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1 Model of a cable non—uniformity as a symmetrical T section. 5
The network is to be loaded on the line at the location of
the non—unif ormity. The lumped impedance Z~ and admi ttance

are to be calculated from two quasi—static boundary—value
problems .

2 Section of a uniform transmission line loaded at discrete 10
points with four—terminal networks.

3 Graphical solution of the dispersion relation (42) of a 20
Periodically loaded transmission line in the (cos ka, w)
plane. The frequency ranges for which —l ~- cos ka � 1
correspond to the passbands (dotted areas) .

4 Plot of frequency u as a function of propagation constant 2U
k , showing the passband—stopband structures . The curves
for negative k and c~ can be obtained by reflections
with respect to the horizontal and vertical coordinate
axes.
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SECTION I

INTRODUCTION

At sufficiently low frequencies when only the TEM mode is dominant, the

propagation of voltage and current disturbances along a uniform cable can be

described by the pair of transmission line equations:

3V _ 31
8x L 3~ 

RI (1)

(2)

For a time—harmonic excitation with rime factor exp (j~~t )  , these equations
become

— ZI (3)dx

(4)dx

where

Z jwL+R (5)

Y j w C + G  (6)

are the impedance and admittance per unit length of the uniform line at
angular frequency ~ . Excitations with general time variation can be resolved
into time—harmonic components by the method of integral transform. Consequently

their treatment can also be based on equations (3) and (4).

The uniform line is of course an idealization,. In practice, non—uniformities

occur in the shape of cable bends, shield defects, or nearby conductors. These

3
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produce local deviations of Y and Z from their uniform values , resulting
in a scattering of the waves in the cable. If the dimensions of the non—

uniformities are small compared to a wavelength, the scattering effects

can be described by an equivalent point loading of the cable. Fig. 1

shows a model of the non—uniformity as a symmetrical T section. The

network is assumed to have zero spatial extension, and is to be inserted

into the uniform line at the location of the non—uniformity. The lumped
impedance and admittance elements Zd and Td of the discontinuity are

to be calculated from appropriate quasi—static boundary—value problems.
The general situation of a transmission line of finite length, driven at

one end by a harmonic voltage or current source, terminated at the other

by a given load , and loaded at an arbitrary configuration of points in
between, can be analyzed by the powerful transmission matrix method to be

described below in Section III.

Of special interest to aircraft EMP internal coupling studies is the

analysis of wave propagation along a periodically loaded transmission line.

Here the loads are identical in structure, and are inserted along the line
at regular intervals. Examples of such periodic loading in aircraft cables
can be found in periodically applied cable clamps and periodic airframe
members over which the cable runs are anchored. It is well known tha t a

periodically loaded line acts like a bandpass f i l ter. The line transmits
waves with frequencies lying within certain discrete bands , while waves

with other frequencies are effectively stopped. It can therefore restrict

the range of EMP energy that can be delivered through it to the load. Hence

a determination of the passband—stopband structures as a function of the

loading is extremely helpful to the assessment of EMP vulnerability of air-

craft systems.

The objective of this report is to calculate the propagation characteristics

of an infinitely long transmission line, loaded periodically with four—terminal

networks of the type shown in Fig. 1. This study will consist of deriving
the so—called dispersion relation connecting the frequency with the propagation

constant , showing its explicit dependence on the loading period , and on the

4
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distributed and lumped impedances and admittances of the uniform line and its

lumped loads. The dispersion relation governs the propagation of the eigenmodes

of the infinite line. The reason for the interest in these infinite—line modes

is that the voltage and current excitations on the finite line encountered in

practice are composed of these eigenxnodes. The composition is determined by

taking the applied source and the load termination as boundary conditions at

the two ends.

The contents of this report are distributed as follows. Section II

sunmiarizes the salient features of waves on a periodic line. The transmission

matrix method for calculating wave propagation along transmissi’n lines is
introduced in Section III. In Sections IV , V and VI the dispersion relation ,
the passband—stopband structures and the phase and group velocities of a

transmission line loaded periodically with symmetrical T sections are

explicitly derived. The report concludes with an illustrative example

worked out in detail in Section VII.
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SECTION II

GENERAL PROPER TIES OF WAVES ON A PERIOD IC LINE

The phenomenon of wave propagation in periodic structures occurs in nany

areas of physics and engineering. Over the years its principal features

have been delineated and the general procedures for its study worked out.

