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PREFACE

This study was initially motivated by Jon Mike Smith's seminar

"Recent Developments in Modern Numerical Methods and Cost Saving Tech-
niques'" which was held at Redstone Arsenal on 12, 13, and 14 February
1976 [1]. It was further motivated by Professor Charles A, Halijak's

briefing on '"Numerical Transforms and Digital Simulation of Dynamical

Systems' held during July and August 1976,

This report documents some of the results of the study undertaken

as a consequence of the previously mentioned seminar and briefing.
Though not intended to be tutorial, it is hoped that it will be
comprehensible to those acquainted with z~transforms.
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of a coworker, Victor Grimes.

SYMBOLS
n Eta, phase compensation or interpolation factor
LC) Laplace transform operator
n Index or step number
T Sample time or time step
x(n) n-th derivative of x(t)
(-n)

n-th integral of x(t)

z delayer, .

z( ) z-transform operator (Appendix A)
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(B INTRODUCTION

The rapid development of digital computers since World War II
has prompted a reexamination of numerical computation techniques from
the sampled-data point of view. A very interesting outcome of this |
point of view is that some of the classical integrators are actually
phase shifted variations of the same integrator {1,2]. For example,
the integration recurrence relation

By S H R bk, + @ - q)xn] (1) |

leads to the following classical integration formulas (Table 1).

TABLE 1. EQUIVALENCE OF TUNED AND
CLASSICAL INTEGRATORS

Phase Shift (7)) Classical Name
0 Euler (left Riemann sum)
1/2 Trapezoidal
i Rectangular (right Riemann sum)
3/2 Adams second order

The fact that the classical integrators listed in Table 1, differ
only in their phase is quite interesting; even more interesting is the
possiblity of phase shifts leading to integrators between the classi-
cal ones.

1. THE TUNABLE INTEGRATOR

The digital computer is of necessity a discrete time system
and, as such, is amenable to analysis using z-transforms [3, 4, 5].

It is well known in z=-transforms that

zl£(s)g(s)] = y(2)£(2), y(s) # g(s) . (2)

It follows that

%
y(z) = —L—f-%ﬁ)-l 3)

and taking g(s) as the input and f(s) as the plant, y(z) cannot be
determined without knowing the plant, f£(s).




If a continuous system is to be simulated on a digital computer, 4
approximations must be made. For example, if g(s) is not known a
priori [Figure 1(a)l,Z{g(s)£f(s)] must be approximated in order to
develop a recurrence relation for digital simulation of g(s)f(s).

(a)
als) g (s) £ (s) N\ Z lg (s) f ()]
T

f (s)

(b) (1_:_1) P (1-2 Z(—f—(s—))g (z) .
9 (s) \ g (2) 1_:_1 i . (s) g (2) \ \ s .i
T ; - ¢

Figure 1., Continuous system.

If the input, g(s), is sampled and then held by a zero order hold
[ Figure 1(b)], the output after the second sampler is

2[12 ce] “)
which may be simplified to

(1 -2)72 (f&?l) g(z) . )
Given

£(s) == (6)

the modified z~transform of 1/52, substituting Equation (6) into
Equation (5),is (Appendix B)

T[n + (1 - n)z]
(1 - z)?

€

and Equation (5) becomes

2(8) V., In + (1 - n)z] v(z)
Z( s >’“ (1_2) ’ (8)

the tunable integration Equation (1), in z-transform notation. The
details of the conversion to a recurrence are shown in the sample
problem section.
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For a sufficiently fine timestep, T, it is hoped that

y(z) = Tly + (1 = n)zlg(z) (9 1

and for a given input, g(s), Equation (3) would allow a check on the
approximation, Equation (9), for f(s), an integrator.

An attempt might be made to extend this procedure further by inte-
grating f(s) by "inserting' another sample and hold,

z (i%l) 1 - =)l (—13) £(z) (10)
S
and, after taking the modified z-transform of l/sz, i_
Z{g(s)£(s)] =~ Tin + (L - n)2] £(2)g(2z) (11)
or
y(z) = T[n + (1L = 7)zlg(z) . (12)

for any f(s).

The insertion of this sample and hold, Equation (10), is not physi-
cally realizable because f(z) is not an input; this attempted extension
is not the proper approximation as will be seen in the next section.

11 TUNABLE TRAPEZOIDAL CONVOLUTION

If a substitution of the definition of the z-transform,
Equation (A-10), is made into Equation (2), it becomes

Y [f(nt)sg(nD)]2" = [Z y(nT)zn][z f(nT)z“] g (13)
n=0 : n=0 o0

Upon substitution of the definition of convolution and taking the
Gauchy product of power series, the following is obtained:

o nT ®© n
> zn[g('r)f(nT -tdr= Y 2" ¥ y(kt)E(nT - kT) . (l4)
0

n=0

n=0 k=0




S—

Equating coefficients of powers of z, the following is obtained:

nT n
g(t)E(nT = ¢) dr = 25 y(KkT) £(nT = KT) . (15)
0 k=0

The mean value theorem of the integral calculus guarantees that
there is some 7n such that [6],

nT
J- g(t) £(nT = 1)dTt = nT g(y_ nT)f(nT - y nT), 0 < » <1 7
0 n n n
(16)
of course,
nT n-1 (k+1)T
g(t) £(nT - 1)dt = g(t) f(nT - t)dt (17)
0 k=0 kT
and there is some 7k such that
(k+1)T
g(t) £(nT - 7)dt = T g(kT + 7kT)f(nT - kT - %QT),
(18)

0 =< Y <1 .

Knowing 7n and 7k exist is like knowing the solution to a differential

equation exists; knowledge of the existence of a solution is not know-
ledge of the solution. Ofcourse, it is wise to check for existence of
a solution before seeking a solution.

