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1. Introduction

The book by Forsythe and Moler [1967] gives an error analysis

fo r Gaussian elimination drawn f rom the work of Wilkinson and an analysis for

i terative improvement due to Moler. In this paper we do a careful backward

error analysis using a different idea of what it means for a perturbation

to be small, namely that each datum is subject to a small relative change.

A system of n equations

n
~ a . x . = b ., l < i < n ,

j =l  iJ ~ 
1 —

in n unknowns x1, 1 < i < n, is often written in matrix notation as

Ax = b .

The solution ~ computed in floating point arithmetic is not generally

exactly equal to x, but it still may be acceptable if it sa t is f ies one of

two cr i ter ia :

(i) It fulfills the accuracy requirements of the problem poser.

This usually involves some measure of how far i~ is from x.

For example , in determining the coefficients of an inter—

polating polynomial it is some norm of the residual

r = A(x — ~) which is of concern . More of ten  though it

is some norm of the error — x which is of concern .

(i i )  It is the exact solution of a problem which d i f f e r s  from

the given problem by less than the uncertainty in the data ,

k so tha t  it is conceivable  tha t  ~ exactly solves the original

problem . Uncertainty in the data is generally present if

only because of the roundoff error introduced when the

numbers are put into the computer .

It is this second criterion which motivates backward error analysis.
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In §2 we give mathematical form to the informal discussion of

ill conditioning found in Hamming ’s [1971] book Introduction to App li ed

Aiwnerical Analysis. The condition of a system is the sensitivity of the

solution to uncertainty in the data, and this sensitivity is often measured

by a condition number. The usual definition of the condition number is

based on the idea that the uncertainties in the data are roughly the same

size in an absolute sense. However, if we suppose that these uncertainties

have roughly the same relative size , then we obtain

I I I A ~~l lA I l x  + IA ~~ I I b Iil
lx i i

as the condition number of a linear system where j~~a j ~ is the max norm.

There are at least a couple of reasons for believing that this second

approach is more realistic. First , most numerical computations are done

in floating point rather than fixed point arithmetic , and for floating

point computation the conversion of data to machine represented to

numbers results in errors of the same relative size. Second , measurement

errors are usually more nearly the same in relative size than in absolute size.

In §3 we pose the question : What is the least amount by which

A and b must be perturbed so that è exactly solves the perturbed problem?

The answer to this question turns out to be

J ( b — A ~)max i
i ( I b i  + IA I I * l ) i

which we call the “backward error.” If this is less than the unit roundoff

error u, then the second acceptability criterion is satisfied . And if it

can be shown that an algorithm produces a backward error that is always

bounded by some fixed multiple K(n)u of the unit roundoff error, then by

increasing the precision of the intermediate results by a factor K(n), the
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second acceptability criterion can be met. An algorithm with this desirable

property is said to be stable. If an algorithm is only stable for

infinitesimal values of u, it is said to be asymptotically stable.

The stability of Gaussian elimination with row pivoting (usually

called partial pivoting) is examined in §4. By using an example of

Hamming ’s it is shown that row pivoting is not asymptotically stable even

for systems with equilibrated matrices. Then by means of a careful error

analysis performed in Appendix A a bound on the backward error is obtained

which contains the quantity

max (IDj ’A l I~
I)
~

mm (ID~~A ll kI)~

where D
1
’ is the matrix of row scaling factors. This quantity is minimized

by choosing

= diag(~A~~x~),

which calls for the i—tb row to be divided by a.1 x1~ + Ia 12 x2 1 +~~~~~~~~~~

Ia . 
~ ~~

. It is shown that with such a choice for D row pivoting would be
in n 1

stable. Of course this is impractical , which explains Stewart ’s [1973, p. 1581

observation that “In spite of intensive theoretical investigation , there is

no satisfactory algorithm for scaling a general matrix .” Nonetheless , the

ratio

max
j  ( f A ~~ x f ) .

mm (l A I I ~ I)~

is an excellent a posteriori measure of how poorly scaled the system is.

Sometimes, programming considerations (Sherman [1976]) call for

the use of column pivoting instead of row pivoting , where by column

pivoting we mean that columns are interchanged so that each pivot is the

~
largest in its row. In §5 it is shown that column pivoting could be

made stable if It were somehow possible to scale the columns with

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the matrix of scale factors

• D 2 = diag(I~~I).

This calls for each column to be multiplied by its corresponding computed

solution value. A measure of ill scaling is given by

max ( IA Ie )~ II~II
1 ( IA H~ i) 1

where e is the vector of all ones.

Row pivoting may be regarded as the generalization of complete

• pivoting in which the ordering of the columns is arbitrary , and similarly

column pivoting as the generalization in which the ordering of the rows is

arbitrary. From this observation it follows that the results of both §4

and §5 apply to complete pivoting. However , one suspects that the error

of complete pivoting satisfies an error bound which is appreciably better

than simply the smaller of the bounds for row and column pivoting.

In §6 iterative improvement is examined in the hope that the poor

stability properties of Gaussian elimination can be corrected . It is shown

that a single iteration of iterative improvement performed in single

precision is enough to make Gaussian elimination asymptotically stable.

Before proceeding , it might be interesting to demonstrate the

instability of complete pivoting with a simple 2 x 2 system of equations.

Consider Ax b where

r3 31 Ti
A = !  I andb j

L-1 oJ Lo
The coef f ic ien t mat r ix A is equ il ibra ted according to the de f in ition of

Forsythe and Moler [1967, p. 45]. Using rounded t digit decimal (floating

point) arithmetic the elimination step yields A ’x = b’ where

_ _ _ _ _
_ _  J
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[3 3 1  r l  1
I and b’ =~ I

0 ~~~~ .9] L.33~ 
. .3]

- 
and so the computed solution

x lo t

]

k The backward error is determined by considering perturbed problems of

the form

+ 
~ll~ 

3(1 + S12 ) (  rx11 = 
r1 + 

~13

(1 + 
~21~ 

] L~
] L °

and choosing the relative changes 5 ..  so as the minimize the maximum Js . .1.
13 13

In this case, 
~2l must be chosen to be —1, and so the backward error is

100% regardless of the precision t.

~

E

j  
_ _ _ _



~~ T~~~—--~-—-~~. ~~~~~~~~~~~~ 
.- .-. .-

~~~
--

~
---.-.----- ..,

~~~~~~~ 
. - —

. - ‘ --  

-~~- .-._

6

2. Condition of Linear Systems

The condi t ion of a problem is the sensitivity of its solution to uncertainties

in the problem data. The importance of this concept is that it In dicates the

amount of accuracy that one should reasonably expect for the solution of a

problem with Inexact data. And even for problems with exact data, the

conversion of the numbers to the computer ’s floating point number base usually

introduces errors.

As the measure of the condition of a problem we take the maximum

amount by which an infinitesimal perturbation in the problem data can be

amplified in the solution. More precisely if ~ denotes the given problem

data and 4,(~) denotes the solution of a problem with data ~~, then we define

the c~ 
- -

. 
n number to be

u r n  relative distance from 4 (c ) to ç6()~~ (2 1)
relative distance from ~ to ~

In the case where ~ and c~(~) are scalars, the condition number is the absolute

value of the relative derivative, namely

~4
_
’ (i;)

(cf. Bauer [1974]). For linear algebraic systems Ax b we have ~ = (A , b)

and ~~~ 
= A~~ b. (In roundoff analysis the number of equations n is not

considered to be part of the problem data; rather we take the point of view

that each value of n defines a separate class of problems.) There are two crucial

matters that have to be settled : (i) how to define relative distance In

the problem space , and (ii) how to define relative distance In the

solution space.

Any problem which is to be solved in an approximate sense is

incomplete unless there is also some “metric” ~pecif1ed for measuring how

I
i

LJ~~
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r good the approximation is. It is this metric that should be used in defining

the “relative distance from ~(~) to 4~(~ ) . ” Oft en this metric measures how

close the approximate solution is to the true solution ; in other cases it

measures how well the approximate solution satisfies the problem. In this

section we choose to consider the problem of approximating A ’ b rather than

that of approximately solving Ax = b. The ratio

II~ - xII
lix I!

where denotes the max norm is an adequate measure of relative distance

for most purposes if the unknowns are appropriately scaled .

The question of how to measure the “relative distance from ~ to ~~
“

is more difficult to answer because a completely specified approximation

problem need not include a metric for the problem space. However, there is

one metric which is always safe to use , namely the componentwise relative

error

max ‘ i —
I

If the value of this quantity is small, then ~ is close to ~ by any reasonable

standa rd , especially in view of the fact  that putting data Into the computer

results in small componentwise errors. This metric has another advan tage in

that it is always meaningful regardless of the physical dimensions of the

problem data and thus It Is Independent of possIbly arbitrary choice of units

for the data. For these reasons we take as our measure of relative distance

the sma llest c > 0 such that

Iâ lj — au ! ~ 
ela ij I and lb 1 

— b1j < c lb 1 I

This seems to be consistent with the Ideas expressed in Hamming ’s [1971 ] book

Introduction to App lied Numerical Analysis. On page 117 it is stated that

~

_____ _  ~~~ - --~~~~~~~~~~~
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“The term ‘ill—conditioned ’ is ill defined . The vague idea
is that small changes in the initial system can produce large
changes in the final result . If we are to take floating
point seriously, then we should say ‘relatively small changes’
and ‘relatively large changes ’.”

and on page 122 it is stated that

“...the system is indeed ill conditioned because , no matter
how we try , we are unable to solve the system so that the
answer is not sensitive tc~ small changes in the original
coefficients. ”

Thus it seems that by “relatively small changes in the initial system”

Hanuning means “relatively small changes in the coefficients of the initial

system.” A similar thought is expressed by Kahan [1966, p. 795]. It is

worth mentioning that this approach has the advantage of forcing the perturbed

matrix A to have the same sparsity structure as the original matrix A , making

it more plausible to regard A as the result of perturbing the original physical

problem.

Having chosen our metrics , we are in a position to determine the

condition number of a system Ax = b. We begin by obtaining bounds on the

uncertainty in the solution due to the uncertainty in A and b. Bounds of

this type also appear in Bauer [1966]. Our notation uses inequalities

between arrays to mean inequality of the corresponding components. The

absolute value of an array is also to be understood in a comportentwise sense.

THEOREM 2.1. Let Ax = b and (A + SA) (x + Sx) = b + Sb where

I SA ! < E IA I and lSb l ~~. E l b i . Then

Isx ll < II IA ’IIA I lx i + IA ’lIhiH
- 

(1 -~ l l1 A ~~1 i A i ~~Iix II
provided that the denominator is ~~~~~~~~~~~~~~~~

PROOF . ~Je have that

Sx = A~~ SA(x + Sx) + A 15b , (2 .2 )
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and so

lox ! ~ IA 1
! IOA KIx I  + l O x ! )  + IA~~I I S b I

IA 1I I A I ( I x I  + lox !)  + lA~~I l b I
Therefore

lox !! ~ £ iA~~I IA ! x l + IA~~I Ib I 11+ ~~ I A ~~~f I A !  I! II~x lI . Q . E . D .