Before embarking on the specific calculations for the periodically loaded

transmission line, it is advantageous to anticipate the results by summarizing

below the general properties of waves in a one—dimensional periodic structure.

1. At a given frequency w , the waves on a line of period a have
the general form

-jkx
= e uk

(x) (7)

where k and u (x) are determined by the detailed structure of the line, and

U
k
(X) is a periodic function with period a . Thus the excitations are “plane

waves” modulated b y the periodicity of the line . This result is known in
mathematics as Floquet ’s theorem.

2. Upon analyzing the periodic function u,K(x) into a Fourier series

j2n~xu
k

(x) 
~~~~ 

C exp 
~ a (8)

one concludes from (7) that the excitations consist of an infinite sequence of

spatial harmonics with propagation constants

k
n 

= k + , n = 0, ±1, ±2, ... (9)

Hence at each frequency, there are art infinite number of eigenmodes.
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3. The frequency u is an even periodic function of k . In fact, the
dispersion relation is of the general form

con ka = F(u ) (10)

4. When there are no resistive elements in the line , there exist an
infinite series of frequency bands in which k is alternately real and purely
imaginary. The line is a bandpass fLlter .

These general results will be verified and illustrated by the calculations

in the following sections.
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SECTION III

TRANSMISSION MATRICES

Consider a length of uniform transmission line containing a number of

point loads, as shown in Fig. 2. Each load is assumed to have the structure

shown in Fig. 1. The variation of the voltage and current along the uniform
sections is described by the transmission line equations (3) and (4). The

variation in the loads is governed by Kirchhoff ’s laws.

At any reference plane along the line, such as plane A in Fig. 2, the

voltage and current can be combined into a two—component vector :

(V (A)

1(A)

Then the voltage and current at any other  reference plane in the same uniform

section of the line, such as plane B in Fig. 2, are related to those at

plane A through a transmission matrix T :

( J= T (  ) (11)

This matrix is determined b y solving equations (3) and (.~+ ) .  It is given by

/cosh ya -Z sinh

T =1 I (l2~U ~ 1
~~

— sinh ya cosh ya
0

where a is the separation between planes A and B , and

Z =J~ , 
-f = (13)

are respectively the characteristic impedance and the propaga tion cons tant of

9
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the uniform section.

Similarly,  the variation of the voltage and current across a four—

terminal network , such as between reference planes B and C in Fig. 2 ,

can be described by a transmission matrix Td

/V(C)\ /V(B) ~( )= Td ( ) (14)

\ I (C)/

Upon applying Kirchhoff’s laws to Fig. 1, one finds that

/ 1 + ½YdZd 1
d 

— ¼Y dZ
~ \

T
d =( J (15)

\ “d 1 + ~~~~~ /

It is to be noted that both T and T have determinant 1:
u d

det T = 1 , det T = 1 (16)
U

Matrices with this property are said to be unimodular.

The relation between the voltage and current at reference plane C and
those at plane A can be obtained by matrix multiplication . Thus

/v(C)\ /V(A)\
( ~ =T ( (17)

\ r cc~J \I (A /

where

1T11 T
12\

T = T
d

T (18)

\T T21 22

11
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with

z
T11 

= (1 + ½Y
d
Z
d

)cosh ya + ~~-(l + ¼YdZd)sinh ya

T22 = (1 + ½YdZd)cosh ya + YdZ sinh ia

T12 
_Z

d(l + ¼Yd
Zd)cosh ya 

— Z
0
(l + ½YdZd)sinh ~ya

T21 = _Y
dcosh ya 

— ~ -(l + ½YdZd )sinh ya (19)

It is easy to show that T is also unimodular:

det T = T11T22 — T19T21 
= 1 (20)

Using the transmission matrix method , the calculation of voltage and
current propagation along a finite transmission line with discrete point loads

becomes a simple matter of 2 x 2 matrix multiplications.

12
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SECTION IV

DISPERS ION RELATION

Suppose in Fig. 2 the transmission line section between reference planes
A and C is repeated an infinite number of times to the right and to the
left .  One obtains in this way an infinite periodically—loaded t ransmission
line of per iod a . If , at a given frequency w , a wave is to propagate
down this structure , the volt age and current in reference plane C can

di f fer  from those at plane A by at most a phase factor . This is because
planes A and C are separated by exactly one period , and are hence

physically equivalent. Let this phase factor be denoted by exp(—jka)

that is ,

fv(c)\

1 J= ~~~~~~~ ( J (21)

This result actually follows from Floquet’s theorem (7), and k can be

identified with the propagation constant of an eigenmode. Relation (21)
is compatible with relation (17) only if the phase factor is an eigenvalue

of the transmission matrix T . One therefore requires that

T
~ll 

e 12
= 0  (22)

-jka
T21 T22 — e

This condition , by (20) , becomes

e~~
2
~~ — (T11 + T 22 )e~~~~ + 1 = 0 (23)

The solution is

cos ka ½ (T11 + T82) (24)

13



Upon substitution of the matrix elements from (19), equation (24) becomes

cos ka = (1 + ½YdZd)cosh ya + 
~~

_(Z
d 
+ ¼Yd

Z
~ 

+ Y
d
Z
~
)sinh ya (25)

The quantities 
~d , Z

d , 
Z0 and y are all functions of the frequency u

Therefore (25) is a dispersion relation connecting c~ with the propagation
constant k . It agrees with the general form (10). If k is a solution

of (25) at a given w , then so are —k and

k = k + ~~~~~~~ , n ±1, ±2, ... (26)

as well as their negatives —k~ , because of the evenness and periodicity of

the cosine function.
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SECTION V

PASSBANDS AND STOPBANDS

In many practical situations the resistive elements in the line are
negligible, so that all the impedances and admittances are expressible in

• terms of inductances and capacitances L , C , L
d 

and Cd

Y j wC , Z j uL

= jc
~

Cd, Z d ~‘~~d (27)

From these , one has

Z , y = (28)

In this case , relation (25) becomes

2con ka = (1 — ½o LdCd )c o s(uavLC)

—½uLdJ~~ 
(1 — ¼w

2LdCd + t~
-E
~ 
sin (~av’t~) (29) 

1

The right—hand side is an even function of the frequency . Equation (29) can be
put into a simpler form by introducing an amplitude A(u )  and a phase ~(u)
such tha t

A (u) con ~
(u) 1 — 2u

~~-a dCd

A(u) sin 
~~~(~~~) ~~L d~~~~~

