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Ab stract

A method of anal yzing the modes of laser resonators con-

taining homogeneous media is presented and established . This

anal ysis is based on a derivation , which begins with Maxwell ’s

equations and displ ays the required assumptions , of a pair of

i ntegral equations i nvol v ing the tangential fields on the reson-

ator mirrors . This pair of equations , whi ch must be solve d

s imul taneously, is specialized to apply to paraxial resonators
U 

with perfectly conducting mirrors . The result of the special-

ization i s a pa i r of integra l, elgenvalue equations for the

current di stributi ons induced on the resona tor mirrors .

After further specializing them to resonators for which

the spatial dependence of the modes separates , these integra l

equations are solve d us i ng a stra ightforward tec hniq ue based on

a variational principle. This technique , which employs a novel

method of obtaining modal expansion functions , reduces the anal ys i s

to a homogeneous matrix equation that is solved using well-known

numerical methods.

The bas ic theory and method of solu ti on presented not only
U produce comparable results in the classical cases considered by

other authors in this field , but they also provide a framework for

attacking genera l resonator problems . 
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I

I A THEORETICAL ANALYSIS OF RESONATOR MODES

IN THE PRESENCE OF HOMOGENEOUS ~EDIA

I. Introduction

U 

Since the discovery of the laser in 1961 , many workers have

devoted considerable effort to analyzing the electromagnetic fields

associated wi th laser resonators. The approaches employed in these

efforts cover the spectrum with regard to derivation of basic equations ,

essential assumptions , and method of solution. However, despite this

wide range of approaches and high level of effort, the vast majority of 
U

I these approaches has not been derived in a completely general manner.

In addition , all of these approaches leave much to be desired with

regard to ease of application , depth of understand ing and capab ili ty of

prediction in resonator problems. This paper is directed not only

towards establishing a sound , general theory but also towards improving

the existing capabilities in these three aspects of the analysis of

- : resonator f ields.
- 

The improvement in the ability to analyze resonator fields is

important because such analyses have significant impact throughout the

development and use of laser systems. For example , al though the f irst
- ~ . 

- 
step in the development of a new laser is usually the finding of a gain

med i um, the next step is devising an efficient means of extracting power

U from the medium so that the output beam has certain desirable charac-

teristics. These desirable characteristics might include aood beam

qual ity (nearly uniform phase and amplitude of the field), low losses ,

— and a large vol ume over which the field can interact with the active

- . medium . For the effective design of resonators with these or other U

U———.
~~~~~ —— .U -——.-—~~~~~~~~ -— — -  ~~~~- - •- - ,-.— -—— ~~~~~~~~~~~
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extraction characteristics , one needs to know not only the fields

present within a given resonator but also how they are affected by

chang ing the resonator parameters.

G. Fox and T. Li (ref. 1 , pp. 453—488) were among the first to

recognize the importance of analyzing the fields associated with lasers

containing homogeneous media. They concentrated their efforts on

U resonators which (with regard to geometric optics ) periodically refocus

paraxial rays so that they always remain confined to the resonator

volume (except for transmission through the mirrors). In addition to

Fox and Li , many others (refs. 2-10) analyzed the fields associated with
• these so-called stable resonators by calculating their normal modes

(which could be used to represent any resonator field). These normal

modes were , by definition , the eigensolutions of a certain integral

equation that was derived by applying the theory of diffraction to the

resonator In question.

For several years , it was felt that only stable resonators could

find practical application in the laser field. However , disadvantages

such as smal l mode volume and poor mode discrimination prompted Siegman

(ref. 11 , p. 278) in 1965 to propose using resonators that do not

confine paraxial rays to the resonator volume . These unstable resona-

tors , which have since found widespread application , are charac ter i zed

by large mode volume , diffraction output coupling , good transverse mode

d iscrimination , and totally reflecting optics . This last characteristic

Is especially valuabl e for high power lasers for which the resonator

mirrors need to be cooled .

2
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Just as laser resonators have become more complex , the theory

and analytical techniques used to study them have become more sophisti-

cated. For example , the initial analyses (refs. 11-16) of unstable

• resonators were based on geometric optics . However, these approaches ,

which yield average values of the losses and rough estimates of the mode

distributions , have been replaced by analyses that consider the diffrac-
U 

tive effects introduced by the finite sizes of the mirrors. Al though

other approaches (refs. 17-19) al so have merit , the most promising

techniques can be grouped into two broad categories; the Waveguide

Analogy (refs. 20-23) and the Integral Equation Method (refs. 6, 9, 10 ,

24-28). These categories, along with their specific deficiencies , are

described in chapter II.

Despite the many positive aspects of the techniques in these two
U 

- categories , no method exists which one can use to adequately determine

and understand the characteristics and behavior of complex resonator

modes. The objective of this work is to develop and establish such a

method for resonators containing a homogeneous medium and two perfectly

U 
conducting mirrors. The purpose of thi s report is to present this

analytical method and Its supporting results.

As discussed later in this report, thi s analys i s prov ides two

significant contributions for determining and understanding laser

resonator modes. The first is a derivation of integral equations for

the tangential fields on the resonator mirrors; it begins with Maxwell ’s

equations and explicitly displays all required assumptions. The second

contribution is a straightforward technique for solving these equations

for a wide variety of resonators with perfectly conducting mirrors .

This technique includes a novel method for obtaining expansion functions

3
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to be used with the variational principle upon which the technique is

based .

U U 
Thi s report is organized in the following manner. First ,

following a presentation of Important background material , the basic

laser resonator problem is fo rmulated . The formulation is followed by

derivations of the integral equations for the current Induced on the

mirrors of open and closed laser resonators. Then , in chapter IV , the

general probl em of solving these integral equations is discussed , and

the method to be used to approximately solve these equations for par-

axial resonators is presented. In chapter V . the theory and method of

solut1c~ of the previous two chapters are specialized to apply to
U resonators for which the spatial dependence of the modes can be sepa-

rated to yield two independent governing equations . The results of the U

specialization are presented and compared to existing published work in

• the followi ng chapter . The text ends w i th chapter V II , wh i ch presents

specific conclusions and recommendations . The eight appendices contain 
U

detai led mathematical derivations and calculations in support of this

work.
,

~ -~~I 
— 

~~~~~~~~~~~ 



II. Background and Theoretical Preliminaries

This chapter presents and then formulates the basic resonator

problem . To that end , the body of this chapter begins wi th a discussion U

of important background material and a definition of a laser resonator

mode. This definition , as well as the ins ight gained from the discus-

s ion which follows , forms the basis for the formulation , wh ich includes

a discussion of the analytical approach used and a presentation of the

basic equations appl ied in the fol lowing chapters.

Background

Despite the large number of configurations in use today , laser

resonators can be grouped into the two rather broad categories of open

and closed resonators. Since the analysis presented in this paper is

performed by first considering closed resonators and then extending the U

results to open resonators, some care must be exercised in distinguish-

ing between the two resonator types. As one might expect , the essential 
U

difference between the two types involves the nature of the resonator

m irrors and the surfaces with which one can enclose them .

As a first step in determi nina whether a particular resonator i s

either open or closed , one uses one or more closed surfaces to enclose
U 

the resonator mi rrors such that only the mirrors are included within the

enclosed volume (s) . Thus , for each case , the number and shape of the

closed surfaces will be chosen to correspond to that series of closed

surfaces wh ich most nearly conforms to the mi rror sha pes. If only one

closed surface is used , the resonator is an open resonator containing

one mirror wi th one or more “holes ” In the mirror surface. If two

surfaces are used , the resonator is either a c losed resonator or an open

5
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U 
resonator with two mirrors. If the two closed surfaces are such that

one surface complete ly encloses the second surface, the resonator is

closed . However, if one surface does not include the other , the reso-

nator is open. Finally, if three or more closed surfaces are used to

enclose the resonator mirrors , the resonator is an open resonator.

To clarify these Ideas concerning open and closed resonators,

U two examples are shown below. First , a planar view of a closed reso-

nator is shown in f igure 1 As one can see from the f igure ,

Ii4

M) R R~~~~~~~~~~~~~~~~~~~

FIgure 1. A Plana’— View of a Closed Resonator

the surface enclosing the unbroken material (mirror) boundary , which may

include segments of several material s, cons i sts of two close d surfaces

and S2. As indicated in the previous paragraph , one surface (S 1 )

completely encloses the second surface (S2). In a sim ilar fashion , a

planar view of an open resonator containing two mi rrors is shown in

U figure 2. From this figure , one can see that neither surface encloses

the other.

6
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Figure 2. A Planar View of an Open Resonator

Open Resonators wi th Spherical Mirrors. A signif icant fraction

of the open resonators in use today employs two soherical mirrors of

either rectangular or circular proj ection. In addition to the material

- properties of the host and lasing media , these resonators are charac-

terized by the following mirror parameters : U

1. The transverse mirror dimensions (diameter or
widt h) a and/or b;

2. The mirror radii of curvature , R; and

3. The mirror separation , L.
These last two Darameters play an Important role in the classi-

fication of laser resonators containing spherical mirrors . For that

role , the mirror separation and radii of curvature are combined into so-

calle d “a-parameters ” as shown below , 
U

q. = 1 - 
L ( 1) 

•~~~~~ .~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•
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- 
where the subscript denotes the ~th mirror. The ranges and/or values of

L these g-parameters for several resonators are shown bel ow in tabl e I.

Table I

Resonator g--parameters

RESONATOR TYPE 
- 

a-PARAMETERS

STABLE 0 < q1q2 < 1

UNSTABLE < 0 OR a1 g2 > 1 U

- U QUASI—STABLE a1g2 
= 0 OR g1q2 

= 1

- U CONFOCAL* 29102 
= g1 +

PLANE PARALLEL = 

~~2 
= 1 

• 
U

*A confocal resonator is a resonator for which the U

U foci of the two resonator mirrors are colocated .

The resonator Fresnel number N is another parameter that is

often used to characterize these spherical resonators. Actually, a

Fresnel number , wh i ch i s a quant ity often reserved for mi rrors of
U 

U 
circular projection , is designated for each resonator mirror and is

U

- 

defined by

N =~~~~~~ (2)

where a is the mirror rad ius and x Is the wavelen gth of the radi ation

within the resonator . To adapt this quantity to mirrors of rectangular

U project ion , one uses Eq. (2) to define two Fresnel numbers for each
U 

m i rror. However , for thi s case , the quantity “a” denotes each of the U

transverse mirror dimensions (length and width) instead of the mirror

radius. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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U

~ Even though spherica l mirror resonator configurations of the

types shown in tabl e I are widely used , they do have several short-

: comings. Unfortunately, these shortcomings are not limited to the small

mode volume and poor mode discrimination exhibited by stable resonators.

For instance , for many of the applications involving unstable resonators

with mirrors of circular projection , the output beam has an annular

shape. This annular shape not only makes the beam diff icul t to use , but U

it can al so prevent a nontrivial (several percent or more) portion of

the energy from reaching the far—field central spot. Also , spher ical U

r unstabl e resonators do not efficiently accommodate new lasers having

central obscurations (to the radiation wi thin the resonator) caused by

U the use of a radial gas flow or a radial electron beam . These and other

deficiencies have led to the study and development of some new and

U rather exotic resonator confi gurations.

Toroidal Resonators. Many of these new resonator configurations

involve resonators which include at least one toroidal mirror. As the

name implies , the mirrors falling into this category simply correspond

to different portions or cross sections of a toroid; however , there are

two kinds of toroidal mirrors. The first kind , wh ich is rarely used , is
- U 

simply characteri zed by two radii of curvature. The second kind is a

• m irror that is characterized by a particular surface of revolution ; that U

is , a plane which passes through the resonator axis and intersects the

mirror yields two arcs. These two arcs , wh i ch have rad ii of curva ture R

and which may or may not be connected , have centers of curva ture wh i ch

are displaced from the resonator axis by a distance

- U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ •~~~~-~~~~~~~~— - - -
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U 

As wi th spherical mirror resonators , one may use a pair of g-

parameters to characterize or classify toroidal resonators. However,

for these resonators , one mod ifies Eq. (1) by replacing the radius of

U 
curvature of a spherical mirror wi th the radius of curvature of the

individual arcs discussed above. With this modification , one can use

table I to classify toroldal resonators with regard to stability , etc.

Al though this method of classifying toro idal resonators i s somewha t

U artificial , it does prov ide a useful framework for the analysis.

Four resonators using this second kind of toroidal mirror are

U depicted in figure 3. Actually, each of the ske tches in thi s figure

U 
shows the intersection of a toroidal resonator wi th a plane passing

through the resonator axis (denoted AA’ in the figure). To obtain a

three dimensional view of each resonator , it is necessar y to revolve

U each sketch through an angle of 1800 about the resonator axis. In

figure 3(d), the lines with the tic-marks designate the boundaries of a

central obscuration to the radiation within the resonator. The lines

and/or arcs in each of the other three sketches depict a wavefront as it -~

passes through ard out of that resonator.

