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SUM4ARY

Many mathematical models for controlling inventory were developed

during the past decade . One of the models, called METRIC , was designed

specifically for Air Force use in determining appropriate base and depot

inventory levels for a class of items called recoverable items. METRIC

can be used in three ways in determining stock levels for these items.

First , the model can be used to assist in the initial procurement-

allocat ion problem. The obj ective is to determine both base and depot
‘I

55 stock levels so that the sun of the expected backorders is minimized

over all recoverable items at all bases having a particular weapon

system, where the optimization is performed subject to a constraint on

system investment.

Second , METRIC can be used to redistribute stocks in an optimal

maimer. The objective in the redistribution problem is to find base

and depot stock levels for each item that minimizes the expected total

base backorders , given the available system stock.

Last , the model can be used as an analysis tool. It can be used

- to assess system performance and investment cost for any distribution of

assets.

The objective of this report is to present an algorithm that can be

used to obtain the solution to the redistribution problem . -
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I. INTRODUCTION

Many mathematical models for controlling inventory were developed

during the past decade. One of these models, called METRIC, was designed

specifically for Air Force use in determining appropriate base and depot

inventory levels for a class of items called recoverable itemsJ31 These

recoverable items typically are expensive and experience low demand rates ;

S however, their proper management is imperative since approximately 80

percent of the Air Force ’s total investment in spares is concentrated in

these items. METRIC can be used in three ways to assist in determining

stock levels for recoverable items. [31

The first purpose of the model is optimization. The objective of 
S

this optimization is to determine base and depot stock levels so that

the sun of the expected backorders is minimized over all recoverable items

at all bases having a particular weapon system. This problem is called

the procurement-allocation problem. The minimization is performed

subject to a constraint on system investment. Thus this optimization

is of prime importance in the acquisition phase of a weapon system.
S 

METRIC can also be used to allocate in an optimal manner the existing

amounts of stock between the bases and depot. Thus the second way this

model can be used is in redistributing assets. The objective in the

redistribution problem is to find the base and depot stock levels for

each item that minimizes the expected total base backorders , g iven the

S available amount of system stock of that item. This redistribution is

of particular importance as demand patterns change over time thereby

causing items to be in either long or short supply at various locations.

-~~~~~~~~~~ ~~~~~S~~~~~~ 5 S SS -~~~~~ -~~~~~~~~~~~~~~~~~ - S
~~~~~~~~~~~~
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- Lastly, the model can be used to perform analysis. It is a simple S

matter to assess system performance and investment cost for any specific

distribution of stocks between the bases and depot. This type of analysis

can be performed at any stage of the life cycle of a weapon system.

In addition to the model a computational procedure was given in the

[ original papers for finding the optimum base-depot stock levels. [3,4j

This technique was a imed at solving the procurement-allocation problem

- described above. The algorithm as stated requires a large amount of

computer time to find the optimum stock levels. A much more effective tech-

L nique was subsequently developed for solving this problem. However, it

is also possible to construct a better solution method for solving the

redistribution problem.

The obj ective of this Report is to present an algorithm that can be
S used to obtain the solution to the redistribution problem. A brief

discussion of the backorder function and demand distribution is also

S 
included . In addition , a computer program is included which was developed

S for allocating spare aircraft engines. By making some minor modificat ions

to certain input-output format statements, this program could be used to

obtain the optimal redistribution for any type of item.

2
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II. BACKGROUND

2.1 Introduction

In this chapter a variety of background material is given. ~4ich

of what is said here is a summary of results given in other papersJ2 ’3’41

However, for the sake of completeness it is included in the Report . In

particular , is chapter contains a discussion of the backorder function

and its properties. In addition , a section is included on the probability S

-
~~~~ model used as the basis for making the calculations in the backorder function .

2.2 The Backorder Function

In the previous section it was stated that the obj ective in the

redistribution problem is to minimize the expected number of total base

backorders for any specific item. It should be mentioned that we are not

explicitly interested in depot backorders. They are of importance only

in how they affect base backorders.