For a sufficiently small time step, T, trapezoidal quadrature
might be used to approximate Equation (18),

Tg(KT - 7, DE(AT - KT = 7,T) = 7 (8(KT + T)E(uT = kT - T)

(19)
+ g(kT)f(nT - kT)] .

scbcallin. caume

1




Then, the right hand side of Equation (16) is approximately

n-1 ﬂ
j,_T- Y [g(KT + T)E(T = KT = T) + g(KT)£(nT = KT)] (20) |
k=0

and changing the summing indices

n n-1
7 Y s(kr) £(aT - KT) +% T g(kT)£(nT - KkT) (21)
k=1 k=0 ]
and combining, ‘
n T :
T Y g(kI)£(nT - kT) =5 [gyf(nT) + fg(nT)] . (22)
k=0

It follows that, Equations (22) and (15),

I S R TS R

n n
S y(KI)E(T - KI)= T ) g(aT)£(nT - kT) - %[gof(nT) + £,g(aD)] .

! k=0 k=0
| (23)
For f0 and 8 both zero,
y(KT) = T g(KT) (24)
and from the definition of the z-transform it follows that
y(z) = T g(z) (25)
and
Z[g(s)f(s)] =T g(2)f(z) . (26)

Unfortunately, requiring f0 and 8, both to be zero is unusually restrictive

because the initial conditions on the input must be zero and many plants
of interest are excluded including the single integrator (Appendix B).




Substituting Equation (23) into the right hand side oif Equation (14),

«© n

T Y 2" | Y g(kr)f(nr - kT) - 1/2 £,8(nT) = 1/2 g £(nT) .
n=0 k=0 [
275
< - k n-k T - n
T ¥ ¥ gDz £(oT kD)= - [fo 2 g(nT)z
n=0 k=0 n=0
+ g b f(nT)z“] . (28)
n=0
T[Z f(nT)zn:H: > g(nT)zn] -—2— [fo Y g(nr)z"
n=0 n=0 n=0 (29)

[os]
+g, ¥ f(n’I‘)zn]
0
n=0
and, finally, from the definition of the z~transform, and Equation (29)

Z[£(s)g()] =T £(2)g(z) - 7 [£8(2) + gyE(2)] (30)

trapezoidal convolution [ 7,8,4,]. It follows that

£

H”]gu)-g% : (31)

If time step, T, is to be made as large as possible for reasons
of speed in real timesimulation, or economy in Monte Carlo studies,
Equation (30) may limit how large the time step, T, may become. In
using tunable integration linear interpolation is being used for Equations

(18),

Tg (KT + 7, T)£(nT = kT = 7, T) = Tn, g (kT + T)f(nT = kT - T) |
(32)

N =

y(z) = T [ =

+ T(1 =- qk)g(kT)f(nT - KkT) .

Of course, there is no guarantee that a linear interpolator will find
Equation (18) on the interval, 0 = My < 1. It may be necessary to

: extrapolate. Extrapolation may not produce the desired values of the
| functions; the values at the ends of the interval could be equal.
Hopefully, this would be the exception rather than the rule.

i
M it st i i ‘..M:.‘Q_J.J
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Then Equation (17) upon substitution of Equation (32), would be

nT
j- g(t) £f(nT - T)dt

(o]

R

n-1
T 1 g(kT + T)f(nT ~ kT - T)
2 e 9
(33)
+ (1 =~

—
e

Lpp) B(DE(AT - kT)]

n-1
kT) +T Y (1 - Nyyp) B(KIE(T - KT) (38)
k=0

n
=T ¥ u, 8(kT)f(nT

k=1

n n=-1
g L_};O g(KT)£(nT - kT) + T k§1 (N, = Myyy) KD E(AT = KT)

- Tln, g £(aF) + (1 - 1 )£ g(nT)]
Assuming

T = Tl

Equation (35) may be written

n
=T ¥y g(kT)f(nT kT) - T(n, g, £(aT) + (1 - n )£ _g(nT)]
k=0

and it follows that

Zl£(s)g(s)] = Tg(z)£f(z) = T[nogof(Z) + (1 - nw)fog(Z)]

Making a final assumption,

the following is obtained:

Z1£(s)g(s)) = Tg(2)£(2) = Thig £(z) + (1 = DE §(2)]

YRV TR,
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tunable trapezoidal convolution. The final assumption, Equation (39),
does not appear reasonable, but the conditions under which it may be

justified will be discussed in the analysis of tuning. From Equation (40)

it follows that

£
y(z) =T [1 - (1 =1 Tz)] gla) = Tng, - (41)

In Section II, a digital-to-analog converter was used to recon-
struct an analog representation of the input [ Figure 2(a)].

( ~ ~ f
wl g ls) T\ s@| g (s) e N\ ~2Zlg 5] f 6]
(s) (2) (@ f
b) - T\g ] et B gy e

Figure 2. Analog representation of the input.

In this section approximations for constructing a digital representation
of an analog input were developed [Figure 2(b)]. The difference is one
of point of view.

Iv. ANALYSIS OF TUNING

For a given plant, f(s), and input, g(s), the relationship
given in Equation (3) is the exact digital representation of the
analog input. The approximation,

f

y(z) =T [1 . f—(f')'] 82) - 38, (42)

would be used to develop recurrence relations for digital simulation
(Section V contains the details). For a given plant, f(s), and input,
g(s), the ratio of Equations (42) and (3) would be a measure of the

accuracy of the approximation.
For an integrator,

(43)

f(s)

1
s

y(z) z% €L + z) g(z) = % 8, * (ab)

10




v

For the input,

g(t) =ae F
A
g(s)"s+a )
and
a
glz) = i .
1 -2z e &k

The exact representation would be

1 - e-at z
y(z) = Zat
1 -2ze

Equation (42) yields

T
v(z) =5 (1L +2) ( e
S=Nzre
12'1"‘ (18 ehaT)z
l -2 e-aT-

Dividing Equation (50) by Equation (48) to obtain the ratio of the
approximation to the exact output, yields

_ar e-aT 3.4
2 -aT
e -1

which is just

aT aT
— tn ——
Koty .

