
C.omputer Scece 49 pages

i ,BEHAVIORAL ISSUES IN THE USE OF INTERACTIVE SYSTEMS

Lance A./MUler w John C./Tho-as, 3ri, ,-

IBM R-searc Laboratory • , Rec __, .. /
Yorktown Heights, New York 10598

LL~

This research was supported in part by the EngineerirgaP-ycog...
Programs, office of Naval Research, Contract Number NO12C0I9
Work Unit Number NR-197-020./

> Reproduction in whole or in part is permitted for any purpose of
the United States Government.

Approved for public releasel distribution unlimited.

F

LL(I

j i'

This ~Research wavs spotdi pr yteEnierons~ao _

1Repr o seionrin who Zur ichati emte frayproeo

REPORT OCCUMENTATION PAGE BEFORE CONIPLET!NOi FORM4
IREPORT N.;mtEI4 GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUM3ER-

RC6 326 7_______________
4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Behavioral Issues in the Use of Interactive ItrmTcnclRpr
Systems ItrmTcnclRpr

6. PERFORMING ORG, REPORT NUMBER

7. AUrNOR(a) S. CON-AACT OR GR4ANT NUMBER(s)

Lance A. Miller* N00014-72-C-0419

John C. Thomas
9. PER~FORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

AREA 6 WORK UNIT NUMBERS

NR-1 97-020

it. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

International Business Machines 12/14/76
T. J. Watson Research Center, P.O. Box 218 73. NUMBER OFPAGES

Yorktown Heights, New York 10598 49
14 ,PNIORIJ AGNCY NAME & ADDREFSS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

6 4 piceoRG Naval Res earch~
Code 455 Unclassified
Arlington, Virginia 158. DECL ASSI FICATI ON DOWN GRADING

SCHEDULE~

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered fn Block 20, If different from Report)

1S. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

man-computer interface displays editors human factors
interactive systems

70. BTA -rniu on reverse side It necesisary and identify by blockz number)

ABSTRACT: This paper identifies behavioral issues related to the use
of interactive computers primarily by persons who are not computer
professionals, so-called 'general users.' This is not an exhaustive
literature survey but instead provides: (1) a structure for dis-
cussing issues of interactive computing, and (2) the authors' best
estimate of importance behavioral problems, with suggestions for
solutions.%

DD JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Ith#,, Date Entered)

'~SECURITY CI&ASSIFICATION OF THIS PAGE(When Date Entatod)

The discussion is limited in this paper to general issues which
do not take into account the-user's particular. task. .The.two majpr.
topics are System'Characteristics (performance, facilities, and
on-line information), and Interface Characteristics (dialogue style,
displays and. graphics, other input/output media),

NTISW'p~~

C-

SPECU"4ITY CLASSIFICATION OF TIS PMFl(.0o7m.nnfr#e Friforsef)

AC 6326 (#27179) 12/14/76
Computer Science 49 pages

Page I

BEHAVIORAL ISSUES IN THE USE OF INTERACTIVE SYSTEMS:

Lance A. Miller and John C. Thomas, Jr.*,

IBM Research Laboratory
Yorktown Heights, New York 10598

ABSTRACT: This paper identifies behavioral issues related to the use of interactive computers
primarily by persons who are not computer professionals, so-called 'general users.' This is not
an exhaustive litcraturc survey but instead provides: (1) a structure for discussing issues of
interactive computing, and (2) the authors' best estimate of important behavioral problems,
with suggestions for solutions.

The discussion is limited in this paper to general issues which do not take into account the
user's particular task. The two major topics are System Characteristics (performance,
facilities, and on-line information), and Interface Characteristics (dialogue style, displays and
graphics, other input/output media).

* Some of the authors' work was supported, in part, by Engineering Psychology Programs,
Office of Naval Research.

.<-" *Reproduction in whole or part is permitted for any purpose of the United States Govern-
ment.

* Approved for public release; distribution unlimited.

* We gratefully acknowledge the suggestions of Pat Goldberg, Ashok Malhotra, and Phyllis
Riesner who commented on an earlier version of this manuscript.

-,.

LLMITED DISTRIBUTION NOTICE

This report his been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from:
[BM Thomas J. Watson Research Center
Post Office Box 218
Yorktown Heiahts. New York 10598

TABLE OF CONTENTS

1. SYSTEM CHARACTERISTICS---p.4
1.1 Performance---p.4

1.1.1 Batch vs. Time-sharing---p.4
1.1.2 System Response Time---p.5
1.1.3 Availability and Reliability---p.6

1.2 Facilities---p.6
1.2.1 System Command Language---p.6

1.2.1.1 Command Organization---p,8
1.2.1.2 Argument Formats---p.8
1.2.1.3 Prompting and Defaults Within Commands---p.9
1.2.1.4 Prompting and Defaults Between Commands---p.10

1,2.2 Editing---p.10
1.2.2.1 Usage of Editors---p. 10
1.2.2.2 Computer Program Editors---p.11
1.2.2.3 Text Editors---p.12
1.2.2.4 Structural Editors and the Future---p.16

1.2.3 File Manipulation---p.18
1.2.3.1 File Manipulation Commands---p. 18
1.2.3.2 Querying the File Catalogue---p. 18
1.2.3.3 Querying Formatted Data Bases---p.19

1.2.4 Data Manipulation---p. 19
1.2.5 Programming Language Support---p.20

1.2.5.1 Programming Language Processors---p.20
1.2.5.2 Debugging and Testing Facilities---p.21

1.2.6 Inter-User Communication Capabilities---p. 23
1.2.6.1 Shipments of Data Files---p.23
1.2.6.2 Real-Time Interactions---p.23

1.2.7 Recovery Philosophy---p.25
1.2.8 On-Line Documentation---p.27

2. INTERFACE CHARACTERISTICS---p.28
2.1 Dialogue Style---p.28
2.2 Keyboards---p.30

2.2.1 Design of Keyboard Layouts---p.30
2.2.2 Special Application Keyboards---p.31

2.3 Alpha-Numeric Displays---p.32
2.3.1 Physical Characteristics of Displays---p.32
2.3.2 Information Coding: Physical Variations---p.32
2.3.3 Information Coding: Partitioning of the

Display Screen---p.32
2.4 Speech Input/Output---p.33

2.4.1 Potential Levels of Processing---p.33
2.4.2 Speech Recordings---p.34
2.4.3 Speech Recognition---p.34
2.4.4 Speech Understanding---p.35
2.4.5 Speech Output---p.35

2.5 Graphics---p.35
2.5.1 Display Devices Available---p.35
2.5.2 Input Devices for Graphics---p.36
2.5.3 Functional Capability for Graphics---p.37

2.5.3.1 Graphical Primitives---p.37
2.5.3.2 Data Transformation Functions---p.38
2.5.3.3 Non-Manipulative Operator Functions---p.39

3. A Final Word---p.40

.".,

Page 3

INTRODUCTION

We are concerned, in this paper, with behavioral issues in achieving effective computer

environments for man-computer interaction. Our target user is primarily someone who is no(

a computer professional (e.g., programmer or systems engineer), but who interacts with

computer systems to achieve specific task goals of any nature -- what one might designate as

general users. We believe that the key to achieving substantial improvement in the computing

environment lies in a better understanding of a general user's task characteristics and goals. In

particular, we identify two classes of human activities, each of which has different implications

for providing an improved user-computer environment. There is, first, the class of routine

tasks, which can be characterized as being governed by some specific procedure, the activity

cycle being initiated by some external event (i.e., event-driven), which cycle is of short

duration and produces, typically, information-conserving (or simple information-reduction)

transformations on the input data. The second activity class is that of problem-solving, and a

number of types can be identified, each with different requirements and objectives (Miller &

Thomas, in preparation). Each of these classes, and the specialized tasks within them, imply

particular and different functional capability desirable for the most effective performance.

Despite this orientation, our approach here is to consider the behavioral issues that exist even

when nothing is known about the particular user or the user's tasks of the moment. Such a

collection of considerations provides a reference that always applies, regardless of the user's

activity. We provide a detailed and (hopefully) comprehensive taxonomy of features that

characterize interactive systems. For each feature, we consider some alternative implementa-

tions, emphasizing the functional capability that should be provided in the interactive

environment -- both those specific functions which the user should be able to command of the

system, and also those support activities which the system should automatically provide for the

AL-

Page 4

user. Literature citations were chosen to provide representative -- but not exhaustive -

sampling of relevant studies.

To give some substance to, or baseline reference for, our recommendations, the reader should

assume that the general user is communicating with a powerful computer system via some

keyboard and display device. The functional capability recommended is to be understood as

additional to such a system. More concretely, the following computer system (the one with

which we are most familiar) may be assumed: the Conversational Monitor System (CMS)

component of IBM's Virtual Machine Facility, VM/370. as installed on a 370/168 computer

using an IBM 3277 alphanumeric display.

The following reviews are useful introductions to the indicated areas. For general human

factors engineering applicable to interactive systems, the reader is referred to the following:

Martin, T. 1973; McCormick, 1970; Meadow, 1970; Meister & Rabideau, 1965; Singleton,

1974; Van Cott & Kinkade, 1972. For reviews of work concerned with user-computer

interfaces see: Bennett, 1972; Davis, 1966; Kemeny, 1972; Licklider, 1968; 'lartin, J., 1973;

Martin, T., 1973; Martin, Carlisle, and Treu, 1973; Palme, 1975; Rouse, 1975; Shackel, 1969;

Tomeski and Lazarus, 1975; Walker, 1971. For a conceptual analysis of users' tasks, and

an excellent analysis of the 'ease of use' question, see R. B. Miller, 1969, 1971, respectively.

1. SYSTEM CHARACTERISTICS

1.1 PERFORMANCE

1.1. 1 Batch vs. Time-Sharing

This is much less of an issue now than it was a few years ago when interactive systems were

just becoming available. One of the most interesting findings to come out of this (sometimes

crude) batch vs. time-sharing work (aside from the slight superiority of interactive systems)

was that individual differences among programmers were often a much larger and important

.~-" -'

Page 5

source of performance variability than system differences (see, e.g., Adams & Cohen, 1969;

Sackman, 1970; Weinberg, 1971). Current discussions typically assume interactive systems

and focus on what kind of interactive systems are best. This paper concentrates on this

question.

1.1.2 System Response Time

The definition of system response time depends on the nature of the computer system in-

volved. In most studies input to the system was via a keyboard, which keyboard was 'locked'

(preventing the user from issuing further inputs) until some action (completion or error

message) was taken by the system on the input. System response time -- SRT -- thus most

of r to the time the user is prevented from doing further work following a single

,nput until the disposal of that input. (Note that present-day displays most often

do not lock out the user but permit multiple commands to be issued).

There is some data showing the effects of increasing SRT -- e.g., on subsequently increased

user response times (Boies, 1974). and on (predicted) decreasing user acceptability ratings

(Carbonell, Elkind, & Nickerson, 1968). Lancaster and Fayen (1973) review similar consid-

erations of system response time from the point of view of information retrieval. R.B. Miller

(1968) provides perhaps the best conceptual analysis, giving suggestions for maximum SRTs as

a function of 17 different kinds of user input (e.g., light pen entries, request for next page).

He and others (e.g., Engel & Granda, 1975; Schwartz, 1969) make the cogent point that the

impact on users of longer SRTs depends upon the complexity of the task engaged in -- where,

for more complex tasks, longer SRTs might, in fact, be helpful. Boehm et al carried this idea a

little further and explored the effects, with inconclusive results, of 'locking out' the user for

variable periods after the system had responded -- so as to induce the user to concentrate

more on the immediate problem at hand (Boehm, B.W., Suven, Mi.. & Watson, R.A., 1971).

