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1. Introduction

The book by Forsythe and Moler [1967] gives an error analysis
for Gaussian elimination drawn from the work of Wilkinson and an analysis for
iterative improvement due to Moler. In this paper we do a careful backward
error analysis using a different idea of what it means for a perturbation
to be small, namely that each datum is subject to a small relative change.

A system of n equations

.

a,. X, = b, 1< 4. <,

ij 73 i

o2

j=1

in n unknowns x., 1 < i < n, is often written in matrix notation as

i’
Ax = b.
The solution X computed in floating point arithmetic is not generally
exactly equal to x, but it still may be acceptable if it satisfies one of
two criteria:
(i) It fulfills the accuracy requirements of the problem poser.

This usually involves some measure of how far x is from x.

For example, in determining the coefficients of an inter-

polating polynomial it is some norm of the residual

r = A(x - x) which is of concern. More often though it

is some norm of the error x - x which is of concern.

(ii) It is the exact solution of a problem which differs from

the given problem by less than the uncertainty in the data,
so that it is conceivable that x exactly solves the original
problem. Uncertainty in the data is generally present if
only because of the roundoff error introduced when the

numbers are put into the computer.

It is this second criterion which motivates backward error analysis.




In 82 we give mathematical form to the informal discussion of
ill conditioning found in Hamming's [1971] book Introduction to Applied
Numerical Analysis. The condition of a system is the sensitivity of the
4r' solution to uncertainty in the data, and this sensitivity is often measured
by a condition number. The usual definition of the condition number is

based on the idea that the uncertainties in the data are roughly the same

size in an absolute sense. However, if we suppose that these uncertainties

have roughly the same relative size, then we obtain

ILla~t allx] + a7 [b]]]
IE3l

as the condition number of a linear system where ||| is the max norm.
There are at least a couple of reasons for believing that this second
approach is more realistic. First, most numerical computations are done
in floating point rather than fixed point arithmetic, and for floating

point computation the conversion of data to machine represented to

numbers results in errors of the same relative size. Second, measurement

errors are usually more nearly the same in relative size than in absolute size.

In §3 we pose the question: What is the least amount by which
A and b must be perturbed so that x exactly solves the perturbed problem?

The answer to this question turns out to be

3 max l(b _ Ax)i'

: i (o] + JA[TxDy

which we call the '"backward error." If this is less than the unit roundoff

error u, then the second acceptability criterion is satisfied. And if it
can be shown that an algorithm produces a backward error that is always
bounded by some fixed multiple K(n)u of the unit roundoff error, then by

; 1 increasing the precision of the intermediate results by a factor K(n), the
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{ second acceptability criterion can be met. An algorithm with this desirable
property is said to be stable. If an algorithm is only stable for
infinitesimal values of u, it is said to be asymptotically stable.

The stability of Gaussian elimination with row pivoting (usually
called partial pivoting) is examined in §4. By using an example of
Hamming's it is shown that row pivoting is not asymptotically stable even

for systems with equilibrated matrices. Then by means of a careful error

e
v analysis performed in Appendix A a bound on the backward error is obtained
? which contains the quantity
max -1 A
A
= (o]'al 15D,
min -1 A
. (D, TA X)),
i (o talxD),
i where Dil is the matrix of row scaling factors. This quantity is minimized
| J
) by choosing
D, = diag(|alx]), 1
which calls for the i-th row to be divided by |ail xll qp |ai2 x2| b §
|ain ﬁnl. It is shown that with such a choice for D, row pivoting would be i
~.

stable. Of course this is impractical, which explains Stewart's [1973, p. 158]
observation that "In spite of intensive theoretical investigation, there is 4
no satisfactory algorithm for scaling a general matrix." Nonetheless, the

ratio

max A
™ (lall3h,

min A
;T dal 1)),

is an excellent a posteriori measure of how poorly scaled the system is.
Sometimes, programming considerations (Sherman [1976]) call for
the use of column pivoting instead of row pivoting, where by column
£ { pivoting we mean that columns are interchanged so that each pivot is the
largest in its row. In §5 it is shown that column pivoting could be

made stable if it were somehow possible to scale the columns with
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the matrix of scale factors
D, = diag(|%]).
This calls for each column to be multiplied by its corresponding computed
solution value. A measure of ill scaling is given by
e (18102, I1%1
i (JA[]x )i
where e is the vector of all ones.

Row pivoting may be regarded as the generalization of complete
pivoting in which the ordering of the columns is arbitrary, and similarly
column pivoting as the generalization in which the ordering of the rows is
arbitrary. From this observation it follows that the results of both §4
and §5 apply to complete pivoting. However, one suspects that the error
of complete pivoting satisfies an error bound which is appreciably better
than simply the smaller of the bounds for row and column pivoting.

In §6 iterative improvement is examined in the hope that the poor
stability properties of Gaussian elimination can be corrected. It is shown
that a single iteration of iterative improvement performed in single
precision is enough to make Gaussian elimination asymptotically stable.

Before proceeding, it might be interesting to demonstrate the
instability of complete pivoting with a simple 2 x 2 system of equations.

Consider Ax = b where

33 1
A= and b =
=1 0 0

The coefficient matrix A is equilibrated according to the definition of
Forsythe and Moler [1967, p. 45]. Using rounded t digit decimal (floating

point) arithmetic the elimination step yields A'x = b' where
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3 3 il
A' = and b' = 3
0 .99---9 .33:+.3

and so the computed solution

Bgeacq w300 E
x = 5

33943

The backward error is determined by considering perturbed problems of

the form

3(1 + 511) 3(1 + 612) %) y 1+ 613
-1 + 621) 0 f‘z 0

and choosing the relative changes 6ij so as the minimize the maximum]éiﬂ.

In this case, § must be chosen to be -1, and so the backward error is

21

100% regardless of the precision t.




2. Condition of Linear Systems

The condition of a problem is the sensitivity of its solution to uncertainties
in the problem data. The importance of this concept is that it indicates the
amount of accuracy that one should reasonably expect for the solution of a
problem with inexact data. And even for problems with exact data, the
conversion of the numbers to the computer's floating point number base usually
introduces errors.

As the measure of the condition of a problem we take the maximum
amount by which an infinitesimal perturbation in the problem data can be
amplified in the solution. More precisely if £ denotes the given problem
data and ¢(£) denotes the solution of a problem with data £, then we define
the co ‘n number to be

lim relative distance from Qﬁé) to ¢(&)
E>E relative distance from £ to &

(2.1)

In the case where £ and ¢(£) are scalars, the condition number is the absolute

value of the relative derivative, namely

‘EQ'(E)‘
¢ (8)

(cf. Bauer [1974]). For linear algebraic systems Ax = b we have £ = (A, b)

and ¢(g) = AL

b. (In roundoff analysis the number of equations n is not
considered to be part of the problem data; rather we take the point of view

that each value of n defines a separate class of problems.) There are two crucial
matters that have to be settled: (i) how to define relative distance in

the problem space, and (ii) how to define relative distance in the

solution space.

Any problem which is to be solved in an approximate sense is

incomplete unless there is also some "metric' specified for measuring how
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good the approximation is. It is this metric that should be used in defining

the "relative distance from ¢(£) to ¢(£)." Often this metric measures how
close the approximéte solution is to the true solution; in other cases it
measures how well the approximate solution satisfies the problem. In this
section we choose to consider the problem of approximating A.1 b rather than
that of approximately solving Ax = b. The ratio

X - X
X

where || ®|| denotes the max norm is an adequate measure of relative distance
for most purposes if the unknowns are appropriately scaled.

The question of how to measure the "relative distance from £ to &£"
is more difficult to answer because a completely specified approximation
problem need not include a metric for the problem space. However, there is
one metric which is always safe to use, namely the componentwise relative
error

max lgi " Eil

i |Ei|

If the value of this quantity is small, then £ is close to £ by any reasonable
standard, especially in view of the fact that putting data into the computer
results in small componentwise errors. This metric has another advantage in
that it is always meaningful regardless of the physical dimensions of the
problem data and thus it is independent of possibly arbitrary choice of units
for the data. For these reasons we take as our measure of relative distance
the smallest € > 0 such that

l j_ela and lsi - bil < E|bi| .

13;4 - ayy i3]

This seems to be consistent with the ideas expressed in Hamming's [1971] book

Introduction to Applied Numerical Analysis. On page 117 it is stated that




k| "The term 'ill-conditioned' is ill defined. The vague idea

i is that small changes in the initial system can produce large
changes in the final result. If we are to take floating
point seriously, then we should say 'relatively small changes'
and 'relatively large changes'."

and on page 122 it is stated that

"...the system is indeed ill conditioned because, no matter
how we try, we are unable to solve the system so that the
answer is not sensitive to small changes in the original
coefficients."

Thus it seems that by '"relatively small changes in the initial system'

Hamming means 'relatively small changes in the coefficients of the initial

system.'" A similar thought is expressed by Kahan [1966, p. 795]. It is

worth mentioning that this approach has the advantage of forcing the perturbed
matrix A to have the same sparsity structure as the original matrix A, making
it more plausible to regard A as the result of perturbing the original physical
problem.

Having chosen our metrics, we are in a position to determine the ﬁ
condition number of a system Ax = b. We begin by obtaining bounds on the
uncertainty in the solution due to the uncertainty in A and b. Bounds of
this type also appear in Bauer [1966]. Our notation uses inequalities 1
between arrays to mean inequality of the corresponding components. The ﬁ
§ absolute value of an array is also to be understood in a componentwise sense.
) THEOREM 2.1. Let Ax = b and (A + SA)(x + 8x) = b + &b where
|sA| < e|A] and |6b| < e|b|. Then

% ox]| . Lot 1allx] + [a7*]Ib] || ~
| L S [ PN IV R TTRY '

provided that the denmominator is positive.

