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STUDY OF IDENIIFICATION METHODS AND STRUCTURAL MODELING TECHNIQUES
ON EMPIRICAL DATA FROM A MOTION STUDY

D. W. Repperger and A. M. Junker
Aerospace Medical Research Laboratory
Wright-Patterson Air Force Base, Ohio 45433

Abstract

A study of three different model order tests is
conducted on empirical data from a motion experiment.
The parameter estimates obtained from this identifica-
tion scheme are compared to spectra estimates of the
same data.

The approach presented here utilizes a simple
canonical model which has application in the study of
man-machine systems.

Introduction

In the application of identification methods to
empirical data [1,2], two problems of primary impor-
tance are the choice of a proper canonical model struc-—
ture and the method to verify the appropriate system
order. If the number of parameters necessary to de-
scribe an input-output time series is incorrectly
specified, problems of identifiability occur. Using
Fisher's definition of the amount of information about
a parameter § contained in an observation y(ti), the

information obtained from the identification procedure
varies inversely with the variance of the parameter
estimate [3]. Thus an ill posed guess on the correct
model order and/or structure manifests itself by param-
eter estimates which are inconsistent and the informa-
tion contained in the measured sample of data is essen-
tially lost. This important problem of identifiability
has been studied in the control literature [4,5] and
alsc in the Biosciences (6] with the related compart-—
mental modeling problems that occur [7].

This paper will consider the problem of identifi-
cation and structural modeling of empirical data from
a motion study that has been discussed in the manual
control literature {8,9] and has also been studied in
other contexts [10,11]. 1In order to proceed with an
accurate identification analysis, the four important
steps [12) of experimental design, model structure de-
termination, parameter estimation, and model validation
(with the consideration of parameter bias) will be
conducted.

The experimental design of the empirical data pre-
sented here involves a man-machine interaction with
motion from a simulator at the Acrospace Medical
Research Laboratory. The input forcing function to
the closed loop man-machine problem consists of a sum
of sine waves appropriately spaced [11l] te appear ran-
dom to the human, Such an input is persistently ex-
citing [13] within the modes of interest and also
provides the additional advantage of having available
spectra estimates from Fast Fourier transforms which
will be used in the sequel as a comparison to the
parametric estimation procedure conducted here.

The model structure determination problem applied
to empirical data provides the main contribution in
this paper. It is first necessary to discuss the iden-
tification algorithm and the apriori choice of model
structure, Of the many possible choices [14] of iden-
tif fcation algorithms, the type of identification pro-
ceflire considered here is an cutput error least
squdres, Newton-Raphson convergence algorithm with a
cangnical form based on parametric estimates., A
palﬁmetrlc model is chosen of a canonical form based
on ggriori knowledge of model structures commonly

occuring in man-machine systems. This approach has
advantages in the study of identification methods as
discussed in [15,16]. The canonical models chosen here
satisfy the required properties of controllability, ob-
servabilit,, and identifiability for each value of n
(the system order). In addition, the canonical model
is derived such that the parameters obtained are linear
combinations of the possible sensory inputs to the hu-
man such as the displayed error signal, its deriva-
tives, and a possible integration of this error signal.
This may be termed a PID or proportional, integral,
derivative algorithm as discussed in [8,9]. By deter-
mining which parameters are consistent (and eliminating
those paramcters not consistent through a model order
test), knowledge of which inputs the human is using in
the tracking task can be obtained. The model order
test can, therefore, be used to study the effect of a
parameter (or sensory input) on this identification
procedure which gives insight as to which sensory input
may be used by man. The formulation of the modeling
problem as it fits in the context of manual control is
next discussed.

Formulation of the Modeling Problem

In the study of manual control problems in which
data has already been collected there exists several
advantages in studying data when model parameters can
be expressed in a PID formulation. The primary moti-
vation for such a representation of a human is in the
quantification of the ability of the human to differen-
tiate (generate lead).