Sackman and Gold (1968) also endorse such a notion.

Page 6

The profound technological improvements (hardware .and software) that have taken place

since the above studies were conducted permit greatly improved system response times, and

concerns about the absolute magnitude of delays may no longer be warranted. However, as

Carbonell et aL. (1968) and others have pointed out, it is the variability of delays, not their

magnitude, which is often the most distressing factor to users. As for the Boehm et al.

'lockout' proposal, or other artificial restrictions on computer function, such presumptive

actions may run the risk of engendering significant (and disrupting) user dissatisfactions.

1.1.3 Availability and Reliability

While there may not have been any studies specifically investigating the effects of poor

availability or reliability on user performance, the importance of these factors is high on most

people's list of important system criteria. One important, but implicit, principle appears to be:

Users will be unhappy with any system degradation. no matter how good the normal perform-

ance. For many computer applications -- e.g., dispatching, combat information systems,

process control -almost no loss in availability or performance errors can be tolerated; there is,

therefore, little point in studying behavior under known suboptimal conditions (except,

perhaps, to determine how a particular working system might test limp along with forced

limits on availability or reliability).

1.2 FACILITIES

1.2.1 System Command Languages

A user's access to a computer system and its various facilities is, in almost all cases, via a

system command language. Probably no other feature is more important in determining an

individual's effectiveness in using a computer system than this aspect. The user is often placed

in the position of an absolute master over an awesomely powerful slave, who speaks a strange

and painfully awkward tongue, whose obedience is immediate and complete but woefully

VWI

Page 7

thoughtless, without regard to the potential destruction of its master's things, rigid to the point

of being psychotic, lacking sense, memory, compassion and -- worst of all -- obvious consist-

ency.

There are a diversity of system command languages just as there are of programming languages

(e.g., Sammet, 1969), and considerable effort has been expended in the advocacy and intuitive

evaluation of their relative merits (see, e.g., Unger, 1975). While there has always been strong

sentiment for modelling command (and programming) languages on natural languages, little

progress has been made (but see Heidorn, 1976; Kelly, 1975; Miller, L., 1976; also, for a

thorough account of the complexities of natural language commands, see Rescher, 1966). It is

very likely that command languages will continue for quite a while as, at best, pidgin dialects.

There are several important behavioral issues which can be addressed, however. A typical

system command language is assumed in the discussion, wherein the first part of any command

is the reserved command word, followed by one or more 'words' -arguments -- which specify

various options or alternatives for realizing the particular command; the arrangement of the

arguments is the argument format. When the user fails to specify certain arguments, the

computer system may automatically assign default values to these. An example of a

command-argument string is:

PRINT TEXT MIXED CENTER

(cmnd) (a r g u m e n t s)

where TEXT is the data set to be PRINTed, MIXED specifies upper and lower case letters,

and CENTER causes the listing to be centered on the page. While a data-set name would

always be required, the defaults might be to use uppercase letters and left-margin printing.

Page 8

1.2.1.! Command Organization

One issue concerning command languages is the manner in which the system commands are

organized. Boies (1974) found that a majority of users on a large time-sharing system used

only a very small number of the numerous system commands available -- often employing the

simplest, least powerful, form of such commands. Such findings could result from organiza-

tions of the commands which made it difficult for isers to recall them when they were needed

(also see Kennedy, 1974). In an unpublished study, Boies subsequently ,Impared two types

of organizational approaches: a small number of broad generic commands with a large number

of arguments vs. a large number of quite specific commands with very few arguments. The

generic organization appeared to be the more useful. However, much more work needs to be

done before one could justifiably propose an 'optimal' organization strategy.

1.2.1.2 Argument Formats

There are at least two distinct methods of formatting the arguments for commands: specific

kinds of information may be assigned in a fixed relative or absolute position in the argument

string -positional format ; alternatively, arguments may be given as permutable strings of

special words indicating the argument type as well as its value -keyword formi. Both types of

formats (and some deadly combinations) occur in real systems. Concerning performance

predictions for these formats, it would seem that the positional format would impose the

greater memory load for the user, since the values of the arguments must be remembered in

both cases, and remembering the position is an additional burden. There is some support for

this view from an informal experiment in which error-rates were fcund to be much higher for

positional formatting (cf. Weinberg. 1971).

Page 9

1.2.1.3 Prompting and Defaults Within Commands

There remains the issue of what to do when the user, for one reason or another, fails to

specify some information that either could or should have been provided. In the narrow sense

this is the situation where a command has been issued, but one or more of its arguments has

not been given. There is, first, the option of disregarding the command entirely -- and many

systems so do -- and, second, if not disregarded, what to do about the missing information.

There are several options for prompting the user for missing information, ranging from a brief

listing of the missing argument names to a full display of potential values for each of the

missing items along with an easy means of indicating one's choice. For a relatively small set of

alternatives, permitting users to choose from among them might be an easier task than asking

users to generate the alternative; however, the selection mode becomes much less desirable

when the display of alternatives is very complicated or takes a long time to produce.

As an alternative to prompting, it may be possible to assign a value -- a default value --

automatically to some of the missing arguments. This is one of the most powerful of existing

computer system concepts for achieving a user-oriented environment. Essentially, the use of

defaults constitutes an agreement between user and computer as to what a 'normal' or 'usual'

working environment might be. However, problems can arise, e.g., the user does not know or

the default assignment system or doesn't understand the defaults, or the user does not have a

convenient means for changing the defaults. Perhaps the computer should (optionally) display

assumed defaults to the user.

There is considerably more that can be done to extend the default concept. For example,

users might have separate profiles of defaults which are appropriate to different tasks, such as

editing, programming, etc. Various alternatives for prompting and defaults have been consid-

ered (e.g., Martin, J., 1973), but, again, there has been very little direct empirical assessment.

Page 10

1.2.1.4 Prompting and Defaults Between Commands

One of the ways in which the default concept can be more broadly implemented is to extend it

to strings of commands, rather than just to strings of arguments within commands. The idea is

that the computer system would be given expectations concerning certain 'normal' sequences

of user commands. Such expectations could provide the basis for the following kinds of

'intelligent' inferences by the computer system: (1) supplying missing command(s) in a certain

sequence of commands; (2) supplying missing arguments for a command on the basis of

arguments supplied to previous commands; (3) recognizing that, for a series of inputs of

arguments without commands, a prior-given command should be supplied. This idea is not to

be confused with the concept of 'macros' or specialized functions written for particular

circumstances. The suggestion here is that this property of providing for defaults between

commands is a characteristic of the host computer's operating system, not a special-purpose

user program.

1.2.2 Editing

1.2.2.1 Usage

In an analysis of the commands actually issued interactively to an IBM TSS/360 system, 75

percent were found to be editing commands (Doherty, Thompson, & Boies, 1972; also see

Boies, 1974). This extremely high editing usage did vary as a function of the type of user:

programmers issued a not-so-low 50 percent editing commands while users preparing text

documents issued over 80 percent. Taking usage as a measure of importance, editing facilities

thus appear to be the most important facility provided by computer systems. Accordingly,

detailed attention will be given to these issues. (For a survey of on-line editing systems, see

Van Dam and Rice, 1971).

.~i~1

Page I I

1.2.2.2 Computer Program Editors

For the most highly-used programming languages (e.g., FORTRAN, COBOL) there are three

characteristics which should influence the nature of an editor for preparing programs: (I)

programs are primarily composed of fixed-length records (typically 80 characters); (2)

information is not usually broken across record boundaries -- so that each record, or line,

constitutes an independent entity (ignoring comments); and (3) there are fixed fields within

records of one or more character positions which are reserved uniquely for various aspects of

the programming laaguage (as labels begin in column 1, commands begin in column 7, etc., in

FORTRAN).

These characteristics suggest that, in addition to possessing the usual character/string editing

capabilities (e.g., change, insert, delete), well-designed program editors should: (1) be oriented

towards dealing with individual lines within a data-set; (2) have extcisive provisions for

establishing fields and moving from field to field (e.g., via tab controls); (3) provide for easy

entry of full-length records of characters (such as '") to serve as delineators of parts of the

program; (4) have special, easy-to-use, commands for moving groups of one or more lines

from one positicn to another, or for copying blocks of lines from one program data-set to

another; 5) provide a scheme for numbering lines to permit communication between proc-

essors of the program (e.g., the compiler -- 'ERROR IN LINE 43 ... '), as well as for local

line-oriented editing. (6) In addition, there are a variety of features that may be useful for

particular languages (e.g., checking for parenthesis balancing in an interactive LISP envionrm-

ent).

Most program editors do, in fact, have these features in one form or another (e r., the Quick

EDitor, Deutsch & Lampson, 1967; the CMS editor, IBM, 1976). Alternative variants of these

features have not been evaluated, however; nor have functional requirements for program

editing been studied empirically.

Page 12

There is an additional aspect to computer programming, which, possibly, could he taken

advantage of in editors: the lexicon of program commands, values, and operators is usually

quite small, and the arrangement of command arguments is usually in positional format. Thus,

special keyboards or abbreviations, etc., might be provided for selecting commands, and the

editor could have certain prompting/default modes for obtaining the command arguments.

There is some discussion concerning the former (e.g., Martin, 1973; Meadow, 1970; Walker,

Gurd, & Drawneek, 1975), but not the latter idea.

1.2.2.3 Text Editors

A second class of editors is one designed for the preparation of text materials -- reports,

memoranda, manuals, etc. As with programs, there are several characteristics of text which

have implications for appropriate editing features: (1) the .text is (almost) never input or

initially formatted in any absolute way -- i.e., there are no fixed-lengths to segments of input

documents, nor, within any segment, are there special 'fields' reserved for particular types of

information; finally, there are few instances of text segments corresponding to fixed-length or

positionally formatted argument strings; (2) there are, however, two universal units of

segmentation within text -words and sentences ; paragraphs and larger kinds of segmentations

are also found quite frequently; (3) there are typically rather a large number of different word

(and phrase) types in a document; however, some types have a much higher token frequency

than others; there may also be many synonymity relationships among types; (4) in contrast to

computer programs, text materials are formatted for final output in a huge variety of ways,

with many possibilities for. e.g., character-font, indentation, and spacing variations.

These characteristics imply that a well-designed text editor should have at least the following

functional capabilities: (I) text input to the system should be represented (at least to the user)

as one long character string; easy means should be provided for adding, inserting, or deleting

text segments with respect to this string; (2) location of targets within the text data-set should

Page 13

be on the basis of words, or word-phrases, in addition to a simple character-string search

capability; (3) it should also be possible to search the text for synonyms of the desired target;

(4) functions should exist for easily moving or copying text portions on the basis of sentence,

paragraph, or higher-order segments; (5) facilities should be provided to abbreviate, or
otherwise code, long input strings into much shorter strings (as, for example, 'IBM' could be

typed to input the phrase 'International Business Machines, Inc.'); (6) means should be

provided for the user to indicate all specifics as to the manner in which the final output should

be formatted -- including indentations, font selection, margins, line-lengths, headings, etc.

The situation for text editors is much worse than that for program editors. In most cases, text

editors do not possess the above characteristics and are simply line-oriented program editors

with many of the program-editing features turned off (e.g., tabs, automatic advance to next

record after fixed-length input, etc.). Text is storej as line-records, displayed to the user as

such, and, worst of all, searched on this basis. Specific problems which severely limit the

utility of text editors are discussed in detail below.

(1). Problem with searching on string basis -- In text preparation the user is almost always

thinking in terms of words, and higher units composed of words; the exception is when

m is-spellings are being considered, a very different cognitive situation. Suppose a user wished

to chiange statement (1) into (2):

(1) 1 remember what he said to me.

