). The
condition declaration often appears outside the function declaration and groups
a. its parameter list) in a single place This 1Is

information about the condition (e
convenient when the same condition may be raised by more than one function within

a form. Additional illustrations may be found in the examples of chapter 7.

4.5 Handler Definition

We now introduce the concept of a handler for a condition. In section 4.1 we
presented an informal view of the actions performed by a handler, here, we discuss

the particulars of handler definition and relate them to Afphard.

9 We siress that these terms are for descriptive purposes only They are notl necessary for the careful defimtion

of the exception maecharism, but are introduced onl for convemence in discussing 1ts properties and 1ts
f y q prog

implementation,

59

PRECEDING PAGE BLANK-NOT fILMED

_——

THE MECHANISM CH. 4

To discuss a handler by itself is impossible; we must relate it to the condition

it purports to process and the surrounding program text. In Alphard, we might write

where 'S' is a program element (e.g. a statement or block), 'C' is a condition name
and 'H' is a handier. We say that H is a handler for condition C that is assoc/ated
with S, It is important to stress that S might be a function invocation, a statement
involving several operations, or an entire block complete with local declarations. In
short, S may be any executable program unit from a primitive operation (function
invocation) up to and including an entire function body. (Under certain tnportant
circumstances, S may be an entire module body, but more on this later.) We shou
also note that H is treated as a part of S for the purposes of identifier resolution
that is, in principle H has access to all symhols accescible inside S. Our note
1 P

not ideal in this regard, since H does not appear in the correct lexical position for

such access to occur as a result of the normal scope rules.

We impose some restrictions on the general form of H. First, it must not
contain language constructs that might irrevokably transfer controi outside
lexical scope. This restriction derives from the semantics we will require at handler
termination time and will be discussed in section 4.9. Of course, H may perform

"

function invocations, but it may not "permanently" transfer control outside
lexical boundaries 10 4 also may not attempt to return from the function (if any) in
which it and S reside. Second, H is further restricted to simplify the task of
verification, as will be discussed in chapter 6. However, these restrictions wil
not materially constrain the nature of the computations H may perform, only e

syntactic form they may assume.
Y)

We recall from our previous discussion (section 4.4.3) that conditions and
instances are closely allied. A condition is not raised in vacuo, but rejative to a

specific instance. A notation that emphasizes this important point is

B) (O R

F 4.5 HANDLER DEFINITION

fere we are explicitly relating the handier H to a condition C ralsed on instance |

for the duration of S). We say that H is attached to instance |. Aithough we will

frequently omit | when it is unambiguously determined by the iocal context, its

eptual importance cannot be overstated
The full justification for t f . tances and handler attachment will
coctions 4.6 and ¢ iew here vher a
4 ~ Lition < | ity conte ts that miant
at « n t r i 1 relative to an instance
; t kKnow a ' 1 t indlers attached for the given
r ' sed. We will claim that this
S N 4 sh u ; (;’. : I'V e 1Ny Ken
3 + 1t W } ari the tvon of n7:1 11C pangiers 1

S1C)E X D¢
f turning t the file example of section 4 4.3, we may write the quas "»1;rl»(i-'\i
statement
o it]
Since 'file-read-only \ low i it t refers t trol instances
(function call hus in ¢ ¢ flor h' for wndition ! ead-only i€
attached to an i tance f ¥ f ATt h e me "M is assocraled
with the program fragr { C i) fhus the evident intent of this
statement is 1o invoke {tt fil write' functior aind if it raises the 'file-read-only'
ondition. to handle it by the code bod ! he instance on which 'file-read-only'
aised is the | ocation of "file viite’ a ntrol instance
Now consider data instances. Suppose we write
1]
file-wuritel tel fi1le istent: hl

Since file-inconsistent is a 'structure' class condition, we are attaching 'h' to a

structural instance (a data structure), presumably ‘'accounts'. To avoid any

confusion, we could use the ambiguity-resolution convention of Alphard and write

THE MECHANISM CH. 4
file-urite(accounts) laccounts.file-inconsistent:)

Here, the program context with which the handler is associated is identical to that
of the preceding example - an invocation of 'file-write' However, the condition
'file-inconsistent' is a structural one, so the instance to which 'h' is attached is not

the invocation of 'file-write' but 'accounts', an instance of the 'file' abstraction

Clearly, we may want to perform different actions to ha vdle the 'file-
inconsistent' condition (raised on 'accounts') at different times Were this not the
case, we would simply attach the handler 'h' to 'accounts’ tor the entire lifetime of
the file. Instead. our notation permits us to attach 'h' to 'accounts' only for the
duration of some context, in this example, a single function call We can identify

two notions of "lifetime" here: the lifetime of the instance to which the handier is

attached. and the hfetime of the context with which it is a .sociated. For the 'file-
read-only' example above, the two lifetimes were identical; for the 'file-
inconsistent' example, the latter was contained in the former (i.e. "ac counts'

existed before and after the execution of ‘file-write') Conventional exception
handling mechanisms have generally recognized only one of these hfetimes as
important (usually e latter). Our mecha m explicitly permits variability in both

dimensions

Consider another exar ¢ in the Alphard proaram fragment
r
3 vat w ! eq
1 [i »
§ i1 ¥ s
¢ 4 4 x) 1
[" tent: "A | file-read iy ‘\,”I
we assume that the s { parameter to 'file-read' is a var and the second
1
parameter to 'file-write' 1s a vue. 'V The intent of the program fragment is to read

a value 'x' from file 'old', write 'x+1' to file 'new’', and write 'x' to file 'transaction'.

SEC. 4.5 HANDLER DEFINITION

Note that, since 'file-read-only' is a flow class condition raised by file-write, I
could conceivably be raised at two distinct points in the execution of this program
unil. Thus there will be two instances of file-write to which ‘h2' might appty. We
interpret the above notation as a shorthand that attaches a separate copy of 'h2'

to each relevant instance inside the program unit with which the handler is
n«.xo('mlv(!.“) The situation with 'file-inconsistent' 1s rather different. This is a
structure class condition, and handler 'h1' is evidentiy to be used only if the
condition is raised on file 'new'. [f 'fil wconsistent' were raised on either 'old' or
'transaction', this context would provide no handler to process the condition.
Depending on the larger context in which ti fragment appears, such e situation
might constitute a programming oversight or a legitimate, deliberate structure.

| 1! t and instance lifetimes.

P

Observe the relationships that ex

h1 is attached to 'new.file-inconsistent' only for the duration of this program unit,

which is evidently a subinterval of the lifetime of 'new'. By contrast, 'file-write.file-

read-only' has h?2 attached for its entire hifetime; in fact, the notation suggests that

B

h2 spans several lifetimes (separate instances) let us examine this lifetime
matter a little more carefully, and at the same time return to the gquestion of handier

placement in the source program text

For flow class conditions, it is clearly impossible to change handlers during the
lifetime of the instance to which they are attached. A control instance is nothing
more than a function invocation, which is a primitive operation from the viewpoint of

the context that performs it. Yet.a data mstance 1s a structure that normally exists

across primitive operations. Consequently, a program may wish to vary the handler
action for a structure class condition according to the context of execution at the
moment the condition is raised In particular, our example above shows that if 'file-

inconsistent' is raised on the file '"new' in the qgiven program context, handler *h1' is
to be used Other contexts that manipulate 'new' may supply other handlers.
Specifically, we may want to handle conditions over the entire lifetime of a data
instance, just as we do (by definition) for control instances. If that lifetime falls
completely within the execution hifetime of a function body, then our mechanism

already provides a means of accommodating such handiers, e.q.

Thie 15 a conceptual regquirement nl dal Ay o artation will share the body of 'h2' rather than

THE MECHANISM

beqi
private tempfile:file

i=

end [tempfile.file-inconsistent: h]

associated with an entire module body, thereby attaching it to an instance for

module's entire ||fetime,14 e.qg.

form account
heqgin

private acct:file;

All of our preceding comments about symbols accessible within 'h' and the
form 'h' must assume still apply. Obviously, it makes no sense to attempt to spe
at the module-body level a handler for a fiow class condition; 2 only

structures can persist across function invocatons

A final comment about module-body level handlers The ehagibility rule

exist at least one attached handler for every condition that can be raised rc

3
For otherwise they would be declared within some function, and exist oniy for the duration of ar

that function

1
4 Strictly speaking, for the lifetime of tha reference to the instance, Alternatively, we ght a 1te
to the handler body with the declaration of the instance, thereby emphasizing that the handier At
dusation of that declaration's relevance
15 A |

Except in the sense of the shorthand notation previot isly explained We allow such handlers at thae

body leve! for that reason alone

6a

i T & | — — -t

the "outer block" of a rnodule.18 For consistency, we allow a handler to

below) will require that, within a module that referances an instance, there alw

to that instance. We enforce this requirement by assuming that, if no hai

However, if a structure's lifetime exceeds a single function body's execution

lifetime. this method is inadequate. Such structures are of necessity declared in

be

the

SEC. 4

o

HANDLER DEFINITION

exists for a given condition and instance, the programmer intended to write one with
a null body (i.e. a handler that does nothing) at the moduie-body level. It will be
convenient to make the same assumption when verifying the module (see chapter

6).

4.6 Handler Eligibility

When a condition is raised, we may wish to invoke more than one handler to
process it. The choice of handlers to be invoked occurs in two stages: a set of
eligible handlers is determined, then a subset of the eligible handlers determined
by a selection policy is chosen. This subset will then receive the opportunity to
process the condition. In seclion 4.7.1 we discuss seiection pohicies; this section
is devoted to the notion of eligibility. We first approach the subject informally, then

proceed with more precise definitions.

Roughly speaking, we define a handler H to be eligible to handle condition C on
instance | if it is associated with a program context that is able to access |. By
raccess' we mean the ability to name the instance |. For flow class conditions, this
definition is essentially trivial, since the only context that can 'access' a function
16

invocation (control instance) is its caller. Thus for flow class conditions, there

can be at most one context in which an eligible handler may be found.

Structure class conditions are not as simple Because of sharing, a single
data structure may be referenced by several contexts. In most cases we have no
a priori basis on which to distinguish these contexts, and we treat them all as
eligible. (This statement will be qualified shortly.) This implies that a context may
be considered eligible even though it did not invoke the function that raised the
condition. Furthermore, if the system permits parallel execution, that context may
be performing some other function at the instant that the condition is raised. We
will examine the synchronisation details in section 4.11; for now we need only be
aware that multiple handiers may be eligible to receive the same {structural)

condition.

e precisaly, the instance of the invos f tion

65

THE MECHANISM CH. 4

We observe that multiple eligible handlers may exist even if the programming
system does not permit parallel execution. Suppose, for example, that we have two
modules, A and B, that use a single storage allocation module, s.17 Assume that S
provides an abstraction called a ‘storage pool', which is shared by s&ll of its users
(in particular, A and B). Assume further that S defines a structure class condition,
‘pool-low', that is raised whenever its arqument pool has inadequate free space to
satisfy the requested aliocation. Since we assume no parallel execution is
possible, only one module can invoke 'ailocate' at a time. Suppose A does. If
'allocate' raises 'pool-low', should we a priori deny B the opportunity to handle the
condition and free some space? Certainly not. A and B share the storage pool
provided by S, and our mechanism should and will consider both modules eligible to

handle conditions raised by §. Sharing, not parallelism, produces multiple eligibility.

Let us now proceed to the details of eligibility determination. Since flow and
structure class conditions may be treated analogously, we will focus our attention
on the latter class, since the absence of sharing of contro!l instances makes the

former class less interesting.

4.6.1 The Eligibility Rule

In order to give a precise definition of eligibility, we must introduce some
terminology. First, we need to tighten up our meaning of "context". Consider an
executable program unit, that is, a well-formed piece of source code that forms a
subpart of a function body (perhaps the entire body). If, at a given instant, that
code is being executed, then an instance of the function body must exist. Indeed,
a separate instance will exist for each distinct execution of the function,
regardless of whether such executions are serial or parallel. Within each instance,
there will be an instant at which our chosen program unit is entered and another at
which it is exited. Between these two instants, the program unit is sald to be

active (with respect to the given function instance). In a parallel system, the same

SEC. 4.6 HANDLER ELIGIBILITY

program unit may be active in many different function instances at once.18

We next restrict our attention to active program units that are relevant to a

particular condition and instance.

Def. Suppose that condition C has been raised on instance l.
Consider a!l active program units that have an associated
handler for condition C attached to instance |. (Of course, some
of these will be properly nested, but we'll deal with that in a
minute.) We call this set of active program units the contexts in
which C raised on | can be handied. We will say that a handler

& is enabled if either (1) it is associated with {(an instance of) a

module body in which | is referenced (named), or (2) it is

associated with a context in which C can be raised on I. (For
reasons indicated at the end of section 4.5, we always consider

module-body tevel handlers to be enabled.)

We need one additional preliminary definition.

Def. Suppose H1 and H2 are distinct enabled handlers and S1 and S§2
are respectively the program units with which they are
associated. We say that H1 masks H2 if either (1) S2 is a
module body within which S1 is lexically nested or (2) neither S

nor S2 is a module body, but S1 is lexically nested in §2 and the

contexts associated with H1 and H2 are subparts of the same

18
We have carefully avoided using the term “process" because of our unwillingness to assign it a specific

meamng 1n this diccussion. "Process" has too many mmplementation cpecific connotations However, we note
informally that (barring recursion) simultaneously occurring instances of the same function belong t¢ separate
processes. In the subsequent paragraphs we will establish definitions that, without resorting to the definition of

"process”, pinpoint within each process that references a data instance the contexts in which the signalled

condition should be handled

-

THE MECHANISM CH. 4

function instdn(re.19 An enabled handler H is said to be masked
if there exists some other enabled handler G such that G masks
H.

We can give a precise definition of eligibility

Def. A handler is eligible (10 process a condition on a given instance)

if it is enabled and not masked

To see what this means more concretely, we will extend an earlier exampie - It

storage allocator S and its users A and et 'usea' and 'useb' be functions in
modules A and B, respectively. Sketches of these modules, written in pseudo-
Alphard, appear in fiqures 4.2 and 4329 'allocate' is assumed to attempt to
assign a 'block' of 'i' storage units from the svecified pocl 'p'. If it cannot do so, it
raises 'pool-low' on 'p' and, after all eligible handiers have completed, tries again

If the second attempt faiis, it returns 'nil'.<< The 'release' function is assumed not

to raise any exceptional conditions

I

First, let us assume that no parallelism is permitted. (The two modules as

coded are prepared to handle potential paralielism, which we discuss in the next

19 A nearly equivalent, and perhaps shahtly more intuitive, way to state (2) 1s: neithaer St nor S2 15 a module
body, both §1 and S2 belong to the same module, and S1Y s dynamically nested within §2. Unfortunalely, ih

definition appeals implicitly to the notion of "procass”, It also complicates verification

20

A word of caution 15 in order; these examples are somewhat simphfied The de arations of n lines 3 and
16 are intended to denote the sama structure, although in strict Alphard they would denote different cnes Ne are

also omitting certain details about handier intaractions thal have not yet besn explained, Sea section 4.0

better still, ignore the details for now

1 5
Ag)a!n, we ignore untit section 4.7 tha machanism that makes this possible.

55
“< Once again, we must simplity for illustrative pt

rposes. Normally, "aliocate' would raise a second condi!
here, e.g. 'pool-emply’, thereby parmitting 1t userrs to avord the cumbersome tests for 'ml' To avod f n at
this point and because we would otherwise have 1o precyme material from ceclior 4 9, we choose the

traditional expedient of an unusual retirn value {o denote an exception

68

SEC. 4.6 HANDLER ELIGIBILITY
1 form A =
2 beqin
3 shared p:pool
&4 private k,l:hairylist
5 function useali:int) =
& beqgin
private z:block
8 z«al locate(p, i)
3 if z=nil then return fi
18 < folbt tm 2" >
11 enter (I, z)
§ 7 end [pool-low: squeeze(l)]
13 end [pool-lou: (squeeze(l); squeecelk))]
Note: ‘sqgueeze’ is defined in form ‘hairulist®.

Figure 4.2: A Simple Use of the 'Pool' Abstraction

paraqgraph. The "no-parallelism" assumption merely causes the handler on line 29 to
be superfluous.) Suppose that 'pool-low' is raised as a result of the call to 'allocate’
on line 8. By our assumption, the only function instance from which 'p' can be
accessed is 'usea'. Consequentiy, the enabled handlers are those on lines 12, 13,
and 31. However, by clause (1) of the definition of masking (above), the handler on
line 12 masks the one on line 13. Thus the eligible handlers are on lines 12 and 31.
If, however, 'pool-low' were raised by the call on line 23, the enabled handlers
would be on lines 13, 23, 30, and 31. By clause (1) of the definition of masking,
line 30 masks line 31; by clause (2), line 23 masks line 30. Thus in this case the

cligible handlers would be on lines 13 and 23.

A more interesting situation arises when we allow parallelism. Suppose two
processes independently invoke 'usea' and 'useb'. Specifically, at the instant that
-

process 1 calls 'usea', process 2 is executing line 28 in 'useb'. If 'pool-low' is

raised as a result of 'usea' calling 'allocate', the enabled handlers will be those on

69

p— T P ———— e C—T———Y .
THE MECHANISM CH. 4
%
14 form B =
15 beqin
16 shared p:pool
17 private m,n:hairylist
1& function usebl(i:int) =
13 begin
28 private z1,z2:block

‘ zleallocate(p, i)

22 if zl=nil then return fi

23 z2+«al locate(p, i+3) [pool-louw: release(zl);: zlenill
e if zl=nil

25 then return

26 else if z2=nil then releasel(zl); return fi

27 i

28 < fibl in “ziT and fzZ' =

29 begin enter (m,z1}; enter(m,z2) end [pocl-low:]
38 end [pool-lou: squeeze(m)]

Gl end [pool-lou: (squeezel(m); squeeze(n)))

Figure 4.3: A More Involved Use of the 'Pool' Abstraction

lines 12, 30, and 31, and hence the eligible handlers will be on lines 12 and 30.
Note that, since 'useb' is being execuled concurrently at the instant '‘pool-low' is
raised, the handler on line 30 masks the one on line 31. Consider what happens if
process 2 has just passed the begin on line 29 at the instant 'pool-low' is raised.
Now line 29 contains an enabled handler as well, and by clause (2) of the definition
it masks line 30, leaving 12 and 29 as the eligible handlers. The purpose of coding
a null handler body on line 29 is to take advantage of the masking to disable
temporarily the unwanted behavior of line 30. The full power of this masking effect
cannot be appreciated untii we have discussed handler semantics in sections

4.8 and 4.9. We will return to this example in chapter 7.

0

SEC. 4.6 HANDLER ELIGIBILITY

4.6.2 Another View of 'Contexts’

Because the notion of eligibility rests at the heart of cur exception handling
mechanism, we must have a clear picture of its purpose. The definitions of the
previous section identify for us the contexts that will be considered eligible to
process a given condition raised on a given mstance. Perhaps by recasting these
definitions in operating system terms we can reinforce the intended ideas. We will

use the terminology of Hvdra as defined in {Cohen 75].

A context, in Hydra, is an object. Objects are used to group capabilities for
related objects. We may view an object in which a particular capability resides as
defining the environment (i.e. the capabilities) needed when the given capability is
manipulated in a specific way. Stated slightly differently, the object defines a (not
necessarily unique) usage environment with respect to the particular capability. (Of
course, the object serves this same purpose for eacl) of the capabilities it

contains.)