ITRY

PROOF. We have that

§x = A"LsA(x + 6x) + A Lsb (2.2)




< |a7Y|sal (Jx| + lsx|) + |a7Y]|sb]
<o W AlCx] + [sx]) + ¢ KM [B] -
Therefore

- -1 -1
loxll < e [[1a7t |al x| + [a7 6] |+ el [a™"[]allll6x]] -

Note. Bauer [1966] shows that the bound of Theorem 2.1 can be
improved by replacing (1 - ¢ || |AX[[A[ID7Y by [T - ¢ |7} ]AD)7Yl, and so it
is not necessary that e|||A-1||A|” < 1 but only that the spectral radius of
e [aA71[|A| be less than 1.

THEOREM 2.2. Let Ax = b. Then there exist 8A and &b such that

e |Al, |8b] =€ |b|, and the solution x + 6x of (A + 8A)(x + 6x) =

satisfies

oxll ILa™ |allx] + (a6l

(@ + e |[[a]|alDI]x]

PROOF. Let 2 be such that
-1 -1 -1 -1
(Ja™ [ [allx] + [a7][v]), =[[{a77[|A]|x] + [ [p]]]

Define 8A and 6b by

Gajk = sgn(azjxk) € ,ajk,

S§b, = sgn(a

j )& |bj|

23
ij). Then

(A lsax + A'lab)2 -

where A-l = (a

L Yo Sa, +Ia §b
33 B iR
= e (a7 [allx] + [a7H by,

“ll -1
e (LA™ Al [x] + [a[]o[]l
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but from (2.2)

1

(a7 sax + a7leb), = (6x - ATMeAsH),

and so

e 1172 |allx] + a7 ] n] ) < oxll + e 11a7 ] Al ) )] ox] . Q.E.D.

THEOREM 2.3. The condition number, as defined by (2.1), of a

linear algebraic system Ax = b is

ILla~t |l lx] + [a~ ] [b]]]
LR

PROOF. The condition number of a linear algebraic system Ax = b is

1im l 6x“d[x”
e(8A,8b) > 0 e(8A,8b)

where €(5A,8b) = min{e > O: IGAI §_e|A|, |6b| < elbl} and dx satisfies
(A + 8A)(x + 6x) = b + 8b. Consider any sequence (5Am, Gbm) for which

e(SAm, Gbm) + 0 as m > ». By Theorem 2.1 we have

H%?H < c(6h 80 ) [la~"]{allx] + |a~t]|b]]]

(1 - eoa .60 ) [ 1a7 1Al b x|

for sufficiently large m. Therefore

o HonMxl 4 o a7l
m-> o e((SAm,Gbm) o 2

which gives an upper bound on the condition number. Let €n be a sequence
converging to zero. By Theorem 2.2 there exists a sequence (6Am, 6bm) such
that €(8A , 6b_) = € and

m m m

oxall A flallx] + (a0l 1

e ]
= @ + e (a7 []A[ID [Ix]

Therefore

— |ls -1 -1

tim MDA jagfx] + 1A ] )
m = o gm — b'e L

which gives a lower bound on the condition number. Q.E.D.
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In subsequent sections of this paper, we will consider the effects
of perturbing only the elements of the coefficient matrix.

THEOREM 2.4. Let Ax = b and (A + 8A)(x + 8x) = b where |6A| <
e|Al. Then

5x e |11a” 1Al x| ]

<

T - el 1Al N1l

PROOF. Similar to that of Theorem 2.1. Q.E.D.

THEOREM 2.5. Let Ax = b. Then there exists A such that |6A| = e |A|

and such that the solution x + 8x of (A + 8A)(x + 8x) = b satisfies

ox|] , _ellla|(allx|]
7 @+ e | 1a™[alp [l

PROOF. Similar to that of Theorem 2.2. Q.E.D.

It follows from these last two theorems that when only A is subject

to uncertainty the condition number is

A [allx

X
: -1 -1 =1 =
since |[[a7"[[al[x| | <[[|a™[|allx] + [a7|[u] ]l < 2[|a™"|[a] =[],

Cond(A, x) =

Cond(A, x) is also adequate for the case where both A and b are subject to

uncertainty. A similar quantity

a7 : llaeyy x|
A, = .
n I

is used by Van der Sluis [1970a], which he calls [1970b] the "condition

number of the solution." Here e( denotes the j-th unit vector.

1)
The condition number of a matrix A could be defined as the
maximum value of Cond(A, x), which is achieved with x = e = (1, 1,..., l)T-
Thus
Cond(A) = Cond(A, ) = [[[a™[[a][.

This quantity is more satisfying as a measure of ill condition than the

usual cond(A) =||A-H|HA" for a couple of reasons. First, the matrix
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|A~l||A| is a mapping of the solution space into
itself, which means that the quantity|||A—1||A|” can be defined entirely in
terms of the solution space norm. Whereas cond(A) = HA_llllhl!is defined in
terms of a solution space norm and a residual space norm, which seems quite
unnecessary. Second, the quantity Cond(A) is invariant under row scaling.
Multiplying a system of equations by a diagonal matrix does not
change the problem in any fundamental way. For example, all
systems Dx = b where D is diagonal are well conditioned. Accordingly, we
have that Cond(D) = 1; whereas cond(D) can be arbitrarily large.

Example. According to Hamming [1971, p. 120], the system Ax = b

is well conditioned where

R 3 + 3¢
A=|2 2e¢ 26 - b = 6¢e n
L} 2e - 2e

The inverse of the coefficient matrix and the solution are given below:

[-.6e .4 K. €
= o | -1 -1 ¥
A P 4 = T-.3 .2 “=.6 ’ X 1
BV W e S 1
Hence
1+1. 8¢ 2.4e 1.6¢
-1 e -1 h
[A™"[[A] = 15 8| 48 +1.2 l.4-.6e .8 "
8e1 1.6 1=, 6¢

and

i et e



e L s Gt 3 SR o e B 0 O - 0 et LN ST s bk iipaar — = il

13

=
9.6c + 3.6e2

-1 -1 1
Ja7 ] JA] x| + |a70 ] [b] = g | 4-8 + 2.4e _r :

6 - 2.4¢
which shows that the system is well conditioned. However, i

=1

_ .8 "+ 2.6 = .6¢ :
Conda) = 1-1.8¢ ’ |
which indicates that the system would be ill conditioned for some different i
right hand side b, and in fact, Hamming [1971, p. 122] gives such an example. |
|
|
|
: i
-~
+
{
R 3
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3. Stability of Algorithms for Linear Systems
Let ¥+, =, X, 7 denote the floating point operations corresponding
to +, -, x, /. Every reference to a floating point result x O y carries with
it the assumption that x, O, and y are such that the result is well defined.
Nothing is assumed about the floating point arithmetic except that the
reiative roundoff error is bounded by u/(l1 + u) where the unit roundoff
error u is a small positive number; that is,

x0y=(x0 y)( + §6)

for some § depending on x, O, and y which satisfies

u
’Gl f-1 +u °

It follows from the above condition that

X0y = X0y
1+’
where |§'| < u. Note that for rounding u = = Bl-t and for chopping u = 81_t
< g 2

where B is the base and t is the number of base B digits in the fraction of
the floating point numbers.
For any computed solution x we define the relative backward error

to be the smallest real number n( such that

3)
(A+ 8A)(% - 8x) = b + 6b

for some &A, &b, and 6x with lGA[.§ n(B)‘A], ]5b| < n(3)|b], and

|6x| < n(3)|ﬁ - 8x|. The backward error can be interpreted in the following

way: The computed solution % is the rounded solution of a problem with

rounded data where n(3) is the maximum relative roundoff error. Thus, if

n(3) is no larger than the unit roundoff error u, then our solution is as

good as our data deserve; otherwise, improved accuracy may be justified,

perhaps by using iterative improvement. Further motivation for this definition

is given in Miller [1975] and Bauer [1974]. If a solution cannot be computed

because the matrix is nearly singular, then the backward error is defined to be

ST R TR RO

N P PR —— -
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2 the smallest real number n(3) such that A + 8A is singular for some IGAI
with |6A| < n(3)|A|.

Stability of the algorithm means that there exists a stability
constant K(n) and a stability threshold @(n) > 0 both independent of the
problem data (A, b) such that the relative backward error

"(3) < K(n)u
provided that u < G@(n). A weaker concept asymptotic stability allows the
threshold d(n) to be data dependent. These two types of stability are the
same as the "backward stability'" and "asymptotic backward stability" used
by Miller [1972].

The backward error n is not easy to determine, and for this

3

reason we introduce two variants of the backward error which are easier to

: compute. Let nfq) be the smallest real number such that

(A + 8A)x = Db + &b
for some SA and &b with |6A| j_n(2)|A| and |6b| f_n(2)|b|. Let (1) be the
smallest real number such that
(A+38A)%=5Db
for some SA with |8A] :_n(l)lAI. Naturally N3y 2 M2y £ )"
THEOREM 3.1. Let T = {i: (|A||g]| + |b])i = 0}. The backward error

max |(b X Aﬁ)i|
1¢ 1 (TATIRT + oDy

if (b =A%), =0 fori€1,

e
+ otherwise.

PROOF. First consider the case where (b - Aﬁ)i # 0 for some i€ 1.

Suppose that n(2) < + o, Then there exist SA and §b such that (A + 6A)x

% = b + &b where [8A[ < "(2)|A| and [6b] < n(z)lbl. We have
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3

| sA% - 6b|

A

. < |sal|&| + |sb]

|A

negy (allxl + [vD, (3.1) |
which is impossible since (b - A%), # 0 and (]A|]%] + lbl)i = 0. Therefore

+ o

n(z) = . Second consider the case where (b - Ai‘;)i =0 for all i € I.

