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Abstract

A method of analyzing the modes of laser resonators con-
taining homogeneous media is presented and established. This
analysis is based on a derivation, which begins with Maxwell's
equations and displays the required assumptions, of a pair of
integral equations involving the tangential fields on the reson-
ator mirrors. This pair of equations, which must be solved
simultaneously, is specialized to apply to paraxial resonators
with perfectly conducting mirrors. The result of the special-
ization is a pair of integral, eigenvalue equations for the

current distributions induced on the resonator mirrors.

After further specializing them to resonators for which
the spatial dependence of the modes separates, these integral

equations are solved using a straightforward technique based on

a variational principle. This technique, which employs a novel

method of obtaining modal expansion functions, reduces the analysis

to a homogeneous matrix equation that is solved using well-known

numerical methods.

The basic theory and method of solution presented not only
produce comparable results in the classical cases considered by
other authors in this field, but they also provide a framework for

attacking general resonator problems.
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A THEORETICAL ANALYSIS OF RESONATOR MODES
IN THE PRESENCE OF HOMOGEMEOUS MEDIA

I. Introduction

Since the discovery of the laser in 1961, many workers have
devoted considerable effort to analyzing the electromagnetic fields
associated with laser resonators. The approaches employed in these
efforts cover the spectrum with regard to derivation of basic equations,
essential assumptions, and method of solution. However, despite this
wide range of approaches and high level of effort, the vast majority of
these approaches has not been derived in a completely general manner.
In addition, all of these approaches leave much to be desired with
regard to ease of application, depth of understanding and capability of
prediction in resonator problems. This paper is directed not only
towards establishing a sound, general theory but also towards improving
the existing capabilities in these three aspects of the analysis of
resonator fields.

The improvement in the ability to analyze resonator fields is
important because such analyses have significant impact throughout the
development and use of laser systems. For example, although the first
step in the development of a new laser is usually the finding of a gain
medium, the next step is devising an efficient means of extracting power
from the medium so that the output beam has certain desirable charac-
teristics. These desirable characteristics might include good beam
quality (nearly uniform phase and amplitude of the field), low losses,
and a large volume over which the field can interact with the active

medium. For the effective design of resonators with these or other
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extraction characteristics, one needs to know not only the fields
present within a given resonator but also how they are affected by
changing the resonator parameters.

G. Fox and T. Li (ref. 1, pp. 453-488) were among the first to
recognize the importance of analyzing the fields associated with lasers
containing homogeneous media. They concentrated their efforts on
resonators which.(with regard to geometric optics) periodically refocus
paraxial rays so that they always remain confined to the resonator
volume (except for transmission through the mirrors). In addition to
Fox and Li, many others (refs. 2-10) analyzed the fields associated with
these so-called stable resonators by calculating their normal modes
(which could be used to represent any resonator field). These normal
modes were, by definition, the eigensolutions of a certain integral
equation that was derived by applying the theory of diffraction to the
resonatcr in question.

For several years, it was felt that only stable resonators could
find practical application in the laser field. However, disadvantages
such as small mode volume and poor mode discrimination prompted Siegman
(ref. 11, p. 278) 1in 1965 to propose using resonators that do not
confine paraxial rays to the resonator volume. These unstable resona-
tors, which have since found widespread application, are characterized
by large mode volume, diffraction output coupling, good transverse mode
discrimination, and totally reflecting optics. This last characteristic
is especially valuable for high power lasers for which the resonator

mirrors need to be cooled.
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Just as laser resonators have become more complex, the theory
and analytical techniques used to study them have become more sophisti-
cated. For example, the initial analyses (refs. 11-16) of unstable
resonators were based on geometric optics. However, these approaches,
which yield average values of the losses and rough estimates of the mode
distributions, have been replaced by analyses that consider the diffrac-
tive effects introduced by the finite sizes of the mirrors. Although
other approaches (refs. 17-19) also have merit, the most promising
techniques can be grouped into two broad categories; the Waveguide
Analogy (refs. 20-23) and the Integral Equation Method (refs. 6, 9, 10,
24-28). These categories, along with their specific deficiencies, are
described in chapter II.

Despite the many positive aspects of the techniques in these two
categories, no method exists which one can use to adequately determine
and understand the characteristics and behavior of complex resonator
modes. The objective of this work is to develop and establish such a
method for resonators containing a homogeneous medium and two perfectly
conducting mirrors. The purpose of this report is to present this
analytical method and its supporting results.

As discussed later in this report, this analysis provides two
significant contributions for determining and understanding laser
resonator modes. The first is a derivation of integral equations for
the tangential fields on the resonator mirrors; it begins with Maxwell's
equations and explicitly displays all required assumptions. The second
contribution is a straightforward technique for solving these equations
for a wide variety of resonators with perfectly conducting mirrors.

This technique includes a novel method for obtaining expansion functions
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j.! to be used with the variational principle upon which the technique is
| based.

This report is organized in the following manner. First,
following a presentation of important background material, the basic
laser resonator problem is formulated. The formulation is followed by

derivations of the integral equations for the current induced on the

¥ T
N e .

mirrors of open and closed laser resonators. Then, in chapter IV, the

general problem of solving these integral equations is discussed, and 1

o

the method to be used to approximately solve these equations for par-
axial resonators is presented. In chapter V, the theory and method of
solutici of the previous two chapters are specialized to apply to ]

; resonators for which the spatial dependence of the modes can be sepa-

rated to yield two independent governing equations. The results of the
! specialization are presented and compared to existing published work in

the following chapter. The text ends with chapter VII, which presents

specific conclusions and recommendations. The eight appendices contain

detailed mathematical derivations and calculations in support of this

work.
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II. Background and Theoretical Preliminaries

This chapter presents and then formulates the basic resonator

problem. To that end, the body of this chapter begins with a discussion

of important background material and a definition of a laser resonator %”
mode. This definition, as well as the insight gained from the discus-

sion which follows, forms the basis for the formulation, which includes

a discussion of the analytical approach used and a presentation of the

basic equations applied in the following chapters.

Background

Despite the large number of configurations in use today, laser
i resonators can be grouped into the two rather broad categories of open

and closed resonators. Since the analysis presented in this paper is

performed by first considering closed resonators and then extending the ?
results to open resonators, some care must be exercised in distinguish-
ing between the two resonator types. As one might expect, the essential
difference between the two types involves the nature of the resonator
mirrors and the surfaces with which one can enclose them.
As a first step in determining whether a particular resonator is
either open or closed, one uses one or more closed surfaces to enclose ;f
the resonator mirrors such that only the mirrors are included within the

enclosed volume(s). Thus, for each case, the number and shape of the

-

closed surfaces will be chosen to correspond to that series of closed
surfaces which most nearly conforms to the mirror shapes. If only one
closed surface is used, the resonator is an open resonator containing

one mirror with one or more "holes" in the mirror surface. If two

surfaces are used, the resonator is either a closed resonator or an open




AN R BRI T 0 = B

B e

TR T T T

T T T

=

o

resonator with two mirrors. If the two closed surfaces are such that
one surface completely encloses the second surface, the resonator is
closed. However, if one surface does not include the other, the reso-
nator is open. Finally, if three or more closed surfaces are used to
enclose the resonator mirrors, the resonator is an open resonator.

To clarify these ideas concerning open and closed resonators,
two examples are shown below. First, a planar view of a closed reso- ﬁ

nator is shown in figure 1. As one can see from the figure, l

o

/----———----‘-\

Figure 1. A Planar View of a Closed Resonator

the surface enclosing the unbroken material (mirror) boundary, which may
include segments of several materials, consists of two closed surfaces
S1 and 52‘ As indicated in the previous paragraph, one surface (S])
completely encloses the second surface (52). In a similar fashion, a
planar view of an open resonator containing two mirrors is shown in
figure 2. From this figure, one can see that neither surface encloses

the other.
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Figure 2. A Planar View of an Open Resonator

Open Resonators with Spherical Mirrors. A significant fraction

of the open resonators in use today employs two soherical mirrors of
either rectangular or circular projection. In addition to the material
properties of the host and lasing media, these resonators are charac-
terized by the following mirror parameters:

1. The transverse mirror dimensions (diameter or
width) a and/or b;

2. The mirror radii of curvature, R; and

3. The mirror separation, L.

These last two parameters play an important role in the classi-
fication of laser resonators containing spherical mirrors. For that
role, the mirror separation and radii of curvature are combined into so-

called "g-parameters" as shown below,

g =1-g, (1)




g R A s S . 0 S a3 8 0 R Y St st S o ks S s e o v b s

T

where the subscript denotes the ith mirror. The ranges and/or values of

these g-parameters for several resonators are shown below in table I.

Table I
Resonator g-parameters
RESONATOR TYPE a-PARAMETERS
STABLE 0 < gy9, < 1
UNSTABLE 9,9, < 0 0R 0,9, > 1
3 QUASI-STABLE 9,9, = 0 OR g;0, = 1
: CONFOCAL* 20,0, = a7 * g,
PLAME PARALLEL 4 =9, =1

*A confocal resonator is a resonator for which the
foci of the two resonator mirrors are colocated.

s T T, LN

The resonator Fresnel number N is another parameter that is
often used to characterize these spherical resonators. Actually, a
Fresnel number, which is a quantity often reserved for mirrors of
circular projection, is designated for each resonator mirror and is

defined by

i
£ i n= 2l (2)

t where a is the mirror radius and A is the wavelength of the radiation
within the resonator. To adapt this quantity to mirrors of rectangular
projection, one uses Eq. (2) to define two Fresnel numbers for each

mirror. However, for this case, the quantify "a" denotes each of the

transverse mirror dimensions (length and width) instead of the mirror

radius. 3;
; B
i3
£
|

| §
]
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Even though spherical mirror resonator configurations of the
types shown in table I are widely used, they do have several short-
comings. Unfortunately, these shortcomings are not limited to the small
mode volume and poor mode discrimination exhibited by stable resonators.
For instance, for many of the applications involving unstable resonators
with mirrors of circular projection, the output beam has an annular
shape. This annular shape not only makes the beam difficult to use, but
it can also prevent a nontrivial (several percent or more) portion of
the energy from reaching the far-field central spot. Also, spherical
unstable resonators do not efficiently accommodate new lasers having
central obscurations (to the radiation within the resonator) caused by
the use of a radial gas flow or a radial electron beam. These and other
deficiencies have led to the study and development of some new and

rather exotic resonator configurations.

Toroidal Resonators. Many of these new resonator configurations

involve resonators which include at least one toroidal mirror. As the
name implies, the mirrors falling into this category simply correspond

to different portions or cross sections of a toroid; however, there are

o two kinds of toroidal mirrors. The first kind, which is rarely used, is
simply characterized by two radii of curvature. The second kind is a
mirror that is characterized by a particular surface of revolution; that
is, a plane which passes through the resonator axis and intersects the
mirror yields two arcs. These two arcs, which have radii of curvature R
and which may or may not be connected, have centers of curvature which

are displaced from the resonator axis by a distance Per
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As with spherical mirror resonators, one may use a pair of g-
E | parameters to characterize or classify toroidal resonators. However, j
for these resonators, one modifies Eq. (1) by replacing the radius of
curvature of a spherical mirror with the radius of curvature of the
f individual arcs discussed above. With this modification, one can use

table I to classify toroidal resonators with regard to stability, etc.

Although this method of classifying toroidal resonators is somewhat
artificial, it does provide a useful framework for the analysis.

Four resonators using this second kind of toroidal mirror are

-

depicted in figure 3. Actually, each of the sketches in this fiqure
shows the intersection of a toroidal resonator with a plane passing
{ through the resonator axis (denoted AA' in the figure). To obtain a

three dimensional view of each resonator, it is necessary to revolve

{ each sketch through an angle of 180° about the resonator axis. In
figure 3(d), the lines with the tic-marks designate the boundaries of a
central obscuration to the radiation within the resonator. The lines

and/or arcs in each of the other three sketches depict a wavefront as it

passes through ard out of that resonator.

- ‘ Past Work. Existing analytical techniques are deficient in that
they cannot adequately treat many spherical or toroidal resonator con-
figurations. This is especially true of the Wavequide Analogy

(refs. 20-23) in which the resonator is treated as if it were a wave-

i

guide section (with the resonator mirrors as the guiding surface) which

is coupled to the surrounding space. The auide is taken to be operat-

ing near cut-off, and the modes are expanded in terms of the fields

L i T et b e @

which would be present if the waveauide section were infinite. The

expansion coefficients are calculated by first determining how the

il

10
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infinite guide modes are reflected by the interfaces present between the
guide section and its surroundings, and then requiring that the resulting
fields be self-reproducing. Of the two approaches mentioned earlier, it
is this Waveguide Analogy which lends the greatest insight into the
physical behavior of the modes. However, since its application not only
requires solving rather involved transcendental equations in the complex
plane, but also calculating reflection coefficients at all interfaces
(between the guide and its surroundings),’it would be very difficult to
apply to resonators with output coupling apertures or toroidal mirrors.

Despite these limitations, the Waveguide Analogy has been used
to excellent advantage by Vainshtein (ref. 21, p. 711) to obtain closed
form expressions for the modes of finite, plane parallel resonators. As
will be seen on page 63, these expressions play an important role in
the techniques applied in this paper.

The second and more widely used analytical approach is based on
solving certain integral equations for components of the electromagnetic
field (precisely which components depends on the problem) on the resona-
tor mirrors. The popularity of this approach is largely a result of the
availability of mathematical methods for approximately solving integral
equations; it is also due to the fact that once the basic forms have
been derived, the equations can be easily modified to apply to a wide
variety of complex resonators.

Several different authors (refs. 1, 29-31) have derived integral
equations which are widely considered to be the basic forms used in this
approach. However, each of these derivations and, in some cases, tne
equations thgmse]ves are deficient in one or more aspects of the prob-

lem. One major deficiency of many of the derivations is the tendency to

12
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make important assumptions at the beginning of the analysis concerning
i'; the nature of the electromagnetic field. This tendency not only limits
the applicability of the entire analysis, but it can inhibit under-
standing the behavior of the field by obscuring the precise implications
of the various assumptions. For example, many derivations are based on
the implicit assumption that the mirror material properties do not
affect the mode distributions.
3 This assumption, which may not always be valid, obscures the
'§~¢ fact that in determining the mode distributions one must consider the
. effect of both the electric and magnetic fields on the mirror surfaces.
! For some cases, either the electric or magnetic field at the mirror
{ boundary may actually have a negligible effect on the mode distribu-

tions. However, one should show that this is true in each case rather

than assuming it is true in general. A second example of these ob-
scuring assumptions is the assumption that the field (or current) on one
.i resonator mirror can be expressed entirely in terms of the field (or
current) on the second resonator mirror. This assumption inherently
obscures the fact that, in some cases, one must include the effect of
the current on both resonator mirrors.
A second deficiency applies to derivations that employ assump-
b | tions which are inconsistent with known mathematical theorems. One such
assumption is that a scalar field, along with its normal derivative,
| vanishes identically on a finite surface element. Finally, many deri-
? vations are deficient in that they do not properly include the damping
of the modes of open resonators and its effect on the resultina mode

distributions. For some cases, the damping has a negligible effect on

A
b
3
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the actual distributions; however, in other cases, its effect can be
significant. By including the effects of damping at the beginning of
the analysis, one can show that it is not always possible to formulate
the laser resonator problem in terms of a linear eigenvalue equation.
Unfortunately, the bulk of the numerical work performed, especially for
3 complex resonators, has been based on derivations containing this last
i deficiency. f
\ As indicated in the introduction, the remainder of this paper is i
directed toward developing and establishing an analytical approach which

will overcome many of the deficiencies of the existing theories.

Laser Resonator Modes

In a wide range of problems in electromagnetic theory, it is

standard procedure to work in terms of fields (modes) which depend only

on the characteristics of the material bodies and surrounding media.
This useful procedure was adapted to this analysis by defining a reso-
nator mode to be a member of that class of linearly independent, source \%
free, electromagnetic fields which satisfy the boundary conditions 3
imposed by the resonator. ]
tiv ~ To gain some insight into the nature of these modes, consider %
2 the following experiment. A radiation source is placed in the vicinity
of a resonator. Prior to time t=0, the source is turned off, and only

the null field is present. Then at t=0, the source is pulsed and

* immediately turned off. After sufficient time has passed for the wavefront
to reach and interact with the resonator, the resulting field, which is
composed entirely of the modes of the resonator, is expressed in terms

of the Fourier decomposition shown in Eq. (3).

14
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To analyze the temporal behavior of that field, the function A(¥,w) is

analytically continued into the complex w-plane, and the resulting form

is examined using contour integration in conjunction with the theory of

residues. That examination reveals that since the field is nonvanishing

after time t=0, the integrand must have singularities in the upper half : ¢
of the complex w-plane. The nature of these singularities, which occur

for w; = w! + iwg (w3>0), can be used to determine the behavior of

J J
the field through the relation

A(F,t) = 211 2T (Fount) (4) ;
]

where E}(F}m,t) is the residue of the integrand at w3 Although the
exact form depends on the details of the source and the resonator, each
residue can be written in the form

i L +imjt -w:]ft -
E&(r,w,t) = ?ﬁ(r,mj) e e (5)

where F}(F}wj) js the residue of A(r,w) at w = Wy The result obtained
by substituting Eq. (5) into Eq. (4) expresses the field as a combina-
tion of the modes of the resonator, where each mode has a time depen-

Holt -wlt , :
dence of the forme J e J . In this last expression, wj is the

th mode.

frequency and w3 is the decay constant of the j
Another important aspect of the nature of these modes involves

the type of energy flow associated with each mode. For this discussion,

the two types of energy flow of importance are (1) energy flow from the

resonator to the surroundings and (2) energy flow from the surroundings

to the resonator. Of course, in the typical laser application,

15
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radiation emanates from within the resonator, and the net radiative
. erergy flows from the resonator to the surroundings.

For closed resonators, such as the one shown below in figure 4,
distinguishing between the two types of energy flow is relatively
straightforward. For these resonators, which require two closed sur-

= faces to enclose the unbroken material (mirror) boundary, one distin-
guishes between the two types of flow by considering energy flow across

the unbroken material boundary.

REGION b

REGION a

UNBROKEN
MATERIAL
BOUNDARY

Figure 4. A Closed Resonator

b ki

However, for resonators not characterized by an unbroken material

e tam e Lo

boundary, these ideas need to be made more precise. To do that, con-
sider the two closed surfaces involving the open resonator shown in
figure 5. The first surface, which I call the resonator hull, is

designated H in the figure. This surface consists of the front surfaces

: of the two mirrors and the family of straight lines connecting the
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mirrors such that H encloses the maximum possible volume. The second
surface, which I call the resonator shell, is designated S in the

figure. The resonator shell consists of the front surfaces of the two
mirrors and the family of straight lines enclosing the maximum volume

such that each straight line begins and ends at a mirror edge.

REGION b
D it
e
-...._ REGON o
a0
S

Figure 5. Surfaces Defining the Inside and
OQutside of an Open Resonator

If the resonator hull encloses a volume greater than that
enclosed by the resonator shell (which might correspond to the presence
of a 1ip on one of the mirrors), the ideas related to energy flow are
not easily understood, and such a resonator will not be treated in this
analysis. However, in the event that the resonator hull and shell
coincide, the important energy flow ideas can be precisely formulated.
To do this, the volume contained within and on the closed surface H,

designated region a, is considered to be inside the resonator. Obviously

17

Bt Gy 2 A AR 1T




S

then, the volume outside H, designated region b, is outside the reso-

nator. For this analysis, only those fields for which the net energy
flows from region a to region b will be designated as laser resonator

modes.

Formulation of the Problem

General Approach. Based on the material covered in the previous

section, the modes of a laser resonator can be found by determining the
linearly independent members of that class of electromagnetic fields,

with time dependence eH“"t e'“"t, which satisfy the boundary conditions
imposed by the resonator to produce energy flowing from the resonator to rg
the surroundings. Figure 6 depicts a planar view of this basic problem,

which is analyzed in the remainder of this paper.

A B o R S W TSN A I PR R WO e

Figure 6. The Laser Resonator Problem

18
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As indicated in the figure, a rectangular system of coordinates

(only the x-z plane is shown in the figure) is established in the vicinity

of the mirrors with the z-axis chosen as the optic axis of the resonator.