Let us now define what is meant by the backorder criterion. A

backorder exists at a specific point in time if there is an unsatisfied

demand at base level for a specific item. Backorders are then accumulated

as follows. For a fixed period of time calculate the duration, in days,

corresponding to each backorder. Add the lengths of these individual

5 5 backorders at all pertinent bases and divide by the length of the period.
- 

The quantity to be minimized is the expected value of this ratio . Note

S 
that this performance measure is linear, that is, 5 backorders each last-

ing two days is as undesirable as 10 backorders each lasting one day.

The dimension of this measure is backorder days per day.

3

5 5 5
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Mathematically speaking the expected number of backorders in a time

period of length T is expressed as

B(s) = Z (x-s) p(xj xT) , Eq 1
x s+l

N

where s is the stock level , x is the quantity demanded , A is mean

demand rate , and p(x I AT) is the probability of observing x demands

during the time period. Equation 1 will be subsequently referred to as

the backorder function. More will be said about p(xI XT) in the ne;~.

section. Thus x-s , for x>s , measures the number of requests in

excess of supply, or backorders , and B(s) is the expected number of

backorders .

S 
In the algorithm for computing the optimal allocation of spares

described below, certain calculations must be performed. First, for

each base it is necessary to compute the expected time between plac ing

a request for an item from the depot and the base receipt of the item.

In addition , this time could also include build-up time at the base.

(For aircraf t engines this total time is designated ARBIJT - -Automatic

Resupply and Buildup Time) . This time will be called the depot response

time. Clearly the depot response time is dependent on the depot stock

level . For example , if the depot has a very large quantity of stock on

hand, then the average depot response time is dependent only on the

average administrative and pipeline times. Designate this time for base

j as R~ . On the other hand , if there is no stock on hand at the depot ,

then the average depot response time at base j is R~+D , where D is

the average depot repair time . Thus if the depot stock is any posi tive

4 
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finite quantity , the average depot response time will be between R~
and R. +D.

3

Let s represent the depot spare stock. Then the expected number of

units delayed at the depot at some arbitrary point in time is given by

B(5IAD) = ~ (x-s)p(x I XD) ,
x>s

where A = ~ A .  (1-r.), A. = monthly demand rate at base j , and r . =

3 3 3 3
percentage of units that are base reparable. By dividing B(s~XD) by A P

S 

~e get the average delay per demand measured in months. Next , define 
-

d = 
B(x I XD)(s) AD

Hence d(s).D is the average delay per demand.

Now let us compute the expected response time at base j given that

the depot stock is s . Let

T = r~W~ + ( — r ~~) ( F ~- - - - d ( s j ~~D ) ,
~) J ..~ ~)

where is the average base repair time. Then T represents the

average response time at base j . If s~ denotes the stock level of 
~~5 5

base j , then the expected number of backorders for base j can then

be found from Equation 1 using the above definition of T and substituting

for s.

2.3 The Demand Distribution :1

The probability distribution for demand , p(x~XT) , for each item is

S 
assumed to be a compound Poisson distribution. By using this type of

distribution it is possible to consider a wide variety of shapes for the

- 5 
- -

j
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demand distributions. Another reason for using a compound Poisson distri-

S bution rather than a simple Poisson distribution is that it has a

variance-to-mean ratio which is greater than or equal to 1 which is the

ratio value of the Poisson. In practice, the variance displayed by actual

data for the vast majority of items is greater than the mean thereby

necessitating the use of a probability model other than the Poisson.

A compound Poisson probability model results when any one of a

number of assumptions is made. Two sets of assumptions which lead

to a particular type of compound Poisson model are described below.
-~ A compound Poisson distribution is obtained whenever the individual

demand requests follow a Poisson process and the number of demands per
S request is also a random variable. [2] In the METRIC model it is assumed

that the order size distribution is a logarithuic distribution . [2] It

has been shown that if the number of customer orders is a Poisson process

and the number of demands per request are independent and identically

distributed random variables following a logarithmic distribution, then

the probability distribution for the total number of demands (for some

specified time period) has a negative binomial distribution. The nega-

tive binomial is a particularly useful distribution to work with. First ,

it adequately describes many observed demand patterns; second, mathemati- S

cally it is a simple distribution to work with.