To obtain an upper bound on “(ZY consider the choice

(b - Ax) ¢
o [ emGlay] R, L% 1L,
e 0 fe1l,
1 and
_Ibil (b - Aﬁ)i B ¢ 3
. 3 (falT&] + [p]) g
by = {o d feg.

We have 8A% — 6b = b - AX or (A + 8A)%x = b + &b, and so

it =

| - a%), |
"o = "¢ TATRI+ oDy

Since n(z) < + o, equation (3.1) must hold; and so

I(b T Aﬁ)il
oy = g AT R

Q.E.D.

THEOREM 3.2. Let T = {i :(|A[[%]); = 0}. The backward error

| (b - A%), |

¢I—([‘Kﬂ—r— (b-Af()i=0 for L €1,
=( 1

+ otherwise.

EEY

PROOF. Similar to Theorem 3.1. Q.E.D.

Remark. Similar types of results apply to other problems; for

example, the backward error for a polynomial equation ag <+ a; xn-1 +i ot

& - 0 is given by

n n-1
lao - A - ay X *ooot anl

(# ") ~

5 lag &%) + |a, £"7H] +

oot lanl

kil P "
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The following theorem gives bounds on the relative backward error
n(3) in terms of the more easily computed “(1) and "(2)' These bounds show
that the n's are roughly the same size when the backward error is small,

and so in the remainder of the paper only the quantity nk is used, which

1)
we denote simply by n.

THEOREM 3.3. The three types of backward error satisfy

n
(2)
e | <n , (3.2)
n
(1)
TG = ﬂ(3) < ”(1) s (3.3)
3+ Fay
n
(1) 2 (3.4)

e Ty <n
2+n(1) — (2) 1)

PROOF. The second inequalities of (3.2), (3.3), and (3.4) are
obvious. The first inequality of (3.2) is obvious if "(3) 2 1. Hence
assume n(3) < 1. There exist 8A, &b, 6x such that

(A +6A)(X - 6x) =Db + &b

| A

n(3)|bl. ](SXI < n(3)|)’i - le, Hence

|b - A%| = |6A(% - 6x) - Aéx - &b
< 2n(3)|A||ﬁ - 8x| + n(3)|bl. (3.5)
It is easily shown
|% - ox| < T—— |2, (3.6)
"(3)

and so

2n
b - az| < =531 (|a||a| + [b]).

L= M)

Therefore N2y < 2n(2)/(1 - n(3)) which verifies (3.2). The first inequality

of (3.3) is obvious if N3y 2 %. Hence assume N3y < %. From (3.5)
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Ib i ARI = 2n(3)lAl|i = 6x| + ﬂ(3)lb g Aﬁl -t n(3)|A||ﬁ|9

and using (3.6) gives

2n
3 3)
L n(3))|b Aﬁl s (1 -~ n(3)

+ n(3))|A||ﬁ|.
Therefore

n a3 - )
L (3) "(3)
el O

2
== n(J))

1

[ A

’

5 1
(1 = Fe3y) (1 = Fcgy)

which proves (3.3). The first unequality of (3.4) is obvious if n(z) > L.
Hence assume n(z) < 1. We have

b - A%|

< negy(Upl + [al]xD) _<_n.(2)(|b = az| + 2|a]l%{3s
and so
2n
b= e ]
(2)
Therefore 1) < 2n(2)/(1 - n(z)), which implies (3.4). Q.E.D.

A good algorithm should (i) return an acceptable answer most
of the time (robustness), and (ii) signal failure whenever it does not
return an acceptable answer (reliability). We formally define an algorithm
to be reliable if there exist K(n) and u(n) such that for any (A, b) and
any u < u(n) either the algorithm computes an answer with n < K(n)u or the
algorithm signals failure.

Any algorithm for solving linear systems can be made reliable by
computing the backward error with floating point arithmetic and then accepting
the answer only if the computed backward error is less than a prescribed multiple
of the unit roundoff error. For example, the next theorem shows that if the

computed backward error fi < Ku, then we can conclude that n < (K + n)ue(n+2)u.
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3

E | The residual is to be computed in single precision
e

k = 2 S i A i & a

‘ £, bi (...(ail x &) +ag, x xz)... +a, x xn)

or in double precision

fi = fl(bi 2 (...(ail x &, + a;, X x2)... + a; X xn)).

Here O denotes the double precision counterpart of O where it is assumed that

x0y=(x0y)1+3$)

with |6| g_uz/(l 4 u2). In practice the double precision unit roundoff error

is either this small (rounding in base two) or smaller. By fl(°) we mean

the conversion of a double precision value to a single precision value. It

is assumed that fl(xéy) = (xo0y) (1+8) with -u/(l+u) < § < u, which is true for

rounding and chopping. The computed backward error fi is determined by

n = m?x (Iril/(...(|ail X

) ~
S A

x1| + |a12 X x2|)... +

x>

|ain inl)'

THEOREM 3.4. If n is the computed value of n, then

-(n+2)u - nd ~ - nd
(= el Ne=snlier s < . < e(n+2)u n + nu e

where

(=1}

2 ~3

{:u for single precision residual accumulation,
u”  for double precision residual accumulation.

PROOF. Let i be the computed value of A%. By the usual type of
error analysis
: la - az] < (@ + D" - 11]a]|%
< na e"%)a| || . (3.7)

We have that

. o u 2

3 i 1 u) b -
! i > — max A

1 | a+ u )n Al &

: \ 1 +4+u




T

! ﬁimaXW< a+20)" a
n 5 Ny

L 1+ 20)(1 + v BRI = 0 i a2 ;
L from which it follows that éi

: i
;.ﬁ e-(n+2)u f < max 2 ot ihe(n+2)u a.
F
E 1 Using
i 1 Ib - q] - |a-ax] < |b-ax] <|b-g|]+|a-az.

i s —

20 j
|
|

1 and
u
L % (1+u)(1+1+1L) maxb_A
= a- __g__)n Al %
1 +u

where division of two vectors is defined componentwise. This reduces to

and (3.7) gives
Ib - g] - na e™ D ||| < |b - az] < |b - a] +na @D |5,

Dividing by |A|li| and taking the maximum yields

b ~ _ (n-2)a b - § - (n-2)a
max T s nd e < n < max +KTT§?l + nd e . Q.E.D.

Before concluding this section, it should be mentioned that for some classes
of problems it may be unreasonable to expect an algorithm to be stable. TIf the number of
output values is fairly large compared to the number of input values, then
it becomes very difficult for an algorithm to be stable because each output
value must arise from the same perturbation of the input values. For
example, Miller [1975] shows that the usual algorithm for inverting triangular
matrices is unstable. Hence it seems better to use stability as a relative
concept rather than an absolute concept. This idea is used by Miller [1976]
in a iaper entitled "Roundoff analysis by direct comparison of two

algorithms."
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4. Gaussian Elimination with Row Pivoting and Scaling
This section applies the ideas of the preceding section to Gaussian
elimination with partial pivoting using row interchanges and implicit row

scaling. The reciprocals of the scale factors are to be given as inputs

d d dn to the algorithm, and so the pivoting is done as if one

12 RSl

were solving D-le = D—lb where D = diag(dl, d - dn)' To keep the

230"

notation simple, it is assumed that the equations are numbered according

to their ordering after all row interchanges have been performed. The
computations of the algorithm are as follows:
21 o
11 ij
(k) (k)
mo = /a ag o i>k+1, (4.1)
for k = 1(1)n - 1,
g g e SR s adl, GhD)
1_] ij ik kj =
, ~.0 b i S LRy
S 1 1E 4 = jg
& \m.. if 1> 3,
1]
' 9) 8 S
u,, = ﬁ i3
e S O W
¥y
for i = 2(1)n, y, =b, 2 C.o(Ryy Xy, + 4, X ¥y)een + 41" Y1)
*a yn/unn’
for i = n - 1(-1)1,
R, = (yi = ("°(ui,i+1 x &, F Ui g4 X x1+2)... .y * xn))/uii

It is assumed that the selection of a pivot is done exactly so that

(k)| | (k)l

13k+1. (4.5)

o’
In cases where there are more than one suitable pivot, the one with the lowest
row index is chosen. The assumption of exact pivot choice avoids some minor

technical difficulties, and it also makes for a sharp error

bound in the case where there is no scaling.

(4.3)

(4.4)
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It is important to appreciate the nature of the functional
relationship between % and D. The computed solution % is a function
£(P) of the row permutation P, which in turn is a function II(D) of the
scaling matrix D. (Note that N(D) is also defined for values of D which
are not floating point numbers because the algorithm does not perform
floating point arithmetic on D.) If % is viewed as a function defined
in (dl’ d2,..., dn)—Space, it would be constant over regions bounded by
« (k)

ij

hyperplanes passing through the origin. For example, let &,,” be the values

A

corresponding to a certain choice di = ai of scale factors. Then X is

constant for all values of (dl‘ d o dn) which satisfy

IR

. (k)

a,
M) i
5 < (k)
kK

|d fes kel

Wl

It is necessary for the completeness of the theory that the Gaussian

elimination algorithm be extended to permit the use of zero as a scaling

factor. For any diagonal matrix D = diag(dl, d2,..., dn) we let De denote

the matrix diag({dl}e, {d

d if d #0
gl =

2}5""’ {dn}e) where

e i e e b

e if 4 = 0.