Past Work. Existinq analytica l techniques are deficient in that

they cannot adequately treat many spherical or toroidal resonator con-

- U figurations. This is especially true of the Waveguide Analogy

(refs. 20—23) in which the resonator is treated as if it were a wave-

guide section (witn the resonator mirrors as the guiding surface) which 
U

Is coupled to the surrounding space. The cuide is taken to be operat- 
U

In g near cut—off , and the modes are expanded in terms of the fields

which would be present if the wavequide section were infinite. The

expansion coefficients are cal culated by first deterrnininq how the U

10
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infinite guide modes are reflected by the interfaces present between the

guide section and its surroundings , and then requiring that the resulting

fields be self-reproducing . Of the two approaches mentioned earlier , it

is this Waveguide Analogy which lends the greatest insight into the

physical behavior of the modes . However , s i nce its application not only

requires solving rather involved transcendental equations in the complex

p lane, but al so calculating reflection coefficients at all interfaces

(between the guide and its surroundings), it would be very difficult to U

— apply to resonators wi th output coupling apertures or toroidal mirrors .

Despite these limitations , the Waveguide Analogy has been used

U 

to excellent advantage by Vainshtein (ref. 21 , p. 711) to obtain closed $

form expressions for the modes of finite , plane para llel resonators. As

will be seen on page 63, these expressions play an important role i n
U the techniques applied in this paper .

U 

The second and more widely used analytical approach is based on

solv ing certain integral equations for components of the electromagnetic

fiel d (precisely which components depends on the problem ) on the resona-

tor mirrors . The popularity of this approach is largely a result of the

availabili ty of mathematical methods for approximately solving integra l

equations; it is also due to the fact that once the basic forms have

been derived , the equations can be easily modified to apply to a wide

U 
variety of complex resonators.

U Several different authors (refs. 1 , 29-31 ) have derived integral

equations which are widely considered to be the basic forms used in this

approach. However , each of these derivations and , i n some cases , tne

equations themselves are deficient in one or more aspects of the prob-

lem. One major deficiency of many of the derivations is the tendency to 

A 
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make important assumptions at the beginning of the analysis concerning

the nature of the electromagnetic field . This tendency not only limits

• the applicability of the entire analys is , but it can inhibit under-

standing the behavior of the field by obscuring the precise implication s

of the various assumptions. For example , many. derivations are based on

the implicit assumption that the mirror material properties do not

affect the mode distributions.

U - This assumption, which may not always be valid , obscures the U

fact that in determining the mode distributions one must consider the
U 

effect of both the electric and magnetic fields on the mirror surfaces.
U For some cases , either the electric or magnetic field at the mi rror

boundary may actually have a negligible effect on the mode distribu-

tions. However, one should show that thi s i s true in each case rather
U than assuming it Is true in general . A second exampl e of these ob-

scur ing assumptions is the assumpti on that the f ield (or current) on one

resonator mirror can be expressed entirely in terms of the field (or

current) on the second resona tor mirror. Thi s assumpti on inherently

obscures the fact that , in some cases , one must include the effect of

the current on both resonator mirrors .

A second deficiency applies to derivations that employ assump—

• tions which are inconsistent with known mathematical theorems. One such U

assumption is that a scalar field , along with its normal der iva ti ve ,

van ishes identically on a finite surface element. Finally, many deri-

vations are deficient in that they do not properly include the damping

of the modes of open resonators and its effect on the resulting mode

distributions. For some cases , the damping has a negligible effect on 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - U -~~~~~~~
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U the actual di stribut ions; however , in other cases , Its effect can be
h~ significant. By incl uding the effects of damping at the beginning of

the anal ys i s , one can show that it is not always possible to formulate

the laser resonator problem in terms of a linear elgenvalue equation .

Unfortunately, the bulk of the numerical work performed , especially for

comp lex resona tors , has been based on derivations containing this last

U deficiency . U

As indicated in the introduct ion , the rema inder of this paper Is U

directed toward developing and establishing an analytical approach which

will overcome many of the deficiencies of the existing theories.

Laser Resona tor Modes

In a wide range of problems in electromagnetic theory , it is

standard procedure to work in terms of fields (modes) which depend only

on the characteristics of the material bodies and surrounding media.

This useful procedure was adapted to this analysis by defining a reso-

nator mode to be a member of that class of linearly independent , source
-‘U

free , electromagnetic fields which satisfy the boundary conditions

imposed by the resonator.

- 
To gain some insight into the nature of these modes , cons ider

the fol lowi ng experiment. A radiation source is placed in the vicinity

of a resonator. Prior to time t=0, the source is turned off, and only 
U

the null fiel d is present. Then at t=O , the source is pulsed and

U 
Immed iately turned off. After sufficient time has passed for the wavefront

to reach and interact wi th the resonator , the resul ti ng f ield , which is

composed entirely of the modes of the resonator , is expressed in terms

of the Fourier decomposition shown in Eq. (3). U

~~~ 14 U
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~ ~(i~,t) =f ,w) e~~~

t du (3)

To analyze the temporal behavior of that field , the func tion ~
‘(F,u) is

analytically continued into the complex u-plane , and the resulti ng form

U is examined using contour integration in conjunction with the theory of

U 
residues . That examination reveals that since the field is nonvanishing

after time t=O, the integrand must have singularities in the upper half

of the complex u-plane. The nature of these singularities , wh ich occur

U for = u3 + Iu~ (w 3> O) i  can be used to determine the behavior of

the field through the relation

= 2 ,T iEt(F,w , t) (4)
j

where t~(i~,u,t) is the residue of the integrand at w~. Although the

exact form depends on the details of the source and the resonator, eac h

residue can be written in the form

+ic~~t —w ’~t ...•j
t~(F~w~t) = ~~(ir,u,~) e e (~~~~)

where Pj(~~~) is the residue of ~(~~u) at w = u~. The result obtained

by substituting Eq. (5) into Eq. (4) expresses the field as a combina-

tion of the modes of the resonator, where each mode has a time depen- U

U +j~~t -w ’!t
U 

dence of the form e 3 e . In thi s las t express ion , w,~ is the U

frequency and u,~ is the decay constant of the ~
th mode .

Another important aspect of the nature of these modes involves U

I 
the type of energy flow associated with each mode . For this discussion ,

the two types of energy flow of importance are (1) energy flow from the 
U

resonator to the surroundings and (2) energy flow from the surroundings

J to the resonator. Of course , in the typical laser application ,

lb
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radiation emanates from within the resonator , and the net radiative U

U 

energy flows from the resonator to the surroundings. U

U 
U For closed resonators , such as the one shown below in figure 4,

distinguishing between the two types of energy flow is relatively

straightforward. For these resonators, which require two closed sur-

U faces to enclose the unbroken material (mirror) boundary , one distin-

U guishes between the two types of flow by considering energy flow across
U the unbroken material boundary .

REGION b

MATERIA L —

BOUNDARY

Figure 4. A Closed Resonator U

However , for resonators not characterized by an unbroken material

boundary , these ideas need to be made more precise. To do that, con-

sider the two closed surfaces involving the open resonator shown in

U 
figure 5. The first surface, wh i ch I call the resona tor hull , is I

U designated H In the ficure . This surface consists of the front surfaces
- 

U 

of the two mirrors and the family of straight lines connecting the

U 16 ii
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mirrors such that H encloses the maximum possible volume . The second

surface , which I call the resonator shell , is designated S in the

figure. The resonator shel l consists of the front surfaces of the two

- 

U 

mirrors and the family of straight lines enclosing the maximum volume

such that each straight line begins and ends at a mirror edge.

REGION b

U 
- - -U

-

4 REGION a

F ~
Figure 5. Surfaces Defining the Inside and

Outside of an Open Resonator

If the resonator hull encloses a volume greater than that
U 

enclosed by the resonator shell (which might correspond to the presence

U 
of a li p on one of the mIrrors), the ideas related to energy flow are

- 
not easily understood , and such a resonator will not be treated in this

analysis. However , in the event that the resonator hull and shell

coincide , the important energy flow ideas can be precisely formulated .

To do this , the volume contained within and on the closed surface H ,

I ~j designated region a, is considered to be inside the resonator. Obviously

U 17
Li 
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U then, the volume outside H, designated region b , is outside the reso-

nator. For this analysis , only those fields for which the net energy

flows from region a to region b will be designated as laser resonator

modes.

Formula tion of the Problem

General Approach. Based on the material covered in the previous

section, the modes of a laser resonator can be found by determining the

l inearly independent members of that class of electromagnetic fields ,

wi th time dependence e~~
W t  e W t, which satisfy the boundary conditions

imposed by the resonator to produce energy flowing from the resonator to

the surroundings. Figure 6 depicts a planar view of this basic problem ,

which is analyzed in the remainder of this paper.

I

I 
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*2

Figure 6. The Laser Resonator Problem 
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As indicated In the figure, a rectangular system of coordinates

(only the x-z pl ane is shown in the figure) Is established in the vicinity

U 
of the mirrors wi th the z-ax is chosen as the optic axis of the resonator.

In addition to the two mirrors , the resonator contains a homogeneous

medium with parameters ji , c , and a. The position vector of a point on

the j~
1’ m irror is denoted i~~~~~, and the distance between two arbitrary U

points on the two mirrors is R12. Final ly, the mi rror separation ,
measured al ong the optic axis , is denoted L. Figure 6 a-iso applies to

closed resonators, except in that case, there i s one mi rror rather than 
U

two separate ones .
U.•

4

U The following approach is used to determine the fields and other 
U

characteristics associated wi th the laser resonator depicted in figure 6.

First, the basic equations of electromagnetic theory are used to derive

a pa ir of coupled integral equations for the electric and magnetic

fields within the resonator. These equations express these fields

wi thin the resonator volume in terms of the electric and magnetic fields U

tangential to the mirror surfaces. This pair of equations is then

specialized to apply to resonators with perfectly conducting mirrors .

The resul t of this specialization is a pair of equations which relate

the electric and magnetic fields within the resonator to the currents

i nduced on the perfectly conducting mi rrors. Then, using the boundary ~1
cond itions for perfect conductors and l etting the field point approach a

U po int on the mirror surfaces , an integral equation is obtained for the

current distributions on the resonator mirrors . Once this equation has

been solved , these current distributions can be used in the equations

that relate the electric and magnetic fields to the currents induced on

19
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the resonator mirrors. In this manner , one may specify the electro-

magnetic fields associated with each mode throughout the resonator

volume. The fields obtained using this approach are unique (Harrington ,

ref. 32 , p. 102).

U 
Basic Equations. Since the modes are electromagnetic in nature ,

they satisfy Maxwell ’ s equations , which are wri tten below in mks units

U for uniform media (Stratton , ref. 33, p. 464).

- V x ~(~~t) = + ~W(~ ,t) + ~(~~t) (6)

~ x Fi~~,t) = 5(~ ,t) + Y(~ ,t) (7)

v . 1T(~ ,t) = ~~~~~~~~~ (8)

v •  5(~ ,t) =
~~~~ 

(9)

where 5 = + V. In these equations , V is the oniarization of the

medium , T~1 Is a fictitious magnetic current , and is a fictitious

magneti c charge. These equations can be man ipula ted to yield the

following equations of continuity .

v . ~(F,t) = —~~~,t) (10)

v . ~(~ ,t) = m~~~
t) (11)

In addi tion to Eqs. (6) through (11), the follow i ng two 
U

U equations govern the behavior of the fields in two different regions U

separated by a surface el ectric or magnetic current (Harrington ,

ref. 32, p. 34).

2(’
~
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~~x [H 1 - H ~]~~~~ (12)

[E1 
- E2] x n 

= (13)

U where n, the unit normal to the surface, points into region #1.

To apply these equations to the resonator problem , the follow ing

condi tions concerning the medium and fields within the resonator are

assumed to hold:

1. The homogeneous medium is assumed to be linear and isotropic

so that S (n2 + x )~0r where n is the index of refraction

of the host materia l, and x is the susceptibility of the

las ing material . U

2. Within the med ium , no magnet ic sources or el ectri c charge

exists. Then p = 0 and Ff = 0.

3. Within the medium , ~ c~ .

4 . For each mode , the fields have a time dependence of the form

+lW j t where = w~ ’ + iw~” ; w~~> O .

I—

U W ith these assum pti ons , the field equations within the

tor become

V x ~~~~(F) = - ~~~~~~~ (14)

v x lIj (fl = iu~E(w~Y~~(fl (15)

V .  ff~~~(~~~~) 
= 0  (16)

v . ~~~ 
= (17)

21

ILJL •~~~~~~~ U U U U _ ~~~~~~ ~~~~~~~~~ U U U U -U U~~~~~~~ 
U



~~~~~~~T ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

U 

- 
where E(w ~~) 

= c0 [n
2 + x - . By taking the curl of Eq. (14),

substituting Eq. (15) into Eq. (14), and simplifying the result, the

wave equation for can be obtained as

v2!~(~) + k~
2 ‘

~~~~~ (fl = 0 (18)

where k~2 = u~~
2u~~(u~~). A similar procedure yields an equation identical

to Eq. (18) with replaced by iT
3 .

These wave equations form the basis for the derivation of the

modal integral equations in the fol lowing chapter.

— U .

F
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U III. Derivation of the Integral Equations

The purpose of this chapter is to derive the basic integral

equations which govern the behavior of the modal fields of laser reso-
- 

nators. The text begins wi th derivations of these integral equations

U for two classes of closed resonators. The derivations are then modified
U 

to apply to open resonators. Fol lowing these modifications , the integral

equations for open resonators are specialized to apply to resonators

wi th two perfectly conducting mirrors. The specialization is then

mani pulated to yield the integral equations tc be solved for the modal

U 
currents induced on the resonator mirrors .

U Integral Equations for Closed Resonators

The two classes of closed resonators to be considered in this

section are closed resonators with either homogeneous or segmented

U boundaries. As one might expect, a homogeneous boundary consists of a

single homogeneous medium . On the other hand , a segmented boundary

contains at least two materials with different electromagnetic prop-

erties.