There is another way in which a compound Poisson distr ibution can be

obtained. For certain items the order size will almost always equal one .

An example of such an item is an aircraft engine. Since demands occur

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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one at a time, one might assume that a simple Poisson distribution would

S be an appropriate probability model to use in this situation. Unfortunately,

this may not be the case. To choose the appropriate probability model

to use in a decision problem we should actual ly determine the distribution

of the demand about the forecasted value ; that is , what is of real in-

terest is the distribution of forecast errors. To test demand data to

see if it follows a Poisson distribution, in practice, retrospective

analysis is used. For example, a Chi-square goodness of fit test can

be made on past data using the sample mean as an estimate of the true mean.

If this statistical test is passed we may be willing to consider demand

to have a Poisson distribution whose mean equals the sample mean. If the

underlying process is stationary , the Poisson model could probably be used

in making future decisions. On the other hand , if the process is really

non-stationary, then this retrospective information must be used with
S 

great caution.

Subsequent decisions cannot be solely based on the results of the

above statistical analysis. IThat is really needed in this case is to

determine the distribution of demand around the forecasted value. Only

if the distribution of forecast errors follows a Poisson distribution

can a Poisson model be used in decision making . Often a Poisson model S

S does not describe the distribution of forecast errors since the variance

S exceeds the mean. In these cases a compound Poisson di:tribution is often

of value. Since the method used to forecast demand is ~~ such obvious

importance in choosing the correct model, let us now discuss it in greater

depth.

/ 

— -

~~~
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Instead of using a point estimate for forecasting future demand, it

is preferable to use a distribution of estimates. This is the case

-‘ because if only a single number is used to estimate future mean demand,

unless we are certain that this value equals the true mean demand, we

will always underestimate the expected number of backorders. In other S

words, if we estimate the true mean demand as 3 when in fact it is felt

that it is equally likely to be either 2, 3, or 4 , then by using 3 as a

point estimate of true mean demand we will under state the expected

number of backorders. The reason for this is that the backorder function

is a convex function of true mean demand. Thus a single point estimate

of demand does not provide sufficient information for decision making

purposes. To include a distribution of forecast values in the model

rather than a single estimate we will use a Bayesian procedure. However ,

S 
to use a Bayesian model for the true mean demand it is necessary to have

a prior estimate of the probability distribution of the true mean demand.

There are several ways that this prior distribution can be determined.

S One way is to choose the best distribution from a particular class of 
S

distributic~ns. This is the method employed here . The family of distri-

butions chosen for use is the gamma distribution. The best member of

the family is selected based on the initial estimate of the distributions ’

parameter values.

The choice of the gamma is made for two reasons . First , the ganuna

distribution is a two parameter, unimodal , right - skewed, cont inuous

distribution which is positive for only non-negative values. There are

8
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a wide variety of shapes this type of distribution can ~‘ssume. The

exact shape depends on the values taken on by the two parameters. The

decision maker can reflect his degree of confidence in the initial esti-

mate of true mean demand by choosing the parameters so that the distribution

either has a large or small variance. If ~ and ~ are the parameters

of the distribution , then its mean is c~ and its variance is . it

should be pointed out that the assumption that the true mean demand is

gamma distributed was really made assuming the analysis was made for a

fixed time period. However, it turns out that this implies that the true

mean demand has a gamma distribution over a time period of any duration .

The second reason for choosing the gamma distribution is that mathe-

matically it is easy to work with. Furthermore, if we assume that the
S 

conditional demand distribution is Poisson over some time period, given

the value of the mean, then the unconditional probability distribution

of total demand over that time period is negative binomial. In what

follows, the conditional demand distribution will be assumed to be S

Poisson and the distribution of true mean demand will be assumed to be

gamma.

The Bayesian procedure for revising the probability distribution of

the true mean demand is performed as follows . Suppose that in a time

period of length Q there are k observed demands. Then combine the

prior distribution of the true mean demand over that time period, call it

f(u) , and the probability of observing those k demands, using Bayes

formula as follows:

9
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g(u~k) = 
p(k!u).f(u)

1 p(k u) .f(u)du

where p(klu) is the Poisson probability for observing k demands when

the mean demand rate is u , and g(ul k) is the posterior density for the

demand rate u given k demands in the time period of length Q. Then