(2) 1 remember what he said to you.

Within most text editors, it would seem reasonable to use the CHANGE command, as

'CHANGE/me/you/'. Unfortunately, this would produce (3):

(3) 1 reyoumber what he said to me.

I*

Page 14

It is true that with concentrated attention (and four extra key strokes) the user could antici-

pate the problems and try to indicate the 'wordness' of the desired targets by surrounding them

with blanks, as:

'CHANGE/ me / you /'.

However, this would fail, since the string ' me ' does not occur in (1). The change command

would have to be e.g., 'CHANGE/ me./ you./'.

This character-string orientation of text editors is a most inconsiderate one for word-processing

users who may well have to rewrite these editors for production-environment use (e.g., Stone &

Webster Corporation, 1973).

(2). Problem with line-oriented representation -- Consider the following excerpt from a

computer-resident document:

References to the visitations of Quir

aliens are recorded in the writings of A limar

Shazam from the fifth century, B.C.. and also in

A researcher searching for references to Alimar Shazam might very reasonably issue the

command: 'LOCATE/Alimar Shazam/'. The editor would, alas, inform the user that there

was no mention anywhere of such an entity: the line-oriented search would fail since the target

word-phrase is broken between lines of the document. Clearly, the search should be made as

if the text were one long string of words.

A second problem with the line-oriented representation is that it is a line. not a sentence

which is returned by the search functions. A user requesting references to Quirs would be

returned only the sentence fragment. This is perhaps tolerable if the user is continuously

interacting with the system and can read the surrounding context; however, for automatic

Page 15

processing, e.g., collecting all sentences with certain features, such a procedure would be

unacceptable.

It should be noted that program editors cannot be made to search on a sentence basis simply

by searching for a character string in the context of a period or semi-colon. These punctuations

also have other separator functions (e.g., as in J. Doe' or 'Abel, 1956; Baker, 1957').

Separate sentence (and paragraph, etc.) markers would have to be defined.

(3). Problem with multiple target -- Now suppose the user wishes to search for any (or only)

one of a set of targets -- e.g., 'aliens', 'Quirs', or 'fifth century'. Most editors do not have

simple and direct means for expressing such disjunctive search requests.

(4) Problem with KAWIC search requests -- Very few editors would further be able to service

directly KWIC (Key Word In Context) search requests, wherein a possibly complex target

(e.g., of multiple, not necessarily adjacent, words) is to be searched for within some text unit

(sentence, paragraph) subject to the presence or absence of some other target. An example

might be: locate all sentences in which the phrases 'alien' and 'Alimar Shazam' both occur, but

the phrase 'sixth century' is absent.

The above discussion relates to the group of 1-4 desiderata of text editors. With respect to the

fifth, functions for assisting text input, based on an abbreviation strategy, are not yet

available. However, such a capability -- termed 'short-type' -- has been behaviorally evaluat-

ed in the laboratory, and there appears to be considerable utility to this approach (Schoonard

& Boies, 1973).

In contrast to the above points, concerning the sixth point of output formatting, many editors

possess excellent facilities for: (1) formatting textual materials into particular document

formats (e.g., Farjman & Borgelt, 1973; IBM, 1975) , and (2) for converting such documents

into user-defined formats appropriate for book-quality printing (e.g., IBM, 1973). Much more

Page 16

could be done, however. In particular, the user could be permitted to select from a library of

document types or publication styles. The selection would determine not only simple spacing,

margin, etc. format values, but would also indicate more complex features such as how the

structural headings of a paper were to be composed (e.g., in terms of centering, fonts,

capitalization, etc.) or how different sections of a paper might be formatted (e.g., the abstract

centered and single-spaced vs. double-spacing and longer line-length for the text body). The

user's selection could also determine what additional information -- obtained from data on file

or by prompting the user -should be inserted into the document (e.g., distribution lists and

user identification/location information).

1.2.2.4 Structural Editors and The Future

In the discussion so far it has been presumed that the target to be located, changed, displayed,

etc., has been specified literally by the user. This may be very inconvenient if the user is

interested only in dealing with any instance of a class of things: the user would have to specify

literally every member of the class, and for large -! Isses this could be quite time-consuming to

do so. It would be much more convenient if the user could define some 'structure' to be

imposed on the literal characters or words of the text (these latter corresponding to 'terminal

symbols' in formal grammars). The structure would define how the lexical items were to be

grouped into equivalence classes, subsumed under various concepts or relations, and how these

concepts were further grouped into higher-order concepts, and so forth (i.e., the 'non-terminal

symbols'). The user could then specify editing commands on the basis of these higher-order

classes by issuing the appropriate non-terminal character string. In terms of the example in the

previous section, a user could have defined a structure which would hit on 'fifth century' in

response to a request for references to historical dates. Such an approach is similar to

concepts of affording users systems which take into account, in various ways, the semantics of

the user's domain (e.g., Burton, 1974; Skinner, 1972; Tarnawsky, 1972; Wilks, 1973).

-L

Page 17

This concept of a structured editor may seem similar to certain information retrieval systems,

wherein the user can request information for various classes of information. In these latter

systems, however, the data-base is not the unformatted text document presumed here, but an

already structured representation in which classes of information are mapped onto specific

fields of separate information records. In the present concept, a user would define a personal

structure to be superimposed over an unformatted, unorganized linear word record. In this

sense a structured editor is related to the concept of a personalized information system, in

which the descriptors or indices of documents are generated and organized according to the

personal weltanshauung of the user (e.g., Mittman & Borman, 1975; Sauvain, 1971).

There are, of course, a number of problems in implementing and making usable such a system,

not least of which is the problem of specifying the user's structure (equivalent to writing a very

complicated formal grammar). Nevertheless, experimental work has begun with such editors

oriented towards assisting programmers in their work (e.g., Donzeau-Gouge, 1975; Kruskal,

1976). The Kruskal work, in particular, with its innovative coding of information by color and

flashing, has potential applicability in several other areas, including design as well as text-

processing.

One final approach, which warrants attention for its far-reaching implications, is the concept of

editing solely by telephone. A user would initially dictate a document, using a touch-tone

telephone connected to a remote computer and would indicate sentences and paragraphs in the

audio document by special button-push combinations. Subsequently, the document could be

retrieved and the touch-tone buttons used to play-back and edit this audio file. Such a system

is presently being researched under the management of S. Boics at the IBM Watson Research

Center.

Page 18

1.2.3 File Mfanipulation

1.2.3.1 File Manipulation Commands

The editing usage data (Boies, 1974) indicates that users usually created a number of different

files -- both texts and programs. There are a number of manipulations that will be performed

on these files: displays, sorts, merges, embeddings, and hard-copy output -- on local terminals

or on remote line-printers, or via punched cards, paper or magnetic tapes. Simple, direct, and

consistent means should be provided for accomplishing all of these operations independent of

the nature of individual files -- their content, size, or structure. Further, such means should be

constant across all of the environments in which the operations are permissible -- e.g., from

within editors, under control of programming facilities, or at the highest level. While few

would argue with such desiderata, there are many systems in existence which violate these

principles.

1.2.3.2 Querying the File Catalogue

In addition to some filename, files may also be characterized as to filevpe -- the kind of file,

e.g., FORTRAN, text -- and filemode -- a reference to a particular (real or virtual) storage

location of the file (these particular terms are used on the CMS VM/370 system; cf. IBM,

1976).

The user should have an easy means of determining what files are possessed, in toto, or as a

function of some aspect of their filename (e.g., all files with a name beginning with 'J'),

filetype (e.g., all PL/I program files), or filcmode (e.g., all files located in archival storage).

Further, the user should be able to produce any kind of sorted listings or displays of the

complete file catalogue. Finally, the user should be able to aggregate any sorted collection of

files into a new file to permit block transfer or other manipulation of the file group. Although

Page 19

file querying and sorting capabilities are typically found in most systems, the characteristics or

problems of usage are unknown.

1.2.3.3 Querying Formatted Data Bases

For many applications (e.g., airlines reservation systems, management information systems) the

user needs to retrieve specific data from formatted files. Many query languages have been

proposed for such purposes (Sammet, 1969),. geared mainly toward dedicated users within

specific applications. There have been some attempts, however, to provide query languages for

the casual user. The proposed user interfaces for such systems include formal tabular interfac-

es (Zloof, 1974, 1975). graphic languages (McDonald, 1975a, 1975b), structured sequences of

English-like commands (Chamberlin and Boyce, 1974) and natural language (Codd, 1974).

Behavioral work has shown that non-programmers could learn to use a laboratory query

language in about 3 hours (Thomas and Gould, 1974). An extension of this system, Query

By Example, also provides for file query commands in a syntax consistent with the data query

commands. A further review of various options for query systems is provided by Martin,

(1973). The reader is also referred to behavioral studies on the potentially relevant topics of

(1) presenting tabular information (Wright and Fox, 1970), (2) the difficulties penle h-,%..

with quantifiers (Thomas, 1976a), and (3) people's strategies in asking a sequence of querics

to solve a problem (Malhotra, 1975, Thomas, 1976b).

1.2.4 Data Manipulation

The mushrooming popularity of the interactive programming language API. might be due in no

small way to the ease with which users can perform a variety of immediate computations.

(e.g., Pratt, 1975). Only exceptionally do such facilities exist outside of an APL environment,

however. Nevertheless such a capability is, highly desired in all systems to permit users to

display, manipulate, transform, evaluate, and format their numerical data files. Many addition-

Page 20

al specialized display and transformation functions could be provided for specialized uses, such

as for applications involving geographical data bases (e.g., Carlson, 1975; Grace, 1975), for

management decision support systems (e.g., Bennett, 1975; Gorry & Morton, 1971; Newsted &

Wynne, 1976), or for specific scientific disciplines, such as Behavioral Sciences (e.g., Yntema,

1974). Despite such activity, there are almost no empirical (or theoretical) analyses of what

people do when there are manipulating data in the interest of solving some problem. Such

information is clearly mandatory for efforts designed to provide computer support of such

behavior.

1.2.5 Programming Language Support

We consider here only the overall language processing capabilities that could be made available

on interactive systems, and we make no evaluations of or comparisons among specific lan-

guages or specific processors. The reader interested in such topics is referred to the following,

partial list of sources: general discussion of programming languages (Elson, 1973; Pratt, 1975;

Sammet, 1969), programming tools and management (Aron, 1974; Metzger, 1973; Miller,

1973), comparison of programming languages or computer systems (Reaser, Priesman, & Gill,

1974; Sackman, 1970; Sime & Green, 1974; Sime, Green, & Guest, 1973; Schwartz, 1969),

discussion of new application-oriented languages (Goldberg, 1975; Hammer, Howe, Kruskal,

and Wladawsky, 1975), and behavioral problems in programming (Miller, L., 1973, 1974,

1975; Weinberg, 1971).

1.2.5.1 Programming Language Processors

As with file manipulations, the facilities for executing and otherwise processing computer

programs should be simple and consistent across programming languages and across processing

facility. Requests for special features (e.g., producing cross-reference lists) could he accom-

plished by using optional arguments in the invocation command (cf. section on System

* Page 21

Command Language). Alternatively, since users tend to program in only one language (cf.

Boies, 1974), some provision could be made to define a profile of the individual user'

preferences in program processing -e.g., personal choice of output devices, special features,

syntax-checking options, etc. The defaults for invoking the language processors could then be

matched to this profile.