For closed resonators containing either homogeneous or segmented

boundar ies , it is assumed that the boundary is smooth . This assumption ,
U 

which also applies to open resonators , implies that (Taylor, ref. 30, U

pp. 360, 371)

1. The boundary (surface) does not intersect itself ,

2. The boundary (surface) has a tangent plane at each point 
U

whose direction varies continuously as the point moves along

~~~~~~~~~~: 

bET 
~~~~~~~~~~~~
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It is further assumed that any discontinuities in the fields are such
U that , at the points of discontinuity , the changes in the fields are

finite. These field discontinuities could occur at the intersection

f of the different materials in a closed resonator wi th a segmented

boundary or at the edge of a mirror in an open resonator. It is also

U 
assumed that the resonator fields are differentiable at all points in

- 
space wi th the exception of these points of discontinuity along the

resonator boundary.
U 

Closed Resonators with Homog~neous Boundar ies. As indicated at

the end of the previous chapter, the wave equations for and iT~ form

the basis for the integral equation derivations contained in this

chapter. Those two wave equations are summari zed by a single equation

v ’2 A
1
(~~~~ ) + k~

2 
~~~~~~(~~~~~~ ) 

= 0 (19 )

where = or iT~ as desired and k~2 = u~~
2u~~(uj

). Equat ion (19) can

be solved using Green ’s funct ion techn iques by first solv ing the

equation

V ’2 ( + k~
2 

~ = - ! ~(r-r~) (20)

where d (r~~~) is the Dirac del ta function (Collin , ref. 34, p. 565) and

= 

~x~x 
+ ~y~y + is the unit dyadic in rectangular coordinates .

One solution to thi s equat ion i s a Green ’s function corresponding to

U 
outgoing waves (see appendix A) of the form ~ = L~(R) where

—- U~~ U -- ~~~~~~~~~~~~~ — —  ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ — - ‘~~~U—~~~~~~ 
- 

U
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k~ 
= + i tJ(n~ + x~

) - - (22)

with R = Ir— r ’ I.

To apply this Green ’s function to a closed resona tor w ith a

homogeneous boundary, the sca lar produc ts of ~ with Eq. (19) and

with Eq. (20) are taken , the two resulting equations are subtracted , and

the difference is integrated over the vol ume inside the resonator to

U obtain Eq. (23).

= j  ~ v ’2~~(~ ’) • - ~~~~(~~~
‘) 

-
. v ’~ d~ ’ (23) 

U

Applying the identity (Collin , ref. 34, o. 60),

x (v’x 
~~) 

+ (v ’ x ~~~~
) x + ~ . (v ’ • 

~~) 
- (v ’ . ~

.)

=

~~~~~~~ 

. v I2
~~

_
~~~2~ . (24)

U in conjunction with the divergence theorem applied to dyadics (Collin ,
r ref . 34, p. 569), the volume integral is converted to the surface inte-

gral shown below

~~~~~~~~ =f ~
(
~ x ~~~~ ) ~ 7 ’ x + (

~~ 
x v ’ x ’

~j) 
.

+ (~~ 
. 
~.)v’ . — (~ 

. i~)v . ~~ dS’ (25)3 j

25
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where ~ points into the resonator volume , and S ’ i s the surface just

inside the resonator boundary. Then substituting iT
,~ and for and

using Eqs. (14) and (15) to eliminate v x and v x ii
~ 

the followi ng

pair of equations is obtained .

~~~~~~~~ ~~(i~ x ‘
~~~) 

. 7’ x - Iwj~i (
~~ 

x 1T~) 
.

+ (
~~ 

. 
~~)v ’ • ~ dS ’ (26 )

W~~C~~~ =Jj ( i i  x W~~) 
. v ’ x + (

~~ 
x 
~~ ~

U + (f l  . ~ .)7 ’ . ~s’ (27)

U Equations (26) and (27) are the integral equations which govern
U 

the behav ior of the modal fields wi thin closed resonators with homoge-

neous boundaries. However , before applyi ng these equations throughout
U the resonator volume , they must be specialized to apply to points on the

surface S . and the specializations must be solved simultaneously for

(ii x 
~~~~
) and (

~~ 
x iT )

~~ 
When the surface fields have been determined ,

U-i j

Eqs. (26) and (27) can be used to compute the fields within the resonator

volume .

To compute the fields outside the resonator , one must specify

how the fields behave as the surface 5’ is crossed. This specification ,

which simply amounts to describing the particular resonator boundary or U

Interface , w ill yield known values for the field over the closed surface

just outside the resonator boundary . This knowl edee of the tanqential

fields over the closed surface uniquely specifies the fields throughout

26
U U 

U . ~~~~~~~~~~~~~~ . 

~~~~~ ~~~~~~~~~~~



U~I T ~~
’ ‘-

. 
‘-

~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ U. ~~~U - W ’ ~~~~~~’U”U’  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~UUU-U~~~~~ U-UU~U U U ~~~U-U~~ U-U ~~~~~U-’UU~~ - U U-U -

any bounded volume outside the resonator (Harrington , ref. 32,

p. 102).

It Is Interest ing to note that Eqs . (26) and (27) can be applied

directly to a closed resonator wi th a perfectly conducti ng boundary

(~~ 
x E =  0). No modification of the equations at any point is required

as the functions described by the closed surface integral s change

discontinuously as the surface S’ is crossed ( from region a to region b

in figure 5). These discontinuous changes are such that the fields U

outside S’ vanish identically (Stratton, ref. 33, p. 468), thus corre-

sponding to the fields of a closed conducti ng boundary .

Closed Resonators with Secmtented Boundaries. In the above

derivation , the divergence theorem was appl ied to a clos ed surface

separating the resonator from its surroundings. That application is

completely justifi ed as the fields and their derivatives are continuous

throughout the vol ume of a closed , homogeneous resona tor wi th a smoot h , 
U

homogeneous boundary. However, if the resonator boundary is segmented ,

discont inuiti es in the fields and their der ivat ives may occur at the

intersection of the different materia ls in the boundary surface. As a

result , any derivation appl ied to a resonator with a segmented boundary
U must al low for the p resence of di sconti nuit ies in the fields at points

along the resonator boundary .

As discussed in Stratton (ref. 33, p. 468), the presence of U

such discontinuities can be reconciled with the field equations only if U

U one assumes the existence of charges or currents at the points of dis-

continuity . These sources produce fields whIch , when added to the fields

in Eqs. (26) and (27), yield net fields that satisfy Maxwell’ s equati ons

_

~

____  _,U_ 
~
U__ __

~
_

~~ ~~~~~~~~~~~~~~~~ ~~ U-,-U ~U_ U~ UU~U,_tU-,_ ! U ,;~~~ U UUU - U U - S~~~ U~SU U 
~~~~~~~~~~~~~~ - ~~~~
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(Baker and Copson , ref. 35, pp. 114—117; appendix B of this paper).

I.:- These net fields are given by Eqs. (28) and (29) bel ow,

~~~~~~~~ =E  J. 
~ 
(~~x~~~ ) 

. 7 ’ x~~ + (~~x v ’ x!•jm) ~

-H
- 1 

E f v ’ ~ 
iTjm 

. (28 )

iT
~

c
~

) = 

E f ~ (~~ 
x i T~~) ‘ V 1 x~~~+ (

~~ 
x V’ x i Tj m) .

+ 

~~~~ ~~ m dIm (29)

• ~~-.- where S ’ is the surface of the mt~ continuous seament of the boundary ,

Cm is the contour enclosing S~, and rm and are the fields j ust

inside Cm~ 
U

Thus , for resonators with segmented boundaries , it is Eqs. (28)

and (29) which must be specialized to apply to the tangential fields on

the surface S ’. Once these specializations are obtained , the procedure

for computIng the fields at other points in space is the same as the one 
U

described above for closed resonators with homogeneous boundaries .

I
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However , for either case , the final equations may be sim plif ied

somewhat. This simplification results from taking the curl of the

U expressions for and applying the fact that 7’ . ?~ v ’~ = - 74,

and using Eqs . (14) and (15). The final result Is the pair of equations

U shown below ,

= ~~ (~~ 
x v ’ x x + V x (

~~ 
x iTj ) l dS

1 (30)
S I  .1

= f~~~(~x f f~) . v ’ x~~ x~~ + V x ~~~. (~~x r ~)~~dS’ (31 )
S I cA)j s

where the surface Integrals are evaluated over the closed boundary with

any points of discontinuity removed . (See appendix B.)

In tegral Equations for Open Resonators

For open resonators , these Integral equations can be simplified

S further by eliminating that portion of the closed surface intearal which
‘

U 
corresponds to the open surface of the resonator hull. To do that, the

open resonator is considered to be a special case of a closed resonator

with a segmented boundary . Then , Eqs. (28) and (29) are applied to

1. The resona tor hull , and U U

U 

2. The closed surface consisting of the backs of the mirrors
and the open portion of the hull.

U 

The equations for ~ and if in these two cases are then subtracted to yiel d U

U the following pair of equations for the fields,



= 

~~~ 
f  ~(r~ x ~~~~~ ~~

‘ 
~ + 

~~ 

: 

V ’ x rim )

+ (
~~ 

. r~ ) 7 ’ • dS’m - 
j~~~ ~~ ~ ~m • dIm (32)

if~ (~~~~~= x r r jm
) . 7 ’ x~~~+ (~~ : v ’ x i Tj~ ) ~~

U 

+ 
~jm~ 

v ’ . dS’m + 
I U  E .J7~ 4 r~ dIm (33)

where a plane v,iew of the surfaces and contours is shown in Figure 7.

71\ 
— — — 

—

U U C3 ~~

‘ 

~~

‘ C 1 L I O• C2 S S C4

Figure 7. A Plane V iew of the Surfaces
U of an Open Resona tor 
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U 
The next step is to specialize these equations to apply to laser

resonator modes at points inside the resonator hull. For these fields , 
U

the effect of the fields on the backs of the mi rrors (S3’ and S4 ) can

be dropped. This is j ustified because S3 ’ and S4’ are outside the reso- 
U

nator , and laser resonator modes are fields for wh i ch the vast majority

U of the energy flows from the resonator to the surroundings.

It should be apparent that this procedure (of neglecting S3’ and
U S4’) will yield accurate results only to the degree that laser resonators

actually produce fields such that the energy flow from the surroundings

is negligible. For some or perhaps all resonators , there may be some

modes for which no energy flows into the resonator. However, for a

resonator operatlnci at a low frequency , it is easy to imagine that the U

fields on the backs of the mirrors could affect the field Ins ide the hull. 
U

Conversely , for resonators containing mirrors much laroer than the wave-

length of operation (which corresponds to the conditions for the physical

optics approximation), the ef fect of the fields on S3’ and S4’ shoul d be

negligible. As a result , they w i l l  be neg lected for the rema in der of

th is anal ysis , and the sums in Eqs. (32) and (33) will be evaluated

from m=l to m=2.

As w i th the closed resonator case , one takes the curl of the two

equations , applies v x v~ = 0, and uses Eqs. (14) and (15) to eliminat e

v x and V x ifs . The resul tin g equa tions , wh i ch are the ch i ef resul t

of thi s sectIon , are shown bel ow.

= J
_ 

~~~~~~ 
(~xr~~).v ’ x x + V x 

~
•(I
~
xiTjm) dS~ (34)

rn— i 5, ~
rn U
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U

rj(~~ = E f ~ ~ 
(
~

XiT
im

) • V ’ x x + V x 
~
.(

~
Xrim

) dS~ (35)
m=l

Open Resonators with Perfectly Conductina Mirrors

For resonators wi th perfectly conducting mirrors , the fields

on the m irror surfaces satisfy the boundary cond itions

ñ x ‘r~(~’) = 0 (36)

II4~
-- 

U x 1T~(~’) = J~ç~’) (37)

Substituting these two equations into Eqs. (34) and (35), the basic

equations for this case take the form shown below .

if~ (~~) = >.. f  {~ x . T~~~ ] d S~ (38)

ri
) = _

~~T Ef [ ~
rim . v ’ x

~~
x
~~] ds n

Now if Eqs. (37) and (38) can be manipulated to yield forms which can be U

solved for the ~~~~~ then Eqs. (38) and (39) can be used to compute the

fields throughout the resonator volume . The procedure for obtaining

equa tions for the 
~jm 

is the subject of the next several pages, while U

the methods used for solving these equations are discussed in Chapter IV. U
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The Derivation . To begi n the procedure , the cross produc t 
U

between Eq. (38) and an arbitrary unit vector ~ is computed . Then the 
U

U surface current 
~jm 

is expressed in terms of its rectan gular componen ts, I,

and the resul ting equation is projected ontb the x , y, .z axes to
U 

obta in the followi ng three equat ions rel atin g the rectan gular componen ts

of and

x iT(~~~ ] 
= 

~ 
f  
[
~y(J~~~x - 

~xm~y~

— 

:z

(J xm4z - Jzm4x)] dS,~ (40)

x W(F)1 = E ~ f  {âz (Jzm4y - 
~ym’~z~m=1

- 
~xm4y)] dS~ (41 )

Eu x iT(F) ] = 
E ~ j  [â (J 4 - 

~z m x ~m=l
m

- 
~y

(J zm~y 
- J

~~~~)] 
dS ’ (42)

where the subscript j has been dropped and ~~~~
.
, etc.

