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ABSTRACT

A local operator , ~SWAC 1’, is introduced which ident i f ies
image neighborhoods that are noisy and do not contain any
boundary. An adaptive smoothing func t ion , guided by the re-
sponse of SWAC , successfully smooths noisy reg ions in images
without degrading edges. The response of SWAC is also
successful ly  used as a wei ght ing function to suppress spurious
responses of an edge detector operating in a noisy environ-
ment.
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1. Introduction

The presence of random noise in images has two

main undesired effects on further utilization of the

images. Firstly, the noise makes the image extremely un-

pleasant to the human visual system (HVS). Secondly, it

affects the performance of an automatic image analysis

system by giving spurious edge responses at points that

really contained no substantial edges in the original

(noise—free) image. There are several heuristic as well

as mathematically optimal , linear as well as non—linear

noise smoothing methods many of which are surveyed in two

recent books on picture processing [ 1 , 2 1. Most of the

linear methods have space-invariant smoothing point spread

functiors (PSF) and as a result there is always a trade-off

between the degree of smoothing of noise and the degree of

blurring of genuine object boundaries. Unless one is

willing to post-process the smoothed picture to enhance it

and sharpen the edges [ 3 1 it may be necessary to use an

edge preserving space-variant smoothing method .

One of the pioneering concepts in space-variant

smoothing was due to Graham [4 1. His method essentially

involved smoothing a pixel over a neighborhood that belongs

to the same object (or background) region as the pixel it-

self. This requires determining the object boundaries

with reasonable accuracy. Similar methods utilizing

various types of edge detector such as the gradient , the

Laplacian and the like are conceivable. Examples of recc’nt

work of this kind are decision-directed noise smoothing
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by Nahi and Habibi [ 5 1 and iterative enhancement of noisy

imaqes by Lev et al. ~ 1 . 
Another concept in edge pre-

serving smoothing is the median filter [7 1. We investi-

gate here the feasibility of a different approach to adap-

tive smoothing. The investigation is carried out treating

images in only one spatial direction but the extension of

the me.thod to two dimensions need not restrict its feasi-

bility . The proposed smoothing method uses a parametric

smoothing function , to be described in detail in Section 4,

the parameter being constantly updated by computing a cer-

tain local measure on the image. The definition of the

local measure is based on certain stochastic properties of

the random noise.

The second effect of random noise in images can now

be reduced in an obvious way , i.e., by detecting edges in

the adaptively smoothed image rather than in the noisy

image. But, as it turns out, the local measure mentioned

above gives us another way of obtaining enhanced edges.

If regions that have no edge in the original image , but

that contain random noise of magnitude great enough to

give false edge response , can be identified , then con-

ceivably the edge response can be modified in such re-

gions to yield a more desirable edge picture .

Let us assume that, in the simplest case , the original

image consists of regions of constant gray level, with

boundaries between pairs of regions being characterized

by abrupt changes in the gray levels (“step edges”). An

edge operator such as the maximum absolute difference of
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2. A Simple Model

Let us consider a scene of the type described in the

previous section in which there are only two regions , each

of constant gray level, one region being embedded in or

surrounded by the other. The gray level transition from

in the surrounding region , called “background” , to

in the embedded region , called “object” , is assumed to be

abrupt, as described in the earlier section . Let us con-

sider a single row of this scene passing through the

object. The gray level g(i) as a function of distance i

may appear as shown in Figure 1. In the presence of zero-

mean orthogonal noise n(i) the noisy gray levels x (i) in

the same row may be as shown in Figure 2.

Figures 3a—c are gray level profiles as viewed

through windows of size k points (k assumed odd) , centered

so that the window is completely in the background region ,

completely in the object region , and partially in the

background and partially in the object region*, respectively .

These gray levels , x ’ (i), are given by

x ’ (i) = x(i+9~) (la)

x (i) = g(i) + n(i) (l~ )

where 2. is the location of the center point of the window .

Now suppose we compute, for each of the three cases

*While Fig. 3c and the corresponding figures in the sub-
sequent analysis show background to object transitions ,
the existence of similar object to background transitions
is understood and implictly assumed in the analysis.
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neighbors , the Roberts cross operator , or the gradient

[8 ,2 I will yield nonzero response only at the region

boundaries. However, the introduction of additive zero-

mean orthogonal noise to the noise-free image will yield

non—zero responses almost everywhere .

