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ABSTRACT

Orthogonal polynomials satisfy a three term

Y recurrence relation. The purpose of the paper is to

give estimates for the orthogonal polynomials and the
corresponding weight function provided that the coefficients

in the recurrence formula behave in a prescribed manner.
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EXPLANATION

Orthogonal polynomials provide a convenient means to
expand functions into series in polynomials. When investigating
these series one has to be able to estimate the size of the orthogongl
polynomials. The present paper shows how to estimate orthogonal

polynomials when the recurrence relation for these polynomials is

9

given.
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Let {a }:-0 and {Yn > o}:=° be given sequences of real members. Putting -

/

p_l-o, po- yo and defining P, for n=1,2,... by

Yn—2

xp__.(x) =

n-1

p___(x)

pn (=) * & n-2

P _,(x) +
5 n-1l "n-1 n-1

we obtain a system of polynomials {p ¥ which by a result of J. Favard (see e.g. [2])
n n=0

is orthonormal with respect to some positive measure da acting on the real line. Let

Yn-l

Y,
‘n=-2
| + 2[gn_1|+ 1~ 2 ~ |

c = |1—2
n n n-1

It has been shown in (3] that under the assumption
(1) c <o

the measure da can be written as

da(x) = a'(x)ax + ] {jumps outside (-1,1)} ,

where a' is positive and continuous on (-1,1) and a' vanishes outside [-1,1] . At
the present time it is not clear that assuming (1) how a' behaves near -1 and 1 . In

case of the Tschebyshev polynomials (x =0 for n =0,1,..., Yo=Y, =1 and y_ = g

for n=2,3,...) a' is not continuous at -1 and 1 . For the Tschebyshev polynomials
of second kind (3 =0 and y =2" for n=0,1,...) o' is not positive at -1 and
1 . Since the works of G. Szego (see e.g. [4]) it has become known that those measures

!
da for which

"
2 |/ loga'(cos 6)a8 > -
-n

play a very important role in the theory of orthogonal polynomials. Therefore it is natural
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to ask if (1) implies (2). It is easy to see that under the assumption supp(da) = [-1,1]
the inequality (2) follows from (1) ([3)}). Otherwise the question is still open. It was
proved in [3] that

o
@3) Z ne <«

n=0

implies
a'(x) > const / l-x2

for -1 < x<1. Hence (2) follows from (3). K. M. Case suggested in [1) that (2) holds

whenever

lim sup n2c <™
n-> o n
The purpose of this note is to show that the weaker condition
m

(4) ] (m#l)c < A log(m+d) (m=1,2,..)
n=0 f

not only implies (2) but also gives a pointwise estimate for a' . We will see that
assuming (4) log a' is very far from being nonintegrable. Our plan is the following.
First, using an absolutely elementary method, we obtain estimate for |pn| . This method
is somewhat miraculous since we establish an inequality which improves itself when applied

repcatedly. Having bound for lpnl the corresponding estimate for a' follows from a

result in [3].

THEOREM. Suppose that (4) holds with a suitable constant A > 0 . Then there exist two
positive constants Al and Az depending only on A and inf Yn llyn such that
" &

-A

(5) lp_ ()| < a (1-x2) * (-1 < x < 1)
n L -
for n=1,2,... and
-1, 2%
(6) a’(x) > AT (1-x7) (-1<x<1) .

Proof. Let x ¢ [-1,1) and put x = cos 0 where 0<6<m. Define Qn by




e

i6
$,(0 =p (x) -e"p _,(x).

Then

i6

¢n(9) -e $,.1(8) =p (x) - 2xp_,(x) +p _,(x)

and by the recurrence formula

-i6
(7) On(e) -e ¢n_1(9) =
Y, Y
n-1 n-2
= [1-2 ] pn(x) - ZGn_lpn_l(x) + [1 -2 ;——— ] pn_z(x) 5
n n-1
Consequently

-i8 T ‘
l6 (@) - e ¢ O] <c, )) le )| .
k=n-2

Using again the recurrence formula we obtain

n M
(8) ) lp, | <x ] Ip 0] (M = n-1,n)
k=n-2 k=M-1

where K depends only on sup Q. inf yn_l/'yn and sup Yn-I/Yn . Furthermore, from the
n n
definition of °n follows that

(9) Y lp, 0| < 1o @1, y lp,_, 0] < 1¢_®] .

Therefore
=Y
-16 2, @
[6.(8) - ¢ ¢ (8] < 2ke_(1-x") © max [¢__.(8)] .
n n-1 n leil n-1
Recall that ¢n - e'ie on—l is a polynomial of degree n in x . Thus by a theorem of

S. Bernstein

-10
max [ (6) -e " ¢ . (0)] < 2Kkc_(n+1) max |¢ . (0)]
xlil n n-1 n '*lﬁl n-1 g

that is




T R

Al

max ¢ (8)] < l¢ (8] 1 + 2kc_(n+1)) .
SR e A

Repeated application of this inequality shows that

n E
max |4 (8)] < v, exp{2x ] (3+l)e;} .
x|<1 j=1

Hence by (4)

(20) 9,0 < ¥, tne1) 22 r4

for -1 <x<1 and n=0,1,... . Now we return to (7). Multiplying both sides of (7)

by eine and summing for n = 0,1,...,m we obtain

imb
e

® Yn-l
9,8 = I {(n-2 Y ) p(x) - 20

n-1 pn-l(X) i
n=0 n

Yn—2
1 p. (x)} .
'Yn_l n-2 i

+ [1-2

Therefore by (8) and (9)

N

m
L oclo @] .

(1) [6,(0)] < 2x(1-x%) :
n=0 -

Using inequality (10) we get 3

ZKYO(I-xz)

N =

m
2KA {
[¢_(8) | I c tn+l) .
m n=0 n

IA

If 2KA <1 then by (4) and (9) the estimate (5) follows. Suppose that 2KA > 1 . Then

using (4) we obtain

1
-= m
2w MY e e ¢

2
lo (0] < 2xy, (1-x)
m 0 #=0

N

< 2xay, 1) AT 1og(mi1) (1-x)

which is much better than (10). Now plug this inequality into (11)., If 2xA - 1< 1

then (5) follows. Otherwise we get a new estimate which we again plug into (11). After

finitely many similar steps we obtain




< B

i SRR st

o

-

P

{
|
3
{

i,

-B
2. 2
le @] < B (1-x)

for -1 <x<1 and n =1,2,... which combined with (9) yields (5). The inequality (6)
follows from (5) and Theorem 7.5 of [3].
Finally we note that the example of Jacobi polynomials shows that apart from the

constants A1 and Az our result cannot be improved.
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