From these equations , wh i ch a~oly to resonators containing

mirrors of arbi trary curva ture , it is evident that the rectangular

components of the current induced on the mirrors and the magnetic field

within the resonator are related in a very complicated manner. However, U

- ~—-——----U-—-—- U- —--‘U_U-- — — — -p -U——’ ~~~~~~~~~~~~~~~~ - -
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of the open resonators which find practical application , a large fraction

employs mirrors for which

U -.
~~
-.. << 1 (4 3)

U

S
- 

U 
I R !

where a is the radius and R is the rad ius of curva ture of the

m i rror. For these mirrors , the sur face normal is nearl y paral lel  to the U

optic axis , and the component of current parallel to that axis is very U

small. Si nce the effect of these deviations 1from currents which are

U transverse and mirror normals which are parallel to the optic axis is

likely to be small , their effect will be neglected for the remainder of

the analysis.

It Is worth noting that for plane parallel resonators there is

no deviation from transverse currents or l ongitudinal mirror normals.

Al though this fact does not prove anything for curved mirrors for which

<< 1 , it does support the idea that , for these m i rrors , the longitu-

dinal component of the current and the transverse components of the mirror

normals are negligible. Then settinc = 0 and l etting Q = ±â
~
in Eqs. U

(40) through (42), the following pair of equations is obtained .

~x ~~~ 
x iT(1)] = 

2 

1 ~xm~z 
dS~ (44)

• x ~
(
~fl = 

~ym~z 
dS~ ~45)

m l
m
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These equations are identical in form and the x and y components of the

U 
current are not coupled . Then wi thout loss of generality , onl y the

x-component of the current will be treated for the remainder of thi s

paper.

To convert Eq. (44) into Integral equations in which the only

unknowns are the currents on the mi rrors , the field point, with position

vector ~~~, w i l l  be allowed to approach an arb itrary point on each mirror

surface in the l imit as the d istance between the field point and the m i rror
U _ U goes to zero. In each case, the approa ch wi ll  be made from wit h in the

U
- resonator. As the field point approaches first one mirror and then the

other , the appropriate sian will be chosen so that ±
~z 

corresponds to

the unit normal at the point of interes t on the surface.

Then letting the field point approach a point wi th position

U vector 
~l on m irro r #1, and choosing the upper sign in Eq. (44), Eq . (46)

is obta i ned ,

= - 

~~ l+ ~~~~~ ~~~~~ 
)4dS~

S.;

- 

~~ 1 ~x2~~~ ~~z~~_ dS~ (46)
2 r=r1 

U

where Eq. (37) and the rel ation = . V4 with = have been

employed. Using the expression for ~ 
given in Eq. (21), the normal

derivative of ~ Is written in the form shown below .

~~— e~~~
12 (1 + ikR 12)~1 V (4~~ ) (47)

U ~n1 
12
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This expression is used in Eq. (46) to rewrite the limit in the
-
~

- 1  form U

= 

~
m f  u (~~) ~ 

• ~~~~~~~~~~~~~ 
- 

- 

(48) 
U

where U

u (~~) = ~x1~~i~ 
e Rl2 (1 (49)

Using Eq. (50) to evaluate this limi t (Stakoold , ref. 36, vol . 2, p. 119) , U

U ~ 
fu(~~)ni 

. 
V(4~~~~~~ )dS~

1 ( cos (r1 - 
r,~ ~~1)U 

= - .u(F) +-J u (~j) dS~ (50)
S’ 4 ‘21 1 1

and substituting the result into Eq. (46), the following equation re—

lating the currents on the mirrors is obtained .

= - f  + i kl r 1 - r~
I]

1r 1 — 
r1!

~~ l I
~~
) cos(r 1 - r~, ~~

) dS~ - 2fJx2 (~~) ~~~~~~~ 
U (51 )

r=r12

A similar procedure yields the following expression for the current

L. ~~~~~~~~~~~~~~~~~~~~~~~ 

#2. 
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~x2~~2~ 
= 

21 Jxl 4zj d
~ 

U

r r 2

U 1 + ik~r — n u i l 
_______

+ 2Px2(~~
) 

[ 
1r 2 

~~~ 
2 

j  

4(
~2!~~

)co5(r2 - r~, ~2)dS~ (52)

Class ification of the Modes. Based on the analysis presented on

U 
the past few pages , the probl em of determining the modes for laser reso- U

na tors with perfec tly conduc tin g m irro rs has been reduced to solv ing the U

1 
following pair of integral equations:

= Kll Jxl + K12J 2 (53) 
U

~x2 = K2I JxI + K22Jx2 (54) 
U

U where

kqtJx~ 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dS~ (55)

1 + ik l~ — r ’I
KqqJ~q 

= 2 (_1)q 

~xq~~~ ir - r~l 
q

I cos(r q - r~, iiq )dS~ (56)

The solu tions of th i s pa i r of equat ions , wh i ch are laser resona tor modes ,

can be divided Into the three classes defined bel ow.
__ U 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

37 U

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U U U U U U~~~ U U U U- U - U U U - U U - U U UU U
~~~~~~~

U U U U U U U U U~~~ U U U U~~UU ~~~~~~~~~~~~~~~~~~~ U-~ UU UUU -~~



r
~~~~~~~~~~~~~~~

U-U.UV-U’UU--UU’UU-’U

~~~

U U  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
U

1. A Class I mode is defined to be a mode for which the self-

induct ion terms in Eqs. (53) and (54) are negligible in com-

parison to the mutual -induction terms; that is

~ << i~qq xq xq

2. A Class II mode is defined to be a mode for which the self-

U induction terms are proportional to the mutual -induction terms;

that is , ‘
~qq~xq 

= Yqkqp .o3xL .
- 3. A Class III mode is any mode not falling i nto Classes I or II.

Since the modes falling into this last class are beyond the

scope of this paper , they will not be considered further.

For the modes fall ing into Class II , Eqs. (53) and (54) take the

form shown below.

~xl = (1 + 
~~1

) 

~l2~x2 (57)

~x2 = ( 1 + ‘r2 ) k2i Jxi (58) U

Substituting Eq. (58) into Eq. (57) and vice versa , one obtains the

familiar eigenvalue problems of the form ,

~xl = ( 1 + y1 ) ( l  + ‘Y 2 ) Kl2~~1~ xl (59)

= (1 + y2~~1 + 
~~~~ 

K21 K12Jx2 (60)

wh ich apply for all values of k such that k’>O.

It should be apparent that not all of the solutions to Eqs. (59) U

and (60) are solutions to the more general set , Eqs. (53) and (54). Thus ,
U not all solutions of Eqs. (59) and (60) are laser resonator modes. For

U such solu tions to be Class II modes , they must also sa ti sfy the cons i stency
cond itions , U
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kii Jxi 
= Y i

Ki2J
~~2 (61)

K22J,~2 = y2K2.~J.,~1 (62)

for all points on mirrors #1 and #2. However , due to the difficulty in-

volved in demonstrating these consistency conditions , this potentially
U important class of modes will not be considered further in this paper.

For Class I modes, Eqs. (53) and (54) take the form,

‘3xl = 1(
12

1)
2 

(63) 
U

~x2 
= K2.~J 1 (64)

U As with Class II modes , one can obtain an eiqenvalue formul ation by sub—
U stituting for and vice versa . The result is the following pair of U

equations .

U 1)
xl 

= k12k21~,~1 (65) U

1)x2 t<2l Kl2~Jx2 (66)

However , not all solutions of Eqs. (65) and (66) are solutions to

Eqs. (53) and (54). Thus , for solutions of Eqs. (65) and (66) to be

laser resonator modes , they must satisfy the consistency conditions

!K ii J~1 k < J J~i i (67) U

IK 22J~2I<< !J~2I (68)

at all points on the resonator mirrors.

In appendix C, calcula tions are performed to estimate the condi-

tions under which the inequalities in Eqs. (67) and (68) wI ll apply.
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For mirrors such that a < < I R I  and a < 

~~ 
{~ 

_
~~~~~}.this estimate (which

was obtained by specializing Eqs. (67) and (68) to apply to azimuthally

syimietric modes at the center of circular mirrors) corresponds to the

conditions shown bel ow ,

(69)
g

~~~~~~ 21R1 
e~~

’
~~ 

+ ~~~a2) 
+ (~~)2 + ~~a]<<l (70)

where = - 1. Other conditions , wh ich corres pond to cases where

a > 
~
.9{ l_ ~V

/
~~ ”}~ 

are also given in appendix C.

Not surprisingly, these estimates of the consistency conditions

yield rather complex results that depend on X , a , IR I , L , and the values

of k” for each candidate mode . For ranges of these parameters where these

cond i t ions are marg inal , the rigorous conditions of Eqs. (67) and (68)

should be applied.

Then assum ing that the inequalities in Eqs. (69) and (70) hold ,

-, the equations for Class I modes take the form

-lkR
= - ~~ f j xl~~P

e 
R21 

cos a21 dS~ (71)

U -ikR 12
= - ~f j

x2~~P
e 
R17 

cosa12 dS~ (72 )
- 

S~
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where it has been assumed that IkI>>l/R ~1 
and 

~ij 
Is the angl e between

R1~ and the optic axis. Finally, subst ituting Eq. (72) Into Eq. (71)

and vice versa , one obtains the following pair of symmetric integral

equations for the currents on the mirrors .

U 

-ik(R 12 + R21 )
= (
~f X1~~~1~ f  R12 R21

cosct12 cosz21 dS~ dS~ (7 3)

-ik(R21 + R12)
= (j~ )2 f  ~x2~~2~ f  e 

R21 R12

U 
cosa21 cos~~2 dSj dS~ (74)

This last pair of equations bears considerable resemblance to the

U integral equations that are normally used (Fox and Li , ref. 1 , p. 454) to

analyze the modes of laser resonators. However , three important dif-

ferences are listed below .

1. Eqs. (73) and (74) are not in the form of a linear eigenvalue

problem . In this paper , the eiqenvalue k is not only a multi - j
U 

pl ier , but it is also i ncl uded in the integrand .

2. The obliqulty factor , cosc~12, used in this paper is different

from the factor , 1/2 ( 1 + cos cz12), which is normally used

(Fox and LI , ref. 1, p. 454). 
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3. Eqs . (73 ) and (74) apply to the current distribution in-

duced on perfectly conducting mi rrors , while the equations

normally used are widely considered to apply to the field

(electric or magnetIc) on resonator mirrors of any

materia l.

These fi rst two differences , which correspond to differences in the form

of the equations , can have a significant effect on the mode distributions

and losses . However , for some of the modes of paraxial resonators , the
- 

- 

effects of these two differences in form are negl igible. Although the

third difference will have no effect on the forms of the solutions ob-

tained, it does affect the physical interpretation of the terms in the

U equations as well as the conditions under which the equations can be

applied. Finally, it is important to note that , (1) not all solutions of

Eqs. (73) and (74) are resonator modes; and (2) these modes are not the

only modes of the resonator. Other possib le modes are Class II and III

laser resonator modes and the entire set of incoming wave modes (which

have not been addressed in this paper) .

In any case , to determine the Class I modes of a laser resonator
U with perfectly conducting mi rrors, a procedure must be developed for

solv ing Eqs. (73) and (74). That procedure, wh i ch must specify

simul taneousl y both the real and imaginary parts of k as wel l as the . 
U

current distributions on the two mirrors , Is the subject of the next

chapter. U
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IV. Solution of the Integral Equation

The purpose of this chapter is to discuss the general probl em of

solving the integral equations derived in the previous chapter and to
- - present the method , based on a variational principle , to be used to

obtain approximate solutions to these equations for open resonators

satisfying the paraxial approximation . To accomplish these objectives ,

this chapter begins with a discussion of the general form of the inte—

gral equations and the relationships between the solutions to these

equations and the fundamenta l resonator parameters . The paraxial

approximation is then discussed and appl ied to the general equations to

obtain an eigenvalue formulation for paraxlal resonators . Fol lowi ng the

formulation , the variational method for obtaining approximate solutions

to these equations is presented and discussed .

I The Basic Probl em

As indicated at the end of the preceding chapter , the first step
U 

in determInIng the modal properties of open resonators is solving Eqs.

U (73) and (74). To solve these eouations , the quantities 1)x l’  ‘~~2’ and

k must be specified simultaneously for each mode . Once k is known , the

U resonator mode and material parameters may be determined using Eq. (22),

which is repeated without subscripts below .

k = + ~~.J~~~+ x ) _ _ ~
2. (22)

U 

Writing the sauare root in series form , assum ing that - << 1 ,

and writing k , w , and x in terms of their real ( ‘ )  and Imaginary ( ‘ ‘ )

parts , the followlig relationships are obtained .
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k’ = 

~~~ (1 + ....

~~

.
.) - 

~~~~~X h’ (75) 
U

U
: k” = ~~~~~ (1 + x.~~ + ~

‘x” 
- a (76)

- 
U c 

\ 2n2 / 2nc 2nc~0
U Using these relations with the computed values of k’ and k” (which have

U 

been obtained as part of the solution of the integral equations) and the U

U U 

given values of four of the parameters w ’ , si ” , x ’~ ~~
“ , n , and a , the

U

; remaining two quantitites can be determined.