For a specific instance | (which is an object), we may consider the set § of
objects that contain a capability for I. Assuming that every object in § contains a
body of code to handle an exception C raised on |, we can say that S is the set of
contexts in which C (raised on 1) can be Imndl(ﬂd.?3 This corresponds to the

definition of "context" in the preceding section

At a given instant, S may contain objects of type LNS (that is, objects
corresponding to function activations). Indeed, for flow class conditions (i.e.
conditions raised on | when | is itself an INS), S has precisely one member, which is
of type LNS. We make no special provisions regarding LNSs or non-LNSs - a
context may be an object of arbitrary type. This is in basic contrast with other

exception handling mechanisms.

ol
29

Strictly speaking, we should limit S to the set of objects that contain a capability for | but do not form a part of
the protected subsystem that implements the type to which | belongs We clearly do not want to include the

implementing me dule (envire nment) am ng the "using” modiles (envito yments)

A 2

b ——— o

THE MECHANISM CH. 4

The eligible handlers set 1s determined (at a given instant) by identifying
within each member of S the body of code that is prepared to handle condition C.
Clearly, for each context, the eligible handier may change with time. The eligibility
rule given in the preceding section selects a single eligible handler from the enabled
handlers within a single context (in S). It does so by the usual lexical scope rules.
However, we should realize that the fundamental principle, for the purposes of our
mechanism, is the determination of the set S. Within each context in §, the policy
used to determine the eligible handler (at a given instant) is of secondary interest.
T' ere are really two levels of selection here: the environments (contexts,
protection domains) that use |, and the code bodies within these environments that
will actually process C The first level is central to our mechanism, the second is
not. Within the latter we have chosen the conventional scope rules for familiarity
and convenience, but the same exceptlion transmission principle could easily be
applied to another choice. It is important to recognize these distinct levels, even
though they do not appear explicitly in the (rather "homogeneous") definitions of

the previous section.

4.7 Raising Conditions

We now turn our attention to the semantics at the site where a condition is
raised. We want to establish what control the signaller has over the invocation of
handiers and what the signaller is entitled to assume after such invocation. Let us

examine these issues in turn

4.7.1 Sclection Policies

By definition, a condition can only be raised within the module in which it is

defined (i.e. in which the condition declaration appears). In Alphard we might raise

file-inconsistent' by the executable statement
raise thle T nsistent
¢ e
- - —
e —— 4

SEC. 4.7 RAISING CONDITIONS

We assume that the declaration of this condition (see section 4.4.3) appears in the
specifications part of a form, i.e. the part of the module that describes the
abstraction to its user. The raise statement above would appear in one or more of
the functions of the same form. For exampie, consider the following skeleton

function:

body file-uritelf:file)
begin

if not consistent (f)

then raise file-inconsistent fi

'Consistent' is a predicate that tests the concrete representation of a file to
determine if it is indeed consistent. Again, we assume that the above code appears

within form 'file'.

Now let us consider the choice of handlers to be invoked. In preceding
sections we defined the notion of eligibitlity butl sugnested that it might not always
be desirable to invoke all eligible handlers when a condition is raised. We establish
the principle that an eligible handler should be invoked only when the condition for
which it is eligible exists. At first glance this seems a vacuous statement, but a
simple example will demonstrate otherwise. Consider the 'pool-low' condition in the
example of the previous section. In general, more than one eligible handler exists
for this condition. Suppose that 'pool-low' is raised. It must be that insufficient
storage exists in the (shared) pool 'p' to satisfy some allocation request. Assume
for the moment that the (eligible) handiers are invoked one-at-a-time in an
unspecified order. It is quite possible that the first handler will release adequate
storage to satisfy the pending request. Why, then, invoke the remaining handlers?
In actuality, the 'pool-low' condition has ceased to exist after termination of the
first handler, and thus by the above principle, we should not invoke another eligible

handler, even though many more may exist.
(Y

This example in addition illustrates a particular selection policy. This policy

would cause handlers to be successively invoked as long as the given condition

THE MECHANISM CH. 4

persists. We will specify the precise semantics of this policy shortly; first,
however, we observe that other reasonable policies exist. For ex ample, consider
the following variant of the 'pool-low' condition. Suppose that the allocation module,
when a request could not be satisfied, wished to recover as much storage as
possible within the poal. Indeed, it might wish to do so as soon as the available
space dropped below a certain threshold, not necessarily when a request could not
be honored. Such a condition, say 'pool-under-threshold', might be broadcast to all
eligible handlers; by definition, 'pool-under-threshold' would be said to persist from
the detection of the threshold-crossing until afi eligible handlers have completed

execution.

Another facet of selection policies is the degree of parallelism they permit
among the eligible handlers and the signaller. Must *he sianaller wait for all
selected handlers to terminate? Do the selected handlers execute sequentially or
in parallel? The answers to these important guestions sigitificantly influence the
structure of the handlers and the signaller, as well as the precise semantics of the
condition. We could easily define a large number of policies by varying the subset
of eligible handlers selested and the extent of parallel processing among them

Indeed, we naturally ask how we can characterize the space of selection policies

The principles of modular decomposition and information hiding enable us to
formulate properties that selection policies should have. From these properties we
will seek an appropriate way to define acceptable policies within our exception

handling mechanism.
4.7.1.1 Properties for Selection Policies

Because handlers appear, by definition, in modutes other than the sianailing
one, the signaller has no knowledge of their individual actions. It thus makes littie
sense to provide a mechanism that permits explicit selection from the set of eligible
handlers. The signaller has no a priori knowledge about handiers; 1t cannot,
therefore, determine in advance those that should be invoked. For the same
reason, the signaller cannot specify the order in which selected handlers are to be
invoked. Hence a necessary property of an acceptable selection policy 1s that it
cannot postulate the existence of a priori mformation that distinguishes individual

oligible handlers,

/4

SEC. 4.7 RAISING CONDITIONS

Even in the absence of handler-specific information, we can still formulate
policies that require only a subset of the eligible handlers to be invoked. Such
policies rely on the state of the signaller before handler selection. An example of
such a policy is that described above for the 'pool-low' condition, which uses the
state of the storage pool to determine if additional handlers should be invoked. A
consequence of the "anonymous handier" property, therefore, is that a (proper)
subset of the eligible handiers may be chosen by the selection policy, but the
determination of that subset must follow solely from information avaiiable within the

signalling module.

The second property a selection policy should possess affirms the "principle
of candition persistence”, mentioned above. That is, the selection policy should not
permit a handler to be invoked when the condition for which it is eiigible does naot
exist. Frequently, the selection policy may come close ta violating this property, as
for the 'pool-tfow' condition above. 'Pool-low' and 'pool-under-threshold' differ only
slightly, but the selection policies and subsequent behavior of the signaller aiffer
substantially in the two cases. In fact, we might view the semantics of 'pool-under-
threshold' to have been derived from those for 'pool-low' in such a way as to

satisfy the dictates of the "condition persistence" principle.

A corollary of this principle is that all handlers selected by a policy must have
been (at least) invoked before execution of the raise statement completes. If this
were not so, then a handler could be invoked when no raise on its condition is in

progress - a direct violation of "condition pnrsrsts:n(:e".za

The final property a selection policy must exhibit is perhaps less obvious than
the preceding two. We require that the policy be associated with the condition, not
with an occurrence of a raise statement naming that condition. Thus all raise
statements for a condition will necessarily use the same selection policy. The
reader may find this restriction difficult to accept, since it seems plausible that
different selection policies might be useful under different circumstances.
Experience suggests, however, that such situations, if they arise at all, really

involve two subtly different conditions (e.g. 'pool-under-threshold' and 'pooi-low').

2a

soms unpleasant consaquences of relaxing thys principle are mentioned hvwo”y in cection 4.11,

75

THE MECHANISM CH. 4

Furthermore, in such cases handler action is generally slightly different under the
two policies. This would imply providing the handier with the knowledge of which

policy was in force at its invocation. Such knowliedae would violate the principle of

? and would complicate verification. It is not impossible to

. DL
information hiding,<*
construct verification conditions in the absence of this restriction, but, unless the

policies are very similar, the proots are likely to become much more difficult.
4.7.1.2 Specific Selection Policies

With these properties in mind, let us define some selection policies. We do
not claim to exhaust the space of acceptable policies, but those detined here wili
be adequate to illustrate the intent of the above rules. We anticipate that an
implementation of our proposed mechanism would supply (some of) these policic

and perhaps others, but would not necessarily supply a set of primitives that permit

the definition of new ones. <2 We will identify each policy by a keyword for
conventent future reference

Qur first y 15 allod broadcast-and-wait. Under this policy, all eligible
handlers ars JOok el parallel. <’ When all handlers thus initiated have completed
execution rosume s mmediately following the raise statement Thus shtle all

eligible handlers execute (conceptually, at least) in parallel, the signaller s

suspended until they complete

An obvious variation of this polcy, simply called broadcast, relaxes

K

: S e selechion | ‘ are bhoun | o ¢ Vi) ihle he 3 e 1 <
reason (other than synclronization reguiremnents cpe below) | handle to & w o owvwhat | y led !
mvocation

(5} .
No such pnimitives are examined or proposed in thes thesis., The wentitication of sutabhle primitives for the

detinition f eloct y polhices 18 A pen | om

=7 We should note that parallel ececution 158 specified by this g y and hers to permit sysle that supg 1
patrallehism to apply it here. Systems that are *afined to be requent Wl (not g el systems mirang a s entha
machine) have no need for s h a policy e they ca achieve the ame effect by 1ial 1
(coe below) with the predicate dentically 1 s

(6

%
™
o
A
N

RAISING CONDITIONS

completion requirement. All eligible handlers are initiated in parailel, but the
signaller does not wait for any of them to complete. [t merely continues executing
following the raise statement. Thus all handlers and the signaller execute in

parallel.

The last policy we will define here is sequential-conditional. (This policy was
used implicitly in the ‘storage pool' example above.) Associated with the raise
statement is a predicate. The predicate is evaluated and, if true, execution
continues following the raise statement. If the predicate is false, an eligble
handler is selected and initiated. When it completes, the predicate is again
evaluated. (We insure that each time a different handler is selected.) The raise
statement terminates when either the predicate becomes true or the set of eliagible

=
handlers is exhausted.© 8

We close this discussion of selection policies by relating them (o condition
classes. Since the class (structure or flow) of a condition determines the set of
eligible handlers, the effect of the selection policy, which chooses from that set,
obviously depends on the condition class. We note that the above policies are
applicable to either class, although for the 'flow' class certain degeneracies occur.
Since there can be at most one eligible handler for a 'flow' class condition,

broadcast-and-wait and sequential-conditional are (in practice) equivalent.

This 'special-case' nature of flow class conditions reveals an important
aspect of selection policies: they are generally interesting for structural conditions
only. The possibility of multiple eligible handlers arises from shared (data)
instances; it is for shared structures that this exception handling mechanism has
been designed. Some previous mechanisms try to operate in environments in which
{(by definition) only one eligible handier exists, and such degenerate handier sets

are demonstrably inadequate for shared data structures.

5
28 It might be useful 1o alter this algorithm slightly. In practice, it is useless to test the predicate before selecting
the first handler, since a trug predicatle would cause the raise statement fo do nothing. However, it is useful to
know after the raise that the predicate s false if and only if all ehgible handlers have been invoked. Altering the

:glgur.ﬂ m to tes! after invocation prevents this ¢ Iusion. It aleo affects venification - see cection 6.4.2,

‘7

THE MECHANISM CH. 4

4.7.2 The Raise Statement

in terms of control flow semantics, the raise statement acts much like a
function call. Although the signaller does not know how many handlers will be
invoked, it does know that, at some ',»unv\,' control will return to the statement
immediately following the raise. The signhalier knows that contrel may leave its
module for some period of time, but nothing any handler can do (short of looping

indefinitely) can prevent control from returning. (See section 4.9.) The moment

of return is determined by the selection policy

For an ordinary function call, the calier entitied to assume a certain
predicate holds after the function is completed. That predi ate is specified by the
impiementor of the abstraction, mely, the i i in which the tunction is defined.
When raising exceptions, the situation is mu the ime: tl signaller is entitled to
assume that a certain predicate holds after the raise slatement has been
executed. Once again the predicate is supplied by the implementor ot the
abstraction, but in this case, the implementor Is the same | wule that contains the
raise, by definition Because the signalling module supplies the predicate, it
compels the handlers to make that redicate true 3 We will examine the

censequences of this form of semantic specification in chapter 6

It is important 1o note that few, if any, other exception handling mechanisms
require control to return to the signaller upon handler termination Some permit it,
but do not enforce it. In our view, handle ire invoked (in most cases) to process
an unusual condition that cannot be handied entirely vithin the signalling module.
fThey have an obligation, expressed by the predicate, to the signaller, and the
signaller will assume, upon completion of i raise, that the obligation has been
satisfied. If handlers were able to terminate prematurely the execution of the

signaller, the abstractions of the signalling module might not be maintained. The

. Assuming all handlers eventually lerminate

—— - — ey

SEC. 4.7 RAISING CONDITIONS

signalling and handling modules should be viewed as mutually suspicious subsystems
[Schroeder 72]; neither should be able to influence adversely the execution
of the other. For this reason, our exception mechanism requires that handlers

return control to the signalier. From the signaller's point of view, a handler is

nothing more than an unnamed function.

A final detail concerning the raise statement should be mentioned. It may be
necessary 1o indicate on what instance the condition is being raised. If, for
example, there is a function 'compare-file' that compares the contents of two files
passed as parameters, it will be necessary to specify which of the two parameters

is intended if 'file-inconsistent' must be raised. We might write

raise file-1.file-inconsistent

to avoid ambiguity. Such qualifications are necessary only when a function
manipulates two or more (data) instances of the same 'type' during a single call. No
problem can arise in specification of flow class conditions, since the current

executing function instance is the only possible relevant one.

4.8 Handler Invocation Semantics

We come at last to the semantics of the handlers. We can view the task of a
handler as consisting of two parts: performing recovery actions on behaif of the
signaller, and altering the local context at the handler site to reflect the
occurrence of the condition. (For any particular condition, either of these actions
may be null.) Thus a handler requires information from the signaller, which it
receives through the condition name and parameters (see section 4.4), and from the
associated program context, which it receives by the normal scope rules of the

language.

Recall from section 4.6 that an eligible handler always has an associated
program unit, which may be executing at the instant the handler is invoked. If so,

we require that the execution of that program unit be suspended until the handler

‘98

THE MECHANISM CH. 4

terminates. That is, the handler interrupts its associated program context when
selected for execution; It does not run asynchronously. This is a crucial distinction
in light of the handler's responsibility to alter local context to reflect its recovery
actions. If the handler executed asynchronously with its associated context,
complicated and costly synchronization would be needed to prevent undesirable

interference in the manipulation of local data.

It is important to understand that the associated context is interrupted
immmoediately. Fven though the context may be performing some function whose
mmplementation exists outside the scope of the current module, interruption is
immediate and causes that function's execution to be suspended. Failure to do so
canresult in a d(‘adlnck.31 We can restate the rule in a less formal, though perhaps
more mmtuitive way by saying that the "process" in which the program context is
executing 1s interrupted, and the handler then executes within that process with
access to the local variables of the context with which it is associated. The
handler does not have access to the variables of the immediately interrupted
context unless it is, by coincidence, the context with which the handler is
assoctated. (Recall, however, that we prefer {o avoid definitions that rely on the
notion of "process", since the embedding language may not provide any such

concept at the user level.)

We observe that reliance upon processes leads to difficulties when we
consider handiers that are associated with entire module bodies. Recall from
section 4.6 that such handlers are eligible only when no function within the module
body has the condition enabled (relative, of course, to some particular instance). In
informal terms, there is no activity within that instance - the data structure is not
being manipulated. We cannot necessarily identify a "process" that should be
interrupted in order to invoke the ehagible handler, yet that in no way should prevent
its execution. The data to which the handler should have access is well-defined by

its lexical placement; the "control environment" is unspecified. Probabl the
;

.
1 consider

, for example, the <ituation in which the only eligible handler 1s associated with the context that
invoked the function that rased the condition. (f we wait to invoke the handler until control returns 1o its level ot
abstraction (e the level at which its as<ociated program conteax! executes), we have a deadiock, assumng the

colection pohicy mvolves waiting for handler completion

80

-

it S ndnlilles, ittt n

SEC. 4.8 HANDLER INVOCATION SEMANTICS

implementation will have to find a "null" process in which to execute the handler,
but at the level of functional behavior this detail does not concern or interest us.
We merely specify the context in which the handler must execute and allow the

implementation to realize that specification any way it chooses.

4.9 Handler Termination Semantics

To complete our exposition of the exception handling mechanism, we examine
the semantics that apply when a handler completes its execution. There are two
obvious aspects to consider: the effect on the signaller and the effect on the

interrupted context.

Under some selection policies, the signaller is unable to continue execution
until the handlers have completed. The signaller will need to assume, in most such
cases, that it is impossible for its execution to be aborted, for the abstraction it
maintains i1s very likely to be in an inconsistent state at the instant a condition is
raised. As intimated in the preceding section, we require that a handler be
incapable of preventing the resumption of its signaller. This is in sharp contrast to
most existing exception handling mechanisms, which either permit or prescribe
termination of the signaller. This abortion of the signaller may be satisfactory for
certain conditions, but is inadequate for situations in which the signaller wishes to
act upon the results of the handler (e.q. a storage allocator that, after raising 'pool-
low', wants to determine if it now has adequate resources to satisfy a pending
request). We reject it as a general rule. Under the proposed mechanism, the
signaller's execution always continues immediately following the raise statement.3<

Although a handler cannot alter the flow of control in its signaller, it can
change the local flow of control within its associated context. This means that the
handler can cause control to resume at a point other than the point of interruption.
The precise nature of the control flow changes permitted is, of course, language-
dependent, but for the purposes of this section, we assume only that the handler

has the option of causing control to leave the associated context. (In effect, this

2
32 Under some circumstances, this may be too cumbersome. See discussion in section 5.2,

81

THE MECHANISM CH. 4

aives us a kind of "local abort".) We recall, however, that the handler may not
transfer control outside its own scope (see section 4.5). The actual transfer of
control occurs not when the handler terminates, but when control returns to its
associated context at the point of interruption. Stated another way: the handler,
upon completion, "posts" the location at which execution of its associated context
is to resume. Normally (and by default), the posted location is the point of
interruption, but if the handler so specifies, it may be the textual end of the
program unit.33 The transfer to the posted location occurs when control returns to

the interrupted context.

function usebf{i:int) =
l:begin
private z1,z2:block
zleallocatel(p, i)
if zl=nil then return fi
z2«allocate(p, i+3) [pool-lou: release(zl) » leave 1]
< fullll e 21t and Tz2t >
begin enterd{m,zl}; enterim,z2) end [pooi-lou:]

end [(pool-lou: squeeze(m)]

Figure 4.4: Improved Version of 'useb'

We can see the utility of local alteration of control flow for conditions that
represent the permanent failure of some action. Returning to our allocator example
aqgain, we can see the convenience of beina able to leave the bady of function
'useb' (see figure 4.3) when 'pool-low' is raised as a result of the call to 'allocate!
on hine 23. We could then eliminate much of the troublesome checking for 'nil' that

clutters the main-line code. Extending the notation of section 4.5, we might write

S [C: H = T]

ntext, depending on the branching constructs permitted by the language,

Q

82

| —— K IR s - | - M

SEC. 4.9 HANDLER TERMINATION SEMANTICS

where T specifies the change of control flow that is to be posted when H

terminates.34 We could then recode 'useb' as shown in figure a.4385

4.10 An Informal Recapitulation

In this chapter we have expounded the details of a proposed exceptional
condition handling mechanism. Because of our stated intention to do so outside the
confines of a particular language's syntax and semantics, the presentation may
have seemed vague and the factual detail elusive Chapters 5 to 8
attempt to justify the definitions of this chapter by re-examining them in the light of
the goals stated in chapter 1. For convenient reference and to help the reader
understand the motivation for the elaborate definitions of this chapter, we restate

here the important notions embodied in the proposed mechanism.