In addition to the two mirrors, the resonator contains a homogeneous
medium with parameters n, e, and 0. The position vector of a point on

the jth mirror is denoted r., and the distance between two arbitrary

J
points on the two mirrors is R]Z' Finally, the mirror separation,
measured along the optic axis, is denoted L. Figure 6 also applies to
closed resonators, except in that case, there is one mirror rather than
two separate ones.

The following approach is used to determine the fields and other

characteristics associated with the laser resonator depicted in figure 6.

First, the basic equations of electromagnetic theory are used to derive
a pair of coupled integral equations for the electric and magnetic
fields within the resonator. These equations express these fields
within the resonator volume in terms of the electric and magnetic fields
tangential to the mirror surfaces. This pair of equations is then
specialized to apply to resonators with perfectly conducting mirrors.
The result of this specialization is a pair of equations which relate
the electric and magnetic fields within the resonator to the currents
induced on the perfectly conducting mirrors. Then, using the boundary
conditions for perfect conductors and letting the field point approach a
point on the mirror surfaces, an integral equation is obtained for the
current distributions on the resonator mirrors. Once this equation has
been solved, these current distributions can be used in the equations

that relate the electric and magnetic fields to the currents induced on

19
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the resonator mirrors. In this manner, one may specify the electro-

magnetic fields associated with each mode throughout the resonator
volume. The fields obtained using this approach are unique (Harrington,

ref. 32, p. 102).

Basic Equations. Since the modes are electromagnetic in nature,

they satisfy Maxwell's equations, which are written below in mks units

for uniform media (Stratton, ref. 33, p. 464).

-7 x E(Ft) = + ufi(Ft) + F(Ft) (6)
v x A(Ft) = D(F.t) + J(F.t) (7)
{ v . A(F,t) = Ym/u (8)

i 7 B(F.t) = o (9)

where D = eOE'+ P. In these equations, P is the polarization of the
medium, M is a fictitious magnetic current, and U is a fictitious
magnetic charge. These equations can be manipulated to yield the

following equations of continuity.

P

.”' v . J‘(F,t) = -‘;(F,t) (]0)

L v (T = -g(Fat) (11)

; In addition to Eqs. (6) throuah (11), the following two

o equations govern the behavior of the fields in two different regions j

E separated by a surface electric or magnetic current (Harrington, é
£ :

i ref. 32, p. 34). ;
& 19
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Ax (A =W,] =T, (12)
[ -1 xn=H (13)

where ﬁ, the unit normal to the surface, points into region #1.

To apply these equations to the resonator problem, the following
conditions concerning the medium and fields within the resonator are
assumed to hold:

1. The homogeneous medium is assumed to be linear and isotropic
so that D = (n2 + x)eof'where n is the index of refraction
of the host material, and x is the susceptibility of the
lasing material.

2. Within the medium, no magnetic sources or electric charge
exists. Thenp =q =0 and M= 0.

3. Within the medium, J = oE.

4. For each mode, the fields have a time dependence of the form
e+1mjt

N U TRIE I ["PUESL
where wy = 0y T wj > 0.

With these assumptions, the field equations within the resona-

tor become

v x Ej(ﬂ . - iwjuﬁj(ﬂ (14)

v x Fy(F) = mj;(mj)Ej(F) (15)
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i i where ;(mj) = g [}2 +x - ] . By taking the curl of Eq. (14),

substituting Eq. (15) into Eq. (14), and simplifying the result, the

wave equation for E& can be obtained as

VIE,(F) + k;2 E5(7) = 0 (18) a

; where ka = mjzué(mj). A similar procedure yields an equation identical 'i
p | to Eq. (18) with E& replaced by ﬁ&.

These wave equations form the basis for the derivation of the

modal integral equations in the following chapter.




M G

III. Derivation of the Integral Equations

The purpose of this chapter is to derive the basic integral

equations which govern the behavior of the modal fields of laser reso-

Laaa it o bl ek it

nators. The text begins with derivations of these integral equations
for two classes of closed resonators. The derivations are then modified
to apply to open resonators. Following these modifications, the integral
equations for open resonators are specialized to apply to resonators J
with two perfectly conducting mirrors. The specialization is then
manipulated to yield the integral equations tc be solved for the modal

currents induced on the resonator mirrors.

Integral Equations for Closed Resonators

ket s oa

The two classes of closed resonators to be considered in this
section are closed resonators with either homogeneous or segmented

boundaries. As one might expect, a homogeneous boundary consists of a

single homogeneous medium. On the other hand, a segmented boundary
contains at Teast two materials with different electromagnetic prop-
erties.

For closed resonators containing either homogeneous or segmented
boundaries, it is assumed that the boundary is smooth. This assumption,
which also applies to open resonators, implies that (Taylor, ref. 30,
pp. 360, 371)

1. The boundary (surface) does not intersect itself,

2. The boundary (surface) has a tangent plane at each point

whose direction varies continuously as the point moves along

the boundary.

23
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It is further assumed that any discontinuities in the fields are such
that, at the points of discontinuity, the changes in the fields are
finite. These field discontinuities could occur at the intersection
of the different materials in a closed resonator with a segmented
boundary or at the edge of a mirror in an cpen resonator. It is also
assumed that the resonator fields are differentiable at all points in
space with the exception of these points of discontinuity along the
resonator boundary. '

Closed Resonators with Homogeneous Boundaries. As indicated at

the end of the previous chapter, the wave equations for E3 and ﬁ3 form
the basis for the integral equation derivations contained in this

chapter. Those two wave equations are summarized by a single equation
12 b | 2 P =
v K&(r ) + kj K&(r ) =0 (19)

where K& = E& or ﬁ& as desired and ka = wjzué(mj). Equation (19) can

be solved using Green's function techniques by first solving the

equation
V28 + ks? G=-1s6(rr"n (20)

where &(r-r'") is the Dirac delta function (Collin, ref. 34, p. 565) and

I-= éxax + éyéy > SZSZ is the unit dyadic in rectangular coordinates.

One solution to this equation is a Green's function corresponding to

outgoing waves (see appendix A) of the form & = T4(R) where

R e e e
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o(R) = S (21)

= _J 95 2] 10
kJ’ * C J(n + XJ) “’jeo ™ - (22)

with R = |r-rT].

To apply this Green's function to a closed resonator with a
homogeneous boundary, the scalar products of G with Eq. (19) and K3(73
with Eq. (20) are taken, the two resulting equations are subtracted, and

the difference is integrated over the volume inside the resonator to

obtain Eq. (23).

A(r) = f V'2R.(r) - & -R.(F) - 92 B de (23)
J A J e
Applying the identity (Collin, ref. 34, p. 60),

(R x x B+ (0 B x BT 0B - (o K

fepl]]

= s 12:_ ' S 5
ﬁ& v'%G - ¢ 2K3 (24)

in conjunction with the divergence theorem applied to dyadics (Collin,
ref. 34, p. 569), the volume integral is converted to the surface inte-

gral shown below

F'('3 .f:’ n x K' c 7' x B+ (nx 9 x A ) « &

+(n . A'j)v' <R .- (n.B)v.FK |ds (25)
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where n points into the resonator volume, and S' is the surface just

inside the resonator boundary. Then substituting ﬁ} and E& for I5 and
using Eqs. (14) and (15) to eliminate Vv x E& and v x ﬁ&, the following

pair of equations is obtained.

fj(?")=f)(ﬁxfj) -V'xf-%-iwju (nxH,) -G
Sl

J
+ (7 - BT & } ds’ (26)
Fj(7)=s"(ﬁxﬂ'j) V' x B+ duge (A xE;) - B
+(n - ﬁ&)v' . 8 i ds' (27)

Equations (26) and (27) are the integral equations which govern
the behavior of the modal fields within closed resonators with homoge-
neous boundaries. However, before applying these equations throughout
the resonator volume, they must be specialized to apply to points on the
surface S', and the specializations must be solved simultaneously for
(n x E&) and (n x ﬁh). When the surface fields have been determined,
Eqs. (26) and (27) can be used to compute the fields within the resonator
volume.

To compute the fields outside the resonator, one must specify
how the fields behave as the surface S' is crossed. This specification,
which simply amounts to describing the particular resonator boundary or
interface, will yield known values for the field over the closed surface
just outside the resonator boundary. This knowledae of the tangential

fields over the closed surface uniquely specifies the fields throughout
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; any bounded volume outside the resonator (Harrington, ref. 32,
b | p. 102).

It is interesting to note that Eqs. (26) and (27) can be applied
directly to a closed resonator with a perfectly conducting boundary
(n x E=0). No modification of the equations at any point is required
as the functions described by the closed surface integrals change

discontinuously as the surface S' is crossed (from region a to region b

'i i in figure 5). These discontinuous changes are such that the fields
;~Q outside S' vanish identically (Stratton, ref. 33, p. 468), thus corre-
sponding to the fields of a closed conducting boundary.

Closed Resonators with Segmented Boundaries. In the above

derivation, the divergence theorem was applied to a closed surface
separating the resonator from its surroundings. That application is

completely justified as the fields and their derivatives are continuous

w T s
A T R e - -

throughout the volume of a closed, homogeneous resonator with a smooth,
homogeneous boundary. However, if the resonator boundary is segmented,
discontinuities in the fields and their derivatives may occur at the

intersection of the different materials in the boundary surface. As a

result, any derivation applied to a resonator with a segmented boundary

gl SR

must allow for the presence of discontinuities in the fields at points
along the resonator boundary.
As discussed in Stratton (ref. 33, p. 468), the presence of

such discontinuities can be reconciled with the field equations only if

one assumes the existence of charges or currents at the points of dis-
continuity. These sources produce fields which, when added to the fields

in Eqs. (26) and (27), yield net fields that satisfy Maxwell's equations
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(Baker and Copson, ref. 35, pp. 114-117; appendix B of this paper).
These net fields are given by Eqs. (28) and (29) below,

Fj(ﬂ=2m f }(ﬁxfjm)'V'x§+(ﬁxv'xfjm)-f-§
S
m

+ (n - 'E'jm)v' - G (dsn']

1 4 e
o E:fv o Hyy + 05, (28)
w.€
s bl AL
m

(M = 2 f ’ (A x Hyp) - 9" x 8+ (A x 9" x Hyp) -

«r(r“\-l’-fJ.m)v'-E}dsn'|

1 L =
3 fwsp Zf P Em ) d":‘m (29)
3
Cm

' continuous seament of the boundary,

where %ﬁ is the surface of the m
C, is the contour enclosina S;, and Eﬁ and ﬁh are the fields just
inside Cm.

Thus, for resonators with segmented boundaries, it is Eqs. (28)
and (29) which must be specialized to apply to the tangential fields on
the surface S'. Once these specializations are obtained, the procedure
for computing the fields at other points in space is the same as the one

described above for closed resonators with homogeneous boundaries.
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However, for either case, the final equations may be simplified
3 ! somewhat. This simplification results from taking the curl of the
expressions for E& and H., applying the fact that v' - g = V' = - Vo,
and using Eqs. (14) and (15). The final result is the pair of equations

shown below,

Ffj(?)=f—L(ﬁxfj)-v'xfax‘v'+\7x§-(ﬁxﬂ'j)‘d5' (30)

* ¥

|
|
!
|
E |
!
|

X ﬂ&

>

gj(r) . :.*___(
WeE
‘ 5 1%

) 9 xBxT+9xB& - (nx E})‘ ds' (31)

where the surface integrals are evaluated over the closed boundary with

any points of discontinuity removed. (See appendix B.)

Integral Equations for Open Resonators

For open resonators, these integral equations can be simplified
further by eliminating that portion o? the closed surface intearal which
corresponds to the open surface of the resonator hull. To do that, the
open resonator is considered to be a special case of a closed resonator
with a segmented boundary. Then, Eqs. (28) and (29) are applied to

1. The resonator hull, and

2. The closed surface consisting of the backs of the mirrors
and the open portion of the hull.

The equations for E and / in these two cases are then subtracted to yield

the following pair of equations for the fields,




o e—

4

fj(F)= E/’(ﬁxfjm)-V'xﬁ+(ﬁxv'xfjm)~G

+ (n

4
ﬁ'j(F)= m;f}(nx jm)-V'xG‘i-(nxV'xﬁ_jm')-

+(n

where a plane

%

4
1 ® | 1 1 o I~
-E'jm)v-GldSm-.. z_év ¢ H_ -+ ds (32)

jep 1}

.
(= N
wn

4
J T L' ' 1 / ' =
M) 7 G(dsm+wm§cmv 6T - 45 (33)

view of the surfaces and contours is shown in Figure 7.

Figure 7. A Plane View of the Surfaces
of an Open Resonator
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The next step is to specialize these equations to apply to laser
resonator modes at points inside the resonator hull. For these fields,
the effect of the fields on the backs of the mirrors (53' and 54') can
be dropped. This is justified because S3' and 54' are outside the reso-
nator, and laser resonator modes are fields for which the vast majority
of the energy flows from the resonator to the surroundings.

It should be apparent that this procedure (of neglecting S3‘ and
S4') will yield accurate results only to the dearee that laser resonators
actually produce fields such that the eneray flow from the surroundings
is negligible. For some or perhaps all resonators, there may be some
modes for which no energy flows into the resonator. However, for a
resonator operatina at a low frequency, it is easy to imagine that the
fields on the backs of the mirrors could affect the field inside the hull.
Conversely, for resonators containina mirrors much larger than the wave-
length of operation (which corresponds to the conditions for the physical .
optics approximation), the effect of the fields on S3' and 54' should be %f
negligible. As a result, they will be neglected for the remainder of
this analysis, and the sums in Eqs. (32) and (33) will be evaluated
from m=1 to m=2.

As with the closed resonator case, one takes the curl of the two
equations, applies v x V¢ = 0, and uses Egqs. (14) and (15) to eliminate

7 x E3 and v x ﬂ&. The resulting equations, which are the chief result

o pes

of this section, are shown below,

S (B )7t x Bk T e o x B ) | dsy (34)
g,

3]
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(") Zfz—r(m(ﬁ )v'xva+va-(an m {95 (35)

Open Resonators with Perfectly Conductina Mirrors

For resonators with perfectly conducting mirrors, the fields

on the mirror surfaces satisfy the boundary conditions
A x f&(;') = 0 (36)
A x Frj(?') = T;(F) (37)

Substituting these two equations into Eqs. (34) and (35), the basic

equations for this case take the form shown below.

2
H;(r) = Zf [v x B . :ij:ldsn; (38)
=1 X
m
2
fj(ﬂ=-$2f[3'jm-v'x§x ]dS' (39)
m=1 X

Now if Egs. (37) and (38) can be manipulated to yield forms which can be
solved for the J}m’ then Eqs. (38) and (39) can be used to compute the
fields throughout the resonator volume. The procedure for obtaining

equations for the 33m is the subject of the next several pages, while

the methnds used for solving these equations are discussed in Chapter IV.
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The Derivation. To begin the procedure, the cross product

between Eq. (38) and an arbitrary unit vector G is computed. Then the
surface current J}m is expressed in terms of its rectangular components,
and the resulting equation is projected onto the x, y, #@kz axes to
obtain the following three equations relating the rectangular components

of H} and 33,

3, - lix A(r)] = 2,0 .J/- [ay(dym¢x " Jyméy)
m=1 X
m
- az(Jxm¢z - sz¢x)] dgﬁ (40)

2
i, - lAxADI=Y d - f [sz(szm¢y - ;)

m=1 X
m
- ax(Jqusx - Jxm¢y)] d%m (41)
2 -
g, [d x H(M] = u -./ [ax(dxm¢z - sz¢x)
m=1 S
m
- ay(sz¢y - Jym¢z)] d%“ (42)
where the subscript j has been dropped and ¢x = %%, etc.

From these equations, which apply to resonators containing
mirrors of arbitrary curvature, it is evident that the rectanaular
components of the current induced on the mirrors and the maanetic field

within the resonator are related in a very complicated manner. However,




A i S T N SRR N5 S U P N b o el L e B S s B S it s i e s s s R R S g o

of the open resonators which find practical application, a large fraction

& employs mirrors for which

L 1 (43)
IR|
i where a is the radius and R is the radius of curvature of the
E mirror. For these mirrors, the surface normal is nearly parallel to the
optic axis, and the component of current parallel to that axis is very
‘ small. Since the effect of these deviations .from currents which are
j transverse and mirror normals which are parafleT to fhe optic axis is
likely to be small, their effect will be neglected for the remainder of
' J the analysis.

It is worth noting that for plane parallel resonators there is

no deviation from transverse currents or longitudinal mirror normals.

Although this fact does not prove anything for curved mirrors for which

T%T << 1, it does support the idea that, for these mirrors, the longitu-

dinal component of the current and the transverse components of the mirror

normals are negligible. Then settina JZ = 0 and letting 4 = :ézin Egs.

(40) through (42), the following pair of equations is obtained.

&+ [, x A(M]

2
¥y f Jymb, 955 (44)
m=1 «,
Sm

a, -+ [d, x H(M] (45)

+
™M~
S
5
2

34
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These equations are identical in form and the x and y components of the
current are not coupled. Then without loss of generality, only the
x-component of the current will be treated for the remainder of this

paper.

To convert Eq. (44) into integral equations in which the only
unknowns are the currents on the mirrors, the field point, with position
vector r, will be allowed to approach an arbitrary point on each mirror
surface in the 1imit as the distance between the field point and the mirror
goes to zero. In each case, the approach will be made from within the
resonator. As the field point approaches first one mirror and then the
other, the appropriate sian will be chosen so that :éz corresponds to
the unit normal at the point of interest on the surface.

Then letting the field point approach a point with position
vector F} on mirror #1, and choosing the upper sign in Eq. (44), Eq
is obtained,

JxT(F1) 4 ;—1214- a_;']'/ JxT(Fll )¢dS]'
8

K '! sz(Fé )¢zl__ (46)
2 r=r

where Eq. (37) and the relation ¢, = S-Z

employed. Using the expression for ¢ given in Eq. (21), the normal

+ V6 with ﬁ1 =-éz have been

derivative of ¢ is written in the form shown below.

~ikR g
B T2 (14 iRy - (g
an, 12
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This expression is used in Eq. (46) to rewrite the limit in the

Tim ) - '
Ay, - Jx1(r1)¢ds1
r>ry, an
T+ 201
5

Tim iy 1 = as
= u(v!) Ay » 9fz——)ds: -
F')F] H f 1 (47!’R-| 2) 1‘/ -

TSy -

u(F) = 3 (F) e T*RI2 (14 qkry,)

Using Eq. (50) to evaluate this 1imit (Stakgold, ref. 36, vol

lim o A :
/““1)"1 V(4«R12)d51

cos (r] - ri,ﬁ])
ds.

41r| : 1

(50)
By —ielE

= - zu(®) + ) um

5

and substituting the result into Eq. (46), the following equation re-

lating the currents on the mirrors is obtained.

1+ dk|ry - r{l

JX'l(r]) e szX1(r'i) l'r';-—_—r-rl
Si 1 1

¢(F.||F1') cos(ry - r{, ny) ds; - Zfsz(Fé) ¢ZL_dSé » (51)
S

2 1
A similar procedure yields the following exoression for the current

on mirror #2.
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Jyalra) = 2 Jx1(ri)¢zl___dsi
54 r=r,

doel BELEL 1R 1 B SR MRt
+ %}(&xz(rz) |r2 g ¢(r2|r2)cos(r2 - nz)dSZ (52)
S 2

Classification of the Modes. Based on the analysis presented on

the past few pages, the problem of determining the modes for laser reso-
nators with perfectly conducting mirrors has been reduced to solving the

following pair of integral equations:

e = K9+ Ki2dyo (83)
ez = Kar9xq * Kapdo (54)
where
% = -1)4 by i '
qusz = 2{=1) ~/ﬁdxz(rz)¢z(r|r2) ds, (55)
52 e -
-rz
B 1S e 6 S
Kood g = 2 1)qfa (v!) S s(r|v)
q9°xq Xq' q IF =+ q''q
Sl
q
cos(rq = g nq)dSq (56)

The solutions of this pair of equations, which are laser resonator modes,
can be divided into the three classes defined below.