Now suppose that we have a local operator which can

discriminate in the noisy picture between neighborhoods

that have no gray level transition (no “activity ”) in the

original image and neighborhoods that do have some gray

level transition (some “activity ”) in the original image.

This “activity detector” will enable us to suppress the

edge response in the neighborhoods of no activity while

retaining or enhancing the edge response in the active

neighborhoods . A local image operator is presented here

that may be used as such an activity detector.
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g(i) t’

backq round
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(a)

object

g (i) ~

background
so

(b)

Figure 1

Object and background gray level
transition in a noise—free scene.

a) Background to object transition .
b) Object to background transition.
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x ( i )

background

i +

Figure 2

Object and background gray levels in a
noisy scene.
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x ’ (i)

S~ - -

0
i - ~(a)

S
1 

-

x ’ ( i )  ~

0
i - ~

(b)

x ’ ( i)  

~~: ~~~~~ 
~.( c )

Figure 3

Gray level profiles in windows of size k

(j = (k—l)/2)

a. Window located completely in the backqrc rn~ .
b. Window located completely in the object.
c. Window located partially in the backgro i~ -

and partially in the object.
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above, the expected gray level of the window and subtract

it from the gray level of each point in the window . Th€

transformed gray levels y(i) are given by

y ( i )  = x ’ (i) — E [x ’ (i)J
(2)

= x (i+k) — E [x(i+9~))

The transformed gray level profiles y (i) in the windows

corresponding to those in Figures 3a-c are shown in

Figures 4a—c , respectively.

In Figure 4a the window is completely located in t~~

background , therefore

x(i+2,) = s
0 

+ n(i+~ )

Hence ,

y(i) = s0 + n(i+Z) 
— E[s0+n(i+2.)]

= s
0 

+ n(i-+- k) — S
0

= n(i+i)

Therefore , the correlation coefficient p betweLn tw-

neighboring points in this data sequence y(i) is giver L’~

p = E[y(i)y(i+l)]/E[y2 (i)]

= E[n(i+~ )n(i+i+l)J/E [n
2 (i+~ ))

2 (3c)
= 0/o

n

= 0

where ~
2 is the variance of the random noise.
n

Similarly, in Figure 4b the window is completely

located in the object region , therefore

x ( i + 9 ~) = 

~l 
+ n ( i + t )  ( 4 a )
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y(i) i-

0 ~~~~~~~~~~~~

— j  0 j 
-

(a) 1 - ~

y(i)