» The exception mechanism presumes an embedding language that
explicitly supports the principle of information hiding, whiczh
separates knowledge of functional behavior (abstraction) from
internal workings (representation or implementation).

= Conditions are defined by the implementor of an ahstraction, and
their names and abstract meanings are made available with the
names and abstract meanings of the functions provided by a
module.

x Handlers are executable program units (normally procedures)
supplied by the user of an abstraction to process exceptions
(conditions).

* The notion that binds handlers to conditions is the instance. Qunly

3
28 1his notation is not always convement, See appendix A,

2
35 Note that this improved version could still be improved by addition of other conditions, as observed n section

4.6,

83

THE MECHANISM CH. 4

those contexts that use a particular instance can supply handlers
for the conditions that may arnse on the instance. Put slightly
differently: the implementor of an abstraction detects and raises
conditions on its instances; the users of the instances supply the

handlers to respond to those conditions.

X Notions like "process" and "call-stack" are secondary,
implementa’ n-specific concepts that do not figure directly in
the transmission of exceptional conditions. We phrase our
definitions and organize our thinking with the view that there
exist instances of abstractions and users of those instances.
That dependency relation is foremost, relations tike "A calls B"

are secondary.

X Conditions are defined to apply to either control instances

(function invocations) or data instances (data structures). This

'class' of the condition determines what is meant by a 'user' of

the instance on which the condition 1s raised.
% When a condition is raised, two criteria determine the handlers

that will be invoked to process it: the eligibility rule and the

selection policy. The eligibitity rule defines the contexts within

modules using the instance that will be considered eligible to

have their associated handlers invoked. The selection policy

defines the subset of the eligible handlers that will actually be

invoked.

|

® Since the eligibility rule allows tor dynamic changes in control |

flow, the set of eligible handlers for a given condition and
instance varies with the state of the modules supplying the
handiers (the users). The selection policy permits dynamic state
changes in the implementation of the instance (resulting from
handler execution) to affect the actual invocation of handlers.
Thus both user and mplementor can influence the exception

handling process, but only in well-defined ways.

84

SEC. 4.10 AN INFORMAL RECAFITULATION

b Handlers cannot alter the fiow of control within the signaller, but

they are able to force local branching within their associated
contexts. Functions that raise conditions may therefore assume
that their execution cannot be terminated by external means.
Local changes in control flow initiated by handlers actually
simplify the structure of their associated contexts by eliminating

the need for explicit polling for exceptions.

4.11 A Postscript: Synchronization Esoterica

We have presented the details of the exception handiing mechanism without
paying particular attention to questions of synchronization, even though at several
points we stated that certain program units would execute in parallel. Two
synchronization issues arise: one pertains to synchronization within the exception
handling mechanism itself, the other involves the interaction between the exception
mechanism and the synchronization facilities of the embedding language. We will
consider the former here; we postpone the latter until chapter 5. Because the
material of this section is relevant only to implementation, it has been separated

from the discussion of the functional behavior of the exception mechanism.

The first observation about synchronization behavior applies to maintenance of
the eligible handier set for a given instance and condition. This set is defined at
the moment that the condition is raised on the instance, but the implementation will
maintain it over time so that it is available at the instant the condition is raised.
The definitions require that the eligible handlers set remain unchanged while the
raise statement is being executed, but since the set is determined by the
instantaneous control points of asynchronously executing processes, it is liable to
change at any moment. It is necessary, therefore, to prevent interfering changes
by ensuring certain mutual exclusion. Specifically, any attempt to alter or examine
an eligible handlers set must be performed in a critical section protected by a
mutual-exclusion semaphore (or similar synchronization construct). Such accesses

occur in three places: entry to and exit from a program unit with which a handler for

85

THE MECHANISM

the condition and instance is assof iated, and during a raise of the given condition

on the given instance. By inserting critical sections at these powts, the re aquired

semantics of the eligible handlers set are preserve

A second observaltion applics to seied tion policie that do not stig 1o waiting

for the handiers to complete At first glance, we might worry that, under Su h a
policy, control ¢ ould "back out" of the inaller and into a text t ted by a
handler. The confusion waoul | be considerable if this could happen, | t a httle care
in the definition of the selection policy @i Jates any potential problem. Note that
the 'broadcast’ policy of section 4.7.1 spei Hies that the raise statement completes
after all efigible handlers have t n initiated. Any eligible handler in the call stack
of the process performng the raise wi + orly have been initiated but also will
have completed before control carn pass 1o the statement following the raise
Recall that the process thal exatult s siee will be interrupts immediately by a
handler execution if the context with winch 1 inchier 1 ssnciated happens 1o
be in that process. This is in accordance wilh ihe rule stated in section 4.8. Thus
no special machinery is heeded to riel this apparent possibility af caonflicting
control flow; we need only exercist 37 ¢ the definition of Jection policies, and
ensure that they exhibit the propent | ed in tion 4.7.1
L It shouwd be noted that the pre f t 1 tre > critical sections
«(h'\“-l‘ﬂ\"! W tt 11 gong int the ¢ ' wWe ¢ (hat H L 3 & od, 1t af priate

tead f filt-tle { ’ ' o % that . i o ! Hee
if Blocking s rare,. Also, cerly H 1 { . & ha ‘ e o atl block exil)
fiom the el to be a mphished 3 ¢ f v } ok ‘ tual es s1on al
either the imstmction or the met ry o ey 1 ¢ hie 1 [o " ¢ \
mutugal asclusion, One 1y PUen | tilate ' i ¥ et 1
be done nd by at the ? fovare (!

Part III

Justification of the Mechanism

87

D
Uniformity

"What's true of one peculiar case is true of all
peculiar cases of the same peculiar sort.”

- James Thurber, 'The Whl!g Doe_r

This chapter evaluates the exception mechanism of chapter 4 with respect to
the gcal of uniformity enunciated in chapter 1. Recall that "uniformity” in this
coiitext refers to consistent application of the mechanism within multiple levels of a
programming system. We can approach the question in two ways: (1} bv
demonstrating that the facilities provided by the mechanism work effectively
throughout a system, and (2) by showing that the mechanism is largely independent
of language-specific semantics. From the former we conclude that the mechanism
is indeed useful for exception handling problems that arise at many system levels;
from the latter we conclude that the semantics of the mechanism are compatible
with languages used at those levels. The utility of the mechanism is best illustrated
by examples of 'typical' exception handling situations, whose presentation we
defer until chapter 7. In this chaper we concentrate on the reiationship of the
exception mechanism to other language concepts that may affect the exception

handling process.

5.1 Interactions with the Embedding Language

We want to show that our mechanism is largely independent of other speci!
constructs in its embedding language. By doing so we will establish the fq
of implementing a single set of semantics for exception handling ths
programming system. (Chapter 7 will demonstrate that those <«
indeed useful.) We will examine a number of language concepts that

exception handling and consider how the mechanism responds 1

in their semantics.

AD-AO43 449 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER =-ETC F/6 9/2
PROGRAM STRUCTURES FOR EXCEPTIONAL CONDITION HANDLING.(U)
JUN 77 R LEVIN F44620=73=C=0074
UNCLASSIFIED AFOSR=TR=77=1136
2 o

e

(=}

>
n
w

= s |2
3 Py
1-8

e
S

HH ‘

lll\\ % ﬂlll

HHI

NATIONAL BUREAU OF STANDARDS

MICROCOPY RESOLUTION TEST CHART

T

UNIFORMITY CH. 6

5.1.1 Variable Access and Scope Rules

The permissible forms of access toc data strongly influence the expressive
power of a language. As a direct consequence, they materially affect verifiability.
Naturally, languages used at different system levels and with different verification
requirements will specify different access rules. Our mechanism should not

interfere with that language prerogative.

The primary interaction of scope rules and the exception mechanism occurs in
the handler bodies. A handier requires information from two sources: the signaller
that invokes it and the program context with which it is associated. In order to
avoid the use of shared global variables, the mechanism permits a signaller to pass
parameters to handlers. Of course, if the embedding language permits shared global
variables, the exception mechanism in no way hampers their use. However,
verifiability may be compromised or complicated in such languages, hence the
mechanism supplies a controlled, explicit transmission facility for lanquages that
prohibit implicit, unrestrained communication through global variables. The
parameters are not constrained by the mechanism to be value-only, though for some
selection policies (e.g. broadcast) var parameters have little utility. Generally,
handlers for structural conditions communicate results to the signalier by function
invocations (see, e.g., section 7.4.1), and handlers for flow conditions return
results through var parameterss (see, e g., section 7.3). Of course, the precise
method of communication is determmed by the specifications of the module that

defines the condition, and it may mix the two techniques 1rpn|y.’

The interaction of the handler and its associated program context is less
explicit. The mechanism stipulates only that the handler has (implicit) access to the
same data that its associated context has At first glance, this might seem to

require complex manipulations to ensure such access. However, the cost is

1
Handlers do not have 'return values', largely because var parameters accomplish the same resylt, allow multiple

return values conveniently, require no addifional syntax in ethear <ignalier or handler, are equivalent in verification

difficulty, and allow certain dasirable 'defaulting’ (see section 7 3 2)

g0

T e Y . -

-

SEC. §.1 INTERACTIONS WITH THE EMBEDDING LANGUAGE

dependent upon the nature of the pg(mq} case access control. In BLISS, for
example, language restrictions on accessing eliminate the need for an ALGOL-like
display mechanism. The entire accessing context of a handier can be (is)
represented by a single pointer; ioading that pointer into a particular register gives
the handler access to the required data in a single instruction. The same is true for
BLISS subroutine entry. In full ALGOL-60, however, display management at function
entry is more expensive, and handler entry follows suit. Since handiers are treated
(and, in general, implemented) much like procedures, we naturally expect the cost
of establishing the handler context to be commensurate with the cost of
establishing a procedure context. This permits the language design to specify
access rules without worrying about complexities that might be introduced by the

presence of the exception handling mechanism.

5.1.2 Shared Data

This section and the two that follow it deal with closely related topics. From
earlier comments we recall that the exception handling mechanism seeks to
accommodate shared data structures. The interesting case occurs when a single
structure (instance) is accessible from two or more contexts that are not lexically
nested. We have already considered examples of such situations, e g. the storage
allocator example of chapter 4. |If a language permits this kind of sharing, then
there are natural interactions between the sharing contexts which raise questions
about parallelism and its control (synchronization). Thus if the exception handling
mechanism interacts with sharing of data, it must interact with parallelism and
synchronization as well. We will examine these interactions separately, insofar as

it is possible to do so.

A language may not permit sharing of the kind just described, or it may provide
a restricted form of it (e.g. Alphard - see section 4.2). The eligibility rules of
section 4.6 are intended to cope with whatever form of shared data the language

2

permits. However, if no "interesting" sharing” is possible, the eligibility rule simply

reduces to a rule that finds a single eligible handler for a particular condition and

2

"Inferesting” means that multiple non-nested references can exist simultaneously.

91

e

UNIFORMITY CH. 5

S, instance. The mechanism in no way requires a language ¢ accommodate shared

data, it merely provides sufficiently general rutes to deal with it.

The principle underlying the eligibility rules is that of a user. The mechanism

does constrain the language to supply a sufficiently precise definition of the "user
of an instance" that the eligibility determination can be made. In chapter 4 we
spoke of the "ability to reference" an instance, and used it as the informal
definition of "user". We have also used the term "capability" in a similar way. The
essential requirement is that one be able to determine, in a given context, what
instances are accessible. The determination may be made partly at compile-time,
partly at run-time, with efficiency depending on the degree of run-time checking
required. Languages that support information hiding (a requirement for our
mechanism) generally support strong typing as well, so the additional restrictions
imposed by the exception handling mechanism's definition of 'user' are minimal to

non-existent.

5.1.3 Parallelism

At several points in the discussion of the exception mechanism, we noted that
certain operations could proceed in parallel. (See especially section 4.7.1).
Naturally, some lanquages do not provide parallel processing, and those that do may
provide it in one of several ways. The exception mechanism never requires that
actions occur in parallel; it merely defines those points at which conceptually
independent actions are allowed (if the language and implementation permit) to

proceed simultaneously. Wherever previous discussions have used the words “in

parallel", purely sequential systems may substitute the words "in undefined order".
As we have already noted, certain selection policies may collapse into a single one

in a sequential system.

Although the mechanism can take advantage of parallelism if available, it does
not define precisely the way in which its actions are to be mapped onto the

execution units provided by the lanquage. This has been done deliberately so that

several distinct "styles" of parallelism can be accommodated. For example, some

TR

SEC. §.1 INTERACTIONS WITH THE EMBEDDING LANGUAGE

languages may explicitly provide a "process" abstraction. Others may define
parallelism implicitly in terms of coliateral evaluation. Still other forms are possible
(e.g. Hibbard's 'eventual' values in ALGOL-68 [Hibbard 76]). Since the
exception mechanism definition states only the possibility, not the necessity, of
parallel execution, it does not stipulate how, or even if, the parallelism is to be
achieved by the embedding language. In many cases it is sufficient for the
programmer to know that he must be prepared for parallel execution: the means by
which it is implemented often are irrelevant and need not be related to other

lanquage constructs.

5.1.4 Synchronization

Unfortunately, we cannot dismiss synchronization as easily as we did parallel
processing. Because we do not want the exception handling mechanism to specify
that any particular synchronication facilities be present in the embedding language,
we define its synchronization behavior directly (see sections 4.8 and 4.11).
Although this does not constrain the form of the language facilities, it does
introduce complexities in the interaction of those facilities with the exception

mechanism. Let us consider two examples.

1) Suppose a function within some module M can raise a condition C
under a selection policy that causes the function to wait for the
handlers to complete (e.g. broadcast-and-wait). If M expects to
operate in a parallel environment, it will very likely provide some
mutual exclusion of its functions. Yet if any handler for C
attempts to invoke a function of M that requires mutual exclusion,

a deadlock may ensue.

2) Suppose that a module M has a function F that may raise
structure-class condition C. Suppose further that, under normal
circumstances (i.e. when C is not raised), F may be executed in
parallel by an arbitrary number of users. However, suppose that,

because some consistency test within F fails, C is raised.

93

UNIFORMITY CH. 5

Presumably the same test will fail in all asynchronous executions
of F that are manipulating the same (data) instance. This may
cause more than one user to reach the raise statement for C.
Since the exception mechanism implements its own mutual
exclusion requirements, only one user at a time will be permitted
to execute the raise. Nevertheless, as soon as one completes it,
another may immediately raise the same condition again. This
amounts to multiple notifications of the same condition, a
complexity that the handlers may not be able (or willing) to cope
with. The obvious difficulty here is that the mutual exclusion has
occurred too late - the consistency test has already been
executed. By enforcing mutual exclusion on the test (with some
language construct), we synclironize all executing instances of F
(operating on the same data instance), but that unfortunately
defeats the original purpose of executing such instances in

paraliel.

We could devise other scenarios, but the point should be clear. Interactions
between synchronization primitives and the exception mechanism are subtle and
complex. There are really two questions raised by these examples: does the
exception mechanism constrain the form of synchronization primitives, and what
language construct(s) do we need in order to avoid the pitfalls illustrated by the
examples above? The latter question is considered in section 5.2; we address

the former here.

Note that the difficulties that arise in these examples stem from the
interaction of the exception mechanism with separately defined mutual exclusion
requirements. Nowhere was any mention made of specific primitives used for mutual
exclusion; it is the concept that leads to the difficulty. Indeed, we could work
through the details of these examples using semaphores [Dijkstra 68],
monitors [Hoare 74], critical regions [Brinch Hansen 72], path
expressions [Campbell 74]. or any other specific technique for achieving
mutual exclusion, and we would arrive at the same result. The problem is endemic

to the interaction of the two mechanisms. One might leap to the (fortunately

g4

I
|
I
|

SEC. 6.1 INTERACTIONS WITH THE EMBEDDING LANGUAGE

unjustifiable) conclusion that the exception mechanism intolerably constrains the
use of mutual exclusion. As a partial rebuttal, figure 5.1 presents an (admittedly
unattractive) solution for the second example above, using semaphores as the oniy
synchronization construct. (A solution to the first example appears in section
7.4.1.) We claim therefore that the mechanism does not limit the forms of
synchronization permitted, but exposes a need for more sophisticated combinations
of synchronization and exception handling primitives, combinations that avoid these
pitfalls. We are thus led to the second gquestion posed in the preceding paragraph,
whose answer is the subject of section 5.2.

module T
begin
condition structural-error policy broadcast-and-wait
private sem:mutex
< other data comprising the fine structure of a ‘1" »
function length(t:T) returns s:integer
raises structural-error on t

begin
if not consistent(t)
then
P(t.sem)
if not consistent(t)
then
raise t.structural-error
< restore ‘t' to a consistent state >
fi
V(t.sem)
fi

s « t.size
end
€ ..v Other functions ¢y »
end

Figure 5.1: Mutual E> =lusion under Exceptional Circumstances

pos

UNIFORMITY CH. &

5.1.5 Protection

The design presented in chapter 4 has not incorporated any specific features
to control the dissemination of information, with two exceptions. First, it respects
the principle of encapsulation, and therefore permits no representation information
to be transmitted via exceptions unless explicitly sent by the signaller. Second,
the mechanism respects the principle of mutual suspicion, and therefore restricts
the flow of control during exception handling. These two principles are consistent
with the language properties assumed in section 3.1.1. Besides these properties,
the mechanism is intended to be neutral with respect to protection problems, but we
can offer no demonstration that specific protection problems, e.g. confinement, are
not complicated by its presence. It is quite possibie that covert channels for
leaking information may exist in the exception transmission mechanism, but it should
also be noted that the potential recipients of an exception are the possessors of
capabilities for an instance. By controlling distribution of those capabilities, a user
worried about confinement should be able to limit the spread of information through
signalling of exceptional con(htions.a In general, however, the mechanism does not
pretend to address protection issues other than encapsulation and (to a limited

extent) mutual suspicion.

5.2 Simplifying the Use of the Mechanism

Although we have claimed that the exception handling mechanism does not
impose significant semantic constraints on other constructs in the embedding
language, we have observed (particularly in section 5.1.4)) that interactions
between constructs may give rise to ceitain usage paradigms. We may look upon
such paradigms as seeking to smooth over difficulties in the use of the exception
mechanism and other lanquage elements. Let us briefly consider the reasons such

difficulties arise.