For small angles

a2, ar
ctnh 2 ""aT+ 6 e coe

i

(45)

(46)

(47)

(48)

(49)

(50)

(51) '

(52) |

(53)




and the ratio would be

2

1+-§11T-21-+... (54)

of course "a" need not be real; consider

a=iw (55)

then Equation (52) becomes

—“2’,3 ctn —‘*f— : (56)

the ratio for a sine wave input to a trapezoidal integrator. For
small angles

ctn

~
L—] DO

o 2 T
2 S T 6 37

and the ratio, Equation (56), is

T (58)
12
The ratio, Equation (56), agrees with that obtained by the trans-
fer function approach [9], which alsogives the ratio for a sine wave
input into some other integrators. Of particular interest is Simpson's

rule,

2
1l + 4z + 2z (59)

(1 + 2)(1 - 2)

P
3

for which the ratio is

o 2 + cos Wl
3 ( sin WT ) Re0)

and for small angles, Equation (60) becomes

100
1+ 30

(61)

PR




1t is noted that for too large a time step, T, the ratio for an

exponential input, Equation (52) would be too large and for a sine

wave input, Equation (56) would be too small, This can be corrected

by tunable integration. Using tunable convolution, Equation (40),

-aT

I C T N i W i 1

For "a" real, Equation (63) becomes

aT - aT
cosh — + sinh =4
2 2
aT - 7
. aT
2 sinh —2

which simplifies to

aT aT 1
2 [Ct“’“ z*z(z' )] -

Solving Equation (65) for n, when the ratio is one,

- l( él_l)
i I 2 + 2 ctn 2 aT .

For aT < 1, Equation (64) becomes approximately

2
1 (al)
1 + aT ( 2 q) AT * o
and Equation (66) becomes

aT

P P |
NIRRTy

For aT >> 1 5

13

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

S —

it .




For "a" imaginary, Equation (63) becomes

(<) [cm Lo (3- ,])] : s

Because Equation (70) is complex, multiply by the complex conjugate
and take the square root, which yields

1

2 —_
WT 2 T (l. 2
(L) [ctn S s bz ) ] (71)
for the amplitude ratio, and dividing the imaginary part by the real,
yields
-1 1 WT
tan [2(5- 'q) tan—z—] 2 (72)

the phase error for a sine wave input to a tunable integrator.

For zero phase error,

=g (73)

For zero amplitude error, the ratio should be one; therefore,
setting Equation (71) equal to one

1
2._.
ur 2 ur 3 2
1= [cmn T+ (3-1) ] (74)
and solving for 7,
2 1
IR B0 8 7 e B
q—zrz[(m) ctn 2] : (75)
For small angles
1
2 271>
e | .L(.l_ - (2 W ) 2
r]-—zi'z[w,r) (=-<£ ... ] (76)
27 L
- 1 _(wn |2 .
‘2*[6 144J (717)

14

the trapezoidal-integrator, and Equation (71) reduces to Equation (56).

ukhiinlis am

P




and for wT < 1.

i
1 LN
that is,
Fa { 0.9082482905
' 0.0917517095 . s

To determine the ratio and phase error which occurs from ignoring
the dependence of 7 on WT, Equation (78) is substituted into Equations
(71) and (72), and the following are obtained

1
uf)| 2 2 ur 2 :
(2)[3+ ctn 2] (80)
and
1
tan-l [ 2 (‘(1;) 2 tan %2' ] ¥ (81)

for the amplitude ratio and phase error, respectively, the ratio for
a small angle approximation would be

I e Gy (82)

360

which compares very closely with Simpson's rule, Equation (61), but the
phase error would be

i

Because w = -ZF“

where "p'" is the period, it follows that

Hlwg
|
sy

15
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is the number of samples per period. At the Shannon sampling limit

P

T=2%
therefore,

Wl = 71t .

The amplitude ratio, Equation (71), is then

7

ol
2

at the Shannon limit. For the trapezoidal integrator the ratio would
be zero; the cost of zero phase error.

Simpson's rule also has no phase error but at the Shannon limit

the ratio, Equation (60), would be infinity,

For Equation (78), Equation (80) gives the ratio 1.28 ..., a
28% amplitude error for small angle tuning at the Shannon limit
better than Simpon's rule,

For unity amplitude ratio at the Shannon limit,

om
S S

that is,

¥ ! 0.8183098861
1 0.1816901139 .

For Equation (83), Equations (71) and (72) become respectively,
1

ot 2 ot ., & t2
('2—) [ctn T+-—2'] ’

T

and

16

(83)

(84)

(85)

(86)

NRTENRIRF L - Eo




For small angles, the ratio, Equation (86), would be approximately

L m®
15.3 8

not much better than trapezoidal, Equation (58).

Thus far, only exponential inputs to an integrator have been
considered. Since functions may be expressed in Taylor series,

— n
£(t) = Z fo(n)ﬁ—; N
n=0 g

another input of interest would be powers of t.

For
gty = 1L )
g(s) = %

and trapezoidal convolution yields
z(%%) - Lz
(L = z)

which is exact and the ratio is one.

For
g(t) = ¢t s
P

S

and trapezoidal convolution yields

Z(Lz.l) T_z__u_:r_%
s g 2(1 - 2)

(87)

(88)

(89)

(90)

oD

(93)

(94)

A e bl i i e




which is also exact and again the ratio is one. This in not surprising
because a trapezoidal integrator can integrate a constant or a ramp

perfectly for any size time step.

For

2
g(t) = ¢t ’

!
g(s) = &

s

and

z(_ZL) =T3 z(l + 4z + zz)_

s4 3(1 - z)4

and, trapezoidal convolution yields

z(g.,l) RS TR

& 261 = 2}

Dividing Equation (98) by Equation (97) yields
= 3 1 + 2z + z2
1+ 4z + z2

The "z'"s do not cancel out as in the previous examples,

(95)

(96)

(97)

(98)

(99)

Applying

the final value theorem, in the limit as z approaches one, Equation (99)
approaches one; but applying the initial value theorem, as z approaches

zero, Equation (99) approaches three halves, a 50% error.