Note. Bauer [1966 ] shows that the bound of Theorem 2.1 can be

improved by replacing (1 — e IlI A ~~l i A III )~ by 11(1 — c IA
1

II A I )
1

ll , and so it

is not necessary that c II IA~~I IA ! II < 1 but only that the spectral radius of

c [A
1

1 (A I be less than 1.

THEOREM 2 . 2 .  Let Ax = b. Then there exist SA and Ob such that

I SA ! = IA !, lob ! = Ib I , and the solution x + O x of (A + OA) (x + Ox ) =

b + Sb satisfies

lox ! > IIIA 1I I A I I x I  + IA 1II b 1 I I
- 

(1 + c I i l A ~~I IA li i ) I l x I l
PROOF. Let 2. be such that

( 1A ’l IA ! lx ! + 1A 1 1 I b I~~ = II jA~~l IA ! Ix ! + t A l
l b It! .

Define  SA and Sb by

Salk = sgn(a2..x~) Ia1~ l
and

Sb . = sgn(n2..) E l b . !

where A 1 
= (cu .) .  Then

(A~~OAx + A 15b)2. = a~~ Sa~~ x.k 
-r a2~1 

Sb
1j k j

= c ( lA ~~! I A I ! x !  + lA ’il b l ) 2.
= I I IA 1IIA Hx ! + !A~~l l b !I! ,

Li 
_ _ _ _ _ _ _ _ _ _ _ _
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but from (2.2)

(A~~ SAx + A 15b) 2. = (Ox 
— A 1SAS x )~

and so

I! IA~~! IA ! lx ! + IA ’! Ib I Il ~ lOx !! + II !A~~l IA !!! It Ox Il . Q.E.D.

THEOREM 2 .3 .  The condition number, as defined by (2.1), of a

linear algebraic system Ax = b is

I! !A ’I IA! Ix + JA~~I Ib! It
Ix !!

PROOF. The condition number of a linear algebra ic system Ax = b is

lim Ilox llAlx lI
c ( S A ,Sb) -

~ 0 c( SA ,Sb)

where c (SA ,Ob) = min{c > 0: ISA ! ~ cIA !, lob ! ~ c l b l } and Ox satisfies

(A + SA ) (x + Ox) = b + Sb. Consider any sequence (SA , Sb )  for which

C (SAm~ 
S b )  -

~~ 0 as m -
~ ~~ . By Theorem 2.1 we have 

-

~SxI < c ( SA ,Sb ) l l t ~~JJ~ LIx ! + k~~!Ib!ll
i x  I — m m 

~‘ - c ( O A ,Sb I! lA~~! IA ! I!) !!x !I
for sufficiently large in. Therefore —

~~ !SX ~ll4Ix lI It IA~~I IA ! Ix ! + IA ’! Ib !!!
m -÷ c (cSA ,S b )  ~ lx i!

which gives an upper bound on the condition number. Let c~ be a sequence

converging to zero . By Theorem 2.2 there exists a sequence (SA , Sb) such

that c(SA , Sb ) = c andm m 
! !Ox ~!I 

> 
tLA~~ t I A l ! x l  + lA 1 l t b I II

[lx!! - 
c m 

~~~~ €
~~ 

I! t A ’I IA ! I!) lix !!
Therefor e -

~~ !!~~~!I~Ix !I II IA ’I IA! lx! + IA ’! b i t !
— lix !!

which gives a lower bound on the condition number . Q.E.D.

- ,
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In subsequent sections of this paper , we will consider the ef f ects

of perturbing only the elements of the coefficient matrix.

THEOREM 2.4. Let Ax = b and (A + SA) (x + Ox) = b where ISA ! ~

c lA l . Then

— i t  i tOx c j j  A j A j j x
X — 

— c Il! A ~ i IA III ) lIx I l

PROOF. Similar to that of Theorem 2.1. Q.E.D.

THEOREM 2.5. Let Ax = b. Then there exist8 SA such that ISA ! = 
~~ lA !

and such that the solution x + Ox of (A + OA) (x + Ox) = b satisfies

Ox c I~ IA I IA! Ix! II
X - 

(1 + !!!A ’I IA ! !I) lix !!

PROOF. Similar to that of Theorem 2.2. Q.E.D.

It follows from these last two theorems that when only A is subject

to uncertainty the condition number is

Cond(A, x) = LLI A
1~
I~ A t Ix !!!

Since I! !A~~ ! IA ! lx i!! I l 1A ’i IA ! Ix ! + !A~~I Ib !!! ~ 2~ !A ~~~! IA ! Ix ! ll~
Cond (A, x) is also adequate for the case where both A and b are subject to

uncertainty. A similar quantity

I!A ’ll E l!Ae (~)!! !xj!
K(A , x) = 

1!xll

is used by Van der Sluis [l970a], which he calls [l970b] the “condition

number of the solution. ” Here e f 1) denotes the j —th unit vector.

The condition number of a matrix A could be defined as the

Tmaximum value of Cond(A, x), which is achieved with x = e = (1, 1, .. .,  1)

Thus

Cond(A) = Cond(A , e) = II lA~~l !A I II-
This qua n t i t y  is more satisf ying as a measure of ill condition than the

usual cond (A) = l!Ai!!!A !! for a couple of reasons. First , the mat r ix  
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!A ’!iA ! is a mapping of the solution space into

itself , which means that the ~~~~~~~~~~~~~~~~~~ can be defined entirely in

terms of the solution space norm. Whereas cond (A) = !!A~~ !! hA I l is defined in

terms of a solution space norm atid a residual space norm, which seems quite

unnecessary. Second , the quantity Cond(A) is invariant under row scaling.

Multiplying a system of equations by a diagonal matrix does not

change the problem in any fundamental way. For example, all

systems Dx = b where D is diagonal are well condItioned . Accordingly, we

• hove that C o n d ( D )  = 1; whereas cond (D) can be arbitrarily large.

Example. According to Hamming 11971, p. 120], the system Ax = b

is well conditioned where

2 11 r3 ÷ 3c
A = ~~2 2c 2c~ , b~~~ 6c

Li 2€ —c] L 2€

The inverse of the coefficient matrix and the solution are given below:

.4 .2 1 1~1
A 1 

= .4 -dc~~-. 3 .2c
_l_ .6 , x = 1 .

L .2 .2c~~— .6 
_ .4c~~

_.6] Li]
Hence

r l+1.8c 2.4€ 1.6€

!~~
1I IA ! = 

i-i.8c 
.4c~~+l.2 l.4-.6c .8

~~ 1.6

and
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—

9.6€ + 3.6621

J A ~~! ! A J ! x I  + IA ~~ i !b !  = 1-1.8c 4.8 + 2.4€

L 6-2.4c J

which shows that the system is well conditioned. However ,

.86 1 + 2.6 — .6cCond(A) = l—1 .8c

which indicates that the system would be ill conditioned for some d i f fe ren t

right hand side b, and in fact, Hamming [1971, p. 122] gives such an example.

I

~ 

_ _



- - - - - -- 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T T ~~.Z 

~~~~~~~~~~~~~~~~~

14

3. Stability of Algorithms for Linear Systems

Let 4 , — , ~~~, / denote the floating point operations corresponding

to +, — , x , / .  Every reference to a floating point result x 6 y carries with

it the assumption that x, 6, and y are such that the result is well defined .
• Nothing is assumed about the floating point arithmetic except that the

relative roundoff error is bounded by u/(l + u) where the unit roundoff

error u is a small positive number; that is,

x c S y = (x o y)(l + 6)

for some S depending on x, ~~~, 
and y which satisfies

5 <  U
— l + u

It follows from the above condition that

•‘ x O y
x o y =

• 1 + 5 ’

where !~ ‘ I < u. Note that for rounding u = 
~~~

- ~~~ and for chopping u =

where ~ is the base and t is the number of base 8 digits in the fraction of

the floating point numbers.

For any computed solution ~ we define the relative backward error

to be the smallest real number fl (3) such that

(A + tSA) (* — Ox) = b + Sb

for some ~~ Sb , and Ox with ISA ! .~~. n (3) !A h ) lo b ! ~~. n (3) Ib l~ and

l ox ! 
~~ 

fl (3) !~~ 
— Ox !. The backward error can be interpreted in the following

way : The computed solution * is the rounded solution of a problem with

rounded data where fl (3) is the maximum relative roundoff error. Thus, if

fl (3) Is no larger than the unit roundoff error u, then our solution is as

good as our data deserve ; otherwise, improved accuracy may be justified ,

perhaps by using iterative improvement. Further motivation for this definition

is given in Miller [1975] and Bauer [1974]. If a solution cannot be computed

because the matrix is nearly singular, then the backward error is defined to be 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __ _ _ _



-

15

the smallest real number 11(3) such that A + SA is singular for some ISA !

with ISA ! ~ n (3) t A t .

Stabil ity of the algorithm means that there exists a stability

constant K(n) and a stability threshold 11(n) > 0 both independent of the

problem data (A, b) such that the relative backward error

11(3) 
< K(n)u

provided that u < 1:1(n). A weaker concept asymptotic stability allows the

threshold 1:1(n) to be data dependent. These two types of stability are the

same as the “backward stability” and “asymptotic backward stability” used

by Miller [1972].

The backward error fl
(~~~ is not easy to determine, and for this

- 
- - reason we introduce two variants of the backward error which are easier to

compute. Let fl~~ 2)  
be the smallest real number such that

(A + SA)~~~~= b  + Sb

for some SA and Sb with ISA ! ~ rt (2)I A ! and lob ! ~~ . fl(2)Ib I . Let fl (~~) 
be the

smallest real number such that

(A + SA) * = b

for some SA with b A !  ~ n (1) !A !. Naturally 11 (3) ~- ‘
~(2) ~

THEOREM 3.1. Let 1 = (I: ( IA ! !~ I + lb I )j = 0). The backward error

— ~( b— A ~)• i max i
Ji~ 1 (!Afl*! + IbJ~7 

if (b — A~)1 
= 0 for i E 1 ,

11 (2) =

otherwise .

PROOF . First consider the case where (b — A
~
)i ~ 0 for some iE I.

Suppose that 
~(2) < + ~~~. Then there exist SA and Sb such that (A + SA) ~

= b + Sb where b A !  ~ 11(2) IA ! and lob ! 5~ fl (2) i b I . We have 

-~~~~~~~~ - - _— ~~~~~~~ -~~_ -
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• lb — Ax !  = J SAi — SbJ

I !SA !I*! + lob !

< 
~

l (2) (IA I 1*! + ib !), (3.1)

which is Impossible since (b — Ak). #0 and (!Al!k! + lb !)1 
= 0. Therefore

~(2) 
= + ~~~ . Second consider the case where (b — Ak)1 

= 0 for all i E 1.