~~~~ S 5 

g(u~k) = 
~~~ : ~~~~ ~

k+ct-l exp [-u(l+l/B)]

çS. where ~~, ~ are the two parameters of the gamma prior. Thus the posterior

distribution of true mean demand is also gamma with parameters k+~ and

8+1

It must be as~~~ed that the variance to mean ratio in the prior density

functions of true mean demand is the same for each base, that is, ~ is

the same for all the bases. This assumption is made so that the prior

density of true mean depot demand is also gamma with ct ~(l~r~)cz~ and s

as the two parameters, where is the first gamma parameter at base j

and r~ is the portion of the failures that are base reparable.

2.4 The Backorder Function Revisited

We are interested in computing the expected number of backorders

over a period of length T , the average response time discussed earlier.

But g(u~k) was calculated for a time period of length Q . As mentioned

above, the same posterior densities are appropriate for any period of

time. The Poisson probabilit~r of observing demands in T is

(UT)X e~~
T
~~

p(xI~~) 
= . Thus the expected number of

10 
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backorders in T at base j given k demands during the data period

of length Q when base stock is s~ is

B(s~ lk) = f ~ g(uj lc) ~ (x-s~)~P(x I ~~) du
o X>5

3

= ~ (x-s~)~ h(x I s)
x>s~

where h(xl s) (
k+c~+x_l) 

~~~~+8T~ ~BQ+Q+8T~ 
‘ 

Eq 2

s is the depot stock level, and T = r~W~+(l-r~)(R ~+d(s)D)

Thus h(x s) is a negative binomial probability distribution in which

S 
p equals (BQ+Q)/(8Q+Q+ 8T) and second parameter, r , equals k+~

Let us now state some properties associated with the backorder

function.

1) The backorder function for base j is a convex function of its stock S

level. This follows since B(s.+l)-B(s.) = - 
~~ 

p(x~AT)
x>s

3
+l S

2) d(s) = B(sl XD) — ~~ 
(x-s) p(x AD) is a convex, strictly decreasing

S AD 
- 

AD

function of s , where p(x~AD) is the probability of x units being in

depot resupply given a demand rate A and an average depot repair time of

D . This result is obvious since the backorder function is convex and

strictly decreasing.

3) Since d(s) is convex, T is a strictly decreasing convex function of s

11
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4) Urn T = r.W. + (l-r.)R. =

54.~ 3 3  3 3

5) In the steady state negative binomial distribution for the number of

units in resupply at any base, h(x(s) , the value of p is a convex strictly

decreasing function of T

6) p is a strictly increasing function of depot stock s

7) lim p BQ+Q
eQ+Q+B(r~W~+(l-r~)R~)

8) The mean of the negative binomial distribution, , is

a strictly decreasing function of p and hence of s

9) Thus u rn (k+ct)(l-p) 
= k+ 8

~

10) The variance, (k+ct)çl-p) , is a strictly decreasing function
P2

of p arid s.

11) The backorder function need not be a convex function of depot stock.

Property 11) unfortunately makes the computational procedure for

finding the optimum depot stock and base stocks somewhat more difficult.

If the function were convex, then some simple search procedure could be

employed to find the optimum solution. Although the backorder function is

not always convex, in a very substantial number of cases it will be. In

those cases where it is not convex, experience indicates that it is only

“slightly” non-convex, that is, the function may have small oscillations

near the optimum, but at a significant distance from the optimum the

function is strictly monotone increasing. These properties are exploited

in the algorithm described in the next section for obtaining a local

optimum solution to the problem.