0 . .  
~~~~~~~~~~~~~~

-j  0~~~
(b) 

j - 4

y(i) ~

0-~~~~~~~AA~~~J
-j

~ j~ i -
~

(c)

Figure 4

The transformed gray level profiles in the
windows of Figures 3a , b , and c.
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and

y (i) = +n(i+2.) — E [s 1+ n ( i + Z ) ]

= n ( i + 2~) (4b)

which again yields

= 0 (4c)

In Figure 4c , where the window is partially in the

background and partially in the object regLon ,

= s ( i + Z )  + n ( i + Z )  ( 5a )

s(i+2.) = s
0+(s1—s0

)•u(i’) (5b)

where tJ( .) is the unit step function and 9~’ is a random

point (assumed uniformly distributed) such that

2~—j ~ 2.’ ~ Z +j .  (6)

Let the expected value of s(i+2.) be u .  Then

y(i) = x ( i ± 9 ~) — E [x(i+9~)]

= s(j+i) +

= s (i-1-Q )— ~i + n(i+9~)

= s ’ (1+i) + n ( i + 2 ~) (7)

where s’ (i) is as shown in Figure 5.

Assuming that n(i+p ) is uncorrelated with s ’ (i+5), the

correlation coefficient in the window of Figure 4c is

= E[{s’ (i+2.)+n(i+2.) }~ s’ (i+2.+l)+n(i+Z+l) }I/E [{s ’ (i+~ )+n (i+~ )

= E [s ’ (i+2.)s’ (j+2.+l))/[~
2 

+ E[s’2 (i+i)]). (8a)

It can be shown that for uniformly distributed 2.’ the

numerator in eqn. (8a) is always positive and hence

p > 0. (8b)
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For uniform 2~’ and large k

Pr{s(j+2.) = s(j+Z+l)} > >  Pr{s (i+2~) j~ s(i+9~+1)I (Sc)

and hence 
-

E[s ’ (i+2.) s’ (i+~ +l)J E[s ’2 (i+2.)]. (8d)

When the noise is insignificant (small variance) the

above p is approximately unity. As the noise variance

increases the value of p goes down , approaching zero for

very large noise variance . Hence it is conceivable that

the correlation coefficient of sequences of windowed

gray levels (with the mean gray level of the window sub-

tracted from the points) will be able to discriminate be-

tween neighborhoods near object boundaries and neighbor-

hoods away from object boundaries in a noisy environment.

If a window contains an object boundary then the corre1ati:~

coefficient of the window will be positive . Thus all win-

dows centered within ± j points of an actual object bound-

ary will be expected to have high correlation coefficients.

This implies that a region marked by a high correlation

coefficient is k points wide , even though the actual

boundary is a step boundary and hence is only one point

wide . Hence if we desire to keep the neighborhoods marked

by high correlation coefficients restricted to only a few

points around the actual object boundary , the window size k

must be reduced accordingly.
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3. Sample Covariance and Complex Scenes

3.1 A measure of “mean crossing”

In practice the correlation coefficient p has to be

estimated from the data sequence in the window . A simple

estimator of p is obtained via the sample window autocorre-

lation (SWAC) by

i— i j
= ~ y(i)y(i+l)]/[~ ~ y2(i)]. (9)

1=—] 1=—)

This estimate , assuming ergodicity , approaches the actual

value of p if k is large [9 1 .
For y(i) in a neighborhood away from the boundary , as

in Figure 4a and b , y(i) may cross zero several times due

to the presence of noise. This implies 1-hat often y(i)

and y(i+l) will have opposite signs, i.e., y(i) is neaa-

tive and y(i+l) is positive , or vice versa. Thus; while

the denominator is always positive, the numerator in

eqn. (9) will contain some negative terms and some positive

terms. For large k the positive terms may nearly cancel

the negative terms to give

p = 0. (10)

But if k is small then p may sometimes have value less

than zero, whereas we know that the actual correlation co-

efficient is zero.

On the other hand, in a neighborhood of the object

boundary there may be fewer, most likely only one, ze’~

crossings and hence the value of here will be greater

than zero. Hence, without loss of any desired informati~~
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the value of ~ may be truncated at zero to make the estimate

much closer to the actual p when k is small. In such a

case ~ will always yield a value between 0 and 1.

Thus in general if the sequence of gray levels x ’ (1)

in a window (see Figure 3) crosses the mean gray level of

the window (“mean-crossing ”) only a few times relative to

k, the value of p will be high; but if the number of mean-

crossings is higher , the value of ~ will be closer to zero.

We shall denote this truncated local operator ~ by SWAC .
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3.2 Response of SWAC to a linear boundary

A linear object boundary such as that shown in Figure

6, where the transition between the object gray level and

the background level is linear with distance , is a closer

approximation to real-life object boundaries than a step

edge. In the absence of noise the response of the sample