Figure (la) illustrates the man-in-the-loop prob-
lem considered here. For the purposes of analysis, the
time series variables that are available for modeling
are illustrated in Figure (1b). The displayed error
signal e(t) which is the input to the man is also the
input time series to the computer model. The output
time series of the man is denoted as Xs(t)- The com-

puter model has an output Xg(t) based on the structure
of the model assumed and the available data e(t) and
Xg(t). This type of modeling is termed output error
because the difference between two time series outputs
are considered. The modeling error is denoted as eN(t)

and it satisfies:

ey () = X (£) - X (1) W

The objective of this identification procedure is to
choose a transfer function H(s) to minimize the output
error loss functional J denoted as:

1 N
J=N I
i=1
where N is the number of samples of data.

Loy (e @)

The choice of the canonical model H(s) is the pri-
mary motivation for the approach presented in this
paper. If H(s) can be chosen in a manner such that the

human can be characterized by parameters which quantify
the amount of differentiation or lead generation in a
tracking task, then this model has application in the
study of manual control problems.
model will be specified as follows:

First the canonical
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1 D 8g
H(s) = a, + as + a,s + = (3)

G+ i)

where s is the Laplace transform variable. Equation
(3) is an ideal representation of the man-in-the-loop
for several reasons. The coefficients ao, ar, and a,

represent differentiation (or lead generation) in the
tracking task. Therefore, instead of giving heuristic
arguments as to whether the describing function of the
man has more lead in one experimental condition as com-
pared to another, the coefficients ags 3y and a, will

quantitatively indicate this fact. Also, the coeffi-
cient ag allows the consideration of precognitive ef-

fects in a quantitative manner. The coefficient o in
equation (3) is used to generate a third order pole for
some value of a greater than 10 radians. This allows
the transfer function H(s) to have a denominator with a
higher order polynomial of s than the numerator and
hence can be realized using state variables. The form
of equation (3) allows the transfer function H(s) to
have any azmount of lead (including up to double differ-
entiation) for frequencies from 0 to o radians. The
amount of lead generation will depend on the numerical
values of tiae coefficients ajs 3y, and a,.

Another interpretation of the transfer function
H(s) in equation (3) can be seen in Figure (2). 1In
Figure (2) the man is replaced by a parallel processing
channel which describes the input signal e(t) and the
output signal Xs(t). The coefficients ags a), a, and
a, indicate with what importance this particular time
signal is converted or processed into the stick signal
Xs(t). If a, > a_ and a, > a; then one would expect

the signal Xs(:) to be dominated by double differentia-

On a Bode plot of xs(S)

E(s)
to see second order lead characteristics. A descrip-
tion of the Newton-Raphson identification algorithm is
next presented to illustrate the estimation scheme for
the determination of parameters.

tion of e(t). one would expect

The Newton-Raphson Output Error Identification
Algorithm

With reference to Figure (1b), the system input-~
output description can be written

X (6) = AX () + B e(®) + £(6) (4a)
y(£) = X_(£) = X (&) + n(e) (4b)

where £(t) and n(t) represent, respectively, noise vec-
tors associated with human induced randomness and un~
certainty in measurements of the data. The objective
of this identification procedure is to choosen an esti-

mate is(t) in such a way to minimize the output error

loss functional J of equation (2). Let 6 be a vector
of unknown parameters. We wish to choose 6% such that
J(0*) is minimized. First rewrite J(6) as follows:

N -
Jfe) = 1 y(e) - X ep1?w )
i=1

where W is a positive weighting coefficient which may
be considered unity without loss of generality. The
similarity of this approach to the Newton-Raphson pro-
cedure will now be demonstrated (see¢ Bellman for a des-
cription of the appropriate Newton-Raphson approach

{17)). Assume the response variable Xs(l) can be line~

arized with respect to the unknown parameter vector 0:

-

X, = xs1° + vexsi ® - eo) (6)

where 1 is the iteration number, is o is the nominal

4
response due to the parameter Bo and Vexsi is the gra-
dient of isi with respect to 6. Substituting equation

(6) into (5) and solving for the value of 6 which min-
imizes J(8) yields:

. Ko % ot 5 agel
@ =8 +[i);1 (vexsi) w(vexsi)] .
N G 4
[151 (VgXgy) WO - X (,))] @)

If 6 is updated iteratively with respect to the
unknown parameter vector, the value of 6* will result
which minimizes J(6) of equation (5). This result can
be seen to be a modified form of Newton-Raphson [18]
by writing it as:

< 2. ,-1
ek +1 ek + [Ve Jk] (VeJk] (8)
where
N E .
VeJk = -2 3 Vexis w[y(ti) - xsi] (9a)
i=1
2 N JF E N 2 T
Ve w2 B S WX, 25 VT X W
8 "k 1=1 6 is 6 is i=1 (‘] is
lyee,) - &, )] (9)

The second term of (9b) approaches zero as ﬁs(t) ap-

proaches y(t) and this modified Newton-Raphson method
is identical to Newton-Raphson (or quasilinearization)
if this term approaches zero. Therefore, the initial
starting points may be the only apparent source of dif-
ficulty because the Newton-Raphson method [17] can be
shown to have quadratic convergence. In any event, the
expression given in equation (8) provides a minimum of
J(6) specified in equation (5) which is the objective
of this least squares approach,

The time series implementation of this identifica-
tion procedure will be discussed next. The digital im-
plementation of the time series is presented in the
next section. Appendix A describes the discretization
procedure and the method of obtaining the necessary
gradients.

Implementation of This Identification Procedure

This paper will illustrate a simple manner of im-
plementing a PID type model and, in addition, provide
several ways to validate such a model. Figure (3) il-
lustrates the implementation procedure used in this
paper which is equivalent to the diagram in Figure (2).
The first step in the implementation proccqurp is to

determine the prefiltered variables e(t), e(t), e(t),
and f: e(1)dt by the following realizable transfer
functions (capital letters indicate Laplace Transform

variables):

£(s) = E(s) (10a)




E(s) _ s

WBE " e aterd (10b)
Xy . -k (10c)
E(®) (1 4+ g/a)?
ftE(T)dT
o = 1/s (10d)
E(s)

Equations (10a-d) are easily implemented by using dig-
ital filter techniques. The identification stage of
this implementation procedure requires the choosing of
state variables so that Ay ap, ag, and ay can be ob-

tained. 1In the identification procedure, the following
relationship holds:

Xs(t) = Xsl(t) + st(t) + xs3(t) + xsa(t)
+ El + 52 + E3 + EA

To implement these equations choose state variables:

A
X, = Xsl(t) (11a)
A
Xz = st(t) (11b)
A
Xy = Xs3(t) fllc)
A
Xa = Xsé(t) (11d)
Then
X.(s) a
= B TR (12a)
E(s) 1+ s/a
X.(s) a
2. (12b)
E(s) 1+ s/a
X. (s) a
‘.,._3 P (12c)
E(s) 1+ s/a
X, (s) a
- -2 (124)
IOE(T)dI 1+ s/a

The implementation of equations (l2a-d) proceeds as
follows:

Col (X}, X,, X5, X,) = [-a) . Col X}, X,, X, X,]
+ [aao, aa;, aa,, aa3] v
Col [e(t), 2(:), e(t), IEC(r)dt] (13a)
y(e) = X () = [1, 1, 1, 1] . Col [X;, X,, X5, X,]
4
- ﬁi(t) (13b)
i=1

Therefore, the variable ¢ is just the prefiltering
variable, the unknowns are uau, aal. aa,, and uJ3

which are determined from a least squares identifica-
tion algorithm, The PID fdentification algorithm is

determined by identifying a, ags a5, a,, and ag.

In this implementation, the time series e(t) was
delayed by 0.20 seconds, é(t) was delayed by 0.12 sec-
onds, and e(t) was delayed by 0.04 seconds. The manner
of achieving these delays was accomplished by shifting
the real time series by an integral multiple of the
sampling rate (.04 seconds). The assumption of dif-
ferent delays on the perceptual variables is perhaps a
better assumption than a single, constant delay on all
four channels. In the case of tracking with a motion
disturbance it is reasonable to assume that information
from rates and accelerations may be processed more
rapidly than position information. Since the desire
ecf this paper is to produce a lumped representation of
a human, these lags were chosen over four experimental
conditions of the motion experiment. Once thiec model
is sufficiently validated, future work can be done to
investigate the lags of each individual channel and
for the different experimental conditions considered
here.

A description of the MATS experiment and data
base used for this study is next presented.