The main difficulty wi th the general approach just described

lies in obtaining the solutions to Eqs . (73) and (74). This is espe— U

cially true when information concerning higher loss modes is desired . 
U

One possibl e approach to obtaining such solutions begins with an itera-

tion approac h similar to that used by other workers (refs . 1, 26) in the

field. By applying that procedure to Eqs . (73) and (74), one can deter-

mine the current distribution s and the value of k for the lowest loss

mode. To extend that procedure to the next lowest loss mode , one must

insure that each successive approximation for that mcde is orthogonal to

the solution for the lowest loss mode. Similarly, the approximation for

each higher loss mode must be made orthogonal to all of the lower loss

modes that have been obtained .

This iteration/orthogonal ization procedure is , in general , very - 
U

difficult and time consumi ng to apply. However, as shown In the next

section , a considerab ly simpler procedure is available for open resonators .

U 
Formulation of the Elgenvalue Probl em for Paraxial Resonators

For many resonators containing mirrors for which a/IR !<<l ,

the mirror separation L is much greater than the mirror radius a. Such

-U ~~ ~ U U-U U — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —U ~~U — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U - J
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U resonators satisfy the paraxial approximation . Some of the modes of

these paraxial resonators satisfy the more stringent condition that ,

for the ~th mode, the quantity e~~JRl2 is accurately approximated by

- e~~j
L for any two points on the mirror surfaces. For these paraxial

U 

modes, the coupled Integral equations take the form below.

= e+2kh1LfJ~1(~j) ~~~~~~~~~~~~~~~ 
+ R21)~~~~ dS~ (77)

k S_ i S~

~x2~~2~ 
= e

+2khh l

f ~x2~~P ~
(
~~~~fe

_Ik1
~~21 + R12)~~~ dS~ (78) U

S~ S.;

For resonators operating at or near opt ical wavelengths , the

relations k’ >>k” and ~~
‘ >>~~

“ hold for all but the lossiest modes. Using

these relations , Eq. (77 ) is rewritten in the form U

= e+2k’~ f JXl (
~ i)K k,(~ll~ i)d~_i (79)

S_i 
U

U where

Kkl (~l l~j) 
= 

(.

~7 
fe 

k’(R.~2 + R21) (80)

Using this symmetric kernel , which is not a function of k’ , Eq. (79) is

now cast in the form of a linear eigenvalue problem with an external

parameter k’~ U
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= 

~‘f 1)xl ’i~~k1(~’lIt’i)d5i (81 )

Si
U 

U

Then subject to the constraint of finding the proper value of k’ such

tha t k” = 
~~~

. in y,  where y is real and positive , the problem of deter-

mining the modes has been reduced to a linear eigenvalue problem.

When the precise frequency spectrum is not required , th is
U constraint on y can be relaxed without significantly affecting the

S current distributions or the damping rates for the modes of interest in

1 this analysis (relatively low loss modes at optical or infrared wave- UI .

lengths). This relaxation is a result of the relatively high mode 
U

U density which is characteristic of even lossy resonators at the wave-

lengths of interest. Thi s high mode density limits the difference

between an arbi trarily chosen value of k’ and one which will produce a

real , positive value of y . For example , the ax ial mode spa cing of a

plane parallel resonator in free space wi th mirror separation L is

= c/2L (82)

As the maximum shift off a resonance is one-half of this spacing , the

maximum shift or error in the value of k’ (at threshold and line center)

is ir/2L . This maximum shift corresponds to a relative change in the
U 

resonator Fresnel number , N = a2/XL , of

= a2/4L2 (83)

U 

where a is the mirror radius.
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For paraxial resonators of all but the largest magnification ,

- 
U this small change in the Fresnel number will have negligible effect on

the modal parameters. As a result , the requirement that y must be real

and positive will be dropped . This reduces the analysis to solving an

eigenvalue problem (with complex eigenvalue) for any value of k’ corres-

ponding to optical or infrared wavelengths . As complex values of y will

now be allowed , the expression for k” must now be wr it ten

1k” = in Ny’! (84)

For certain cases, the problem can be simplified further. Those UI

cases correspond to problems for which the spatial dependence of the

kernel , Kkl(~1 I~.;), 
can be separated or the dependence on one coordinate

can be solved in closed form. In the first case, which corresponds to U
U 

resonators with rectargular mirrors , the separation of variables reduces

to solving two eigenvalue problems as shown below .

u ( x 1) 
= Ylfu(xj)Uk,(x l !x_ i )dx_i (85)

v(y 1) 
= Y2fv(Y_i)v~I(~l IY_ i )dY_i (86)

wi th e+2k’
~ li1~2I, J~1cF1 ) = u ( x 1 )v( y1 ) , and Kk,(~l F~~_ i )  

=

U~(x 1 Jx_ i )V~(y1 I~fl.

In the second case, wh i ch corres ponds to m irrors of circula r

cross section (where the azimuthal deDendence can be solved exactly), 
U

1$ 

a single elgenvalue equation involving only the radial coordinate

resul ts. The corresponding equation has the form

LU U U U U . U ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

U



U 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

_ _ _ _ _  _ _ _ _  

U-
~~w~••,~

U ~~~~~ 
= YfJxi _ i )~~(o l l P _ i )doj (87)

U 

.wi th e = J - y
~ 

as before.

U 

The Variational Method of Solution

To see how a variational approach can be applied to these eigen-

value probl ems , it is useful to determine the variational principle (or

U 
problem) satisfied by the eigensolutions of the type under consideration .

-! To determ ine tha t pr inc ip le , one firs t cons iders el genso lu tions ~ and 
U

u (x )  wh ich sa ti sfy U

-

~ Vu(x) = f u (x ’)K(xlx ’)dx ’

where K(xlx ’) is symmetric with respect to x and x ’ , and ~ y
’ 1

. One

then multipl ies Eq. (88) by an arbitrary function w(x) and intearates

the result over x to obtain Eq. (89).

~ fu(x )w(x)dx = fw(x) f u ( x ’ ) K (x~x ’)dx ’dx (89)

x x x ’ H

Next , one varies the quan ti t ies ~~w(x) , and u(x), uses the fact that

U K(xlx ’) is symmetric , and recombines terms to obtain the result shown -

I in Eq. (90).

U 

f~
w(x) 

{
~u(x) - f  K(xIx ’ )u (x ’ )dx ’

~ 
-dx +f~u(x) 

{
~w ( x )  

I

.:

I 

-fw(x ’)K( x (x ’)dx ’}  dx = - 6~Ju(x)w(x)dx (90)
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I
: Letting w(x) = u(x) in this equation , it can be seen that lffu2(x)dx ft 0,

then the eigensoiutions ~ and u(x) satisfy the condition

~~~~~
= 0 (91)

where

u(x) K(xlx ’ )u(x ’)dx ’dx
— x x

~92

fu2(x)dx
x

Thus the elgenfunctions u(x) are those functions which make ~

stationary for all variations about the functions u(x). This implies

‘I that if one were to substitute all possibl e trial functions for u(x)

in Eq. (92), by writing u(x) in terms of an i nfinite number of parameters

{A~}1 ~~would have stationary values for those values of the {An} which

would yield the eigenfunctions u(x). One cannot in practice generate

all possibl e trial functions , but one can generate all possible

variations within a given class of functions and then require that

a~7= 0. To the degree that the chosen class has the capability to

represent the modes , one can obta i n accura te app rox ima ti ons to these

modes . One well-known technique for obtaining such stationary approxi-

mations is the Rayleigh—Ritz procedure (Morse and Feshback , ref. 37, 
U

vol . 2, p. 1118) described in the fol l owing paragraphs .

The Rayleigh-Ritz Procedure. To apply the Raylei gh-Ri tz pro-

U 
cedure to the elgenvalue probl em shown in Eq. (88), one begins with

the variational principle just described . One then expands u(x) in U

terms of a set of known func tions

-

~~ 
U-~~U-~~~~~~~~ ’UU-U-UU 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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u(x ) = 

~~
A
~
i
~

(x) (93)

and substitutes the result into Eq. (92) to obtain the followi ng

express ion.

E 
A iA
J
~i(x)~~(x)dx 

-

i ,m

-
~ 

= 

~~ 
AiAmf*i(x)f K(xIx ’)

~~
(x ’)dx ’dx (94)

U 

The next step in the procedure is to find those values of the

U independent set {A~} wh ich make ~ stationary . It can be shown that those

values satisfy (Morse and Feshback , ref . 37 , vol . 2 , p. 1119)

(95)

for each value of i. Applying that condition , the following set of

equations is obtained for i = l ,2,-- ,n ,

U 

~~~~~~~ = E A K .  (96)

U where

U ‘11mi f~m~~~~i
(
~~~

t
~

c (97)

I 
and

U

; 1(mi f~m~~~f 
K(x t x ’)~~(x ’)dx ’dx (98)

I •~~~U _  —_ UU __ U _~~~~ U U _ U UU U~~_ _ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
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This set of homoaeneous equations corresponds to the matrix

problem U

(99)

where v and K are square matrices wi th el emen ts and Kmj as defined

above and A is a column matrix with elements A
~
.

In selecting the variational method to sol ve the linear eigen— 
-

value probl em , cons idera tion was c~iven to the fact that the eigenfunctions

can be normalized so that they obey the orthogonality condition (Siegman 
U

and Mi l le r , ref. 28, p. 2730),

fun(x)um(x)dx = 

~nm (100)

Then using the Rayleigh-Ritz procedure , stationary approximations to the

eigenvalues ~~~, which yield approximations to the orthogonal eigenfunctions ,

can be found if the ma trix elemen ts and 
~~ 

can be evaluated . These U

approximations can also be made to obey Eq. (100) by using the procedure U

discussed in appendix G to solve the matrix probl em.

The General Form c~f the Matrix Elements. To eval uate the matrix U

elemen ts, it will be necessary to know the specific form for the

and the kernel K(x
1 !x_ i ). Al though these precise forms are covered in the 

U

fol l owing chapter , the basic equations are summarized below . U

Referring to Eq. (80), the kernel K (x1 !x_ i ) can be written in the 
U

general form

K(x 1 lx _ i ) f  K12 (x 1 1x 2 )K 21 (x _ i 1 x 2 )dx 2 (101 )
x 2
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where the integration over x2 is taken over the space corresponding

to the second mirror. Substituting Eq. (101) into Eq. (98) yields

K~ =f dx 2 {f dx.; K12 (x _ i 1x 2 ) 
~m(x .;)} {fdxl K21 (x 1 Ix 2 )

~~
(x i)

~ 
(102)

x1

To simplify the notation , the func tion Am(X 2 ) is defined accord i ng to 
U

Eq. (103) below. 
U

Am(x 2) = f  
~ 12~~~ 1 k2

) 
~m l ~~~l 

(103)

- 

U~~ Using this definition, the matrix el ements ca n be compactly sumarized
U as shown below .

K
~ 

= f dx 2 Am (X2) A~ (x 2) (104)

F 

X 2

‘1tmi J dx 1 ~
‘m~

’
~l~ ~

p
~

(x 1 ) (105) 
U

x 1

As previously indicated , the next step in the procedure for

obtaining the modes of open resonators is the application of these general U

expressions to the particu lar resonators of interest. This s pecializa-

tion is the subject of the next chapter .

However , before proceeding to that chapter , it may be helpful

to sumarize the types of resonators and modes for which the basic
- 

theory and method 0f solution just outlined are applicable. First ,

the basic equations themselves (Eqs. (79) and (80) are appli cabl e only

U

_
_I U
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for resonators with perfectly conducting mirrors where the effec t of any

gain is essentially constant for all points on the resonator mirrors .
U 

In addition, these equations are applica ble only for resonators for

- . which the oscillation wavelength is small in comparison to all resonator

U dimensions and where the mirror diameters are small in comparison to

the mirror separation and radii of curvature . Finally, these equations

are applicable only for cases in which the sel f—induction integral s in

Eqs. (53) and (54) are negligibl e , and the method of solution should be

employed only for cases that do not require knowl edge of the precise

frequency spectrum.

53
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V. App~icat ion of the Var iational Method

The purpose of this chapter is to specialize the basic theory

and method of solution to open resonators of rectangular or circular

projection for which the spatial dependence separates . These speciali-

zatlons include obtaining the specific form of the integral equation as

well as the expansion functions for eac h geometry .

-
~~ Since it is to be appl ied to several cases , the general pro-

cedure for obtaining these specializations is the first subject of

discussion in this chapter . This procedure is then applied to resona—

tors with spherical mirrors of circular projection ; and to illustrate

its various aspects, the calcula tions are covered in some deta i l .

Finally, the chapter ends wi th a similar section for rectangular mirror

U resonators ; however , the details for this case are covered in appendix D.

The General Procedure

Specific Forms of the Integral Equations. The procedure for U

obtaining the integral equation is usually relatively simple. To apply

it , one begins wi th Eqs. (71) and (72 ) as the basic forms . One then

makes the followi ng assumptions :

1. The mirror radii are much smaller than the mirror U

radii of curvature ,

2. The paraxia l approximation holds ,

U 3. e ~~e across the mirror sur faces , U

4. The precise frequency spectrum is not of interest ,

5. k ’>>k” .

L~~~ - U - U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U - U U
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Using these assumptions and substituti ng Eq. (72) into Eq. (71 ) and vice

versa , one obtains Eqs . (80) and (81) from chapter IV . Then , the

distance between two arbitrary points on the mirrors , which is expressed U

- 

- 
in terms of the resonator constants and transverse mirror coordinates ,

is written in series form using a binomial expansion. In this expansion ,

a sufficient number of terms is kept to accurately approximate the

U 
exponential e~~~

’R across the mirror surfaces . Finally, where possible ,
the spatial variation of the equation is separated to yield one or more

equations of the type shown in Eqs . (85) through (87).

Sel ect ion of Expansion Functions.

Desirable Characteristics--Al though the precise forms are

somewhat arbi trary, the expansion functions used to calculate the reso-

nator modes should have two desirabl e characteristics. First , one

shou ld be abl e to establish the precise form of the functions from the

resonator parameters with relative ease. Second , the functions should

exhibit (to whatever degree is practical ) the behavior expected from the
U actual modes so that

1. Trends can be identified with respect to changes in
parameters ,

2. Physical insight can be gained into the behavior of U
the modes ,

3. The modes can be adequately represented using a rela-
tively smal l number of expansion functions.

Exclud ing the actual modes themselves , three categor ies

that exhibit some of these desir ed characteristics are listed below:
U 

1. Approximate solutions of the derived resonator
integral equation ,

2. Exact solutions of the derived integral equation for
a resonator similar to the one being considered ,

U 55
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3. Approximate so lutions of the derived integral equation
for a resonator similar to the one being considered .

Unfortunately, to obtain the functions corresponding to the first two

cases , one must solve a problem which is at least as difficult as the

original . As a result , the expansion functions will be chosen t~ be

approximate so lutions of an integral equation for a resonator similar to

the one being considered . The “similar ” resonator chosen for each case

‘is a symmetr ic resona tor , which consists of two mirrors such that

1. The mirrors are identical to the one on which the
U ‘U current is being analyzed , and

- -- 2.  The mirror separation is the same as for the original
H probl em .

Thus , to determine the expansion functions , approximate

solutions of integral equations of the fol lowing form must be obtained ,

J(
~

) = y J J(~ ’) K(~ !~~’) d~
’ (106)

ik ’ — — ‘

~k’ 
-2-——N(xlx )

K(~ I~ ’) 
= 