auto-covariance operator to a linear boundary can be

analyzed as follows . Let the slope (gray level change ~er

unit distance) of the boundary be 2h and let the window of

size k be centered at the center of the boundary . After

subtracting the window mean the sequence of gray levels

g(i) will have values as shown in Figure 7.

Let the width of the boundary be defined as

w = (2d+l) + 1 (11)

= 2(d+l)

where d is as shown in Figure 7. Equation (11) implies

that the boundary width is an even number of points in the

case being considered. We assume that w < k. The summation

in the denominator in eqn. (9) is

j d

~ y2 (i) = 2n(2(d+l)h)2 + 2 ~ (2hi)2

i=—] i=l
• d

= 8nh2 (d+l)2 + 8h2 ~ i~~ (l2a)
i=l

= k4h2(d+l)2 - (2d+l)4h 2 (d+l) 2 + 8h2 d(d+l)(2d+l)

= kh2w2 - h2w2 (w-l) + (w-2) (w-l)w

= kh2w2 — 
~~

- h2 (w—l) (w+l)w (12b)

where rt is as shown in Figure 7. The summation in the

55

/ 
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object

gray level

distance -*

Figure 6

Linear gray level transition at the object
boundary .
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- • •
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g(i) t

~
—2(d+l)h - - -

— j 0 j

Figure 7

Gray levels at k points symmetrically arour~d
the center of a boundary , k = 2n+2d+l.
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numerator in eqn. (9) is

j-l d

~ y (i)y(i+1) = 2(n—l) (2(d+l)h)2 + 2 ~ 4h
2i(i+l)

i=— j 1=1

= 8nh2 (d+l)2-8h2 (d+l)2 + 8h2 ~~~~ + 8h
2 

~!1
i. (l3a)

Using eqn. (l2a) the above reduces to

2 2
= y (i) — 4h (d+1) (d+2)

i=-j 
-

J
= 

~~ y2(i) — h2w(w+2) (l3b)
i=-j

Combining eqns. (12) and (13) we get

j—l
= ~~~ [ ~ y(i)y(i+l)]/[ ~ y

2(i)]
i=—j i=—j

— 
k 

— 
3h2w (w+2)

- 

3kh w - 2h w (w,-l) (w+l)

k [ 1— 3 (w+2)
= 

3kw — 2(w2—l) 
(14)

It turns out that we get the same expression for ~ when w

has an odd number of points. It is obvious from eqn. (14)

that the response ~ to a linear object boundary is not a

function of the slope of the boundary . For this reason

~ will perform poorly as an edge detector per se. Also,

if the background (or object) region in the original image

contains slowly but linearly varying gray level instead

of constant gray level then the response of ~ in the back-

‘
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ground (or object) region will be as high as at the linear

object boundary . In the presence of noise , however , if the

change in background (or object) region gray level is small

enough compared to the amplitude of the noise oscillations ,

then there will be enough mean-crossing to lower the re-

sponse ~~~. It is assumed that the scope of the object

boundary is high enough so that the amplitude of noise

oscillation does not introduce too many additional mean-

crossings to lower the response there. Thus , it is ex-

pected that even when the object boundary is a rnnp , and

the background and the object regions are slowly varying

rather than constant , the sample auto—covariance operator

will be able to discriminate noisy oscillations in regions

away from the object boundary .

Table 1 shows the variation of ~ with w for various

values of k. As it appears from the table for a fixed k

the value of ~ does not change appreciably for different

boundary widths. It is also evident from the table that

for a given boundary width , ~ increases with k. Hence ,

to obtain a high response at a boundary , a laree k should

be chosen. On the other hand , to keep the effect of a

boundary on the SWAC response restricted to a small neigh-

borhood around the boundary k should be kept small. It

turns out that k=3 always results in ~ = 0 except when

the three points in the window have the same gray level.

This degenerate case will be avoided in experimentation .

_
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Table 1

p

w k=3 k=5 k=7 k=9 k=ll

1 0 .5 .66 .75 .8

2 0 .625 .78 .87 .88

3 .603 .73 .86 .9

4 .5 .78 .86 .9

5 .73 .85 .9

6 .71 .83 .89

7 .79 .88

8 .75 .86

9 .83

10 .8
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4. Adaptive Noise Smoothip9

This section describes the proposed srnoothincj r~iethod .

The smoothed image ~(i) is given by

j—l

~(i) = ~ x(i—24h .(2.) (15)
j~,=- j

where x( -~) is the gray level of the noisy image and h1(Z)

is a weighting function that depends on (1). For a given

point (1) we assume that the weighting function is

h(2.) = A e ’~H (16)

where A is a normalizing constant that assures that the

function h(•) is unimodular , and b is an as yet undeter-

mined parameter whose value depends on (i). For a given b

the smoothing function is purposely designed to resemble

the impulse response h(t) of a low pass R-C filter given

by

h(t) = be btu (t) (17)

where b is the reciprocal of the R-C circuit time constant

and U (-) is the unit step function , required because of the

