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Abstract

This paper is a follow-up to an earlier paper by
Bleisten which derived asymptotic expansions of integral transforms
of functions with logarithmic singularities. That result dealt
with exponentially decaying kernels. In this paper the results
are expanded to include the case of oscillatory kernels - e.g.,

Fourier or Hankel transforms.
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)i Introduction

We shall develop the asymptotic expansion of a class of integrals

of the form

-
(1.1) I(\) = [ h(it)f(t)de.
0

Fer this class we shall assume that h(t) is an "oscillatory" kernel;
that is,
e N (m) =i o
(1.2) h(t) v exp{iot } 2 a t ™log &), t > =,
mn
m=0 n=0
Here, Re rm t o and N(m) is finite for each m. We assume that h and f
are infinitely differentiable on (0, a). Furthermore, f(t) is assumed
to vanish "C smoothly" at T < 1.
Thus the integral 1(X) is one which might arise from a more
general integral by applying the appropriate van der Corput (1948)
"neutralizer” to isolate the critical point at the origin. The class of
integrals is further distinguished by the nature of f(t) near the origin,
namely,
’ ) & N<m) Qm Finn +
(1.3} 6 -9 LU L € .t “(log &) P A
mn
m=0 n=0
Here, Re *n t © N(m) is finite for each m and the Hmn's are any complex

numbers. Furthermore, we assume that the asymptotic expansion of any

derivative of f is obtained by differentiating (1.3).




This work is a continuation of an earlier paper by one of the
authors (Bleistein, 1977) in which h(t) was instead an "exponential"
kernel - iw in (1.2) replaced by a negative real number. Unfortunately,
the method of proof of that paper does not suffice here. The relevant
literature for both classes of integrals is cited in that earlier paper
and will not be repeated here. We do remark, however, that, in comparison
to the earlier literature, the distinguishing feature in both classes
of integrals is that the coefficients an may be something other than
non-negative integers.

To carry out the analysis below, we shall further assume that
h(t) is locally integrable on (0, «) and
a t

Yo £ #0 , a< Re vy Re @ -—a > ~1.
Q ()

(1.4) h(t) = 0(t




o

Technique of Integration.

We shall calculate the asymptotic expansion of I(A) by the
Mellin transform technique. (See Bleistein and Handelsman, 1975, Chapters

4-6.) To do so, we define
@2.1) Mbco); 2] = T hde 2= x4 iy
(2.2) MlECe)s 1-2] = [TeT%E(e)de

and use the Mellin-Parseval Theorem to write

ctiw
(2.3 I(A) = —m‘—l J A% [hsz] M (5 1 - 2] dz

c—i

We shall now quote results about this integral. They are proven

in the above cited references and/or in Titchmarsh (1948) and/or in the
papers by Handelsman and Lew listed in the references.

(i) M D\; z] exists and is analytic for 1 + a < x < 1 + r

(1i) M [h; z] may be analytically continued as a holomorphic

function to the right half plane 1 + a < x, however,

’ |

that is its rate of growth on vertical lines increases with x.

Re(x-r )/Vv =%
(6]

(2.4) M[h; 2] = o(ly]

(iii) M [f; 1 - z] is analytic for x < Re ao

(iv) For the Bromwich contour in (2.3)

te«3) 14+ a< < Re “0




The asymptotic expansion of I(X) is generated by 'moving'" the
Bromwich contour to the right, thereby picking up contributions to the
asymptotic expansion from the singularities of the analytic continuation
of M [f; P = z] . To allow for this deformation of contour, we must
impose conditions on f(t) which will insure sufficient decay of its
Mellin transform, thereby compensating for the growth of M [h; z] .

We now state Theorem I which concerns M [f; 1 - z] i
Theorem I: Suppose f(t) locally integrable on (0, 1) with an expansion

@  N(m)

B
JORS I B w778 R T
m=0 n=0

where umfw and N(m) is finite for each m.
Then

i) M [f; l—z] is analytic for x < Re a |

ii) The analytic continuation of M [f; 1 - z] to the right

takes the form

eiannI.(B

N(y)* cmn mn + 1)

E

Re(ax - a ) < k
m o

il

(2.6) M[f; 1-2] 'y
n=0 S R z)an+1

e o k1=t
n m

L -0 log (z - N 1)

+ A
B = -0

mn

+ Mk(z).