34t a module has been verified, then its execution behavior s (almost) completely defined by its specifications.,

This may further bolcter its user's confidanca

-

SEC. 5.2 SIMPLIFYING THE USE OF THE MECHANISM

As illustrated in section 5.1.4, attempts to combine use of synchronization
primitives and the exception mechanism can easily produce deadiocks and other
undesirable behavior. The example of figure 5.1 suggests that combinations of
primitive functions that yield correct behavior may not be immediatoly obvious or
inherently pieasing. Yet it seems reasonable to hope thet we can identify certain
common situations, such as those cited in section 5.1.4, and "higher-level"
operations {hat directly handle them. After ali, such synchronization "primitives" as
monitors and conditional critical regions exist precisely because they iespoad
directly to particular usage patterns. Just as we define mcnitors to provide an
access control paradigm connecting synchronization and function invecation, so we
can define control flow paradigms connecting synchronization and exception
handling. It is beyond the scope of tius thesis to explore the space of specific
possibilities in detail, but we can consider the example of figure 5.1 The mutex
semaphore is intimately connected to the testing of the consistency predicate,
which in turn is intimately connected to the raising of the exception. It appears
desirable to bundle this diverse collection of language elements, and the control
structure that links them, into a single syntactic unit whose semantics would be
more immediately understood. Such a unit might be implemented by syntax macros -
the method is unimportant - but it should at least be known to the implementation in
such a way that its increased readability may be reflected in a more potent or
convenient proof rule. We naturally expect that a more intuitive construct should
be simpler to verify, and our aim in introducing such paradigms should be to enhance

both clarity and verifiability.

Paradoxically, our desire to keep the exception mechanism verifiable has, in
some cases, made its operation less natural and more difficult to understand. In
such situations we wish to introduce constructs that combine language elements
because we hope to recapture clarity without sacrificing verifiabtlity. Perhaps the
most glaring example is the notion of an abnormal function termination. Assuming
that an abnormal completion (e.g. overflow during floating-point addition) is to be
reflected through our exception mechanism, we have no machinery at our disposal
but to [ais_o: some condition. Yet, since [e1@§g never alters control flow in the
signaller, we must follow the raise with a separate return statement to achieve the
desired effect. Obviously, we could define a trivial language construct that

combines the rraisAg and return, but the conceptual difficulties at the handler site are

97

r.~_7.ﬂ.-.- g — - o
Y b | i - —

UNIFORMITY CH. &

less easily resolved. If we are raising a flow class condition (this is almost
invariably the case for abnormal termination), the (only eligible) handler is attached
to the context that invoked the signalling function The coder will often prefer to
think of the handler body as performing some local fix-up actions, followed by a
transfer of control {perhaps another abnormal termination). However, the semantics
say that the handler termination causes control to return to the signaller, which then
performs a return, transferring control back to the calling context where any local
transfer of control posted by the handler then takes effect. This is unnecessarily
cumbersome - instead we introduce an appropriate construct, defined in terms of
the primitives just employed, that looks to the programmer just like the desired
abnormal function termination. Such a usage paradigm simplifies understanding, yet
its formal definition via the existing mechanism retains verifiability. In fact, if such
a construct is intimately known by the implementation (as opposed to a user-written
syntax macro), efficiencies in object code size and execution speed can be

realized.

We may summarize the preceding discussion by observing the need for
"humanely-engineered" extensions to the languaqge that includes our exception
handling mechanism. This need arises because certain usage paradigms exist that
combine separate language elements to form a consistent, more intuitive construct.
We have seen examples that combine either synchronization or function return with
exception handiering, and we could easily produce others. Only experience and
further investigation will determine what language extensions significantly simphty

the task of understanding programs that employ the proposed exception handhng

mechanism.

a8

|
|

6
Verifiability

"Humph! These arguments sound very well, but |
can't help thinking that, if they were reduced to
syllingistic form, they wouldn't hold water."
- W. S. Gilbert, Ruddiqore
In the discussion of preceding chapters we have often reiermred to !
properties of the exception handling mechanism as being influenced by the cesirs
for verifiability. In this chapter we consider the problem of veritying programs that
use the proposed mechanism. Since we cah only present the verification rules in
the context of a specific language, we will rely heavily on the semantics and
structure of Alphard, our chosen embedding tanguage (see section 3.1.1) The
Alphard verification methodology is well-developed, and since it i wt intent tc
extend it in a natural way, we will first establish some conventions and assumptions
that, in effect, embody that methodology informally. While less than rigorous, thic
short-cut permits us to avoid a rehashing of known technique ' We then define
predicates to characterize the semantics that were described operationally in
chapter 4. Using these predicates, we develop proof rules for the signaiiing and
handling constructs. Finally, we assess the value of this approach and the utiiity ol

the resulting rules.

6.1 Assumptions and Conventions

The verification methodology of Alphard utilizes Hoare's axiomatic approach
[Hoare 69], and we shall construct our proof rules accordingly. This farmulation
models naturally the specification of functions as assuming some pre-condjtion and
establishing some post-condition. Of course, other verification methods are likely to
work as well, e.qg. Dijkstra's weakest pre-condition technique [Dijkstra 76], but

our presentation will use Hoare's method.

1

A cummary of the Alphard verification methodology appears in appendix B,

99

-

VERIFIABILITY CH. 6

We insist that modules be independently verifiable; that is, to prove a
particular module we require only its source text (with assertions) and the
specifications (predicates) that define the semantics of the modules it uses. Our
proof rules will make it possible to verify the body of a signaller without consulting
the code of related handiers, and to verify those handlers separately without
knowing the implementation of the signeller. The practical application of verification
to systems composed of many maodules (as those using the exception mechanism

are likely to be) depends crucially on this property

We assume the existing Alphard rules for accessing variables. The details of
the rules need not be presented; it suffices to understand their motivation. When
we verify a program, we need to be able to identify all distinct variables it
manipulates. Both parameter binding (for procedure calls) and ref variables
(pointers) make this a non-trivial task, since they introduce the possibility of

(!/hlf-lﬂg.P

languages that claim to be verifiable (e.g. Fuclid [lampson 77])
have been forced to deal explicitly with the aliasing probtem, and the scoping and

parameter passing rules of Alphard do just that

In addition to the existing access rules of Alphard, we impose some
restrictions on the syntactic form of handler bodies.® We require that the body of a
handler consist of a single procedure call. Neither the procedure nor the call has
any special syntactic structure; only their existence is ;71('5(‘,rit’»ed.a The actual
parameters in the procedure call may be quantities addressible within the handler's
associated local context or parameters passed to the handler by the signaller (see

section 4.4.2). We do require, as with all procedures, that it be possible to

2
“ l.e. two apparently distinct variables (e.g. two formal parameters to a procedure) may actually be the same one

(e.g. the same actual parameter was bound to both fermals).
3
We hinted al such jestrictions in saction 4.5,

4 we note that this s only a syntactic restriction; any language construct that behaves, for verification purposes,
hke a procedure 15 acceptable here. Thus, a synlax macro that pocsesses the deswred properties could be
substituted without viclating this restriction. We do not reguire linkage to an out-of-hne code body. This

reqgurement has the attractive cide effect of keaping the handler inohstrucive and therebhy making it easy for a

casual reader of the program to ignore

100

SEC. 6.1 ASSUMPTIONS AND CONVENTIONS
determine from the source text which parameters are read and which are written.2
The notation in subsequent sections presumes this property for all functions and

(internal) procedures, as indeed is customary for verification purposes.

Finally, we ignore the verification issues raised by the interaction of the
exception mechanism with parallelism and synchronization facilities of the language
Although it might seem that in dcing so we are "throwing out the baby with the bath
water", we should observe that final disposition of these questions requires a
formal definition of parallel processing constructs, which is not yet availabie for out
chosen embedding language. Even with a precise definition, verification of parallel
programs remains a difficult, incompletely solved problem and is the subjec: i34
considerable current research. A detailed treatment of these issues would exceed

the scope of this thesis.

6.2 Predicates

We will define the semantics of our exception handling constructs through
predicates. In general, these predicates will express the state of the abstraction
implemented by a particular module at some instant, e.g. just before or after
invocation of some function of the module. The user of the abstraction may
presume only the information made available through these predicates when

verifying his program.

The existing Alphard methodology already defines the behavior of functions in
terms of pre- and post-conditions (predicates that hold before and after function
execution, respectively). We extend the formulation in a natural way to include
pre- and post-conditions for exceptions as well. Thus, a module that defines a
particular exceptional condition on its abstraction also defines two predicales that
hold before and after the condition has been handled. Since we regard handlers as

similar to external procedures, it seems natural to specify pre- and post-conditions

r
> This is all that is really needed. We can dispense with the requrement that the handler body be a single
procedure call at the expense of having to determine more circuitously the variables it manipulates. However, the

procedure call requirement keeps the handlers small, as alteady noted, and < mplifies the proof rule as well

101

VERIFIABILITY CH. 6

that define what the handiers are to do. The crucial difference is that the

specification occurs in the cal/ling module, the signaller, not the module that defines
the handler. This is precisely the reverse of the method of function specification, in
which the moduie that defines the function also supplies the predicates fo
accommodate this difference in specification, we are forced to alter the proof rule
for procedure calls somewhat in adapting it to handlers. The details are presented

in section 6.5.

Thus our primary tool in verifying the use of the exception mechanism will be
6

the pre- and post-conditions on each condition name.> In subsequent sections we

will use these predicates to construct proof rules for both signalling and handling

sites, much as we do for function pre- and post-conditions and detfinition and call

i

sites. In following the function verification paradigm, however, we encounter the
phenomenon of using a single predicate for proofs in both the abstract and concrete
domains. That is, when we prove that a function satisfies the specifications o
pre- and post-conditions, we are proving its behavior within the concre
(i.e. in terms of the representation it manipuwlates). However, at the call site, we
are using the predicates to define the behavior within the abstract domain, since
only the abstraction is available to the user of a module. For exception handlin

the identical problem arises but, because of the inverted nature of the
specifications (discussed in the preceding paragraph), the semantics of the
concrete domain are required to verify the signalling site, and the semantics of the
abstract domain apply at the handling site. For both function invocation and

exception transmission we need to be able to transform predicates written

describe one domain so that they are suitable for use within the other

Alphard solves this problem for function invocation by the use of a

'representation fun(:tiun',7 which establishes the correspondence betwer

§

elements of the two domains. We appeal to the same mapping for the purposes of

exception transmission. For simplicity, we will omit explicit references to the

6 The unfortunate double meaning of the word "condition" s historical. After caction 6.3 pre stae. will be

self-identifying as pre- or post-conditions and the ambiguity of "condition™ will be eliminated
\

7 Here, "function” has the traditicnal mathematical interpretation of a mapping
' f 3¢

102

= g—— _‘.i . " I - —t e e e . 2 e - L

SEC. 6.2 FREDICATES

representation function when describing the proof rules for the exception
mechanism. We will assume that, where necessary, the pre- and post-conditions
have been transformed to express properties of the appropriate domain. (n tight of
the preceding discussion, it should always be clear from context which form of a

particular predicate is required.

6.3 Notation

in the remaining sections of this chapter, we develop proof rujes for the
exception mechanism. The notation is conventional; for reference purposes we

briefly define the basic symbols used.

The lower case letters x, y, z, a, v are all used to denote sets of variables «x,
y. and z always denote the formal parameters of a function that may be changed by

the execution of the functmn.8

v denotes the formal paremeters whose values are
inspected but not changed. a denotes a set of actual parameters that may be
legally substituted for x, y. or z, i,e. parameters whose values may be changed
Elements of a are thus simple variables, not expressions. e denotes expressions
that may be substituted as actual value parameters. Any of these set names may
be subscripted. Since the values of a may change across a function call, we will
follow the usual convention and write a' to denote the "previous vaiues", ie. the
values before the call. 1t is occasionally necessary to reter to sets of variables
that do not participate in an operation. When the need arises, we will denote a set

of these "constant" variables by k.

Function names are denoted by f and g. Thus a formal function specification
might be f(x;v), an actual call might be f(a;e). In this notation the semi-colon
instead of the usual comma reminds us that the parameters are sets. By

assumption, members aof a never appear in the expressions of e in such a call

Condition names are always denoted by ¢, and handlers are denoted by A.
Since handlers, by assumption, are procedure calls, we will often write h{a;e) as a

specific handler body. The procedure itself will naturally be written h(x;v).

8 The co-« alled "var" parameters

103

j
|

VERIFIABILITY CH. 6

Pre- and post-conditions are denoted by 8P'€ and BPOS! respectively. These
will generally be subscripted by function or condition name to distinguish them, e.g.
prre is f's pre-condition. Other predicates (verification conditions) are dencted by

the upper case Roman letters P, Q, and RB.

6.4 Proof Rules for the Signalling Site

We can now present the proof rules for the raise statement. For reasons
noted in section 6.1, these rules do not express the sequencing of handler
invocation except as it relates to the signaller. Thus, synchronization interactions
between handlers invoked (potentially) in parallel are ignored in this treatment. We

examine each of the selection policies of section 4.7.1 in turn.

6.4.1 The Broadcast-and-Wait Policy

This policy induces behavior extremely close to a procedure call. All eligible
hand'ers are invoked, the signalier waits for all of them to terminate, then execution
continues following the raise statement. Indeed, if only one handler is eligible, the
effect is precisely that of a procedure cail. The proof rule for broadcast-and-wait
is slightly more complex than the procedure call rule because it must ensure the
"condition persistence" property discussed in section 4.7.1.9 This is the only
variation (for this policy) from the procedure rule. Because the rules for the
remaining selection policies are all derived from this one, we will briefly examine its

intuitive meaning.

Refer to figure 6.1. In the implication above the line (i.e. in the premise),
the first term of the consequent merely requires that the pre-condition on ¢ be
satisfied when the raise occurs, a consequence of the corfition persistence
principle. The second term has two purposes: (o complete the statement of

condition persistence and to force the post-condition on ¢ to establish the

9 Indeed, all proof rules for the various talection policies muc<t do <o.

104

SEC. 6.4 PROOF RULES FOR THE SIGNALLING SITE

necessary state after the raise. Let us consider the implications separately
BC"OSt(w,a',e) > B.P'€(w,e) establishes condition persistence by ensuring that the
order of handler execution is irrelevant. Since no manipulation of variabies (w) that
a handler can perform is permitted to invalidate the pre-condition on ¢, no handier
will be invoked by this raise with & false pre-condition. Viewed somewhat
differently, this implication states an invariance about the pre-condition B P'¢.
However, note that the invariance is conditioned by the truth of P; it mav not
(probably will not) hold globally. The other implication, BC"OSt('nl\,'.a"(_? > Q(w.a',e k),
seems to require that Bcpost be strong enough to ensure @, but this is paiently
impossible in general, since Q makes statements about variables (k) that do not
even appear in BchSt. Once again, we must recall that this impiication is
conditioned on P, which, by the definition of k, makes the same statements aboul k
that Q does. In this context, the requirement is a reasonable and natural one
Obviously, we must be able to "carry across" the raise statement any intcrmation

about the signaller's context that cannot possibly be affected by the handiers.

Pita,e, kKl > TBCpre(a,e) A Vu[BCDOSt(u.a',e) >. Qtu,a’,e, k) A B.P"€(u,e)l]

P(a,e,k) fraise c <under broadcast-and-uait>! (fa,a’',e, k]

Figure 6.1: Proof Rule for '‘Broadcast-and-Wait'

Sometimes the procedure call proof rule is written without explicit referaence
to k, but an axiom of the verification system (called "adaptation" or sometimes the
"frame" axiom) permits it to be extended to the form of figure 6.1. We prefer to
retain the expanded form because it emphasizes what can be altered during the
exception-handling process and what must remain constant. Of course, we could,
without loss of generality, eliminate the k's in our proof rules, but we feel that the
control of variable accessing during exception handling is of central importance, and

we prefer to represent it explicitly.

105

VERIFIABILITY CH. 6

6.4.2 The Sequential-Conditional Policy

Although from an operational viewpoint the sequential-conditional policy
appears quite different from broadcast-and-wait, their proof rules are ratier similar.
This is not too surprising in light of the observations at the start of section 4.7.1
that the effect of raising conditions (as distinguished from the handler selection
algorithm) under these two policies generally differs only slightly. Indecd, it the
predicate associated with the raise statement under the sequential-conditionai
policy is identically false, then the effect is precisely that of broadcast-and-

wait. 10 Naturally, this collapsing of function is mirrared in the proof rutes as well.

Refer to figure 6.2. R is the predicate that appears in the source text of
the signalling program. Note that P must ensure that B is false initially. We could
relax the semantics to permit R to be true initially, and define the raise statemont
to have no effect in that case. While straight-forward, this uninteresting case
clutters the proof rule and, in practice, never arises. Accordingly, we disallow it
The remainder of the consequent comes directly from the proof rule for hroadcast-
and-wait, except that the condition persistence requirement is relaxed slightiy
Because selection and execution of a handler occurs only if R is false, we naturally
require condition persistence only in that case. Indeed, the handier that causes R
11

Once the

to become true has probably caused the condition to disappear

condition has been eliminated, it is unreasonable to require B,P'® to hoid.

10

Of oyrse inder one policy the handlers exe t

ite in parallel while under the other they evecute -

However, this difference 15 not visible 1o the sigraller and cannot aller the effect percewves

1"

I might even seem desirable to have: R(w,e) = HC"‘ e(-‘-.i’). but this 1s too strong We m t be W ng 4

B(nrp iento ;Hv {true Y"‘ have B desrcrihe some more seleclive ternn .-,|,An! hiey than "no o P bie

106

SEC. 6.4 PROOF RULES FOR THE SIGNALLING SiTE

P(a,e,k) o [-R(a,e) A Bcpre(a,e) ~
Vu[BCpOSt(u,a'.e) S i, at e k) A --R(u,e)df.’c’”e\’u ell]

P(a,e,k) lraise c until R <under seg-cond>} Qla,a’. e, k!

Figure 6.2: Proof Rule for 'Sequential-Conditional'

6.4.3 The Broadcast Policy

The proof rule for the broadcast (without waiting) policy appears in fioure
6.3. This rule is quite easy to interpret; it states the condition persistence
principle and requires that, no matter what the handiers may do (including nothing),
P is strong enough to establish Q. This formulation may seem too restrictive, for it
requires that signaller and handlers act nearly independently. However, these are
precisely the semantics we desire! The broadcast policy is normally used to report
to the users of an abstraction a purely informational condition. As an obvious
example, consider the completion of an /O operation. The signaller (frequently
hardware) raises the condition but requires no explicit action by the user(s) and
proceeds without waiting for any "reply'". Applying the rule to practical situations,
we find that the sets a and w are normally empty, and that frequentiy B_P'® =
BC"OS‘. This usually leads to choosing P=Q, and leaves only the trivial proof that P
> B.PTE. In the absence of interaction between signaller and handler, condition

persistence is easily assured. €

12 It 1s possible 1o relax tha proof rule somewhat, but we then risk serious interactions with parallelism and

synchronization mechanisms. Since we have chosen to avoid such problems, we prefer to retain the form given in

figure 6.3, s semantics comfortably accommodate the primary application of the broadcast policy - purely

informational signals.