Substituting the definition of the z-transform into

3 (gg)_\) ML E R LR

s 1 z

the following is obtained:

© -1 00
(1 = 2) Z L (m)lzn=T[n+(l-q)z] Z g(nT)zn

s

t = nT pe

n=0

18

(100)

(101)

sl




which may be reduced to

- 2 s s n s
3o/ § )/

t = nT = - )7
= B z g(n’]’,‘)zn - (1 - q)T Z g(nT - T)Zn . (102)
n=0 n=0

For
tZ

e (10%)
1

y(s) =3 i
s

and
-1 3
L (5%51) == (105)

Equation (102) becomes, after equating coefficients of like powers of z,

s’ - @1 -0 = em?+ @ -par-ni L, a>o0 .
(106)

taking the difference between the right side and the left side to deter-
mine the error per time step, the following is obtained:

@[3 o)er (3257

which implies, for zero error, that

2

w s B
TRy S 1 .

2

19




I S o
For n =1,n = 3 and it is clear why the initial value for the trapezoidal

: 1
lntegrator, n = 7 1is three halves. It is noted that - is different for

each step.

Summing the error per step for m steps

3 [(.21_-,,) §n+(3’—’l—é‘—2-)§:1] (109)

n=1 n=]

gives the total error for m steps,

> [(%- )%(m+1)+(§1-%—)m] , m>0 (110)

For the total error for m steps to be zero,

1
} s &
E< 3> (111)
m

1
S m+1)

s
]

n

Equation (111) is in agreement with Equation (108). Therefore, the n
which tunes for m steps is exact for the middle step, and the errors for
each step are averaged out. The mean value theorem applies for one step,
Equation (108), or m steps taken together, Equation (111). Because it

is not practical to adjust the timing for each step, an overall tuning
using Equation (111) is indicated. This leaves the initial value of the
ratio uncorrected.

In the earlier examples where the z's cancelled out when the ratio
was taken, it would appear that n is the same for all steps, because
there was no dependence on the step number. That this occurs for some
functions seems to be the power behind tunable integration.

The analysis of an exponential input to an integrator would also
apply to a constant into a single pole filter because the product of
the Laplace transforms is the same. A damped sine wave and a single pole
filter, etc. could also be analyzed.
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V. SOME SAMPLE PROBLEMS

The following relationships from Laplace transforms will be
found helpful in developing recurrence relations:

n=-1

£ [x(n)(t)] = snx(s) - z sn-£-1 xéﬂ) (112)
and “ (-1£)
, (—n) X(s XO
¥ s=1 %

When the initial conditions are nonzero, one should proceed from the
differential equation using these relationships, and not directly from
the transfer function,

The z=-transform of

: Ji
© S D
e X g(s) = z X 5(t) g(nT = &) dt (114)
[ ° ] 320 f =

(o}

because a constant in the frequency domain transforms to a Dirac delta
in the time domain. From the properties of the Dirac delta (Appendix C)
Equation (114) becomes

Z [xél) g(s)] = z zn Xc()E) g(nT) (115)
n=0
= xg‘) g(z) - (116)

This relationship, Equation (116), will be used in incorporating
initial conditions into the recurrences.

A. Single Integration

]

From Equation (113) for n = 1,
x(s) + X

x(s) = - . t117)

Taking the z=transform of Equation (117), the following is obtained:

x(z) =2 (g%§l ) +x Z (]') * (118)

S

2L




s e . - ©

Using trapezoidal convolution, Equation (30),

igsz ) T ( 1+ z ) . X ( io )
% ( s 2 L=z x{z) 2 1 -2z (159

From the definition of the z-transform

(1 - 2) 2 x(nT)z" :—2— (1 + z) x(nT)z" - % 2 +x . (120)
n=0 n=0

o [e}

Z [x(nT)zn - x(nT)an'] 25 Z [)'((nT)zn + i(nT)an']

n=0 n=0

(121)
T .
2 % ® *o
00 o0 00 00
n n T o n T . n
z x(nT)z - z x(nT = T)z —"—'5 2 x(nT)z + 2 2 x(nT - T)z
n=0 n=1 n=0 n=1
(122)
E .
Ty = %o

Equating coefficients of powers of z,

X, =X n =20 (123)

= +L @ +2 ), m>0

B T Tl T2 VT Tl ’ (124)
the trapezoidal integrator.

In a similar fashion for tunable convolution, Equation (40),

A B e s O ( e (125)

s 1 -2z TN\1 -2

and Equation (125) becomes

(L - 2)x(z) ¥ T[n + (L = n)zlx(z) - quo + X . (126)
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It follows that, after manipulations similar to those in Equations

(120) to (122),

X =X 5 =0 ,

n n-1

the tunable integrator.

(128)

To illustrate the difference between a constant in the time and
frequency domain, the following differential equation is considered

x(t) = k g
In the frequency domain, Equation (129) becomes

Leiie
s x(s) = s

and solving for x(s),

st
(e e

(129)

(130)

GL3L)

Trans forming Equation (131) back to the time domain, the following is

obtained:
t
<(t) =[ [« + x_ 8(m)]dr
(o]
E
= k-/. dT + x
(6]

o)

kt + x «
0

Instead, the z-transform is taken of

X
k
X(s) = 2 <5 SO ’
S

23
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(133)

(134)

(135)




which would be

s(z) = ——= 5+ T2 (136)
(1 - z) :
kFz + (1 = 2) X
¥ 5 (137)
(L= z)
The recurrence would be
7 = X (138)
Xy =x + kT 139)
x = 2 xn_1 - xn-2’ n>1 o (140)

This recurrence may be unexpected but it should be tried because it works.

Consider
x(z) = 7 L - [1—“?_5; + xo] (141)
and noting that
o
3 1 ~ = z 2" (142)
n=0

X, =X, g H=0 % (143)

]

X X + kT, n>0 . (144)

n n-1

This recurrence has an advantage in that no difference is taken and
only one step is required to start, though both are proper, that is,
correct recurrences.




Though not necessary because k is a known function and the exact
z-transform may be taken, it is instructive to apply trapezoidal
convolution to Equation (131).