- e
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A Class I mode is defined to be a mode for which the self-
induction terms in Eqs. (53) and (54) are negligible in com-
parison to the mutual-induction terms; that is
|quaxq|<<|axq|.
A Class II mode is defined to be a mode for which the self-
induction terms are proportional to the mutual-induction terms;
that is, qu xq = ququxz'

3. A Class III mode is any mode not falling into Classes I or II.
Since the modes falling into this last class are beyond the
scope of this paper, they will not be considered further.

For the modes falling into Class II, Eqs. (53) and (54) take the

form shown below.

e = (14 7)) Kpdyo

Iyo = (1 +v,) Kyydig

Substituting Eq. (58) into Eq. (57) and vice versa, one obtains the

familiar eigenvalue problems of the form,

Jer = (04 )0+ 7)) KypKogdig

yo = (T4 v) (T + vq) KyiKypdyo

which apply for all values of k such that k'>0.
It should be apparent that not all of the solutions to Egs. (59)
and (60) are solutions to the more general set, Egs. (53) and (54). Thus,

not all solutions of Egs. (59) and (60) are laser resonator modes. For

such solutions to be Class II modes, they must also satisfy the consistency

conditions,
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K11dx1 = Tiki2dee (61)
Kagdxa = Y2K21951 (62)
for all points on mirrors #1 and #2. However, due to the difficulty in-
volved in demonstrating these consistency conditions, this potentially
important class of modes will not be considered further in this paper.

For Class I modes, Eqs. (53) and (54) take the form,

J J (63)

x1 K12 X2

ez = Ko1dpg (64)

As with Class II modes, one can obtain an eigenvalue forinulation by sub-
stituting for sz and vice versa. The result is the following pair of

equations.

a1 = KiaKardg (65)

)

iz = K21K12942 (66)

However, not all solutions of Eqs. (65) and (66) are solutions to
Eqs. (53) and (54). Thus, for solutions of Eqs. (65) and (66) to be

laser resonator modes, they must satisfy the consistency conditions

IK11Jx1l<<le1| (67)

[Kg9y2l<<l9yal (68)

at all points on the resonator mirrors.
In appendix C, calculations are performed to estimate the condi-

tions under which the inequalities in Eqs. (67) and (68) will apply.
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£ For mirrors such that a <<|R| and a < = 1 - ?f& ,this estimate (which
Y | g

was obtained by specializing Eqs. (67) and (68) to apply to azimuthally
symmetric modes at the center of circular mirrors) corresponds to the

conditions shown below,

A << -B— (69)

4 4

| +k!(a + it a2)

& U 1 J 21: A T2 ™

7TRT © [I\/‘ tip=ts a]“‘ (70)
where 8 \/ - 1. Other conditions, which correspond to cases where

ok .
=5 {1 \/;Ig'} are also given in appendix C.

Not surprisingly, these estimates of the consistency conditions

R S S e

yield rather complex results that depend on A, a, |R|, L, and the values

of k" for each candidate mode. For ranges of these parameters where these i

conditions are marginal, the rigorous conditions of Eqs. (67) and (68) %5

should be applied. v
Then assuming that the inequalities in Egs. (69) and (70) hold,

the equations for Class I modes take the form

'ikR

'." X 21 :
k- iy RIS ||

j 1o)== 77 | 30T g cosay o5, L §
] 5 ;
: I (F) = - & g (Fr) & cosa,., dS! (72)

3 X1 1 2n x2''27 Ry, e

¢ Sé
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where it has been assumed that |k|>>1/Rij and %3 is the angle between
31; Rij and the optic axis. Finally, substitutina Eq. (72) into Eq. (71)
and vice versa, one obtains the following pair of symmetric integral

equations for the currents on the mirrors.
ik -
(é;)f.)(.Jxl('1)
51
E cosay, COSa,, dS, dS, (73)

Iy2(Tp) =( )zf Jya z)f

-1k(Ry5 + Ryy)

()

Ri2 Ry

"k(Rzl * Ryp)

COSa,y COSay, dSi dSé (74)

This last pair of equations bears considerable resemblance to the
} ; integral equations that are normally used (Fox and Li, ref. 1, p. 454) to
J analyze the modes of laser resonators. However, three important dif-
ferences are listed below.
1 1. Egs. (73) and (74) are not in the form of a linear eigenvalue

problem. In this paper, the eigenvalue k is not only a multi-

st

plier, but it is also included in the integrand.
2. The obliquity factor, oS0y 55 used in this paper is different

; from the factor, 1/2 (1 + c05a]2), which is normally used

(Fox and Li, ref. 1, p. 454),
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3. Egs. (73) and (74) apply to the current distribution in-
duced on perfectly conducting mirrors, while the equations
normally used are widely considered to apply to the field
(electric or magnetic) on resonator mirrors of any
material.

These first two differences, which correspond to differences in the form
of the equations, can have a significant effect on the mode distributions
and losses. However, for some of the modes of paraxial resonators, the
effects of these two differences in form are negligible. Although the
third difference will have no effect on the forms of the solutions ob-
tained, it does affect the physical interpretation of the terms in the
equations as well as the conditions under which the equations can be
applied. Finally, it is important to note that, (1) not all solutions of
Egs. (73) and (74) are resonator modes; and (2) these modes are not the
only modes of the resonator. Other possible modes are Class II and III
laser resonator modes and the entire set of incoming wave modes (which
have not been addressed in this paper).

In any case, to determine the Class I modes of a laser resonator
with perfectly conducting mirrors, a procedure must be developed for
solving Eqs. (73) and (74). That procedure, which must specify
simultaneously both the real and imaginary parts of k as well as the

current distributions cn the two mirrors, is the subject of the next

chapter.
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IV. Solution of the Intearal Equation

The purpose of this chapter is to discuss the general problem of
solving the integral equations derived in the previous chapter and to
present the method, based on a variational principle, to be used to
obtain approximate solutions to these equations for open resonators
satisfying the paraxial approximation. To accomplish these objectives,
this chapter begins with a discussion of the general form of the inte-
gral equations and the relationships between the solutions to these
equations and the fundamental resonator parameters. The paraxial
approximation is then discussed and applied to the general equations to
obtain an eigenvalue formulation for paraxial resonators. Following the
formulation, the variational method for obtaining approximate solutions

to these equations is presented and discussed.

The Basic Problem

As indicated at the end of the preceding chapter, the first step
in determining the modal properties of open resonators is solving Egs.
J

(73) and (74). To solve these equations, the quantities J and

e waxe®
k must be specified simultaneously for each mode. Once k is known, the
resonator mode and material parameters may be determined using Eq. (22),

which is repeated without subscripts below.

k=+%\/(n2+x)-;:-g- (22)

Writing the square root in series form, assuming that E%Jx - ;%94 A
0

and writing k, w, and x in terms of their real (') and imaginary ('')

parts, the following relationships are obtained.
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k P ('l + _X_an) TR (75)
A mun Xl wlxn i g
. c (] - on2 ) * TZnc ZnCe0 (76)

Using these relations with the computed values of k' and k" (which have
been obtained as part of the solution of the integral equations) and the
given values of four of the parameters o', w", x', X", n, and o, the
remaining two quantitites can be determined.

The main difficulty with the general approach just described
lies in obtaining the solutions to Eqs. (73) and (74). This is espe-
cially true when information concerning higher loss modes is desired.
One possible approach to obtaining such solutions begins with an itera-
tion approach similar to that used by other workers (refs. 1, 26) in the
field. By applying that procedure to Eqs. (73) and (74), one can deter-
mine the current distributions and the value of k for the lowest loss

mode. To extend that procedure to the next lowest loss mode, one must

s AN DA o SIS e a0 4 ”

insure that each successive approximation for that mcde is orthogonal to
the solution for the Towest Toss mode. Similarly, the approximation for gi
each higher loss mode must be made orthogonal to all of the lower loss |
modes that have been obtaired.

This iteration/orthogonalization procedure is, in aeneral, very
difficult and time consuming to apply. However, as shown in the next

section, a considerably simpler procedure is available for open resonators.

Formulation of the Eigenvalue Problem for Paraxial Resonators

For many resonators containing mirrors for which a/|R|<<1,

the mirror separation L is much greater than the mirror radius a. Such

44
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resonators satisfy the paraxial approximation. Some of the modes of

these paraxial resonators satisfy the more stringent condition that,

h kiR

for the jt mode, the quantity et®i™2 is accurately approximated by

e+k'L for any two points on the mirror surfaces. For these paraxial

modes, the coupled integral equations take the form below.

g . -ik'(Ry, + R,,)
SRR L ) = ik 12 217 e '
Jyp(ry) = e .f"xl("l) (Er)zfe d521 as;  (77)
31 )
¢ -ik'(R,, + Ry,)
R L = ik L L Bl LR .
sz(rz) = e / sz(rz) 4 (m)z/e dSI dS2 (78)
S5 S1

For resonators operating at or near optical wavelengths, the
relations k'>>k" and w'>>w" hold for all but the lossiest modes. Using

these relations, Eq. (77) is rewritten in the form

=+ o oTCk"L = = 1=y e
3q(F) = e fdx](r.l)Kk,(rllr])dS1 (79)
5
where k(R o)
nonie & pio L S LR (80)
Ke {rylr) = (xr)z fe 2 k
Sy .

Using this symmetric kernel, which is not a function of k", Eq. (79) is
now cast in the form of a linear eigenvalue problem with an external

parameter k',

R M e A e
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3 () =y f 3,0 (P K, (7 7] (81)

o

Then subject to the constraint of finding the proper value of k' such

that k" = 2%-1n v, where y is real and positive, the problem of deter-

mining the modes has been reduced to a linear eigenvalue problem.
Whenrfhe precise fréquency spectrum is not required, this
constraint on y can be relaxed without significantly affecting the
current distributions or the damping rates for the modes of interest in
this analysis (relatively low loss modes at optical or infrared wave-
lengths). This relaxation is a result of the relatively high mode
density which is characteristic of even lossy resonators at the wave-
lengths of interest. This high mode density Timits the difference
between an arbitrarily chosen value of k' and one which will produce a
real, positive value of y. For example, the axial mode spacing of a

plane parallel resonator in free space with mirror separation L is

Afa = ¢/2L (82)

As the maximum shift off a resonance is one-half of this spacing, the
maximum shift or error in the value of k' (at threshold and line center)
is n/2L. This maximum shift corresponds to a relative change in the

resonator Fresnel number, N = a2/iL, of

AN = a2/4L2 (83)

where a is the mirror radius.
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For paraxial resonators of all but the largest magnification,
this small change in the Fresnel number will have negligible effect on
the modal parameters. As a result, the requirement that y must be real
and positive will be dropped. This reduces the analysis to solving an i
eigenvalue problem (with complex eigenvalue) for any value of k' corres-
ponding to optical or infrared wavelengths. As complex values of y will

now be allowed, the expression for k" must now be written

" 1
k" = 5 1n |y| (84)

For certain cases, the problem can be simplified further. Those
cases correspond to problems for which the spatial dependence of the
kernel, Kk&?ﬂlF}), can be separated or the dependence on one coordinate
can be solved in closed form. In the first case, which corresponds to
resonators with rectargular mirrors, the separation of variables reduces

to solving two eigenvalue problems as shown below.

u(xq) = y1fu(x1')uk'(x]lx-i)dx1' (85)
viyy) = vsz(yi)vk.(yﬂy]')dy{ (86)
with e*2€'L < lv1¥als 3,9 (1) = ulx))vlyq) s and Ky (ry[ry) =

Ul xq 1%V Ly 197 -

In the second case, which corresponds to mirrors of circular
cross section (where the azimuthal dependence can be solved exactly),
a sinale eigenvalue equation involving only the radial coordinate

results. The corresponding equation has the form
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3a(op) = ¥[34 (610K, o] )b (87)

2kllL

with e = |y| as before.

The Variational Method of Solution

To see how a variational approach can be applied to these eigen-
value problems, it is useful to determine the variational principle (or
problem) satisfied by the eigensolutions of the type under consideration.
To determine that principle, one first considers eigensolutions y and

u(x) which satisfy

Tulx) = [ uleK(x|xex’ (88)

xl

where K(x|x') is symmetric with respect to x and x', and y = . e

then multiplies Eq. (83) by an arbitrary function w(x) and intearates
the result over x to obtain Eq. (89).

?fu(x)w(x)dx = fw(x) f u(x")K(x|x")dx"dx (89)

X X %"

Next, one varies the quantities y,w(x), and u(x), uses the fact that

K(x|x"') is symmetric, and recombines terms to obtain the result shown

in Eq. (90).

féw(x) {W(x) - f K(xlx')u(x')dx'% dx +[6u(x) {7w(x)
X

x' X | 4

-J/;(x')K(xlx')dx'% dx = - 6§:/L(x)w(x)dx (90)

X




Letting w(x) = u(x) in this equation, it can be seen that if fu2(x)dx # 0,

then the eigensolutions y and u(x) satisfy the condition
&y = 0 (91)

where

fu(x) _[K(xlx')u(x')dx'dx
- X x*

i fuz(x)dx

X

(92)

Thus the eigenfunctions u(x) are those functions which make y
stationary for all variations about the functions u(x). This implies
that if one were to substitute all possible trial functions for u(x)
in Eq. (92), by writing u(x) in terms of an infinite number of parameters
(A}, Y would have stationary values for those values of the {An} which
would yield the eigenfunctions u(x). One cannot in practice generate
all possible trial functions, but one can generate all possible
variations within a given class of functions and then require that
8y = 0. To the degree that the chosen class has the capability to
represent the modes, one can obtain accurate approximations to these
modes. One well-known technique for obtaining such stationary approxi-
mations is the Rayleigh-Ritz procedure (Morse and Feshback, ref. 37,
vol. 2, p. 1118) described in the followina paragraphs.

The Rayleigh-Ritz Procedure. To apply the Rayleigh-Ritz pro-

cedure to the eigenvalue problem shown in Eq. (88), one begins with
the variational principle just described. One then expands u(x) in

terms of a set of known functions {wi(x)},
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u(x) = 2 A.u.(x) (93)

i'l'l

and substitutes the result into Eq. (92) to obtain the following

expression.

.

{ = Z AiAmfwi(x)fK(xlx')¢m(x')dx'dx (94)

i
s X X

The next step in the procedure is to find those values of the
independent set {Ai} which make y stationary. It can be shown that those

values satisfy (Morse and Feshback, ref. 37, vol. 2, p. 1119)

q -0 (95)

for each value of i. Applying that condition, the followina set of

-

equations is obtained for i = 1,2,--,n,

m mi

TAY . =Y AK. (96)
m m m ml

where §

9i = J n(0; (x) e (97)
X

and

3
E

Kot = J o) [ KOxlx Do (x (98)
X X'




L s ki BN Ao G 95 e AL G5 RGNS T e Al K i oo AR T SN s a2 Y 8 M Sy - = 5

s

This set of homogeneous equations corresponds to the matrix

problem
YYA = KA (99)

where ¥ and K are square matrices with elements Vmi and Kmi as defined

Lo

above and A is a column matrix with elements A;.
In selecting the variational method to solve the linear eigen-

i value problem, consideration was aGiven to the fact that the eigenfunctions
%”! can be normalized so that they obey the orthogonality condition (Siegman
and Miller, ref. 28, p. 2730),

fun(x)um(x)dx =<8 (100)

X
Then using the Rayleigh-Ritz procedure, stationary approximations to the
eigenvalues y, which yield approximations to the orthogonal eigenfunctions,
can be found if the matrix elements Y and Kmi can be evaluated. These
approximations can also be made to obey Eq. (100) by using the procedure
discussed in appendix G to solve the matrix problem.

The General Form of the Matrix Elements. To evaluate the matrix

elements, it will be necessary to know the specific form for the wi(x])
and the kerne]K(x]lxi). Although these precise forms are covered in the
following chapter, the basic equations are summarized below.

Referring to Eq. (80), the kernel K(x1|xi) can be written in the

general form

K(x]lxi) =./. K12(x]|x2)K21(x1'lx2)dx2 (101)
X
2

I SRy or v
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where the integration over Xo is taken over the space corresponding

&79 to the second mirror. Substituting Eq. (101) into Eq. (98) yields
Km' =f dx2 {f dx]' K12(x]'|x2) wm(xi)} {fdx] K21(x1|x2)wi(x1)} (102)
"2 xi X4

To simplify the notation, the function Am(xz) is defined according to

Eq. (103) below.

M%) = [ Kyp(xq1xp) wylxy)ex, (103)
X1
4 % Using this definition, the matrix elements can be compactly summarized
E |
: Q as shown below.
9
i = [ 4 wn(xq) vylx) (105)
>

As previously indicated, the next step in the procedure for
obtaining the modes of open resonators is the application of these general
expressions to the particular resonators of interest. This specializa-
tion is the subject of the next chapter.

However, before proceeding to that chapter, it may be helpful
to summarize the types of resonators and modes for which the basic
theory and method of solution just outlined are applicable. First,

‘;
f the basic equations themselves (Eqs. (79) and (80) are applicable only
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for resonators with perfectly conducting mirrors where the effect of any
gain is essentially constant for all points on the resonator mirrors.

In addition, these equations are applicable only for resonators for
which the oscillation wavelength is small in comparison to all resonator
dimensions and where the mirror diameters are small in comparison to

the mirror separation and radii of curvature. Finally, these equations
are applicable only for cases in which the self-induction integrals in
Egs. (53) and (54) are negligible, and the method of solution should be
employed only for cases that do not require knowledge of the precise

frequency spectrum.

i g
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V. Application of the Variational Method

The purpose of this chapter is to specialize the basic theory
and method of solution to open resonators of rectangular or circular
projection for which the spatial dependence separates. These speciali-
zations include obtaining the specific form of the integral equation as
well as the expansion functions for each geometry.

Since it is to be applied to several cases, the general pro-
cedure for obtaining these specializations is the first subject of
discussion in this chapter. This procedure is then applied to resona-
tors with spherical mirrors of circular projection; and to illustrate
its various aspects, the calculations are covered in some detail.
Finally, the chapter ends with a similar section for rectangular mirror

resonators; however, the details for this case are covered in appendix D.

The General Procedure

Specific Forms of the Integral Equations. The procedure for

obtaining the integral equation is usually relatively simple. To apply
it, one begins with Egqs. (71) and (72) as the basic forms. One then
makes the following assumptions:
1. The mirror radii are much smaller than the mirror
radii of curvature,
2. The paraxial approximation holds,

+k"R1 +k"L
3. e ~e across the mirror surfaces,
4, The precise frequency spectrum is not of interest,

5. k's>k".
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Using these assumptions and substituting Eq. (72) into Eq. (71) and vice
- versa, one obtains Eqs. (80) and (81) from chapter IV. Then, the
| distance between two arbitrary points on the mirrors, which is expressed
in terms of the resonator constants and transverse mirror coordinates,
is written in series form using a binomial expansion. In this expansion,
a sufficient number of terms is kept to accurately approximate the
-ik'R

exponential e across the mirror surfaces. Finally, where possible,

the spatial variation of the equation is separated to yield one or more
equations of the type shown in Eqs. (85) through (87).

Selection of Expansion Functions.

Desirable Characteristics--Although the precise forms are

i somewhat arbitrary, the expansion functions used to calculate the reso-

nator modes should have two desirable characteristics. First, one

st S " " L L 2
SRR SRS, Y oo

should be able to establish the precise form of the functions from the

o o T

resonator parameters with relative ease. Second, the functions should
exhibit (to whatever degree is practical) the behavior expected from the
actual modes so that

1. Trends can be identified with respect to changes in
parameters,

¥ 2. Physical insight can be gained into the behavior of
k. the modes,

3. The modes can be adequately represented using a rela-
tively small number of expansion functions.

Excluding the actual modes themselves, three categories

that exhibit some of these desired characteristics are listed below:

e

1. Approximate solutions of the derived resonator
integral equation,

2. Exact solutions of the derived integral equation for
a resonator similar to the one being considered,
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3. Approximate solutions of the derived integral equation
for a resonator similar to the one being considered.