To obtain an upper bound on 
~(2)’ consider the choice

Sa - = 
~ s~n(ij)Ia ij I (IA ii ~ i + lb !)1 

i ~ 1 ,
ij l E T ,

and
• (b — Ax)

~— l b I i

Sb — ) ~ (IA ! 1k! + !b! i 
I

• i~~~ 1~o l E T .

We have OAk — Sb = b — Ak or (A + OA)* = b + Sb , and so

— Ax)1!
11 (2) 1 I T X  

T !A It*I + lb !)1

Since 11 (2) < + ~~ equation (3.1) must hold; and so

!(b 
— Ak)1!

~ (2) > max 
(IA !!*i + lb !)1 

Q.E.D.

THEOREM 3.2. Let I = {i : (IA ! 1*1 )~ 
= 0). The backward error

I (b — Ak) . I
• 

max 
(IA1 I~~l ) 

if (b - Ak) 1 = 0 for  i E I,

+ otherwise.

PROOF. Similar to Theorem 3.1. Q.E.D.

Remark . Similar types of results apply to other problems ; for

example , the backward error for a polynomial equation a0 x~ + a1 x
’
~~
1 

+. . .+

a = 0 is given by

ha *° + a ~ ..+ a
• 

~~(2) = 0 1 n

Ia0 ~~1 + Ia 1 ~
n—l

j +. . .+ b a~l

_____________________________ ~—~~~~~— -——- ~~~~——- 
_
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The following theorem gives bounds on the relative backward error

11(3) in terms of the i~~re easily computed ~(l) 
and 

~(2)
• These bounds show

that the ~‘s are roughly the same size when the backward error is small,

and so in the remainder of the paper only the quantity 
~(l) 

Is used , which

we denote simply by 11.

THEOREM 3.3. The three types of backward error satisfy

~(2)
2 + 1 11(3) 1 ~ (2) (3.2)

11

5 111(3) 111(1)
-

• 
~~

(l)

2 + f l(1) 
I 

~ (2) 1 ~(l) (3.4)

PROOF. The second inequalities of (3.2), (3.3), and (3.4) are

obvious. The first inequality of (3.2) is obvious if 11(3) 
> 1. Hence

assume fl(3) 
< 1. There exist SA , Sb , Ox such that

(A + SA)(* — Ox) = b + Sb

where ISA ! I n(3)IA I~ bSb t I fl (3) !b!~ tox ! < fl (3) I* - Ox !. Hence

lb — Ak! = !SA(* — Ox) — AOx — Sb!

I 211(3)IA ! l k  — Ox ! + fl(3)!b t . (3.5)

It is easily shown

1k - Ox !  11 - 
1 

~~~~~~~~ 
(3.6)

11(3)

and so

2~
— Ak! 1 1 — 

(3) 
(l A il k I + FbI) .

11(3)

Therefore 
~(2) I 211(2)1(1 

— 11(3)) which verifies (3.2). The first inequality

of (3.3) is obvious If fl~ 3) > -
~~. Hence assume 11(3) < -

~~. From (3.5)
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lb - Ak ! I 211(3)l A ll k - Oxi + 11(3) tb - Ak! + n (3) IA II * I~
and using (3.6) gives

211
(1 - 11(3\ )!~ 

- Ak! I (~~ ~~ + fl (3~)klI kI .v / 11(3) \ /

Therefore

11(3) (3 
- 11(3))

~(l) (1 - n )

3n~~~ (1 - 
~~(3)

)

• (1 — jT1~~3~~)(l — 
~~1 (3)

)

• which proves (3.3). The first unequality of (3.4) is obvious if 
~ (2) ~

Hence assume 11 (2) < 1. We have

lb — Ak! I h1 (2)(!bI + IA ! b k ! I T1 (2) (!b — Ak! + 2IA I 1k!),

and so

2~
lb — Ak! < 

(2) 
lA Il k ! .

Therefore 
~ (l)  I 211(2)1(1 

— 

~ (2 )~~’ 
which implies (3.4). Q.E.D.

A good algorithm should (i) return an acceptable answer most

of the t ime (robus tness) ,  and (ii) signal failure whenever it does not

return an acceptable answer (reliability). We formally define an algorithm

to be reliable if there exist K(n) and 11(n) such that for any (A, b) and

any u I 11(n) either the algorithm computes an answer with ~ < K(n)u or the

algorithm signals failure .

Any algorithm for solving linear systems can be made reliable by

computing the backward error with floating point arithmetic and then accepting

the answer only if the computed backward error is less than a prescribed multiple

of the unit roundoff error. For example , the next theorem shows that if the

computed backward error ~ < Ktt , then we can conclude that fl I (K + n)ue~
’
~
’2
~
’
~.

LJ~~~~
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The residual is to be computed in single precision

= b . (...(a.1 x + a .2 X x2)... -I~ am ~

or in double precision

= fl(b1 
-
~~ (...(a11 ~ 

4- a
1~ ~ 

*2
)... 4. a. ~

Here ô denotes the double precision counterpart of 0 where it is assumed that

x ô y (x o y)(1 + O)

with I~ ! I u2/(l + u2). In practice the double precision unit roundoff error

is either this small (rounding in base two) or smaller. By fl(°) we mean

the conversion of a double precision value to a single precision value. It

Is assumed that fl(xoy) = (xoy) (l+O ) with —u/(1+u) I I u, which is true for

rounding and chopping. The computed backward error fl Is determined by

= max ( I~~
!/(...(la1l ~ *~ ! ± !a~ 2 

)( k2I)... + a. ~ * 1).

THEOREM 3.4. I f  P~ is the computed value of n, then
-(n+2)u nil (n+2)u — - nil

e f l — n f l e <1 1 < e fl + n u e

where
u for single precision residual accumulation,

= 

~~u
2 

for double precision residual accumulation.

PROOF. Let q be the computed value of Ak. By the usual type of

error analysis

Ici — Ak ! I [(1 + u)~ —

I n11 e~
11 !AI 1k! . (~~ 7)

We have that

~l - •  u
l + u ’ b — 4 !—— max• 

(1+ U 
)

fl A ji k
l + u
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and

(l + u)(l +
i~~~~

) b — a !1 1 <  — max
• — 

( i_ _ U 
)
fl A J J x J

l + u

where division of two vectors is defined componentwise . This reduces to

1 fl l max l b — Q L < (l + 2u)~ —
(1 + 2u) ( l  + U)n lAnk ! — 

(1 + ~ )
n 2  11,

from which it follows tha t

— (n+2)u b — 

~! (n+2)u
e ~~< max 

A !!kT I~~ 
11.

Using

- j~~~- A*! I!b -A * I IIb -~~I + I~~- A*I
and (3.7) gives

lb - ~I - nü e~~
_ 2 ) i

j A j  I~ I 1 lb - A*J 1 lb - ~l + nü e~~
2
~~lA I 1*! .

Dividing by A l  *1 and taking the maximum yields

max 
IA H*? 

—n~ e
(T
~~
2
~~ 1 11 1 max 

~A !j* 
+ nü e~~

_2
~~ . Q.E.D.

Before concluding this section , it should be mentioned that for some classes

of problems it may be unreasonable to expect an algorithm to be stable. [f the number of

output values is fairl y large compared to the number of input values, then

it becomes very difficult for an algorithm to be stable because each output

value must arise from the same perturbation of the input values. For

example , Miller [1975] shows that the usual algorithm for inverting triangular

matrices is unstable. Hence it seems better to use stability as a relative

concept rather than an absolute concept. This idea is used by Miller [1976]

in a paper entitled “Roundoff analysis by direct comparison of two

al~~ r I thms .

~
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4.  Gaussian Elimination with Row Pivoting and Scaling

This section applies the ideas of the preceding section to Gaussian

elimination with partial pivoting using row interchanges and Implicit row

scaling. The reciprocals of the scale factors are to be given as inputs

d
1
, d21..., dn 

to the algorithm , and so the pivoting is done as if one

were solving D 1Ax = D 1b where D = diag(d1, d2,..., d). To keep the

notation simple, it is assumed that the equations are numbered according

to their ordering after all row interchanges have been performed . The

comp utations of the algor ithm are as follows :

(1)
a. = a ..

13

Im ik = a~~~/a~~~, i > k + 1 , (4 . 1)

for k = 1( 1)n — 1, ~
= a . Tfl i ;~ X ak.~~ 

i,j > k + 1, (4 .2 )

- O  i f i < j ,
1 if i = j ,

~ m . . if i >
13

~~~ if I < j ,  
S

U • • ~~~~~~~~ 13 —
‘~ ~~0 i f i > j ,

y b ,1 1 (4.3)

for i = 2(l)n, y~ 
= b~ (.~~~(t~ 1 ~ y1 ~ ~l2 ~ y2)... -1- ~ y11),

~ = y / u  , •n n nn

for i = n — l (— 1 )l , (4.4)

= (Y~ 
(...(uii+i 

X *1+1 ± U11~~2 x i+2)... ± U in ~ 
k
n~~~~~ii~

It is assumed that the selection of a pivot is done exactly so tha t

• !d~~ 
a~~~ ! I ld~~ a~~ !~ 

i > k + 1. (4.5)

In cases where there are more than one suitable pivot , the one with the lowest

row index is chosen. The assumption of exact pivot choice avoids some minor

technical difficulties , and it also makes for a sharp error

hound in the case where there is no scaling.

_ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~ -- --- _- -------- -~~--- ~~
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It is Important to appreciate the nature of the functional

relationship between * and D. The computed solution * is a function

~(P) of the row permutation P. which In turn is a function 11(D) of the

scaling matrix D. (Note that 11(D) is also defined for values of D which

are not floating point numbers because the algorithm does not perform

floating point arithmetic on D.) If * is viewed as a functIon defined

in (d 1, d2,..., dn
)_space , it would be constant over regions bounded by

hyperp lanes passing through the origin . For example , let be the values

corresponding to a cer tain choice d . = d. of scale factors. Then * is

cons tan t for  all values of (d 1, d2 , . . . ,  dn) which satisfy

a
Id 1 ! > 

(k)  !dk l , I > k.
akk

It is necessary for the completeness of the theory that the Gaussian

elimination algorithm be extended to permit the use of zero as a scaling

factor. For any diagonal matrix D = diag (d1, d2,..., d )  we let D denote

the matrix diag (~ d1J , fd~ } ,..., ~d } )  where

(d ifd ~~~ 0{d} =~~~~

~ L~ i f d = 0 .

Tha t is , D is the matrix D with all the zero diagonal elements replaced by

c. The condition (4.5) is rep laced by the following :

{d 
~~~ a

(k)
i c 1klim —l (k) < 1.

-
~ 0 (dk} akk 

—

Let c = minf !d
1 
a
~~~/a~~~!: d

k 
= 0, d~ # O}. Then it can be easily shown

that for any c with 0 < c l  < E the scale matrix D has the same effect on

the choi ce of pivots as does D.