12
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- III. 1}IEALGORI1~~

3.1 Introduction

In this section an algorithm is presented for finding a local opt imal

solution to the redistribution problem. The algorithm is based on the

marginal analysis procedure described by Sherbrooke. [3,4] Based on certain

properties of the backorder function, it is shown how to alter Sherbrooke’s

method in order to reduce the number of required calculations at the

expense of finding only a local optimum.

3.2 Background

Recall that the objective of the redistribution problem is to allocate

• an existing spare stock of an item between the bases and depot such that

the total number of expected backorders is minimized. For each given

level of depot stock it is possible to calculate the resulting number of

expected backorders at the bases. In Table 1, each row corresponds to a

particular level of depot spare stock,

EXPEC’FED BACKOPDERS
DEPOT

TOTAL SPARE STOCK AT BASES
STOCK

0 1 2
0 X XX XXX

1 XX XXX

2~~~~~
Table 1

and each column corresponds to a given amount of spare stock allocated

to all the bases. In the table the number found at the intersection of

a row and a column indicates the expected number of backorders given the



T
~

Y
~ •

total base and depot spare stocks. For example, the number in the inter- S

section of the second row and second solumn - - denoted by xxx - - is the
expected number of backorders given that 1 unit of stock is allocated S

to the depot and 1 unit to the bases. Clearly if there are 2 units of

spare stock in the system the expected number of backorders that result

from the various possible distributions can be found in the table on the

appropriate diagonal. Thus the three ~ccc symbols correspond to the

expected backorders resulting from the different possible allocations of

the 2 units of stock. If there are M units of stock currently in the

system, then by calculating the diagonal corresponding to the possible

distributions of this stock the optimum solution can be obtained by

simply locating the smallest number on the diagonal.

Instead of calculating the whole table as Sherbrooke does, it is 
S

possible to substantially limit the search. This is of particular

importance when there are many hundreds or even thousands of units of

a particular item in spare stock. If the search can be limited to a

small percentage of the table, a significant reduction in computational S

effort will occur. When this calculation is performed for thousands of

items the benefits of the proposed procedure are great.

3.2 The Optimum Base Allocation for a Fixed Depot Stock

Suppose M units of an item are in stock and s units are allocated

to the depot. Then M-s units are available to be distributed between

the bases. Let us now describe a method for determining the optimum

distribution of the M-s units of stock.

14
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For each base j calculate h(x~ Is) . The best allocation of the

M-s units occurs when ~ ~ (x
3 
-s

i
) . h(x~ I s)

j x
i
>s

i

is minimized, where s~ is the amount of stock located at base J (~s~ = M-s)

If M s , That is, all the spare stock is located at the depot, then the

only solution is to have 5
3

O for each base j . If M-s = 1, then there

is one unit of stock that is available for distribution to the bases. The

S 
problem is to determine which base gets the unit. For each base calculate

B(l) - B(0) -E h(x. Is)
x
3
=i 3

The base that gets the unit of stock is the one for which this quantity is

smallest. This corresponds to the base which marginally reduces the
• expected number of backorders by the largest amount. Let base m be the

one which receives the unit of stock.