107

SEC. 6.5 PROOF RULE FOR HANDLER SITES

which the condition could be raised. For flow class conditions (the example used to
motivate this shorthand), such points correspond only to invocations of tunctions

that can ralse the condition, but for structural conditions, literally every primitive
13

.

operation within the context may be a potential point of interruption. For
verification purposes we transform (conceptually) the source text so that every
primitive operation during which a condition may be raised has the relevant handier
directiy associated with it. Thus we "copy" the handler to every point at which the
condition it processes can be raised.‘a in effect, we apply the eliaility rule of
section 4.6 to determine the relevant handler for every condition and primitive
operation appearing in the program to be verified. The existence of at icast one
handler for each condition is assured by the assumption that a “defaull” module-
body level handler always exists, even if the programmer fails to write one

explicitly (see end of section 4.5).

The second syntactic transformation eliminates local transfer of control
Assuming that we have already performed the first transformation, all handlers are
now associated with primitive operations, i.e. function invocations. Thus we have

constructs of the following forms:

f(x;v]) [c: h(g[:vz)] ()

and

flx;vy) le: hly;vo) » leave lab) {¥eve)

where 'lab' denotes some labelled lexically enclosing context within the current
function body. For the purposes of our proof rule, the first form is aiready

acceptable. We replace the statements of the second form by the foliowing:

13
We are considering the most general case, in which parallel activity is present. In a purely sequential system,

only cperations that can raise the given condition can be potential points of interruption, except for the purposes

of invoking module -body level handlers. These latter handlers, in a sequential system, interrupt nothing and thus

constitute a special case.

19 We ignore the trivial problems introducad by scope rules and redefinition of varables. These are easily

accommodated by systamatic renaming where necessary,
189 ’ ‘

PHRECEDING PAGE BLANK-NOT #ILMED

VERIFIABILITY CH. 6

beain
private b:boolean
b « false
f(x:vl) [c: h(g:vz); betrue)
if b then leave lab
end

(Purists may wish to extend the set y with b and place the assignment of "true' to b
inside the body of procedure h.) It should be obvious that this transformation
preserves the intended operational behavior described in section 4.9. Indeed, the

result of this transformation might be viewed as the definition of the notation in (==}

By means of these transformations, we need only write a proof ruie for
statements of the form (*).1° This considerably simplifies the task of describing the
formal semantics of handlers, but it raises questions about the practicality of the

approach. We defer consideration of such questions until section 6 6.

6.5.2 Proof Rule

Refer to figure 6.4. Ignoring the Iy, terms for the moment, we see an
instance of the procedure call rule. This is merely the proof rule for the function
invocation f(aq'ieq). We also see the requirement that the handler h fulfili the
obligations imposed by the signalling module. These are exactly what we expect to
have to prove, but we must additionally account for the interaction of h with the
surrounding context.

Since we do not know a priori whether h will be invoked, our predicate Q must
be written to account for that possibility. We accomplish this by requiring h to
supply an invariant, lh' that holds for the manipulations It performs. Q can then be
constructed using the knowledge of that invariant. However, as is evident from the
proof rule, the invariant covers only a subset of the variables that h can manipulate

(n3. not a?). Let us examine the ramifications of this formulation of the invariant

15 Assurming, of course, that we have proof rules for the other conetructs (e.q. leave) introduced by the

transformation. In light of tha conventional nature of these constructs, the acsumption ceems quite reasonable

110

-

©n
™
O
o
()

PROGF RULE FOR HANDLER SITES

Pla,e,k) > [lh(a3,e2\ A prre(al.el) N
Yy, z(B;POSt(y a),e1) A I (z,e0) .5 Oly,a',e,k)id,
Ih(a3.e2) N BCD"B {h(az;ez)' Bc_ﬂUSt N lh(‘”?'eZ)

Pla,e,k) if(al;el) [c: hlas:iez)]l Q(a,a’,e k)

uwhere: a = a U as and e = gy U e,
and members of ‘a’ do not appear in members of ‘e'.
r.13 = c‘l": = Jl.
i.e. a3z = the variables that ‘h’ but not “f' can change.

Figure 6.4: Proof Rule for a Handier

The proof rule, in effect, says that if l, hoids befoie f is invoked and the

1
execution of h preserves Iy, then after f completes, 'h will still hold, and we may
assume its truth in proving Q. This rule breaks down (techni ally, becomes
unsound), however, if I, refers to any variable that f may alter (ie. a variable in
a,). for then I, might be true initially but be invalidated by f before ¢ is raised
Similarly, ’h might hold after h has compieted, but it might become false through
subsequent actions of f. |If l,.: i1s restricted to the set a,, however, f AnNnot
invalidate it (since ay and a5 are disjoint, by definition) We stress tha! these
restrictions on the "scope" of the invariant l,‘ do not affect the actions h may
perform; indeed, a4 and as will frequently intersect and h will often manipulate
variables in the intersection. Rather, the effect is to partition the knowledye
available after { completes execution i\Y“ St contains information about the
variables in aq, Iy contains information about the variables in a,. Because a a

ag, all necessary information is available to Q. and because ay and aqy are disjoint

no conflicting information can result
Now let us examine the proof rule in full. Naturally we e that P he

strong enough to ensure Iy, initially. Of course, P must imply BT as well i order

that the invocation of f be legitimate. The final term i the muequent restates the

LR R

VERIFIABILITY CH 6

preceding discussion, namely, regardiess of the manipulations performed by f and h,
the truth of both f's post-condition and h's invariant (and P, initially) must be strong
enough to ensure the truth of Q. The second part of the proof rule 1s nothing more
than the formal statement that h meets the specifications imposed both by the
signhaller and its invariant This verification will, of course, involve another
application of the procedure call rule. 1t should be noted that we have omitted the

15t

parameters on B(Pre and H(‘ to avoid cluttering the formulae

6.6 An Assessment

Iis chapter has souaht to demonstrate the feasibility of applying formal
verification techniques to the exception handling mechanism proposed in chapter 4.
At several pomts in the presentation, however, we have commented that certain
simphfications have been made One might argue that the value of the result is
thereby diminished, or perhaps that the whole problem has been "assumed away".

This section considers theae 1ssyes

Let us dispose of a minor point first. In the interest of clarity we have ignored
the provisions of section 4.4 2 that conditions may have parameters. It should be
clear, in retrospect, that introducing parameters clutters the notation slightly but
mcurs no difficulties. Specifically, Rc'”" and BC"’OS' can be extended to include
ists of vanables changed and inspected, and indeed in section 6.4 we have done
S0 These lists were suppressed in section 6.5 because they obscure the
manipulations of the local context, which were of primary interest in that discussion.
However, it is easy to interpret the lists x and v in h(x;v) as including the

paramete s "passed through" from the handler invocation.

We should note that, although the eligibility rule of section 4.6 is perhaps the
most complicated part of the operational definition of the exception mechanism, it
does not (need to) appear explicitly in the proof rules of this chapter. This is an
advantage rather than a deficiency. The first transformation rule (see section
6.5.1) permits a verification system to "reduce the scope" of handlers to a single
operation, and in so doing it depends implicitly upon the eligibility rule. That is, the

n
5]
@]
()]
(o]

AN ASSESSMENT

semantics of the eligilibility rule are embodied in the procedure used by the

verification condition generator to produce the set of expressions of the form

f(x:vl) [c: h(g:v:)]

that are to be verified. Thus, in fact, our proofs do rely upon the ehqilibility rule

implicitly, since the above set of expressions is determined by that rule.

A potentially serious objection that could be levelled at our verification
approach is impracticality. In many cases the transformations of section 6.5 1 will
distribute the same handler to hundreds or even thousands of controi points We
may naturally question the practical utility of such a technique in terms of the
present mechanical verification technology. However, we should observe in such
cases that the set an of variables allered by the handler is likely to be smali.
Furthermore, for control points at which a4 and a, are disjoint (a frequent situation
for handlers associated with a large scope), no "extra" work is induced by the
presence of the handler. It should be possible, therefore, to prove certain theorems
(lemmas) once and quickly apply them to the majority of cases. [ntuitively, the
broader the scope of a handler, the less it is able to manipulate variables with
impunity at an arbitrary instant. Thus there are few "hard" theorems to be proved
and extens e use of lemmas can eliminate continual "reproving" of the same trivial
ones. We cle ' that if the current veritication technology does not have the ability
to avoid such mechanical trivialities by discovering and utilizing lemmas, then the

impracticality lies in present-day verifiers and not our semantic specifications.

An admitted deficiency of the proof rules is their failure to capture certain
synchronization semantics of selection policies. Section 6.1 noted the reason for
this omission. The problem of verifying parallel programs is a difficuit one and
distinct from the exception handling issues of this thesis. We suspect, however,
that once the problem is solved, the missing formal semantics for selection policies
will be easy to supply, since their iQfmmaI semantics are quite normal for paraliel
processing. We depend, therefore, on the success of other, independent research
to provide the tools necessary to complete the formal definition of our excention
mechanism. In this sense, then, we do not regard the absence of synchronization

semantics as a serious shortcoming.

-~

&~

VERIFIABILITY CH. 6

We believe, therefore, that we have demonstrated the possibility of
constructing an exceptional condition handling mechanism that is amenable to formal
mechanical verification. We consider this mechanism to be an important contribution
to language design because it enhances the expressive power of a language

without compromising verifiability.

/
% Adequacy

: "I merely wish to state, avow, affirm, asseverate,
maintain, confess, proclaim, protest, announce,
vouchsafe, and say that there are precisely ten
such tales in all, and each and every one
duplicates, substantiates. corroborates, and proves
each and every other."

- James Thurber, The White Deer

Having seen the justification of the exceptional condition mechanism on
methodological and wverification grounds, we now demonstirate its practical
applicability. We will show by example that the mechanism accommodates in a
natural way several exception handling problems that arise in “"real-wortd" systems

and that are not successfully handled by existing mechanisms.

In section 3.3, three exception haadiing probhlems were presented as

Rt e

examples of "real-world" situations that the mechanism should be able to solve. In
this section we examine each of these problems in turn, as well as some others that
illustrate specific features of the mechanism. The presentation for each example
includes a prose description of the problem, a coded solution using the exception
handling mechanism, and a commentary that discusses some of the more subtie

aspects of the solution.

The problems as posed here are, in some cases, slight simplifications.
r Because many interesting exceplional conditions have far-reaching effects within a

system, we have been obliged to pare down the examples in order to emphasize the

central issues they address. In no case, however, has an example (knowinaly)

been restricted because the exception mechanism is incapable of handling a mcre

complex case.

P-——.—————-W

PP N1

ADEQUACY CH. 7

7.1 Example 1: Symbol Table

For our first example we present a straight-forward symbol table module, with
a few minor twists. The symbol table is essentially a content-addressed
association structure of bounded size, with functions that add a <name,value) pair
and retrieve a previously entered pair. We consider this example because it is
self-contained and illustrates some basic aspects of the exception handling

mechanism.

7.1.17 The Symbol Table Problem

Refer to figure 7.1. The specifications for a form 'symbol-table' appear in
a style close to that used for Alphard. In fact, our symbol table exampie is an
altered version of the one in [London 76], with the block-structured aspects
removed and the exceptional conditions added. Briefly, the specifications define a
‘symbol-table' to be a set of pairs <s,v>, where the first elements of the of the
pairs are all distinct. Further, the cardinality of the set is imited to at most 'n'.
Note that both condition and function specifications are included, with pre- and
post-conditions expressed in the abstract domain. When pre-conditions are
omitted, they are assumed to be identically 'true', whon post-conditions are omitted,

they are assumed to state that all parameters remain unchanged.

By interpreting the pre- and post-conditions in operational terms., we discover
that the 'lookup' function leaves its arguments untouched. but may raise either
'absent' or 'present'. In the former case no pair with the desired first element
exists in the table. In the latter case, however, such a pair does exist, and the
parameter to 'present' is the pair's second element. Thus 'lookup' always raises a
condition. Contrasting this specification with the more usual form of 'lookup' (as a
value-returning function), we see that what would otherwise appear as a part of
lookup's post-condition shows up instead as 'present's pre-condition. This is

intuitive and comforting. The situation for 'insert', however, is somewhat different.

116

EXAMPLE 1: SYMBOL TABLE

m
52}
(]
~
A

form suymbol-table(n:integer,T: forme=,e>,Viformes=,e>)=
beginform
specifications
requires n > 1;
et symbol-table = assoc: i<s:T,viV>},
invariant
cardinalitylassoc) € n
n ty,trcassoc > Hl.s—-t .S D tl.v=t2.v);

boe

(A3

initially symbol-table =
functions
lookup (st:symbol-table,str:T)

ratees

absent on lookup policy broadcast
pre = test > t.s=str,

present (v:V) on lookup policy broadcast
pre = Jtest st t.s=str A t.v=x

endraises

insert(st:symbol-table,str:7,val:V)
raises
full cn insert policy breoadcast
pre = cardinality(st)l=n an (testot.s=str)
endraises
post normal = if Jtest st t
=st'-{tlui<str,val>}
t' U testr, val>}

post full = st=st i
Figure 7.1: Symbol Table Specifications

Here the normal pre-condition, which would prevent 'insert' from being invoked when
the symbol-table is full, is relaxed to permit unrestricted calls. The former pre-
condition for 'insert' now becomes the pre-condition for 'full' instead, suggesting
that a state that was previously assured by a verification condition will now be
assured by an explicit test within the function. We recognize this “delaying the
binding" as a means of ensuring operationally correct behavior without sacrificing

formal correctness. Introducing exceptional conditions that reflect an invalid state

ADEQUACY CH. 7

representation
unique
names: vector (T,1,n),
values:vector (V,1,n),
last: integer
init lasted;
repllast,names,values) = {<namesli),valueslil> | icl(l,lastlt;
invariant
lastc(B,n) A ((i, jecll,lastlani=j) > namesfi)l=names(j])
implementation
body lookup =
first jruptol(l, last) suchthat names(jl=str
then raise present(values({;]) 1
else raise absent;
body insert
out normal = Ficll, last] st (nameslil=str A valueslil=val a
Yjcll, last’] 3kcll, last) st
(names [j] ' =names[klni=j o> values(j] ' =values(k]))
out full = last’'=n A Yicll, last'] namesl[i]=str
beqin
first j:upto(l, last) suchthat namceljl=str
then values[)eval
else if lasten
then lastelast+l: names(lastlestr; valuesl[lastleval

else raise full

endform

Figure 7.2: Symbol Table Implementation

at function invocation normally shifts (part of) the function's pre-condition to the

exception's pre-condition.

We note that two post-conditions appear for function 'insert'. This notation

merely separates the part of the post-condition that applies in the "normal" case

SEC. 7.1 EXAMPLE 1: SYMBOL TABLE

from the parts that apply when exceptions have been raised. The actual post-

condition is a disjunction of these terms, i.e.

(-~ raised(full) A post normal) v (raised(full) A post full)

where 'raised' is a predicate that is true if and only if its argument condition was
raised by the function ‘'insert'. By separating the terms this way, we see more
easily what actions occur under various exceptional cases without having to wade

through long, disjunctive predicates.

Now refer to fiqure 7.2. The remainder of the Alphard form contains the
representation information and implementation of the symbol table functions The
only interesting aspects of these parts are the use of the raise statement in the
manner described by the predicates in figure 7.1 and the divided output assertion

for the body of function 'insert'. The two portions of this assertion correspona in

the obvious way to the parts of the post-condition in the abstract specification

The code fragments of figure 7.3 illustrate possible uses of 'lookup' and
insert'. They adhere only loosely to the Aiphard syntax; specifically, the separator
"' within square brackets has none of the usual binding semantics and is used only
to separate the component parts of a handler. The invocation of ‘lookup' sets 'v' to
the value associated with 's', if any, or zero if 's' does not appear in 't'. The
invocation of 'insert' expects to enter the pair <r,w> into 't', but willi leave the

block labelled 'I" if the table is full.

119

ADEQUACY CH. 7

shared t:symbol-table(47,string, integer)

t
unique r,s:string, v,u:integer

I:beqin
< set ‘s’ >
lookup(t,s) [present(x): vex | absent: veB]
< use ‘v' >
< set v’ and ‘W >
insert(t,r,u) [full: + leave]
end
Figure 7.3: Sample Use of Symbol Table Form

1]
7.1.2 Assessment
This example demonstrates the most o tary tse of exceptional conditions
- to specify unusual returns from a function. / wgh we have altered the obvious

specification slightly through the introduction of the condition 'present’, the solution
remains, in essence, a finger-exercise. Yet it tustrates a point raised in section
1.1, namely, that what constitutes an exception can (should) be determined by the

user of an abstraction, not its implementor

In most of the remaming exampies. we o { ense with a full-blown Alphard
1()rm, which becomes unnecessarily verl e tor our purposes, and adopt a more
conventional syntax for some of the la PO) riucts. We do so to highlight the
exception handling aspects of the exampies, and to play down possibly unfamiliar
aspects of Alphard that are not essential t x tion handling

-

SEC. 7.2 EXAMPLE 2: INCONSISTENT DATA STRUCTURES

7.2 Example 2: Inconsistent Data Structures

Section 3.3.1 suggested that the exception mechanism should handle errors
arising from memory failure. We can generalize the notion to include ail situations in
which an inconsistency arises in the internal data structure of a module anda the
condition cannot be repaired by inherent redundancy. Certainly a parity erior fits

this C.lax‘siﬁcatic)n1

. Since the bit pattern in a memory word is demonstrably invali,
but the correct intended pattern is unknown by the memory system. We wili build

upon the symbol table exampie above to illustrate this class of errors.

7.2.1 The Inconsistent String Problem

We suppose that, as in the previous example, we have a symbal table that
associates strings and integers. Suppose, too, that whenever the content of a
string is retrieved, the 'string' module checks its representation far validity. If the
string is invalid (e.g. its length field is negative), the string module raises a
condition 'bad-string', which is naturally fielded by the symbol tabie moduie We wiil

alter the previous version of this module to maintain a duplicate vector, 'dnames’, of

the names in the table. We will then add handlers to perform the necessary

recovery. Refer to figure 7.4.

The string module defines a function that copies strings ("«<") and a function
that tests two strings for equality. Other functions of the module, which would |
manipulate the actual contents of strings, are not shown. If the comparison function
"=" detects any inconsistency, it raises 'bad-string' on the inconsistent (instance
of) string. Since 'bad-string' is structural, it goes to the user of the particular
string (in this case, the symbol table moduie). If, upon return from the handler, the
string is now valid, "=" continues; otherwise, the string is reinitialized and the
condition 'reset-string' is raised. 's' performs identical actions for each of its
arguments,

Vin the absence of error-correcting codes, of course. Assume that whatever codes exist have already beer

apphied unsucce ow.ful!y.