1 - ¼u
2L dCd + (30)

Then (29) becomes

cos ha A (~)cos(c,aV~~ + .
~(u)) (31)

15
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The right—hand side is a quasi—sinusoidal function with a modulated amplitude .

After some algebra it is found tha t

2L 2 2
A2(w) 1 + 

~~~~~ 
- 

~~~~d
Cd 

- (32)

which is greater than 1 . From this one concludes that there exist an infinite
number of frequency ranges over which the right—hand side of (31) is between the
limits 1 and —l , and other ranges over which the expression is outside those
limits. Equati on (31) shows that k is real in the f irst  case , implying

propagation; it is imaginary in the second case, indicating attenuation.
Consequently one has an infinite sequence of alternating passbands and stop—

bands. The band boundaries are determined by the condition

cos ha — ±1 (33)

or

k = , n = ±1, ±2, ... (34)

This condition corresponds to a total ref 1ect~on of the waves at the loads.

16
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SECTION VI

PHASE VELOCITY AND GROUP VELOCITY

Let the right—hand side of the dispersion relation (29) be denoted by

F(u)

cos ha F(w) (35)

If , at a given frequency u in a passband , k is a real solution of (35),

then so are —k and the members of the infinite sequence

k = k + ~~~~~~ , n — ±1, ±2, . . .  (36)

as well as their negatives —k . The waves on the transmission line therefore
a

consist of an infinite number of spatial harmonics traveling to the right or to

the lef t .  Each harmonic has a phase velocity

v ‘ —~~- (37)
ph k

a

which is different for different n’s . The ± sign refers to the two

possible directions of propagation. Thus, at a given frequency, there is no

unique phase velocity.