Unfor tuna tely ,  Gaussian elimina t ion wi th pivoting is unstable.

This instability arises in the decomposition stage when the quantities
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(k+l) (k) (k)a.. = a ,~ — m . X a
13 ij ik kj

are being formed. If Im .k a~~~I >> la~~~!, then the error in a~
1
~~

1) 
is not

very small relative to ~~~~~ and so in our backward error analysis we canno t

throw this error back into a9~~. The extreme case occurs

when a~~~ = 0 and a +
~
) 
~ 0, which is commonly called “fill in.” For

sparse systems of equations it is quite common to order the rows so as to

avoid fill in. This reduces computat ional cost , and it apparently may

also contribute to stability.

The instability of Gaussian elimination has been pointed out by

Hammfng, who on page 119 of his book [1971] announces the

“Theorem Pivoting can take a well—conditioned system into an
ill—conditioned system of simultaneous linear equations .”

and on page 123 states

“We have not justified the pivoting method; rather we have
shown that it is an ‘old wives ’ tale.’ But like most old
wives’ tales , it is a mixture of truth and mystic faith.”

To prove his theorem , HammIng uses the example discussed at the end of §2.

For this example, one elimination step with partial or complete pivoting

yields the system A ’x = b’ where

~3 2 1 r 3 + 3 c 1
A ’ 0 + 2c + 2c , b’ = -2 + 4c (4.6)

O -2 -l L- i+c ]
T~~~

2
~ 

-i - - s

assuming exact arithmetic. This problem is ill conditioned for small c,

since

—l
-~~~~ (‘ ~~~I A

t \ _ .8c — 3 + 3 c
~onu~ , X / — 1 — 1.8c
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If the elimination were performed in floating point arithmetic , then a

slight perturbation of (4.6) could result, which may have a solution which

differs from the true solution by an amount proportional to C 1
. This kind

of error could not arise from slightly perturblng the original problem

because it has a condition number of about 6. For example, suppose that

the computed righthand side of (4.6) was

3 + 3c

= —2 + 4c —

- l + c + ~~~J

and everything else was exact. Then

1
*= ~~l — s ~~~u /8f ,

—l
L l +C  u/4

and by Theorem 3.2 the backward error is u/(8c + u).

A related observation was made by Gear [1975]:
S

“It might be possible to say that SA represents a perturbation to
the original physical problem if the sparsity structure of SA
were the same as that of A. Unfortunately, we will show that such
a demand on the structure of SA can lead to very large bounds on
lI SA !!, bounds probably dependent on the condition number of A.”

This was supported by the example

1 1 —l — l 0 1

O c  0 0 1
A , b = x

0 0  € 0 1 c

1 0 0 1 _2_ 1

for which Corid (A) 4.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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— 
In one of the theorems that follow , It is shown that the situation

is not quite as bad as Gear suggests. The bounds on lI SA !! depend not on

how ill conditioned the problem is but on how badly scaled the equations are .

We begin by obtaining a totally a priori error bound for Gaussian elimination .

The proof is modeled after that of Forsythe and Moler [1967], which is mostly

borrowed from Wilkinson [1963]. However, our error bound , like that of

Van der Sluis [l970b], is more informative than that of Forsythe and Moler

in that it distinguishes among the columns of t~A.

- 

- 

THEOREM 4.1.  Let the vector * be computed by Gaussian elimination

with row pivoting and row scaling where D = diag(d1, d 2 , . . . ,  d )  is the

matrix of reciprocal scale factors. Then there exists 1~A such that

• (A + M)* = b

with

l!1 D ’ AA !z!l < v(n)uI! 1D ’ A i z i !

for arbitrary z > 0 and arbitr ary e satisfying 0 < 
~~~ 

< ~ where

n-2 2nu
x( n )  = [19.2 — n — 81e

PROOF. See Appendix A. Q.E.D.

Note 1. The factor ~~~~ appears in the Forsythe and Moler book

2nuas the constant 1.01. The advantage of e is that it indicates the

nature of the higher order effects and it does not require placing

some arbitrary restriction on the size of nu.

Note 2. It is actually possible to show that l~ A ! I LB IA ! for

some lower triangular matrix L
B, although the best possible LB is

somewhat complicated .

With z e in Theorem 4.1 we get the ~sua1 type of bound

l!D
~

1 AA !!Ix (n)u !!D
l 
A!! .

_ _ _ _ _ _  
_ _ _ _ _ _ _  _ _  

j  
-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _- —— ---.— - - - —- rn-— -
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The bound of this theorem Is practically always extremely pessimistic.

However , there are cases where this bound can be attained in the limit

a s u - ’~ 0.

THEOREM 4.2. There exists a problem Ax = b and a floating point

arithmetic 4, ~~~, ~~~, I > such that the solution * computed by Gaussian

elimination with partial or comp lete pivoting satisfies (A + ~A)* = b

only for those matrices AA for which

L I l A !  l~~i l !  
> [l9.2~~

2 - n - 8]u + O(u2).

Therefore, the bound of Theorem 4.1 is the best po ssib le bound in the

limit u - * 0.

PROOF . See Appendix A for the proof , which employs a modification

of Wilkinson ’s [1963] example. Q.E.D.

The next theorem uses Theorem 4.1 to get a bound on the backward

error . We are especially interested in the effect of scaling on the error

bound.

THEOREM 4.3. Let I = {i: (!A!!k!)1 
= o}. If d1 = 0 for I e I

and di ~ 0 for i ~ I , then the bac1c~ard error

max 1D A l l~ ln < ~~~(n) u — lmm (ID AI!x !)j
• i~~l

PROOF . Putting z = 1*! in Theorem 4.1 gIves

!ID~~ b - Ak)!l=!!D l A A k ! ! I ! I I D
l 

AA I 1*! IIC 
—l 

(4.7)

Ix (n)u !!ID~ A l! k ! l l .
Multiplying this by € and lettin g c -

~
- 0 gives

max I(b  — A*)11 IX (n)u max ( lA l ! * l ) i,i E  J i E  I
from which it follows that (b — Ak) 1 = 0 for f . E I. Hence , from Theorem 3.2

we have that

- _------ - -_  ---—-_- —-- - -
~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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= max 
I (b — Ak) 1 I max 

— Ak) I

14 r (IA ! Ik !) i ~ I (ID~~A II * I )1

and from (4.7) we see that

(ID~~
(b — A k ) !) 1 I ~(n)u max lD~~A l! kl . Q.E.D.

By choosing

d1 = (IA ! 1k !)~ (4.8)

the bound on the backward error is minimized , giving n I x ( n )u .  This

suggests that a linear system should be scaled by dividing each row by

its weighted 1L~ norm where the weights are the components of the computed

solution . Unfortunately, (4.8) represents an implicit equation for the

scale factors d
1 because the computed solution k is a function F(fl(D)) of

H the scaling matrix D; that is, D must solve the equation

D = diag (jA Il~ (11(D))j), (4 .9)

for which a solution may not exist. The nature of this equation becomes

more apparent by noting that it is equivalent to solving for a

permutation P that satisfies

P = rI (diag(jA !I~~(P)l)). (4.10)

For if D satisfies (4.9), then P = 11(D) satisfies (4.10); and if P

satisfies (4.10), then D = diag(IA !!~~(P)~ ) satIsfies (4.9). In principle

we could determine the solut ion to (4 .9) , If there is one , by testing to see

if any of the n! permutations P satisfy (4.10). In the cases where a solution

ex ists , the backward error is bounded by x(n)u. One suspects that (4.10)

almost always has a solution , and it is even conceivable that (4.10) always

has a so lution , at least whenever ~ (P) is defined for all P. The existence

of a solution for (4.10) implies the existence of an ordering for the rows

which makes Gaussian elimination stable.
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If one wishes to solve (4.10), the following iteration would

likely converge and converge quickly for almost every system of equations:

P(0) 
= 11(diag (!AIe)),

P(~~1) = fl (diag (IAlk (P(m) )l))~ 
m = 1, 2 

This is not suggested as a practical algorithm though because poorly

scaled equations can usually be accurately solved by doing iterative improvement.

A more useful application of Theorem 4.3 is the diagnosis of

Ill—scaling, for

. max A ~: GR
(A , x) = 

mm A ~

is an easily computable measure of how badly scaled the rows are.

Remark. The bound of Theorem 4.1 can be refined:

(ID ‘~Alz)1 I x(n)u 
max (lD~~A l z)..
i l l

This suggests that

max ( l A l I k ! ) .
~~ (lAl [tTi~

would be a better measure of the possible effect of ill scaling.

The quantity aR
(A, ~

) is not very satisf acto ry f or theoretical

pu rposes because k depend s on the ar i thmetic  used in the computation . We

would prefer to use C R (A , x) for  the theory . For Hamming ’s example

IA ! Ix ! — (3 + 3€ , 6€ , 4~ )T and Y R (A ,x) = + . Near optimal row

scaling for  this problem is given by

3 2 1 3 + 3 c

D
1
A 

~ 2 2 
D~~b — 6

i 
2

— 2 — l

For Gea r ’s examp le IA !  lx !  — (2/c + 2 , 1, 1, 2) and o~~(A~x) 2/c + 2. Near

optimal row scaling is given by 

— -_  --_- - —- - — --- - -  — -- - - - __  - _-- ----- - - - - -.  _ _
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~C C C C~ 

_
0

_

— l 1
D 1A =  , D b =

O O C O  1

1 0 0 1 2

One may wonder about the e f fec t  of scaling strategies such as

row equilibration. Van der Sluis [l970b , p. 80] gives an example showing

“that it is quite possible. . . that there exists no bound dep ending on n only
r

~Hr the ratios of the errors after and before equilibration .” He goes on

to describe a cautious equilibration scheme that never worsens the situation

at the expense of possibly not improving it. An adaptation of this scheme

to our theory is to choose -

a ..
d . min max

1 . a .k 
~ 

kj

which has the effect of leaving no row of A strictly dominated by any other

row of A. Note that, since d . I 1, we have minID~~A I Ix I ~~. A l x l . Furthermore,

( lA I l x I ) 1 = mln E !
~~~I l a k~I I x ~I

k I ki

1m m max l;~iJ~I E lakf ll x l l
k j kj P.

I d1 max IA l I x I ,

whence max iD 1
A ! Ix ! I max iA l lx !. Therefore

OR( D A , x) = 
maxID~~A II x I < ~~~X 1A ~~~X 1  = 0R (A , x ) ,
miniD A ! lx !

so that  the scaling of the problem is not made worse by our choice of D.

_ _
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The theorem that follows gives bounds on the backward error that

in the limit u -
~ 0 depend only on how Ill scaled the problem is and not

how ill conditioned it is. First we need a lemma.