causality restriction . Since image processing does not

have any causality restriction , h(-Q ) in eqn . (16) has been

made a doubly exponential function (for symmetry) while h(t)

in eqn . (17) is one-sided exponential.

The parameter b in eqn. (16) is given by

b = —1n (l--~ ) (18)

where ~ is the response of the SWAC operator at the poinL

Ci). In using the definitions of eqn. (16) and (18) it is

.. . - - -— — ~~~~~~~~~ —~~~~ -- _-_— -s
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assumed that, when ~=l and 9=0

(l-~~) ~ = ~ (1—~~) 
~ (19)

= 1

even though 00 is actually indeterminate. Thus , if we de-

note by ~(i) the response of the SWAC operator at the

point (I), then

h~~( Z )  = A {l-~~( i ) }~~~’ (20a)

and
J 9 ’A = 1/ ~ {1— ~~(i) 

} (20b)

Figure 8 shows the function h~~(2.) without the normalizing

constant for various values of ~5 . As can be seen from the

figure , when ~(i) is small , implying a noisy background (or

object) point , the function is relatively flat. In the

limiting case when ~ is zero h.(.Q) is constant at all points ,

indicating that the smoothed gray level is the local Un-

weighted average of all the k points in the window (“I~~rd

smoothing”). On the other hand , when ~(i) 15 high , implying

that the point (i) is in a relatively clean region or in a

region with few mean-crossings , the function h
~~(-

..) is rela-

tively narrow. In the limiting case when ~(i) is unity,

h
~~

(c) is unity at the origin and zero elsewhere , indicating

that the smoothed gray level is the same as the original

gray level. It may be noted here that ~(i) is unity only

when all the points in the window have the same gray level

and not when the window is on some object boundary .
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_____________________ 

p = p
2

(c)

Figure 8

The unnormalized weighting function for
various values of ~(i).

a. ~5=l
b. ~=Oc. O<~ <l , p

1 
< p
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5. Experimental Results

Four pictures having grayscale 0 to 63 and ~ize 64x 64

were selected as test images. The first two pictures show

a square object and some chromosomes. The last two pic-

tures are forward looking infrared (FLIR) images of a tank

and a t ruck , respectively . The four test pi ctures are

shown in the top row of Figure 9. The picture “square” is

a computer simulated square object of constant gray level

embedded in a constant gray level background , with  a l inear

boundary between the object and the background , and zero-

mean pseudorandom noise added . The four pictures have

various degrees of noise , boundary sharpness , and boundary

separation (distance between the center points of two near-

est boundaries in the same row .

Nex t , an edge operator was applied to these four pic-

tures. The edge operator chosen is the DIFF operator , with

2x2 neighborhood , of Hayes and Rosenfeld [ 101.  It takes

the absolute difference between the averages of two

horizontally touching neighborhoods of size 2x2 as the edge

value e(i,j) . Note that the DIFF operator , unl ike the

SWAC operator , assumes the image to be two-dimensional.

There are many edge operators that smooth out the input

picture before compnting edge valu~~ in order to reduce the

effect of noise in the edge picture. Such an operator was

purposely not chosen here since it was desired to investi-

gate the performance of the SWAC operator in an environment

in which the edge response is noisy.

The edge responses for the four test pictures are 

- . .  
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The unnormalized weighting function for
various values of ~(i).
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shown in the second row of Figure 9. As is obvious f rom

Figure 9 , the edge operator is certainly one that is sensi-

tive to noise in the input image . The bottom row of Figure

9 shows the same four edge outputs after suppressing the

nonmaxima over a four-point horizontal neighborhood . The

nonmaximum suppression is done to thin the edges. All the

edge pictures in Figure 9 and subsequent figures are

stretched to the full grayscale range of 0-63. In Figure

9 as well as in subsequent figures the horizontal sizes of

the various pictures seem to be smaller than 64 and to vary

from picture to picture. The reason for this is that the

res~~nse of a local neighborhood operator is not well de-

fined near the border of a picture where the neighborhood

falls partially outside the picture . In the case of some

operators (e.g., SWAC) , the responses at these boLder

points are assumed to have the default value (=0); in the

case of other operators (e.g., DIFF) , these border points

are discarded and the picture size is reduced. Thus in