= (s(E)n Pl 2 G N
() (25) -3f ()] o
-3 (o) 3 elets)

Because k is a constant in the time domain, its initial conditionand its
value at any time are the same. For instructive purposes, they will
be treated as being different.

N
——
O | =
© |7
S—
|

Noting that

e z k(z) (148)

and Equation (147) becomes,

X
x(z) = (i—{—z) k(z) - 3 k (1 L z) i (149)

the recurrence would be

L Pl " (150)
g b=k k) (151)
*n n=-1 T
ok TR (152)

the initial value of x(t) is X but it only takes on that value at

t =0 (n=0), unless k = 0, 1n which case

X =X gy L= 0 3 (153)

(6] o

X

"
<

gl B i (154)
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B. Double Integration

From Equation (113) for n = 2,

’ X ox
x(s) = k—(—l; + -% + —so- (155)
s s

and taking the z=transform

x(z) = 2 (%;l) + :'co Z(;l—z'> + X Z (%) (156) ‘:

Using trapezoidal convolution, Equation (30),

e TzX
z(f-%l ~ T -—-T—Z—z iz - %—-—°3 (157)
(L - z) (1 - 2)

AT 1) T AP ¥ e AV T

and Equation (156) becomes

€ )zx()~T2")-£22'x'+T"+(1- ) (158)
z z) = T zx(z 2 X 2 z)X 4

Equating coefficients of powers of z,

d X, =X , =0 5 (159)
T2
x1=xo+Txo+—2-x0,n=1 g (160) 1
and
X = 2x - X +T2'x' n>1 (1l61)
n n-1 n-2 n-1’ i

In general, the number of steps before the recurrence for X may

be applied is equal to the order of the denominator of the "transfer
function." The required information for the start-up steps is contained
in the initial conditions, even when they are zero (Appendix D).

binlo am

The recurrence, Equation (161), does not appear desirable numerically :
1 because a difference is required and it takes two steps to start.
i Because no feedback is involved, two single integrators could be used
' to overcome these difficulties;
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i

X =% ,n=0
o o
=i et A% Y.omne
n n=lL = 2 “'n i S
and
X =X s =10
o o
2, =K ey . o n n >0
n n-1 =~ 2 ¥, n-172 :

C. A Single Pole Filter
Consider the following differential equation
X(t) = -a x(t) + g(t)
This would transform to

s x(s) = x_ = -a x(s) + g(s)

and finally

g(s) + X

) e S = d

(1l62)

(163)

(164)

(165)

(166)

(167)

(168)

in the frequency domain. Taking the z-transform of Equation (168),

x(z)=z(-g-95)—> +x02( L )

Sl d s + a

Using trapezoidal convolution, Equation (30),

7 g(s) L B ze-aT S8} = I 5o
\is 2 -aT | & 2 -ar

1 - ze 1 - ze

27
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and Equation (169) becomes

-aT B =-aTl 'E
(1 ~ ze " Yx(z) = 5 (1 + ze - )g(z) - 5 8, * X

Equating coefficients of powers of z,

X =X ,n=20
o o

-aT ik -aT ]
n Bt T 2 [gn i gn-l]’ Ll

i
o

X

(171)

(172)

(L73)

The z-transform of the following equation might have been used instead

g(s) - a x(s) + X

x(s)
which is

x(z)

]
N
D i

7]
ml
n
S—
+
»
o}

N
A~
|
N—

The recurrence would then be

X =X 3
o o

T
n = *n-1 £ 2 [gn ey F By~ xn-l]’ g

and solving for X

X

R

aT
o~ s 2 + = gn E gn-l n>0
. aT | “n-1 " 2 aT 2
1+ > 1 >

= (1/1) Padé approximation for e~al
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(L75)

(176)

(177)

(178)

(179)




and

_at

<—-—L§> = (0/1) Padé approximation for e : c (180)
1+ 5
2

Instead of solving for X, a past value, X .1 might be used,
that is,

3 Y . . -
X" Tyt 3 [gn B T h TP xn-l] (181}

which would lead to

T
= (1 - aT) X .1 + 5 [gn + gn-l] (182)

and it is noted that [10 ]

(1 - aT) = (1/0) Padé approximation for e_aT s (183)
and

1 = (0/0) Padé approzimation for e o . (184)

The declining accuracy of the approximation is also noted.

Additionally, Equation (182) could be used to predict x_, substi-
tute Equation (182) into the right side of Equation (177),

& I g . at - Lt
*n 7 *n-1 & 2 [gn i 25’n—l:l 2 [(1 aT)xn-l ¥ 2 (i’n * gn-l)
+xo ] (185)

and simplyfing

; .
X :(1-aT+-L§-§)—)x +%(1--§)[gn+gn_1] (186)

n n-1

' where
aT 2 . =aT

-' (1 - ar 4 -(—ZL) = (2/0) Padé for e (187)
E and
il _ ar

(1 -izT-) = (1/0) Padé fore - . (188)
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In these cases where "a" is time varving, and it is not desired to

compute e-alT at each time step, the desired Pade” approximation should
be substituted directly into Equation (173).

D. A Forced Damped Oscillator
The differential equation is

X(t) + 2 ¢ W) x(t) + uoz x(t) = g(t) (189)

where wo is the undamped natural frequency and ¢ is the damping factor.

From Equation (112)

x(s) = s x(s) - X (190)

and

s2 x(s) - s x =X . (191)
o) o

x(s)

Substituting Equations (190) and (191) into Equation (189) and solving
for x(s),

g(s) £ (s + 2 Loo)xO + X

52 +2 tw s+uw 2
© 0 0

x(s) = (192)

It is noted that

5’%’ =73 : 2 35
8( s 42 Cw 85+ wy
only if x =0 and X = 0.
o o

Three possible ways of implementing Equations (192) and (193) are
shown in Figure 3. Figure 3(c¢) would be a proper implementation on
an analog computer and is usually the approach taken in digital simu-
lation.
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(a)

1

- TN T x (s)

D e =1

s 32+2§w°s+w§

(b)

.6} : i) |1 x (s)
s+2§wo s
_w‘z) %

-

x (s) x (s)

:

A

—wo "j

Figure 3. Implementation of Equations (192) and (193).
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A perusal of Appendix B will reveal no z-transform for Equation
(193) but

2
s+2§ws+w2=(s+’w)2+..2 (194)
(6] (o] (o)

where

2

1/
w=(1-t) u (195)

is the damped natural frequency. For convenience, let

a= tu (196)
and for
t (s + a)2 + W
0 s2 + wz
©, 1| e + a)? + (197)
i (s + a)2
L< (s + a)2 - wz

Again referring to Appendix B, it will be noted there are four
possible z-transforms for Equation (193) and the damping factor deter-
mines which should be used.