LEMMA 4 . 4 .  If D is nonsingular, then

I !lD ~~~Ax !i 1 1 A !  l x i  IL
1 — x ( n) u  Cond (A D)

PROOF . We have

which implies

-
: D 1

~A* = (I + D 1AA 1D) 1D~~~ Ax

and

IID~~ Ax!I I 
liD 

1MxII
1 — lID AA A DII

The term in the numerator

!!D~~ Ax lI Ill ID~~AA I lx !!!

< x(n)u IHD~ A IIx !Il ,
and the term in t he denominator

IID~~ A A~~DII = I! lD~~~A A~~D !e !I

IIl !D 1
~A ll A lD!e!!

• ~ x(n)u I! ID~~A ! lA~’D!e1l
= x(n)u 1! !D ’A ! lA~~D! I!. Q .E.D.

THEOREM 4.5. Let D be nonsingular and let IA ! Ix ! > 0.

Gaussian elimination with row pivoting gives
—l

• x (n ) u  a (D A , x)

1 - 2~~(n )u Cond(A 1D) ~~~~~~~~ x)

provided that the denominator is positive.

PROOF . Choose t~A as in Theorem 4.1. From Theorem 3.2 we have that

— M*!n = max 
A Il k !

- - - -~~~~--~~- —---- - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~——~~~~~~~ -- —- —--~~~~~~ - - - --
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Since x = * + A
1 Ak, we have

ix ! I !~i + !A _ 1DleI!D~~A*I!
and s o

ID~ A ll x ! I !D~~A !!k! + !D ’A !iA~~Dk!D~~~AxlI

Thus

r~ 
< max
— 

ID 
1

A ! 1*!

—l -‘e D  i~Ax< max —
— 

!D~~A !  Ix !  
— e Cond (A 1D) !!D~~~ Ak !I

Applying Lemma 4.4 yIelds

—la (D A , x)
e!!D Mk II 1 -l 

-!D A lI x i
1 — x(n)u Cond (A D)

f rom which the theorem follows . Q .E . D .

Although we are unable to prove that there is always some

ordering of the rows for which Gaussian elimination is stable , we can show

that this is t rue asymptotically as u -
~ 0.

THEOREM 4 .6 .  For any problem such that IA ! Ix !  > 0 there is sc~ne

orderi ng of the rows for  which Gaussian elimination is asymptoticall y stab le .

PROOF. Using Theo rem 4 .5  with D = d i a g ( l A H xj )  gives

~• — 

IA ! A 1
! A ! i x I1 — 2x(n)u max 

A !lx

f or small enough u . Hence for

— l A ii x lu < u (n) = mm
— 

4x(n) IA ! IA !lA Hx I

we have

~ 
I 2~ (n )u .  Q .E . D .

¶ 1
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We end this section by examIning the e f fec t  of scaling on a good

bound for the “forward” error.

THEOREM 4.7. The error

11* - xl! I x(n)u lIA~ D!i !L!D ’AI lxi Ii
1 — x ( n) u  Cond (A D)

PROOF. We have

Ilk - xl! = I!A~~
(- AA*)l!

1IIA lD!I II~)~~A* !I
- - and the theorem follows from Lemma 4.4. Q.E.D.

If higher order terms in u are ignored , the bound on the

error is minimized by choosing D = diag(~A f ! xi). Thus

i!A ’!! li lA! I~JJL
I! lA

_l
I ! A l l xl

is a measure of the possible effect on the “forward” error of how poorly the

equations happen to be scaled. For Hamming ’s example this quantity is

-~~~~~ 1 + 0(1) and for Gear ’s it is ~~l + 0(1).

The usual type of bound on the error is of the form

Ilk — x ll IX (n ) u lk ~
11~I !h~

1AI! !Ix!i + O(u 2 ) .

This is minimized by D diag(~A j e), which is row equilibration with

the I
i 
norm. •-
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5. Gaussian Elimination with Column Pivoting and Scaling

This section is similar to the previous section except that we

examine the variant of Gaussian elimination in which the columns are

Interchanged in order to ensure that the pivot element is the largest in

its row. The algorithm is assumed to do column scaling where the scale

f actors d1, d2 , . . .,  d are given as inputs to the algorithm . Again the

selection of the pivot is assumed to be done exactly so that

d .I I I !d k l ,  i > k + 1 .

• 
akk

Writing the condition in this form allows for  the use of zero scale factors

but does not permit the selection of a zero pivot.

An a priori error bound is given by the following theorem:

THEOREM 5.1. Let the vector k be computed by Gaussian elimination

with column p ivoting and column scaling where D = diag(d1, d 2 , . . .,  d )  i~~

the matrix of scale factors. Then there exists AA such that

(A + AA)* = b

with !MDie I ~(n)u!AD!e

n—2 2nuwhere x (n)  = ~27.2 — Sn — 7je .

PROOF. See Appendix B. Q.E.D.

It is likely that the constant ~(n) in this bound could be

replaced by a smaller constant.

The following theorem indicates how the columns should be scaled

in order that  Gaussian e l imina t ion  with column pivoting be stable.

THEOREM 5.2 .  Let k be the va lue of A 1b computed by Gaussian

elimination with ~~~~~~~ p ivoting and column scaling where D = diag(d 1, d2 , . . . ,  dn
)

~s the matrix of scale factor s . L~’t 1 {i : (!A !lk!)1 
= 0) and let

— 3 = {j :  = 0) .  J d~ = 0 for j ~ 3 an~-J d
1 

# 0 for j ~ 3, then the backward error 
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( !AD I e ) ~ —l
n I x(n)u max ‘1A *1) max (ID *1)

i~I ‘‘ i j~J

PROOF. We have I = DD 1
11 where D1 denotes D with all diagonal

z ero ent r ies replaced by ones. Hence

l b — Ak! = l~ Ak ! I kAD k l I D~ I!I
I~~ (n )u lAD le Il D~

1k !l

= ~(n)u l A D l e  max (1D 1
*!)..

j~J

- - We have that ( I A !  !*l ) ~ = 0 implies that a.j = 0 for j ~ 3, which implies - j
that (lAD le). = 0. Hence the theorem follows from Theorem 3.2. Q.E.D.

COROLLARY. The backward error

(lD~~*I).n < ~~~(n )u max
— i~i~3 l D ~~*l)1

PROOF. We have

1e <  D x max . Q.E.D.
j4 ( D

A choice of D which minimizes the bound on the backward error is

d . =

)~~~~~~~1

that Is, we scale by multiply ing the i—th column by the i—th component of

the computed solution. Again these weights are not known at the time when

scaling is performed . The main value of this theorem is that it gives an

easily computable measure of column ill scaling:

iA l e !!*l!x) max 
IA !!k !

For theoretical purposes we would prefer to use ac
(A , x). For Hamming ’s

example c1
~

(A , x) = + 4. Near optimal row and column scaling , which

would be appropriate for complete pivoting , is given by
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~ 
2 11 r~÷~1

D1~
1AD

2 
= 2 2 2 , D~~ b = 6

Li 2 -1] [ 2]

For Gea r ’s example c1
~

(A , x) = ~~~ . Near optimal row and column scaling

Is given by

€ 1 —l £ 0

—l 0 1  0 0  — lD1 AD2 
= , D

1 
b =

0 0  1 0  1

1 0  0 1  2

LEMMA 5.3. If D is nonsingular, then

— l
AAI < 

X(n)u lAD le ID x ii
— 1 - ~(n)u Cond (AD )

provided that the denominator is positive.

PROOF. We have

I + A 1AAI = x ,

which implies

MI = MD(I + D 1A 1MD) ~ D 1x.

Hence ,

I I AAD !e 11 (1 + D 1A ~~AD)~~ D~~xII

< ~(n)u lAD le IID~~xIi— 

1 — IID 1A 1t~ADII 
.

The term in the denominator

IID~~A~~~AD Il I l l  !D~~ A~~~! IMD IeI!

I ~(n)u I! !D lA~~ p IAD Ie II

= ~(n)u II !n~~A ’! lAD ! I! . Q. E . D .  

~~~~~~~~~~~~~~ ~~~~~~~ ---~~~~~~~~~~~~
- - - .  —-~~~- - - - - -  ~~~~~~~~~~~~~~~~~ -—-- -~~~~-
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THEOREM 5.4. Let D be nonsingular and let I A ! I x l  > 0. Gaussian

elimination with co lumn p ivoting g ives

~~( n ) u  o
c
(AD1 D 1x) 

1— 

1 - 2~~( n )u  Cond(AD ) a
~

(AD , D x)

provided t 7-zat the denominator is posit ive.

PROOF. Choose t~A as in Theorem 5.1. From Theorem 3.2 we have that

—n = m a x A x

Furthermore

- . —lx = x + A  AAx ,

and so

l A li k i ~~~ 
A~~x~ - !A ll A ~~!lAAk !.

Therefore

Ml!n < m a x  .
- 

l A l i x I  - lA !!A l !IAA I I

Apply ing Lemma 5.3 yields

a (AD, D 1x)
•~A~ ! 1 1 - ~(n)u Cond(AD) IA ! l x i ,

from which the theorem follows. Q.E.D.

THEOREM 5.5. For any problem such that x l > 0 there is some

ordering oj~ the columns for which Gaussian elimination is asymptotica lly stable. - -

PROOF. Using Theorem 5.4 with D = diag (Ix !) gives

— IA l A l i x !1 — 2x (n)u max

- 
- 

for small enough u. Hence for

_  
- -- -- -- ---- - -~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---—--
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— lx !U I u(n) = mm 
-14~(n)IA lI A lI x !

we have

fl I 2~~(n)u .  Q .E .D .

Recall that the stability threshold in the case of Gaussian

elimination with optimal ro~ ordering was

— . lA i I x !u(n) mm
4~(n)!A!!A ~~I ! A II x !

It is easy to show that this is larger than the stability threshold for

optimal column ordering. This is a slight indication that row oivotin2

may be superior to column pivoting.

THEOREM 5 .6 .  The error

- 
~~ ~(n)uj !A~~!I ADHHlD~~xI (— 1 — ~ (n)u Cond (AD)

PROOF. Since

(A + ~A ) (~ - x) = - t~Ax ,

we have

I — x = -(I + A 1AA) ~ A 1AAx

= — A 1AA(I + A~~~A)~~x

= - A~~~AD(I + D 
1A~~~.AD) ~ D 1x .

Therefore,

III - xl! < [IA ~ ADII IID 
i ll

1 — l I D A MDII

- . i~i
’fIAA D I lID 1 ii_

— 

1 — l I D
_l

A
_l

I !AADIe !I

It IA~~l lAD ! II IiD~~x li E D— 1 — ~ (n )u Cond( AD) Q. 

--~~~~~~~~~~~~~~~~~ —- -- -•- --- -—••- ---~~~~~~~~~~~~~~~ -—- — ~~~ - - - - - --
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If higher order terms in u are ignored , the bound on the error

is minimized by choosing D = diag(!x~). Thus for column pivoting

II (A l
l A l l  l xii —

ll A 1 ll A l l x l I l

is a measure of the possible e f fec t of ill scaling on the “forward” error. 