That 1is, D€ is the matrix D with all the zero diagonal elements replaced by

i €. The condition (4.5) is replaced by the following:
=3 (k)
dy, ag
. lim P WY 3] 1
? e >0 {dk}E a

t)lz dk =0, di # 0}. Then it can be easily shown

that for any e with 0 < |e| < ¢ the scale matrix D, has the same effect on

e (k) , (
Let € = min{ldi A /a1

L daai o

the choice of pivots as does D.
Unfortunately, Gaussian elimination with pivoting is unstable.

This instability arises in the decomposition stage when the quantities
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; a§§+l) s a§§) A my 2 aé?)

5 are being formed. If Imik a£§)| Z |a§§)|9 then the error in a§?+1) is not
very small relative to a§¥), and so in our backward error analysis we cannot
throw this error back into agﬁ). The extreme case occurs 4
when a§§) = 0 and a§§+l) # 0, which is commonly called "fill in." For

sparse systems of equations it is quite common to order the rows so as to
avoid fill in. This reduces computational cost, and it apparently may a
also contribute to stability.

The instability of Gaussian elimination has been pointed out by ]

Hamming, who on page 119 of his book [1971] announces the

"Theorem Pivoting can take a well-conditioned system into an
ill-conditioned system of simultaneous linear equations."

and on page 123 states

""We have not justified the pivoting method; rather we have i
shown that it is an 'old wives' tale.' But like most old 3
wives' tales, it is a mixture of truth and mystic faith."

To prove his theorem, Hamming uses the example discussed at the end of §2.

For this example, one elimination step with partial or complete pivoting 3

yields the system A'x = b' where

-
2 R 3+ 3¢
A' =0 Sty g 22 "=
= 3 € —3—+ze , b' =] -2 + 4¢ (4.6)
-1 + ¢
0 =2 el R
3 + 2¢ 3 € J

assuming exact arithmetic. This problem is ill conditioned for small €,

since

‘ 8" < 34 3
1 - 1.8¢

= Cond(A',x) = =
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If the elimination were performed in floating point arithmetic, then a
slight perturbation of (4.6) could result, which may have a solution which
differs from the true solution by an amount proportional to e_l. This kind
of error could not arise from slightly perturbing the original problem

because it has a condition number of about 6. For example, suppose that

the computed righthand side of (4.6) was

3 + 3¢
b= | -2+ 4e -7
u
=1 ke + 2
/

and everything else was exact. Then

and by Theorem 3.2 the backward error is u/(8e + u).

A related observation was made by Gear [1975]:

"It might be possible to say that 8A represents a perturbation to
the original physical problem if the sparsity structure of &A
were the same as that of A. Unfortunately, we will show that such
a demand on the structure of SA can lead to very large bounds on
[[6A]|, bounds probably dependent on the condition number of A."

This was supported by the example

1 1 -1 =-17] 0 | %
D ¢ 0 D 1 e
A= ¥ b = 5 X = _1 s
5 [ SO 1 €
(1.0 -0 1] L 2 | L. & j

for which Cond(A) = 4.
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In one of the theorems that follow, it is shown that the situation
is not quite as bad as Gear suggests. The bounds on IIGAII depend not on
how ill conditioned the problem is but on how badly scaled the equations are.
We begin by obtaining a totally a priori error bound for Gaussian elimination.
The proof is modeled after that of Forsythe and Moler [1967], which is mostly
borrowed from Wilkinson [1963]. However, our error bound, like that of
Van der Sluis [1970b], is more informative than that of Forsythe and Moler

in that it distinguishes among the columns of AA.

THEOREM 4.1. Let the vector & be computed by Gaussian elimination

with row pitvoting and row scaling where D = diag(dl, d ey dn) i8 the

90

matrix of reciprocal scale factors. Then there exists AA such that
(A+ 0% =D

with
107" aalzll < x@ul| |07 alz]

for arbitrary z > 0 and arbitrary e satisfying 0 < |e| < € where
x(n) = [19:2%72 _ o - g1e2"C,

PROOF. See Appendix A. Q.E.D.

Note 1. The factor e2nu appears in the Forsythe and Moler book
as the constant 1.01. The advantage of eznu is that it indicates the
nature of the higher order effects and it does not require placing
some arbitrary restriction on the size of nu.

Note 2. It is actually possible to show that |AA| < LB|A| for

some lower triangular matrix L although the best possible LB is

B’
somewhat complicated.
With z = e in Theorem 4.1 we get the usual type of bound

10" all < xtmu [Io" all -
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The bound of this theorem is practically always extremely pessimistic.
However, there are cases where this bound can be attained in the limit
as u > 0.

THEOREM 4.2. There exists a problem Ax = b and a floating point
arithmetic <+, =, %, 7> such that the solution % computed by Gaussian
elimination with partial or complete pivoting satisfies (A + AA)X = b

only for those matrices AA for which

Wi [0+ % - ~ Blu * 0la’).

Therefore, the bound of Theorem 4.1 is the best possible bound in the
limit u » 0.

PROOF. See Appendix A for the proof, which employs a modification
of Wilkinson's [1963] example. Q.E.D.

The next theorem uses Theorem 4.1 to get a bound on the backward
error. We are especially interested in the effect of scaling on the error
bound.

THEOREM 4.3. Let T = {i: ([a[|&[); =0}. Ifd, =0 foriel
and dy # 0 for i ¢ 1, then the backward error

max [D-lAlliL

min (|D'1A||§c|)i
i
PROOF. Putting z = |%| in Theorem 4.1 gives

n < x(nu

-1 =1 =1
1072 - )l =IIpt aagll < |[ (07" aal|%] |
il 4.7)
< x@u |07 a2}
Multiplying this by € and letting € - 0 gives

max_[(b - A%),| < x(n)u max (all&])y»
1€ ] 1€ 1

from which it follows that (b - Aﬁ)i =0 for i€ I. Hence, from Theorem 3.2

we have that
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| - an), | (0w - an) ]y,

| = max nex
iq. 1 _TZTT§T7—__ ié1 (|D-1A||*|)1

and from (4.7) we see that

(ot - AR) ), < x(n)u max Ip~ta| |2]. Q.E.D.

By choosing
= (|A||§[)i (4.8)
the bound on the backward error is minimized, giving n < x(n)u. This
suggests that a linear system should be scaled by dividing each row by

its weighted 2, norm where the weights are the components of the computed

1
solution. Unfortunately, (4.8) represents an implicit equation for the
scale factors di because the computed solution & is a function £(II(D)) of
the scaling matrix D; that is, D must solve the equation
= diag(|allem@) ], (4.9)

for which a solution may not exist. The nature of this equation becomes
more apparent by noting that it is equivalent to solving for a
permutation P that satisfies

P = N(diag(|A||le®)])). (4.10)
For if D satisfies (4.9), then P = N(D) satisfies (4.10); and if P
satisfies (4.10), then D = diag(|A||€(P)|) satisfies (4.9). 1In principle
we could determine the solution to (4.9), if there is one, by testing to see
if any of the n! permutations P satisfy (4.10). In the cases where a solution
exists, the backward error is bounded by yx(n)u. One suspects that (4.10)
almost always has a solution, and it is even conceivable that (4.10) always

; ; has a solution, at least whenever £(P) is defined for all P. The existence |

awacem e

of a solution for (4.10) implies the existence of an ordering for the rows

{
[}

which makes Gaussian elimination stable.
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E | If one wishes to solve (4.10), the following iteration would

likely converge and converge quickly for almost every system of equations:

P Mi(diag(|Ale)),

(0)

P (m+1)
This is not suggested as a practical algorithm though because poorly

= H(diag(lAHE(P(m))D), m=1, 2,....

scaled equations can usually be accurately solved by doing iterative improvement.

A more useful application of Theorem 4.3 is the diagnosis of

i
-
|

ill-scaling, for

.. _ max|A|l|x
1 oylh, 2 = CEN

is an easily computable measure of how badly scaled the rows are.
Remark. The bound of Theorem 4.1 can be refined:

; (|D_1AA|z)i < x(n)u max (ID_lAIz) A

This suggests that
max (|A]|&]),
¢y TATTRD, |

would be a better measure of the possible effect of ill scaling. ‘%

The quantity aR(A, X) is not very satisfactory for theoretical

purposes because & depends on the arithmetic used in the computation. We |

would prefer to use oR(A, x) for the theory. For Hamming's example

|al x| = (3 + 3¢, 6¢, 4E)T and oR(A,x) = il + % . Near optimal row ;
€

1

|

scaling for this problem is given by

B i
3 2 1 3+ 3¢
-1 -1
DA=|2 , ,| D 'b= 6 .
€
2
124
-—E~ )

For Gear's example |A||x| = (2/e + 2, 1, 1, 2) and oR(A,x) = 2/c + 2. Near

optimal row scaling is given by
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|
P ¢ ¢ € €] (0 |
f 0 € 0 O 1
: p~ 1A = , DThp =
0 0 0 1
{20 (s R U [ 2]

One may wonder about the effect of scaling strategies such as
row equilibration. Van der Sluis [1970b, p. 80] gives an example showing

x| "that it is quite possible...that there exists no bound depending on n only
for the ratios of the errors after and before equilibration." He goes on

to describe a cautious equilibration scheme that never worsens the situation

at the expense of possibly not improving it. An adaptation of this scheme

to our theory is to choose

R

a..
d, = min max ]—ill,
S S R

which has the effect of leaving no row of A strictly dominated by any other

row of A. Note that, since di < 1, we have min|D-lA||x| > A||x|. Furthermore,

(IallxDy,

Iai”II [,
min Z|—| |a X
2 ak2 kg '3

|A

a
min max l;—i

ilZla lel e
TR L T R

| A

di max|A||x|,

whence maxID_lAllx[ 5_max|A||x|. Therefore

maxID_1A|lx| & maxlAlIxJ
= min|A] | x|

-1
oR(D A, X) =

: = o,(A, x),
| min|D"tA| |x| R

so that the scaling of the problem is not made worse by our choice of D.
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The theorem that follows gives bounds on the backward error that
in the limit u - 0 depend only on how ill scaled the problem is and not

how ill conditioned it is. First we need a lemma.