If there are two units to allocate to the bases, then the first unit

again goes to base m . This is due to the fact that by allocating this

unit to base m expected backorders are reduced by as large an amount as

possible. The second unit goes to the base which can now reduce expected

backorders by the maximum amount. This base is found by calculating

B(l) - B(O) for all bases except base m ; for base m calculate - S

B(2) - 3(1) = -
~~~ 

h(Xm Is) . Again determine the smallest of these
Xm>l

numbers. The corresponding base gets the second unit of stock.

• In general, the computation is made as follows: If there are n bases

and S
1~ s2, ... , s~ units of stock are currently being allocated to bases

15
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1, 2, ... , n respectively, then to allocate the next unit of stock,

find the minimum of the numbers

B(s1+l) 
- B(s1) = - 

~~ 
h(x1Is)xl>sl

3(52+l) 
- B(s2) = - 

~~ 
h(x2Is)x2>s2

B(s~+l) - B(s~) = - 
~~ 

h(x~ls)
x>S

The base corresponding to the smallest number gets the additional unit

of stock. Note that this calculation is simple to make . To add one unit

it is necessary to calculate only the difference corresponding to the base

which received the previous unit of stock since all the other numbers

remain unchanged.

Furthermore, B(s~÷2) 
- B(s~+l) = B(s~+l) -B( s~) - h(s~+l I s)~ S

or the new difference is equal to old difference minus the value of the

probability h(s~+1 I s) . Thus the calculation to determine which base

gets the additional unit of stock can be found by subtracting only one number

and finding the mini.mi.zn of the resultant quantities. It is also a simple

task to calculate the negative binomial probabilities, h(xl s) , using

the following recursion relation

h(x+ljs) = (x+k+~) (l-p) h(X I s)
(x+IJ~~

where h (xls) is defined in Equation 2.

H 16 
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Thus for a given depot stock s and base stock M-s , the opt imum

allocation of the stock between the bases can be found using the technique S

described above. This technique is especially easy to implement on a

computer.

t 3.3 The Solution Procedure

In the last section a method was given for determining the optimum 
S

L stock level for each base given the depot stock level. Now let us develop

a technique for finding the proper depot stock level. As mentioned

previously, the optimum depot stock level can be found by performing the

calculations described in the previous section for all possible values of

depot stock (0 to M). For even moderately sized values of M this procedure

is inefficient .
S The expected number of backorders for base j given a depot stock

level of s and base stock level s~ is

~ (x~-s~)~h(x.ls)x . > s . 3

If s+l units are in depot stock, then the only difference in the calcula-

tion is that h(x~ ~s+l) is used in place of h(x~ Is) . In Section 2.4,

various properties were developed associated with h(x l s) . In particular

it was shown that as s increases the negative binomial probability

distribution approaches a limiting distribution since p approache s a

limiting value. It is easy to see that as s exceeds the average demand

in a time period of length D, AD , the impact on the probability values
- 

becomes negligible. This occurs because d(s)-.0 quite rapidly after s

exceeds A D, and , therefore , T quickly approache s T . To illustrate

this fact consider the following example.

17 
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Suppose we have six bases at which ... = = 20, R1 = ... = R6 = 20,

A1 = ... = A 6 = .1 , r1 = ... = r6 .9 and D = 40. To keep the calcula-

S tions simple , let us assume we know the true mean demand at each base , and

therefore the demand distribution at each base follows a Poisson distribu-

tion. The values found in Table 2 indicate how d(s) and T change as a

function of s .

~~
-
. 

CHANGES IN d(r) AND T
AS A FUNC~ION OF r

(AD = 2.4)

- 
Depot Stock d(s) = ~~~~~~~~~~~ T

— 

0 1.000 24
1 0.621 22.84

— 

2 0.33 21.32
3 0.154 20.616
4 0.061 20.244
5 0.022 20.088
6 0.0067 20.0268
7 0.0012 20.0048
8 0.0004 20.0016

0.0 20.000
Table 2

Since the difference between h(xls) and h(xls+l) is so small as s

becomes large , there is , for all practical purposes , no difference in

S the expected number of backorders for like values of total base stock

S 
when depot stock is either s or s+l . Hence there is no advantage in

I 

- 
investigating system performance for values of depot stock larger than

~ 

S
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some number . Designate this number by ST. The value of ST can be

based on some criteria such as d(s) is less than some prescribed value ,

T is within some specified distance of ~r , p is as close to its

limiting value as desired, or the mean of the distribution is within some

distance of its limiting value. Thus it is not necessary to compute all

the entries in Table I; no more than the first ST+l rows need be calculated.

In most situations the total system stock is large enough to permit

the depot stock level to be at least A D . Since signif icant reductions

can be made to the value of d(s) when s<AD , it appears likely that S -;

the optimum value of s will not be very much less than AD . In test

problems this was always the case when the system stock was quite large

compared to total demand. On the other hand, only when system stick became

relatively small as compared to expected demand did the optimal value of

depot stock drop much below AD . Thus the aigorithm, for all practical

purposes , limits the search for the best value of depot stock to a limited

range aground [AD], ([AD] is the greatest integer value less than or

equal to AD). 
S - S

The steps of the computational procedure are given below and a flow

chart is given in Appendix A.

Step 0) Determine the values of the parameters used in the probability

distributions. Set Z , the run length used to terminate

calculations, St , and the starting value for depot stock , b

Calculate the expected number of base backorders when depot

stock equals b , that is , 3(b) . Call this value v . Set

a b+l , d—b , q=0, and c=l.

19
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Step 1) Calculate B(a) . - If B(a)>B(a-l) go to Step 2. Otherwise