The case where there is no damping, ¢ = 0, and no forcing function,
g(t) = 0, may be of interest if a free running oscillator is required.
In this case, Equation (192) reduces to

sx + x
x(s) = (198)
IR
and taking the z~transform
x(z) = x Z(——i——i) + %X Z( 21 2) (199)
¢ 52 + W g s + W
32
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which becomes

X (L = z cos ul) + io (z sin WwT)/w

x(z) =

1 - (2 cos wl)z + 22

Substituting the definition of the z-transform for x(z), Equation (200)

becomes
00 00 00
n n n
z x(nT)z - 2 cos T z x(nT - T)z + Z x(nT - 2T)z
n=0 n=1 n=2

=X + [-(cos uﬂ)xo + io(sin uwr)/wlz

which may be written

o0

[x(nT)
n=0

(2 cos uI)x(nT - T) + x(nT - 2T)] 2"

+

(2 cos WI)x(=T) = x(=2T) - x(-T)z

]

X + [-(cos wT)xo + io(sin wr)/w]z

Equating coefficients of power of z,

X =X »n=0
o o

X, = X (cos uT) + X (sin WI')/w, n =1
X, = (2 cos uJT)xn_1 - X s =l

(200)

(201)

(202)

(203)

(204)

(205)

The state transition method yields the following recurrences [5],

X (cos wT)xn_1 - (w sin uﬂ)xn

-1 %

and

x = ( sin wT) X + (cos uW)xn

w n-1 -1 '

33
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In comparing Equation (205) with Equatio:s

(206) and (207), it is noted

that the state transition method requires four multiplications, one

addition, and one subtraction and two stores, while Equation (205)

requires one multiplication, one subtraction, and two stores after a

one step start up, Equation (204).
is the same as Equation (207).

The start up step,

Equation (204},

These recurrences are exact because there was no requirement to

invoke any approximations,

x = cos(ul + ¢)
it follows that
X = -w sin(wt + ¢)

and for t = nT,

X, = cos Wl cos ¢ = sin Wl sin ¢

X = cos ¢
o)
1
= cos (WT + ¢)
and
o+l

+igye 2 1

Of the four possibilities, Equation (197), the case where the

The exactness is easily demonstrated.

=2 cos W cos(nuwl + ¢) = cos((n = 1)uT + ¢)

L

(208)

(209)

(210)

(211)

cos ((n + LyuT

(212)

damping factor, ¢, is on the interval between zero and one is the most

s + 2a

useful.
x(z) =T 2
s 4
o
+x Z

(s + a)2 + u?

<g(2) = ';' 8,

(s + a)2 + w2

(s + a)2 + w2




taking the z-transforms, the following is obtained:

(1 - 2z e—aT cos wr + z2 e-zar)x(z)

= -al sin uT L
=% e W [g(z) 38 ]

+

X ( 1 -2 cog ur az ¥ Slo WL )

w
(214)

o ( -aT sin wr)
+X z e —
o )

Equating coefficients of z in Equation (214) after substituting the
definition of the z~-transform,

= n=20
X xo 5 ’ (215)
= L o Bt sin T
= w %o
-aT s
+ e (cos ol + a sin wT) xo
(216)
+ e-aT sin T % mE 3
W o
X = Ze-aT cos Wl x - e-2aT X
n n-1 n=2
(217)
=al sin T
+Te el WECIRR L - Haig

The same procedure would be followed in developing recurrences
for the other values of the damping factor, t » in Equation (197).

One problem, the values of in and kh may be desired. This leads

to a combination of Figures 3a and 3b (Figure 4).
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P P gl

g (s) 1 x (s)
2428 s+l

s+2§u°

Figure 4. Figures 3(a) and 3(b) combined.

Writing Equation (189) as follows

x(E)y =2 F & x(t) = g(t) - wozx(t) (218)
and using Equation (112), the following is obtained:
(s +2 ¢ w)X(s) =g(s) - w 2x(s) + % (219)
0”" o 0 5
and finally
2 .
g(s) = w " x(s) + X
- - (220)

x(s) = s +2 ¢t w
> 0

This is the single pole filter discussed in the previous section.
Taking the z-transform of Equation (220), the following is obtained:

€l =g “Shsdion ok ol % o 0_28'1‘)[1;(2) 2 moz x(z)]

2
(221)
T 2
i~ =il X e
2 (go (o T ) 0
and the recurrence would be,
X =z St e (222)
(8} O
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and

(223)

X would be computed using Equations (216) and (217); then in would be

computed using Equation (223) and finally kh using Equation (224),
d=iel =t 9l PRI e X . (224)

Because the proper recurrence for X is a function of the damping
factor, t, the preceding approach may be too complex. Let

+§(;c + % ) (225)

X =X
n n-1

n n-1

and substituting Equation (225) into Equation (223), the following is
obtained:

=-2aT .
=e X

T 2 s o
n n-1 i 2 gn 5 u% [xn-l = 2 (xn * xn-l)]

(226)

-2aT 2
e

i3 (gn-l - ug xn-l);

and solving for in’

(227)

This would correspond to Figure 3(b).