Unfortunately, to obtain the functions corresponding to the first two

? cases, one must solve a problem which is at least as difficult as the

;" original. As a result, the expansion functions will be chosen te be
approximate solutions of an integral equation for a resonator similar to
the one being considered. The "similar" resonator chosen for each case
is a symmetric resonator, which consists of two mirrors such that

% 1. The mirrors are identical to the one on which the

5“{ current is being analyzed, and
‘ 2. The mirror separation is the same as for the original
problem.
i Thus, to determine the expansion functions, approximate

| solutions of integral equations of the following form must be obtained,

| 1D = v J 9@ KEIF) o (106)
i 'x‘l
$ich iy
o EREE)
K(X|X') = %—Ete skl (107)

where the subscript x denoting the x-component of the current has been
if~ dropped, and N(x|x') is symmetric with respect to the spatial coordinates
| X and X'. As indicated before, when the spatial dependence separates,

Eq. (106) reduces to one-dimensional equations with symmetric kernels.

Possible Approaches for Obtaining the Approximate Solutions--

To discuss the procedure for approximately solving these symmetric inte-

gral equations, Eq. (106) is shown below in operator notation.

: _ J(X) = K I(X) (108)
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For the first approach, one assumes that an operator M can
be found such that ﬁ commutes with ﬁ. Then, by definition, Eq. (109)
holds,

MK JI(X) = KMIX) (109)

and the operators ﬁ and ﬁ have simultaneous eigenfunctions. This implies
that if the eigenfunctions of the operator M can be found, the eigen-
functions of ﬁ can be expressed as a linear combination of them. Thus,

if functions vS(Y) can be found such that
M vs(i) = -szvs(i) (110)
then the eigenfunctions J(X) of k can be expressed in the form

3,(®) =Zs“ys vg (%) (1)

The particular linear combination to be used in each case can be deter-
mined using the variational procedure discussed in chapter IV to specify
the Ays’

Unfortunately, for all but the simplest cases, finding an
operator ﬁ, and its eigenfunctions, so that M commutes with K is very
difficult. However, in some cases it may be possible to find an
operator & such that the commutator between M and K is relatively small,
especially for low loss modes. For such cases, Eq. (109) must be modi-
fied to include this relatively small difference, which is represented

by ﬁJ(i) in each of the following equations, }f

MK JIX) = KMIX) - R IX (112)

M) = vk M I - yR IX) (113)
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where Eq. (113) was obtained by combining Eq. (108) with Eq. (112). For
this case, M and K do not have simuitaneous eigenfunctions, but if
|§ J(X)| is indeed small in comparison to lﬁ M J(x)|, the eigenfunctions
of ﬁ may still form an excellent expansion set for the eigenfunctions of
K.

Unfortunately, it may be quite difficult to actually show
that Eq. (114) holds.

IR I << [K # I(0)] (114)

However, even if one cannot find operators M and ﬁ such that Eq. (114)
can be shown to hold, it may still be possible to find forms for ﬁ and

R such that the eigenfunctions of M form an excellent expansion set for
the eigenfunctions of ﬁ. With that in mind, the following rather simple
procedure is used to obtain the approximate solutions to Eq. (108).

The Chosen Procedure--First, using the operations discussed

in the following paragraphs, Eq. (108) will be manipulated to yield an
equation of the form shown in Eq. (113). The particular manipulations
used will be selected to yield an operator ﬁ such that one can solve the
eigenvalue problem shown in Eq. (110). In addition, the manipulations
will be chosen so R J(X) contains only terms which either

1. Depend on J(x) and its derivatives only at the mirror
edges, or

2. Involve products of the coordinates of both resonator
mirrors.

When Eq. (110) has been solved, the functions vs(x) will be chosen as the
approximate solutions of the symmetric integral equation shown in

Eq. (108). For mirrors which are conic sections, this selection will




yield expansion functions that are obtained by neglecting the finite
sizes of the resonator mirrors.

The operations used to obtain Eq. (113) from Eq. (108) are
similar to those used by Bergstein (ref. 2, p. 497) and others
(refs. 22, 23). These manipulations are outlined below for resonators
such that

1. The mirrors are conic sections, and

2. The integral equation separates.
The approach used for extending this procedure to toroidal mirrors is
covered in appendix D.

One begins by separating Eq. (106) to yield one or more of
the equations of the form of Eqs. (85) through (87), which are repre-
sented by Eq. (115),

u(z) = Yf u(z') K(zlc') de' (115)
;l

where z = x, ¥, or p. One then computes the second derivative of

Eq. (115) to obtain Eq. (116).

d2ue) . Yf u(zr) $KElet) g (116)
dz? ' dz2
14

i ]
Next, one integrates the term K(z|z') Q—ELSZL by parts twice to yield
dz'

YJ/.K(clc') d?u(z') gct = rjfﬁ(;') d?k(ele') dz' + yﬁ'u(c') (117)
4 dg'2 a¢ ' <

cI

ERTS = FINTOR DR Sy ARSI




where the expression

R'u(z') = {K(z[z") ﬂ;i_c_'[ - u(z') d_KldAL;LL (118)
! 4

is evaluated at the corresponding limits of integration. One then sub-

! tracts Eq. (117) from Eq. (116) to obtain the following rather compli-

' cated relation.

&,,? 2 2 ' &
& d?u(z) _ Yf|((;|;-) Q_“LE_det - yR'u(z")
B dz? dz'2
E
b e
: "'qu(l;') — - —} K(z¢|g') dg! (119)
dcz dc-z
Cl

For symmetric, separable kernels of the type shown in Eq. (107),
the derivatives of K(z|z') in Eq. (119) can be written as the sum of

three terms as shown below,

d—-z-- 5_'_2- K(z|z') = ‘- f(g,z) + f(g,z') + h(g,zz')} K(glz')  (120)
g g

where

1. The function h(g,zz') contains all terms involving products
of z and z' (the coordinates of both resonator mirrors),*

2. The function f(g,z) contains all terms involving ¢ but
not ¢', and

3. The function f(a,z') contains all terms involvina z'
but not z.

*For cases where the mirrors are conic sections, h(a,zz') vanishes
(Bergstein, ref. 2, p. 497).
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Then, substituting Eq. (120) into Eq. (119), and using Eq. (115) to

show that

Yf f(g,z) K(zlz') wul(z')dz' = f(a,z) u(z) (121)
cI

Eq. (119) can be rewritten in the form shown below.

o f(g.c)] u(z) = va(clc') l i f(g,c')l u(z')dg'
dzg2 < dg'2
+v] K(zglzc') h(g,zz')u(c')dg’ - yR'u(z'). (122)

;I

Examining the last two terms in Eq. (122), one can see that

¥ ﬁ'u(;‘) depends on u(z') and its derivatives only
at the limits of integration, and

2. The integral involves products of both resonator
coordinates.

Then, subject to the condition that u(z') must be selected so that
ﬁ'u(;') depends on u(z') and its derivatives only at the mirror edges,
one identifies ﬁu(c') by comparina Eq. (122) with Eq. (113). The result

is

Ru(z') = R'u(z") -jk(m') h(a.zz')ulz')dz" (123)
cI

Substituting this form into Eq. (122), one obtains the following result.
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I-93-+ f(g,2)l  u(z) = -yRu(z')
dg?
+f. K(z|z") ldgfz + f(q,c')] u(z')dg' (124)

4

Specializing this equation to resonators containing mirrors which are

- conic sections, and comparing the result with Eq. (113), the operator

M is identified,

ﬁ=—?+fmm) (125)

and the eigenvalue problem to be solved has the form shown below.

2
@) 4 £(a,z) ulz) = -s2ulz) (126)
dz?

The eigenfunctions obtained by solving Eq. (126) will be
too general to be applied to the resonator problem without restrictions.

Three appropriate restrictions are listed below.

1. For rectangular mirror resonators, the modes (and the
expansion functions) are either even or odd functions.

2. The expansion functions must be finite at all points
‘on the mirrors.

3. The expansion functions must be consistent with other
known behavior for the modes.

For unstable resorators, the last condition corresponds to

the requirement that as g+1, the eigenfunctions of M must reduce to the

known forms for plane parallel resonators. These known forms, which

were obtained by Vainshtein (ref. 21, p. 711) using the Waveguide
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Analogy and which are to be used as expansion functions for plane

parallel resonators, are listed below.

| For rectangular mirrors of width 2a and separation 2L,

the expansion functions for modes of odd symmetry are

f (x) = sin s 73N = 2,4,6 - (127)
2a {1+ (1 + i)ﬁ

and the expansion functions for modes of even symmetry are

- f (x) = cos LES 50 = 1,3,5 --- (128)
2a {1+ (1 + i)M'}

1
z(%)
! In these expressions, B = - H ~0.824, M = /87N, and ¢ is the Riemann
! ™

: zeta function (Erdelyi, ref. 41, vol. 2, p. 32, Eq. 2).

For circular mirrors of radius a and separation 2L, the

expansion functions are given by -

e
v__ a s
fn(50) = 9y | ——g "1™ N
s (1 = 1)ﬁ

where Yo is the mth root of the nth order Bessel function of the first

kind, Jn(x), and 8 and M are given above.

Resonators with Spherical Mirrors of Circular Projection

To apply this procedure to a circular mirror resonator with

mirrors of radii a, and a,, one beains with Eas. (71) and (72). The

appropriate forms of these equations, which express the current on

X mirror #1 in terms of the current on mirror #2 and vice versa, are

shown below,

i ol S A e e
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2 a -ikR,,
3l ) ik 3.t jy g do.d 130
x2(P2:89) = - 5% G e e e
0 0
5 2m a2 e-ikR12 .
Iyq(eys8y) = - Ef f Jya(pp:8;) By e o SR
0 0
where R]2 is given by Eq. (132).
R%z = 0} + 03 - 2010, cOs (0, - 87) + (2, - 2;)2 (132)

To obtain the expansion functions for the current on mirror #1,
one specializes Eq. (131) to apply to a symmetric resonator containing
two mirrors identical to mirror #1 with the same mirror separation
present in the original problem. ‘Since the resonator being considered
(to obtain the expansion functions) is symmetric, a) = 2y, Rl = Rz,
and

G 7
sz(pz,ez) =e Jx1(°2’62) (133)

where Q' = mq, and q is an integer.* Thus, the equation for the
current on mirror #1 of this symmetric resonator can be written in

the following form.

JX] (D] 991 )
Zﬂ 31 ‘1kR]2

Sl e L A e
ens e f dezf Jx](pz,ez)T c05a]2p2dp2 (134)

*One can see this by choosing the oriain midway between the mirrors
and realizing that the fields must be even or odd with respect to z.
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To simplify the procedure for obtaining these expansion

{ functions, the following approximations are made.*

a i
1
<< 1 (]35) :
“EII
a.2
1 L
1 el o (136)
AF (a] )2
; k" << k! (137)
ay << L (138)
i Under these cond:tions, cosaq,~1 and

-7 k! .iqk' 2 2 lk_' =
i b e ek e e R R

% e

|
where g = 1 - % and the first two termps of the binomial expansion have
1
been used to approximate Ryp- Finally, it is assumed that E
+k"R "
e 12z e"'k L (140)

across the entire mirror surface. With these approximations, Eq. (134)

can “e manipulated to yield 4

. Ssiimators where Eqs. (135) throuah (138) are not valid, usina
‘i sopraximations will simply require the use of a relatively larae
wvwr " sunansion functions to represent the modes.
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+—— p,p, COS(6, - 0)
Gk e 2 ]pzdpzdez (141)

where y = -e+m "1kL.

Next, one assumes solutions of the form,

3 (048) = u (o) €*1M® (142)

and applies the identity (Erdélyi, vef. 41, vol. 2, . 7},

2m
in Z"Jn(z) b f e+1zcos¢+1n¢ dé (143)

0

where Jn(z) is a Bessel function of the first kind. The result is the
following integral equation for the radial mode function,

H

a s
1Q 2 12
+1 ama R A
un(E]) = in Yj’ un(51)e L Jn(E]€1)E]dE] s (]44)
0

where £, = \/ E—-ov £ =\H§—02, and H_ =\Hf— a.

To complete this step in the procedure, one makes the sub-
stitutions un(s])'; “n(gl)/ ‘/51 and Yy ® vi" s 1, to obtain the fol-

'Iov;‘ing integral equation,
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v (&) = Yn/J v (&K (8 187) dgy
0

where the kernel, Kn(g]lgi), which is aiven by

19 ¢ a0
SaL o pe——) "'?‘ (E-l + E] ) |
K,(g1187) = {557 e Jn(E187) (146)
is symmetric with respect to & and 51'.
The next step in the procedure is to obtain the operator !‘jl,
using the manipulations described in the section entitled "The Chosen

Procedure." These manipulations involve the following pair of equations,

H
1

d2v_(&,) a d?K (&1]&4)
L =Yn[ v, (E]) ———— 1L g (147)

ds]z dgiz
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k| ’ s 2 ; d2
E | Equation (147) was obtained by operating on Eq. (145) with HETY

while Eq. (148) was obtained by integrating the term Kn(E]IEi)
d2v (£7)

-—HETE_- by parts twice.

Continuing to follow the section entitled "The Chosen
Procedure," one subtracts Eq. (148) from Eq. (147), computes the
derivatives of Kn(gllai), and uses Eq. (145) to obtain the result
shown below.

1 2
a—-zg] * (g2 - 152 + E:"Z' & - )} v ()

Ha
- -y R (8]) + ynf K (5,1}
0

2

Referring to Eq. (124), the following conditions may be shown to apply.
o T - S R L R
1. f(g,8) = (2 - 1) &2 + & (g - n%)

B h(g,ilai) = 0, and

3. Unless the term in braces in Eq. (149) vanishes at E{ =0,
ﬁvn(si) will depend on vn(a]) and its derivative at the
origin as well as the mirror edge.

Thus, to meet all the conditions described on page 58, the vn(a)

must be selected so that at ai =0




dv (g7) Ak (g ]gq)
Kn(E],E]) _3'5—]'__ - Vn(E]) __a-g—'ll— = (151)

For the actual demonstration that Eq. (151) holds for the selected
forms of the vn(gi), the reader is referred to a more detailed version
of this discussion in appendix D. For this presentation, it is simply
assumed that Eq. (151) holds.
Therefore, subject to this assumption and in accordance with
Eq. (125), the operator M is chosen to be
R ot S S 2
M=gz* (9 Vet iz (z-n ) (152)
Thus, the eigenvalue problem of Eaq. (110) has been reduced to solving
the following differential equation and applying the restrictions
presented on page 62.
d2v (£) I-n
Segtye b PLES E I} £C ¥ e ks s2t v (g) =0 (153)
For stable resonators, the most convenient form of this equa-

tion is

2
d wn(z) 4
dz2 I

1e{t D) 2oLy (z)a0  (158)

This equation, which was obtained usina the substitutions

wi(g) = v (6) VE, z=a'?, s2=- (2v+1)a, and o' = V1 - a2, is
Whittaker's differential equation (Whittaker and Watson, ref. 39,

p. 337). It has solutions of the form,
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wK,p(z) = A Wl< p(z) + B w_K’p(-z)

where the WK (z) are Whittaker functions of the second kind,

P

K= = %-(Zv +1),and p = gn With z given above, these functions

are characterized by the following:
1. Singularities at the origin, except for the special
case where xk = - m - (9—5—10 withm = 0,1,2, ----, and

Exponential decay (for W, (z)) or exponential growth

sP
(for N_K’D(-z)) with increasing values of the radial
coordinate p.

Thus, to make the solutions given by Eq. (155) consistent with
the known behavior for the modes of stable resonators (i.e., the fields
do not increase exponentially with increasing mirror radius), one sets
B=0andx=-m- (251 withm=0,1,2,---. Using these conditions
and well known relationships involving Whittaker functions (see
appendix H), one can show that the expansion functions for stable
resonators have the form

a'g?

un(8) = €% e 2 F" (a'g2) (156)
where F; (a'g2) is a generalized Laquerre Polynomial (Erdé]yi, ref. 41,
vol. 1, p. 268).
For unstable resonators, it is advantageous not only to ‘con-
vert Eq. (153) back to an equation for un(g), but also to make the sub-
stitutions z = Qg,t = - (s/22)2, and @2 = %- JaZ = 1 to obtain the

following equation.




d2u_(z) du_(z) 2
—“———+JZ- LBl S e e u(z) =0
dz? dz z2

This equation has solutions of the form

1 ;
un,r(z) st AMiT’ﬂ_(1zz) + Bwit’ﬂ_(izz) (158)

2 7

where MK u(z) and NK u(z) are Whittaker functions of the first and second

kind, respectively. As indicated in the discussion for stable resona-

tors, the function W u(z) has a singularity at the oriain unless
it =~ (m+ 5—§—J)with m=0,1,2,---. However, as solutions with
these values of t do not reduce to the functions shown in Eq. (129), they

will not be considered further. Then, in line with the fact that

it# -~ (m+ ﬂ_%};L , the coefficient B in Eq. (158) must be set equal to

zero. The result is

i72
MiT’D.(1Z )
2

Z

un’r(z) = A

In appendix D, it is shown that,
un,T(Z)-*C J,(s¢)
|22]+0 (160)
where Jn(sg) is a Bessel function of the first kind and C is a constant.

Thus, if s is chosen so that
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then the functions u, T(z) defined in Eq. (160) will reduce to the
functions specified in Eq. (129). Accordingly, the expansion functions
for unstable resonators with circular mirrors are aiven by Eq. (159)

with

v
nm

where g = 0.824, M = vfﬁgﬁﬁ, and N is the resonator Fresnel number.
For resonators containing mirrors with centered couplina
apertures, there are no difficulties involving singularities at the

origin. As a result, the functions W, ,(iz2), with t given by

Eq. (162), must be included in the expansion set.
Finally, to determine the expansion functions to be used for

resonators with toroidal mirrors, the reader is referred to appendix D.

Resonators with Spherical Mirrors of Rectanaular Projection. If the

same procedure is applied to resonators with mirrors of rectanaular

projection, the followina expansion functions are obtained,

T

(e o |

& ks %u %5 975- ) for even functions |

u = 9 :

(¢) P i I

g 1-v 3 d%¢ ' 3

| e £d (—7—, > ——7—)for odd functions (163) 5

33

where d2 = 2 /g2 -1, £ =/ %L x , and ¢(a,y,x) is a confluent hyper- % 1

geometric function of the first kind (see appendix H). For stable ‘

resonators, the parameter v must be zero or a positive integer. For

unstable resonators,
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odd modes, m = 2,4,6,--~.

with s = For even modes, m = 1,3,5,---; and for

To support the basic theory and method of solution presented
in this paper, these expansion functions have been used in conjunction
with the Rayleigh-Ritz procedure to calculate the modes of several
laser resonators. The results of these calculations are presented

and discussed in the following chapter.




VI. Computational Procedure and Results

This chapter has two important objectives. The first is to
present the results of the numerical computations performed by applying
the basic theory and method of solution discussed in the previous
chapters. The second is to support the validity of that theory and
method by comparing the results with existing published work.

To accomplish these objectives, the chapter is organized in the
following manner. First, the computational procedure used to obtain
these results is outlined and discussed. Then, the results obtained for
circular resonators are presented in some detail, followed by a summary
of the results for rectangular mirror resonators, which are detailed in
appendix F. This chapter ends with an evaluation of these calculations
and the assnciated procedure. However, before discussina the computa-
tional procedure, the manner in which the term "mdde" is used throughout
this chapter is briefly discussed.

The reader may recall from chapter III that laser resonator
modes were divided into three classes. The modes in Classes II and III
were considered beyond the scope of this paper and were eliminated from
further consideration. In addition, the following procedure was estab-
lished for determining the Class I modes of a laser resonator.

1. Assume the self-induction terms in the coupled integral
equations (Eqs. (53) and (54)) are negligible.

2. Solve the resulting integral equations (Egqs. (65) and (66)).

3. Show that the solutions are consistent with the assumption
that the self-induction terms are negligible.

Since the calculations in this chapter were performed only to

check the basic theory and method of solution presented earlier, the
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third step of this procedure has not been accomplished. Despite that
fact, to remain consistent with commonly used terminology, the term
"mode" is used to designate all solutions to Eqs. (65) and (66) (or
specialized forms of these equations) regardless of whether these

solutions produce self-induction terms that are negligible.

Computational Procedure

This section is divided into three parts. The first discusses
an ideal procedure for using the Rayleigh-Ritz technique to determine
laser resonator modes. The second nart covers the computational diffi-
culties encountered as a result of the 1imitations of the computer
programs used by the author for these calculations. This ideal pro-
cedure and these limitations combine to yield the actual procedure,

which is discussed in part three.