Here, in X*, we exclude the terms with Gmn a negative integer, while,

in 1", we include only terms with an a negative integer. The function




Mk(z) is¥Bnalytic for x < Rea0 + k and the result is correct for any k.

(111) M [f; 1 - z] = o(]y|” +s-1] ) as |y| » =

Result (i) was stated earlier. The proof of (ii) follows closely
the proof of (ii) in Theorem 4 of the earlier paper by Bleistein. Details
of this and a proof of (iii) are given in the appendix.

From Theorem I, we see negative integer powers of an, lead to
logarithmic branch points, non-negative integers powers lead to poles,
and all other an lead to algebraic branch points.

The principle part in the expansion of M [f; 1 - z] about such

singularities takes the following form:

Case 1: B = 4. >0
S mn —
R
t™(log t) ™ > - ——L
(z = a. — 1)
m
Case 2: B =0< 0
SRt mn

z -0a =1
tam(log t)an s ( m )

2 -1!
Case 3: an not an integer
im B
Oy Bmn e M™MprBo + 1)
t "(log t) = (am + I - 2) mn T 1

3. Main Result
We can now state the main result about the asymptotic expansion

of I(A).




Theorem 2: Let I(A) (l.1) be an absolutely convergent (perhaps improper)
integral with f and h locally integrable on (0,») and h satisfying 1.2
and 1.4 with al + y > -1, then with f neutr:iized about O and f = O
for t > 1, I(A) has the expansion

N(m)

3.0 I(A) = & b R ,an,k)
Re(um—u0)< k n=o "y »

N(m) ¢
+ £ 4 ?T_““%FK((xn,Q,A)
Re(ad -a )< k n=o 3
m (o]
-a -1~k +¢
+ 0(A o ), any € >0.

Here, for each choice of n, I* indicates those mn's for which an is
not a negative integer, while I~ includes exactly those mn's for which
an = -f, a negative integer.

As we shall see, the functions J and K are related to an orderly
asymptotic sequence with increasing Re a Their definition is fairly

complicated but their asymptotic expansions are more straight forward.

Recall I(X) is given by (2.3) repeated here:

cHio
L(A) e I A_ZM[h;z] M[f;l—z] dz

c-iw
Also recall the earlier comments on }fﬁ1ﬁﬂ stated after (2.3).

We need to consider 1(\) with Pi&; 1 - i] taking the form

(2.6). To this end we define




ctiw

=|Bi=]

(3.2) J(a,B,1) = A" %(a +1 - z)M[h;2] dz

c-i=

We must look at two separate cases.
Case 1: an # L, a non-negative integer.

In this case, J(a,%,A) is given as a residue of the integral at

a+ 1. So

1, a0t -
Eied) J(2,2,0) = 5,62 3)\ ’?M[h;z]$

z = a+ 1

Case 2: an # 2

The result is
© C einB(log X)B-j

(3.4) J(o,ByA) N £
fo XTNNEL % B = 5

with

G)r..
(3.5) ook M [hsa + 1]

J it

We must also deal with integrands arising from the second

sum in (3.1). We define

ctiw
-1
(3.6) K(a,2,)) = 5;1_1_ J\-z(a + 1 - 2z)log(z —a- 1)ME1;2] dz
c-i=




The result is

(3.7) Bleg ) v 3 ¢ e M e 1Y
j=o 3]
with Cj determined by
© C j+e-1
(3.8) zg-lMEu z + a + ﬂ = \F —; z
3=o 3

For explicit details on the above contour integrals, we refer
the reader to the earlier paper by the second author.

Now, by referring back to (3.1), let us comment on the nature
of the asymptotic sequence. As the contour is '"moved" right, the
singularities a + 1 are encountered beginning with a + 1, continuing
with increasing m. Consider the possibilities for the contribution from
al +u e Bon is a non-negative integer for all n, then we obtain a
finite expansion in powers of log A (3.3). We would then proceed to
oy + 1. However, if Bon is other than a non-negative integer, for

some n, we obtain an infinite expansion in powers of log A at al + 1

(3.4). 1In this case it makes no sense to proceed to a, + 1, since

1

it is already of lower algebraic order in A and hence, asymptotically

zero with respect to the sequence

{ X-uo_l(log A)-Bon-J}




If B , are all non-negative integers, we have the case
m

X :
(3.9) I(A) ~ L L oe -5 (A ufhi])
Re(a -a ) < k n=o 5

m O

Only in this very special case do you see contributions from each
singularity as the contour moves right. If one bmn is not a non-negative
integer, you get '"caught' at @ and have an infinite expansion in
integral powers of log A of the form J or K.
We shall close this section with an example. We consider the
integral
3 fi2

i
(3.10) 1(\) = J e lemt] ot dt

(e}
Here f(t) is a single term of the form (1.3) with
(3.11) T [ = 3/2, G = e
the last being chosen so that

3/2 3/2
(12 0 @ CLnE) = llnt! /
00

is real and positive for o < t < 1.