Another way to develop a recurrence would be to integrate twice;
this is the more traditional approach. Let

+ 2 KD (228)
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and

= I- v v €
X =X + > (xn + xn—l) (229)
where
X =g =~2¢tw x -Ww 4 x . (230)
n n 2 o n (¢} n

Because there are three equations and three unknowns, kh, kn, and X s

Equation (230) is substituted; then Equation (229) is substituted into
Equation (228) and solved for in,

(on)z 2
o k.= Con ] 2 . i 5n it Bpn-1 ~ : |
" 2 %ot T2 2
B ()
1+ C(A)OT ot e et “u)oT + T
(231)

This would correspond to Figure 3(c).
Ee Newtonian Drag

A nonlinear problem of interest in missile and aircraft
simulations is the Riccati equation representing Newtonian drag with
acceleration, Equation (232):

a(t) = -k(t) uZ(t) + g(t) (232)

which in the frequency domain may be written

s u(s) = 9, - £[k(t)u2(t)] + g(s) (233)

- Llk(E)u3(t)] + g(s)

u(s) = o :

Taking the z-transform of Equation (234) the following is obtained:

o
11(2)=-Z(£M)+Z(KL:—)-) +u”7,(£) . (235)

S
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With the help of trapezoidal convolution, Equation (30), Equation (235)
becomes

(1l = 2) u(z) = % (1 + 2) Z‘g(s) - £[k(t)u2(ti],- % [go - k0 UOZJ

+ u, . (236)

Equating coefficients of powers of z, the following is obtained:

ug = ug ,n =20 . (237)
and
2 T .z 2 2
T | i 2 [gn ¥ gn-l] 2 [kn Yn + kn-l un-l] B ’
(238)
Ry g2 2 I x
2 knun 2 0 (1 2 n-1 n-l) “n-1 s 2 8n & En-1 =
Letting
& I I
e (l 2 “n-1 “n-l)‘ﬂp4.+ 2 8t Bha1 {2503
and solving for us the following is obtained:
2 Ch Ity ) (241)

u -

n 1/2
1+ (1+ 2Tk c)

This recurrence, Equation (241), seems a bit complex. Letting

2 L 2
kou o=k [un_l + (v, un_l)] (242)
S 2 2
kn U1 + 2kn u 1 Y% + kn(un - un-l) (243)

and assuming that (un - u 1)2 is negligible

e @ = -kn u + 2kn U1 Y " (244)
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Substituting Equation (244) into Equation (238) and solving for u_,
yields 3

T ‘B
o [l 3 (kn r; Kgyl) un-l] e 2 [gn * gn-l] n >0 (245
n 1 +Tk u & 45)
n n-1

(245)

A small angle approximation to the analytic solution of Equation
(232), for g and k constant, is {11],

uo + gt
L e e e k26

It would appear that Equation (245) is a better approximation than
Equation (241) when compared with the analytic solution [11].

Another possibility is to use the relationship between the Riccati
equation and the linear differential equation of second order (12] in
Equation (232) which becomes upon transformation,

e y(t A
a(©) = Ty (247)
which becomes
Y(t) = ;‘}(% () + k(t) g(t) y(v) . (248)

The procedure would be similar to that in the treatment of the forced
damped oscillator, and will not be pursued here.

Equations (241) or (245) would be of use only in a one-degree=-of-
freedom simulation, say rising or falling. In general,

0= -kVu + g (249)
v = =kVv + h (250)
w = =kVw + i (251)
where
1/2
V= (u2 + v2 + w2 . (252)
40
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In body=-fixed coordinates, u = V,
1
- 2
G = -k 1+(¥)+() +g (253)
1
r e w22
=k 1% (—) +(—) R (254)
| u u
1
- il 2 )2
& = =k 1+(—) + (-J) e (255)
Let
1
k' = k(1 + a2)2 (256)
where

N =

o= [(f)z # (‘;’)2] (257)

is the total angle-of-attack. Then Equations (249), (250), and (251)
become

3 = wi? w5 g (258)
v ==k'uv + h (259)
w=-=k'uw+ i . (260)

Equation (258) may be solved using Equations (241) or (245). The
recurrence for Equation (259) would be

1
1-5k' 1%, e Bt By
Vo = e o<t T2 T y (261)
1+ = k u 1+=-k' u
Z n 2 n n
41
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The recurrence for Equation (260) would be the same as for Equation (259);
that is, the obvious substitutions are made in Equation (261). The
rate equations would be handled in a similar manner.

VI. CONCLUSIONS AND RECOMMENDATIONS

Those who didn't know have probably guessed that a potpourri
is a "dish of severall meates boyled and stued together,'"* Some might
be of the opinion it should have been allowed to cook a little longer,
but this report was not intended as a final summary; it was intended
to document the results of an initial investigation and suggest avenues
for further development. They are as follows:

a) Place z-transforms on a firm foundation using distribu=-
tion theory. This has already been done with Laplace and Fourier
transforms [ 13]. The intimate relation between z-transforms and the
Dirac delta is suggested in Appendix A. Such a foundation would allow
extensions and further development of z-transforms.

b) The effects of tuning for other inputs and transfer
functions require analysis. The times when modified z-transforms
and/or tunable convolution are advantageous and in what combination
they are advantageous require study. This would include the use
of higher order holds. The first-order hold leads to Simpson's rule,
Equation (59).

Ultimately, it is hoped that there would be some unification
between z-transforms, classical numerical methods, and distribution
theory. And catastrophe theory...

*
Also, a literary production composed of unconnected parts.
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Appendix A. Z-TRANSFORMS AND OTHER
DEFINITIONS AND RELATIONSHIPS

Laplace transform:

oo

r(f(c))s[ £(e)e St ate

o
= f(s) ’
Convolution:
t
f(t) * g(t)s[ f(t) g(t - 7)drt
0

L(£(t) * g(t)) = £(s) g(s)
The Dirac delta, &(t), is the unity element in convolution.

Cauchy Product of Power Series:

Sampling with Dirac delta distribution:

0

f(nT) = [ d(t - nT) £(t) dt %

=00

z=-trans form:

8

0

Z(L(f(e))) = j 5(t - nT)f(c)e'St e

=0 -x

=]

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

It is noted that f(t:)e.g't is being sampled, then summed. From the

properties of the Dirac delta,
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n=0

z<£[f(c)])= / £0)e St ¥ st - nr)de (A-8)

= ¥ f@mye™t (4-9)
n=

= ¥ f(nn)z" (A1)
n=0

= f(z) (A-11)

Equation (A-10) seems to arise in the literature like Venus full
grown from the foam, or is it like Athena from the forehead of Zeus?