~~~~~ 
e (107 )

where the subscript x denoti ng the x-cornponent of the current has been

dropped , and N(~ l~
’) Is symmetric with respect to the spatial coordinates

i and ~~
‘ . As indicated before , when the spatial dependence separates ,

Eq. (106) reduces to one-dimensional equations with symmetric kernels.

Possible Approaches for Obtaining the Approximate Solutions--

To discuss the procedure for approximately solving these symmetric inte-

gral equations, Eq. (106) is shown below in operator notation.

J(~) = yK J (~) (108)

I~~~~~~~~~~~~~~~~~~~~~UU- UU ’ UU~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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U For the first approach , one assumes that an operator M can

be found such that M commutes with K. Then , by definition, Eq. (109 )

holds ,

p1 K J(~ ) = K M J(~ ) (109) U

and the operators K and M have simultaneous eigenfunctions. This implies

U that if the eigenfunctions of the operator M can be found, the eigen-

functions of K can be expressed as a linear combination of them. Thus ,

If functions v (
~~

) can be found such tha t
I~~~. 5

- ~~~ M v~(~) _s2v~(~
’) (11 0)

then the eigenfunct ions J(~) of K can be expressed in the form

~~~~~~~ ~E&y’s v
~

(
~

) (111)
5

The particular linear combination to be used in each case can be deter-

mined using the variational procedure discussed in chapter IV to specify

the A
y5 — U

Unfortunately, for al l  bu t the simplest cases , finding an

U operator £4, and its eigenfunctions , so that £1 commutes with K is very

d iff icul -t. However , in some cases it may be possibl e to find an

operator M such that the commutator between £1 and K is relatively smal l,

especially for low loss modes . For such cases , Eq. (109) must be modi-

fied to include th i s relativel y smal l di f ference , which is represented
‘

U by RJ(~) In each of the following equations ,

-
; M K J(~) = K M J(’~) - R J(~ ) (112)

M J ( ~ ) y K M J ( i ) - y R J(~ ) (113)
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where Eq. (113) was obtained by combining Eq. (108) with Eq. (112). For

this case , £4 and K do not have simultaneous eigenfunctions , but if

IR J (~~)I 
is indeed small in comparison to 1 K M  J ( U

~~~)j ,  the eigenfunctions

of £4 may still form an excel lent expansion set for the eigenfunctions of

‘H Unfortunately, it may be quite difficult to actually show I
that Eq. (114) holds .

IR J ( i) ~ << 1K £4 J(
~ )I 

(114)

However , even if one cannot find operators £4 and R such that Eq. (114) U

U 
can be shown to hold , it may still be possible to find forms for M and

R such that the eigenfunctions of M form an excel lent expansion set for

the eigenfunctions of K. With that in mi nd, the fol lowing rather simple

U procedure is used to obtain the approximate solutions to Eq. (108).
U The Chosen Procedure--First, using the operations discussed

in the following paragraphs , Eq. (108 ) will be manipulated to yiel d an U

equation of the form shown in Eq. (113). The particular manipulations

used will be selected to yield an operator M such that one can solve the 
U

— eigenvalue probl em shown in Eq. (110). In addition , the manipulations U

U will be chosen so R J(~ ) contains 
~~~~~ 

terms which either 
U

1. Depend on J(~ ) and its derivatives only at the mirror
edges , or

2. Involve products of the coordinates of both resonator
mirrors .

When Eq. ( 110) has been solved , the functions v 5 (x ) will be chosen as the

approximate solut ions of the symmetric integral equation shown in

Eq. ( 108). For mirrors which are conic sections , this sel ecti on will
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yield expansi on functions that are obtained by neglecting the finite

sizes of the resonator mirrors .

- 
The operations used to obtain Eq. (113) from Eq. (108) are

H similar to those used by Bergstein ( ref . 2 , p. 497) and others

(refs . 22 , 23 ). These manipulations are outlined below for resonators

such that

1. The mirrors are conic sections, and

2. The integral equation separates . U

- U 

The approach used for extending this procedure to toroidal mirrors is
U covered in appendix D.

U 

One begins by separating Eq. ( 106) to yield one or more of

the equations of the form of Eqs . (85) through (87), which are repre-

sented by Eq. (115),

u(~) = y f  u(c’) K(~~l~~’) d~’ (115)

C ’
U I

where ~ = x , y , or p. One then computes the second derivative of

U Eq. (115) to obtain Eq. (116).

d2u(~) = yJ
’
~ 

u (~ ’) d2K(Ck’) d~ ’ (116) 
U

d~
2 dC2

- 

Next , one integrates the term K( C IC ’) d2utC ’) 
by parts twice to yield

dc ’2

U K(c!~ ’) d2u (~ ’) d~ ’ = 
~fu(c ’) d2K(c!c ’) dc ’ + -y’R ’u(~ ’ ) (117)

- 

d~
’2 dc ’2

c

~~~~
U
~~L - U - U U U  ~~~~~ - - - - U - U - - U - - U - U - - ~~~~~ ~ U’U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U
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where the express ion

R’u(~ ’) = K(c lc ’) du(~
’) 

— u(c ’) dK (cl ç ’) (118)

is evaluated at the corresponding limits of integration . One then sub-

tracts Eq. (117) from Eq. (116) to obtain the following rather compli-

cated relation.

d2u()~~ = y f K (c lc ’) d2u(~
’) 

dc ’ —

dc 2 J d~
’2 U

C l

U 
+ yf u (c ’) ~~~ - 

d2 K(~ IC ’) dc ’ (119)
J d~

2 d~
’2

U 

C ’

U For symmetric, separabl e kernels of the type shown in Eq. (107), -. U

the derivatives of K(clc ’) in Eq. (119) can be written as the sum of

three terms as shown below , 
U

•~~ U U U

- 
d~ K(~ IC ’) = - f(g,c) + f(g,~’) + h(g,cc ’ ) K(~ lC ’ ) ( 120)

d~
2 dc ’2 -

-

where 
U

1. The function h(g,cc ’ ) contains all terms involving products
of ~ and ~~

‘ (the coordinates of both resonator mirrors ) ,~~

U 2. The function f (g,c) contains all terms involving c but ,

not c ’ , and UUU -

3. The function f(~ ,~ ’) contains all terms involving c ’
but not c . U

*For cases where the mirrors are conic sect ions , h(q,~c ’) vanishes

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- - 
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Then , substituting Eq. (120) into Eq. (119), and using Eq. (115) to

1’. show that

yf f(g ,c) K(c Ic ’) u(~ ’)d~ ’ = f( a ,~) u(c) (121)

-l C ’

Eq. (119) can be rewritten in the form shown below . 
U

+ f(g,c) u(~) = ~JK(c !c ’) d2 
+ f(~~ c 1)} u (~ ’)d~ ’

dc2 C ’ dc ’2

+ K ( c j c ’) h(a,~~’)u(~ ’)dc ’ - yR’u(~ ’). (122)

~ 
-
~ C ’

Examining the last two terms in Eq. (122), one can see that 
U

1. R’ u (~ ’) depends on u(~ ’) and its derivatives onlyat the l imits of integration , and U

2. The integral involves products of both resonator
coordinates.

Then , subj ect to the condition that u(~ ’) must be selected so that

R’ u(~ ’) depends on u(~ ’) and Its derivatives only at the mirro r edges ,

one identifies Ru (~ ’) by comparing Eq. (122) with Eq. (113). The result

U Is

Ru(~ ’) = ~‘ u(~~’) - f  K(cl~ ’) h(a,~ç ’ )u (~ ’)d~ ’ (123)

C ’

U Substituting thi s form Into Eq. (122), one obtains the followi ng result.

~I ~~~~~~~
——- --- 

~~~~
—- -—
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f(g,c) u(~) 
= -y~u(c’)d~

2

K(~~~’) 
fdC 12 

+ f(~~~c 1)j  u (c ’)dc ’ (124)

Specializing this equation to resonators containing mi rrors which are

- conic sections , and comparing the result wi th Eq. (113), the operator

M is Ident ifi ed ,

-
~~~~~ 

d2
£4 = — +  f(g,c) (125) U

U dc2

-: UI 
and the eigenvalue probl em to be solved has the form shown below .

U 
d2uCc) + f(q,~ ) u(~) = -s

2u (~) (126)
U 

dc2

The eigenfunctions obtained by solving Eq. (126) will be U

too general to be applied to the resonator problem without restrictions.

Three appropriate restrictions are listed bel ow.

1. For rectangular mirror resonators , the modes (and the
- : 

U expansion functions) are either even or odd functions.

2. The expansion functions must be finite at all points
on the mirrors .

3. The expansion functions must be consistent with other
known behavior for the modes.

U For uns table resona tors , the las t con di ti on corres pon ds to

U 

the requiremen t tha t as g~1 , the eiqenfunctions of M must reduce to the

known forms for plane parallel resonators . These known forms, which

I were obtained by Vainshtein (ref. 21 , p. 711) using the Wave auide

62

- U _~~~~~UU_~ - — U ~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~ -~~~~ ~~~~~~_ - - -~~~~~ — - U - 
j



- ~~~~~
U-’ U U -UW ‘U U-

~~~~~~~~
U-U-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘UU-U-U ~-

Analogy and which are to be used as expansion functions for plane

parallel  resona tors , are l isted below.

For rectangular mirrors of width 2a and separation 2L,

the expansion functions for modes of odd symmetry are

f (x) = sin n-n x ;n  = 2 ,4,6 -—— ( 127)
n 2a {l + (1 +

and the expansion functions for modes of even symmetry are

f (x ) = cos mix ;n = 1 ,3,5 ——— (128)
U 2a {l ÷ (1 +

In these express ions , B = ~~~~ 
~~O.824, M = V~~ff, and c is the Riemann(7_

zeta function (Erdelyi , ref. 41 , vol . 2, p. 32, Eq. 2).

U 
For circular mirrors of radius a and separation 2L, the

expansion functions are given by

= 

~n( 

~~~~~~~ 

~ e (129)

where vnm is the mth root of the n th order Bessel func ti on of the f irst U

k i nd , 
~~~~~ 

and B and M are gi ven above.

Resona tors with Spher ical M ir rors of Ci rcular  Pro ject ion

To apply this procedure to a circular mirror resonator with

m i rrors of rad ii a 1 and a2, one begins with Eqs. (71) and (72). The U

appropriate forms of these equations, which express the current on
U 

mirror #1 In terms of the curren t on mi rror ~2 an d v i ce versa , are

shown below ,

63 U 
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U 2’rr a -ikR
= - 2i~J f Jx1~~1~

01) 
e 

~21
_ cosc&21p 1dp 1d01 (130)

2-rr a -ikR
J
~1 (p 1, e1 ) = - ik f  

j

2 
Jx2~~2~

02) 
e 

R12 
cosc&12p2dp 2de2 ( 1 31)

U 

where R 12 is given by Eq. (132).

R~2 
= p~ + p~ - 2p 1p2 cos 

~°2 
- e1) + (z 2 - z1

)2 (132)

• To obtain the expansion functions for the current on mirror #1 ,

one specializes Eq. (131) to apply to a symmetric resonator containing

two mirrors identical to mirror #1 with the same mirror separation

present in the original problem . Since the resonator being considered

(to obtain the expansion functions) is symmetric , a1 
= a2, R1 

= R2,

and

U 

J
2(p2,o2

) = e~~~
’ 

~~~~~~~~ 
(133)

where c~’ = -rrq , and q i s an ~~~~~~~ Thus , the equation for the

current on mirror #1 of this symmetric resonator can be written in

the followi ng form.