Ideal Procedure. The steps of an ideal procedure for applying

the Rayleigh-Ritz technique to laser resonator problems are listed

below.

1. Select a number of expansion functions for the first
stage of the calculation.

2. Using that set of expansion functions, compute the eigen-
value§ and corresponding mode distributions (magnitude and
phase).

3. Increase the number of expansion functions and repeat steps
1 and 2.

4, Compare the results obtained using the two sets of functions
to determine if the desired accuracy has been achieved.

5. If the desired accuracy has been achieved, the procedure is
terminated. If not, steps 3 and 4 are repeated.

The convergence criterion used in step 4 depends on the data

desired from the calculation. If only eigenvalues are required, the
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details of the mode distributions need not be considered since the

eigenvalues are relatively insensitive to small perturbations in the
mode distributions. Thus, convergence with respect to eigenvalue data
may be achieved with a few expansion functions. On the other hand, many
expansion functions may be required (at least 10) to determine the
details of the modes of large magnification resonators.

Limitations of Existing Programs. Experience obtained from

many applications of this procedure indicates that, for resonators

departing significantly from q = 1.0 (021.25), accurate calculations

with at least 10 expansion functions are required to determine

1. The eigenvalues of several modes, or

2. Any mode distributions.

As shown in chapter V, the expansion functions selected for
all resonators considered in this paper are directly related to the
confluent hypergeometric functions of the first (¢(a,y,z)) and second
(¥(asv,2)) kind. In this analysis, the parameter a has a strong
dependence on.the number of functions used (see Eqs. (162) and (163)
in chapter V). That is to say, as the number of expansion functions
increases, the magnitude of « for the last function(s) becomes larce.
This larae magnitude makes it difficult to compute these functions
accurately for certain ranges of the spatial variable z. These ranges
correspond to intermediate values of z, where z is too small to apply
asymptotic series expansions and where round-off error difficulties

are encountered with the usual Taylor series expansions.

As a result of these Timitations, which were inherent in the

computer routines readily available to the author, it was not always
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possible to perform accurate computations with the 10 expansion
functions needed. Due to these inaccuracies, the ideal procedure
was modified as discussed in the followina paragraphs.

Actual Procedure. The procedure actually employed in thié

paper depended on the particular resonator being studied. For reso-
nators with small equivalent Fresnel number, Ne’ the ideal procedure
was used. Typically, however, only the first two steps of that pro-
cedure were perforhed since the results obtained for the lowest loss
modes at that stage of the calculation were in close agreement with
those obtained by other authors. For these cases, only the results

for the first three or four modes are reported. The eigenvalues for
higher loss modes, which are not reported, are considered as not having
converged.

For resonators corresponding to the regions of difficulty
mentioned on the previous page, this procedure was modified further.
For these cases, a series of eigenvalue computations was performed
using a relatively small number (usually six or seven) of expansion
functions for each case. For these resonators only, the series
reported corresponds to the one yielding the best agreement in the
eigenvalue of the lowest order mode. For example, the data reported
later for g = 2.6 fall into this category.

The rationale behind selectina the series yielding the best
agreement points up the main computational difficulty encountered in
this paper. To understand the difficulty, it is helpful to recall
that, with any expansion procedure, one expects the accuracy of
calculations to increase as the number of exmansion functions is

increased. However, due to the difficulties with the higher order

1
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expansion functions (those with large |a| discussed on the previous page),

that accuracy could actually decrease as the number of functions is

increased. Thus, with the tools available, there was an optimum number

of expansion functions for each resonator in this category. It was

assumed that the optimum number corresponded to the one yielding the

best agreement (with existing published work) for the lowest loss mode.
The results obtained using this modified procedure are presented

in the following two sections.

Presentation of Circular Mirror Results

Two types of results are presented in this section. First,
data related to the eigenvalues in the integral equation are presented
for a wide range of symmetric resonators with circular mirrors. Except
when mentioned, these data are presented in the same format used by
other authors. Second, plots are presented of the relative magnitude
and phase of the current induced on one mirror of a plane parallel
resonator with N = 10. For brevity, only plots for the first two
azimuthally symmetric modes are included in this section. For other
mode distributions involving this resonator, see the first section of
appendix F.

Eigenvalue Data. As indicated earlier, the eigenvalue data

presented in this section cover a broad range of laser resonators. The

results for the first case, a plane parallel resonator with N = 10, are

summarized in tables II and III. The data used for comparison were

taken from Fox and Li (ref. 25, p. 465, table I), and the indicated §

percentaae power 10ss corresponds to a sinale pass throuah the

resonator. :
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Table II

Sl

Percentage Power Loss for Circular Mirror
Resonator with N =10and g = 1.0

DOUGHTY FOX & LI VAINSHTEIN DESIGNATION

| 0.848 0.84 0.82 TEMgo

E 4.447 4.45 4.31 TEM; o |

L 11.198 10.6 10.6 TEMy g

© 19.579 18.7 19.7 : TEMs4 1

z 2.019 2.02 2.08 TEMo,

L 6.857 6.66 6.96 TEM,;
; 14.452 14.4 14.6 TEM,, b
é 24.737 23.3 25.1 TEM3; f

Table III

Phase Shift for Circular Mirror Resonator with
N=10and g = 1.0 (in degrees)

BOURHTY FOX & LI VAINSHTEIN DESIGNATION
. 2.36 2.36 2.75 TEMg o
12.5 12.4 11.9 TEM o
30.7 30.7 29.2 TEM, o
57.2 57.0 54.2 TEMs30
6.025 6.03 5.72 TEMg;
E | 20.15 20.1 19.2 TEM,,
| 42.35 42.2 40.3 TEM,
E 73.0 73.0 69.2 TEMs,

f 79




Comparison of the results in these tables reveals that the
maximum difference in the percentage power loss is less than 6 percent;
and in most cases, the results obtained in this paper fall between those
obtained by Fox and Li and L. Vainshtein. Also, the values computed
for the phase shift are in almost perfect agreement with those computed
by Fox and Li.

The next case considered was a circular mirror resonator with
g =1.1. The results for the first four azimuthai]y symmetric modes for

Ne = 1,2, and 3 are presented in tables IV, V, and VI. For those cases,

the eigenvalue phase, arg y, corresponds to the round trip eigenvalue
-2ik'L jn + 1

into which has been absorbed the terms e A brief examina-
tion of these results reveals that the maximum difference in the
magnitude of the one-way eigenvalue is less than 3.5 percent, and the
maximum phase difference is less than 11 degrees. Comparison data

were taken from Siegman and Miller (ref. 28, p. 2734, fig. 5).

Table IV

Eigenvalue Data for Circular Mirror
Resonator with n = 0, g = 1.1, and Ne =1

DOUGHTY SIEGMAN & MILLER

iyl _EI_&_

0.816 140.°
0.778 -140.°
0.544 + 10.°

0.308 -140.°
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Table V

Eigenvalue Data for Circular Mirror Resonator
withn=0,9g=1.1, and Ne e

DOUGHTY SIEGMAN & MILLER

V[ ARG y L TN ARGy

0.778 145.7° 140.°

0.761 -147.3° -140.°
0.692 19.5° + 30.°
0.594 - 41.8° - 40.°

Table VI

Eigenvalue Data for Circular Mirror Resonator
withn =0, g =1.1, and Ne =3

DOUGHTY SIEGMAN & MILLER

V1l ARG y w TR | T

0.767 148.4° 140.°
0.740 -150.5° -140.°

0.680 45.8° + 40.°
0.624 -104.4° -100.°

The third case considered was a symmetric, circular mirror resonator
with g = 1.25. The magnitudes of the eiaenvalues (one-way) for the first
four modes for N = 4 and N = 8 are presented in tables VII and VIII.
Examination of these results reveals two things. First, agreement

between the results for the first two modes with N = 4 and for the

first mode with N = 8 is excellent. Second, agreement for other
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‘é modes of these resonators is generally poor. The reason for this
*‘ disagreement is discussed later in this chapter. Comparison results

{ for this case were also taken from Siegman and Miller (ref. 28, p. 2733,

fig. 3).
Table VII
&
e Eigenvalue Magnitudes for Circular Mirror
= Resonator with n =0, g = 1.25, N =4
2
DOUGHTY Q [yl SIEGMAN & MILLER
- | 0.596 0.59 1
E | 0.560 0.56 q
: 0.559 0.46
0.429 0.42
;
' Table VIII

Eigenvalue Magnitudes for Circular Mirror
Resonator withn=0, g =1.25, N=38

DOUGHTY ™ SIEGMAN & MILLER
0.631 0.63
0.468 0.58
1 0.425 0.46 |
0.420 0.45 4
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Finally, the results for a range of equivalent Fresnel numbers
for a symmetric, circular mirror resonator with g = 2.6 are summarized
in table IX. As before, the eigenvalue phase, arg y, corresponds to
the round trip eigenvalue for which the spatially independent terms have
been absorbed. In addition to reporting the basic results, the number
of expansion functions used to obtain these data is shown in the far

right column of this table.

Table IX

Eigenvalue Data for Circular Mirror Resonator
with n = 0, g = 2.6 for Several Values of Ne

DOUGHTY SIEGMAN & MILLER Number
ly]| ARGy Nl msy Used

<235 - 4.4 -100.
. 202 -179.° +100.
-180.
+100.
- 80.
+100.
+160.
+ 20.
- 10.

. . . . . . . .
~ ~ (o)] N ~ ~ ~ (=] (=) ] (=]




As indicated in the discussion of the computational procedure,

the results obtained using only six or seven expansion functions may be

marginal, especially for the higher loss modes. That expectation is

o e —————— A ——_———

certainly borne out by the results summarized in this table. However,

despite that, the maximum difference for the lowest loss mode is less
than 16 percent (Siegman and Miller, ref. 28, p. 2732, fig. 2), and

the difference is typically less than 10 percent. As can be seen, the

. R ———

magnitude of the difference for higher loss modes is rather sporadic,

but generally high. These results are discussed further following the
presentation of the circular mirror mode plots and the summary of the

data for rectangular mirror resonators.

Mode Plots. This portion of the chapter contains plots of the

!
i
i
.
}‘
|
}

AMPL I TUDE

1

"
Figure 8. Relative Magnitude and Phase Distributions
for the Lowest Loss, n = 0 Mode
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Figure 9. Relative Magnitude and- Phase Distributions
for the Second Lowest Loss, n = 0 Mode
& relative magnitude and phase for the two lowest loss, azimuthally
symmetric modes for a symmetric resonator with N = 10. The results
for the lowest loss mode, denoted by +, are presented in figure 8,
while the results for the next mode, also denoted by +, are given
g‘ in figure 9. The distributions to which these data are compared,
|
i denoted by *, were taken from Fox and Li (ref. 25, p. 464, fig. 2).
| As can be seen, there is excellent agreement between these
E results and those obtained by Fox and Li. Similar agreement was

obtained for several higher loss modes of this resonator (including

several modes which are not azimuthally symmetric). These results

are presented in appendix F.
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Summary of Rectanqular Mirror Results

As was the case for circular mirrors, the computations
performed for rectangular mirror resonators fall into two categories.
These two categories are eigenvalue computations and mode plots con-

sisting of the relative distribution of the intensity (magnitude

squared) and phase for the current induced on one of the resonator ;
mirrors. :
: 4
The eigenvalue results correspond to one of the cases listed é }
below. §

1. Plane parallel resonators with N = 10 or N = 8/r.

2. Power loss computations for odd symmetric modes with ;
il i ;

3. Eigenvalue magnitude computations for even symmetr1c
modes with g = 1.8.

A11 of these computations were performed for a single rectangular
component (strip case) of a symmetric resonator so that the eigen-
value corresponded to a single pass (one-way) through the resonator.
These results, which are presented along with comparative data in
appendix F, are summarized below.

As expected, the plane parallél resonator results for the two
Fresnel numbers shown were excellent. For these two cases, the
relative difference in the percentage power loss for any of the first
three even symmetric modes was less than 2.5 percent. Similarly, the
results for the g = 1.2 unstable resonator for equivalent Fresnel
numbers of 1, 1.5, and 2 were quite good. In each of these cases, the
difference in the percentage power loss for the first two even symmet-
ric modes was Tess than 2 percent. In any case, the maximum difference

was 7 percent. Finally, computations were performed for the magnitudes
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of the eigenvalues for at least the first three modes of the g = 1.8
resonator mentioned above. For that series, nine values for the
equivalent Fresnel number were selected so that 2.5 f-Ne 2 20/n. For 4
this series, the difference was typically 4 percent or less, although
in one isolated case, it did reach 7 percent. £
The relative intensity and phase distributions determined for
rectangular mirror resonators also corresponded to symmetric resonators %

with g = 1.8. These computations were limited to determining the

distributions for the first two even symmetric modes for values of Ne
such that ZnNe = 18, 34, 36, and 40. With the possible exception of

the phase distribution of the second mode for 21rNe = 34, these distribu-

tions are certainly not in strong disagreement with those obtained by ]
Sanderson and Streifer (ref. 42, fias. 13-21). In fact, in most cases,
these distributibns can be said to be in qualitative aareement with those
obtained by these authors. By qualitative agreement, I mean that
although the relative values for the peaks and troughs may differ some-
what, the basic nature and trends for the distributions are the same.
The reason for any deviations in these results is covered in

the following section.

Discussion
The purpose of this section is to evaluate the computational
procedure employed for this analysis, as well as the results obtained
using that procedure. The procedure itself will be considered first.
From earlier discussions, it is apparent that the existing

procedure is inadequate for determining the modal characteristics of

B o S ———

a wide range of laser resonators. However, the shortcomings associated
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with that procedure result from the 1imited range of applicability
of the author's computer routines and are not due to any fundamental
deficiency inherent in the procedure itself. In addition, the purpose
of these computations is somewhat Timited in that they were performed
only to support the basic theory and method of solution presented in
the earlier chapters. When evaluated in terms of this limited purpose,
the computational procedure is certainly adequate.

To aid in evaluating the results obtained using this procedure,
the results for which excellent agreement (difference generally 5
percent or less) was achieved are listed below.

1. Mode distributions for plane parallel resonators with
circular mirrors.

2. Eigenvalue data for plane parallel resonators with both
circular and rectangular mirrors.

3. Eigenvalue magnitudes and phases for circular mirror
resonators with g = 1.1.

4. Lowest loss eigenvalues for circular mirror resvnators
with g = 1.2.

5. Eigenvalues for odd modes for rectangular mirror
resonators with g = 1.2.

6. Eigenvalues for even modes for a wide range of rectangular
mirror resonators with @ = 1.8 (one point had a difference
of 7 percent).

Listed below are the results which are considered as fair or

marginal.

1. Eigenvalues for higher order modes for a circular mirror
resonator with g = 1.2 and N = 8,

2. Eigenvalues for several modes for circular mirror
resonators with g = 2.6.

3. Mode distributions for rectanoular resonators with g = 1.8.
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A1l of the cases falling into this second 1ist correspond to instances
where computational difficulties were expected. Difficulties were
expected for cases 1 and 2 as they correspond to eigenvalue computa-
tions (mostly for higher loss modes) for which the equivalent Fresnel
number is in the intermediate to high range. Difficulties were
expected for case 3 because the actual mode distributions are espe-
cially sensitive to errors in the values computed for the expansion
functions. However, it is worth mentioning that the basic nature or
character of the modes is correctly described, even though some
differences are present in these plots. .

From this discussion, one can see’that in regions where no
computational difficulties were expected, the results obtained in this
analysis are in excellent agreement with those obtained by other
workers. In addition, in every case where aareement was fair or poor,
that lack of agreement can be correctly attributed to the computer
routines employed and not to the basic theory or method of solution.
Thus, the numerical results discussed in this chapter and the analytic
results covered in appendix E strongly support the validity of the
basic theory and method of solution for symmetric resonators of various
geometries, Fresnel numbers, and magnifications. More importantly,
these same results should inspire considerable confidence in the
applicability of this theory and method of solution for other more

complex systems.
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VII. Summary, Conclusions, and Recommendations

The basic theory needed to analyze the modes of complex laser
resonators containing homogeneous media has been presented in this
report. That theory, which is firmly based on the fundamental equations
and principles of electromagnetic theory, culminates in a pair of
integral equations for the electromagnetic field within the resonator.

It is this pair of equations which must be solved simultaneously to

1
|
]
|

determine the modes of an arbitrary laser resonator. Unfortunately,

these equations are very complex, and solving them for the general case
is far beyond the scope of this effort.

As a result of this complexity, the integral equations were
gradually simplified by making various assumptions concernina the nature
s of the resonators being analyzed. For example, it was assumed that the

resonators consist of two perfectly conducting mirrors and a homogeneous
medium. This assumption resulted in a pair of equations for the currents i
induced on the resonator mirrors. It was further assumed that the

effect of any gain or amplification (resulting from polarization of the

lasing medium) is essentially constant between any two points on dif-
i ferent mirrors. In addition, the oscillation wavelenath was assumed to |
| be small in comparison to all resonator dimensions, and the mirror

diameters were assumed to be small in comparison to the mirror separa-

tion and radii of curvature. Finally, it was assumed that the self-

induction integrals are negligible and that it is the mode losses and

el

distributions, and not the precise frequency spectrum, which are of

interest in this analysis.
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After making these assumptions, the resulting equations for the
modal currents were solved using a technique that combines a variational
principle with the novel expansion functions discussed in chapter V. By
comparing these solutions to existing published work, the validity of
the basic theory and method of solution presented here has been verified
for a wide range of symmetric resonators. However, in addition to
directly verifying the analysis for these symmetric resonators, these
same calculations and comparisons strongly support the assertion that
the theory and method of solution are also applicable for more complex
systems.

In addition to providing the basis for actually computing the
mode losses and distributions, the derivation of the basic equations
sheds considerable 1light on laser resonators and their physical char-
acteristics and fields. For example, the derivation clearly shows that
the modes of open resonators are damped with time. For many cases, such
as the lower loss modes of paraxial resonators, this damping has a
negligible effect on the actual mode distributions. However, in other
cases, its effect can be significant. In fact, by properly including
the effect of uampina at the beginning of the analysis, it has been
shown that it is not always possible to formulate the laser resonator
problem in terms of a linear eigenvalue problem. In addition, by
properly including the temporal behavior of the modes, this derivation
has eliminated the need to define laser resonator modes in terms of scme
mythical round trip through the resonator. In fact, from this analysis,

the modes are seen to be fields for which the relative distributions

do not change at any time.




This analysis also points out the need to distinguish between

? the two types of energy flow associated with resonant systems. More~
over, by using continuity arguments, it shows that for energy flowing
from the resonator to the surroundings, the open portion of the reso-

nator hull does not enter into the calculations for the fields within

the resonator.
In addition to the points mentioned in the preceding paragraphs,
this analysis clearly shows that one cannot always analyze the modes of
Ry laser resonators by using only integral equations which express the
current (or field) on one mirror entirely in terms of the current (or
field) on the other mirror. In fact, since both mirrors normally affect
{ the current distributions, one should generally use a pair of coupled

equations which involve both self-induction and mutual-induction terms.

As a result, analyses which do express the current on one mirror en-
tirely in terms of the current on the second mirror have two potentially
important deficiencies. First, such analyses completely neglect modes
for which the mutual-induction and self-induction terms are either
proportional to each cther or have comparable magnitudes. Second, some
of the distributions normally reaarded as resonator modes may not be
modes at all. This statement is based on the fact that some of these
distributions may not be consistent with the assumption that the self-
induction terms in the coupled integral equations are nealigible.

Another important point in this analysis is the fact that the

fields associated with open resonators may be discontinuous. These

¥

: discontinuities, which may occur at the mirror edges or at material
- interfaces in segmented mirrors, are treated simply by allowing for the

presence of charges and currents at the points of discontinuity.

2
|
:
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Finally, by comparing the equations obtained at different stages of this

analysis to those obtained by other authors, one can gain considerable
insight into the actual range of applicability of other analyses. For

example, the integral equations obtained in this paper for paraxial

resonators with perfectly conducting mirrors are identical to those
obtained by other authors under what appear to be less stringent con-
ditions. As this analysis is strongly based on the principles of
electromagnetic theory, this suggests that the equations obtained by 3
those authors are not as general as they are normally considered. |
In addition to the insight obtained from the equations and
derivations themselves, one can gain further understanding of the be-

havior of resonator fields by actually calculating mode distributions

and losses. The variational method presented in this paper is one

excellent technique for performing these calculations. Using this

technique, which is implemented by applying the Rayleigh-Ritz procedure

in conjunction with the expansion functions developed in chapter V, the

analysis of laser resonator modes is reduced to a matrix problem that

can be solved using standard numerical techniques.