There is, however, a unique group velocity . The group velocity is the

velocity at which energy is transmitted by the waves, and is a very useful

quantity in analyzing propagation characteristics. It is given by

(38)

From (35) one finds that

F ~/ 4.
a 1 — F ()

~~~v — ± - - — . (39)
g 

_____

17
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which has a uniquely defined magnitude at a given frequency. Again the

sign refers to the two possible directions of propagation. By (33) and (35),

F(u) — ±1 at the band boundaries. Therefore one has the general result that

the group velocity vanishes at band boundaries.

18
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SECTION VII

ILLUSTRATIVE EX~I,1PLF

In this section a numerical example will be worked out to illustrate the

general results derived above. Consider the dispersion relation (29) applicable
to the case of negligible resistive circuit elements. It is convenient to

introduce three dimensionless parameters

= ~av’t~

LdCd

C L
8 _ d_ (41)LdC

Hence ~ serves as a dimensionless frequency variable, and a and B are

parameters characterizing the periodic loads. Then (29) becomes

cos ha = (1 — ½a~2
2)cos ~~ 

— ~i~2J

’

~~~~~~ (1 + 8 — ¼cx~2
2)sin 2 (42)

Take a specific set of values for ~ and ~

a — 0.2 , 3 a 0.5 (43)

This choice for 3 is quite typical of praz.tical situations. The choice for

a correspond s to a fairly heavy loading of the line. It will be seen below
that the loading (‘3) produces at low frequencies a reduction of the group

velocity to about 2/3 the uniform line value.

The passband and stopband structures can be found graphically by plotting
out the right—hand side of the dispersion relation (42) as a function of the

dimensionless frequency variable ~2 , as is done in Fig. 3. The curv e oscillates
with ever increasing amplitude as ~ -‘ ± . Those portions of the curve lying

19
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Figure 3. Graphical solution of the dispersion relation (~~ )
~J f  a pe r iodical ly loaded troasnission line in the
(cos ha , ~ plane. The frequency ranges ~or wh ich
— 1 cos ka ~ 1 correspond to the passbands
(dotted areas).
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between the horizontal lines cos ha = 1 and —l correspond to the passbands.

They are indicated by the dotted areas in the figure.

Each intersection of the curve in Fig. 3 with a horizontal line yields a

pair of coordinates (cos ha , w) which form a solution of the dispersion

relation. Each value of cos ha corresponds to an infinite sequence of

propagation constants ±k~ according to (9). In a passband, these constants

are real. To study the phase velocity and group velocity, it is convenient

to plot the solutions in the (k , ~~~) plane. This is done in Fig. 4. Each

continuous horizontal curve corresponds to a passband. The passbands are

separated by gaps representing the stopbands. It is seen that, as the

frequency increases, the passbands contract while the stopbands widen. Thus

most of the low—frequency waves are passed , while most of the high— frequency
ones are stopped. This is not surprising since four—terminal networks of

the type shown in Fig. 1 function as a low—pass filter when connected in

tandem.

The phase velocity at frequency ~ ,as defined in (37), is proportional

to the slope of the straight line drawn from the origin to a point with ordi-
nate ~ on a curve of Fig. 4. On the other hand, the group velocity is

proportional to the slope of the curve at that point. From Fig. 4, it is seen

that the group velocity is greatest at low frequencies. One can f lad the low—

frequency limit of the group velocity by expanding (42) in ascending powers

of u . The result is

(44)

Therefore , by (43), the group velocity at low frequencies is

V ~~~~~~~~~ ~~~~~~~~~ (45)g 3k

showing a reduction of some 32% from the uniform line value by the loading.

a,

a.

____________________
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Figure 4 . Plo t of f requen cy ~ as a funct ion .f pro-
pagat ion constant k , show ing ~~~ e passband—
stopband structures. The curves f.~r negativek and .

~~ can be obta ined by reflections wit h
respect ~o the horizontal and vertical c~ordinate
axes.
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As the frequency is increased, the passbands become progressively narrower.

In Fig. 4, they are seen to approach the limit of a horizontal line. The group

velocity therefore tends to zero, implying zero energy transmission. In this

limit, the excitation on the line consists of standing waves in the uniform

sections of the line, bouncing back and forth between two loads.

a,-.

‘ a.
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