~~~~ Step 4.

Step 2) Replace the value of q with q+1 and check the value of q

and a. If either a=St, a=o or q=Z, go to Step d. Otherwise

replace the value of a with a+c and return to Step 1.

Step 3) If c=l , then reset the value of c to -1, set a=b-l , q=0, and

return to Step 1; otherwise terminate computations with the

- 

-

~ solution being to stock d units at the depot and the corre-

spondirig expected number of backorders being equal to B (d) .

S Step 4) Set q~0. If B(a)<v , set v=B(a) and d=a , and go

to Step 5. If B(a)>v , go to Step 5.

Step 5) If either a=St or a=0 , go to Step 3. Otherwise replace

the value of a with a+c and return to Step 1.

3.4 Some Final Coments

The computational procedure stated above requires that a starting

point and a range value be specified. If no better starting point is

available , then begin with depot stock equal to [AD] . However, once

some experience is available, it is best to start the procedure with the

initial value of depot stock equal to its previously calculated optimal

value. Since the parameter values do not change very rapidly, the pre-

vious optimal value of depot stock if not still optimal should be quite

close to new optimum.

The range value , Z , which is used to terminate the computat ional

— 
procedure , must be chosen with some care. Once the value of the back-

order function increases or stays the same for Z consecutive values

_ _ _ _ _ _  -_ ~~-~~~- S - • S - S 
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of depot stock the procedure stops searching for a better solution in that

direction . Hence , if : is too small there is a possibility of missing

the opt imum. On the other hand , if Z is too large then an excessive

- • amount of computer time will be used to find the optimum . In the cases
S where system stock is 100, a value of Z=5 seems to work well. However ,

if the system stock is several thousand it is probably necessary to in-

crease the value of Z. At this time this is an open question and is

- therefore an area requiring further investigation.

In the vast majority of the cases tested the backorder function has

been convex although there is no guarantee that it will be. In these

cases, the local minimum obtained by the algorithm will also be the global

minimum. Even when the backorder function is not convex, the algorithm

will most likely produce the optimal solution. In fact, the optimal

r ! solution was found for all the test problems.

It could be argued that by using a more sophisticated search method

the computational requirements could be reduced even further. See, for

example , Item 5 in the Bibliography. This may be the case. It is felt,

however, that in the algorithm by using the past optimal value as the

starting point for depot stock that very little improvement will be made

in computer run times by using a more complicated search procedure. This

is another area that requires additional testing. In its present form

the proposed procedure should reduce computational times to a small

fraction of their current values. This has been the case in each of the

test problems.

S 21
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FLOW CHART OF THE
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INPUT DATA
S

. 

_ _ _ _ _

SET PARAMETER
S VA~LUES

- (z , b, a b+i,d=b
q=o c=i)

4r v~B ( b)

I

- 

CALCULA TE S 1
- B (a) ~ B (a—i) Yes S

No
4

q=o
— Yes- a~MYesB(a) ~ v 
No

Yesa~o S

v=B(a)No d=a No 
S

Yes 5

5

q=z
No

G:~O+C

_  Si
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a=M Yes

S 

No

S YesQ O

No

a=a +c

3

c= I Yes

ST OP . 

c=-I
I a:b—i I

q=o

~
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