This reduction of the analysis to a matrix problem, which can be
f;- i solved using standard numerical techniques, has two important advantages
cver the standard iteration/orthogonalization methods of solution. B
First, the variational method is usually considerably faster than the

normal iteration approach, which actually corresponds to solving the

integral equation by the method of successive approximations. In
addition, the variational approach yields information concerning several

modes at once, while the iteration approach requires that a complete
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iteration/orthogonalization sequence be performed for each mode.

A Finally, the method of solution presented in this paper has at least one
important advantage over other matrix approaches. This advantage, which
is a result of the way in which the expansion functions are obtained, is
that modal calculations can be performed using a relatively small number é
of expansion functions. |

E As indicated earlier, the numerical work presented in this paper ;
has the rather limited purpose of supporting the basic theory and method ;
of solution covered in the previous chapters. With that in mind, the
numerical work was performed using a collection of computer routines
which were easily accessible to this author. No extensive effort was
made to write or find routines which were very aeneral or extremely 4

efficient. As a result, this collection needs improvement in two

PR SRR NS

important areas. First and foremost, the subroutine used to compute the d
confluent hypergeometric functions should be modified so that these
functions can be accurately evaluated for intermediate values of the
spatial variable z. This improvement is essential if this method of ~-¢
| solution is to find widespread application. Second, the integration

E | routines in this collection should be modified in a manner which will

g | reduce the effect of the rapid varjation associated with the kernels of
k| these intearal equations. Such a modification would allow accurate
computation of the matrix elements with a considerable time savings.
This is especially true for resonators with large equivalent Fresnel
| numbers.
Another aspect requiring improvement is the analysis of the

3

conditions under which the self-induction terms in the integral equations
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are negligible. The estimates given in this paper will probably suffice
for the lower loss modes of paraxial resonators; however, they may begin
to break down as k" increases or as the mirror radii become large. As a
result, more accurate and more general estimates of these conditions are
definitely needed.

Following these improvements in the analysis and computer

routines, this analysis should be extended and applied to study the

modes of a variety of laser reéonators. For instance, this analysis

should definitely be extended to determine the characteristics of Class
II and Class III modes of conventional stable and unstable laser reso-
nators. It should also be used to study toroidal and hole-coupled
resonators to verify that the expansion functions obtained for these
cases have the desired characteristics. When the applicability of these
functions has been verified, and when the above improvements have been
made, the basic theory, method of solution, and computational procedure
presented in this report should be extremely valuable tools in the modal
analysis of paraxial resonators with perfectly conductina mirrors.
However, even with these improvements, this work will not be the last
word in resonator theory. On the other hand, the integral equations
derived in this paper can and should form the basis for studies of more
complex resonators for which one or more of the limitina assumptions do

not apply.
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APPENDIX A

Green's Function Derivation

The objective of this appendix is to derive an outgoing wave

Green's function to be used in calculating laser resonator modes. This

Green's function is a solution of Eq. (20), which is repeated below | 4
v'26+kj2§=-fa(—_r-r') (A1)

where kj = kj + kj with kj > @, 1 = aa + a3y + ad,, §(r = r") is
the Dirac delta function, and the Laplacian is understood to operate
on the rectangular components of 8. Substituting the form G = T¢ into

Eq. (A1), one obtains the following equation for ¢.
v'2 $ + ka 6 ==-8(r-1r") (A2)

To solve Eq. (A2), it is helpful to express both ¢ and the

delta function as Fourier integrals of the form

6 = —7Ts [dk' TR 4| (A3)
k
and
§(R) = TZETFf‘”‘_ o TkR (Ag)
k

where R = ¥ - r', and the integrals are evaluated over all k. Sub-
stituting these expressions into Eq. (A2), evaluatinag v'2 e'ik'R,
solving for ¢, and substituting the result into Eq. (A3) leads to the

following expression for ¢.
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1 __-ik-R
¢ = =7 | dk =
(2n) k|2 - ka

k

(AS5)

Integrating over angles and denoting |k| by k and |R| by R,
this expression is simplified to yield Eq. (A6).

+o
5 1 K Le""ikR 2 e-'”(R] dk
M P EET / (k + k.) (k - k.) (A6)
0 J J

By writing the right side as the sum of two integrals and letting
k > -k in the integral involving e'ikR, Eq. (A6) may be rewritten in

the form shown below.

4
o k
4 (2r)2iR J{ k + kj) {3 E}y (A7)

To obtain the outgoing wave solution for kg < 0, one evaluates
the integral in Eq. (A7) using contour integration and the theory of
residues. The closed contour in the complex k-plane, which is traversed
in a counterclockwise direction, includes the real axis and a semi-
circle of infinite radius (centered at the origin) in the upper half-
plane as shown in figure 10. Since the integral over the semicircle

vanishes, ¢ is given by Eq. (A8),

1 k etTkR g
¢ (2n52'in(k + kj) (k - kj) 0

C

with the contour and pole diagram shown in Figure 10.
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k:+kf

Figure 10. Closed Contour in the
Complex k-Plane
To avoid systematically excluding outgoing wave solutions for

k; > 0, one must analytically continue this solution into the upper
half of the complex kj-plane. To do this, one simply distorts the
contour to insure that the path of intearation includes the outgoing
wave pole as this pole crosses the real axis. That is, the contour
is distorted so that it does not cross any poles as -kj crosses the
real axis so that -k; takes on negative values. This contour, which
analytically continues ¢ into the upper half of the kj-p1ane, is

shown in figure 11.
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Figure 11. Contour Defining the Analytic
Continuation of ¢
Thus for all values of kg, the only pole enclosed by the con-
tours is at k = -kj. Accordingly, the contour integrals can be

written as

+ikR
k e dk . '
] T T | 2niL (A9)

C

where L', the residue of the integrand at k = -k., is given by Eq. (A10).

J

L' = 1im (k + kj) 5 e+1kR S

oL Ze-‘iij

(A10)
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Thus, the function ¢ has the form

for kj >0 and -= < k; < to |

Finally, using Eq. (A11) and the relation § = T¢, one obtains

the followina expression for the outgcing yave Green's function.

e-ikaR

47R

6=1
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APPENDIX B

Application of the Field Equations to Resonators

o Al 2 20l

with Segmented or Open Boundaries

This appendix has two objectives. The first is to show that

the expressions for the fields for both open resonators and segmented _

boundary resonators satisfy Maxwell's equations. The second is to show

that these fields can be divided into m partial fields such that g
> ,

-~

;~¢i 1. The m® partial field involves only the field over

the mth

mirror surface or the me segment of a f
closed boundary; and

2. Each partial field satisfies Maxwell's equations. E

E

The formulation and manipulations needed to accomplish these objectives

SRS S

are covered below. »3

Formulation g

The field expressions for the two cases described above

(Egs. (28) and (29), and Eqs. (32) and (33))can be summarized by the

following equations,

-

¢ E(r) = :E: (AXE.) + v'xG + (Axv'xE) - G+ (AE)V « & ds!

| 1 TLE}(v-q,ﬁm-d‘s'm (81)
} m

=
€
me

5
ki
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where G = f¢. For closed resonators, the sums in these equations are
taken over all continuous segments of the closed interface or_boundary.
{‘v For open resonators, the sums are taken over the surfaces of the
resonator mirrors.
To obtain these two equations, it has been assumed that both
the electric and magnetic fields are square integrable. Thus, the points

of finite discontinuity have simply been removed from the above integrals,

T

and the remaining surface and contour integrals are considered to
extend to within an arbitrarily small distance & from the points of
discontinuity. As they do not actually include the points of disconti-
nuity, the integrands (and their derivatives) of these integrals are
continuous. As a result, integral theorems such as Stokes' theorem can
be applied to the surface and contour integrals in the above two
equations.

To accomplish the objectives of this appendix, the following
approach is used. First, the fields E(r) and H(¥) in Egs. (B1) and

(B2) are written as the sum of m partial fields,

LOEDMAG (83)
m

L T . ; ki
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AP = 22 F, (7 (84)
m

where EE(F) and Hﬁ(?ﬁ are the fields resultina from the mth seament or
mirror surface. Then Egs. (B3) and (B4) are substituted into Eqs. (B1)

and (B2) to yield the pair of equations shown below.

mem(F) =zﬂ;/ (ﬁxfm) . v'xG + (ﬁxv'x'E'm) B+ (ﬁ-'E'm)V' . B ds;
Sl
m
1 5 2
e v' ¢ H_ - ds (BS)
jwe % m o

ZmHm(?") =2ﬂ; (AxH,) « v'xG + (Axv'xH ) « &+ (A-H )v' - G p dSt

>m
.I 1 g 5 T 4 ‘
+ mzm vV ¢ Hm dSm (86) I

Then it will be shown that each of the partial fields Eﬁ(?ﬁ and ﬁh(?ﬁ
satisfies Maxwell's eauations. From this demonstration, it follows
directly that the total fields in Eqs. (B1) and (B2) satisfy Maxwell's
equations.

To show that these fields satisfy Maxwell's equaticns in all
space, it is necessary to assume that they satisfy Maxwell's equations
over the indicated surfaces and contours. Of course, any assumption
to the contrary immediately invalidates the assertion that the modal

fields are electromaanetic in nature. Thus, Eqs. (B7) and (B8)
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v x E = -iwuH
v x H = +iwcE

can be used to simplify the field expressions as shown below.

() = / ‘(ﬁxfm) c V' x B - dun (A x R o G+ (A-E )v'- G ds!
Sl
m

e 7' x G+ jwe (AxE) - G+ (R-F )v - & 2 ds!

év' ® E'm . d?m (B10)

m

Then, subject to the condition that these fields must be square inte-
grable (which was assumed earlier in this aopendix), the objectives of
this appendix will be accomplished if Eﬁ(?) and Hﬁ(?ﬁ aiven above are
solenoidal (diveraenceless) and satisfy Eqs. (B7) and (BS8).
Finally, to further simplify these equations and to aid in
later manipulations, the following vector identities are listed.
(vxB) «K=vs xK
K. (vxR=~xvs

7 x [A(r') x v' ¢] = A(r') v'0'¢ - A(r')V'2

=
Ve f=04
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KE.G="R (B15)

! RAx v =(vx A - v x (Avp) (B16)
V. {(AxB)=B-vxK-K.vxFE (B17) |
Using Eqs. (B12), (B14) and (B15), Eqs. (B9) and (B10) are rewritten as i

shown below.

Fm(F) = / I(ﬁxEm) X 9'¢ - jwy (ﬁxﬁm) b+ V' (ﬁ-fm) dst

-— 9.V ¢H . d5 (B818)

x|
3
e
—~
3>
x
|
p—
x
<
o
+
-
€
™
—~
3
x
m)|
N
©-
+
<
-
~—~
3
o
e
Q.
w

€

1 e e :
o fv $ E - ds (819) 4

Manipulations

k| To show that the fields in Eqs. (B18) and (B19) have the
desired properties, a procedure similar to that used by Stratton
(ref. 33, pp. 469-470) will be employed. One first takes the curl
of Eq. (B18) with the subscript dropped to obtain

v x E(r) f{v x [NxE(r') x v'¢] = iwu? x [AxH(F')]e} dS' (B20)
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where V¢ = - V'¢ and the identity V x V¢ = O have been used to eliminate
the last two terms. Using Eq. (B13) and the fact that ¢ satisfies the
scalar Helmholtz equation (Eq. (A2)), this expression is simplified to

yield

v x E(r) = - 'imu/ l(ﬁxﬂ’) X V'¢ + iwe (nxE) ¢} dS'
SI

+ (AXE) + v'v'¢dS’ (B21)
X
Using Eqs. (B7) and (B16), and the fact that
(AxE) + vvé = A - {Exv76} (B22)
this last integra1 can be simnlified as shown below.

/(ﬁxf) . V'9'¢dS' = - iwu/ (A<H) v'¢ dS"
Sl SI

-~

- n -« [v'x(Ev's)] dS' (823)
Sl
The last intearal in Eq. (B23) is now converted to a line intearal by
usina Stokes' theorem applied to dyadics (Collin, ref. 34, p. 569).

The result is shown below.

n. [v'x(Ev's)] dS' = f‘]'dsf' ds (24)
C

SI
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Then substituting Eqs. (B23) and (B24) into Eq. (B21), one obtains the

following result.

v x E(r) = - iwu /l(ﬁxﬁ) x 7'¢ + jwe (nxE)¢
Sl

+ (A-H)V'e

ds' + 1%; fwf . ds (825)
. ¢

Comparing the right side of Eq. (B25) with Eq. (B19), one can see that
Eq. (B7) is satisfied. A similar procedure, which is not shown here,
can be used to show that the fields in Eqs. (B18) and (B19) satisfy
Eq. (B8).

The next step is to show that the fields in Eqs. (B18) and
(B19) are solenoidal. One begins by taking the divergence of Eq. (B19)

and applyinag Eq. (s17) to obtain

v . H(r) = [ [mév « [(AxE(¥"')s] - v'24(A-H)} dS'
Sl

b ﬁ-; f V'24F - d5 (826)
¢

Applying the Helmholtz equation, this form is simplified to yield

v « H(r) = /[- jwe (AXE) « v'¢ + k2 (n-H)} dS'
Sl

¢ E{w- ds (B27)
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Using Stokes' theorem, the line integral in Eq. (B27) is expressed in

terms of two surface integrals as shown below.

fﬁ- ds = flv'q, x £+ ¢(v'xE) | « AdS’ (B28)
Sl

C
Using Eq. (B7) and the fact that

(v'¢xE) » n = - (AxE) - V' (B29)

the line integral is expressed as
f&' . d§'=f’- (AXE) « v'¢ - iwn (n-H) ¢} dS' (B30)
[ 3

Substituting Eq. (B30) into Eq. (B27) and using k? = w2ue, one can
show that v + H = 0. A similar orocedure can be used to show that

v.E=0.

m
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APPENDIX C

Elimination of the Self-Induction Integral

On page 37 in this report, it is shown that for resonators

containing two perfectly conducting mirrors for which a/|R| << 1, the

-5 | currents on mirrors #1 and #2 are governed by the following pair of
- equations,
I = Knda * Ki2dxe (c1)
3 hea T St ¥ Kaelya (c2)
: where
' " = = q ! Yip! '
% Kq£Jx2 2(-1) / sz(rz) ¢z(r|rz) ds, (€3)
1 Se FEFz
E | 3 3 ¢ 1+ dik|r = r* l S
E | Kga'xq = 2(-1) / Ixq{Tq! vl 3(rglTy)
q \
f €
e
;
1 SroaE T - ' g 3
E cos(rq Tq * nq) dSq (ca) ;
g | -1k| l ,
s(rglrg) = (c5) P
41r|¥‘ I ’
and cos (rq - ra, ﬁq) is the cosine of the angle between the unit ]
normal at Fa and the vector rq - ré. It was further shown that when 1;
the self-induction integrals (or terms) are nealigible, that is, when
IK aq qu << [J | forq=1, 2 (C6)
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E | then a certain class of laser resonator modes obeys the equations

-~

a1 = Ki2Kodyg (€7)

x1
ez = Ka1Kidyo (ce)

The purpose of this appendix is to estimate the conditions under which

T

the self-induction integrals are negligible.

& 1 To obtain this est{mate, the followina approach is used.

F,t First, it is assumed that the resonators beina considered contain

£ é circular mirrors of radius a. Then the inequality in Eq. (C6) is

“ specialized to apply to the center of mirror #2 for modes which have no

'{ azimuthal variation. Finally, a simplified version of the expansion
functions (see chapter V) is substituted for sz, and the resultina
integral is approximately evaluated for mirrors such that a/|R| << 1.

Thus, the estimate itself will take the form of an inequality involving

the various resonator and mode parameters. However, since this inequal-
ity is merely an estimate of the conditions under which the self-
induction integrals are nealiaible, the inequality is denoted by

' ?
B the symbol <<.

| It is apparent that this procedure involves many approximations

e e

and assumptions concerning the resonators considered and their asso-
ciated fields. To show that this procedure at least leads to the riaht

order of magnitude of the conditions under which the self-induction

terms can be nealected, a second anoroach is used to check the condi-
tions for one particular case. This second approach, which employs i
the method of steepest descents to approximate an intearal, beagins

with Eq. (C33).
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Using the first approach described and denoting the current

th

distribution for the j~ mode by uj(r), one specializes the inequality

in Eq. (C6) to obtain Eq. (C9).

?
<<

a
-ik.rs 1 + ik.r]
' j 2 J 2 S 1 ]
fuj(rz) e —__réz cos (a,,7,) radrs

uj(0)| (C9)

0

The expansion functions which were obtained in chapter V, have the form

ik ——
+.2.L_j_Vg2_] ?‘2

us(r) = g5(r) e

j (C10)

where Re(kj) = kj > 0, and gj(r) is assumed to be slowly varying in
ikt

Substituting this form for uj(r) into Eq. (C9), one obtains the

comparison to the exponentials e and e

inequality shown below,

a 8
a;(0) >3|/9j(ré) exp 31‘kj [-ré t ?E‘ réz]zcos (a,,75)
o}

]

where g8_ = dgz -1

To simplify this expression further, one needs to approximate
the term cos (SZ,FE). To do this, one uses figure 12 to see that the

vector F} can be expressed in the form
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ri2
- g i
'~ op) +
r ro & + —opd,

where R is the radius of curvature of mirror #2 and the distance z

a

has been approximated by z = réz/ZR, which applies if'ﬂir I

(MlRROR #2

Figure 12. The Geometry of a Larae
Radius of Curvature Mirror

Then usina Eq. (C13),

(C12)

(C13)

in conjunction with Eq. (C12), the estimated condition is simplified

to yield

s e bbb
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—

i
|
4
1

a

8
fgj(ré) exp 3+ikj [-ré + -2-% réz] %

(6}

e
|5t | > zmr

(1 + ikjré)dré (c14)

Since the integrand contains terms of the form

+kr Fk'g r2/2L
e J ande 99 , the probability that Eq. (C14) will hold (for

both + and - signs) should increase as kg decreases. With-this in mind,
and to simplify the analysis as well, it is assumed that k% is suffi-
L 2 J
: - +kir e T
ciently small so that the functions e J and e J g are slowly
varying across the entire mirror surface. With this assumption, the

magnitude of the integral in Eq. (C14) will be largely determined by

-ikir +ik!B r2/2L
the oscillatory functions e J ande J9 . In fact, these two

oscillatory functions should combine to produce a significant contribu-
tion to the integral in regions where
1. The exponentials oscillate nearly in phase, or

2. The exponentials are nearly conjugates
over some significant distance.

There are two types of regions over which these two conditions
appear likely to occur. The first type consists of regions surrounding

points where the two phase terms are equal; that is, where

k:g
97(r) = 05(r) with ¢;(r) = kjr and 9 (r) = —%Ei r2, Of course,
¢1(r) = ¢2(r) at r=o0and at r = 2L/Bg.

Although the phase terms are equal at these two points, their

rates of change are not equal there. In fact, at r = o0,
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T= kj andT= 0 (C15)
while at r = ZL’
fg
doy(r) d,(r) .
T kj and —er ij (C1e)

At the optical or infrared wavelengths of interest for this analysis,
the difference in these two rates will be sufficiently large to prevent
the exponentials from being in phase (or conjugates) over any signifi-
cant distance. As a result, the contribution to the integral from
these two regions (especially the one near the point r = o) will be
small in comparison to the contribution from a stationary phase type
region where ¢1(r) and ¢2(r) are changing at nearly the same rate.

The only region of this second type is located in the vicinity of

r = L/Bg. To estimate the width of this stationary phase type region,
it is assumed that the exponentials remain nearly in phase or nearly

conjugates over the distance for which,

S A A SN a0 S

m

8¢,(r) = a6y(r) | =7 (€17)

where the changes in the 95 are computed relative to their values at
r= L/Bg. Substituting the forms for ¢1(r) and ¢2(r) into Eq. (C17),
one obtains Eq. (C18) below.