~~~~~~~~~ ~~- - -  I
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6. I terative Improvement

It is often thought that iterative improvement is not worthwhile

unless either (I) the uncertainty in the values of A is less than the unit

roundoff error (e.g., if the elements of A are integers) or (ii) we wish to

diagnose ill conditioning. This thinking is based on the fact that Gaussian

elimination with pivoting is stable from the absolute error point of view.

But according to the relative error point of view, Gaussian elimination may

not give acceptable accuracy , and so it is of interest to examine the

stability behavior of iterative Improvement. Results of a careful error

analysis are given for iterative improvement both with and without double

precision accumulation of the residuals.

The algorithm being considered is described as follows where

subscripts denote iterates rather than components of vectors:

x1 = value of A 1b computed by row pivoting ,

f o r m =  1, 2, 3,...

r = computed value of b — Ax
m m

-1dm value of A r comput ed by row pivoting ,

x = x  + d .m+l m m

The algorithm for computing rm appears in §3 and the algorithm for d Is in §4.

The theorem which follows shows that just one iteration of iterative

improvemen t with jus t  single precisIon accumu lation of the residua ls is

enough to make Gaussian elimination asymptotically stable. This may seem to

contradict the usual advice (Forsythe and Moler [1967 , p. 49] )  that “It Is

absolutely essential that the residual r
k 

be computed with a higher precision

than that of the rest of the computation .” Actually there is little conflict

because we have shown that  poorly scaled systems may be solved with an

ef fec t ive  precision of much less than single precision .
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THEOREM 6.1. Assume that I A I  l x !  > 0. Gaussian elimination

foll owed by one iteration of iterative improvement results in a backward

crror which satisfies

‘~~~~ I (n+l)u + {(x(n)2+2n~ (n) + n2 + 2n) Cond (A 1) G
R

(A , x)

C + X (n) a
R

(A, x) + ~ n
2 + -

~~ nhi 2 + 0(u3)

k 

for single precision residual accumulation and

n~ I u + {x(n)2 Cond (A 1) a
R

(A , x) + x(n) OR (A , x) + n}u2 + 0(u3)

~ fo r  doub le precision residua l accumulation. That is, the al gorithm is

asymptotically stable in either case.

• PROOF. The theorem follows from Theorem C.9 in Appendix C. Q.E.D.

Note. The asymptotic nature of these bounds conceals the fact that

certain assumpti ns on the smallness of u are necessary in order to get an:’

bound at all. The actual assumptions, found i’t Appendix C, are too lengthy

to reproduce here; roughly speaking it must be assumed that the coefficient

of the second order term is less than 1/u.

Recall from Theorem 4.3 that for no iterations we have

T1
~~ 
I x (n) cY R (A , x )u + 0(u2),

and thus one iteration does make a big difference in the size of the bound .

However , the presence of the product Cond (A
1) cY

R
(A , x) in the second order

term indicates that this may not be the case for problems which are

sufficiently ill scaled and ill conditioned.

THEOREM 6.2. Assume IA ! lx !  > 0. The backward error n for

iterative improvement of Gaussian elimination with row pivoting satisfies

lim ~i ’ I (n+l)u + {2n( x (n )  + n+l) Cond (A 1) aR (A , x)

+ x(n) GR (A , x) + -
~~ n 2 + -

~~ n + l)u 2 + 0( u 3)

for  sing le precision residua l accumulation and

u r n  fl ” I u + {x(n) OR (A , x) + n+i)u
2 + 0(u3)

for double precision residual accwnulation.
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PROOF. The theorem follows from Theorem C.7 in Appendix C. Q.E.D.

The main effect of doing more iterations with single precision

• accumulations is a moderate reduction in the magnitude of the second term.

But for the double precision case there is a striking improvement due to

2 —l 2the disappearance of the x(n) Cond (A ) a~ (A , x)u term so that the bound

on ri” depends on the condition number of A ’ only through the 0(u3) term.

Thi s may represent a significant improvement for problems which are both

poor l y scaled and ill conditioned.

4. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- _

~~ ‘~~~~~~
- —-- - — -

~~~~~~~~~~~~~~~~ —-_-.---- - -
~~~~~~~ 

- -

42

7. Practica l Imp lications

The comments that follow are suggested by the error analysis.

but their usefulness remains to be established.

By means of examples it has been shown that Gaussian elimination

with (partial or complete) pivoting does not generally provide all the

accuracy that the data deserve or even a fixed fraction of that accuracy .

Hamming [1971 , p. 121] states

“It is reasonable to ask how typical these examples are and
how often in the past the pivoting method has created the
ill conditioning that was reported to occur by some library
routines. The answers are not known at this time; all that
is claimed is that  textbooks and library descr iptions rarely,
if ever , mention this possibility (though it is apparently
known in the fo lklore). ”

and so it seems that there have been practical instances where the pivoting

method has performed poorly. Perhaps Gaussian elimination without

iterative improvement should be regarded as a “quick and dirty” way to

- 
- 

solve linear equations.

The computation of the backward error is one reliable test for

deciding whether or not the solution of a l inear system Is “r easonably

accurate.” The test ~an be made quite efficient by accumulating r and

I A l Ill + Ib I at the same time. If the test is failed , then in most cases

the use ci iterative improvement would result in a solution which passes

the test. One could , of course, forgo the backward error computatic-a and

just do iterative Improvement until “convergence. ” But such a procedure

may not be completely reliable since it has not been rigorously proven that

“convergence” implies a reasonably accurate solution . Stewart [1973,

p. 205] mentions “ the possibi l it y t ha t , wi th  a violent ly i l l—co nditioned

matr ix , the i te ra tic -n  may appear to converge to a false solut ion.”
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It is also suggested by the theory that  if doub le precision

accumula tion of the residuals is costly , then iterative improvement with

single precision accumulation might still be beneficial.

The success of the pivoting method depends upon a reasonable

scaling of the equations, which is at best guesswork unless one has some

knowledge about the sizes of the solution components. If c Ix !, then

(i)  fo r row pivoting one should sca le the system to get

(Dj
1A)x  = (D 1

1b) whe re D 1 
= diag (~A I c).

(ii) fo r complete pivoting one should scale the system to get

(D~
1AD

2
)(D;’x) = (D~~ b) where D1 

= diag (IA !c) and D2 
= diag(c) .

It may be worthwhile to allow users of a linear equation solver to provide

an estimate of the solution, particularly If the solution variable X is being

used only as an output parameter. For simple use of the program X could

be set to all  ones.
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Appendix A. Error Bounds fo r  Row Pivoting

For Lemmas A .l through A.8 it is assumed that D has nonzero diagonal

elements. This assumption does not apply to the theorem that follows

these lemmas. For any n x n matrix C = (c 1.) let = ci ./d . Also ,

let w = 1 + u .

LEMMA A.l .  We have

and 

!m .k! I w Id i/dk!, 
I>  k ,

i~~~ i I 
k+l 

~~~ (2u)
k
~~

_
~~~ I + ~

k_l
!~~~~! i,j > k.

PROOF. Equation (4.1) implies

Im ik! Iw~~~~~/a~~~~!, i > k ,

and because of row pivoting (see (4.5)) we get the first inequality of

the lemma. Equation (4.2) implies

!a ’~I Iw Ia~~~! + (1 + 2u)lm ik ~~~~ i,j > k + 1

and therefore

I uI~~~~~I + u( l  + 2u)l~~~~ !, i,j > k + 1.

The second inequality of the lemma follows from this by induction on k. Q.E.D.

LEMMA A.2. The matrices L = (L
1~

) and U = (u 1.) satisfy

LU A + E~
1
~ + E~

2
~ +. . .+

where the matrices E(k) have elements ~~~ which satisfy

1 w  
1u !a~~~~! + ( 2 + 3u) w u l m ik

a
kJ l for i,j > k

(k) ) —1 (k)lc 1~ ! u u l a ik for I > j = k ,

L 0 otherwise,

regardless of the p ivoting strategy .

LL1 
_ _ _
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PROOF . Define the elements of E (k) 
by

14r1
~ 

— a~~~ + mlka
kJ 

for i , j  >

~~~ = m1~ a~~ — ~~~~ for I > j  =

~~0 otherwise.

By separately considering the cases i I j and i > j it is straightforward

to show tha t the elements ~~~ of E~
’
~ satisfy

n-l (k) ~

k=l ~ 
= 

k=l 
L
ik 

U
kj 

— a
id .

which establishes the equality of the lemma. Let k I n — 1 be fixed.

Write (4.1) as

m
lk 

= (a
1~~
/a~~~)( 1 + 

~ik~’ 
i > k + 1,

and (4.2) as

~~~~~ (a~~~ 
— m

~k
a
~~~

(l + 
~~~~~~~~ 

+ 6~~ ) ,  i,j > k + 1,

whe re the CS ’ s are re la t ive  roundoff  errors. Then

— m a~~~(ó . + s’ . + ‘s . 5’ .) for i,j >
1~ -LI 1k kj ij ij ij ij

= a1k~~Ik 
for i > j = k,

0 otherwise ,

and the lemma follows from the bound u/(l + u) on the cS ’s. Q.E.D.

LEMMA A .3.  The matrices L and U satisfy

LU A + E

with

II ID ‘E IZ I I (3.2
n_1 

— 3)W
2n_l

~ I I D
l
A !ZII

for arbitrar ,i z > 0.

—

~

—-

~

—-

~

- - —

~

- - - -— -- —_~~~~~—--- - - - —--- -—-- -——-~~~~~--- - --- - - -“- -~~~~~- - - -  - - - - --~~~~~
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PROOF. Let E = E~
1
~ + E~

2
~ +. .  .+ E

(n l) where the E~~~ are given

by Lemma A.2. Substituting the bound on m lk 
of Lemma A.l into the bound

on the elements ~~~ we get

~ 
—l~~-(k)1 + (2 + 3u)u

_l
uI~~~~I ,

which , in fact , is valid for all i,j. This implies

E !~~~~~!z~ I 3~l !D
1A (1o)

IzI! 
—

for arbitrary z > 0. From Lemma A .i it Immediately follows that

— 1 (k) k—i 2k—L — 1II ID A z!! I 2 w I!!D A IzI !; and so we have

I! lD_ lE~~ !z lI I 3.2k l W2nl~ I l D
lA!Z!!,

from which the lemma follows. Q.E.D.