The Mvlti Axis Tracking Simulator (MATS)

Figure (4) illustrates a physical diagram of the
MATS. A brief description of this simulator will be
presented here. A more complete description can be
found in [30,31].

The MATS simulator was used only in the roll axis
for this study with two independent inputs: ¢ TARGET
and ¢ DISTURBANCE as indicated in Figure (4). Four
modes of tracking were conducted:

(1) STATIC DISTURBANCE
¢ Target = 0 with ¢ Disturbance $ 0 with no
roll motion

(2) MOTION DISTURBANCE
¢ Target = 0 with ¢ Disturbance 0 with roll
motion

(3) TARGET STATIC
¢ Target # 0 with ¢ Disturbance = 0 with no
roll motion

(4) TARGET MOTION

¢ Target ¥ 0 with ¢ Disturbance = 0 with roll

motion

The two input spectrums ¢ Target and ¢ Disturbance
were designed based upon apriori guesses of inputs
that gave rise to performance changes as indicated by
the BBN optimal control pilot vehicle model. Figure
(5) is a plot of the two input spectrums. The effec-
tive plant dynamics controlled by the subjects was
specified by:

10.0
s(1 + s/5) (1 + s/20)

G(s) = (14)

The subjects involved in the experiment were six
college students (male and female) 18-25 years of age.
The subjects tracked each of the four experimental i
conditions for 165 seconds cach day with the runs pre-
sented in a random sequence., The subjects were told
to minimize the following score:

2 2
C = Score = ¢ 4 0.1 op
error plant (1s)

At the end of each run the subjects were told the




2
% error’ and 0.1 % plant’

ed to wminimize the total score. When the scores reach-
ed asymptotic levels, subject training was assumed to
be accomplished. The experiment was then run for an
additional eight days and data was collected. The
performance results are summarized in Table I for the
eight days of collected data.

score, They were instruct-

TARGET TARCET DISTUREANCE DISTURBANCE |
MOTION STATIC MOTION STATIC l

C (Score)

eZRrMs

One can see from Table 1 that in the disturbance
mode of cperation the effects of motion on performance
were quite profound. In the target mode of operation
the effects of motion were not that pronounced.

Another measure of performance is the variance of
the error, error rate, and error acceleration. For
the disturbance input case these variables became the
plant position, rate and acceleration with just a
-180° sign change in this signal. These variables
were calculated and averaged across subjects., The re-
sults of these time series answers are displayed in
Table II.

TABLE 1T

TARGET TARGET DISTURBANCE l)l STURDBANCE
MOTION STATIC MOTION STATIC
7.06
0. 74
- 11,9
AT

The numerical values in Table II are also measures of
performance which are an important aspect of this
experiment.

Parametric Results From the Identification Algorithm

Using various values of a between 5 and 50
radians, the identification scheme was applied to the
time series data e(t) and Xq(L) over the four condi-

tions of motion inputs., Table III illustrates the re-
sulting parametric values for a = 20.

AIAME 11T - @ = 20
TANCET
MOTION

DISIV N
Horon RYRVELI

STATIC

L0S2600 L0005

Mean .
« L0071t

A
LU da
&
AL

In order to show that such a model has credibil-
ity it was validated two different ways. The purpose
of a validation is to demonstiyate that this lumped,
simplified model can adequately represent the human in
the tracking task. Model order tests were used to de-
termine which parameters (or inputs) to the human had
the greatest effect in reducing the output error loss

* See enlarged tables I-VIII at end of
paper.
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functional of equation (2). In the following sections
we present the validation results and parameter sensi-
tivity tests,

Two Methods of Model Validation

The lumped model developed here was validated in
the frequency domain and also in the time domain. The
first method of model validation was a comparison of
averaged values of spectra plots (Fast Fourier Trans-
forms) to averaged values of the PID parameters, In
this manner a spectra identification procedure is com-
pared to a parametric identification algorithm. Using
a Fast Fourier Transform program developed at AMRL,
ensemble averages of the spectra of the time series
e(t) and Xs(t) were obtained for the four tracking

tasks considered here. In addition, the parametric
plots of Table IIT were obtained for the mean valucs

of the parameters and two additional plots of the mean
values of the parameters * 1 standard deviation of
these parameter values. Since the describing functions
obtained from the FFT's were also plotted as mean val-
ues * 1 standard deviation of each spectra estimate,
the two ensemble plots can be overlaid and compared.