1.2.5.2 Debugging and Testing Facilities

Data concerning programming errors associated with batch systems (e.g., Nagy & Pennebaker,

1971; Sackman, 1970) is more available than for interactive systems. In one study of a

time-sharing system, however, a rather amazing 80 percent (or more) of the submitted

programs were found to have no syntactic errors (errors detected by the compiler; Boies &

Gould, 1974). In another, similar, study, Moulton and Muller (1967) found that 66 percent of

college student users' programs compiled perfectly. It thus appears that, whatever problems

users may have in programming, the primary difficulty is not in producing programs with

correct syntax. Thus, investment in more and better specialized syntax-checking facilities --

e.g., line-by-line syntax checking for FORTRAN -- not only may not be justified, but also the

facilities might not even be used (cf. Boies, (1974), for evidence that this is true on a current

system).

Users do modify syntactically correct programs (e.g., Boies, 1974), however, when the

programs do not perform as they were intended to. That is, the programs are perfectly

grammatical, but the algorithm for processing the information is incorrect in some conceptual

respect (these errors may be very common -- over 40 percent in one study; Walter & Wallace,

1967). In addition to the problem of correcting such conceptual errors, apparently correct

programs must be tested for correct handling of all input by excercising the programs over a

wide range of parameter-values and input. There is thus a vital need for computer systems to

provide for users suitable debugging and testing facilities.

Page 22

The requirements for such facilities, and the efficacy of specific tools, has been extensively

considered (e.g., Balzer, 1969; Boles & Spiegel, 1973; Brown & Sampson, 1973; Gaines,

1969; Rustin, 1971; Satterthwaite, 1972). Many systems provide generalized and extensive

tracing and monitoring capabilities (like selective/full on-line/post-mortem traces, control-path

monitoring, etc; see Aron, 1974; Metzger, 1973; Van Tassel, 1974); some programming

languages, as opposed to the operating systems, even provide sophisticated debugging options

(e.g., ALGOL W, cf. Van Tassel, 1974 pp. 151-152).

There are a number of packages for generating test cases to test programs (e.g., Van Tassel,

1974), but these will only be able to test for some general set of possible invalidities. Testing

packages could be improved, for example, if the programmer or designer specified ranges,

bounds, exceptions, etc. on the program variables: this information could be embedded in the

progrim, and test-cases could be generated using these restriction specifications. Another,

very promising, new approach is to treat the program much as a set of algebraic equations and

supply symbolic inputs to permit partial equations and then execute the program symbolically

(e.g. Hantler & King, 1976; King, 1974). Such an approach would permit testing for whole

classes of inputs at one time, and, with suitable interactive direction from the programmer,

greatly increase the comprehensiveness of testing. Between these two suggestions for improv-

ing program testing is the concept of automatically analyzing programs to determine the ranges

or other restrictions on variables assumed at various points in the program; such deductions

could then be used to guide and restrict the selection of test cases (e.g., Harrison, 1975).

One area in which there could be substantial improvement concerns facilities for modifying

programs. We suspect that the programmer intent on modifying the program will often be

concerned with the flow, use, and modification of data. While there is significant work on

data-flow analyses (e.g., Allen & Cocke, 1975; Rosen,1975), and much progress in automati-

cally providing all static information about data entities (e.g., Tapscott, 1974), there is almost

Page 23

nothing known about the behavioral problems of program modification or what tools might be

useful.

1.2.6 Inter-User Communication Capabilities

1.2.6.1 Shipments of Data Files

Ignoring costs, it would be desirable to allow users to transfer data files among themselves,

either on the same system or between different systems connected by phone-lines. Ideally.

the shipment -- and reading -- commands should be no more complex than:

SHIP <USERNAME> <FILE> <COMPUTER SYSTEM>

READ SHIPMENT <NEW FILE NAME>.

As with all file manipulation commands, the user should be able to transfer files in the same

way regardless of the size, content, or structure of the file.

1.2.6.2 Real-Time Interactions

One of the most exciting potentials of computers is that of distributed interactive work. The

scenario is that of widely-scattered users -- possibly in different countries -working together on

a common task, e.g., software development via computer display terminals. One can imagine

several programmers discussing a particular program, displayed to all. with provisions for each

person to selectively point at or annotate aspects of the program, with further capability for

executing and tracing the program from each station. Englebart has long been one of the

strongest advocates of such a scenario, particularly emphasizing text preparation (e.g..

Englebart, 1962; Englebart, Watson, & Norton, 1973), but the idea is present in many other

forms, particularly under the notion of video teleconferencing (see Dunn, 1975).

One problem that may occur with work shared work via video-only terminals is that the audio

channel seems very important, at least for two-person problem solving (Chapanis, 1971) Using

computer displays for distributed work presents issues concerned with the communication

- " -: - , t. f ; ".

Page 24

channel, and issues concerned with the work channel. The communication channel refers to

various messages that workers may wish to send to each other which should not be included in

the final text, program, etc. The work channel refers to the evolving end product of their

shared activity; that is, the program. text, system etc. With respect to communications, some

of the problems (and example solutions) are: (1) providing for a separate display area for the

user messages (e.g., partition the screen into upper and lower parts); (2) managing the

interchange -- preventing two or more from 'talking at the same time', buffering the input from

the next 'speaker', etc. (e.g., users must transmit a signal corresponding to raising one's hand

for recognition, and transmission of their message is blocked by a central controller until such

a message is received by the controller and acknowledged); (3) identifying the participants

(e.g., users enter identification name which the system automatically inserts at the beginning of

each transmitted message): (4) recording the communications and accessing the communication

record (e.g., write a record into a historical file for each message; temporarily replace the

working display area with the communications file when necessary).

Potential problems with the work channel (and possible remedies) are: (I) providing each user

the capability to 'point' selectively at the work (e.g., provide multiple cursors for each,

separably controllable); (2) managing the modifications of the work -- how is editing to be

done, how do individuals obtain personal copies of work, etc. (e.g., users sign-on under their

own ID but link to a common ID; this common working environment has provisions for saving

work, editing, etc., while each user continues to have access to personal files).

These and other problems have been addressed to some extent in Englebart's work (e.g.,

Englebart et al. 1973). It is somewhat difficult to do much more than speculate at this point

since there is very little experience with such situations, and no theory of human communica-

tion is able at the present to predict the problem areas. There is some encouraging ongoing

work. however: Chapanis' controlled studies of communication under a variety of communica-

• 'o AW: N' 1,

Page 25

tion modes (Chapanis, 1971; Ochsman & Chapanis, 1974), the development of much more

sophisticated models of knowledge (e.g., Bobrow & Collins, 1975; Mann, 1975) and the

development of methodologies for empirically studying natural multiple-person inter-

communications ('multilogues'?; e.g., Mann, Moore, Levin, & Carlisle, 1975).

1.2.7 Recovery Philosophy

Recovery refers to the re-instatement of some past state of the computer system environment,

usually after some kind of error or malfunction. There has been almost no general considera-

tion of recovery approaches (see Engel & Granda, 1975), but four types of recovery situations,

with respect to the user, can be identified: (i) user correction of data input, (2) user abolish-

ment of prior commands, (3) abnormal exit from within some program or programming

language processor, and (4) system crash.

With respect to (1), user corrections of input data, most displays now provide for local editing

(i.e., correction) before transmission. Following transmission, the user should have available

some reserved key or command to provide for the correction, without having to invoke an

editor. It seems likely that data input errors are usually caught immediately by users, and

extensive buffering of input data should not be required.

A more complex situation, however, occurs for situation (2), when a user wishes to 'undo' the

effects of some number of prior commands -- as, for example, when a user inadvertently

deletes all personal files. Recovery from such situations is handled by most systems by

providing 'backup' copies of (all) users' files, from which a user can get restored the personal

files as they were some days previous. While this is perhaps acceptable for catastrophic errors.

it would be quite useful to permit users to 'take back' at least the immedi;tely preceding

command (by issuing some special 'undo' command). Implementation of such a feature would

require buffer storage of all of a user's files which were modified by the last command and

Page 26

thus could be an interesting data-management problem for the systems designer. Nevertheless,

the benefit to the user in having -- even just knowing of -the capability to withdraw a com-

mand could be quite important (e.g., easing the acute distress often experienced by new users,

who are worried about 'doing something wrong').

The first two recovery situations (I & 2) require the user to detect the undesired situation and

initiate corrective actions. The second two situations (3 & 4) originate with the action of the

system. For both of these kinds of situations it is most desirable to provide users with two

pieces of information: what happened and why, and how to recover.

Recovery situation (3), abnormal terminations from program execution, from compilations, or

from any program controlling the user session, typically occur because the program is being

asked to do some proscribed action, and no code has been written to test for and handle that

particular error. Often, in such cases, the user is given no more than an abrupt 'JOB

ABORTED' or similar message. Nevertheless, the first part of the error message should simply

indicate what rule was violated and where in the program this occurred. Secondly, users

should be provided with information indicating what they could do to mend the situation, to

continue processing. Ideally, perhaps, all system and user programs would run under the

control of and be monitored by some supervisory system which somehow preserved, and

helped restore, the world just prior to the abnormal termination.

Finally, even a meta-supervisor is of no help in recovery situation (4), when the systenrrashes

-- experiences an unscheduled and abrupt termination of operation. Here, typically, all is lost.

While data sets can be recovered in the form in which the user last remembered to save them

consequences of crashes onto the system. Thus, the system could provide for copying user

files quite frequently onto mass storage media configured (and powered) independent of the

tit.'

Page 27

primary processor. Following a recovery from a crash, the system would automatically recreate

the prior file environment.

1.2.8 On-Line Documentation

The user will require a variety of on-line information: about personal files (see section 1.2.3),

about errors or problems encountered in using the facilities (see section 1.2.6), and, more

generally, about what facilities are available and how to use them.

This notion of on-line documentation of system facilities is not a new one (e.g., Thompson, C.,

1970), but development efforts are still largely experimental (e.g., HELP, 1976). The

approach often suggested for and followed in interactive information retrieval systems is to

have the user move down some hierarchical classification tree via choices from menus until an

appropriate information document can be retrieved, typically on a key-word basis (e.g.,

Thompson, C., 1970; Thompson, D., 1971). This is a reasonable approach and can be very

useful in saving users the problems of maintaining and searching among numbers of hard-copy

m~anuals. One difficulty with this method is that the traversing of the hierarchy via the menus

can be time-consuming and tedious.

A better solution would be to permit the user to invoke the assistance of the on-line facility via

a natural language question. One demonstration of such an approach involves a modification

of Weizenbaum's ELIZA program (Shapiro & Kwasny, 1975). The IBM Research HELP

facility (1976) is a hybrid of the two approaches: after a user has invoked the facility, an

attempt is made to respond to the user's natural language questions with a menu of pertinent

choices. Because of the limitations of retrieval by KWIC (Key Word In Context) approaches,

it would seem that further development of natural language assistance facilities will also have

to be accompanied by automation of conceptual indexing of the reference manuals and other

documents.

.',

Page 28

In addition to this work, which is directly concerned with providing users on-line information-

retrieval assistance facilities, there is a great deal of promising research activity concerned with

development of natural language systems for specialized applications (for an excellent review,

see Walker, 1973; also see Malhotra, 1973; Malhotra & Sheridan, 1976; Thomas. 1976:

Heidorn, 1976).

2. INTERFACE CHARACTERISTICS

2.1 DIALOGUE STYLE

We propose here a classification in which user-system dialogue styles can be viewed as

differing basically in terms of two independent characteristics: (1) whether the interchange is

guided overall by the user or the system, and (2) whether the user has to make a choice of his

input from a set of alternatives presented by the system or else is able to provide a free

response.