L
r2_r+_=:
289

(C18)

| ™
-
B>
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This equation has real solutions of the form

PATE :\[5‘] (c19)
%9

where S = Asg/ZL. Thus, the so-called stationary phase region will be

%

To estimate the magnitude of the integral (in Eq. (C14)) when

taken as the region extending from r = L (1 - \[§3 tor ='%—-(1 + \[53.
g

the mirror radius a 1is sufficiently large to include all or part of
this region, the following procedure is used.

1. The assumed slowly varying functions, gj(r) and the
exponentials involving k;, are evaluated at the midpoint
of the integration interval and factored out of the
integral.

The remaining exponentials are taken as being exactly in
phase or exactly conjugates over the integration interval.

3. It is assumed that kj >> kg.

Then applying these steps, taking | gj(%—d [~ gj(o) |, and assuming
g
a > %— 1+ \J§3, the proposed inequaiity becomes

(1 + ik&ré) dré
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For the case where the exponentials are in phase (upper sign),

Eq. (C20) takes the form shown below.

3L g
2 eisg -2ik.rs
- e . % fgrs
2|R|
£
e i V)
g
= (1+y5) ¥
g =1 j 12
' Bar ' 1
* ikj / e T 92 rydry (ca1)
L
5 (1-479)

By determining the bounds on these two integrals, one can show that

Eq. (C21) will hold if

ot
I Ty g ) S ’
1 >> m‘l' e 7y + g (ce2)

If the exponentials are taken as conjugates (lower sign) over the

stationary phase region, Eq. (C20) takes the form

I ERD

| [
/ (1 + ikjrs)dry l (c23)

o
1>>-2-m-e

m‘l—
—~
-
[
m]
~—
e —— A
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This inequality will hold if

Sl g e ac Al Sl Ul oiBins Ll Ll a0 o

kYL -
2 iﬁ%i
Y g 2nL | L
1 »> “TRT e 1+ B |8 (c24)

9 9

One can use this same procedure to estimate the conditions

under which the self-induction integrals can be neglected for

%-(1 - \[3) <a 5_%— (1 # \rg); however, for this case, a is i
g 9 3

taken as the upper limit of integration in Eq. (C20). The result
is two rather complicated conditions which are not given in this
report.

This same procedure is also used to estimate the integral in

R ..

Eq. (C14) for the case where a < %— 1 - \[g). For this case, it is
g

assumed that the integration region extends over the comparatively

small distance (see the discussion following Eq. (C16)) corresponding

to the condition,

(C25)

LS E

lA¢2(r) x A¢](P)l o

where the changes in ¢](r) and ¢2(r) are computed relative to their

values at r = o. Application of this condition leads to the equation

i 8 rz 4
K} —gT_—-r =tz (C26)
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which has solutions of the form

= \’1 + § (c27)

Since r < %-(] - \[g), one chooses both minus signs; thus, the i
g 4
region of integration has a width w given by Eq. (C28). '

= (1-41- s)%g (c28)

For the case when S << 1, w = A/4.
To at least partially include the fact that the exponentials

+kir +k4r2g /2L
e ande 9 9 increase with increasing radius, this region of

width w will be placed at the outer edge of the mirror of radius a.

Thus, for this case, the integral in Eq. (C14) will be approximated
using the procedure described earlier and limits of integration of

r = a-wand r = a. Then evaluating the exponentials involving

kg atr=a - g-and factoring them and gj(r) out of the integral, the

proposed inequality takes the form

Ao “"‘..Aw i e Lt

a
| k!
‘ - " 2 '2
; ] i gT-T ekJ(r+§9 r2) 1kJr2+-Ef-Bgr2
E a-w
i' (1 + ikj ré)dré (Cc29)

}
|

H The inequality in Eq. (C29) will be satisfied if
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DO

Nl ™
-

4 +ki(a + L a2)

WeJ

1+ 2 2
~ {2p - w) | << 1 (C30)

For the case where S << 1, Eq. (C30) reduces to Eq. (C31),

k

N ™
—

'(a + a2)

J

i i2ra
(1 =S
7

A +

which will be satisfied if

]
E +k"(a + =2 a?)
| -ﬂ%‘-e J 2L [%_ ’] . (_})2'+ ,z,_a] 2 : )

! For future reference, the estimates of the conditions under

l ? (C31)

which the self-induction integrals may be neglected are summarized

below. First, for the case where T%I- «< 1, & ¢ lé—- (1 - \E), and
g

A << S—L , this estimate corresponds to the condition shown in Eq. (C32).
g

For the resonators considered in this paper (those for which the wave-
length is small in comparison to all resonator dimensions), this

condition will hold for all but the lossiest modes. For the case where

| T%I' << 1 and % (1 + \]?) < a, this estimate corresponds to the pair
3 g

of conditions shown below and referenced for your convenience.

3 3kUL
‘ 1 +2—B-L A ? )
. ITRT e [717 + g ] << 1 (C22)

tblr-
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These conditions will hold only for cases where the mirror radius of
curvature is very large in comparison to the mirror separation.

As indicated earlier in this appendix, various assumptions and

approximations have been made to obtain these estimates of the condi-

tions where the self-induction terms may be neglected. Many of these
assumptions were made to simplify the integral in Eq. (C14). To at
least show that this simplification process has led to the right
order of magnitude for these estimates (Eqs. C22, C24, and C32), the
integral

ik,

-ik.r! +

s, e e
T2t 2L "

g2 : ' '
{1 + 1kjr2)dr2

will be approximated for the case where %— < a using the method of

g
steepest descents (Erdelyi, ref. 41, vol. 2, pp. 24-27). To remain
consistent with the calculations performed earlier in this appendix,
it is assumed that kj >> k;. With this assumption, Io may be written
in the form characteristic of the method of steepest descents; that

is,




h(z) = g5(2) (1 + ikj2) e

B
flz) = 4% (2% z? - z)

and z = x.+ iy.

To locate the saddle point, one determines the point at which

d4f(z) . (c37)
For this problem, the saddle point is located at z = L/Bg and, the
steepest descents contour, which is specified by the equation

Im f(z) = Imf(L/Bg), corresponds to the line y = x - L/sg in the
complex z-plane. As part of the overall procedure to estimate Io’
this steepest descents contour (CSd) has been chosen as one segment

of the closed ’contour shown below in figure 13, where C1 and C?_ are
lines parallel to the imaginary axis. C] begins at the point

z = a and ends at z = a(1 + i) while C2 begins at z = -i L/Bg and

ends at z = 0. The segment Co extends along the real axis from

X =0 to x = +a.




o gl Sk ol

> <

a (1+i)
c
d
S c‘
L
Bl > z L - X
b '
pd
Bl

Figure 13. Closed Contour Chosen to Include CSd

By applying the theory of residues to the closed contour

shown in figure 13, one obtains Eq. (C38)

where

+kif
Bys ,[ h(z) e 9 g dz (€39)
1

and so forth. However, by writing out the expressions for I] and I2

and using the fact that kj >> k;, one can show that these integrals

involve exponentials which decay very rapidly with increasing distance




from the real axis. As a result, II]l and IIZI should be small in
comparison to IISdl. Therefore, they will be neglected for the
remainder of this analysis.

Finally, to simplify the analysis, only the first term in the
asymptotic expansion of ISd (Erdé]yi, ref. 41, vol. 2, p. 26) will

be used. One thus obtains the following expression.

ikiL

1) J
- +_L|(_/B -
e B L e Al 8
ISd~ E—B-g— gJ (Bg) e (] = ‘ij —Bg) e g (C40)

Taking the bound of the right side of Eq. (C40), the following condi-

tion is obtained.

kil

AL L +2%; L
< i 1o 3) b 1] o

Substituting Eq. (C41) into Eq. (C14) and taking

| Isq

| 95(0)] e
lgj (%;)l

the proposed inequality for the case where L/B8_ < a takes the form

g
k'L
P
g [1 + 2n —L-] ) (C43)

A
B9

(C42)
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Comparing this expression with Eq. (C24), one can see that the

Bl two conditions differ by a factor —4— . Although this small difference |

V2

does not prove the validity of the inequalities in this appendix, it é

B does indicate that they have the right order of magnitude.

TR
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APPENDIX D

Detailed Calculation of Expansion Functions

»
This appendix presents the detailed calculations of the expansion

functions used in conjunction with the Rayleigh-Ritz procedure discussed
in the body of this report. These calculations are performed for reso-
nators containing toroidal as well as spherical mirrors. The spherical

mirror cases are considered first.

Spherical Resonator Calculations

2 : Spherical Mirrors of Rectangular Projection. As indicated in f
chapter V (page 56), the expansion functions used in computing laser
resonator modes are approximate solutions to an integral equation for

a symmetric laser resonator. The particular symmetric resonator

i T ST 1 e el s

chosen consists of two mirrors identical to the one on which the
current is being analyzed. The mirror separation is the same as in
the original problem. Thus, to determine the expansion functions for
the current on mirror #2 with radius of curvature R and transverse

dimensions 2a and 2b, one begins with Eq. (71) which is repeated below,

-ikR
Joo(r,) = - Ik J_4(r!) 9——-—31 coSa,,dS: (D1)
x2\"2 2T x1'1 Ro1 b

59

where R21 is the distance between two points on mirrors #1 and #2,

%51 is the angle between RZ] and the optic axis, and Si is the surface

of mirror #1.

e e o A S
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However, as this equation is to be applied to a symmetric resonator,

3,1(F3) = el 3,2(73) (02)

where @' = nq and q is an integer. One can see this by choosing the

' origin midway between the two mirrors and realizing that the fields

? | must be even or odd with respect to z. Then, writing Eq. (D1) in terms
of rectangular coordinates, using Eq. (D2) to eliminate Jx](Fé), and
‘ : dropping the prime, one obtains the following result,
?;.‘-c' a i
J_,(x ) = - 1k e+ig' d (% ) g—:Efﬂ-cos dx,d (D3)
x2\%2:Y2 2n e Sl e s %219%1 M
-~a *b

where the projection of R21 in the x-z plane, denoted Ré], is shown in

figure 14.

Figure 14. Geometry of a Spherical Resonator | 4
with Rectangular Mirrors | 9
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The distance R21 is given by
R%] - (X] - X2)2 + (y] ¥ y2)2-+(z] & Zz)z (D4)

To simplify the procedure for obtaining the expansion functions,

it is assumed that*

d
Tﬁ?— << 1 (D5)
d2 2
m L ]
— << |5 (Do)
Hha
k" << k! (D7)
dm << L (D8)

where d; = a2 + b2, With these assumptions, cosa,; = 1, and

k! i k' - 2 2 4 ik.
L e e‘%’L‘ Bl ey e T B b A

where g = 1 - L/R and the first two terms of the binomial expansion have
been used to approximate RZl' Finally, it is assumed that

+kll

R "
a 21 o, e+k L

(D10)

*For resonators for which Egs. (D5) through (D8) are not valid, the
effect of these approximations will be simply to require the use of a
relatively large number of expansion functions to represent the modes.

3w vl 2
+In general, d2 (x] + y])max'
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across the entire mirror surface. Using these approximations, Eq. (D3)

can be manipulated to yield

H L S
g ~ =% (ES + £2) + 4E. K
u(Ez) = Yx %‘.ﬁ.‘f U(E]) e 4 L 2 e di] (D11)
-H

H 38 ra . 2 i
y - = (nZ + n3) + inn
v(nz) - Yy\)-;;/ v(n]) e el & 172 dn] (D12)
-Hy

~ Rt =ikl
Tty = E (D13)

,]5‘_ =,/£‘. =,[£'_' =,’k_"
where 51 L xi, n; L yi, Hx L a, Hy L b, and
Joq(xsy) = u(x)v(y).

Since Eqs. (D11) and (D12) are uncoupled equations of identical

fdrm, the remaining calculations are performed considering only the

x-variation. To simplify these calculations, one lets

-ig(s“e?)ﬂ'aa

so that Eq. (D11) can be written in the form shown below.

HX
U(Ez) = Yxf U(E]) K(Ezla]) dﬁ"
-Hx
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In the next step, one determines the operator ﬁ (see pages
57 - 62) associated with the eigenvalue problem for the expansion

functions. To do this, one begins with Egs. (D16) and (D17) below,

d2K(g,|&4)
de3

Yx

X
,/ﬂ de . K(&,]&q)
1 2 =] 2
ZH d&j

X -Hx

4 d2u(g;) 4 d2K(z, &)
P [ S,
de3

+ Yxﬁu(zl)

where Eq. (D16) was obtained by computing d2/d5§ of Eq. (D15), and

Eq. (D17) was obtained by integrating the term K(gzlg]) dzu(e])/dg% by
parts twice. The function ﬁu(§1) in Eq. (D17) is defined by Eq. (D13)
below.

3 dK(&, &) du(gy)
Ru(ey) = u(s])——i—]—-K(szla]) ‘

dg] dg]

(D13)

-Hx

Then, evaluating the derivatives, substituting the expression

for dZKIEETE{)de%Min;QMEq. (D16), and using Eq. (D15) to simplify

" ' g
terms of the form ‘/~x a% u(£1) K(azlg]) dET;wene\q§p obtain the

X

integrodifferential equation shown below.
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H
( dz X
e I 272 3 = 2
1ds§ + g%g5 + g pu(gy) Yx/ u(g;) K(g,|8p) &3de,
-Hx
HX
+ 2952 YX f E]U(E]) K(EZIE]) dg'l (D]Q)
..Hx

A similar procedure involving dZK(azla])/dE% and Eq. (D17) yields

Eq. (D20).
2 5.3 2 Hy d2 2 2{ (
'(52 + 19) u(iz) = YX/ K(Ezlg]) E"' g 5], U.E]) dE]
1
-Hx
My
= Zgazvxf gquley) K(gyley) dgy + v, Ru(gy) (D20)

-Hx

One then adds Eq. (D19) to Eq. (D20) to obtain

H
fuey) = v, fx (&1, u(e e, - v Rule) (021)
-Hx
where
P
i Sept(e2-1) e (D22)

is the desired operator. Using this operator, the eigenvalue problem

is formulated as the following differential equation.
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TRE }(g2 - 1)g2 + 52| u(e) = 0 (023)

To solve this equation, one first considers the case wnere

g2 > 1 and makes the substitutions d2 = 2'\}(92 -1)and z = Vﬁ‘gd
to obtain Eq. (D24),

dz¢

2 2
Sz +-z—4+(v+]§);u(z)=0 (D24)
where v + 1/2 = - is2/d2. This equation is Weber's differential equation
(Whittaker and Watson, ref. 39, p. 347), which, if v is not an integer,

has a general solution of the form

u(z) = ADv(z) + BDv(-z) (D25)

where the Dv(z) are parabolic cylinder functions (Lebedev, ref. 40,
chapter 10).

By letting B = + A, these solutions are specialized to apply
to either odd or even modes. Making this substitution and writing the
Dv(z) in terms of the confluent hypergeometric functions of the first
kind (Erdé]yi, ref. 41, vol. 2, p. 123), one obtains the following

expressions.

2
o(- %, %3 57) for even modes

.22
o2 /4

A

oh ’ 2
pe 2% 26 (152, 3, 23 for odd modes (D26)
b L L

At this point, the only remaining step is to specify the
parameter v by following the procedure outlined on page 62. That

procedure corresponds to the requirement that as g -+ 1, the expansion




functions must reduce to the plane parallel solutions of Vainshtein

shown below,
cos s¢ for even modes
u(g) =
sin sg for odd modes (D27)
where s=mr/(M+ (1 + i)g)> 8 = -2(1/2)/y/7 ~ 0.824, M = /8uN, and N
is the resonator Fresnel number. For even modes, m = 1,3,5--- and for
odd modes, m = 2,4,6---.

. This procedure for specifying the parameter v can be simplified
considerably by realizing that as g -~ 1, d2 -~ 0, and |v| - =. Letting
a=-v/2o0r(1-v)/2 and y = 22/2, this procedure also corresponds to
investigating the behavior of the ¢(a,y,z) as |a| = ». Several in-
vestigations of this type nave been performed.

To obtain the particular form used for one such investigation,
one sets x = y/2 - o, and requires ay to be bounded in absolute value.
Then, since y = 1/2 or 3/2, xy is also bounded in absolute value. With

these restrictions, it has been shown that (Erdé]yi, ref. 41, vol. 1,

p. 280)

1 - -
o(as ¥, yH r(y) (xy) 2 ¥/ 3,1 (2V&Y) (23)
k| + =
One then uses the fact that since x = (v/2 + 1/4) = - is2/2d?,
ky = s2g2/4. This expression for xy is then substituted into Eq. (DZ8)
to obtain Eq. (D29).
id2g2

°(‘1’ Yo .Y) s T(Y) (S—%) Ye JY_] (SE) (ng)

|x| + =
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Then, for the even mode solutions of Eq. (D26), one lets

y = 1/2,

u(e) = A r o (se)

g-b

and for odd modes, y = 3/2

u(g) > Ader (%)\E—E 3y (se)

g+l
Substituting the well-known forms (Whittaker and Watson, ref. 39,
p. 364)

= _2—. 1

J35 (sg) \}wsg sin sg
J . (sg) =\}-—2 coS SE
-3 TS

into Eqs. (D30) and (D31), one finds that for even modes,

u(g) » A cos s¢

g *
and for odd modes,
u(e) + ——fisin SE
g N

Thus, for the desired reduction to occur, it must be true that

s=mn/(M + (1 +1i)8). Therefore, v has the value given below.

2
" mn/d
1 + 2i [ -~ - B] {

Ry
4
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To complete the procedure for obtaining the expansion

ﬁﬁ functions, one returns to the differential equation, considers the
case g2 < 1, and makes the substitutions h? = 241 - g2 and y = hg.

The result is Weber's equation as shown below.
2 2
) s J e p -Gl =0 (037)
y

For all values of v, the general solution of this equation may be

e e o eagg 7 L B L P 3
o SRR M s 3. Lo LU SR -

v written in the form (Whittaker and Watson, ref. 39, p. 348),

n

% u(y) = AD (y) +BD_  _4(iy) (D38)

gi However, for real values of y, D_V -1 (iy) increases exponentially as

.? |y| increases. Since this directly contradicts the known behavior of
the modes of stable resonators, one requires that B = 0. Finally, the
requirement that the modes be either even or odd yields v = 0,2,4,6,--~
for even modes and v = 1,3,5,--- for odd modes. Thus, for g% < 1, the
expansion functions are given by Eq. (D39).

f x;

4 = 2

| e ) (- g5 %3 x?) for even modes, n = 0,2,4,---

u(y) = 2

%j e- yo ln 3 X% for odd modes, n = 1,3,5,---  (D39)

’ T! 7) [ YV

5{ Then combining the forms in Eqs. (D26) and (D39), the expansion

4 functions for one transverse dimension are given by,

3 2 2

; N e i

] e ) (- 5—, %-, h—%—) for even modes

i u(g) = 51 :

i hi-

‘ . 2 2,2

1 ge ) (123, %-, h—i—) for odd modes (D40)

{
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where h?2 = 2 \J] -g%and ¢ = \}k‘/L x. For stable resonators,

v = 0,2,4,--- (even modes) or v = 1,3,5,--- (odd modes). For unstable
resonators, v is given by Eq. (D36) where m = 1,3,5,--- (even modes)
orm= 2,4,6,--- (0odd modes).