= - ~~ e+th’J de
2f 

Jx l 2 , 02 )e
R cosa 12p 2dp 2 (134) 

U
-

*pne can see this by choosing the orioin midway between the mirrors
and real izing that the fields must be even or odd with respect to z.
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To simplify the procedure for obtaining these expansion

U funct ions , the followi ng approximations are made .*

a
R << 1 (135)
1

a 2 

(i~J (136)

k ’ (137)

a1 << L (1 38)

Under these con dti ons , cosc~12~~1 an d

e
kIR 12~~i~~1L e 

i ’~~~~2 + p2 2) 
~~~~~~~ 

cos(02 - ei) (139)

where g = 1 - and the first two terWs of the binomial expansion have

been used to app rox ima te R12. Finally, it is assumed that

+k”R 12 +k”e ~ e - L (140)-

across the ent i re m i rror sur face. W ith these app rox imat ions , Eq. (134)

~~r ~e manipulated to yield

‘—~~~~~ .. ~~~~ w r ’e re EqS. (135)  throuah (138) are not valid , usino
.~~~~ •n ~

- - t ’ — ~~ 4 r ~ns will simply require the use of a relatively larce
- ‘  • •‘ s~~

— r  ‘unctions to represent the modes .
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~xl~~1 ‘°l~ 
= 

ik • 
/71 

J~~~~~e~ e~~~
LP (P l

2 + 02
2)

U 
+Ui

~~

__ 

~l~2 
cos(o2 — e

1)

U 
e p2dp 2de2 (141)

U +ic2’-ikL
U where y= -e

Nex t, one assumes solu ti ons of the form ,

= u~( o )  e~~~
o (142)

and applies the identity (Erdelyi , ref. 41 , vol. 2, p. 7),

• 27r

~
n 

21TJ
n

(z)  = 

J 

e~~~
05 ’U’

~ d~ (143) 
U

U 

where J~(z) is a Bessel function of the first kind. The result is the
followi ng integral equation for the radial mode function ,

Ha .

u~(~1 ) 
= jn + i ~f un~~~

e
~~~~~ 

+ 

n l ~~~ l~~l , ( 144)

where 
~l 

= % J i~
_ P 1, ~j = 

~2’ 
and Ha a1.

To comp le te thi s step ir~ the proce dure , one makes the sub— 
U

stitutions u~(~1 ) 
-
= and = yi 1

~ 
+ l, to obtain the fol —

l owina integra l equation ,
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Vn(~l) 
= ja v (c ’ ) K (

~~I~~) d~ (145)

where the kernel , K~(~1 l c.j)~ which is given by U

U —
~* 
(~l

2 + ~ ‘2 )
Kn(~l I~~

) = e 
~n~-~i~P 

(146)

U 

is symmetric with respect to and

The next step in the procedure is to obtain the operator M ,

using the manipulations descr ibed in the section entitl ed “The Chosen

U Procedure.” These man ip ula tions involve the follow i ng pa i r of equa tions ,

d2vn(~i) 
= ~ 

Ia 
~ (Ci ) 

d2Kn(~i k)~ dc~ 
(147)

d~1
2 n~~ n d~j 2

H 2 ‘

~nf 

d 
~ d~

Ha d2K (~~ k’) -‘

= 

~nf 
V n~~P 

n l  1 d~ + 1n R “n~~P 
(148) U

U where
H

U dv (c ’ ) dK (c ’k) a 
U

Rv~(~’j) = K (
~1ki) n 1 

— “n~~P 
n (149)

d~.j ~~U 0
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Equation (147) was obtained by operati ng on Eq. (145) with

while Eq. (148) was obtained by i ntegra ting the term K~~~(~~~~
1

j U ~~~j )
U d2v~(~ j)

d~’2 
by parts twice.

Con ti nuin g to follow the section ent itled “T he Chosen

Procedure ,” one subtracts Eq. (148) from Eq. (147), com putes the 
U

der iva tives of K~(~ 1 I~~j ) i  and uses Eq. (145) to obtain the result

shown below .

+ (g2 - l )~l
2 + ~~~~ (~~ - n2)~ v

~
(
~ i

)

= - ynR v~ (~~~) + 
1

a 
K~(~1~~~)

- U 

d~~2 
+ (g 2 - l )~j2 + 

~~~~~ (~~ 
- n2) v~(~~)d~j (150)

Referring to Eq. (124), the fol low i ng condi ti ons may be shown to app ly . U

1. f(g,~) 
= (g2 - 1) ~2 + 

~~~ (~~ 
- n2)

2. h(g,~1~~) 
= 0, and

3. Unless the term in braces in Eq. (149) vanishes at ~~ -j = 0,

U Rv~(~-j) will depend on vn(~i ) and its derivative at the

orig in as wel l as the mirro r edge.

U Thus , to meet all the conditions described on page 58, the

must be selected so that at = 0,

________ - 
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dv (~~~) dK (
~1 k’i )

K~(~1 I-c~) ~~~~ , - V~~(~~ •j )  d~-j 
= (151)

For the actual demonstration that Eq. (151) holds for the selected

forms of the v~ (~~~), the reader is referred to a more detailed version

of this discussion in appendix 0. For this presentation , it Is simply

assumed that Eq. (151) holds .

U Therefore , subject to th i s assum pt ion an d in accordance wit h

Eq. (125), the opera tor M i s chosen to be

A = 
~~~~+ (g2 - 1) ~2 + ~~~~~~~~ n2) (152)

Thus , the eiaenval ue problem of Eq. (110) has been reduced to solv ing

the followi ng differential equation and applyin o the restrictions

presented on page 62.

d2v (~~) ~~~— n2
U
- 

~

‘U’U

~ d~ 2 + (q2 — 1) ~2 + 
~2 + ~2 v~ (~~) 

= 0 (153) 
1

U 

For stable reso,~iators , the most convenient form of this equa- 4
~: 

tion is

d2w~(z) 
- ~ jl 

+ (2v~
+ 1) + (n 2;

~~ 
1) 

} 

w~(z) = 0 (154)

This equa tion , wh i ch was ob ta i ned us i na the subs ti tu tions

U w~(~) v~ (~~) ~~ z = cL ’ C 2 , ~2 = - (2v + l)c~, and ct ’ = 11 ~~~~~~~~~~~~ is

1 Whittaker ’s di fferential equation (Whi-ttaker and Watson , ref. 39,

p. 337). It has solutions of the form ,
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w
K p

(Z) = A WK P
(z )  + B W _K ,p (_z) (155)

where the W K p (z) are Whittaker functions of the second kind , U

K = — ~~
. (2v + 1), and p = ~.. With z gi ven above , these func tions U

are characterized by the fol l owing : 
U

1. Singularities at the origin , ,except for the spec ial
n + lcase where K = - m - 2 ~ wi th m 

= 0,1 ,2, ——-- , and

2. Exponential decay (for WK P (z)) or exponential growth

( for W , D(z)) with increasing values of the radial

coordinate p.

Thus , to make the solutions given by Eq. (155) consistent with U

U 
‘

~ the known behavior for the modes of stable resonators (i.e., the fields

do not increase exponentially with increasing mirror radius), one sets

B = 0 and K = — m — ( fl ‘
~
) with m = 0,1 ,2,-—— . Using the3e conditi ons

and wel l known relationships involvin g Whittaker functions (see

appendix H), one can show that the expansion functions for stable

resona tors have the form
U —

U 
unm(~

) = e 2 F~ (&C2) (156)

where F~ (c & ’ C2) is a generalized Laguerre Polynomial (Erdelyi , ref. 41 , U

vol . 1 , p. 268).

For unstable resonators , it is advantageous not only to con_

vert Eq. (153) back to an equation for u~(~)~ but also to make the sub-

stitutions z = ~~ = - (s/2~)2, and ç~
2 = ~~. ~~~~~ - 1 ’ to obta i n the

followi ng equation .
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U U 
d2u (z) du (z) 2

- + 1 ~ + 4z2 - ~ — - 4’r u (z) = 0 (157) U
- dz2 ~ dz z2 U 

U

-
. Th is equa ti on has solu tions of the form -

U

un t (z ) = 
~
. AM.~~n (iz 2) + BW

~~~n ( iz2) (158)
2 2

- where M (z) and W (z) are Wh ittaker functions of the first and second
U K ,~,1

U kind , respectively. As indicated in the discussion for stabl e resona-

U’ 

tors , the function WK U (z) has a singularity at the origin unless
n + l  .

U 

it = - (m + 2 )with m = 0,1 ,2,—-- . However, as solutions wi th

U ~~ these val ues of t do not reduce to the functions shown in Eq. (129), they U

U 
-
~ will not be considered further. Then , in line with the fact that
1 It ~ - (m + l), the coefficient B in Eq. (158) must be set equal to

zero . The resul t is

Mi~ ,n ( i z2)

un ,r (z) = A (159)

In appendix D, i t i s shown that ,
- un t (z)’+C J~ (s~) 

U

(160)

where J~ (s~) is a Bessel function of the first kind and C is a constant.

Thus , I f s i s chosen so that

~~~~
= 

2vnm (161)M + (1 + i) B
I-

II

I,~

~~
U

U

U - !
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then the func tions u
~,~

(z) defined in Eq. (160) will reduce to the

functions specified in Eq. (129). Accordingly, the expans ion func tions

for unstable resonators with circular mirrors are given by Eq. (159) U

-

. wi th

2
nm U

= - M + ( 1 + i ) B ~l62

where B = 0.824, £4 = ~1,/i~ti’~’, and N is the resonator Fresnel number.

For resona-tors containing mirrors with centered coupling

apertures, there are no difficulties involving singularities at the

origin. As a result , the func tions W ,~ n (
~~~)’ 

with t given by
,

~~~

Eq. (162), must be included in the expansion set.

Finally, to determine the expansion functions to be used for

resonators with toroidal mirrors , the reader is referred to appendix 0.

U 

Resonators with Spherical Mi rrors of Rectanaular Projection. If the

same procedure is applied to resonators with mirrors of rectangular

projection , the followi na expansion functions are obtained ,

d2~
2

e ~ 
~ ( 

“ 1 d~~
2 
) for even functions

U u (~) = 
U

d2~
2

1-v 3 d 2 2
- U - 

e ~ (—a— , ~ —~.—)for odd functions (163)

• where d2 = 2 Jq2 - 1 , ~ = v/~~~
x , and ~(a,y,x) is a confluent hyper-

U geometric function of the first kind (see appendix H). For stable

U resona tors , the parameter v must be zero or a positive Integer. For

uns tab le resona tors , U

k- 
72 
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I 

V = - ~~ i(~~
2 (164)

wi th S = M + (r+ i)8 For even modes , m = 1,3,5,---; and for

odd modes , m = 2 ,4 ,6 ,--- .
U To support the basic theory and method of solution presented 

U

U in this paper , these expansion functions have been used in conjunction -

with the Rayleigh-Ritz procedure to cal culate the modes of several

laser resonators. The results of these cal culations are presented

and discussed in the following chapter.
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VI. Computational Procedure and Results

This chapter has two important objectives. The first is to

present the results of the numerical computations performed by applying

the basic theory and method of solution discussed in the previous

chapters. The second is to support the validity of that theory and

method by comparing the results wi th existing published work. -

U To accomplish these objectives , the chapter is organized In the

followin g manner. F irst, the computa tional procedure used to obta in

these results is outl i ned and discussed . Then , the resul ts obta ined for

circul ar resonators are presented in some detail , fol lowed by a summary

of the results for rectangular mirror resonators, wh ich are deta i led in U

appendix F. This chapter ends with an evaluation of these calculations

and the associated procedure. However , before discussing the computa-

tional procedure , the manner In which the term “mode ” is used throu ghou t

this chapter is briefly discussed .

The reader may recall from chapter III that laser resonator

modes were div ided into three classes . The modes in Classes II and III

were considered beyond the scope of this paper and were el iminated from

further consideration . In addition , the followin g procedure was estab-

lished for determining the Class I modes of a laser resonator.

1. Assume the self-induction terms in the coupled integral
equations (Eqs. (53) and (54)) are negligible.

2. Solve the resulting integral equations (Eqs. (65) and (66)).

3. Show that the solutions are consistent with the assumption
that the sel f-induction terms are negligible. U

Since the calculations In this chapter were performed only to

check the basic theory and method of solution presented earlier , the
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third step of this procedure has not been accomplished . Despite that

fact , to remain consistent with commonly used terminology , the term

“mode ” is used to designate all solutions to Eqs . (65) and (66) (or

specialized forms of these equations) regardless of whether these
U 

solutions produce self-Induction terms that are negligible.

Compu tational Procedure

This section is divided into three parts. The first discusses

an ideal procedure for using the Rayleigh-Ritz technique to determine

- 
laser resonator modes . The second Dart covers the computational diffi-

U - cul ties encoun tered as a resul t of the l imitations of the computer

programs used by the author for these calculations. This ideal pro-

cedure and these limitations combi ne to yield the actual procedure ,

which is discussed in part three.

U Ideal Procedure . The steps of an ideal procedure for app lyi ng

the Rayleigh—Ritz technique to laser resonator problems are listed

bel ow.

1. Sel ect a number of expansion functions for the first
U stage of the calcula tion.

2. Using that set of expansion functions , compute the eigen-
values and corresponding mode distributions (magnitude and
phase).

3. Increase the number of expansion functions and repeat steps
1 and 2.

4. Compare the results obtained using the two sets of functions
to determine if the desired accuracy has been achieved .

5. If the desired accuracy has been achieved , the procedure is
U terminated . If not, steps 3 and 4 are repeated .

The convergence cri terion used in step 4 depends on the data

desired from the calculation. If only eigenvalues are required , the

U- U U~~
U
~~~~~~~

U
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details of the mode distributions need not be considered since the

eigenvalues are relatively insensitive to small perturbations in the

mode distributions. Thus , convergence with respect to elgenvalue data

may be achieved wi th a few expansion functions. On the other hand , man y

expansion functions may be required (at least 10) to determine the

details of the modes of large magnification resonators.