Figure (6) illustrates the static disturbance
plots of the two identification schemes overlaid.
The study in [32] indicated that the two schemes
match best for the case of static disturbance and mo-
tion disturbance conditions. For the static target
and motion target case, the two identification schemes
match with less consistency.

In all four cases the uncertainty envelope obtain-
ed from one standard deviation of the parametric plots
about their mean when overlaid with the corresponding
envelope obtained from the spectra plots, results in
overlap of these envelopes. One interpretation of this
result is that the uncertainty in the parametric esti-
mat ion scheme is no worse than the uncertainty in the
spectra estimates.

The second method of model validation is in the
time domain by considering how well the time series

is(t) generated from the computer model matches the
experimental time history data Xs(t). The ratio R

given in equation (16) is a measure of this match. The
ratio considered is

. . 2
ERLKCREE RN
R= |1 - . (100%)  (16)

" 2
RALACY

This variable is calculated and the results are dis-
played in Table IV.

TARLE IV,
S —_——— ey
DISTURBANCE PISTUREANCE
HOTON STATIC
e 93.36% 95,944 {

%7 2. . S 5 > . l

Irom the results of Table IV we can see that there is
a high correlation between the model output time serfes
and the output series from the empirical data.

It i8 now of interest to complete a sensitivity
study on which parameters (.|U, Ay @y, or A]) will

S —




veduce the output error loss functional of equation
(2). For the PID model developed here, the parameter
which 1s most sensitive will indicate which of the

possible inputs (e(t), é(t), E(t), or f;e(r)dt) is most

important in describing the input-output characteris-
tics of the human as a parallel processor of informa-
tion. In this manner some insight can be obtained as
to which input sensory variable may be used by the hu-
man when he is represented by Figure (2). This result
is true only during the static mode of operation. Dur-
ing the motion mode of operaticn additional loops exist
in Figure (la) indicating rate feedback from the plant
to the human. The modeling technique presented here is
a lumped representation which will have only real phys-—
ical meaning in the static mode of operation. Once
this approach has been sufficiently validated, a more
sophisticated version can be used to study the motion
feedback loops.

A Study of Model Order Tests to Investigate Sensory
Inputs to the Human

In an effort to investigate which sensory inputs
are used by the human in the tracking task, three tests
on the correct model order were considered.

Many model order tests are available to test sys-
tem structure. The most familiar are, perhaps, the
various max-likelihood whiteness tests on residuals as
discussed in [19,20]. Some of the other methods in-
clude [21]) a test on the least eigenvalue of a struc-
tural matrix constructed on the input-output time
series, stochastic realization algorithms [22], entro-
phy estimation methods [23], and an optimization ap-

{ proach as considered by Bellman [7]. 1If the empirical
. data is already available then some a posteriori meth-
i ods to test model order include a study of the singu-
1 larity of the covariance matrix [24], Akaike's [25]

i final prediction error method, Astrom's F-distribution
| test [13,27,28) on significant reduction of the output
| error loss functional as parameters are increased, and
| an interesting index of parameter consistency measure
as used in the Bioscience literature [26]. Since a
parametric scheme was used here in an a posteriori
manner to study empirical data, it was decided to com-
pare Astrom's F-distribution test ([13,27,28] to
Akaike's [25] final prediction error method and to re-
late these results to the parameter consistency meas-
ures as considered in [26]. Chan et al. [29] have
looked at the first two model order tests from data
simulated on a computer. The approach used here dif-
fers because it utilizes real world empirical data and
also Fast Fourier Transforms of the data were available
to serve as a basis of comparison to the parametric
methods. The third model order test considered in
[26] provides an interesting check on the first two

1 metnods because it is based on the assumption that the
correct model order is the one that produces the most
consistent parameter estimates. In order to measure
the consistency of the parameter estimates, an index
of consistency was defined as the normalized standard
deviation of each parameter being estimated for the
particular assumed order. This normalization is com-
puted by the ratio of the standard deviation of each
parameter to its mean squared value. In order to de-
termine standard deviations of parameters, estimates
are made for different time segments of the empirical
time series.