LEMMA A.4. We have

It~~I ~wl~1/~~L 
>

I u
21_l r2 i_2._ u1I~1~I , Ii~

PROOF. Follows from Lemma A .l because 2. . = m . and u . = a~~~. Q.E.D.
ij ij 13 13 - -

LEMMA A .S. The vector I computed by (4.4) satisfies (U + cSlJ)I = y

for oc ’r-~ upper triangular matrix tSU such that

n-i n-i+l
I g(i,f)w Iu jjl and Iu i~ 

+ 6u~~ ! 1w !ujj!

where • -

— j + 2, j > i + 2,

n — j  +1 , j = i + l ,
g(I,j) = (

2, i I n — 1,

Li, = = n,
regardless of the pivoting strategy .
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• PROOF. From (4.4) we have that

(l+6 .)( 1+&~ ) + (...(u
i 1+1 

x + u
1~~~2 

x 1
i~~~ 

•+ ~~~ * k~) 
~1’ 

i I n -

and

U *nfl n
1 + 6’ 

=

n

where 6 . and 6’ are relative roundoff errors due to subtraction and division,
r 

1 1

I - respec ively. By the usual type of analysis we can obtain the bounds

(~
n_j+2 

— l)ju~ .!, j > I + 2,

(w’~~~
1 

— l)Iu . !~ 
j = i + i,

!cS u .1 ij

2
(w _ l) Iu~~I~ j = i < n — l ,

(w_ l) !u
i~ I~ 

j = i = n,

from which the lemma follows. Q.E.D.

LEMMA A.6. The matrix 6U of Len~na A .5 satisfies

I! D ’LcSU !z!l I [5.2~~2 — 21 ~~~~ lD~~AIz!!

f o r  arbitrary z > 0.

PROOF. From Lemma A .4 it follows that

(!D
~~
L6U!z)

i I ~ I d ~~ 2.ik dk! !cS
~ kj

!zj

< w ~ Io~ . !z
— 

j k  kj j

Apply ing Lemma A .5 first and then Lemma A.4 gives

(ID
~~
L6U!z)i I u E E

j k

n j k
I ‘~ ~ g(k,j )w~~

k z 12
~~~

’1 I~ 2. !z=1 k—i f—i ~ 
j

n n  j
I w

2
~ u E F2~

(
~~~

h
l B(k .i)I~ fj Iz

f—I j 9 .  k— P.
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After much manipulation it turns out that

max ~ 12
k-2.-1

1 g(k,j) =

9IjIn k=2.

and therefore

(ID~~L6Ulz)1 I w
2
~ u 

1=1 
5•2n-2.-21 ( I D ~~A I z ) 2.,

from which the lemma follows. Q.E.D.

LEMMA A.7.  The vector y computed by (4.3) satisfies

( L + 6L)y b

for some lower triangular matrix 6L whose elements 62
~ij 

satisfy

I62.~~l I mm {n — 
~ + 1, n — ~~~~~~~~~~~~~~~~ i >

regardless of the p ivoting strategy.

PROOF. We have from (4.3) that
• 

(...(2.il IY l~~~
2.i2 I Y2)...+ 2.i,i, *Y i_ l)+ l~~~cS i

bi~ 
1 > 2 ,

where 6. is a relative roundoff error. By the usual type of analysis

we Cet that

162.111 I ((1 + w~~u)’~~ - i)I2.ji , I > 2 ,

I69.~.I 1 ((1 + w u )
I_
~~ — l ) I 2 . .~ I~ i > j > 2,

and

!6m ~~I I u [f1~I .
The lemma follows from the inequalities

(1 + w
_l
u)k - 1 I w 1u k(l +

k-2
u

and

F 
If 1~I 1 mm {w , w~~~}1a~~~/a~~” 1 . Q.E.D.

~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - _ _ _ _
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LEMMA A.8. The matrices cSU and 6L of Leninas A .5 and A.7 satisfy

II! D~~6L(u + 6U)!z!I
I (2”~

’ — n — 3)w21
~t~I I D~~A IzII

for arbitrary z > 0.

PROOF. Using the bound of Lemma A.7 and the row pivoting

inequality (4.5), we get

I 6 f . . !  I min(n — j + 1, n — l}w
~~

3uId i/dj1. i > j.

Hence

( J D 6L (U + c S u ) j z ) .  I u min{n - j + 1, n - l}Wn_3 (ID
_l

(U + 6U)Iz)..
j 3

It immediately follows from Lemma A.5 that

( 1D 1(U + cSU)!z)~ I
and from Lemma A.4 that

(!D~~
(U + 6U)Iz)~ I ~~~ 2~ijID

1
A !zII.

Therefore,

(!D ’cSL(U + 6U)!z) I w
2n
u ~ min{n - j  + 1, n - l}2~iI !D~~A l z ! l ,
j=l

from which the lemma follows. Q.E.D.

THEOREM 4.1. Let the vector I be computed by Gaussian elimination

with row pivoting and row scaling where D = diag(d1, d2
,..., d

n
) is the matrix

of reciprocal scale factors. Then there exists t~A such that (A + A A )*  = b

with

I! jD ‘AA IzI ! I x(n)uII ID~
’A !zll

for arbitrary z > 0 and arbitrary c satisfy ing 0 < !c I  < ~ where ~ (n) =

n-2 2nu[19.2 — n — 81e .

PROOF . The restriction on c implies that ~ (ll(t~ )) = 
~(fl(D)), and£

from Lemmas A .3, A.6, and A .8 we have the bounds 

•
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¶ lII D~
1EI z II I (3•2~~~ - 3)w 2

~~~~~l ! D ~~A !z !!,

!I I D;’LcSuNl I [5.2
1
~
_2 

— 21w 2’\~IjD ~~A !zI!,

and

jjj D
16L(U + 6U)jz!!< (2~~~ — — 3)w 2

~~~jjD~~ AfzIf .

The theorem follows from the equation

(A + E + cSLU + (L + 6L)6U)I = b. Q.E.D.

THEOREM 4.2. There exists a prob lem Ax = b and a floating point

arithmetic 4, ~~~, ~~~, 2’ such that the solution I computed by Gaussian

elimination with partial or comp lete pivoting satisfies (A + E~A)x = b

only for those matrices AA for which

tH-~I~11> 1l9.2
n_2 - n - 81u + O(u2).

Therefore, the bound of Theorem 4.1 is the best possible bound in the

limitu ÷0 .

PROOF. Obvious for n = 1. Assume n > 2. Let

M

A = [ .  

~~~~~~~~~~
and

r1÷(7.2’
~~~~

_ k_ 8 ) u , k < n — 2 ,

b
k

=~~~l ÷ (2
n+1 _ n _ 7 ) u , k — n - i ,

Li + (l9.2
t
~~
2 — n — 8)u, k n.

If M is large enough, then there are no interchanges even with complete

pivoting. We have

mjj = m = M/(—M), i > j 
,

a1 
— ,

(k) (k— i) (k—l)a a — m~~~a , i > k > 2 .in in k—i ,n, — —



— —-~~~- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

W’_

_ -.9,- ~~-.-- _-_- ~~•—- ..- -
- -~~L ~~~~~ —.-

~~~
•- -

- .
~~~~~

---—- 

~‘:==::—~  
— 

- - - ,----•.

51

Suppose that all these floating point operations increase the magnitude

of the result by a factor (1 + 2u)/(l + u). Then

m = — ( l + u) + O(u2)

and

(1 + u) ~~~~~ + (1 + 3u) ~~~~~ + O(u
2).

By induction on k it follows that

= 2k 1  + 2k(k — l)u + 0(u
2), 1 >

and hence

U
k 

= 2k-l + 2k(k l)u  + 0(u2).

We have

y
1

= b
1 -

yk
b
k 

Ski, k > 2 ,

where

S
k 

= ( . . . ( m  ~ y1 4- m ~ y 2 ) . .  ~ m ~
Then

S1
m~~~b1

and

S
k Sk l + m

~~ 
(b
k~~~

Sk l )~ 
2 I k I n — l .

Suppose that all these floating point operations reduce the magnitude

• of the result by a factor 1/(1 + u). Hence

= —b
1 
+ 0(u2)

and

= (2 - 3u)Sk l  - (1 - 2u)bk + 0(u
2) ,  2 1 k I n - 1.

By induction on k it follows that

5
k 

= 1 - 2
k 

- 2k+l(k - 4)u - (k + 9) u + 0(u2), k I n - 2

and

= 1 - 2n 1  
- 2

n_2
(4n - l9)u - (n + 8)u + 0(u

2).

L .  
_ _  _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _
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Also we have

y
1

J — 2 L 1 ,

= (b
k 

- Sk l )(1 — u + 0(u2)), k > 2.

From this we get

~k 
= 2k—1 ÷ 2k(k - 2)u + O(u

L
), k I~~ 

- 2,

= 2n—2 + 2’~~
2(2n — 5)u + 0(u2),

y = 2’~~ + 2n 1
(2n - 1)u + 0(u2).

We have

I = y / ur~ n n n

I = (y ~~u ~~I)/M,

(y~~~ (0 I ) ) 2 M , k I n - 2.

Su?pose that all these floating point operations reduce the magnitude of

the result by a factor 1/(1 + u). Then

I = n /u nn
)
~~ 

— u) = 1 + 0(u
2) ,

u I = u (1 - u) = 2n-2 + 2n—2 (2~ - 5)u + 0(u2) ,
n—l ,n n n—l ,n

2
Xn_l 0(u ~,

O u I = u (1 - 2u) = 2k-l + 2 k
(k —2)u + 0(u

2) ,  k < n - 2,
k,n n k,n

and

xk
O(u ), kl n — 2 .

Hence

(b - Al) = b — 1 + 0(u2) = (19 2
n-2 — n - 8)u + 0(u2).

No matter how we choose AA we get

!!IAA IlI( !L~ !!LAI!l = IIb — Al!! = (l9.2
n_2 

— n — 8)u + 0(u2). Q.E.D.
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App endix B. Error Bounds for Colwnn Pivoting

For any matrix C = (c 1.) let = e
1~
d~ . Also, let w = 1 + u.