12

ADEQUACY

module string(n:integer)
begin
private

lengthe«B

length: integer,
init

condition reset-string poli

condition bad-stringlv - s: St

function «(sl,s2:string)
beqin
ituptoll,s2.length) do

sl. lengthe-sZ. length

end

function =(sl,s2:string)

.

raises reset-string on sl,s

e

raises bad-str ing C L ¢S

!w.)rl N

if

sl.
‘ s

length<B

then

first i:uptoll,

the be false

n
else betrue
else bhefalse
fi
end
end

’Aa:

Form

Fiaure

Y

'String' with Exce

b

122

chars:vector (character,1,n)

on
™
Q
|
AV

EXAMPLE 2: INCONSISTENT DATA STRUCTURES

% Now consider the altered version of 'lookup' that appears in figure 7.5
(We have used a less terse syntax to show the proper placement of handlers.)
Note especially the 'fixtable' routine, which removes the clobbered entry from the
table and notifies the users of the symbol table that an entry has been lost. To
accommodate this additional condition, the post-condition of ‘lookup' would have to
be extended. We omit the details, observing only that the invariants as they
appear in figures 7.1 and 7.2 are still valid despite the manipulations of 'fixtabie'.
condition lost-entry policy broadcast-and-wait
function lookup(st,s)
ratses lost-entry on st
ratses absent on |ookup
raises present(v] on lookup
beqin
for ituptol(l, last) do
| if =(names(il,s) [namesli).bad-stringl(str): strednames(i]]
' then raise presentlivalueslil); return
,‘ fi
od [nameslil.reset-string: fixtabielst,i) + return]

g raise absent
| -
routine fixtablel(st:symbol-table, i:integer)
beqin
names [iJenames[last]
dnames[i]e«dnames[last)
valueslilevaluesllast)
last<last-1
I raise st.lost-entry

end i

Figure 7.5: Re-implementation ot 'lookup'

TR ST

ADEQUACY CH. 7

7.2.2 Assessment

In this example we see a number of features of the exception mechanism not
present in the 'pure' symbo!l table example. Most significant is the communication
between signaller and handler for 'bad-string', which illustrates a common style of
recovery. Note that the recovery actions apply to the 'names' datia structire only:
if the string module raises a condition on string 's', no handlers in | up' are

eligible. The caller of 'lookup' is a user of 's', since he supplied it as a parameter

'lookup' relies on higher-level functions to take appropriate recovery actions if 's!
becomes inconsistent.

The observant reader will have naticed that 'tookup' sumes that '«' (in the
string module) raises no conditions n practice, of course, it ight, since this
implementation of strings imposes an uppor | imnd on their lenath e have deemed

it prudent to avoid this additional complexity, since the implementation is less than
ideal anyway. Frequently, when a careful examination of « lule reveals a large
number of exceptional condilions, a difierent implementati (with a more robust
structure) will cut down the potentia s of trouble such an implementation
will produce a module that is considerably easier to use. Specifically. this module
would better serve its users by an mplementation that allowed assignment of

arbitrary !ength strings

7.3 Example 3: Arithmetic Exceptions

The preceding example illustrales &] rtant aspect of xreption handling
the transmission of recovery informatio betweer signaller and bhandler
Unfortunately, the communication protocol is somewhat obscured by the details of
the recovery actions. In this example we strip ay some of the complications and
side effects that are frequently associated with recovery and concentrate on the
communication details. We consider arithmetic o x ptions because they admit a

variety of reasonable recovery actions while requiring the maintenance of minimal

internal state. The interaction of signaller and handler is thus directly emphasized.

SEC. #.3 EXAMPLE 3: ARITHMETIC EXCEPTIONS

7.3.1 Floating-Point Underflow

We omit the implementation of the floating-point arithmetic form, presenting
only its (incomplete) specifications in figure 7.6. The complete specificaticn for
this module would naturally include additional exceptions and functions, but the
specifications given will suffice for this example. Let us briefly interpret the

specifications in operational terms.

form fp
begintorm

spec i ficatic ns

functions
add(a,b: fp) returns c: fp
al se

over floulvar v:fp) on add policy broadcast-and-uait

pre = a+b>maxtj

post normal = c=a+b
P(‘(“‘ overflow = c=v

maxfp returns c: fp

post = Ya a: f; >3,
minposfp returr c:fr

post = Va a: i B > B<c<a,
divia,b: fp) returr L fp

rajses

under floulvar v:fp) on div policy broadcast-and-uait
pre Becla/t <minposfp
endraicses
post normal = c=a/b
post underflou = c=v,

signla: fp) returns c:integer
post = if a=B then c=-8 else c=a/lal

Figure 7.6: (Partial) Floating-Point Module Specifications

125

-

ADEQUACY CH.7

Two constant-valued functions, ‘maxfp' and 'minposfp', define respectively

the largest and smallest positive values that the 'fp' form can manipulate. These

semantics are clearly given by the post-conditions on the functions. We use these ;
functions in both the specifications of other functions of the 'fp' form (e.g. 'add'
and 'div') and in the modules that use the 'fp' abstraction (see figure 7.7). In |
the ‘'add' function's specifications, 'maxfp' appears in the definition of the :
overflow' exception, whose pre-condition states that ‘overflow' is raised if the .
(real) sum of the arguments to 'add' exceeds the implemented range (defined by ,
'‘maxfp'). Similarly, the pre-condition on ‘underflow! {(for the 'div' function) states !
that the exception is raised if the quotient is not identically zero but is too small to ;
be represented, i.e. is less than 'minposfp' in absolute value. ‘

]

J
private x,y,z: fp ‘f

i

zeadd (x,y) [overfloulv): vemaxfp]

zedivix,y) lunderfloulv): 1f signix)=signly

then veminposfp else ve-minposfp fi)
zedivix,y) lunder floulv): ved]

Figure 7.7: Use of Form 'fp'

Now let us examine the interaction of the exceptions with the functions that
raise them. Both 'add' and 'div' have the same structure in this regard: we consider
‘add' specifically. By definition, 'add' aiways returns a value 'c', but the
computation of 'c' depends (possibly) on the raising of the ‘overflow' condition. I
roverflow' does not occur, then the "normal case" post-condition applies, stating
that 'c' Is merely the desired sum of the parameters to 'add'. However, if ‘overflow’
does occur, the post-condition telis us that 'c' is set to whatever value 'v' has. We
see from the definition of 'overflow' that 'v' is a (var) parameter passed to the
handler of the 'overflow' condition. Thus, in the event of overtlow, the handler has

the opportunit dut to determine the value of the operation ‘'add For some
y

examples of possible handler actions, refer to figure 7.7.

SEC. 7.3 EXAMPLE 3: ARITHMETIC EXCEPTIONS

7.3.2 Assessmeont

We must not forget that the operations performed by the handler in order to
compute the desired return value occur in the abstract domain. It is partly for this
reason that the functions 'maxfp' and 'minposfp' exist, for the handler requires a
representation-independent way to obtain the largest and smallest positive
floating-point numbers. Even the zero appearing in the second underfiow handier is
in fact an abstract version of the floating-point zero. In Alphard quantities that are
constant-valued functions may be defined by some abbreviated notation, but 1t is
the concept that they are constants with abstract properties that matters.

We note that the actions taken by the handlers in figure (.7 are rather
conventional. It might be more convenient if the specifications of form 'fp' indicated
a frequently desirable 'default' behavior, so that handiers might be omitted if the
'default' actions is acceptable to the user. For example, to make the default action
on underflow be 'result set to zero', we need only add a term to the pre-condition
stating 'v=0'.? Now the handler is relieved of the duty of setting 'v' to zero (in the
third example of figure 7.7). The handler body of that example is then null and the

enabling construct

[under flowf(v):]

may be omitted entirely. Obviously, appropriate default values may be introduced
for other conditions as welil. While this is not a general defaulting mechanism, it can
improve readability of the source text by cutting down on the number of handlers

that must be included.
Handlers may wish to employ more elaborate recovery strategies than those

ustrated in this example. Underflow in a particular floating-point division might

necessitate recomputation using arithmetic that offers, say, a wider range of

”
“ Naturally, in the implementation part of form fp, we must also insert in the function 'div' the assignment 've0' just

bhefore the ‘taee underflow(v)'

—

ADEQUACY CH. 7

representable real numbers. To perform this more accurate arithmetic, another form
would be used and it would have to supply transfer functions to convert between
reqular floating-point numbers and its more complicated representation. We have
omitted examples of such usage precisely because the additional state manipulation
blurs the essential features of the cammunication between form 'fp' and the

handlers of its 'underflow' condition.

We note in passing that the concept 'overfiow' may be applicable to more
than one function, e.g. 'add' and 'div'. Flow-class conditions with identical names
may be specified for different functions of the same module without wreaking havoc
with verification at the handler site. The syntactic transformations of section 6.5.1
will eliminate any possible ambiguity, though they may as a result associdte
identical handler text with different operations. As long as the handler's pre-
condition is weak enough that it is implied by the exception's pre-condition, no
inconsistency arises. While such a "trick" might seem to compromise clarity, in
practice it can reduce the number of separate conditions defined by a module,

thereby producing a more concise specification.

7.4 Example 4: Resource Allocation

in section 3.3.2 we briefly mentioned some of the possible exceptions that
might be defined by a resource allocator. We also toyed with such exceptions in
section 4.6, promising to return with a fulier treatment. let us now consider the

exception handling behavior of an allocator in detail.
7.4.1 The Storage Allocation Problem

For definiteness, we suppose we are specifying a primary memory allocator.
The allocator creates and deletes storage segments specified by descriptors. We

ignore the details of descriptors, noting only that they contain a size field that can

be manipulated by the allocator (by calling the 'descriptor' module, of course).

128

e

-

SEC. 7.4 EXAMPLE 4: RESOURCE ALLOCATION

The allocator provides an abstraction called a 'pool', whose maximum capacity
is established at instantiation time. (This is not a crucial property, but it simplifies
the exposition.) It also provides two functions, 'allocate' and 'release'. 'Allocata'
accepts a pool instance and an integer size as parameters and creates a descriptor
for a segment of the desired size, deducting resources from the specified pool. If
adequate resources are not available to create the segment, the condition 'pool-
low' is raised. After the handiers for this condition have freed what resources they
can, allocation is again attempted and, if unsuccessful, the condition 'pool-empty' is
raised and the allocation request fails. The ‘release' function has no exceptional

behavior - it merely returns resources from a segment to the pOOL8

We assume that the allocator is to execute in a fully parallel environment anc
must therefore provide its own internal synchronization. We use mutual exclusion
semaphores for this purpose. Refer to figure 7.8 for the code of the allocation
module. We offer some critical comments beiow; first, however, let us consider

figure 7.9, which contains a hypothetical user of the allocator.

The module 'arb' is intended to illustrate a possible use of the allocator and
performs no intuitively interesting operations. A calier of 'f' supplies units of
information to be stored in a data base of some sort. The function 'f' copies these
units into a segment, which it obtains from the allocator, then creates a second
segment into which associated retrieval information (computed by 'f') is stored
Both segments are then entered into a compiex assoc:ation structure, namely 'm',
by the unspecified procedure 'add-to'. The 'arb' form would normally contain other

functions besides 'f' - we have omitted them for clarity

'Arb' claims to be prepared to handle 'pool-low' at any instant. Indeed,
except during the time when segments are beinag added to 'm', '‘pool-low' is handled
by the 'squeeze' procedure, which laboriously compacts the structure 'm' and
releases unnecessary elements to pool 'p'. However, it is crucial that the two
segments be entered into 'm' indivisibly with respect to compaction, hence the

imvocation of 'sq ~eze' is inhibited (by a masking handier for 'pool-low' that does

3 We have omitted the treatment of a potential thid condition ‘pool-helow threshold' (see section 3.3.2) to avoud

clutterning the evample Two conditions atleaggatel f1ate the e ed nltaractions

y 1

129

ADEQUACY

module pool (n)
begin
condition pool-lou policy sequential-conditional
condition pool-empty policy broadcast
private outer, inner:mutex, free:integer
< additional fine structure of a ‘pool’ >
function initialize(p:pool) =
(p. freeen; <initialize fine structure>)
function allocate(p:pool,amt: integer) returns d:descriptor
raises pool-low on p, pool-empty on allocate
begin
macro adequate(p,amt) = p.free>amt 8§
Plouter):; P(inner);
if not adequate(p,amt)
then
V(inner)
raise pool-low until adequate(p,amt)
P(inner)

if not adequate(p,amt)

then V(inner); V(outer); raise pool-empty; return

-

!

ofil
p.free « p.free - amt
< create descriptor ‘d' for segment of size ‘amt’ >
Y{inner); Viouter)
n
function release(p:pool,d:descriptor)

begin

o]

P(inner)
p.free « p.free + <size of segment referenced by ‘d'>

<release space associated with

Viinner)

3]
3
Q

i

®
a

Figure 7.8: Storage Allocator

130

d'; reset size of ‘d’ to

CH. 7

Zerao>

et

EXAMPLE 4:

RESOURCE ALLOCATION
moduie arb

begin
shared p:pool
private m:hairy-list-structure
condition nosoap policy broadcast
function flct:integer,<info>)
raises nosoap on f
begin
private dl,dZ:de ptor
macro leocal-cleanug release(dl}); raise nosoap 8
dleallocate(p,ct) [poo!-empty: raise noscap = return]
d2«allocatelp,ct+47) [pool-emptu: local-cleanup - return]
< fill in dl and d2 using <info> >
b 111,\
idd-tolm,dl): add-tolm,d2)
i | - lou: |
end
routir jueeze
beagin
< per f jata-denendent compaction of ‘m', us 1 ng
‘release(p,d)' to release any elements ‘d’ removed
by compacting ‘m’ >
c:m(!
end {;1(\1'}| | o 1€ ZE ()1
Figure 7.9: Use of Form 'pool'
nothing) while they are being entered. The handlers for 'pool-empty' are straight-
forward - they merely transiate the condition name to one appropriate to the ‘arb'
abstraction and propagate it to the caller of 'f'.

131

. - : o

e s e

ADEQUACY CH. 7

7.4.2 Assessment

The code in figures 7.8 and 7.9 illustrates the interaction between the
exception mechanism and semaphores for synchronization. Were it not for the
existence of condition 'pool-low', a single semaphore would suffice to ensure mutual
exclusion of invocations of 'allocate' and 'release' on the same pool. Because we
must permit 'release' to be invoked as a result of raising ‘pool-low', two semaphores
are necessary, one to do the normal mutual exclusion (inner'), the other to prevent
re-entry to 'aliocate' ('outer'). The naive approach, with a single semaphore
protecting the bodies of the two functions, leads to a deadlock when '‘pool-low' is
raised and 'release' is invoked from a handler. It would be desirable if more
sophisticated constructs were available to pernmit a more natural expression of this

interaction. (Recall the observations of section Se)

We should note that, although the 'pool' module is prepared to handle parallel
activity, ‘'arb' is not. Multiple instances of 'arb' having distinct ‘'hairy-list-
structure's would execute correctly. but multiple smultaneous instances of L
applied to the same instance of ‘arb' would not function properly. The eligibility rule
in such a case would still permit 'squeeze' to be triguered in one instance of 'f!
while another was attempting to perform the supposedly indivisible compaction of
'm'. To eliminate this difficulty, an explicit 'updating' flag and appropriate mutual
exclusion would have to be introduced. In general, replacing the implicit state
encoding (i.e. the masking of 'squeeze') represented in an instantaneous flow path
by an explicit encoding (i.e. a flag) represented by an elocment of the data
structure leads to a clearer, if shghtly more verbose, program. We have simply

ignored this (rather commonplace) difficulty by assuming the situations that require

such data structures do not arise in our example

SEC 7 EXAMPLE &: 1/O COMFLETION

7.5 Example 5: 1/0 Completion

As we discussed in section 3.3.3, input/output completion may be regarded as
an exceptional condition. Although this example overlaps somewhat into the areas
of inter-process communication and synchronization, it illustrates that the exception
mechanism may apply naturally to situations in which an expected event occurs

relatively infrequently.

7.5.1 The Real-Time Update Problem

We recall the example of section 3.3.3. Suppose we have a collection of
asynhchronous processes, one of which accumulates data from external sensors In
an airplane. The remaining processes perform calculations that are priority-ordered,
so that if new sensor data arrives, they are to begin anew with the more recent
inpul rather than complete their calculations on the old data. in this way, the most
important quantities are calculated as soon as pos sible when updated information is
received. To complicate matters slightly, however, some calculations, once begun,
must run to completion. In a practical application this can arise if we need to
ensure that a set of values <x.y,z> representing the computed position of the
aircraft is calculated using a sinale buffer of data. Permitting the calculation of this

position to be interrupted could result in inconsistent co-ordinate values.

Refer to fiqure 7.10 The function ‘'grind1' represents one of the
computational processes, which all share an instance ‘buf' of the abstraction
'sensor-buffer'. This abstraction is implemented elsewhere; all that concerns us in
this example is the structural condition 'new-data', which is raised when new
values have been placed in the sensor buffer. The condition is broadcast
asyvnchronously to all users of 'buf' (i.e. the selection policy is broadcast). As
results are computed, they are placed in the output structure 'display', another
externally-defined abstraction which all the 'grind' functions share. Those results

are transmitted by the 'screen' module to a physical output medium.

133

ADEQUACY CH. 7
) module crunchers

e begin

3 shared buf:sensor-buffer

4 shared display:screen

g function grindl =

6 uhile true do

Z l:beqgin

8 private restart:bools

S, restart-false

18 « per form wmputatic 1

1 < perform computat > > [new-data: restartetruel

12 1f restart then leave | f

13 . perform computation 3

14

15 end [neu-data: » feave

16 function grind2 -

U7 < similar to the above

18 c

9 end

Figure 7. 10: Real-Time Computation Module
We identify two styles of computation occurring within the 'grind' functions.
The first, typified by line 10, can be aborted anywhere. Note that if 'new-data' is
raised when control is at line 10 (or 13), the handler on line 15 will be invoked and
will cause control to transfer to the start of the loop. The second styie of
computation, typified by lines 11 and 12, cannot tolerate abortion. Accordinaly, a
handler is supplied on line 11 (masking the one on line 15) that prevents transfer of
control. However, it sets a boolean variable, which is tested after the computation
is finished. In this way, multiple related output values may be computed without
fear of interruption and subsequent inconsistent display.
134
- S T TR e A S S

SEC. 7.5 EXAMPLE 5: 1/O COMPLETION

7.5.2 Assessment

We have ignored the fine structure of the computations because it is largely
irrelevant to the exception handling aspects of the example. However, since we
are using the mechanism for inter-process communication, synchronizaticn is @
relevant issue and the fine structure necessarily involves some synchronization
Specifically, each computation will require accesses to 'buf' to acauire raw mputl
data These accesses will have to be synchronized within the ‘sensor-huffer!
module to prevent the asynchronous arrival of sensar inpu from producing
inconsistent values. Assuming this difficulty to be resolved, the ‘grind’
computations may assume they receive proper data from the buffer Computations
then ensue using the raw input. !f all related results are computed before any are
output, the 'new-data' condition need be masked (as on line 11) only when those
(locally stored) results are actually being transmitted to the 'display'. Thus the
eligible life-time of the handler may in practice be very short - the duration of the

‘'output' phase of a computation.

The explicit masking of an asynchronous condition and use of a boolean to
recall its occcurrence reminds us of conventional interrupt processing when an
interrupt must be held pending. Usually this is done by dedicatina a piece of
hardware to a polling task, polling for the unmasking of the interrupt. Here we are
doing the same thing in software with an explicit test. All software masking is
performed this way, by checking at "unmasking time" to see if the condition
occurred during the masked interval. The frequency with which this programming
construct appears suggests that it might constitute a usage paradiam in the sense

of section 5.2. 1t would be desirable to provide appropriate syntax to handle this

common situation.