Spherical Mirrors of Circular Projection. To obtain the

expansion functions for spherical mirrors of circular projection, one
begins with the integral equation for a symmetric resonator in circular

cylindrical coordinates as shown below,

& k Raly
| Loty LS f dezf Jalpgs 8) Sp—

COSa]zpzdpz (D41)

where @' = mq as before. Then, in addition to assuming that Eqs. (D5)
through (D10) hold, one assumes solutions of the form
2 +ing
Jyo(es 8) = ug(o) e (042)
and applies the identity (Erdelyi, ref. 41, vol. 2, p. 7),

2n
" 2n (2) =f T e T (D43)

0
where Jn(z) is a Bessel function of the first kind. The result is the

following integral equation for the radial mode function un(s).

a R AGER)
u, (&) = Ynf u,(,) e Jn(8185)€,d8, (D44)
0
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where y = e KT 4 e o k0., and g = 1 - L/R. Finally,

one converts this equation to an integral equation with a symmetric
kernel by making the substitution un(a) = vn(E)/\f?- The result is
shown below in Eq. (D45),
Ha
v (&) = Yn“" vo(Eg) K (5118,) de, (045)
0

where
-19.(52 + 52)
1 2
34(515,) (046)

Kn(€1 lEz) =\’E~|€2 e

To obtain the eigenvalue problem for the expansion functions,

one begins with the following pair of equations,

H
d2v (&) a d2K (&518y)
s bl S Ynf v, (8,) i ke L dz, (D47)
de? def

H 2 H 2
a d2v_(&,) a d2K (&,]%,)
n'>2 2 n %2l
Yn Kn(EZIE]) __"—2 dEZ = Ynf Vn(Ez) T d52
dg d
0 0

2

2 &2
+ v R (5,) (048)

where
H
3 dv _(&,) dK (&,]&,) [ a

Ry, (8, = 1K (6,]8,) ~Baba o v {g,) ~B—Blld * (D49}

n‘=2 N2l d n'z2 d

&2 &2 0
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The indicated derivatives of Kn(ezlzl) are then evaluated,

and a procedure identical to the one used for rectangular mirrors is

followed to obtain Eqs. (D50) and (D51) shown below,

2 - n?
d—2+ 923 + 2ig + d — Vn(&y)

H
a
-y, f v (& K, (8,18, )63de,

0

H 3
a
- 2ig Y,,f (51850 01(518,) Elgyley) de,
0

{2ig + &2 bun(ey)

a

H
Y
n / Kn(EZIE])
0

H 3
a ~
+ Zig YnJ (5]52)2- \];‘(5]52) E(Ezla]) d€2 = YnRVn(Ez)

- g+
Elgly) =0 = % T

dJn(x)

and Jé(x) =
dx
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Finally, one adds Eqs. (D50) and (D51) to obtain Eq. (D53).

]
é2 (I'nz)
=5 (g% = 1) &7 #

vl&q) = = vy (&)

2 2
dgj 3
a d2 (}I ¢ nz)
e 2 o A o e S e 03 e
+f aleglep) |+ (92 - 1) g A—2 v (5;)de,  (053)
5 dg5 &%

One can see that this equation has the same form as Eq. (113) in
chapter V. However, Eq. (D53) will not have the characteristic de-
scribed in condition #1 following Eq. (122) unless the term in braces
in Eq. (D49) vanishes at &y = 0. Since the functions vn(az) have
not yet been selected, it is initially assumed that this term
vanishes at the origin. The validity of this assumption is demon-
strated later in this appendix (beginning with Eq. (D77)).

Then, subject to the above assumption and in accordance with

Eq. (125), the operator ﬁ is chosen as shown below.
A
d? . B8

M=$t (g2 -1)¢g2+

s £2 (D54)

Thus, the eigenvalue problem for the expansion functions is expressed

as the following differential equation.

42 (I g "2)
__f'"_(i+ (g2 - 1) g2 + +s2 1 v (g) =0 (D55)

dg2 g2
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To solve this equation, one first considers stable resonators

(g2 < 1) and makes the substitutions,

wn(E) = vn(E) JW? (D%6)
zZ=a'g? (D57)
where o' =4 1 - g2. Then, letting s2 = - (2v + 1)a', one obtains
Eq. (D58).
d%w_(z) 2
L RS %. T (2v+1) , (n% - 1) w(z) =0 (D58)
dz? z 22 5

Equation (D58) is Whittaker's equation (Whittaker and Watson, ref. 39,

p. 337), which has a general solution of the form

We,p (z) =A wK, p(z) FBW_ (-2) (D59)

s P

where « = - 1/4 (2v + 1), p = n/2, and W (2) is a Whittaker function ||

of the second kind. Now, the Whittaker functions are related to the

At it

confluent hypergeometric functions of the second kind, ¥(,y,z), by

the following equation (Lebedev, ref. 40, p. 274),
R
S 2.22.?(a, ¥y 2) (D60)

NK’ ‘Zn‘ (z)

where a = (n +1)/2-x and y

n+ 1. When n 1is zero or a positive
integer, which it is for this problem, ¥(a, n + 1, z) is represented

by the series (Lebedev, ref. 40, p. 264),
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n (a), 2z
toum,2) = S Eg% TR TRT {9(etk) =p(14) - (neke1) 1n(2)

8=l 1) K(nek-1)1 (- |
1 (-1)%(n- l) (a-n), k- T
k=0 o

where (a)k = I(at+k)/T(a), and v(x) is the logarithmic derivative of the
gamma function (Erdé]yi, ref. 41, vol. 1, p. 15).
From this series, one can see that, unless a = - m where m
is zero or a positive integer, ¥(a, n + 1, z) has a singularity at
z = 0. However, if a = -m, the series is indeterminant, and
¥(x, n + 1, z) must be evaluated using a limiting process. For this

case, one finds that (Erdé]yi, ref. 41, vol. 1, p. 268)

¢(-my, n+ 1, 2) = (-1)"m! Fm"(z) (D62)

where Fm"(z) is a generalized Laguerre polynomial. Thus, if the
origin (z = 0) is included, the solution to Eq. (D58) becomes
a't®

= [ n+1 n )
Won(E) = A'e g Fn (a'€2)

122
+ S
2 En + 1 g N

+B' e (-0'g2) (D63)

However, since stable resonators do not produce current distri-

butions for which the current grows exponentially with increasing

mirgore.vadjus (Bergstein, ref. 2, p. 500), B' w bg&t e%‘ ,

zero. Thus, the expansion functions are given by Eq. (D64).
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5 v
wo(€) =ate 2 g"FTED (grg2) (064)

i For unstable resonators (g2 > 1), it is advantageous to convert

the differential equation back to an equation for un(a). To do this,

I one substitutes un(a) = vn(a)/\/? in Eq. (D55) to obtain,

d%u (z) du_(z) 2
R 1;_1_+ 422 - 1= - 4y (2) = 0 (D65)
dz2 dz 22

where z = @€, t = - (s/22)2%, and @2 = 1/2 ng - 1. This equation
has a general solution of the form (Erdé]yi, ref. 41, vol. 2, p. 126),

Upo (2 =2 dMM  (i22) +BU | (+i22) (066)

11,? i‘r,é‘

where the Ml< and w'< ? are Whittaker functions of the first and second

kind.

As with rectangular mirror resonators, one must now insure

that these solutions,

1. Have no singularities, and
i 2. Reduce to the proper forms as g~ 1 (2 + 0).
Dealing with the singularities first, one uses the fact that

i W n/z(x) has a singularity at the origin unless it=- (m + (n+1)/2),

Vit
where m = 0,1,2,---. For this case (Lebedev, ref. 40, p. 274),

f 0 - n+ 1 :
o A M (iz2) = e z (1‘22)“"2 o(m F Ay on T, wizdy - {D67) SN —
|

'i‘t,%

144




R (3 7y o W RN S N 0 S S0 5, S g SN 15 AN R i b R bt W Y X ) B A L TR T S 0 S8 L il b DR AR = " by

R B
b | W (+iz2) = e _?—-(+izz) z y(m+n+1,n+1, +iz2) (D68)
| 1T, 7
and
S 7~
u, (z) = 2" {A'e T¢(§, 3, iz2)
T
iias

+B' e ‘ ¥(8, §, +iz2) (D69)

3 where B=m+n+1and §=n+ 1. However, as @ > 0, z -~ 0 and

o(8, 8, iz2) >~ 1 and ¥(B, §, +iz2) - 1 (see appendix H). Thus, as
Q@ -+~ 0, the solution un(z) approaches a constant value, which does not
correspond to one of the solutions (for the plane parallel case)

shown below,

& VomP/2
Umle) =9y \ 1= (T + 1)8/M (070)

th th

where v, is the m~ root of the n

m
kind, 8 = 0.824, M = \ISnN, and N is the resonator Fresnel number. As

order Bessel function of the first

a result, the case where it= = (m+ (n +1)/2) will not be considered
further. Therefore, to avoid the singularity at the origin, one

must set B = 0 in Eq. (D66) to obtain

: 1
; = 2y L
E Uy o (z) AM A (iz2) z (D71)
i ST
- where the yet to be determined values of t correspond to those fot

which the Up T(z) reduce to the functions in Eq. (D70) as o -+ 0. ]
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From the relation t = - (s/2Q)%, one can see that as 2 -~ 0,
|it] > =. Thus, as with the rectangular mirror case, it is necessary
to investigate the behavior of the solution as a parameter becomes

large. To do this, orne first writes u (z) in terms of ¢(a, y, iz2)

n,t

as shown below (see appendix H).

n+1
(=1) M b (iz2) 3 il it,n+ 1, iz2 ) (D72)
1T, 7 '
Then, using Egs. (D71) and (D72) in conjunction with Eq. (D28), where
a=(n+1)/2+i (s/20)2, y =n+ 1, =y/2 - a, and ky = xizZ = (sg/2)?,
one can show that if |cy| is bounded, then

n

U o (g) ;” A{i (it) " zn! J, (s8)

Thus, the Un o () reduce to the desired form if

[ g

where 8 and M were defined in the discussion following Eq. (D27).

Eq. (D74) corresponds to a value of t such that

2
% Vnm ]
;m w i

For resonators containing mirrors with central coupling apertures,
this expansion set must be altered somewhat. The alteration, which
results from the fact that the singularity at the origin is no longer

present, simply corresponds to retaining the terms




P e b

i) (D76)
1T, 7

=5
wn’T (2) - W

in Eq. (D66) with t given by Eq. (D75).
In the discussion just following Eq. (D53), it was assumed that

dv_(&,) dK (&,]&q)
K (gple) ——5 - v (5,) 21 | = (077)
de dg
2 2 5

&g

where Kn(gzlg]) is given by Eq. (D46) and the vn(gz) are the expansion
functions for resonators with spherical mirrors of circular projection.

Using Eqs. (D64) and (D71), one can show that for stable resonators,

a'g?
(g,) = A' L %‘ P (a'e2) (D78)
Y Viok 5 oee &2 m (83
and for unstable resonators,
-7
Vno (E2) =B'g T M (ia%ed) (D79)
1T E

Further, by using a relation (see appendix H) between Mio n/z(z)

and ¢(a, v, z), Eq. (D79) can be rewritten in the form shown below.

gt B -ieed
& e

+ : 3
2 @(ﬂ?l -dit,n+1, 19255) (D80)

Vn,T (52) = B'(iﬂz)

Since the functions F " (a'g3) and e((n+1)/2 - it, n+l, ia2¢3)
are entire functions of Eos the expansion functions of both stable and

unstable resonators can be summarized by the form
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1
vplEo) = EZQ.F(EZ) (D81)
where F(gz) is an entire function of £,. The kernel, Kn(gzlal), can be

written in a similar form as shown below,

1
2
K. (E5181) = &,° 6 (&,]8;)

o Ak )
Gn(52'€]) b 51 e JH(E]EZ)

is an entire function of £y
To show that Eq. (D77) holds, one differentiates vn(gz) and
Kn(szlg]) using the forms in Eqs. (D81) and (D82) to obtain the

following pair of equations.

dnleg) 1 -%F( M-‘z- dF(z,)
"j;;;“ BN g T8 %,

' 1
i U L i T 6, (c,l5)

g, "6, (&,08) * &,

g, dz,

Substituting Egs. (D84) and (D85) into the term in brackets in

Eq. (D77), one obtains the following result.
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e T

dv_(&,) dK (&,]&q)
2 n‘>2'>1

K (E)]Ey) ——— - v (§,) ————

n‘>2'>] de n‘>2 de

2 2

dF(g,) dG_(&,]&7)
d€2 dEz

(D86)

= &, {6,(55]8;)

Since the functions F(Ez) and Gn(szlzl) are entire functions of PP the
term in braces in Eq. (D86) is finite at £, = 0. Thus, Eq. (D77) holds

as assumed.

Toroidal Resonator Calculations

As with spherical mirror resonators, one begins this procedure
for obtaining expansion functions with the integral equation for a

symmetric resonator as shown below,

b 2n —‘ikR]2
A | e
dalors o) = - & [ [ 046050 69) Rz
a 0
COSa]szdpzde2 (D87)
where R]2 is given by
e 2 2
Ryp = % + 03 - 20qp c0s(8, - 87) + (2, - z])2 (D88)

and a and b are the inner and outer mirror radii as shown in figure 15.
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Figure 15. Intersection of a Toroidal Mirror
With the x-z Plane

The distance (z2 - z]) is equal to

(z2 - z]) =L -8 -4 (D89)

where the distance L which is depicted by 4 in figure 15, is given
by
i 3
(p; - pg)

St oz

where R is the radius of curvature of the individual arcs shown in
figure 15 and Pe is the distance the axis of each of these arcs is
displaced from the optic axis. Substituting Eqs. (D89) and (D90)

into Eq. (D88) and neglecting terms of second order in 45, one obtains

the following expression for R12.
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-
1

o 2 e
ol _[(o] g de # (py = 0p) ]
2 LR :

2 2
g% * p 2p+p
+ Lt 152 cos (o, - o) (D91)

Then, in addition to assuming that Eqs. (D5) through (D10)

hold, one assumes solutions of the form
: = +ing
3 (p48) = up(o) e (032)

and applies Eq. (D43) to obtain the following equation for un(p),

[} P ' L 3( = )2 + ( =P )2%
up(ey) = vp E[‘/‘ up(eg) Jn(if °1°2)e+§-§ s i
a

ik'(2 2)
- pst o
e 2L \T "2 opde,  (093)

where lem = 1'"+1 e"k"J'm ;

Equation (D93) is simplified considerably by making the sub-

stitution By ™ \/k'/L Py The result is shown in Eq. (D94),

H i
b - -5 (&} + €2)
un(gy) = Ynf ug(g,) I (gg)) e c Jld

Hy

+1i(g - Neg (g, + &)
e S gpd¢, (D94)
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+i(g-1)g 2
- ] - 1 - ] e

whereHa-\’k/L a,Hb- k'/L b,yn-yne , and

g=1-L/R. Finally, to simplify the forthcoming computations,

the following definitions

Kq(Eo181) = 9. (8,581) E(&,]8)E,

B [
FEF ) vig - el + 5y

E(g,lgy) = e

are employed to yield Eq. (D97).

b
(&) = Y"f un(8,5) K (&,]8¢) dg

Ha

The manipulations used to obtain the expansion functions for
these toroidal resonators are somewhat more complex than the manipula-
tions already performed for spherical mirror resonators. For this

case, one begins with the following two equations,

2 H
dun(E])+LdUn(5~|)=Y bu(E) d2 ey
d? g 45 n n**2 - 51 %
H
a

Kn(szlﬁ]) diz

b ty

y 2 .1 d A f
nf Kn(azls]) —%-dE w —EZ a""‘Ez un(EZ)dEZ b § Un(az)
H H

a a

d? i 4 -
BT "5 a5 * g Malealer)dey * voSuglep)
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where Eq. (D98) was obtained by operating on Eq. (D97) with
dz/dg]2 + 1/51 d/dg;, and Eq. (D99) was obtained by integrating the
integrand of the left side of Eq. (D99) by parts twice. The function
Su,(g,) in Eq. (D99) is defined below in Eq. (D100).
By |
Sup(g,) = Kn(E2184) [:—;+ ?’-’ﬂ- Up il%g]—) (D100)

Hy

One then calculates the indicated derivatives, substitutes
the results into Eqs. (D98) and (D99), and uses Eq. (D97) for
simplification purposes. The two simplified equations are then added

to yield the rather complex equation shown below.

H

2 b : ;
Cuglep) = [ kotepleg) € ugle) dey - voduy(ep)
Ha
Hy
+ 2iy,5,(1 - q) f (&) - &) I5(6E,)E,E(E5]Eq) ds, (D101)
Ha
where
A 2 i(q- 2
L= %5—2+ ]gg—aw (g2-1)&2 - 2g(g-1)&.¢ - LLg_L)_ . 2 (D102)

To simplify the forthcoming eigenvalue problem for the expan-
sion functions, it is desirable to eliminate the integral involving
J&(szel). To do this, one applies the same sequence of operations
(the sequence described between Eqs. (D100) and (D101)) to the pair

of equations below,
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Ay () = b u (£,) ==K (&,]&) d&
de; Uy 1§ Yn ni 52l G5y "nvelN) 2

Ha
H
b du_(&,)
Y n‘>2
n/ Kn(EZIE]) dEZ dﬁz
Ha
H
b dK (&,]&,) =
s n‘z2'>1
= - an/. un(ez) -———7552——- dg, + vnTun(az)
Ha
where
: Hy
Tu,(&5) = {u (&) K,(E218)
Ha

The result is Eq. (D106).

H
b

)3’%1—*' 198 un(g]) " Ynf Ka(82187)
Ha

-d %3 1
g&, - —{u (&,) dg
}3-5_2- 2 52{ n'?2 2
A
- Ynf Un(gz) J;.l (52'51)52 E(Ez‘ﬁ]) (5] = 52) dgz

Ha

+ v, Tug(8y)
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One then multiplies Eq. (D106) by Zige(]-g) and adds the result
to Eq. (D101) to obtain

H
~ b ~ ~
Mu. (&) = Ynf Ko(E518¢) Mu,(gp) dgy - v Ru(,)

Hy

H
b
- 2iggy, (1 - g)f Ko(5p187) {2 dg—2+ hu (g,) de, (D107)
H

%2
a
where
oy d . , . 18l1-9) p
HedordietBg (] gt ie ¥ {g° - Hege + ————=- 0 {0108)
and
Ru (£,) = Su (&,) - 2ig,(1 - g) Tu (&,) (D109)

Then, using the operator M in the manner discussed in chapter V
(pages 57-62), the eigenvalue problem for the expansion functions

corresponds to the following differential equation.

dzun(E) 1 ; dL'n(E)
—Ler— et g (1 - )| ——
i(1 - g)g 2
+1(g2 - 1)g2 + —-E—e - -27+ s2{ u (g) =0 (9110)
As a first step in solving this equation, one lets
-1go(1 - 9)¢ ; {4
u(g) = w(g) e and substitutes this form into Eq. (D110).

This substitution leads to the following equation for w(g).
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2 2
dﬁ‘éé.).+ Jé.d%éi)_+ {(92-])52 - 2‘2"" s2 + (g-'l)zzg} w(ig) =0 (D111)

Then taking g2 > 1, and letting z = g, 22 = 1/2 yg? - 1, and

1 fs2+(g-1)%2
""'?F?'-"}’ one obtains Eq. (D112).

T=-'4-

d?w(z 1 dw(z n? 5

"aéfl +1 adz) {4;2 -0 4r} w(z) = 0 (D112)
This equation, which is identical to Eq. (D65), has a general solution
of the form

=l. iz22 i22
Wt (2) 2 {AMir ﬂ.(1z ) + Bwir gﬁ+1z )} (D113)
’2 ]

For these toroidal resonators, the values of t are chosen so
that the solutions reduce to the spherical mirror expansion functions
as g, ~ 0. This choice, which automatically incorporates the proper
reduction to the plane parallel solutions, simply amounts to the
requirement that (see Eq. (D75))

2
v
S {M e } %5 (D114)

Thus, for unstable resonators, the expansion set consists of

functions un(s) given by

+ig (g - )¢ 4
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where t is given by Eq. (D114).
For g2 < 1, one returns to Eq. (D111) and makes the sub-

stitutions w(g) = v(g)/g and z = o'¢2, to obtain Eq. (D116),

2() D
. ;zé 5 %‘g] + L ) 1 . 2vz+ Ltv(z) = 0 (D116)

where o' = \Jl -g2and s2 + (g - 1)2 gg = -a'(2v +1). As pre-
viously indicated (see Eq. (D58)), the general solution of this

equation is

VK’p (z) = wa,p (z) + BN_K’p (-2) (D117)

where « = - v/2 - 1/4 and p = n/2. By requiring these solutions to
reduce to those for the spherical case as By 0, one obtains the

following expression

; ‘g2
+ig (g - 1)g - =
W (g) = e - e 2 an - F; (a'g2) (D118)

for the expansion functions when g2 < 1.
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APPENDIX E

Analytical Results for Simple Systems

The purpose of this appendix is to present the results obtained
from the analysis of three relatively simple resonant systems. These
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