LEMMA 4.4. If D is nonsingular, then

. xmullloA] x| ]|
1 - x(n)u Cond(A™ D)

[[Ip” AAx”

PROOF. We have

2% i s

which implies
B LkAE = (1 + BVAR T D) “15~1pax

and

Thue v -
1 - |07 ea a7 D]

([0 aax][ <

The term in the numerator
[0 aax]| < || [p™ 2] [x] |
< x@u || o7l x|,
and the term in the denominator
I aa a7p|| = || |0 1aa o™t ]e]||
<o sal[a™ D[]l

x(mu || 07| [a7 D]e ]|

| A

x(u || [072a]|a™ ]| . Q.E.D.
THEOREM 4.5. Let D be nonsingular and let |Al|x| > 0.
Gaussian elimination with row pivoting gives

x(n)u oR(D'lA, x)

1 - 2x(n)u Cond(A™ D) oR(D-lA, x)

provided that the denominator is positive.

PROOF. Choose AA as in Theorem 4.1. From Theorem 3.2 we have that

- DA%

Al|x

n = max
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Since x = & + A_1 A%, we have

Ix| < |&] + |aIp|ep " aag] ,

and so

D7 allx| < [7al|&] + [p7"a|[a7'D|el|p " aax]] .

bt s —cn 4o

Thus

-1
0 < max D 24|l

T o7tallg]

el
) el|lp” "aaz]| : b

Ip1a||x| - e Cond(a™lp)||D " aazg]|
Applying Lemma 4.4 yields

x(n)u oR(D‘lA, x)

ellpLaag| < Jo7tal x| ,

1 = y(a)u Cond(i ln)
from which the theorem follows. Q.E.D.
Although we are unable to prove that there is always some
ordering of the rows for which Gaussian elimination is stable, we can show
that this is true asymptotically as u - 0.
THEOREM 4.6. For any problem such that |A||x| > 0there is some
ordering of the rows for which Gaussian elimination 18 asymptotically stable.
PROOF. Using Theorem 4.5 with D = diag(IAl|x|) gives

x(n)u

-1
Al |A Al |x
1 - 2x(n)u max A

for small enough u. Hence for

|a] |x]

4x(ny (Al [a7H] [a] x|

u < u(n) = min

we have ﬁ

n < 2x(n)u. Q.E.D.
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E ! We end this section by examining the effect of scaling on a good

bound for the "forward" error.
THEOREM 4.7. The error

x@u ([a7'] ||~ allxl]l |

1 - x(n)u Cond(A 'D)

& - x|l <

PROOF. We have
g - x|l = ||a72¢- aan) ||

<[|a7 [ [[p " ang]l ,

and the theorem follows from Lemma 4.4. Q.E.D.
If higher order terms in u are ignored, the bound on the

error is minimized by choosing D = diag(|A]||x|). Thus

3 : ”A-ll IH H_)S_LU_
‘ I1a™ Al x| |

is a measure of the possible effect on the "forward" error of how poorly the

equations happen to be scaled. For Hamming's example this quantity is

{% ¢! + 0(1) and for Gear's it is e 1 + 0(1).
The usual type of bound on the error is of the form

-1 =1
1% = x|l < x yulw™ ol o™ Al Il + 0cu®).
This is minimized by D = diag(|A|e), which is row equilibration with

the El norm.

T T T g Y T T ——
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5. Gaussian Elimination with Column Pivoting and Scaling

This section is similar to the previous section except that we

examine the variant of Gaussian elimination in which the columns are
interchanged in order to ensure that the pivot element is the largest in

its row. The algorithm is assumed to do column scaling where the scale

factors dl’ dz,..., dn are given as inputs to the algorithm. Again the
selection of the pivot is assumed to be done exactly so that
aé:) 4,
———(k)—f_ldkl, 1ik+l
3kk

Writing the condition in this form allows for the use of zero scale factors
but does not permit the selection of a zero pivot.

An a priori error bound is given by the following theorem:

THEOREM 5.1. Let the vector % be computed by Gaussian elimination
with column pivoting and columm scaling where D = diag(dl, dz,..., dn) 18
the matrix of scale factors. Then there exists AA such that

(A+ AR =D
with |aAD|e < %(n)u|AD|e
where %(n) = 127.2n—2 - 5n - 7Je2nu.

PROOF. See Appendix B. Q.E.D.

It is likely that the constant ¥(n) in this bound could be

replaced by a smaller constant.

The following theorem indicates how the columns should be scaled
in order that Gaussian elimination with column pivoting be stable.

THEOREM 5.2. Let R be the value of A"l computed by Gaussian
elimination with colum pivoting and column scaling where D = diag(dl, dosenn
18 the matriz of scale factors. Let 1 = {i: (|A||ﬁ])i = 0} and let

J = {3 ﬁj =g}, If dj =0 for j €J and d

3

# 0 for § € J, then the backward error
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(|ap|e)
n < X(n)u max (AT § max (|D—12|)j.
i¢1 i 347
PROOF. We have & = DDIlﬁ where D1 denotes D with all diagonal
zero entries replaced by ones. Hence

[b - A%|

|aaz| < |aaple ||p]'%]|

x(n)u [aDle |[p]'%]]

| A

= #(n)u |aD|e max (|p”'&]),. ; ?
i%J g

We have that (|A||i])i = 0 implies that By = 0 for j ¢ J, which implies
T that (|AD|e)i = 0. Hence the theorem follows from Theorem 3.2. Q.E.D.
COROLLARY. The backward error
(7)),

(n)u max

1,347 (|p7'2]),

>

n <

PROOF. We have

e < [D—lil max-—~—:%———— . Q.E.D.
47 (o'

A choice of D which minimizes the bound on the backward error is
d, = %3
i i
that is, we scale by multiplying the i-th column by the i-th component of

the computed solution. Again these weights are not known at the time when

scaling is performed. The main value of this theorem is that it gives an

easily computable measure of column ill scaling:

Ale || %

oC(A, %) = max AT1%

{ For theoretical purposes we would prefer to use GC(A, x). For Hamming's

example OC(A, X) = gt > %. Near optimal row and column scaling, which

would be appropriate for complete pivoting, is given by




For Gear's example oC(A, X) =

is given by
[¢ 1 -1 €]
0 I 0 0
DIIADZ = ’ DIlb =
0 0 1 O
ey

LEMMA 5.3. If D is nomsingular, then

f(n)u_|aD|e |[D” x|
1 - %¥(n)u Cond(AD)

laAg] <

provided that the denominator is positive.

PROOF. We have

2 + A laag = X,

which implies

AAR = AAD(I + D-IA-IAAD)-I D s,

Hence,

| A% | gl

|A

|aAD|e || (I + D™

x(m)u_[ap|e ||Ip” x|
1 - ||p"ta™1aap||

|A

The term in the denominator

lIp™*a™ aan|| < || [0~ a7 | |saD e ||

< xmu || D727 |ap]e]|

= x(mu |[[p7ta™|ap] | .

Near optimal row and column scaling

L2

sav)~t p71x||
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THEOREM 5.4. Let D be nonsingular and let |A||x| > 0. Gaussian

elimination with column pivoting gives

X (n)u OC(AD, D-lx)
n <
1 - 2x(n)u Cond(AD) OC(AD, D 1

X)

provided that the denominator is positive.

PROOF. Choose AA as in Theorem 5.1. From Theorem 3.2 we have that

n = max ; Agﬁ
Furthermore

X = %+ A_lAAi,
and so

|alIx] > [allx] - |ala7"|oag].
Therefore

AN |aA%|

4 Al lx| - |a] a7 [aaz]

Applying Lemma 5.3 yields

X(n)u o, (aD, D)

lAAﬁl-i 1 - %¥(n)u Cond(AD) |A||x|,

from which the theorem follows. Q.E.D.
THEOREM 5.5. For any problem such that |x| > 0 there is some
ordering of the columms for which Gaussian elimination is asymptotically stable.
PROOF. Using Theorem 5.4 with D = diag(lxl) gives
X(n)u

— -1
1 - 2¢(n)u max

Al [x
X

for small enough u. Hence for
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|x]

‘ = n -1
& 4% () [A77] |A] |x]

peon

we have
n < 2x(n)u. Q.E.D.
Recall that the stability threshold in the case of Gaussian f
elimination with optimal row ordering was

|aLlx] :
4x(m)|al a7 |a] x| a

u(n) = min

It is easy to show that this is larger than the stability threshold for
optimal column ordering. This is a slight indication that row pivoting

may be superior to column pivoting.

THEOREM 5.6. The error

5 - x|| < X@u LA [AD| | ID" ]|
= 1 - y(n)u Cond(AD)

PROOF. Since

(A + pA) (X - x) = - DAx,

we have
R -xm (T +a AT & thas
= o KRAE + K BAY e
= - a"laap(r + p7a7taap) 71 DLy,
Therefore,
% - x|| < 1A~ ap]| |[p~x]

1 - ||p”ta"1aaD|

. 1a7 [ |saple (o7 Yx]l

1 -0 a7 |aan]el|

< Kmu |[[a7 | [ap| || [Ip M| Q.E.D.