the second and third rows of Figure 9 only 60 columns are

displayed; the four border columns have ill-defined re-

sponses. For the sake of convenience in display the test

• pictures in the top row of Figure 9 are also trimmed to 60

columns even though all 64 columns were used in all pro-

cessing (e.g., DIFF and SWAC).

The SWAC responses for the test pictures were then

computed using various window sizes k. The window sizes

compared were 5, 7, 9, 11; odd numbers were chosen as win-

dow sizes to keep the digital center of the window unique . 
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Figure 9

The four test pictures and the edge
responses.
row 1: The test p ic tures .
row 2: The edge (2x 2  0 1FF) response for

the test pic tures .
row 3: Local maxima over 4 hor izon ta l

neighbors of the DIFF pictures.
column 1: the square
column 2 : the chromosome s
column 3: the tank
column 4: the truck
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The SWAC image for each of the above four values of k are

shown in Figure 10. For k=ll the object boundaries are out-

lined in the SWAC pictures of the square , the chromosomes

and the truck by very th ick curves ( f i r s t  row of F igure  10)

It may be mentioned here that since the SWAC operator is

one—dimensional  and operates on a row of picture at a time

the horizontal components of the boundaries are not out-

lined in the SWAC images. The reason for getting thick

outlines of the boundaries is, as mentioned in Section 2,

that the response due to a boundary is expected to spread

j points to the l e f t  and to the r ight of the actual  bound-

ary . For this reason , in the SWAC responses of the tank

where boundary separations are smaller , the responses from

various boundaries overlap and hence do not outline the

actual object boundaries.

The noise smoothing of the test pictures was done by

using the SWAC response , ~~~, displayed in Figure 10 and the

smoothing function of eqn. (20 )~ Obviously, for each k,

eqn . (2 0 )  yields one set of smoothing functions and this

yields one set of smoothed images. Figure 11 shows the

smoothed test picture-~ for k = 5, 7, 9, 11. It is clear

from Figure 11 that, for all the four values of k, the test

pictures are adequately smoothed without any visible de-

gradation of ~he object boundaries. The only visibly un-

pleasant effects in the smoothed pictures are the occas-

sional horizontal “streaks” which are due to the fact that

the smoothing operation is one-dimensional. To highlight

the performance of the adaptive smootning method the adap-
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Figure 10

The SWAC responses for various k ’s and various
test pictures.

row 1: k=ll
row 2: k=9
row 3: k=7
row 4: k=5

column 1: the square
column 2: the chromosomes
column 3: the tank
column 4: the truck
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Figure 11

Adaptive smoothing of the test pictures for various k’s.

row 1: k=ll
row 2: k=9
row 3: k=7
row 4: k=5

column 1: the square
column 2: the chromosomes

• column 3: the tank
column 4:  the truck
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tively smoothed pictures for k=ll are compared with the

test pictures smoothed by a local unweighted averaging ,  a

common method , over the same neighborhood size. The results

for adaptive smoothing and local averaging are shown one

above another in the top two rows of Figure 12. The bottom

two rows of Figure 12 show the result of edge detection ,

using the same DIFF operator as in the middle row of Figure

9. The relatively thin and noise-free edges in the third

row of Figure 12 are due to adaptive smoothing . The thick

edges in the bottom row of the same figure are due to local

averaging. Also evident from - t1~e bottom two rows of

Figure 12 is the fact that the highest edge responses in

the averaged pictures are not as strong compared to the

false responses in the backgrounds as they are in the case

of the adaptive smoothing.

A more detailed comparison of the adaptive smoothing

method with local averaging or median filtering is de-

sirable. Where an automatic image analysis system is used

it may be of interest to compare the improvement in the

performance of the system under the various smoothing tech-

niques. A theoretical analysis of the performance of the

adaptive smoothing method would also be desirable . The

criterion of performance must take into account error in

the edge valaue as well as the error in the gray level of

the output picture .
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Figure 12

Comparison of the adaptive smoothing and local averag-
ing for k=ll.

row 1: The test pictures smoothed adaptively.
row 2: The test pictures locally averaged.
row 3: The edge (DIFF) responses for the pic-

tures in row 1.