The party that is the 'guide' is the one that takes the initiative during the course of the

exchange and also decides on a satisfactory termination point. For example, if a questionnaire

were automated on a computer system, and various persons interacted with the system to

provide their views, it would be the system that would be the guide. This is also true of some

of the newer computerized sales check-out stations which prescribe a fixed routine for

data-entry from the clerk. In most situations, however, the user is the guide.

If, in the above questionnaire situation, the system phrased questions in the form 'PLEASE

ENTER YOUR AGE: ', the user would be unconstrained as to input and would be in the free

response mode. However, if the question were phrased: 'PLEASE INDICATE YOUR AGE:

(1) LESS THAN 18, (2) BETWEEN 18 AND 30, (3) OVER 30', the user would he in the

forced choice mode. Although it might appear that when users select from the system's menu

the system must be guiding the interaction, this forced-choice vs. free-response distinction is

Page 29

independent of the question of who is the guide. For example, for a computer questionnaire,

the computer creates a situation in which (1) the system is the guide, and (2) the user is in the

forced-choice mode. However, in another situation the user may, for example, have invoked

some on-line Help facility (see section 1.2.7) and is presented with a menu of selections from

which to choose the closest to his information requirement. Here, the system is definitely not

the guide, but the user is still in the forced-choice mode.

Since the two distinctions are independent of each other, there are four basic types of dia-

logues, and each has different advantages: (1) System guides/user has forced-choice -- this is

most appropriate for routine task activities (see Introduction) where it is appropriate to step

the user through a fixed procedure, providing menu selections at each step. Not only may this

enhance the speed of accomplishing the task, but also, the restriction of input to a small set of

alternatives greatly reduces the possibilities for error. When the user enters a number, e.g.,

item stock number, as part of the guided task, the forced-choice concept is still considered to

apply, since (1) the user is forced to pick a number rather than anything else, and (2) quite

often the number will be checked against expectations and rejected if out of bounds, etc. This

guided/forced situation is also appropriate for structured interviews, surveys, or any

information-gathering activity in which the topics and categories of interest can be specified

ahead of time.

(2) System guides/user has free.response -- this dialogue is particularly appropriate when the

overall objective is unstructured information-gathering -- such as an interview in which the

user is asked general questions (e.g.,'What are your life goals'), where providing structure

might actually interfere.

(3) User guides/user has forced-choice -- this combination is desirable when the user is at

least somewhat knowledgeable about possible requests he could make of the system, or when

the requirement to make a free-choice would be an unnecessary burden. This dialogue style is

Page 30

often chosen for allowing a user to a select desirable system alternatives or information

possibilities (see section 1.2.7).

(4) User guides/user has free-response -- this provides the maximum latitude for the user and

is therefore most appropriate for experienced and confident users performing complex tasks.

This situation also is the least structured and, with current technology, allows the maximum

opportunity for miscommunication between user and system.

Heuristics for shifting from one to another of these modes can easily be imagined as a function

of the user's difficulties and desires during the session. For example, in a user-guided interac-

tion, the dialogue could be shifted from that of free-response to forced-choice either by signal

of the user or on the basis of the system's detection of inordinate user difficulties.

The above classification is, of course, a great simplification, intended only as a very broad and

general set of distinctions. When specific details of applications are taken into account -- e.g.,

how many alternatives, how information should be best arranged on the screen, whether a

keyboard can be made available or not, etc, -there are a great number of possible variations.

Martin (1973) would still appear to be the best reference source for guiding selection of any

kind of special purpose dialogue style (also see Eason, Damodaran, & Stewart, 1975).

2.2 KEYBOARDS

2.2.1 Design of Keyboard Layouts

Delving into the question of the appropriate design of a full-character keyboard is a truly

remarkable experience. Almost from the moment of its inception about a century past, one

finds that the standard QWERTY keyboard has been under strong attack from a seemingly

inexhaustible series of challengers, here claiming it has a poor arrangement relative to the

letter sequences in English (e.g., Dvorak, Merrick, Dealey, & Ford, 1936), and there asserting

it is the cause of a variety of aches and cramps (e.g., Ferguson & Duncan, 1974). In its place

Page 31

have been proposed an inventor's-dream series of ingenious alternatives, many of these

involving the idea of a 'chord', involving simultaneous depression of any number of keys (see

review by Seibel, 1972). The fact remains, however, that no alternative has shown a realisti-

cally significant advantage over the QWERTY for general purpose typing (see the excellent

review by Hanes, 1975).

2.2.2 Special Application Keyboards

When the typing application has special restrictions, then special purpose keyboards most

probably must be devised -- as the chord-principle stenotype machine was designed to meet

the speech-rate and silence requirements for courtroom and similar environments. In particu-

lar, when it is appropriate to restrict the alphabet in some way, , then the question of keyboard

layout of the key subset is a very relevant performance consideration. The most obvious

example is the layout of keyboards limited to numerical data entry. The two basic contenders

involve a 3 x 3 arrangement of the digits 1-9 with 1-2-3 on the top (for touch-tone tele-

phones) and 1-2-3 on the bottom (as in adding machines); a minor variation is whether the

zero is placed above or below the matrix. While these variations produce comparable perform-

ance effects, marked deviations from them lead to degradations (e.g., Conrad, 1966; Conrad &

Hull, 1968).

Aside from the very common numerical keyboards, there are an enormous number of special

purpose keyboards with keys representing anything from phrases to graphic figures to whole

programs. Here, careful analysis is required, and one should become familiar with the many

issues underlying choice of such keyboards (see Martin, 1973; also, cf. Burch & Strater, 1974).

i

- ..-

Page 32

2.3 ALPHA-NUMERIC DISPLAYS

2.3.1 Physical Characteristics

There are a number of physical aspects to displays (both alpha-numeric and graphics) which

affect perception and thus may impact performance -- e.g., flicker, luminance, CRT scanning

patterns, contrast. Most of these factors are fairly well understood, and acceptable/desirable

parameter values can be identified in most cases. Similarly, the effect of various character

fonts on visibility and readability is also well known. Although one's choices may be restrict-

ed, it is nonetheless important to ensure that one's particular system is within preferred limits,

and there are a number of excellent reviews which can be consulted (e.g., Gould, 1968,

Martin, 1973; McLaughlin, 1973; Rouse, 1975).

2.3.2 Information Coding: Physical Variations

It is often important to discriminate among different classes of information simultaneously

present on the display. One technique for accomplishing this involves varying the physical

parameters of the characters. At least four options are possible, and each provides for a

different capability of discriminating among a set of items (maximum recommended set size

shown in parentheses; see Martin, 1973): size (e.g., as capitals vs. mixed cases, 2-4 items),

color (6), flashing (2), and brightness (2).

2.3.3 Information Coding: Partitioning of the Display Screen

Independent of coding by character variations, the screen could be partitioned into separate

areas for the following particular types of information: (1) main work area (e.g., 20 lines) --

either for text, system-supplied sclection menus, or for a transaction record; (2) input

preparation area (e.g., 1-2 lines) -- for generating (and locally editing) the next input to the

system; (3) system facility indicator (e.g., 1/2 line) -- indicating what system facility has

, .,. '- .

Page 33

been invoked (e.g., editor, compiler) and what the operating level of that facility is (e.g., for

editors, the recursion level and tab settings, for compilers, the options and execution mode);

(4) diagnostic area (e.g., 1 line) -- for indicating, when appropriate, what the nature of the

condition was that terminated processing in some facility, and also what the user could do to

restart; (5) Fixed response area (e.g., 1-4 lines) -- for implementations in which the dialogue

(see section 2.1) is menu-driven or for applications in which a fixed set of inputs/responses

are applicable for all activities within the application.

2.4 SPEECH INPUT/OUTPUT

2.4.1 Potential Levels of Processing

In the transmission of any set of meaningful symbols -- but particularly so in the case of

speech input -- it is important to distinguish between three levels of processing which the

receiver can perform. There is, first, what may be called non-coded storage, which involves

only a reproduction and storage of the input -- corresponding to photostatic copies of docu-

ments in the visual domain, and to simple voice recordings in the audio domain. Secondly,

there can be recognition, involving the (rule-governed) segmentation and coding of the input

symbol stream into units which are 'meaningful' in the sense of possessing a matching pattern

in some morphemic reference lexicon, which lexicon might also contain other information to be

associated to the entries. Third, there is understanding or comprehension which implies a

coding of the recognized lexical units for association with some semantic representation (e.g.,

a knowledge structure; see, e.g., Bobrow & Collins, 1975).

In the discussion of these levels which follows, the staggering difficulties of technically

accomplishing the various kinds of processing are deliberately omitted. Since the technology

for speech processing in most cases is unavailable except on a very limited research basis , the

treatment here is necessarily more of a review of the state of the art than a discussion of, at

present, indeterminable behavioral issues.

' " . - , . . l

Page 34

2.4.2 Speech Recordings

At the lowest level of symbol transmission and receipt -- non-coded storage -there is a

remarkable amount of utility which can be realized in such a user-system interaction involving

(computer-digitized) speech recording. Users can. first of all, use such a facility as a message

distribution center to replace or augment document channels. Secondly, with suitable interpola-

tion of signals to code sentence and paragraph, etc., structures, such a system could be used

for later audio-editing (cf. section 1.2.2.3). Third. messages could be recorded and stored with

certain classification codes which would permit their being accessed selectively (locally and

remotely) as part of a general audio information storage and retrieval system. Finally, and of

a different nature than the above, there is the potential of using speech recordings for auto-

matically verifying the identity of the speaker (e.g., Das & Mohn, 1971).

2.4.3 Speech Recognition

Two levels of speech recognition can be identified: isolated word recognition and continuous

speech recognition. Intermediate between these is a form of recognition of continuous speech

into which have been inserted exaggerated inter-word delays by the speaker.

Almost perfect isolated word recognition for vocabularies of 30-200 words is, more or less,

well within the state of the art (e.g., Flanagan, 1976; Hyde, 1972). Remembering that the

lexicons for useful subsets of programming languages could be included within such a vocabu-

lary, such a capability provides for at least technical (if not economic) feasibility in exercising

considerable control over a computer system by voice.

Continuous speech recognition is a vastly more difficult task than single-word recognition,

primarily because of the uncertainties involved in obtaining the correct word segmentations

(e.g., Reddy, 1975). One of the obvious and interesting applications of such a processing

capability is the idea of a speech typewriter: a user speaks into one end of the processor, and a

Page 35

crisply typed manuscript appears at the other end (e.g., Flanagan, 1976; Jelinek, 1976). While

a very narrowly-realized implementation of such a system might be able to be constructed in

the next 10 years or so (e.g., Flanagan, 1976), any broader continuous speech recognition may

well require a generation (and may well depend upon the progress in the foliowing problem

area).

2.4.4 Speech Understanding

Processing at this level is equivalent to that of natural language understanding. While

extraordinary progress has been made in this field in the last decade, it is only now that the

extent of the difficulties can be appreciated: understanding is not going to be very much a part

of user-system interaction for many years (e.g., Bobrow & Collins, 1975; Elithorn & Jones,

1973; Heidorn, 1976; Reddy, 1975).

2.4.5 Speech Output

Computer-synthesized word production, on the other hand, is very much a here-now phenome-

non (e.g., Flanagan, 1975; Smith & Goodwin, 1970). Electronic equipment can now output

signals sounding remarkably like words produced by a human voice (male or female -- the

latter being more difficult). However, natural sounding continuous discourse will require much

additional research. From the point of view of the central computer processor, the speech

synthesizer is just another peripheral output device, and thus almost anything that can be

output on a typewriter could be spoken.

2.5 GRAPHICAL DEVICES

2.5. 1 Display Devices Available

Two basic types of graphical displays are currently available: the standard cathode ray tube

(CRT) and the more recent storage devices. The advantages of the former (aside from the::,~. ~.