— 1 - x(n)u Cond (AD)




eI T S T Mk 0 S o A A 7R I v e TR kg S g 5 o s ki S ey il

38

If higher order terms in u are ignored, the bound on the error
is minimized by choosing D = diag(lxl). Thus for column pivoting
i x||
-1
A= [ {a] =]l

is a measure of the possible effect of ill scaling on the "forward" error.
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6. Iterative Improvement
It is often thought that iterative improvement is not worthwhile
unless either (i) the uncertainty in the values of A is less than the unit
roundoff error (e.g., if the elements of A are integers) or (ii) we wish to
diagnose ill conditioning. This thinking is based on the fact that Gaussian
elimination with pivoting is stable from the absolute error point of view.
But according to the relative error point of view, Gaussian elimination may
not give acceptable accuracy, and so it is of interest to examine the
stability behavior of iterative improvement. Results of a careful error
analysis are given for iterative improvement both with and without double
precision accumulation of the residuals.

The algorithm being considered is described as follows where
subscripts denote iterates rather than components of vectors:

X = value of A-lb computed by row pivoting,

for m = 1, 2; 3565

r_ = computed value of b - Ax ,

m m

dm = value of A-lrm computed by row pivoting,
X =x +d

m+1 m m’

The algorithm for computing r  appears in §3 and the algorithm for dm is in §4.

The theorem which follows shows that just one iteration of iterative
improvement with just single precision accumulation of the residuals is
enough to make Gaussian elimination asymptotically stable. This may seem to
contradict the usual advice (Forsythe and Moler [1967, p. 49]) that "It is

absolutely essential that the residual r, be computed with a higher precision

k
than that of the rest of the computation.' Actually there is little conflict
because we have shown that poorly scaled systems may be solved with an

effective precision of much less than single precision.




b R R — i . T e i SN " N T e~ ) P i e
=S L e S A Lo S S i e el SANERAE bl et vl = Sl i RS g .z

40

vy

THEOREM 6.1. Assume that |A||x| > 0. Caussian elimination
followed by one iteration of iterative improvement results in a backward
error which satisfies

iy < (a+Du + {2 +2nx(n) + 0’ + 2n) Cond(A™1) 0 (A, x)

+ x(n) GR(A, x) + % n2 + %~n}u2 + O(u3)
for single precision residual accumulation and

ny < u+ (x(@? Cond(a™D) o (A, x) + x(@) oy (A, ¥) + nlu’ + 0(u)
for double precision residual accumulation. That is, the algorithm is
asymptotically stable in either case.

PROOF. The theorem follows from Theorem C.9 in Appendix C. Q.E.D.

Note. The asymptotic nature of these bounds conceals the fact that
certain assumptions on the smallness of u are necessary in order to get any
bound at all. The actual assumptions, found in Appendix C, are too lengthy
to reproduce here; roughly speaking it must be assumed that the coefficient
of the second order term is less than 1/u.

Recall from Theorem 4.3 that for no iterations we have

ny £ x(n) o (A, X)u + 0(u2).

1
and thus one iteration does make a big difference in the size of the bound.
However, the presence of the product Cond(A—l) oR(A, x) in the second order
term indicates that this may not be the case for problems which are
sufficiently ill scaled and ill conditioned.

THEOREM 6.2. Assume |A[|x| > 0. The backward error n_ for
iterative improvement of Gaussian elimination with row pivoting satisfies

Tim n; < (ntl)u + {2n(x(n) + nt+l) Cond(A_l) oR(A, X)

mo

+ x(n) oR(A, x) + % n2 + %-n + l}u2 + 0(u3)

for single precision residual accwmulation and

1im n" < u + {x(n) OR(A, x) + n+1}u2 + 0(u3)
mro T

for double precision residual accumulation.
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PROOF. The theorem follows from Theorem C.7 in Appendix C. Q.E.D.
The main effect of doing more iterations with single precision
accumulations is a moderate reduction in the magnitude of the second term.
But for the double precision case there is a striking improvement due to
the disappearance of the x(n)2 Cond(A_l) OR(A, x)u2 term so that the bound
on n; depends on the condition number of A-1 only through the 0(u3) term.
This may represent a significant improvement for problems which are both

poorly scaled and ill conditioned.
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7. Practical Implications
The comments that follow are suggested by the error analysis,
but their usefulness remains to be established.

By means of examples it has been shown that Gaussian elimination
with (partial or complete) pivoting does not generally provide all the
accuracy that the data deserve or even a fixed fraction of that accuracy.
Hamming [1971, p. 121] states

"It is reasonable to ask how typical these examples are and

how often in the past the pivoting method has created the

ill conditioning that was reported to occur by some library

routines. The answers are not known at this time; all that

is claimed is that textbooks and library descriptions rarely,

if ever, mention this possibility (though it is apparently

known in the folklore)."
and so it seems that there have been practical instances where the pivoting
method has performed poorly. Perhaps Gaussian elimination without

iterative improvement should be regarded as a '

'quick and dirty" way to
solve linear equations.

The computation of the backward error is one reliable test for
deciding whether or not the solution of a linear system is '"reasonably
accurate." The test can be made quite efficient by accumulating r and
|A||&] + |b| at the same time. If the test is failed, then in most cases
the use oi iterative improvement would result in a solution which passes
the test. One could, of course, forgo the backward error computatica and
just do iterative improvement until "convergence.” But such a procedure
may not be completely reliable since it has not been rigorously proven that
"convergence'" implies a reasonably accurate solution. Stewart [1973,

p. 205] mentions "the possibility that, with a violently ill-conditioned

matrix, the iteration may appear to converge to a false solution."
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It is also suggested by the theory that if double precision
accumulation of the residuals is costly, then iterative improvement with
single precision accumulation might still be beneficial. j

The success of the pivoting method depends upon a reasonable
scaling of the equations, which is at best guesswork unless one has some
knowledge about the sizes of the solution components. If c¢ = |x|, then |

(i) for row pivoting one should scale the system to get 3

(DIlA)x = (DIlb) where D1 = diag(lAIc).

o

(ii) for complete pivoting one should scale the system to get

(DIlADZ)(D;lx) = (DIlb) where D, = diag(|A|c) and D, = diag(c).

Il 2

It may be worthwhile to allow users of a linear equation solver to provide
an estimate of the solution, particularly if the solution variable X is being

used only as an output parameter. For simple use of the program X could

be set to all ones.
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Appendix A. Error Bounds for Row Pivoting

For Lemmas A.l through A.8 it is assumed that D has nonzero diagonal
elements. This assumption does not apply to the theorem that follows

these lemmas. For any n X n matrix C = (Cij) let c,, = cij/di' Also,

ij

let w = 1 + u.
LEMMA A.l1. We have

lmikl < w|di/d 1 >k,

0

k-1 L
r (2w)
2=1
PROOF. Equation (4.1) implies

Img | <wh$07a80], 15k,

and because of row pivoting (see (4.5)) we get the first inequality of

the lemma. Equation (4.2) implies

|a§§+1)[ 5}»hi§)| + (1 + 2u)|mik ég)l i,j >k+1

and therefore
f_(k+1)l < wla (k), + w( + 2u),a(k)l 1,9 2 k£ 1.
The second inequality of the lemma follows from this by induction on k.

LEMMA A.2. The matrices L = (Rij) and U = (uij
(1) (2) (n-1)

(k)
ij

) satisfy

LU = A+ E + E b S g

where the matrices E(k) have elements ¢ which satisfy

m_lul (k)l + (24 3u) w u]m (k)l for i,j > k

ik%kj

K
f()l l(k)l for i j =k,

0 otherwise,

regardless of the pivoting strategy.

Q.E.D.
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‘ i PROOF. Define the elements of E(k) by
a§§+1) iy) + mikaéﬁ) for 1,j > k,
Sl ) g
; 0 "___—~;EE;;wise.

By separately considering the cases i < j and i > j it is straightforward

to show that the elements c( ) of E(k)

1] satisfy
n
(k)
= Z I 2 [
- - iJ il ik kj ij

which establishes the equality of the lemma. Let k < n - 1 be fixed.

Write (4.1) as

(k) (k)
: mo = (@ /a, @+ 8,0, t> k41,
: and (4.2) as
' (k#1) _ (k) _ (k)
aij (a 1j m,a Kj A+ j))(1 + sij)’ 1. > k%1,
L where the §'s are relative roundoff errors. Then
(k) _ (k) ' '
ij §' i ™ kj (6 1 + 68 i + 61j Gij) for i,j > k,
L) (k) B e
; ij ajk 6ik for i > j = k,
0 otherwise,

= and the lemma follows from the bound u/(1 + u) on the §'s. Q.E.D.
LEMMA A.3. The matrices L and U satisfy
LU =A+E
with
o™ El2ll < (3+2"7 - 3™l [0 A 2]

for arbitrary z > 0.
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(1) (2) (n-1) (k)

{ PROOF. Let E = E + E +...+ E where the E are given

by Lemma A.2. Substituting the bound on m,, of Lemma A.l into the bound

ik
on the elements eig) we get
|E§§)| <w ul (k)] + (2 + 3w ula(k)|

which, in fact, is valid for all i,j. This implies
L |z$‘§>|z < 3| |07t ® |2
=

J
for arbitrary z > 0. From Lemma A.l1 it immediately follows that

3 ”lD-lA(k)le < Zk-lek_HllD—lA|zH; and so we have

-1_(k k-1 2n-1 -1
1o e 2| < 325 %2 | |7 2a 2],

e

from which the lemma follows. Q.E.D.
LEMMA A.4. We have

P | |2

>
| g5l <olyragl, 1 > 4
and

i "

s o] £ o™ 1 TN 1% 3.
ij ij
=1
PROOF. Follows from Lemma A.l because £ =m,, and u,, = ag%). Q.E.D.
ij ij ij ij

LEMMA A.5. The vector & computed by (4.4) satisfies (U + U)X =y

3 for some upper triangular matrix 8U such that

L. n-i n-i+l
; |6uij| < g(i,jw Iuijl and Iuij + Guijl <w 'uijl
3 where
' (n=3+2, 32142,
i

n-j+1, J =41i+X

g(i9j)=<
2 J sl < el
f kl) 3™ 1=n,

3
1 ’ regardless of the pivoting strategy.
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PROOF. From (4.4) we have that

w.. %,
11 1 ~ ~ 73 PN ~ ¥
(T+5,) (1+59) Floaskly o0 BB T g SRty X B )=y, dizm-1,
and
%
nn n
+ 6' = yn’

where 61 and §' are relative roundoff errors due to subtraction and division,

i
resper ively. By the usual type of analysis we can obtain the bounds

R

P L e T R e
ij —

P ot SR VH R S P
ij

|8u, .| <
i — < 2

(w” - 1)|uij|, j=d<n-1,

(w - )]u,.|, j=1=n,

" 1

from which the lemma follows. Q.E.D.
LEMMA A.6. The matrix 8U of Lemma A.5 satisfies
1107 L6ul 2]l < 15+2"72 - 21 w®™| |07 Al 2|

for arbitrary z > 0.