135

ADEQUACY CH. 7

7.6 Summary

The preceding examples demonstrate the fiexibility of the proposed exception
handling mechanism as a practical tool in solving "real-world" problems. Although
the situations presented have been, in most cases, simplified versions of actuai
problems that arise in operating systems and application programs, the individual
"assessment" subsections have indicated what simplifications were made and how,
in practice, they might be overcome. We have not attempted to flesh out the
details of every case, but rather to illustrate the power and scope of the
mechanism by representative examples. We thereby support the claim that the
uniform application of the particular semantics we have chosen for our exception

handling mechanism has practical value throughout a programming system.

136

Ty —_—

8
Practicality

As the final stage in our justification of the proposed mechanism of chapter aq,
we address the problem of implementation. A detailed description of an
implomentation would require us to delve into the workings of a specific
programming language and would carry us rather far from the primary topic
Besides, the obvious candidate tanguage, Alphard, does not have an implementation
to date. To substantiate our claim of practicality, however, we must show informally

at least that a reasonable implementation is possible. In this chapter we skztch, in

general terms, the main features of an implementation.

8.7 Handler Bodies

Most of the elements of the mechanism have obvious implementations.
Handler bodies are compiled much the way procedures are (or, if one adheres to the
syniactic restrictions of chapter 6, the way procedure calls are} The only
significant problem is access to the local variables of the interrupted (associated)
context. In an ALGOL-like language with a run-time display, this problem is easily
solved - the handler body behaves much like an inner block and the display cells
other than the top one are identical to those of the associated context. The tog
display cell paints to the local context of the handler, if any. Some shghtly non
standard display manipulations may be required at handlier invocation, but these are
minor details. If the lanquage does not use a display (e.g. BLISS) but can determine
the location of all variables relative to the top of the run-time stack, the accessing
of local context information from within the handler becomes more difficult. Now two
disjoint stack regions must be accessed, in effect a two-level display. However,
since the pointer to the associated context will be available at handler nutialization
(see section 8.2.1), it is straight-forward to compile handler code that accesses
the associated context relative to that pointer and its own local variables relative
to the top-of-stack pointer. In fact, if the handler body is constrained to be a

procedure call, the former pointer will be necessary only to access the variables

FRACTICALITY CH. 8

needed as parameters to the call.! This implies that the called procedure can be

compiled normally - a considerable simplification.

Local transfer of control is also quite straight-forward. We want to achieve
the effect of a goto to an appropriate jocal address upon return from the function
invocation that has been interrupted by the handler. If function invocations are
implemented as subroutine calls, this amounts to altering the stacked return
address. Thus the implementation need only assure that the location of that return
address is obtainable when the handler is executing, a requirement that is easily
satisfied.2 We observe that the compiler can determine which function invocations
can possibly be interrupted by a handler specifying a local transfer of contrel, and
any additional code required to make the return address available need be

generated only for those invocations.3

8.2 Eligible Handiers Set

The only significant implementation difficuity is the eligible handlers set. Here
the goal is to minimize the cost of maintaining the set, perhaps with some higher
cost at search time. There are really two parts to the problem: maintaining the
‘enabled handiers set' (in the terminology of section 4.6), and determining at a
given instant which of the 'enabled' handlers are eligible. Let us consider each of

these problems in turn.

1 And perhaps to alter a return address to effect a loca! transfer of control. See next paragraph.

2 For example, this location can be at a fixed place in the activation record for the context., Since a pomnter to
that activation record must be available to the executing handler anyway, loca! transfar of control is easily

effected.

3 In some implementations, there may be no additional cost in cupplying the necessary location

138

e ———

SEC. 8.2 ELIGIBLE HANDLERS SET

8.2.1 Enabled Handlers

The enabled handlers set can be partitioned into two subsets: those handlers
declared at the module level and those that appear within function bodies. The
former are enabled when their associated modules are instantiated, the latter are
enabled while control resides within their associated contexts. We will represent
these sets by lists. Fach list element on these lists will represent an enabled

handler and will contain at least:
- a link field (to point to the next list oloment).a

= a context pointer that identifies the associated context (e.qg.

points to an activation record - see discussion in section (S i

= a handler pointer that identifies the code of the handlier body,

and
= a unique name.

The unique name field is, in effect, a token that represents a user, as we shall see

shortly.

Now we can distinguish two cases: 'flow' and 'structure' class conditions
Flow conditions constitute a special case and can be easily dismissed. First,
module-body level handlers for flow class conditions can always be "distributed" to
function-body level, by virtue of the shorthand notation (see section 4.5). This
climinates the need for a module-body level list for flow class conditions. Second,
all enabled handlers for a given condition and function instance must appear in the
same process stack, by definition. This suggests a simple implementation for all

flow class conditions, which is essentially similar to the one used in BLISS. With

4 There may actually be two link fields in the event that a doubly-linked list 1s deemed desirable. See subsequent

diccuasion of 'structure’ class conditions.

{
|
{
|
|

L’

FRACTICALITY CH. 8

each process, we associate a single, distinguished cell that will act as the list
header for flow conditions. Within each process stack, we iink all enabied handler
list elements together (for 'flow' conditions only!) in stack order. In the unique
name field of each list element, we insert a value that umquely identifies the
condition name.5 As we will see below, it is ow a simple matter to determine

eligibility for any flow class condition

'Structure' class conditions are more difficult - both kinds of list are needed
to maintain the enabled handlers set. For structural conditions, the headers for
these lists appear in the instance to which the handlers are attached. (Recall from
section 4.11 that access to these lists Is controiled by a mutual exclusion
semaphore or similar synchronizing construct.) The unique name fie'd of each list
element contains a value that identifies the instance of the module containing the
handler.6 Now the module-body ievel handlers for a given condition and (data)
instance are all linked together in no particular order, and the list is updated
whenever a referencing instance (i.e. one containing a handler) with a module-body
level handler is created or destroyed. For handlers within tunction bodies, however,
the list maintenance occurs more frequently. The list structure depends to some
degree on the number of processes; we will consider a general-case implementation

that, under particular language restrictions, could be optimized substantially.

A second list exists for all non-module-body level handlers (for a given data
instance and condition). Call this the DCL - Dynamic Context List. When a context
is entered that has such a handler, a iist element i1s allocated on the process stack
and filled in with the above information. One additional datum is included, a unigque
value identifying the function instance in which the context exists. (This is in
addition to the unique value identifying the module in which it exists. The value of
the stack pointer at function entry will serve as a unique identifier.) The element is

then linked onto the front of the DCL. Note that the effect is to have several

5 This 1s easily and cheaply accomplished by compiler/linker cooperation; no run- time allocation 1s necessary.
Y ply 13 y f ¢ § Yy

6 Conceptually, we produce a separate copy of the code every time a module is instantiated. In fact, all we need
1 a unique number to keep track of instantiations. This number can be generated n any one cof several

satisfactory ways; a particularly convenient method 1s suggested in the next section

140

—e — $ ~ A,y Lo e L———W:-—'"'w - L

SEC. 8.2 ELIGIBLE HANDLERS SET

separate stacks (one for each process) all "woven" together. When a context
having such a handler is exited, the element is unlinked from the DCL and destroyed
(popped from the process stack). Note that if the list is singly-linked this will, in
general, require'a-search. However, by adding a second link field and maintaining a
doubly-linked list, both entry and exit times become fixed and independent of the
interleaving in the list. Of course, entry time becomes slightly greater (2 additional
fields to change), but this sacrifice is probably worth the benefit (of fixed, known
cost) reaped. The two lists now maintain the enabled handlers set for a structurai

condition.

8.2.2 Eligible Handlers

Given the enabled handier lists as defined above at some instant, we can
determine the eligible handlers set. For flow conditions the task is straight-forward:
we simply follow the finks back through the current process's enabled handlers list
for flow conditions until we find the first element whose unigque name field matches
the condition being raised. This element is the only eligible handler. indeed, we can
be cor\ain? that this list element will appear in the segment of the process stack
allocated to the invoker of the signalling function, and if that segment is readily

identifiable, we may bound the search. In any case, the algorithm is obvious.

For structure class conditions the task is more complex. The algorithm
appears in figure 8.1. SCL stands for 'Static Context List', i.e. the header for
the module-body handlers list. DCL, as previously mentioned, stands for 'Dynamic
Context List' and is the header for the handlers appearing in function bodies. The

relevant fields are:
next - the (forward) link to the next list element,

mi - the unique name identifying the module instance containing

the handler,

7 Except in certain pathological cacses where a function name s pas<ad as a parameler Not all languages permit

this

141

— .

FRACTICALITY CH. 8

fi - the unique name identifying the function instance containing

the handler (meaningless for elements of the SCL), and

mark - a boolean flag (initially false) used internally by the

algorithm.

Let us briefly examine the operation of the algorithm. Recall that, by
assumption, the SCL and DCL are protected by a mutual exclusicn semaphore. Thus
the lists cannot be altered during the execution of this algorithm. We will generate

the members of the eligible handlers set one-at-a-time in an unspecified order.

The search for eligible handlers extends from lines 1 tec 30 and consists of
two paris. Lines 3 to 22 locate eligible handlers on the DCL; lines 23 to 29 locate
eligible handlers on the SCL. The 'mark' field, if true, indicates that the list element
corresponds to a masked handler (in the sense of section 4.6), i.e. an ineligible,
enabled handler. Initially, all '‘mark' fields are false, and the algorithm restores that

state upon completion.

The search of the DCL involves finding the lexically innermost handler within
each distinct module and function instance. The pointer P is used to examine the
elements of the DCL sequentially. The test on line 5 will fail the first time, since all
‘mark' fields are presumed false initially. Thus P corresponds to an eligible handler,
as the notation on line 8 suggests. (We assume that the handler is initiated at this
point and the selection policy indicates whether more handiers are required. See
line 33.) We must now eliminate (i.e. mark) all handlers on the DCL that P masks,
which is the effect of lines 9 to 13. A little thought reveals that such handlers are
completely characterized by the test on line 10 and the fact that they appear
"deeper" in the DCL than P does.B Having eliminated all such masked handlers, we
now must eliminate the single handler on the SCL that P masks. Lines 14 to 18 do

this.

On subsequent iterations of the main DCL loop (beginning on line 3), the test

8 Pecall that the DCL 1s in fact 3 collaction of stacks "woven together”,

142

— ——- " . 4

SEC. 8.2 ELIGIBLE HANDLERS SET
! 1 search: begin "search"
2l PeDCL.next; ReSCL.next;
3 while P=nil do
4 QeP.next;
5 if P.mark
& then P.markefalse
7 else
8 eligible(P);
9 while Q=nil do
18 if Q.mi=P.mi and Q. fi=P, €i
i then Q.marketrue fi;
E2 Q<Q. next
13 od;
14 while R=nil do
ES if Romi=P.mi
16 then R.marketrue; ex itloop
374 else ReR.next
18 fi od
19 ReSCL. next
) el
2 PeQ
22 od;
23 while R=nil do
2 if R.mark
2 then R.marke«false
2E else eligible(R)
Z s
2 ReR. next
P od
30 end "search";
31 while Q=nil do Q.markefalse; Q<Q.next od;
2 while R=nil do R.mark<false; ReR.next od
| here:
“ 33 eligible(X) = <invoke X's handler>:

if no more handlers needed then leave search fi

Figure 8.1: Eligibility Determination Algorithm

143

PRACTICALITY CH. 8

on line 5 may be satisfied. If so, we have encountered a 'andler previously
determined to be masked. In such a case we merely reset its 'mark' field to be
false and proceed to the next DCL element. Observe that when exectution passes
to line 23, all elements of the DCL will again have their 'mark’ fields set to false and

Q will have the value 'nif'.

The search of the SCL on lines 23 te 29 is straight-faorward. Al marked
elements have their 'mark' fields set to false, and all unmarked elements are
considered eligible. Note that by virtue of lines 14 to 18, an element of the SCL
can be eligible (unmarked) if and only if no element of the DCL has a matching 'mi'
field. This is precisely the definition of eligibihty for moduie-bady level handiers, i.e.
the handlers corresponding to elements on the SCl. Observe that when execution
passes to line 30, all elements of the SCL will have their ‘mark' fields set to false

and R will have the value 'nil'.

If control reaches Jine 31 from line 30, lines 31 and 32 have no effect, since
Q=R=nil. These loops exist only to "clean up" the DCL and Sf L if the selection
policy causes premature termination of the eligibility search 91t is easlly verified
that if premature termination occurs, all list elements betweean the head of the DCL
(SCL) and Q (R) already have their 'mark' fields set to false Thus when control

passes from line 32, all list elements have been unmarked

We close this chapter by briefly assessing the cost of this algorithm. At first
glance, it seems quite expensive. However, we should observe that the DCL is
likely to be quite short, unless there is a high degree of simultaneous access by
parallel processes to the same data structure. With a short DCL, the dominant cost
of the algorithm becomes the search of the SCL incurred for each unmarked element
of the DCL (lines 14 to 18). A clever encoding, however, can eliminate the search
entirely. Recall that the 'mi' field is defined above as a unique identifier for the
instance of the module containing the handler described by the list element. Since
elements of the SCL are in one-to-one correspondence with such instances, the 'mi'
fieid can be taken as the address of the appropriate element on the SCL! This
address is bound at module instantiation time. Now there is no need to search the

SCL for the desired element, and we can replace lines 14 to 18 by:

Q
= J.e. if the particular selection policy, e.g. sequential nditional, does not require the entire eligible handlers set.

144

PRV T

SEC. 8.2 ELIGIBLE HANDLERS SET

R e« P.mi;

R.mark « true

We now need to examine each element of the SCL only once to determine ail its
eligible handlers - we couldn't expect to do much better. In pathological cases the
processing of a DCY of length 'n' can still require O(n?)Hstrdennwﬂ accesses, but
generally we expect 'n' to be reiatively small, particularly compared to the length ot

the SCL. We also expectlnashngtorpducetho;wocusﬂng:unvf;nH&chHHy_

145

Part IV

Conclusion

147

PRECEDING

SSeeata

)

7 PAGE BLANK-NOT FILMED

9
Summary

In the preceding chapters we established a set of goals for an exceptional
condition handling mechanism, then defined a particular mechanism and verified that
it mdeed met the goals. We have argued that in meeting these qoals, the
mechanism significantly advances the state of the art in exception handling. Yet
the goals are rather general in character, and we might find it satisfying to assess
the mechanism in terms of other, more specific criteria. In a sense, such an
"independent assessment" confirms that the proposed mechanism represents a
useful step forward. This chapter concludes the thesis by providing that

assessment and identifying some avenues for future investigation.

9.1 Contribution of this Work

To obtain a different perspective on the proposed exception handiing

2.1

mechanism, let us return to the list of issues presented in section 2. By
examining the behavior of our mechanism with respect to the questions posed there
and recalling the observations of chapter 2, we will see clearly the contribution of
our mechanism. The sections below respond directly to the questions of section

2.1

9.1.1 Specification

Our mechanism provides for explicit naming of exceptional conditions. Their
semantics are precisely defined by predicates that tell a handler what it can
expect and what it must do. These specifications appear in the module that
defines the exceptional condition and are exported to those modules that use it
The generality of this specification technique permits the application of the
mechanism to a wide range of situations, including some that, under traditional
definitions, do not involve exception handling. Our mechanism derives much of its

attractiveness and power from this broad applicability, and contrasts sharply with

A — -

SUMMARY

a
=
©

many existing mechanisms that are closely tied to particular language or system

constructs.

9.1.2 Abstraction

OQur mechamsm 1s centrally concerned with the preservation of abstractions
(recall the discussion of section 3.1). By defining the semantics of an exception in
terms of the abstract entity provided by a module, the specification technigque
supports the separation of abstract and concrete objects and distinguishes
function from implementation A common failing of existing mechanisms is theit
inability to force programmers to use only the abstract properties of a module and
Ignore its representation. This weakness compromises the integrity of modules by
subverting the principle of encapsulation Our mechanism aids abstraction by
placing the definition of exceptions on a par with the definition of functions, making
it possible for the user of the abstraction to ignore all representational issues. By
forcing programmers to define exceptions in abstract terms, our mechanism also
encourages robust module design, since the same precision is required to specify

exceptional and normal case behavior.

9.1.3 Sharing

We have dwelt at some length (particularly in section 3.1.3) on the
inadequacy of the "calls" hierarchy for exception transmission. It is remarkable
that the central notion of shared abstractions has been almost totally ignored by
existing exception mechanisms. Indeed, one of the most significant properties of
our proposed mechanism is its ability to support shared abstractions in a natural
way. Once we realize that sharing is of crucial importance, we see that particular
kinds of sharing, e.g. asynchronous, parallel access, can be accommodated as
important subcases. Thus we gain the ability to handle exceptions in both
sequential and parallel programming envirtonments without ntroducing special
facilities for either one. By recognizing sharing as the fundamental property,

parallel sharing “falis out" as a special case. We also elevate a concept long

150

T PR —————

P"" - — G
SEC. 9.1 CONTRIBRUTION OF THIS WORK
recognized as important In operating systems to the level it deserves in
programming languages.
] 4

9.1.4 Programming Flexibility

There ts no question that our specification technique forces the programmer to
consider the "exceptional case'" behavior of his program much more carefuily. if he

wishes to produce a robust program, the mechanism can aid him in exproessin

Le

exception processing requirements. However, it may alsc constrain the modes of
expression he can use for related, but non-exceptiona! cese processing. We
believe that such restrictions, rather than limiting flexibility, enhance clarity and
contribute to correctness, just as disciplined transfers of control and dafa
structuring techniques do. It is true that our mechanism does not mesh well with
some familiar programming constructs (such as the non-local g_g&). and we have 1o
qualms about imposing restrictions on such constructs when they affect program
clarity and coherent exception processing. The examples of chapter 7 illustirate
that a considerable variety of applications can still be programmed in a natural way

while utilizing the faciiities of our exception mechanism.

9.1.5 Language

In section 5.1 we examined the relationship between our exception
mechanism and its embedding fanguage. ldeally, of course, the addition of an
exception handling facility should not perturb the language at all. Our mechanism is
largely language-independent and imposes very few restrictions on its embedding

language. No specific properties, other than the ability to support abstraction by

encapsulation, are required. While several language features, e.qg. scope rules,
naturally interact with the exception handling mechanism, none is constrained to
assume a particular form (in contrast to many existing mechanisms) The most
significant effect on the language induced by the exception mechanism appears in
the synchronization facilities (if any). Here, the requirements of the mechanism,

while defined separately from the language facility, interact with it in non-obvious

151

SUMMARY CH. 9

ways. Section 5.2 shows how the compiexities of this interaction may be reduced

and the combination of the two mechanisms used to the programmer's advantage.

9.1.6 Verification

Chapter 6 demonstrates the verifiability of the proposed mechanism within the
context of a particular modern programming language. We were careful to define
the semantics of the exception mechanism to limit its effect on the verifiabiiity of
the host language. Specifically, its semantics were tailored to fit existing proaram
structures, particularly abstract functions. Although the desire for verifiability has
affected the fine points of the mechanism, the power of the facility has not been
compromised by that desire. The examples of chapter 7. complete with pre- and
post-conditions, support that conclusion. While the details of verification will
necessarily vary from lanquage to lanquage, the semantic specification is relatively
general and should adapt easily to most inductive assertion-based proof

methodologies.