Page 36

long experience with it) lie mainly in its selective write/erase capability. Its disadvantage is

primarily that the image must constantly be refreshed, and this requires additional local

storage buffering and refresh capability or else direct stimulation from the central computer

processor.

The storage tube, on the other hand, requires the equivalent of only one CRT sweep to write

the screen, and the image will persevere for an indefinite period of time. Although the refresh

problem is therefore solved, storage tubes do not permit selective erasure at the present time --

it is all or nothing. A less serious problem of many storage tubes is the bright visually discon-

certing flash that accompanies a screen erasure. Nevertheless, for many applications, the

storage tube may be more desirable. (for a review of the display device considerations, see

e.g., Walker, Gurd, & Drawneek, 1975; Newman & Sproull, 1974).

2.5.2 Input Devices for Graphics

Input devices can be partitioned into those that input information directly into the display

device vs. those that input into a graphics tablet. The former category can further be divided

into those devices which operate directly on the face of the display and those which remotely

position the display's cursor.

Devices operating directly on the display face include the well-known light pen and, more

recently, the user's pointing finger (triggering either acousticsensing or resistance-locating via a

grid overlay). There is an immediacy to such devices that make them attractive, but there is the

potential of disrupting keyboard entries by requiring such pointing or touching actions.

When substantial material must be input via the keyboard, it is probably preferable to use

cursor-positioning devices which are closely associated with the keyboard (such as the four

cursor keys on the IBM 3270 keyboard just to the right of the main OWERTY keyboard).

Alternatively, some analogue device could be employed, such as a joystick, tracker-ball, or

Page 37

something like Englebart's famous 'mouse' (see Prince, 1971; Ritchie & Turner, 1975; Walker,

Gurd, & Drawneek, 1975).

The second major class of input devices, the tablets, involve a flat surface on which is drawn

the desired material, which input is electronically sensed by several possible means, transmitted

and re-created (with or without improvements such as straightening lines, etc.) on the primary

display. These devices would appear to have their greatest utility either for free-hand irregular

drawing or for tracing of other documents. (See Gammill, R.C., 1973; Corley & Allan, 1976;

Ritchie & Turner, 1975; Walker, Gurd, & Drawneek, 1975).

2.5.3 Graphic Function

The functional capability that is required to support completely particular graphics applications

has, it is argued, two components: a set of specialized functional capability customized for the

particular application, this built out of, or in addition to, some general functional capability

which is common to all graphical applications. It is this common base set of functions which

we consider here. For examples of the additional customized functions, see, e.g.: for graphics

and art, Csuri, 1974; for graphical circuit design, Walker, Gurd, & Drawneek, 1975, Chapter

1; for highway construction with graphic simulations, Moffett, 1974.

2.5.3.1 Graphical Primitives

It is presumed that in graphical applications, as in any application, it will be necessary to

provide linguistic annotations at various points. Thus, some capability for alphanumeric input

(and its editing) is required. The essential nature of graphics, however, involves the additional

capability to describe geomefrical properties. We view the graphical properties as being: (I)

points, and (2) lines connecting the points.

Page 38

Systems vary greatly in the manner in which these primitives, particularly lines, are defined.

Indeed, the particular method of implementation is best dictated by the requirements of the

application (as line drawing in one application, e.g., architecture, might best be accomplished

by specifying the end points, whereas in another application, e.g., cartoon animation, the user

might best specify the exact intermediate points). For discussions of primitive requirements,

cf.: Foley & Wallace,1974; Newman & Sproull, 1974; Spence, 1976; Walker, Gurd, & Draw-

neek, 1975.

2.5.3.2 Data-Transformation Functions

Four types of transformations are required as primitive capability for graphics applications

(e.g., Newman & Sproull, 1974; Walker, Gurd, & Drawneek, 1975).

SHIFTING: Performing an additive transformation of the (x,y, and possibly z) coordinates of

all points of an object by some delta amount (e.g., x'=x + k). The result is a size-invariant

spatial translation of the object.

SCALING: Performing a multiplicative transformation of the coordinates of an object by

obtaining a product of some scaling factor, S (e.g., x'= xS where the scaling factors on

different axes need not be the same). The result is compression (for S < 1), magnification

(for S > 1), or reflection about an axis (for negative-values S).

ROTATION: Performing a trigonometric transformation of object coordinates (e.g., x' =

xcosA + ysinA where A is the angle of rotation). The result is a rotation of the object about

an intrinsic axis by angle A.

CLIPPING: Defining a rectangular area of the total viewing space such that only the object

points which are within this space will be viewable.

Page 39

WINDOWING: A derived transformation, but commonly referred to, involving, necessarily, a

clipping transformation of the view, but, in addition, providing for other transformations

simultaneously to be made.

2.5.3.3 Non-Manipulative Operator Functions

In addition to primitive object transformations, there are a basic set of non-manipulative

operations to be applied to the graphical objects for which provision must be made (refer, also,

to atuove references).

LOCATE: Provide for the identification of a particular point in the graphical space. This may

be accomplished directly with one of the input devices which operate directly on the display

face (e.g., light rien or finger, see section 2.5.2); alternatively, a cursor can be positioned with

one of the indirect input devices such that it 'occupies' the desired point.

DEFINE OBJECT: Designate a located point -and all points implied by that located point

-- to constitute some user-defined object. This object can subsequently be named (see below).

The concept of implied points rests on some programmed basis for grouping or otherwise

associating points in the graphical space. For example, the basis of association might be that

of continuity of points. The defined object returned under this relation would be all of the

points adjacently continuous to the located point. Thus, location of a point on a rectangle,

under this principle, would return the whole rectangle as the user-defined object. (This is a

modification of Folley & Wallace's concept).

NAME OBJECT: Assign some character-string name to a user-defined object. Multiple

user-defined objects can thereby exist simultaneously, and operations and transformations can

be performed on them by substituting the name as the argument instead of a point or other

structure actually in the graphical space. This operation should also be extendahle to permit

the assignment of names to particular operations performed on objects.

Page 40

VALUATEIEVALUATE OBJECT: The operation of valuating an object is the assignment of

some value to that object with respect to some attribute or relation (e.g., length). This

object-attribution act is distinct from naming in that the name applies to all aspects, including

values, of an object, whereas a value is only one characteristic of an object.

The operation of evaluation returns the value assigned to an object on some particular

attribute or relation.

3. A FINAL WORD

Although we have touched on many issues involved in many aspects of user-computer interac-

tion, undoubtedly there are numerous issues wc have not broached, or others we have dealt

with only superficially or with too strong a bias. Such is the characteristic of a complex field

-- that no one review does justice to the whole area-- and it is most encouraging to us that

concern with the behavioral issues of computer systems now is growing full-size to equal status

with the more traditional concerns with computer architecture and internal software.

In view of the expected incompleteness of our treatment here, we very much welcome

additions and critiques from you, the reader, with the intent of updating this review with your

contributions at some time in the future.

Page 41

REFERENCES

Adams, J. and Cohen. E. Time-sharing vs. instant batch processing: An experiment in
programming training. Computers and Automation. March 1969, 30-34.

Allen, F.E. Interprocedural data flow analysis. IFIPS Congress report, 398-402, 1974.

Allen, F.E. and Cocke, J. A program data flow analysis procedure IBM Research Report,
RC 5257, 1975.

Aron, J.D. The program development process: Part 1. The individual programmer. Reading,
Mass: Addison-Wesley Publishing Co., 1974.

Balzer, R.M. EXDAMS -- EXtendable Debugging And Monitoring System. AFIPS Confer-
ence Proceedings. Volume 34, 1969.

Bennett, J. L. The user interface in interactive systems. In Cuadra, C.A. (Ed.) Annual Review
of Information Science and Technology. Volume 7. Washington, D.C.: American Society
for Information Science, 1972, 1.59-196.

Bennett, J.L. User acceptance of decision support systems: The role of an integrating agent.
IBM Research Report, RJ 1502, 1975.

Bobrow, D.G. and Collins, A. (Eds.) Representation and Understanding. New York: Academic
Press, Inc., 1975.

Boehm, B.W., Seven, M.J., and Watson, R.A. Interactive problem-solving -An experimental
study of 'lockout' effects. Proceedings of Spring Joint Computer Conference. 1971,
205-210.

Boies, S.J. User behavior in an interactive computer system. IBM Systems Journal, 1974,
13, 1-18.

Boies, S.J. and Gould, I.D. Syntactic errors in computer programming. Human Factors,
1974, 16, 253-257.

Boies, S.J. and Spiegel, M.F. A behavioral analysis of programming: On the use of interactive
debugging facilities. IBAf Research Report, RC 4472, 1973.

Brown, A.R. and Sampson, W.A. Program Debugging. New York: American Elsevier, 1973.

Burch, J.G., Jr., and Strater, F.R., Jr. Information Systems: Theory and Practice. Santa
Barbara, Caiifornia: Hamilton Publishing Co., 1974.

Burton, R.R. A semantically centered parsing system for mixed-initiative CAI systems. Paper
presented at the Association for Computational Linguistics Conference, Amherst, Mass,,
July, 1974.

+ dl

Page 42

Carbonell, J. R. On man-computer interaction: A model and some related issues. IEEE
Traits. on Systemn Scence and Cybernetics. 1969, SSC-5.

Carbonell, J.R., Elkind,J.1., and Nickerson, R.S. On the psychological importance of time in a
time-sharing system. Human Factors, 1968, 10, 135-142.

Carlson, E.D. Using large data bases for interactive problem solving. IBMf Rerearch Report,
RJ 1585, 1975.

Chamberlin, D. D. and Boyce, R. F. SEQUEL---A Structured English QUery Language.
IBM! Research Report, RI 1394, 1974.

Chapanis, A. Prelude to 2001: explorations in human communication. American Psychologist,
1971, 26, 949-961.

Codd, E. F. Seven steps to rendezvous with the casual user. IBM Research Report, RI 1333.
1974.

Conrad, R. Short-term memory factor in the design of data-entry keyboards. Journal of
Applied Psychology. 1966, 50, 353-356.

Conrad, R. and H~ill, A.J. The preferred layout for numeral data-entry keysets. Ergonomics,
1968.]1. 165-73.

Corley, M.R. and Allan, .J.. Pragmatic information processing aspects of graphically accessed
computer-aided design. IEEE Transacti 6ts on Systemns, Alan, and Cybernetics. 1976,
SMC-6. 434-439.

Csuri, C. Computer graphics and art. Proceedings of the IEEE, 1974, 6?, 503-5 15.

Das, S.K. ano Mohn, W.S. A scheme for speech processing in automatic speaker verification.

IEEE Transactions on Audio and Electroacoustics, 1971I, A U-1 9. 32-43.

Davis, R.M. Man-machine communication. In Cuadra, C.A. (Ed.) Annual Review of
Information Science and Technology. Volume 1. New York: lnterscience Publishers.
14)66. 22 1-254.

Deutsch, L.P. and Lampson. B.W. An online editor. Communications of the A CM. 1967,
10. 793-799.

Doherty, W.i., Thompson, C.H., and Boies, SiJ. An analysis of interactive system usage with
respect to software, linguistic, ane scheduling actributes. IBM~ Research Report. RC
3914. 1972.

Donzeau-Gouge, V., Iluct. G., Kahn, G., Lang, B., and Levy, 1.1. A structure oriented
program editor: a first step towards computer assisted programming. Laboratoire de
recherche en informutique et automatique Rapport de Recherche. No. 114, 1975.