PROOF. From Lemma A.4 it follows that

A
™
™
o
=

=1 -
(|p L6U|z)i < i ik dkl léukjlz:l

| A
i
™
™M
_;’_
[=

Applying Lemma A.5 first and then Lemma A.4 gives

<|n-1Lau|z)i <u § i g(k,j)w“-k+1|akj|zj
.3 k
<u I I gk, 3 lzk""lllszjlzj
j=1 k=1 e=1
n n j -
< Put T % l2k-l-1] 8(k’j)|azj|zj'
2=1 j=f k=g

P USSR a ettt s aint N
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After much manipulation it turns out that

3 e
max I [Zk -1

2<j<n k=L

1 alhdy= 5222

and therefore

2n

(o lLsulzy, < o™ w z 152" (0 7hal),,

N~

2=1
from which the lemma follows. Q;E.D.
LEMMA A.7. The vector y computed by (4.3) satisfies
(L + 8L)y =
for some lower triangular matrix SL whose elements &% 1 satisfy
|62 |<min{n—J+1 n—1}“j|(j)/(3)| -
regardless of the pivoting strategy.
PROOF. We have from (4.3) that
(...(2,il b4 ¥y et 212 b3 yz)...; li,i—l b3 yi—l) TZ%_E— bi’
where Gi is a relative roundoff error. By the usual type of analysis

we get that

-1 ,i-1
62,1 < (A +w ) 1k 424,
j+1
|62ij| < €1 + w u)1 4 1)|2ij|, i>33>»2,
and
l6e [ < ufe, |

The lemma follows from the inequalities

1+ w_lu)k -1 j.m_lu k(1 + m_]‘u)k-1

kwk-zu

|A

and

|2 | < min {w, oi” j}Ia(j)/a(j)| Q.E.D.

| v
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LEMMA A.8. The matrices 8U and 8L of Lemmas A.5 and A.7 satisfy
IIIp”tsL(u + 6U)|z|l§_(2“+1 -n- 3)w2“d||D'1AIzH
for arbitrary z > 0.
PROOF. Using the bound of Lemma A.7 and the row pivoting
inequality (4.5), we get
62,1 < minfn - 3 41, n - 1}w"'ju|di/djl, gt

Hence

(I YoL(u + 5U)|Z>i.i uf min{n - j +1, n - 1}wn'j(|n'1(u + GU)lz)j.

J
It immediately follows from Lemma A.5 that
L Sy
(ot + GU)Iz)j < w7 1Ulz)j

and from Lemma A.4 that

W™ 2341 1p7 A 2.

A

(0"t + sv)|2),
Therefore,

n
8, £ winfn - j+1, n- l}Zj-HIID_1A|zH,

(Io7tsL(u + sU)|2). < w
i—_
3=
from which the lemma follows. Q.E.D.

THEOREM 4.1. Let the vector & be computed by Gaussian elimination
with row pivoting and row scaling where D = diag(dl, dz,..., dn) 18 the matrix
of reciprocal scale factors. Then there exists AA such that (A + AA)X = b
with

-1 -1

[l 1p_"8alz|| < x(m)d] [D_"Alz]l
for arbitrary z > 0 and arbitrary € satisfying 0 < |e| < € where x(n) =
[19-2‘1-2 ~n - 8]e2nu.

PROOF. The restriction on ¢ implies that E(H(De» = £(N(D)), and

from Lemmas A.3, A.6, and A.8 we have the bounds

St




] 50

10 el 2l < 32" - 3)u®™Ld] D a2l
1oz Lsul ] < 15-2772 - 210%™ [0 Al 2],
and

DL + 60zl < 2™ = n - 3)u] [0 "4]z].

The theorem follows from the equation

T I Y

(A+E+ 8LU + (L + 8L)SU)X = b. Q.E.D.

THEOREM 4.2. There exists a problem Ax = b and a floating point

arithmetic <%, =, &, P such that the solution & computed by Gaussian

elimination with partial or complete pivoting satisfies (A + AA)x = b

only for those matrices AA for which

. H-}%?-Hﬁﬂ > 119:2"2 - 1 - 8lu + 0(u?).

F Therefore, the bound of Theorem 4.1 is the best possible bound in the

e i

limit u » 0.

PROOF. Obvious for n = 1. Assume n > 2. Let
3 =
wn_ O
l A = . .\ .
;} . s
[ -M =M ... =M 1|

g and
1
: -
: 14 (72 L ag-8u, ken=2,
4
; b, = 13 0™ < 'g D, ko=l
|
' 1+ (1987 % c 6 = 835, k=n,
{ If M is large enough, then there are no interchanges even with complete
3 pivoting. We have
; ‘ mij =m = M/(-M), B
o4 (1)
F 1| N L,
S {
(k) _ _(k-1) . (k-1)
a aj, m R ak-l,n,’ i>k> 2.

S e o TR . T rroay

T
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Suppose that all these floating point operations increase the magnitude
of the result by a factor (1 + 2u)/(1 + u). Then
m=-(1 + u) + 0(u?)

and

(k-1)

2
Yl + 0(u”).

(k) _ (k-1)
ain (1 + u) ain + (1 + 3u) a
By induction on k it follows that

LSRRI o S NS IR e T

in — )
and hence
b, _ k-1 k 2
i | L 2 + 2 (k-1)u + O(u").
We have
¥y 0y
bl R P LR
g where 1
5 = } o+ mR g
Sk (ovo(m R Y1 + m g y2). + m yk)
Then
= o .
Sl m b1 .
and .

S, =S, . +m2g (b, & ) 2<k<n-1.

k k-1 Sk—l

Suppose that all these floating point operations reduce the magnitude

of the result by a factor 1/(1 + u). Hence

g 2 -4
S1 = bI + 0(u”) j

and

2
Sk (2 - 3u)Sk_1 - (1 - 2u)bk + 0(u™), 2<k<n-1.
By induction on k it follows that

s, =1-2- 2~ 4)u- k+Nu+owd), ken-2

and
n=-1

- 2™ 2040 « 19)u = (a + 8)u + O(ud).
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Also we have

Y1 ] - 2u,

= b, -8 P -u+0wd)), k22

Y

From this we get

k

S 2k_l + Zk(k - 2)u + O(uz), k<n~ 2,
y o = "2+ 2" 20 - 5)u+ 0w,
> I 2n—l + 2n-l(2n - 1u + 0(u2).
We have
i yn/unn’

>
|

= A R )
n-1 (yn—l Yn-1,n ﬁn)/M’

= = r R 7 oL
2 (@Fu, *%)DM, k<n-2

>
|

Suppose that all these floating point operations reduce the magnitude of

the result by a factor 1/(1 + u). Then

& = (v /u )1 -uw =1+ G,

n-2 n-2 2
R = g & .

Bt ﬁn un-l,n(l u) 2 + 2 (2n - 5)u + 0(u%),

) ik

*n=1 = 0(u™),

i k-1 k 2
— " " " ¥

0+ U oy uk,n(l 2u) = 2 +2(k ~2)u + 0(u”), k<n-2,
and

2 =0@?), k<n-2

k ’
Hence

e n - 8)u + O(uz).

. & il 25 o Lo~
(b Ax)n = bn 1+ 0(u%) (192
No matter how we choose AA we get

(H1aal 1]l > [l2a%] = [|b - ag[l = (19-2""% = n - 8)u + 0(u?). Q.E.D.
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Appendix B. Error Bounds for Column Pivoting

i = C = A = + L
For any matrix C (cij) let cij cijdj Also, let w l+u

k. LEMMA B.l1. We have
2 )

= (k) !
lmlk ki I imlaik ]! 1>k, §>k,
and ;
1
k-1 ;
Ia(k)l <ot s @ tiehE e LR L gk,
2=1 ig ij =
k. PROOF. Equation (4.1) implies
i (k) 0,09 730
|m, a DCH | < wlagy iy RS A
. and because of (4.5) we get
(k) (k) :
|ikk I |ikdk|’ 1>k’jz_k’
which proves the first inequality. Equation (4.2) implies
(k+1 (k) (k) g
laij )|< wla; |+(1+2u)|mkkJ|, 1,§ > k + 1,

and therefore
|_(k+1)l<(u|a(k)| + w(l + 2u)|a(k)| 1,5 > k + 1.
The second inequality of the theorem follows from this by induction on k. Q.E.D.