LEMMA B.l. We have

I I wI~~~~!, i > k, j  > k ,

and

!~~~~ ! I w~~
l 

~ (2w)k~~~
2.
!~ 12.l + ~~~~~~~ i,j > k

PROOF. Equation (4.1) implies

I wla~~~a~~~d ./a~~~I , I > k , j > k,

and because of (4 .5)  we get

!m
~k
a
~~~

d
~ I I wla~~~

dkI , i > k, j > k,

which proves the first inequality. Equation (4.2) implies

• 

- a~~~~ !<w I a ~~~! + (1 + 2u)Im .ka~~~I , i,j > k +  1,

and therefore

!~~r~~
IIw I

~~rI 
+ w (l + 2u)!a~~~~!, i,j  > k + 1.

The second inequality of the theorem follows from this by induction on k. Q.E.D.

LEMMA B.2. The matrices L and U satisfy

LU = A + E

with

IED Ie I 17 2
n—2 

— n— 2J w
2
~
’u!AD !e.

PROOF. Assume n > 2. Let E = E’1~ + E~
2
~ +. . .+ ~~~~~~ where

tI-~e are given by Lemma A.2. Subst i tut ing the bound on mik of Lemma B.1

Into the bound on the elements ~~~~~ we get

ru!~~~~I + 2wu I~~~~~! 
for i,j >

~~~ I’~ u!~~~~! for I > j —

Lo otherwise.
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This implies

E I ~~~~~I 1 (2n - 2k+l)wul 
~I + u ~ 1~~

(k)
1 I>  k,

j j=k+1

and from Lemma B.l it follows that

I (2n - 2k+l)w 2k
u ( Z  2k-1-L~~~~1 +

+ (n_k)w
2k
~~u 

k-i 
2k-l-2.1- 1 + u

k_l
u 

~ ~~ 
I

1=1 j=k+l

((2n—l)w
2
u E 1a 1 I if k = 1,

- 3k+l)w
2ku 2k-2 EIa 1~ I j fk> 2.

j

The lemma follows because

n-l
(2n—l) + E (3n — 3k+l)2~~~~

2 
= 7 2 n—2 

— n—2. Q.E.D.
k=2

LEMMA B.3. We have

ii ii — Ij

!~~VI I 
~2

j_l ~ 12
j-2.-l11 - 1 m >  j,

and

I~~~
-
~~~~~~~! I I ~~~ 

I I j.

PROOF. The first two inequalities follow Immediately from

Lemma B.l, and the third inequality is a consequence of column pivoting. Q.E.D.

LEMMA B. 4.  The matrix 6U of Lert~na A.5 satisfies

IL 61.1 DIe I (2
n+l 

— n—2)w
2
~
’ uIAD !e.

- 
- PROOF. Applying the Inequality !u~~l I !u 1~1j 

of Lemma B.3 and

the bounds of Lemma A.5, we get for I < n
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n
E16u 1.! 1 u E
j 3 j=i

(n—i+2)(n—i+1) n—I —
w u u .

- • 
— 2 ii

Therefore

(lL61~JDIe)~ = E !2.. .1 ~
I6u .k!13 k

< u ~ (n—j+2)(n-.j+l) ~
n_j

!2. ~— . 2 Ij jj
3

and so using Lemma B.3 gives

(!L6UDIe)~ I 
2n (n-j+2)(n-j+i) 

2.l

~ (n—j+2)(n—j+l) [2 3_2 1 
~ 

!~ if I ’
j=l 1=1

— from which the lemma follows. Q.E .D .

LEMMA B.5. The matrices 6U and 6L of Lenvnas A .5 and A .7 satisfy

J 6LUJ + 6 U ) D I e  I 3(2 h1_n_l)w2~
I
u !AD!e.

PROOF. Applying the inequality lu ..! I lu .1 ! of Lemma B.3 and

the bounds of Lemma A.5, we get

- - 
n n—i+l-
~ w l u  I1.3 ij 

~~~~~~~~ 
ii

I
Therefore applying the bounds of Lemma A .7 gives

(!6L(U + 6U)D!e)1 
= E !62.ij I~ Iu jk  +j k

I E mm (n-j+l, n-l}u?~~ ~~~~~~~~ I (n-j+i)w~~~~ !~j  j  j J

and so using Lemma B.3 gives

_ _ _  ~~~~~~ -~~~~~~~ --~~~~~~~~~ —~~~~~~~----~~~~~~- - - - - - -~~~~
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Appendix C. Error Bounds for Iterative Improvement

LEMMA C.l. The computed residual satisfies

r = b — A x  +cm is m

with
- 

I Ic I < u lb — Ax I + w IA II x Im — m m

where

4 ((1 + ri) [(1 + ~~)
hl — 1] for a .p .  accum. ~

• 
-

= 

~ (l + u) [( 1 + u2)~ — ii for d.p.  acewn.

and
~

i u/(l + u).

PROOF. The computed residual

b— ( Ax  +c ’ ) + c”
m is is is

where c’ is the error due to computing Ax and c” Is the rest of the error.
is m is

For the single precision case we have

Ic~I 1 [(1 + u)n — fl IA ! km l

and

!c ”I < ~iIb 
— Ax — c’Im — m m

so that

Ic I < I c’! ÷ Ic ’’!

~~~ ~~~~~~~~ 
- A X I  + (1 ÷ ~) [(1 + ~i)

’
~ - ii I X !.

For the double precision case we have

Ic~I < [(1 + ~~~~ — ~ IA ! Ix~I
and

Ic~ l I ulb - AX — c’I

so that

IC I < Ic ’! + Ic ’h I

< ul: - A X I  + (1 + u) [(1 + U
2
)
n 
- 1] A II X I . Q.E.D.
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- 

2 n j 
—1— —

(!6L(U + 6U)D!e)i ~ 
u~~ mm {n—j+l , n—l}(n—j+l) Z [2~ ~iI a12.!

- 
- 3 1  2.—i

-
• 

I ~~~ U E mm {n-j+l, n-l}(n-j+1) 12J—2 1 z I~ if I
~- 

• 
j 1  9=1

from which the theorem follows. Q.E.D.

THEOREM 5.1. Let the vector I be computed by Gaussian elimination

with column p ivoting and column scaling where D = diag(d
1
, d

2
,..., d )

- is the matrix of sca le factors . Then there exists t~A such that

(A +~~A)* = b

- with

I AAD !e I ~(n)ujADIe

I where

I ~(n) = 127 2
n-2 - Sn - 7Je

2nu
.

PROOF. The theorem foiiow~ from the bounds of Lemmas B.2, B.4,

and B.5 and from the equality

(A + E + cSLU + (L + 6L)6U)I = b. Q.E.D.

~- 

•

-~
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LEMMA C.5. We have

11 I!z
~~~~ l I I~~~~~~~~~~~~~~~~~~~~~ I!IMk!II

-provided that T < 1 where

t u+(2v + uv +~~)y.

PROOF. From Lemma C.4

IIz~~l II I ~ : ~ I!z~II + ~~~~~ I! IA ! Ix!!!. Q.E.D.

LEMMA C.6. We have

• TI~~ Iz~I I i~~~{IA !IxI — !II A I I x II e} + uv+w I!I A lI II ~

provided that r < 1.

PROOF. From Lemma C.4

11 I z ~~~~ ! Iulim Izm I + c l { !A I ! x I  — I II A I! x !II e}

+ - u) T~~I!z !I + 
UV+

~~I I! A II x I II}e

and the lemma follows from Lemma C.5. Q.E.D.

THEOREM C.7. Assume IA I1 X ! > 0. Then

(1 + uy)(uv + ~
)a ~(a - 1) 

+
— 1 — t  i — u
llm 11m I (1 + u) ( uv + ~)ya

1— u — 1 — t

provided that (1 + u)(uv + ~)yo < (1 — u)(i — i) where a — oR(A, x ).

PROOF. From Lemmas C.5 and C.6 we have

- • 

Th II zm !Ie i 
(uv +

~~~IA (!xI

and

TTh Iz~I I { (UV ~ — : ~~~~~~} I A I  l x i .
m4~

Hence using Lemma C.3,

_ _ _ _ _ _ _ _ _ _ _ _ _ _
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LEMMA C.2. Define z = A (x + d — x ) .  Then
-

- 
is is 

- 
is

Iz~! I u I A ( x  - x) !  + wIA ! Ix I
+ (1 - •v~Y•)

_l
v ~II IA ! Ix~ 

- x li! + yul !A(x~ - x)II + ywII IA I Ix~I II)e

where v = X(n)u and y = Cond (A ).

PROOF. The correction term dm = (A + F) 1r where F is the 1~A

of Theorem 4.1. We have

Z
m 

= A(x - x) + rm 
- (I + F A 1

)
1 F A 1

r

= c - (I + F A 1
)
1 F ( x  — x — A 1 c).

It follows from the bounds of Theorem 4.1 that

z I 1c m ! + (1 — vy)~~v ~! I A ! Ix~ 
— x li! +4!c II)e.

Substituting thr. bounds of Lemma Cd Into this proves the lemma. Q.E.D.

LEMMA C.3. We have

1A(xm÷i 
- x)i I iz~ i + th A i lx i ÷ uyliz f~e

and

IM Ix~~ — xl I u lA l Ix ! + (1 + u)yIIz lie .

PROOF. The new iterate

x x + d  + gni-fl is is m
where lB

~
! I ~!x + d l .  Equivalently

—1x x + A  z + g
iii+1 m m

where !B
~

l I ~Ix l + 
~
1!A ’z

~
l , from which the lemma follows. Q.E.D.

LEMMA C.4. We have

Iz~i-,.i I I u(fz l — Il z~I!e) + ~(fA I ix ! — lI lA ! lx i lie)

2 

+ (1- vy)
_1 {[ u + y (v + uv + 

~
)]!Iz

~ !! + (uv + ~)lII A li x IlI }e

where c i = u  + w(1 + u).

- ~-j PROOF. Substituting the bounds of Lemma C.3 into those of

Lemma C.2 proves the lemma. Q.E.D. 

~-- ---•----— - —-•-- — --- -——------- ----_------- -~~--- ______
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PROOF. Substituting the inequality of Lemma C.8 into those

- of Lemma C.3 gives

- 

lA (x2 — x) l  I (w + ~)lA I lx + ((V + u)wy + v(u + vy + w)(i +
-

• (1-vy )

and

lA l 1x2 - xl I u lA l lx ! + (w + uv + v
2
y) (1 + u)y II IA I lx i Iie~

- 
(1—vy )

and the theorem follows from the inequality

— xl
-
~ -. 

c max 
IA ! Ix ! — jA lJ x 2 — xl Q.E.D.
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TTh~ !~~(~~ — x)I 1 (
(1 + uy)(uv + ~r)a — : ~~ + ~~ JA ~~xj

- - and

lim IA ! Ix - xl I {u + (1 + u)(uv +~~)Ya} IA ! lx ! .

The theorem follows from

lA(x
~ 

- x)l lPi0
~m 

—

= max 
IA ! i~~ i 1 ma~ IA !  l x i  - IA ! k~ 

- x.f • Q.E.D.

LEMMA C.8. We have

lz~l Iw IA IIx ! + + 
~~~~~ 

!lI A !Ix ll! e .

PROOF. The first iterate x1 = (A + AA)~~Ax,

and thus

x
1 

— x = -A~~ (I + AA A ’)~~~Ax.

So

IIA(x i - x)ll < (1-

and

il! A il x i - x lii < (1 - vy)~~~~ iiI A li x iil .

From Lemma C.2 we have —

Iz~l I w l A li x i

+ (1-~~~~~~ ((v + w) iiI A Ilx i - x !i! + uI~
(xl 

- x)II + ~~ I (A II x Iii } . 
•

The lemma follows by substituting the previous two Inequalities into this. Q.E.D.

THEOREM C.9. Assume that IA ! lx !  > 0. Then

~~+~~~÷ 
( v + u)wY a~~~(u+ vy + w.y)(1 + uy)va
i — v y  2

I (i—w y )
2 

(w + u v + v 2y) —i — u —  
2 (1 + u)yo

(1— v y)

provided that the denominator is positive.

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~---~~ - -
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