row 4: The edge (DIFF) responses for the pic-

tures in row 2.

column 1: the square
column 2: the chromosomes
column 3: the tank
column 4: the truck
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Figure 13

Nonmaxima suppressed SWAC responses for various k’s.

row 1: k=l1
row 2: k=9
row 3: k 7
row 4: k 5

column 1: the square
column 2: the chromosomes
column 3: the tank
column 4: the truck
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To investigate the possiblity of SWAC as an edge

operator , local nonmaximuin suppression was performed on

the SWAC images. The result is shown in Figure 13. When

an edge thinning operation such as nonmaximum suppression

is applied to the SWAC pictures it yields many spurious re-

sponses in the background , and in all except the chromo-

some pictures it produces sets of discontinuous edge

points , but no sharp thin outlines at the object bound-

aries. In the case of the chromosomes, where the boundaries

are sharp and the background is noise—free , non-maximum

suppression yields thin connected curves outlining the

object boundaries. The same phenomenon may also be

observed for k = 5, 7, and 9.

Comparing various rows of Figure 10 it may be observed

that while a smaller k gives thinner object boundary out-

lines , it also gives, as predicted in Section 3.2 , weaker re-

sponses at the object boundaries (see, for example , the

chromosomes picture ) and large streaks of spurious high

response (the white lines in the Figures) in the back-

grounds. The spurious streaks are due to the fact that

often there are small sets of neighboring points in the

backgrounds that have a constant gray level and hence

appear noise-free in a smaller window , but increasing the

window size brings in more neighboring points that make

the noise evident.

A weighted edge response for each of the test pictures

was computed next by using the SWAC response at a point
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Figure 14

The weighted edge responses for various test pictures
and various k ‘s.

row 1: k=ll
row 2: k=9
row 3: k=7
row 4: k=5

column 1: the square
column 2: the chromosomes
column 3: the tank
column 4: the truck
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(i,j) as the a posteriori weighting coefficient of the edge

response e(i,j) at that point. The effect of this weight-

ing is expected to be, as mentioned earlier , to attenuate

the noisy responses in the noisy background regions and to

relatively enhance the edge responses in the neighborhoods

of the object boundaries. The results of this weighting

for various values of k are shown in Figure 14. The

weighted edge gives fairly high responses at the object

boundaries and relatively insignificant false responses in

the background . In the chromosomes picture, where the un-

weighted edge picture is practically noise-free , the

weighted edge pictures also have sharp noise-free edges at

the boundaries. Thus, while the SWAC operation discriminates

against noise, it has no adverse effect on noise-free images.

There is no trade-off in SWAC performance as in , for ex-

ample , edge detection by the absolute difference of window

means , where the effect of background noise is reduced at

the cost of thickening the edge responses at the object

boundaries.

The SWAC response may also be used as an a posteriori

weighting coefficient of nonmaxima suppressed edge (01FF)

- responses. Figure l5a shows the result of doing this for

k = 5, 7, 9, and 11. Even though many of the edges in

Figure 15a are thin , and of course noise-free , there seems

to be a high risk of loosing continuity in the edges.

Figures l5b and l5c show the result of using nonmaxima

suppressed SWAC responses as the a posteriori weighting

coefficients of edge pictures and nonmaxima suppressed edge
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(a)

Figure 15

The effects on weighted edge response of nonmaxima
suppression at various stages.

(a) nonmaxima suppression of the unweighted edges
(b) nonmaxima suppression of the SWAC responses
(c) nonmaxima suppression of both the unweighted

edges and the SWAC
row 1: k=ll column 1: the square
row 2: k=9 column 2: the chromosomes
row 3: k=7 column 3: the tank
row 4: k=5 column 4: the t ruck
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Figure 15 (cont’d)
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pictures , respec t ive ly .  Among Figures 14 , l5a , l5b , and

15c., Figure 14 seems to ha ve the most desirable edge pic-

tures.

It is conceivable that the false edge responses in

noisy backgrounds (or object interiors) can be ~;u~.piessed

by some method other than a measure o~ the degree of

“noisyness ” in a neighborhood . A segmentation procedure

based on statistical hypothesis testing [11] was used to