LEMMA B.2. The matrices L and U satisfy

LU = A+ E
with
|ED|e < [7-2n-2 - n-2| mznu|AD|e.
PROOF. Assume n > 2. Let E = EV + E® 4.4 (™) ghere
the E(k) are given by Lemma A.2. Substituting the bound on ™k of Lemma B.1

(k)

into the bound on the elements €y 1] we get

| (k)l + 2u uIa(k)l for 1,j > k, f

for i > j = k,

0 otherwise.

b




! This implies

n
2|2 <« (20 - 2|3 20 = |'<“>| 1>k,
iy ' — ik R
3 j=k+l
and from Lemma B.1l it follows that
(k) 3k 2 1 y
fe] < (2n - 2t U(E 2 ol + 13, 1)
j 2=1
k-1 n
+ (n—k)ka-l pX k.1-’z'|- | + wk-lu z |51 l
g=1 juktl
{TZn-l)wzu z|a j| if k= 1,
b ]
(3 - el te 25 glas ] tER> 2
13
h|
; The lemma follows because
: n-1
: =1y + 5 (On - Tekthd = P2 © = n2. Q.E.D.
; k=2
1 LEMMA B.3. We have
= )
|lij uijl < mla(J I
' h|
- 2j-1 -g=1, =
|a§§)|'i = zil & Hagl, 1>13,
and

PROOF. The first two inequalities follow immediately from
Lemma B.1l, and the third inequality is a consequence of column pivoting.
LEMMA B.4. The matrix 8U of Lemma A.5 satisfies

n+l

|L 6U Dle < (27 - =2)u® u|AD|e.

PROOF. Applying the inequality Iﬁijl‘i Iaii, of Lemma B.3 and

the bounds of Lemma A.5, we get for i < n

Q.E.D.
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R n-i
u I g(i’j)m
J=1

|A

lugyl

i (n-i+2) (n-i+l) n-i |-
. = 2 o ulug, [

Therefore

(|L5UD|e)i = §|zij| ilsuﬁkl

(n—J+2)(n—J+1) n—Jl2

“jj' 1

and so using Lemma B.3 gives

n ]
(|Lsuble), < w™u I (“f1*2)§“'3+1) T a,l |
1 3j =1 2=1
n : < n |
i.wZEB . (n—j+2;(n—3+1) [23-2] 5 |;12|’ i
} j=-1 R.Sl |

from which the lemma follows. Q.E.D.

LEMMA B.5. The matrices 8U and 8L of Lemmas A.5 and A.7 satisfy

|sL(U + sU)D|e < 3(2n—n—1)w2nu|AD|e.

PROOF. Applying the inequality |aij| i-laiil of Lemma B.3 and E
the bounds of Lemma A.5, we get

n
2

j=1
(n-i+l)w

- n-i+l, -
n-i+1'-

“11"
Therefore applying the bounds of Lemma A.7 gives

| A

(JsL(u + sn)nle)1 = §|czij|i|ujk + Gujk|

T _]+l|

= < I min {n-j+1, n- -1 j| (j)/a(j)l(n -j+Dw jjl
£ i :

and so using Lemma B.3 gives
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Appendix C. Error Bounds for Iterative Improvement

LEMMA C.1. The computed residual satisfies

r =b-Ax +c
m m

m
with
Icm| §_u|b - Axm| + w|A||xm|
where
{fl +a) [(1+ ﬁ)n - 1] for s.p. accum.
w=
(1 +u) [+ u2)n - 1] for d.p. accum.

and 4 = u/(1 + u).
PROOF. The computed residual

r =b-~ (Ax +c') +c"
m m m m

where c; is the error due to computing Axm and c; is the rest of the error.

For the single precision case we have

let] < 1@ + w7 - 11 |a]]x|

and

n—
|A

ﬁ|b - Ax_ - c'|
m m

so that
| ]
legl < terl + |el
<ulb-ax |+ (@40 [A+ w" - 1] |allx |

For the double precision case we have

leal < 1+ uh - 17 ] |x,|
and
Ic"l < u|b - Ax - c'|
m m m
so that
e | < Jer] + lev|

|A

ulb - Ax |+ (14w [A+ wH™ - 11 [a||x | Q.E.D.

WS
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(|sL(u + su)Dle), < . g min {n-j+1, n-1}(n-j+1) ?z [23'1"‘“5“!
j=1 L=1 1
< w2n u r min {n-j+1, n-1}(n-j+1) [2j-2] ;J‘ la,, |,
i j=1 ge) + |
from which the theorem follows. Q.E.D.

THEOREM 5.1. Let the vector & be computed by Gaussian elimination 3
with column pivoting and column scaling where D = diag(dl, dyseves dn)
18 the matrix of scale factors. Then there exists AA such that é

(A+AA)% =D
with

|aAD|e < ¥(n)u|AD|e
where

Y} = (275272 2 5a = 71700, 1

PROOF. The theorem follows from the bounds of Lemmas B.2, B.4, !
and B.5 and from the equality ‘

(A+E + 8LU + (L + 6L)SU)X = b. Q.E.D. j
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LEMMA C.5. We have

— uv + W
i llz Il < =— Il 1al =]l

-provided that T < 1 where

T=u+ (2v + uv + W)y.

PROOF. From Lemma C.4

= +
= llis T—-ﬂll s wIllAllxlll Q.E.D.
LEMMA C.6. We have

gl lx| - Il1a] x| lley + 522111l Ix] ke

1 ==

lim |z | <
b2
e

provided that t < 1.
PROOF. From Lemma C.4

Tim |z | < u Tim |z | + w([a][x] - [[]A]|x]]e}
me m>oe

+ {Q———JCL - u) limllz I| + uv * w|||A||x|“}e,

and the lemma follows from Lemma C.5. Q.E.D.
THEOREM C.7. Assume |A||x| > 0. Then

(1 + uy)(uv + ®)o_ @(o - 1)
1 = % l-u

(1 + u)(uv + W)yo
1 -1

+u

lim n_ <
=
mso l1-u-

provided that (1 + u)(uv + @)yo < (1 = u)(1 - 1) where o = oy (A, x).
PROOF. From Lemmas C.5 and C.6 we have

S 222 af|xl

Lim [[z_[le < ~5— -

m>e

and

Tin |5 < (¥t 8o 80 =Ly,

l1-r xl

mre

Hence using Lemma C.3,
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;‘1 LEMMA C.2. Define z = A(x +d - x). Then
|2.| < ulatx, - 0| +viallx | |
+ = 1Ak - w1+ vl A = 011+ vl Bl x| e
where v = x(n)u and y = Cond(A-l).
PROOF. The correction term dj = (A + Fm)_lrm where Fm is the AA

of Theorem 4.1. We have

z

-1.-1 -1 ;
= A(xm—x)+rm—(I+FmA) FmA £ 5

1

_.1 _l —
L (I + FmA ) Fm(xm -x-A cm).

It follows from the bounds of Theorem 4.1 that

=1
2 < e |+ @ -l d[allx, - x|l +vllc_[De.
Substituting the bounds of Lemma C.1 into this proves the lemma. Q.E.D.

LEMMA C.3. We have

(2, + Glal[x] + ullzfl

| A

IA(xm+l - x)[

P

| A

lallx ;- x| < ulallx] + @+ Wyl [l

PROOF. The new iterate

X

m+1 E xm = dm * gm

where lgm| < ﬁ|x + dml. Equivalently

X = x + A_lz + g
m m

m+1
f where |gm| < ul|x| + ﬁlA-lzml, from which the lemma follows. Q.E.D.
LEMMA C.4. We have
2yl < ulz | - llz_lld + aclallx] = |l lx] [

+ (1 - vy)-1 {[u+ y(v +uv + ﬁ)]”zm“ + (uv + ﬁﬂ||A||x|“}e

where w = u2 + w(l + u).
| PROOF. Substituting the bounds of Lemma C.3 into those of

Lemma C.2 proves the lemma. Q.E.D.

| 4
|

t
1!
i
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5 4 PROOF. Substituting the inequality of Lemma C.8 into those

of Lemma C.3 gives

AG, - 0] < @+ &) [af[x] + (U, v 2oy 2 DAL )y y) x|
_ 1 - vy) ]
and
(w + uv + 2) ]
[allx, - =l < olal]z] «+ F¥—=—2=5L @ + wiy |} |ali=] [k,
1 - vy
and the theorem follows from the inequality .4

|A(x2 - x|

n, < max TalT=] = TAIIXZ =] Q.E.D.

= s
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g {(1 + uy)(uv + Wt)o _ w(o - 1)

4 } Hin IA(xm 3 x)[ 1 -1 1-u

+ u} |A]|x]

and

Tim a]|x, - x| < {u+ E3DOFDy0y 41y
i m &

The theorem follows from ' ]

e - ol laGx, - x| ‘l

n, = max TKTT;;T——_i max lAer] = [Allxm = iT—. Q.E.D.

LEMMA C.8. We have

+ +
|2 < wlal|x] + (L + YO L0, || |« [,

1 - vy) ‘i
PROOF. The first iterate x, = (A + 24) Lax,
and thus
: é R A7Leh % sk BN Y,
E | So
- lace, = ol < @ - v v ]al =]
3 and

: Mallx, = xl1l < @ = vy [l [a] =] ]l
From Lemma C.2 we have
l2;| < wlA]]x]
+ - e+ Wl lal[x; = [l + ullaGx; = )| + wdl [A] [x] [[}.

The lemma follows by substituting the previous two inequalities into this. Q.E.D.

THEOREM C.9. Assume that |A||x| > 0. Then

. (v + u)wyo + (u+ vy + wy) (1 + uy)vo

w+u+
h 1 = vy {3 = vy)z
o= 2
I l1-u- o s ; Y) (1 + u)yo
a = vy)

i provided that the denominator is positive.
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