Our asymptotic expansion will be of the form 3.1 with only

terms of the form J(a , B , A) since B = 3/2, We have
Qo QO 00

(Vo)




(3.13) I(A) v COOF(Boo 1) J(GO.SOO,A)

A two-term expansion of I will be

3/2 ; 1/2
(3.14) T0A) ~ =iP(spey e =iflogd c, -i(log B~ ]
© A2r(s/2) 221 (3/2)
with

(i
M J)Bu aoo + ﬂ

(3o €. = ]
1 J-
where
(3.16) h(t) = eiA L 1
We get
(3217 g =] €, = =(l =9 - 4w/2)
where y = .57721, the Euler-Mascheroni constant.

We have the following two-term expansion

1/2
(3.18) I v - L‘Aﬂz&l)s’ﬂ—g— (.42279 + 1.570791) 1242

We use two-terms in order to see the imaginary part of the expansion.
Note from 3.14 the error is O*(log A)-Z}.
In Table 1 we tabulate I(A) for A= 10, 50, 100 and compare

it with results for the real and imaginary parts of I()A) obtained

10




by numerical integration using Simpson's Rule. We tabulate log A as well,
because it is the '"large'" parameter in the asymptotic expansion. We

-2
also include (log A) to give an indication of the percentage error to

/2

be expected from a two-term expansion with leading order (log »3 ot

-1/f2
error term 0{(10g A) b f.

11




A 10

log A 2.3025
(log % N .189

ASYMPTOTIC RESULT

Real Part =20252
Imaginary Part «03575

VIA SIMPSON'S RULE

Real Part -.01647
Imaginary Part .03199

RELATIVE ERRORS

Real Part 347
Imaginary Part L35

-.00085216

~
8
=0
. .
-
8
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O
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Appendix

Firstly, let us comment that the proof of (ii) Theorem 1 follows
almost exactly the proof of (ii) Theorem 4 in the earlier paper by
Bleistein. Following the notation of that proof we now break Sk(t) into

only two sums

(1) (2)
(A1) Sk(t) = Sk (t) + S (t)
Here each of the function satisfies

(A2) S, (t) =0 for el

and for £ < K

G N(m) an o K L
(A3) Sk = b NG Glog ot t (1 = &)
Re(a -a ) < k n=0 ™
an FE R
(2)
(A4) Sk = ) N(m) an a K L
Re(am—ao) < k L Cmn(log t) & (1 - t))
n=0
B . ==%
mn

Now the details of the proof follow. The proof also shows the form of
the principle parts of M[f; 1 = z] which are given in Section 2.
Now we prove (iii) Theorem 1.

For M[}; 1 - é] we consider integrals of the form

1 B o -2 L
(A5) 1(z) = [ Qopt) e ™ 1 ~2T)

(8]




With the change of variable log t = - 1, this becomes

@ - + —
L& e mn Bn T(&m Tl -tk %
(AB) I(z) = e T e (I -~ e Yy dx
0

If we do EA + B = ﬂ integrations by parts, we have
mn

o

G+e -1,

~7(l+a -2) 8
(A7) [(z) PR | . m fd { mnj ‘—IL}
' s L+ -0 dt 3 ¢

(1 +a - 2)
m

- —

L

B
! : X : mn -tk
(Note derivatives of T [l —e ] guarantee all the boundary terms
vanish.)

We consider

L+ -1 :
; ® —t(l+a_-2) f, et Kk ] d
(A8) [(z) = { e L éra {1 - [l - ] } h
(8]
[L+e_ -1
0 L
. -1(1+a_-X) i o
(A9) = ( eV e i (ga {T = [l - e rkJ } dt
with z = x + 1y.

According to extended Riemann-Lebesque Theorem by Olver (p. 73) we
have 1(z) = 0(l) since the integral converges uniformly at O and « for
sufficiently large y.

So now

=

~ [i+8

(A10) M [f;5 1 -2 = o(ly] % )

Pty s
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