Dunnt, D.A. Communications technology. In Cuadra. C.A. and Luke, A.W. (Eds.) Annual
Review of Information Science and Technology. Washington. D.C.: American Society
For Information Scienice, 1975, 165-193.

Page 43

Dvorak, A., Merrick, N.L., Dealey, W.L., and Ford, G.C. Typewriting Behavior. New York:
American Book Co., 1936.

Eason, K.D., Damodaran, L., and Stewart, T.F.M. Interface problems in man-computer
interaction. In Mumford, E. and Sackman, H. (Eds.) Human Choice and Computers.
New York: American Elsevier Publishing Co., 1975.

Elithorn, A. and Jones, D. (Eds.) Artificial and Human Thinking. San Francisco: Jossey-
Bass Inc., 1973

Elson. M. Concepts of programming languages. Chicago: Science Research Associates, Inc.,
1973.

Engel, S.E. and Granda, R. E. Guidelines for man/display interfaces. IBM Technical Report,
TR 00.2720, 1975.

Englebart, D.C. Augmenting human intellect: A conceptual framework. Stanford Research
Institute Report. Contract AF 49(638)-1024 (AD 289 565), 1962.

Englebart, D.C., Watson, R.W., and Norton. J.C. The augmented knowledge workshop. In
AFIPS National Computer Conference Proceedings. Volume 42. Montvale, N.J.: AFIPS
Press, 1973, 9-21.

Fajman, R. and Borgelt, 1. WYLBUR: An interactive text editing and remote job entry
system. Communications of the ACM. 1973, 16,, 314-322.

Ferguson, D. and Duncan, J. Keyboard design and operating posture. Ergonomics. 1974, 1 7.
731-744.

Flanagan, J.L. Computers that talk and listen: man-machine communication by voice.
Proceedings of the IEEE, 1976, 64, 405-415.

Foley, J.D. and Wallace, V.I. The art of natural graphic man-machine conversation
Proceedings of the IEEE, 1974, 62, 462-471.

Gaines, R.S. The debugging of computer programs. Institute for Defense Analysis Report,
Princeton, N.J., 1969.

Gammill, R.C. Graphics and interactive systems -- design considerations of a software system.
National Computer Conference Proceedings. 1973.

Goldberg, P.C. Structured programming for non-programmers. IBM Research Report, RC
5318, 1975.

Gorry, G.A. and Morton, M.S. A framework for management information systems. Sloan
Management Review, 1971, 12, 55-70.

Gould, J.D. Visual factors in the design of computer-controlled CRT displays. Human
Factors, 196H, 10. 359-376.

Grace, B.F. A case study of man/computer problem-solving. IBM Research Report. RJ
1483. 1975.

Page 44

Hammer, M., Howe, W.G., Kruskal, V.I., and Wladawsky, I. A very high level programming
language for data processing applications. IBM Research Report, RC 5583, 1975.

Hanes, L.F. Human factors in international keyboard arrangement. In Chapanis, A. (Ed.)
Ethnic Variables in Human Factors Engineering. Baltimore, Md.: The Johns Hopkins
University Press, 1975, 189-206.

Hantler, S.L. and King, J.C. An introduction to proving the correctness of programs. IBM
Research Report, RC 5893, 1976.

Harrison, W. Compiler analysis of the value ranges for variables. IBM Research Report, RC
5544, 1975.

Heidorn, G. Automatic programming through natural language dialogue: A survey. IBM
Journal of Research and Development, 1976, 20, 302-313.

HELP, the on-line VM168 user assistance facility, IBM Watson Research Center, developed
by C. Thompson, (available only on-line via the system), 1976.

Hyde, S.R. Automatic speech recognition: a critical survey and discussion of the literature. In
David, E.E., Jr. and Denes, P.B. (Eds.) Human Communication: A Unified View. New
York: McGraw-Hill Book Co., 1972.

Jelinek, F. 'Continuous speech recognition by statistical methods. Proceedings of the IEEE.
1976, 64. 532-556.

Kelly, M.i. Studies in interactive communication: limited vocabulary natural language
dialogue. Johns Hopkins University Department of Psychology Technical Report. No. 3,
1975.

IBM TERMTEXT/Format Language Guide. Reference Manual SH20-1372-0. Program
Number 5796-PBR, 1973.

IBM SCRIPT/370 Program Description and Operations Manual. Reference Manual SH20-
1114, 1975.

IBM Virtual Machine Facility/370: CMS User's Guide. IBM Reference Manual GC20-1819-
0. 1976.

Kemeny, J.G. Man and the Computer. New York: Charles Scribner and Sons, 1972.

Kennedy, T.C.S. The design of interactive procedures for man-machine communication.
International Journal of Man-Machine Studies, 1974, 6. 309-334.

King, J.C. Symbolic execution and program testing. IBM Research Report. RC 5082, 1974.

Kruskal, V.J. An editor for parametric programs. IBM Research Report. RC 6070, 1976.

Licklider, J.C. Man-computer communication. In Cuadra, C.A.(Ed.) Annual Review of
Infornmation Science and Technolo.gy. Volume 3. Chicago: Encyclopedia Britannica,
1968, 201-240.

Page 45

Malhotra, A. Design criteria for a knowledge-based english language system for management:
an experimental analysis. M.I.T. Project MAC Report. TR-146, 1975.

Malhotra, A. and Sheridan, P.B. Experimental determination of design requirements for a
program explanation system. IBM Research Report. RC 5831, 1976.

Mann, W.C. Dialogue-based research in man-machine communication. USC/Information
Sciences Institute Report. ISI/RR-75-41, 1975.

Mann, W.C., Moore, L.A., Levin, J.A., Carlisle, J. H. Observation methods for human

dialogue, USC/Information Sciences Institute Report, ISI/RR-75-33, 1975.

Martin, J. Design of Man-Computer Dialogues. Englewood Cliffs, N.J.: Prentice-Hall, 1973.

Martin, T.H. The user interface in interactive systems. In Cuadra, C.A. (Ed.) Annual Review
of Information Science and Technology, Volume 8. Washington. D.C.: American Society
for Infcrmation Science, 1973.

Martin, T.H., Carlisle, J.H., and Treu, S. The user interface for interactive bibliographic
searching: an analysis of the attitudes of nineteen information scientists. Journal of the
American Society for Information Science. 1973, 24, 142-147.

McCormick, E. 1. Human factors engineering. New York: McGraw-Hill. 1970.

McDonald. N. Getting started in INGRES with CUPID --- a tutorial. Electronics Research
Laboratory Memorandum, ERL-M546, 1975a.

McDonald, N. CUPID --- A graphics oriented facility for support of non-programmer interac-
tions with a data base. Electronics Research Laboratory Memorandum. ERL-M563,
1975b.

McLaughlin, R.A. Alphanumeric display terminal survey. Datamation, November, 1973,
71-92.

Meadow, C. T. Man-machine communication. New York: John Wiley and Son, 1970.

Meister, D. and Rabideau, G. F. Human factors evaluation in system development. New
York: John Wiley and Sons, 1965.

Metzger, P.W. Managing a programming project. Englewood Cliffs, N.J.: Prentice-Hall,
1973.

Miller, L.A. Harlan Mills on 'The Psychology of Quality'. IBM Research Report, RC
3779, 1973.

Miller, L.A. Programming by non-programmers. International Journal of Man-Machine
Studies. 1974, 6. 237-260.

Miller, L.A. Naive programmer problems with specification of transfer-of-control. A FIPS

National Computer Conference. Anaheim, Volume 44, 1975.

Page 46

Miller, L.A. Natural language procedures: Guides for programming language design. Paper
presented at the International Ergonomics Association Meeting, University of Maryland,
1)76.

Miller, L.A. and Thomas, J.C., Jr. A functional taxonomy of problem-solving activities. In
preparation.

Miller, R.B. Response times in computer conversational transactions. Proceedings of Fall
Joint Computer Conference. 1968.

Miller, R.B. Archetypes in man-computer problem solving. Ergonomics. 1969, 12. 559-581.

Miller, R.B. Human ease of use criteria and their tradeoffs. IBM Technical Report, TR
00.2185, 1971.

Mittman, B. and Borman, L. Personalized Data Base Systems. Los Angeles: Melville
Publishing Co., 1975.

Moffett, T.J. Building highway systems with computer graphic simulations. Proceedings of
the IEEE, 1974, 62. 429-436.

Moulton, P.G. and Muller, M.E. DITRAN -- a compiler emphasizing diagnostics.
Communications of the ACM, 1967, 10. 45-52.

Nagy, G. and Pennebaker, M. A step toward automatic analysis of logically IBM Research
Report. RC 3407, 1971.

Newman, W.M. and Sproull, R.F. An approach to graphics system design. Proceedings of
the IEEE, 1974, 62. 471-483.

Newsted, P.R. and Wynne, B.E. Augmenting man's judgment with interactive computer
systems. International Journal of Man-Machine Studies. 1976, 8, 29-59.

Ochsman, R.B. and Chapanis, A. The effects of 10 communication modes on the behavior of
teams during co-operative problem-solving. International Journal of Man-Machine
Studies, 1974, 6, 579-619.

Palme, 1. Interactive software for humans. Swedish National Defense Research Institute.
Planning and Operations Research FOA I Report, No. C10029-M3(E5), 1975.

Pratt, T.W. Programming languages: Design and implementation. Englewood Cliffs, N.J.:
Prcntice-Hall. 1975.

Prince, M.D. Interactive Graphics for Computer-Aided Design. Reading, Mass.: Addison-
Wesley, 1971.

Reaser, I.M., Priesman, I., and Gill, J.F. A production environment evaluation of interactive
programming. U.S. Army Computer Systems Command, Technical Documentary
Report. USACSC-AT-74-03, 1974.

Reddy, D.R. Speech Recognition. New York: Academic Press, 1975.

Pagi 47

Rescher. N. The logic of commands. New York:- Dover, 1966.

Ritchie, G.J. and Turner, J.A. Input devices for interactive graphics. International Journal
of Man-Machine Studies, 1975, 7, 639-660.

Rosen, B.K. High level data flow analysis. Part 2 (escapes and jumps). IBM Research
Report, RC 5744, 1975.

Rouse, W.B. Design of man-computer interfaces for on-line interactive systems. Proceedings
of the IEEE, 1975, 63, 847-857.

Rustin. R. (Ed.) Debugging Techniques in Large Systems. Englewood Cliffs, N.J.: Prentice-
Hall. 1971.

Sackman, H. Man-computer problem solving. Princeton, N.J.: Auerbach, 1970.

Sammet, J.E. Programming languages: History and fundamentals. Englewood Cliffs, N.J.:
Prentice-Hall, 1969.

Satterthwaite, E. Debugging tools for high level languages. Software-practice and experience,
1972, 2,

Sauvain, R.W. Structural communication in a personal information storage and retrieval
system. University Microfilms. Ann Arbor, Michigan, No. 70-21 782, 1971.

Schoonard. J.W. and Boies, S.J. Short-type: a behavioral analysis of typing and text entry.
IBM Research Report, RC 4434, 1973.

Schwartz, M.C. Operational characteristics in a time-sharing environment. IBM Technical
Report. TR 27.031, 1969.

Seibel, R. Data entry devices and procedures. In Van Cott, H.P. and Kincade, R. G. (Eds.)
Human engineering guide to equipment design, Washington, D.C.: U.S. Government
Printing Office, 1972.

Shackel, B. Man-computer interaction -- The contribution of the human sciences. Ergonomics,
1969, 12, 485-499.

Shapiro, S. and Kwasny, S. Interactive consulting via natural language. Communications of
the ACM, August, 1975.