Modified z-transform:

b3 j 5(t - (n + q)T)f(t)e-St dt ;027521

n=0
- +7) 8T
£(z) = 3 £(aT + qrye (TS
n=0
T < T
= e N8 z f(nT + nT)e &
n=0
but
S T
f£(z, 1) = 2 £(nT + e o
n=0
therefore,
2" £(z) = £(z, 1)
where z" is a fractional shift,
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Shifting theorem:

<«

Z [ 6(t - (n + m)T)f(::)e"St dits L0 < (A-17)
n=0
-00
Y £(nT + mrye” (MMST (A-18)
n=0
= e—mST Z f(nT + mT)e'-nST
n=0
= e-mST f(z,m)
= 2" £(z,m)
m-1 5
= f(z) - Y f(Dz
n=0
therefore,
-m m-1 n
f(z,m) = z f(z) - z f(nT)z
n=0
or
m=1
2" f(z) = f(z,m) + 2 " £(nT)z"
n=0
the shifting theorem.
Shifting the other way,
o0
(o8]
by ] 5(t - (n - mT)E(t)e *Cdt ,0<m
n=0
-00
oo
= z f(nT - mT)e.(n"m)S'1
n=0
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msT E

e £(nT - mI)e
=0

z f(z,-m)

-1
£z) + 5 £

k==m
therefore,
m [ d k
f(z,-m) = z £(z) + » f(kD)z ]
k=-m
or
-1
M £y = f(zyem) - Y, £GD) 2
==m
m-1 B
= f(z,-m) - » £(uT - oT)z
n=0

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)

Just because f(nT), n < 0, may not be known does not mean it is zero.
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Appendix B. TRANSFORM TABLE FOR SELECTED FUNCTIONS*
AND DISTRIBUTIONS

*Healy, M., Tables of Laplace, Heaviside, Fourier and Z-transforms,
London: W. and R. Chambers Ltd.,, 1967. Cadzow, J. A., Discrete-Time
Systems, Englewood Cliffs, New Jersey: Prentice Hall, 1973,
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Appendix C. DIRAC DELTA DISTRIBUTION*

[ f(t) &(t - nT)dt = £(nT) (C-1)

where f(t) is a well-defined function at t = nT.

d3(t) = &(~t) (€c-2)
1 =
b(at) = o] 5(t) (c-3)
1
=5 e s o e i - g(nT) = O fla
6[g(t)] 2 ‘g'(nT)l 5(t nT)’ g'(nT) " 0 (C 4)
n
t d(t) =0 (C-5)
£(t)d(t - nT) = £(nT)d(t - nT) (C-6)
[6((: - 17)®(t - nT)dt = d(t = nT) (C=7)
(m) m (™
f 5(t) f(t) = (=1) £(o0) (C-8)
~ (D)
f S0} o5 de = 4 (c-9)

*Dirac, P. A. M., The Principles of Quantum Mechanics, London:
Oxford University Press, 1958, Messiah, A., Quantum Mechanics, New
York: John Wiley and Sons, 1964.
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Appendix D. PAST VALUES FOR DIFFERENCE EQUATIONS SOLVING
DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

As was seen in the sample problems in Section V, the order of the
plant (and the forcing function) determine the number of start-up steps
before the recurrence may be applied. In a simulation containing differ-
ent order differential equations, the recurrences would start on differ-
ent steps, which could add complexity to the simulation,

To start all recurrences, regardless of their order at Step 1
(n = 1), in general, values before n = o will be required. First, the
required number of steps must be solved backwards in time before pro~-
ceeding forward in time with the recurrence at Step 1. The differential
equation could also be solved backwards in time (odd derivatives and
functions change sign, etc., and the startup steps would be obtained
for computing backwards as well as the backwards recurrence, which is
not required,

If the forward start-up steps have already been determined, the
backwards ones may be determined by substituting -T for T and ~n for n.
This would also apply for the recurrence., For example, Equations (161),
(160), and (159) would become, respectively,

L i |
x_n =2 X-(n-l) - x-(n-Z) + T x-(n-l)’ n < -1 J
(D-1) 3
=2 L = .
Bl R T Sendlr T
T2

= = % —— = =D

X4 Xo i xo + 5 xo, n 1 ; (D-2) .
and
X =X , 1 =0 " (D-3)
o o

With Equations (D-2) and (D-3), Equation (161) may then be written as:

x =2 x - x + T23€

n n-1 n-2 pel® o= b it Wb

ke nh g

Because the equations were solved backwards, the past values required
for starting the recurrence at Step 1 (n = 1) are not necessarily the
{ past values of the actual system, The forcing function may not have
been present before time zero (n = o); nevertheless, it must be taken

{ into consideration to start the recurrence at Step 1. ‘

i
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A nuiu .1 example will illustrate. For - e Iy e =] 0 = 2

and T = 1, Equations (159), (160), and (161) become

x =1
[
x, =1l+1x1+ L 2 =3
Xy < 7 X
X, = 2%X3-1+1Lx2=17 o

Using Equations (D-2), (D-3), and (D-4) twice,

=1-1+ 1 %2 =}

Lt 2

x =1

o

%, 2% 1-1+1x2=3
X, T ERY Bl T - F

The free running oscillator, Equations (203), (204), and (205),
noting that cosine is an even function and sine an odd function, would
become

X 4= xo (cos wr) - io (sin WT) 4, n = -1 § (D-5)

X s RE=SO ’ (D-6)
and

X, = (2 cos wT) Xnal = Xpo20 n>1 . (D-7)

In this way a "preprogram'" could convert initial conditions for the
differential equations into the required past values for the difference
equations at Step 1.

There is considerable confusion on this point in the lituerature
and caution is advised.
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