9.1.7 Cost

The algorithms presented in chapter 8 show that a cost-effective
implementation of the proposed mechanism does exist Further, the caosts are
distributed to minimize overhead in the non-exceptional case. We have also seen
that if the mechanism is to be used more for communication than exception
processing, the costs can be halanced somewhat more equitably between the
maintenance of the eligible handlers set and the actual transmission of an
exceptional condition. It is difficult to assess the cost-effectiveness of this
mechanism with respect to potentially attractive alternatives, since the latter are
clearly language-specific. In Alphard there are no obvious contenders. In
lanquages that support procedure vatiables, it is evident (see section 2.2.4) that
for approximately equal overhead cost we get considerably areater flexibility from
our proposed mechanism. Most of the other mechanisms of chapter 2 do not provide

sufficient function to be considered "attractive aiternatives" to our proposal.

P ——— " 4

SEC. 9.2 REMAINING ISSUES

8.2 Remaining Issues

At a number of points in the preceding chapters, we have identified issues
that merit further investigation. In this final section we briefly recapitulate these
issues and append a few others that logically follow from this work. We believe
that the successful resolution of each of these questions will enhance the

mechanism's appliicability and hence its value as a program structuring tooi.

9.2.1 Selection Policy Primitives

In section 4.7.1 we established principles that selection policies shauld
exhibit and gave three specific illustrations. We can ask whether a lanquage
should, in lieu of particular policies, supply primitives that permit programmers to
define their own. Such primitives would necessarily be engineered only to produce
policies that satisfy the postulated properties. By developing such primitives we
can gain insight into the range of interactions between signaller and handiers, and
we may identify additional or alternate properties that more precisely bound the

space of those interactions.

9.2.2 Verification of Synchronization

In chapter 6 we ignored the difficulties in verification caused by the
existence of parallelism within programs that may use the exception mechanism.
The field of verification of parallel proarams is one of considerable recent recearch
interest, and positive results in this area would enable us to compiete the formal
specification of our mechanism's semantics. In particular, the synchronization
requirements of selection policies could then be precisely expressed, perhaps

assisting in the development of additional characteristic properties (see above).

159

————

SUMMARY } i ’ i CH

0

9.2.3 Usage Paradigms

Section 5.2 discusses the problem of combining language primitives in
coherent ways. Although the principle of "orthogonal design" espoused by Algol-63
[van Wijngaarden 75] is a laudable one, in practice few languages achieve
complete orthogonality. The subtie (and sometimes undesirable) interactions of our
exception mechanism with synchronization primitives (see section 5.1:4) lis an
example. The difficulties can be eliminated, in large part, by supplying a sufficiently
rich collection of "composite operations', which respond to commoniy occurring
programming situations. Section 5.2 illustrates a few such "usage paradigms", but
doubtless many others can be found. By accumulating a coliection of useful
"higher-level" operations, we encourage the use of the exception mechanism, since

the composite actions are, in effect, "pre-tested" applications of the mechanism.
I f

9.2.4 Protection

If we consider our mechanism in a system rather than a language context, we
become aware of a number of protection issues. In section 5.1.5 we briefly
mentioned the possibility that our mechanism contains covert channels for leaking
information from a confined domain. There are other questions as weli, e g. should
restricting the rights in a capability also restrict the exceptions that may be
handled by the environment possessing that capability? The solutions to these
questions will enhance the application of the exception mechanism to systems in

which protection is a serious concern.

9.2.5 Enforcement

A related issue is enforcement. We rely heavily on a compiler/verifier to
ensure that modules meet certain of their specifications. Many operating systems

take a more conservative approach and enforce specifications at run-time. In this

e — 2 e e—p

0
m
a
0
N

REMAINING ISSUES

way they ensure that no higher-level (in the sense of the "uses" relaticn) error,
inadvertent or deliberate, can result in a violation of specifications. O course,
there is a certain cost incurred by doing all checks dynamically, and for some of the
features of the exception mechanism (e.qg. ensuring that a handler cannot cause its
associated condition to be signalled anew), that cost may be substantial. It is an
open question whether our exception mechanism can be implemented with

reasonable efficiency in a system that enforces all specifications at run-time

9.2.6 Hardware Applicability

There are at least two important open questions concerning the interaction of
our mechanism and hardware design. First, how can microcode be used to reduce
the implementation costs of the mechanism? Is it feasible, for example, to move the
eligible handler set maintenance into firmware? Second, what is the effect of the
exception mechanism on system architecture? Do we have to revise our view of
processor-channel-device communication? |s the mechanism sufficiently general to
accommodate sharing at the instruction ar memory cycle level? Because the ratio
of hardware to software cost is small in many modern systems, we may need to re-
evaluate the communication schemes we have used to date and incorporate new
ones that are more in line with the proposed mechanism. if the goal of uniformity is
to be completely achieved, we must explore the possibility of making

hardware/software and software/software interfaces consistent.

9.2.7 Uniform Control Structure

There is a constant tension between the desires for pleasing conceptual
uniformity and special case efficiency. At several places we have remarked that
our proposal can serve as a communication tool, yet we persist in calling it an
exception handling mechanism. Is there a more general view of control flow
structure that brings exceptional and normal case together in a single, consistent
fashion? Of course - production systems are an example. Yet we the programming

public have not abandoned our conventional Algol-like languages in favor of this

199

SUMMARY CH. 8

more unified view. This Is due in part to the (potential) loss of efficiency in special
cases - efficiency we deeply cherish. We stick to programming with a set of
constructs each tailored to a particular task precisely because we are unwiiling to
ignore efficiency to gain uniformity. If a way wer_o,.z:no:m to eliminate the tension
between these two fundamental concerns, this thesis would never have been
written. As it is, we know of no way to "have our cake and eat it too", so we
continue to look for lanquage primitives that supply special case semantics at low
cost. There is an obvious avenue of investigation open here; no doubt many
language designers believe they are walking down it. Clearly, a complete solution

to this problem would make the mechanism we propose obsolete.

9.2.8 Self Applicability

Let us close by looking inward instead of outward. The proposed mechanism
implements an abstraction of its own, just as the language in which it is embedded
does. Exceptions in the language abstractions may be expressed using the
exception mechanism (e.g. inability to perform some language-supplied primitive
because of a catastrophic error of some obscure sort). Can failures of the
exception mechanism be so expressed? Can we apply the concepts of exception
handling explored in this thesis to the mechanism itself? Obviously, the mechanism
should be robust, and it can employ various redundancy techniques to check its own
operation, yet there is bound to come a point at which the mechanism is forced to
admit failure to its users. This circularity leads us to the so-called "hard-core
reliability problem"”, that is, the need to assume that there is a "hard-core" nucleus
of software whose operation we trust implicitly. System designers abhor such
"hard-cores", because they represent singularities in the system (and because
they too often prove to be "soft-cores"!). Must we resign ourselves to trusting the
(implementation of the) exception handling mechanism, or can we discover ways to
make the mechanism self-applicable? The impact of a solution to this admittedly
difficult problem would extend beyond the exception mechanism and cause us to

revise our present approach to reliable system design.

156

Appendix A
A More Flexible Handler Definition

"It's far too clear," he said. ‘It should be writ in
such a way that if you ever changed your mind,
the point could be disowned, denied, and
disavowed.”

- James Thurber, _Thc_a_ W'tj;ﬁtvp Deo_r

In section 4.9 we defined a syntax that permits a handler to effect a local
transfer of control. There are programming situations in which the unconditional
posting of a transfer of control (in the terminology of that section) is inconvenient;
2 more flexible dynamic determination may be preferable. For example, a handler
might wish to retry a failing operation three times before ultimately qgiving up
Obvicusly, the actions 'retry' and 'give-up' correspond to different control points in
the associated context. The syntax of section 4.9 makes such a handler rather
awkward to write. In this appendix we suggest a change to the exception
mechanism of chapter 4 that permits such a handler to be specified without

compromising verifiability.

A more general form of handler specification would permit a completely
dynamic determination of the point in the associated context at which execution
will resume. First, we relax the requirement that the handier body be a single
procedure invocation, permitting instead an arbitrary block. Second, we introduce a
language construct 'post I', where 'I' is a label. This construct may appear only
within a handler and 'lI' must reference a label within the enclosing function body.
When 'post I' is executed, 'lI' is posted as the location to which controi is to be
transferred when execution resumes in the associated context.! Execution of the

handler is then tmminatpd.2

! some mplementations may wish 1o restiict ‘I' 1o be a label constant, not a variable.

2 This property of post 1s not essential, but it simplifies verification.

157

A MORE FLEXIBLE HANDLER DEFINITION APP A

It should be evident that 'p_qg I' has the effect of (dynamically) inserting a

H ‘goto I' at the point of interruption of the associated context. The usual proof rule
for '9_9}9 I' [Clint 72] requires an assertion to be supplied at 'l', and we make a

similar requirement for ‘post I'. It is then a simple matter to extend the handier

proof rule in section 6.5 to include the proof rule for the goto. We omit the details

here, noting only that while the extension is conceptually straightforward, it may

induce considerable (albeit mechanical) effort in the verification process.

168

|
|
¥
|
|

Appendix B
The Aiphard Verification Methodology

[Note: This appendix is taken from [london 76] with slight modifications.]

Alphard's verification methodology is designed to determine whether a form
will actually behave as promised by its abstract specifications. The methodology
depends on explicitly separating the description of how an object behaves from the
code that manipulates the representation in order to achieve that behavicr. It is
derived from Hoare's technique for showing correctness of data representations

[Hoare 72].

The abstract object and its behavior are described in terms of socme
mathematical entities natural to the problem domain (e.g. graphs, sequences). We

appeal to these abstract types

- in the invariant, which explains that an instantiation of the form
may be viewed as an object of the abstract type that meets

certain restrictions,

- in the initially clause, where a particular abstract object is

displayed, and

- in the pre and post conditions for each function, which describe
the effect the function has on an abstract object that satisfies

the invariant.

The form contains a parallel set of descriptions of the concrete object and
how it behaves. In many cases this makes the effect of a function much easier to

specify and verify than would the abstract description alone.

Now, although it is useful to distinguish between the behavior we want and

the data structures we operate on, we also need to show a relationship that holds

THE ALPHARD VERIFICATION METHODOLOGY APF. B

between the two. This is achieved with the representation function rgg(x), which
gives a mapping from the concrete representation to the abstract description. The
purpose of a form verification is to ensure that the two invariants and the _rfaﬁp(x)

relation between them are preserved.

In order to verify a form we must therefore prove four things. Two relate to
the representation itself and two must be shown for each function. Informally, the

four required steps are I
For the form

1. Representation validity

Ic(x) = Id(rvp(x"))

2. Initialization

requires { init clause } initially (rep(x)) A 1.(x)
For each function

3. Concrete operation

in(x) A1 (x) { function body } out(x) A 1,(x)

4. Relation between abstract and concrete
da. Ic(x) A pre(rep(x)) 2 _l»ﬂ(x)
ab. 1.(x) A pre(rep(x')) A out(x) 2 post(rep(x))

Step 1 shows that any legal state of the concrete representation has a
corresponding abstract object (the converse is deducible from the other steps).
Step 2 shows that the initial state created by the representation section is legal.

Step 3 is the standard verification formula for the concrete operation as a simple

1 We will use Ia"vop(’-)’) to denote the abstract invanant of an object whose concrete representation is x, Ic(x)

fo denote the corresponding concrete invarnant, italics 1o refer to code segments, and the names of specification

clauses and assortions to refer (o those formulas. Ir step ab, "pieflrep(x'))" refers to the value of x before
erecution of the function. A complete development of ‘he form venfication methodology appears in [Wult 76a,
Wulf 76b]

160

AFP. B THE ALPHARD VERIFICATION METHODOLOGY

program; note that it enforces the preservation of lc. Step 4 guarantees (a) that
the concrete operation is applicable whenever the abstract pre condition holds and
(b) that if the operation is performed, the result corresponds properly to the
abstract specifications.

161

References

"You'd just get mad. It's full of clauses and
phrases and pauses, and marginal notes and inner
quotes, and words in lLatin and words in Greek,
viz. and ibid. and circa and sic.”

- James Thurber, The VAV[‘,",“’; D?,‘”_’

[Baker 72] Baker, F., Chief Programmer Team Management of Production
Programming. /IBM Systems Journal (1972), pp. 56-73.

[Brinch Hansen 71] Brinch Hansen, P., RC4000 Software Muitiprogramming System,

Second edition, A/S Regnecentralen, Copenhagen, 1971.

[Brinch Hansen 72] Brinch Hansen, P., Structured Multiprogramming. Communications
of the ACM 15, 7 (July 1972), pp. 574-578.

[Bron 76] Bron, C. et al, A Proposal for Dealing with Abnormal Termination of

Programs, Twente University of Technology, Technical Report, 1976.

[Campbell 74] Campbell, R. H. and Habermann, A. N., The Specification of Process
Synchronization by Path Expressions. lecture Notes in Computer Science,
vol. 16, Springer-Verlag, Berlin (1874).

[Chnt 72] Clint, M. and Hoare, C. A. R., Program Proving: Jumps and Functions. Acta
Informatica 1 (1972), pp. 214-224.

[Cohen 75] Cohen, E. and Jefferson, D., Protection in the Hydra Operating System.
Proceedings of the Fifth Symposium on Operating Systems Principles,

Operating Systems Review 9, 5 (1975), pp. 141-160.

[DEC 74] Digital Fquipment Corporation, BLISS-11 Programmer's Manual, Maynard,
Mass., 1974,

163

PRECEDING PACE BLANK-NOT FILMED

[Dijkstra 68] Dijkstra, E. W., Co-operating Sequential Processes. In Programming

Lanquages, F. Genuys (ed.), Academic Press, New York, 1968.

[Dijkstra 76] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, N.J., 1976

[Geschke 77] Geschke, C. M. et. al., Early Experience with MESA. Proceedings of an
ACM Conference on lLanquage Design for Reliable Software, S/GPLAN

Notices 12, 83 (1977).

[Goodenough 75] Goodenough, J. B., Exception Handling: Issues and a Proposed

Notation. Communications of the ACM 18, 12 (Dec. 1975), pp. 683-696

[Hihbar(i 7(3] Hibbard, P., Parallel Processing Facilities. In New Directions in

Algorithmic Languages - 1976, S. A. Schuman (ed.), IRIA, 1976, pp. 1-7.

[Hoare 69] Hoare, C. A. R., An Axiomatic Basis for Computer Programming.

Communications of the ACM 12, 10 (Oct. 1963), pp. 576-580.

[Hoare 72] Hoare, C. A. R., Proof of Correctness of Data Representations. Acta

Informatica T, 4 (1972), pp. 271-281.

[Hoare r’/l] Hoare, C. A. R., Monitors: An Operating System Structuring Concept

Communications of the ACM 17, 10 (Oct. 1974), pp. 549-557.
[Horning 74] Horning, J. J., A Program Structure for Error Detection and Recovery.
Proc. Conf. on Operating Systems: Theoretical and Practical Aspects, IRIA

(1974).

[IBM 70] IBM Corporation, PL/l (F) Language Reference Manual, Form GC28-8201,
IBM Corporation, 19/70.

Lampson 69] Lampson, B. W., Dynamic Protection Structures. AfFIPS Conference
' y

Proceedings, FJCC (1969).

164

o ———— - -

[tampson 74] Lampson, B. W., Mitchell, J. G., and Satterthwaite, E. H.,, On the

Transfer of Control Between Contexts. In lecture Notes in Computer
Science, vol. 19, B. Robinet (ed.), Springer-Verlag, N.Y., 1874, pp. 181~
203.

[Lampson 77] Lampson, B. W. et. al., Report on the Programming Language tUCLID.

[London

[Parnas

[Parnas

[Parnas

[Parnas

[Parnas

[Parnas

[Pollack

SIGPLAN Notices 12, 2 (Feb. 1977).

76] London, R., Shaw, M. and Wulf, W., Abstraction and Verification In
Alphard: A Symbol Table Example, Carnegie-Mellon Univeristy Department
of Computer Science Report, 1876.

72a] Parnas, D. L., Information Distribution Aspects of Design Methodology
Proc. IFIP Congress, vol. 1 (1972).

72b] Parnas, D. L., A Technique for Software Module Specification.
Communications of the ACM 156, 5 (May 1972), pp. 330-336.

72c] Parnas, D. L., Response to Detected Errors in Well-structured
Programs, Carnegie~-Mellon University Department of Computer Science
Report, 1972.

72d] Parnas, D. L., On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM 15, 12 (Dec. 1972).

74] Parnas, D. L., On a Buzzword: Hierarchical Structure. Proc. [FiP
Congress, North-Holland Pubt. Co. (1974).

6] Parnas, D. L. and Wurges;, H. Response to Undesired Events in

Software Systems, T. H. Darmstadt, 1976,

7 7] Pollack, F. J., A Design Methodology for Fault-Tolerant Software, Ph. D.

thesis, Carnegie-Mellon University, 1977.

165

[Randell 75] Randell, B., System Structure for Fault Tolerance. Proceedings of the
International Conference on Reliable Software, SIGPLAN Notices 10, 6 (Jun.
1975), pp. 437-449.

[Ross 67] Ross, D. T., The AED Free Storage Package. Communications of the ACM
10, 8 (Aug. 1967), pp. 481-4392.

[Rychener 76] Rychener, M. D., Production Systems as a Programming Lanquaqe for
Artificial Intelligence Applications, Ph. D. thesis, Carnegie-Mellon Univeristy,
1976.

[Schroeder 72] Schroeder, M., Cooperation of Mutually Suspicious Subsystems, Ph.
D. thesis, Massachusetts Institute of Technology, MAC-TR-104, 1972.

[Wasserman 77] Wasserman, A. |, Procedure-Oriented Exception Handling, Univ. of

Calif. S.F., Laboratory of Medical Science Report, 1977.

[van Wijngaarden 69] van Wijngaarden, A. (ed.), Report on the Algorithmic Language
ALGOL 68. Numerische Mathematik 14, 2 (1969), pp. 79-218.

[van Wijngearden 75} van Wijngaarden, A. et. al., Revised Report on the Algorithmic
Lanquage ALGOL 68. Acta Informatica v. 5, Fasc. 1-3 (1875).

[Wirth 66] Wirth, N. and Hoare, C. A. R, A Contribution to the Development of Al GOL.
Communications of the ACM 9, 6 (Jun. 1966), pp. 413-431.

[Wult 7a] Wulf, W. A et. al, Hydra: The Kernel of a Multiprocessor Operating
System. Communications of the ACM 17, 6 (Jun. 1974), pp. 337-345.

[Wulf 76a] Wulf, W. A, london, R. L., and Shaw, M., Abstraction and Verification in

Alphard. In New Directions in Programming languages - 1975, S. A.
Schuman (ed.), IRIA, 1976.

166

e A R G e b i

[Wulf 76b] Wulf, w. A., London, R. L., and Shaw, M., Abstraction and Verification in
Alphard: Introduction to Language and Methodology, Carnegie-Mellon
University and USC Information Sciences Institute Technical Reports,
1976.

[Wuif 76c¢] Wulf, W. A, London, R. L., and Shaw, M., An Introduction to the
Construction and Verification of Alphard Programs. (EEE Transactions on

Software Engineering, SE-2, 4 (Dec 1976), pp. 253-265,

[Wulf 78] Wulf, W. A. and Levin, R, The Hydra Operating System, (Monograph to
appear), 1878.

167

i 7 T