The first model order test conducted here was
Astrom's F ratio test [13] using a repeated Jeast
squares approach., The term repeated least squares
means that the identification process is repeated
starting with a first order system and then Increasing
the order of the system. For this canonical model the
steps of the repeated least squares approach are as

follows:

(1) Assume the human can be represented by one
parameter.

(2) Calculate the loss functional J1 of equation

(2) for one parameter.

(3) Now assume the human can be represented by two
parameters and repeat the least squares proce-
dure.

(4) Calculate J2 for the two parameter case.

(5) Assume the human is represented by 3 paraune-
ters and again repeat the least squares proce-
dure.

(6) Calculate J3

(7) Assume all four parameters characterize the
human.

(8) Calculate JA

The test in [13] is based on the variable A de-
fined by

Nt S an
35 MMy

where Jl and J2 are values of the loss functional for
n and n, parameters, respectively and N is the number

of input-output pairs of data points. The variable A
is F distribution with n, = nl, N - n, degrees of free-

dom. For N = 300 pairs cf data points, if A > 3,09
implies the loss functional has dropped significantly
(with 95% probability). If A = 3.09, no conclusions
can be drawn.

In a previous study [32) it was determined that
Astrom's test was sensitive to N, the number of
input-output pairs. Using empirical data from one ex-
periment in each of the four motion modes, the algo-
rithm was applied for N=100, 200, and 300 points.

Table V lists the values of the loss functional obtain-
ed herey

To extend the results of [32] for various values
of N, Table VI lists the values of Astrom's model order
test as applied to Table V. Plots of the loss function
were also obtained. In order to examine Astrom's test,
the following values of the cost function were compared.

J(ao) to J(ao, al) to J(ao, al, az)
J(ao) to J(ao, az) to J(ao, a, 82)

In this manner we could determine if either a, or a

1 2

was the dominant factor in reducing the output error
loss functional. Tigures (7a-d) illustrate plots of
this test for the four mndes of operation and for
N=300 points.

2l el Bt s ) <




The following tests were conducted to study Figures
(7a=d):

CASE 1 - (Target Motion):

Tests

(1) Compare J(ao) to J(ao, al)
(2) J(ao) to J(ao, az)
(3) J(ao) to J(ao, 33)
CASE II - (Target Static):

Tests

(1) Compare J(ao) to J(ao, al)
(2) J(ao) to J(ao, az)
(3) J(a°? to J(ao, a3)
CASE III1 - (Disturbance Motion):

Tests

(1) Compare J(ao) to J(ao, al)
(2) J(ao) to J(ao, az)
(3) J(ao) to J(ao, 33)
CASE 1V - (Disturbance Static):

Tests

(1) Compare J(ao) to J(ao, 81)
(2) J(ao) to J(ao, az)
3) J(ao, al) to J(ao, ar, a2)

The results of the test appear in Table VI.

25.936

i.6se 30,4080 32,056 | D)0

Before any conclusions are drawn as to the domi-
nant input sensory variable, the second model order
test was conducted, using the index of paramcter con-
sistency developed in [26], which is defined by:

1 - o
Xy = p i (18)
2 M fui B
My
where M = the number of parameters considered, o, is

i
the standard deviation of the parameter, and My is the

mean value of the absolute value of this parameter.
According to the test in [26], this index of consisten=-
cy is smallest when the correct system order is deter=-
mined. Table VIIlists the calculations of this index
of consistency for the parameters displayed in Table
11T,

From Table VII it can be seen that when the param-
eter ay ia included with any other group of parvameters,

6

_——

the index of consistency increases substantially., This
can be seen, for example in the motion target case where
index (ao. al) = ,190
index (ao, ars a3) = ,752
This result is to be expected because the integration
parameter ag (corresponding to an input IZ e(t)dr) was

by far the most inconsistent parameter. Since this
tracking task was compensatory in nature with an input
that was randomly appearing to the subjects, one wculd
not expect a memory term such as a, to be representative

of a human's input-output characteristics.
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The last model order test conducted was based on
the final prediction error test proposed by Akaike [25].
Using his procedure, the suitable model structure is the
one which minimizes:

> N + n 2
(19)

where again N is the number of input-output pairs of

data points, n is the order of the system, and 02 is the
estimated variance of the (output-error) noise process.
The method of implementing this approach is similar to
that of the repeated least squares method previously
discussed., Initially a first order system is considered
and then the model order is increased one order at a
time. The variable I, in equation (19) is calculated

2

each time the least squares procedure is repeated. The
variable 1 should achieve a minimum for the correct
system order. One can observe from equation (19) that
the term N - n is strongly dominated by N for most ap-
plications of data in which a large number of samples
are involved. This fact was pointed out by Chan [29]
and indicates that this model order test will be very
sensitive to the total number of data points considered.
To study this effect, the values of I werc calculated
for N=100, 200, and 300 points. The results are dis-
played in Table VIII. [rase '“"‘";Q],h““
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A comparison of these model order tests indicates
the following:

(1) Astrom's test is sensitive to N but provides
the best method to eliminate an inconsistent parameter
such as ay as shown in Table VI,

(2) The index of consistency Il suffers from
small samples and outliers.

(3) The cousistency index I, 1s a good sensitive
measure of consistency. This was pointed out by Chan
[29). Finally, a discussicn of bias in this procedure
is conducted to complete a study of these identifica-
tion methods.

A Discussion of Bias in This Procedure

A discussion of bias is necessary in any identi-
fication application because of the many sources which
may cause inaccurate parameter estimates. Bias may
occur as a result of the finite size of data [16,33],
noise injection in the data [34], or to the fact that
the human is not a passive control system [35] but
acts in a manner to inject noise directly into the
closed loop. The study of bias and algorithms for es-
timating bias have been obtained by Friedland [36] and
Lin and Sage [37]. More recently Asher et al. [39]
has studied the bias problem in the context of a state
estimator which may be attempting to estimate only a
portion of a known state vector. This problem of bias
has been considered in both the discrete and continuous
[40,41] time equations. In the approach presented
here the effect of bias is removed [13] by whitening
the output error. The discrete residuals from the
output error ar= correlated (and the parameter estj-
mates are biased) for low order systems. When the
system's order is increased, the residuals reach the
point where they become white and the bias is zero
within the 95% whiteness test. This is achieved by
using the repeated least squares approach presented
here. Astrom [13] notes that this approach is one cf
the six possible methods of providing for bias free
estimates of parameters (or whitening the residuals of
the output error).

Summary and Conclusions

A study of model order tests was conducted using
3 available methods with empirical data from a motion
study. The canonical model obtained here is validated
in both the time domain and also in the frequency
domain.
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Appendix A

The Discretization Procedure

Since a continuous differential equation is used
with discrete measurements, it is necessary to discre-
tize equation (13a) at each sample instant. Following
Schwarz and Friedland [38] with the notation

X(t) = A X(t) + B U(t) (A.1)
For equation (13a), at tl@c t=(n+ 1T

x(©) = A xee) + 5L A pueras @)

o

let t = (n + 1) which implies

X[nT + T] = eAT[eAT"x(co) + f:T A T-8)g y(s)ds)
o

+ fnT o eA(nT * 1 =4 B U(s)ds (A.3)

nT
However, the bracket term is X(nT) and if we assume
U(t) is constant between samples, then (A.3) is
written

eA[nT + T - 1)

X(nT + T) = A% x(nT) + [f; BdA] .
U(nT) (A.4)
which is in the form
X ="AX +BU, (A.5)

which is the desired discretized form. To determine
the gradient of X with respect to a vector parameter
6, the partial derivative of (A.1) is taken with
respect to ©

Xe - AeX + AXe * Be U

(This is a matrix equation)

(A.6)

Since X(t) can be computed from (A.5) and U(t) is
known, (A.6) is expressed as i
d _
it [Xe] =A Xe + [Ae X(t) + Be u(t)] (A.7)
Using the discretized results (A.1) - (A.5), (A.7) is
implemented as

X A X, +B [U(t), X(t))

9 i+l 0, A.8)

and equation (A.8) must be solved with its coupled
equation (A.5) to determine Xe.
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8 *See enlarged illustrations, fig. 1-6 at end of
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MOTTON STATIC
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