determine if a neighborhood of a certain size around each

point belongs to a single region , such as background , or to

more than one region , as when the point is at or near an

object boundary . The four test pictures segmented by the

above hypothesis test are shown in Figure 16. In Figure

l6a the dark points (gray level zero) are where the null

hypothesis , that a neighborhood of size kx k around the

point belongs to a single population , was rejected. The

confidence level and the ratio of the number of intervals

to the sample standard deviation of the neighborhood were

0.99 and 1.8, respectively (see Iii] for the meanings and

the importance of these quantities). Figure l6b is the

negative of Figure l6a. The top, the middle , and the

bottom rows of Figure 16 correspond to neighborhood sizes

of ll xll , 9x9 , and 7x7 , respec tively.  When the gray levels

in Figure 16b are used as the point-wise weight ing  co-

efficients to construct weighted edge pictures from 01FF

responses (Figure 9, 2nd row) it results in very insignifi—

cant , if any , noise suppression and edge enhancement . The

resulting weighted edge pictures are shown in Figure 17.
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Figure 16

Segmentation by the hypothesis test.
(a) dark points are rejected points
(b) the negative of (a)
row 1: neighborhood size llxll column 1: the square
row 2: neighborhood size 9x9 column 2: the chromosomes
row 3: neighborhood size 7x7 column 3: the tank

Column 4 : the truck
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Figure 17

The weighted edge pictures using the hypothesis
test with kxk neighborhoods .
row 1: k=ll
row 2: k=9
row 3: k=7

column 1: the square
column 2: the chromosomes
column 3: the tank
column 4: the truck
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6. Conclusions

The performance of the adaptive smoothing method on the

test pictures is excellent in the sense that the smoothed

pictures have noise suppressed extremely well and have no

apparent degradation of object boundaries. The thick-

nesses of the edges detected by the DIFF - operator before

and after apative smoothing are seen to be the same. The

smoothing method is based on a very simple concept of

measuring the degree of noisiness in a neighborhood. The

SWAC noise measure is motivated by the stochastic property

of the noise , namely that it is orthogonal. Even though

the sample size, k, is too small from the point of view of

statistics , the effectiveness of the measure in guiding the

adaptive smoothing function is impressive . The degree of

smoothing is reduced not only near the object boundaries ,

as in Graham ’s method [ 4 ] ,  but also in regions that do not

contain appreciable noise. Even if a very simple image

model is used in the theoretical analysis , the effectiveness

of the smoothing method seems to extend to almost any pic-

ture. The method does not require any a priori knowledge ,

such as noise variance , or any knowledge of statistics of

edge values in the picture that may be required by an edge-

detection oriented smoothing method (e.g., [ 4 1) .  It

appears that variation of k, the operator size , does not

make much difference in the smoothed pictures.

The operator SWAC also gives us a systematic way of

reducing false response in edge pictures. The response of

the SWAC operator , when used as an a posteriori weighting
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of an otherwise noisy edge detector , discriminates against

background noise in noisy pictures and enhances genuine

edge responses at the actual object boundaries without

thickening the boundary outlines or having any adverse

effect on noise-free images. It appears that there is not

much d i f f e r ence  in the- weighted edge pictures for  var ious

window sizes. A smaller window size , while involves less

computation , outlines the well-separated object boundaries

with relatively thinner lines. It.  should be borne in mind

that the types of scenes considered in the analysis as well

as in the experiments do not have any textural

deta i l .

It may be argued that the false response of any edge

detector can be reduced by weighting it with the response

of ano ther “orthogonal”  edge detector . Such a method will

solely rely on the fact that the false responses of two

different edge operators may (hopefully) not lie at the

same points. On the other hand a method ba sed on gray

level statistics will require , and be valid over , large

neighborhoods. One disadvantage of large neighborhood

size is the loss of resolution , such as in the top two rows

of Figures l6a and l6b , exemplifying the result of the

hypothesis test. This is one disadvantage that the method

based on SWAC cio~-s not suffer from.
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