Sime, M.E., Green, T.R.G., and Guest, D.J. Psychological evaluation of two conditional
constructions used in computer languages. International Journal of Man-Machine
Studies. 1973, 5, 105-113.

Sime, M.E. and Green, T.R.G. Psychology and the syntax of programming. Medical Re.
search Council Social and Applied Psychology Unit Memo, No. 52, 1974.

Singleton, W.T. Man-machine systems. Baltimore, Md.: Penguin Education, 1974.

Skinner, V.L., Jr. Text processing applications. IBM Technical Report, Feucral System
Division FSC 72-6014, 1972.

A L.... . . a l

Page 48

Smith, S.L. and Goodwin, N.C. Computer-generated speech and man-computer interaction.
Human Factors, 1970, 12, 215-223.

Spence, R. Human factors in interactive graphics. Computer Aided Design, 1976, 8. 49-53.

Stone & Webster Engineering. Reported on in Engineering, editing, and problem solving.
IBM Computing Report, Fall, 1973, 8-9.

Tapscott, R.P. ADS: The source listing annotator. IBM Research Report. RC 5065, 1974.

Tarnawsky, G.O. User semantic elements. IBM ASDD Technical Report, 1972.

Thomas, J. C. Quantifiers and question-asking. IBM Research Report. RC 5866, 1976a.

Thomas, J. C. A method for studying natural language dialogue. IBM Research Report, RC
5882, 1976b.

Thomas, J. C. and Gould, 1. D. A psychological study of Query By Example. IBM Research
Report, RC 5124, 1974.

Thompson. C.H. An information facility for the on-line user. SHARE XXXIV Proceedings,
March, 1970.

Thompson, D.A. Interface design for an interactive retrieval system: a literature survey and a
research system description. Journal of the American. Society for Information Science.

1971, 361-373.

Tomeski, E. A. and Lazarus, H. People-oriented computer systems: The computer in crisis.
New York: Van Nostrand Reinhold, 1975.

Unger, C. (Ed.) Command languages. (Proceeding of the IFIP working conference on
command languages). New York: American Elsevier, 1975.

Van Dam, A. and Rice, D.E. On-line text editing: a survey. Computing Surveys. 1971, 3.
93-114.

Van Cott, H. P. and Kinkade, R. G. (Eds.) Human engineering guide to equipment design.
Washington, D.C.: U.S. Government Printing Office, 1972.

Van Tassel, D. Program style, design, efficiency, debugging, and testing. Englewood Cliffs.
N.J.: Prentice-Hall, 1974.

Walker, B.S., Gurd, I.R., and Drawneek, E.A. Interactive Computer Graphics. New York:
Crane, Russak & Co., 1975.

Walker, D.E. (Ed.) Interactive Bibliographic Search: The User/Computer Interface. Mont-
vale, New Jersey: AFIPS Press, 1971.

Walker, D.E. Automated language processing. In Cuadra, C.A. and Luke. A.W (Eds.)

Annual Review of Information Science and Technology. Volume 8. Washington, D.C.:
American Society for Inlormation Science, 1973.

IL - o ..711 ._. = • ., --Ake.

Page 49

Walter, E.S. and Wallace, V.L. Further analysis of a computing center environment.
Communications of lte ACM, 1967, 10, 266-272. Weinberg, G.M. The Psychology
of Computer Programming. New York: Van Nostrand Reinhold, 1971.

WVilks, Y. Semantic considerations in text processing. In Oloye, E.E. and Marcus. R.J. (Eds.)
Comnputer text processing and scientific research, Conference proceeding-. Pasadena,
California, March, 1973, 39-54.

Wright, P. and Fox, K. Presenting information in tables. Applied Ergonomics. lq70, 1. (4),
234-242.

Yntema. D.B. The Cambridge Project: Computer methods for analysis and modeling of
complex systems. Rome Air Development Technical Report, RADC-TR-74-159, 1974.

Zloof, M. M. Query By Example. IBM Research Report, RC 4917, 1974.

Zloof, M. M. Query By Example: the invocation and definition of tables and forms. IBM

Research Report. RC 5 115. 1975.

TECHNICAL REPORTS DISTRIBUTION LIST

CODE 455

Director, Engineering Psychology (5 cys) Office of Naval Research
Programs, Code 455 Operations Research Program, Code 434

Office of Naval Research 800 North Quincy Street
800 North Quincy Street Arlington, Virginia 22217
Arlington, Virginia 22217

Office of Naval Research
Defense Documentation Center (12 cys) Naval Analysis Programs, Code 431
Cameron Station 800 North Quincy Street
Alexandria, Virginia 22314 Arlington, Virginia 22217

Director, ONR Branch Office Office of Naval Research
ATTN: Dr. J. Lester ATTN: Dr. K. T. Wallenius, Code 436
415 Summer Street 800 North Quincy Sreet
Boston, Massachusetts 02210 Arlington, Virginia 22217

Director, ONR Branch Office Office of the Chief of Naval
ATTN: Dr. M. Bertin Operations, Op-987E
536 S. Clark Street Department of the Navy
Chicago, Illinois 60605 Washington, D. C. 20350

Director, ONR Branch Office CDR H. J. Connery
ATTN: Dr. E. Gloye Office of the Chief of Naval Operations,
1030 East Green Street Op-987M4
Pasadena, California 91106 Department of the Navy

Washington, D. C. 20350
Director, ONR Branch Office
ATTN: Mr. R. Lawson Dr. A. L. Slafkosky
1030 East Green Street Scientific Advisor
Pasadena, California 91106 Commandant of the Marine Corps

Code AX
Dir., Naval Research Laboratory (6 cys) Washington, D. C. 20380
Technical Information Division
Code 2027 Dr. Heber G. Moore
Washington, D. C. 20375 Hqs. Naval Material Command

Code 0331
Dir., Naval Research Laboratory (6 cys) Department of the Navy
ATTN: Library, Code 2029 (ONRL) Washington, D. C 20360
Washington, D. C. 20375

Mr. Arnold Rubinstein
Mr. John Hill Naval Material Command, NAVMAT 03424
Naval Research Laboratory Department of the Navy
Code 5634 Washington, D. C. 20360
Washington, D. C. 20375

Commander, Naval Electronics
Office of Naval Research Systems Command
Information Systems Program, Code 437 Command and Control Div., Code 530
800 North Quincy Street Washington, D. C. 20360
Arlington, Virginia 22217

-2-

Naval Electronics Systems Command Dr. George Moeller
Human Factors Engineering Branch Head, Human Factors Engineering Branch
Code 4701 Submarine Medical Research Laboratory
Washington, D. C. 20360 Naval Submarine Base

Groton, Connecticut 06340

Bureau of Medicine and
Surgery

Human Effectiveness Branch, Code 713 Lt. Col. Austin W. Kibler
Department of the Navy Director, Human Resources Office
Washington, D. C. 20372 Advanced Research Projects Agency

1400 Wilson Blvd.
CDR Robert Wherry Arlington, Virginia 22209
Human Factors Engineering Branch
Crew Systems Department U.S. Air Force Office of Scientific
Naval Air Development Center Research
Johnsville Life Sciences Directorate, NL
Warminster, Pennsylvania 18974 1400 Wilson Blvd.

Arlington, Virginia 22209
LCDR Robert Kennedy
Human Factors Engineering Br., Code 5342 Dr. J. M. Cristensen
U.S. Naval Missile Center Chief, Human Engineering Division
Point Mugu, California 93042 Aerospace Medical Research Laboratory

Wright-Patterson AFB, OH 45433
Lt. Col., Henry L. Taylor, USAF
OAD*E&LS) ODDR&E Dr. J. E. Uhlaner
Pentagon, Rm. 3D129 Dir., U.S. Army Research Institute
Washington, D. C. 20301 for the Social & Behavioral Sciences

1300 Wilson Blvd.
Mr. Richard Coburn Arlington, Virginia 22209
Head, Human Factors Division
Naval Electronics Laboratory Center Chief of Research and Development
San Diego, California 92152 Human Factors Branch

Behavioral Science Division
Dean of Research Administration Department of the Army
Naval Postgraduate School ATTN: Mr. J. Barber
Monterey, California 93940 Washington, D. C. 20310

Navy Personnel Research and Dr. Joseph Zeidner
Development Center (Code 10) (5 cys) Dir., Organization and Systems

San Diego, California 92152 Research Laboratory
U.S. Army Research Institute for

Mr. James L. tong the Behavioral & Social Sciences
Weapons Systems Research (N-332) 1300 Wilson Blvd.
Naval Education and Training Command Arlington, Virginia 22209
Naval Air Station
Pensacola, Florida 32408 Dr. Stanley Deutsch

Chief, Man-Systems Integration
Human Factors Dept., Code N215 OART, Hqs., NASA
Naval Training Equipment Center 600 Independence Avenue
Orlando, Florida 32813 Washington, D. C. 20546

A I

-3-

Dr. Jesse Orlansky Mr. Wes Woodson
Institute for Defense Analyses Man Factors, Inc.
400 Army-Navy Drive 4433 Convoy Street, Suite D
Arlington, Virginia 22202 San Diego, California 92111

Dr. Edgar M. Johnson Dr. C. H. Baker
Organizations & Systems Research Lab. Director, Human Factors Wing
U.S. Army Research Institute for the Defense & Civil Institute of

Behavioral and Social Sciences Environmental Medicine
1300 Wilson Blvd. P. 0. Box 2000
Arlington, Virginia 22209 Downsville, Toronto, Ontario

Canada
Dr. James Parker
BioTechnology, Inc. Journal Supplement Abstract Service
3027 Rosemary Lane American Psychological Association
Falls Church, Virginia 22042 1200 17th Street, N.W.

Washington, D. C. 20036
Dr. Edwin A. Fleishman
Foxhall Square Dr. Bruce M. Ross
3301 New Mexico Avenue, N.W. Department of Psychology
Washington, D. C. 20016 Catholic University

Washington, D. C. 20017
American Institutes for Research Library
135 N. Bellefield Avenue Mr. Harry Chipman
Pittsburgh, Pennsylvania 15213 WR Systems, Inc.

2531 S. Jefferson Davis Highway
Psychological Abstracts Arlington, Virginia 22202
American Psychological Association
1200 17th Street, N.W. Dr. David Meister
Washington, D. C. 20036 U.S. Army Research Institute

1300 Wilson Blvd.
Dr. A. I. Siegal Arlington, Virginia 22209
Applied Psychological Services
404 E. Lancaster Street Mr. George Graine
Wayne, Pennsylvania 19087 Naval Ship Systems Command

(SHIPS 047C12)
Dr. Joseph Wulfeck Department of the Navy
Dunlap and Associates, Inc. Washington, D. C. 20362
115 South Oak Street
Inglewood, California 90301

Dr. Robert R. Mackie
Human Factors Research, Inc.
Santa Barbara Research Park
6780 Cortona Drive
Goleta, California 93017

-4-

Lt. Col. John F. Ahiborn Col. Robert 0. Viterna
Headquarters, APSC-DLSE D/)M
Andrews AFB Headquarters, Dept. of the Army
Washington, D. C. 20334 DARD-ARS-B

Washington, C. C. 20310
Dr. H. H. Wolff
Technical Director (Code N-2)
Naval Training Equipment Center Dr. Anthony Debons
Orlando, Florida 32PI3 IDIS

University of Pittsburgh
Dr. Donald A. Topmiller 135 N. Bellefield Avenue
Chief, Systems Effect. Branch Pittsburgh, Pennsylvania 15260
Human Engineering Division, USAF
Wright Patterson AFB, Ohio 45433 Dr. Alfred F. Smode

Training Analysis & Evaluation Group
Code N-OOT
Orlando, Florida 32813