Limitations of Existina Programs . Experience obtained from U

many applications of this procedure indicates that , for resona tors

departing significantly from g = 1.0 (a~l.25), accura te calcula tions

with at least io expansion functions are required to determine

1. The eigenva lues of severa l modes , or

j 2. Any mode distributions.

As shown in chapter V , the expans ion func tions selec ted for
U all resonators considered in this paper are directly related to the -

confl uent hypergeometric functions of the first (~(a ,y,z)) and second

(‘i(a ,y,z)) kind . In this analysis , the parameter a has a stron g

dependence on the number of functions used (see Eqs. (162) and (163)

U in chapter V). That is to say , as the number of ex pans ion func tions I
Increases , the magnitude of c~ for the last function(s) becomes large.

This large magnitude makes it difficult to compute these functions 
U

accurately for certain ranges of the spatial variabl e z. These ranges

U correspond to intermediate values of z, where z is too small to apply

asymptotic series expansions and where round—o ff error difficulties

are encountered with the usual Taylor series expansions.

As a resul t of these limitations , wh ich were i nher en t in the

computer routines readily availabl e to the author , i t was no t alwa ys U
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U possible to perform accurate computati ons with the 10 expansion

functions needed. Due to these inaccuracies , the ideal procedure

was modified as discussed in the following paragraphs .

U 

U Actual Procedure. The procedure actually employed in this

paper depended on the particular resonator being studied . For reso-

:1 nators with smal l equivalent Fre5nel number , Ne~ 
the ideal procedure

was used . Typically, however , only the first two steps of that pro-

cedure were performed since the results obtained for the lowest loss

modes at tha t stage of the calcula tion were in close agreement with

those obtained by other authors . For these cases, onl y the resul ts

U 
for the first three or four modes are reported . The eigenvalues for

U~~ h igher loss modes , wh i ch are not reoorted , are cons id ered as no t hav ing

U 
converged .

1 For resonators corresponding to the regions of difficulty
U

- 

mentioned on the previous page , this procedure was modified further.

For these cases , a series of eiqenvalue computations was performed

using a relatively small number (usually six or seven) of expansion

functions for each case. For these resonators only, the series

reported corres ponds to the one yi eld ing the best agreemen t i n the

eigenvalue of the lowest order mode. For exampl e, the data reported

‘U later for g = 2.6 fall into this category . 
U

The rationale behind selectina the series yielding the best
U 

agreement points up the main computational difficu l ty encountered in

this paper. To understand the difficu l ty, It is helpful to recall

U that , with any expansion procedure , one expects the accuracy of -~

calculat ions to increase as the number of exoans ion func ti ons i s U

Increased . However , due to the difficulties with the higher order
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expansion functions (those with large ~aI discussed on the previous page),

that accuracy could actually decrease as the number of functions is

increased . Thus , with the tools available , there was an op timum number

of expansion functions for each resonator in this category. I-t was

assumed that the optimum number corresponded to the one yielding the

best agreement (with existing published work) for the lowest loss mode.

The resul ts obta ine d us ing th is mod ifi ed procedure are presente d

in the following two sections .

Presenta tion of C i rcular M i rror Resul ts

Two types of resul ts are presen ted i n th i s section. First,

U data related to the eigenvalues in the integral equation are presented

for a wide range of symmetric resonators with circular mirrors . Except

when men tioned , these data are presen ted in the same fo rmat used by

other authors . Second , plots are presented of the relative magnitude

and phase of the current induced on one mirro r of a plane parallel

resonator with N = 10. For brev ity , only plots for the first two

azimuthal ly symmetric modes are included in this section . For other

mode distributions i nvolving this resonator , see the first section of

appendix F.

Eiaenvalue Data. As indicated earl i er , the eiqenvalue data

presented in this section cover a broad range of laser resonators . The

resul ts for the fi rs t case , a ol ane parallel resonator with N = 10, are

summarized in tabl es II and III. The data used for comparison were
U 

taken from Fox and Li (ref. 25, p. 465, table I), and the indicated

percentane power loss corresponds to a single pass throuah the

resonator.
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Table II

Percentage Power Loss for Circular Mirror
Resonator with N =10 and g = 1.0

DOUGHTY FOX & LI VAINSHTEIN DESIGNATION

0.848 0.84 0.82 TEM03

4.447 4.45 4.31 TEM10

11.198 10.6 10.6 TEM20

19.579 18.7 19.7 TEM 30

2.019 2.02 2.08 TEM01

6.857 6.66 6.96 TEM11

4 14.452 14.4 14.6 TEM21

24.737 23.3 25.1 TEM31

Table III

Phase Shift for Circular Mirror Resonator wi th
N = 10 and g = 1.0 (in degrees)

bOUGHTY FOX & LI VAINSHTEIN DESIGNATION

2.36 2.36 2.75 TEM00

12.5 12.4 11.9 TEM10

30.7 30.7 29.2 TEM 20

57.2 57.0 54.2 TEM 30

6.025 6.03 5.72 TEM01

20.15 20.1 19.2 TEM11

42.35 42.2 40.3 TEM 21

73.0 73.0 69.2 TEM 31 

-- 
—--.- - - --S ______



-~~~ 

— - - -. -. - L~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
- 

- 
- _______________________________

.

Comparison of the resul ts in these tabl es reveal s that the

maximum difference in the percentage power loss is less than 6 percent;

and in most cases, the results obtained in this paper fall between those

obtained by Fox and LI and L. Vainshtein. Al so, the values computed

for the phase shift are in almost perfect agreement with those computed

by Fox and Li.

The next case considered was a circular mirror resonator with

4 g = 1.1. The results for the first four azimuthaily symmetric modes for

Ne 1 ,2, and 3 are presented in tables IV , V , and VI. For those cases,

. 1  the eiqenvalue phase , arg y ,  corresponds to the round trip eigenvalue

into which has been absorbed the terms e 21k L in + ~~
. A brief examina-

tion of these results reveals that the maximum difference in the

magnitude of the one-way elgenval ue is less than 3.5 percent, and the

maximum phase difference is less than 11 degrees. Comparison data

were taken from Siegman and Miller (ref. 28, p. 2734 , fig. 5).

Table IV

Eigenvalue Data for Circular Mirror

— 

Resonator with n = 0, g = 1.1 , and Ne = 1

DOUGHTY SIEGMAN & MILLER

_ _ _ _ _ _  
ARG y 

_ _ _ _ _ _  
ARG y

0.816 143.8° 0.82 140.°

0.778 -134.2° 0.78 -140.°

0.544 + 2.90 0.54 + lO.°

0.308 -136 .9° 0.30 -140.°
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Table V

Elgenvalue Data for Circular Mirror Resonator
w l thn= 0~~~ = l. l i and N~~= 2

DOUGHTY SIEGMA N & MILLER

~~t y I  ARG y 
_ _ _ _ _ _  

ARG y

0.778 145.7° 0.76 l40.°

0.761 —147.3° 0.78 —140.°

0.692 19.5° 0.67 + 30.°

0.594 - 41.8° 0.60 - 40.°

- Table VI

Eigenvalue Data for Circular Mirror Resonator
wlt h n = O ~~~ =l.l ~~and N~~= 3

DOUGHTY SIEGMAN & MILLER

~ITT ARG y \[-FJ ARG

0.767 148.4° 0.76 140.°

0.740 -150.5° 0.74 -140.°

0.680 45.8° 0.68 + 40.°

0.624 -104.4° 0.62 -lOO .°

The third case considered was a symmetric , ci rcular mi rror resonator

with g = 1.25. The magnitudes of the eiaenvalues (one—way) for the first

four modes for N = 4 and N = 8 are presented in tabl es VII and VIII.

Examination of these results reveals two things. First , agreement

between the results for the first two modes with N 4 and for the

first mode with N = 8 Is excel lent. Second , agreement for other
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modes of these resonators is generally poor. The reason for this

disagreement is discussed later in this chapter . Comparison results

for this case were also taken from Siegman and Miller (ref. 28, p. 2733,

• fig. 3).

Table V II

Elgenvalue Magnitudes for Circular Mirror
Resonator with n = 0, g = 1.25, N = 4

DOUGHTY SIEGMAN & MILLER

0.596 0.59 i 
-

0.560 0.56

0.559 0.46

0 429 042

Tabl e VIII

Elgenvalue Magnitudes for Circular Mirror
Resonator with n = 0, g = 1.25, N = 8

DOUGHTY - 

~ I~I SIEG MA N & MILLER

0.631 0.63

0.468 0.58

0.425 0.46

0.420 0.45
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Finally, the results for a range of equivalent Fresnel numbers

for a symmetric, circular mirror resonator with g = 2.6 are summarized

in tabl e IX . As before, the elgenvalue phase, arg y ,  corresponds to

the round trip eigenval ue for which the spatially independent terms have

been absorbed. In addition to reporting the basic results , the number
of expansion functions used to obtain these data is shown in the far

right column of this table.

Table IX

Eigenvalue Data for Circular Mirror Resonator
with n = 0, q = 2.6 for Several Values of Ne

DOUGHTY SIEGM AN & MILLER Number

______  
ARG y ~

j IyI _ ARG y Ne Used

0.235 - 4.4° 0.24 -100.° 6 6

0.202 -l79.° 0.24 +lOO.° 6 6

0.20 -l80.° 6

0.255 108.6° 0.22 +lOO.° 12 6

0.225 — 94.8° 0.23 - 80.° 12 6

k~.. 0.125 127.4° 0.10 +lOO .° 12 6

0.333 107.° 0.30 +16O.° 12.5 7

• 0.212 -135.6° 0.15 + 20.° 12.5 7

0.173 — 3.4° 0.15 - lO.° 12.5 7

0.278 —l59.° 0.285 -l 76.° 20.5 6

0.149 —103.° 0.23 + 20.° 20.5 6

0.284 -115.1° 0.26 —ll0.° 24 7

0.129 +112° 0.26 140° 24 7
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As Indicated in the discussion of the computational procedure,

the results obtained using only six or seven expansion functions may be

marginal , especially for the higher loss modes. That expectation is

certainly borne out by the results summarized in this table. However,
- 

-. 
despite that , the maximum difference for the lowest loss mode is less

- 

- 
than 16 percent (Siegman and Miller , ref. 28, p. 2732, fig. 2), and

the difference is typically less than 10 percent. As can be seen, the

magnitude of the difference for hi gher loss modes is rather sporadic ,

but generally high. These results are discussed further following the

presentation of the circular mirror mode plots and the summary of the

1 I data for rectangular mirror resonators.

Mode Plots. Thi s portion of the chapter contains plots of the

D
Lfl-

~~.. ‘

H
D C D

cr

CT)

D 
_ _ _ _ _  

_ _ _ _ _

0.0 .5 1.0 ‘0.0 .5 1.0
RIP

Figure 8. Relative Magnitude and Phase Distributions
for the Lowes t Loss , n = 0 Mode
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Figure 9. Rel ative Magnitude and- Phase Distributions
for the Second Lowest Loss, n = 0 Mode

relative magnitude and phase for the two~ lowes t loss , az imuthally

symmetric modes for a symmetric resonator with N = 10. The results

for the lowe st loss mode, denoted by +, are presented in figure 8,

while the results for the next mode , also denoted by + , are g iven

in figure 9. The distribu tions to which these data are compared ,

denoted by ~~, were taken from Fox and Li (ref. 25, p. 464, fig. 2).

As can be seen, there is excellent agreement between these

resul ts and those obtained by Fox and Li. Similar agreement was

obtained for several higher loss modes of this resonator (including

several modes which are not azimuthally symetric). These results

are presented in appendix F.
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Summary of Rectangular Mirror Results

As was the case for circular mirrors , the computations

performed for rectangular mirror resonators fall into two categories.

• These two categories are elgenval ue computations and mode plots con-

sisting of the relative distribution of the intensity (magnitude

squared) and phase for the current induced on one of the resonator

mirrors.

The eigenvalue results correspond to one of the cases listed

‘I below .

1. Plane parallel resonators with N = 10 or N = 8/ ir.

2. Power loss computations for odd symmetric modes with
g = 1.2.

3. Elgenva lue magnitude computations for even symmetric
modes with g = 1 .8.

All of these computations were performed for a single rectangular

component (strip case) of a symmetric resonator so that the elgen-

value corresponded to a single pass (one-way ) through the resonator.

These resul ts, which are presented along with comparative data in

appendix F, are summarized bel ow.

As expected , the plane parallel resonator results for the two

Fresnel numbers shown were excellent. For these two cases, the

relative difference In the percentaqe power loss for any of the first

three even symmetric modes was less than 2.5 percent. Similarly, the

results for the g = 1.2 unstable resonator for equivalent Fresnel

numbers of 1 , 1.5, and 2 were qu ite good . In each of these cases , the 
-

difference in the percentage power loss for the first two even symmet-

n c  modes was less than 2 percent. In any case, the maximum difference

was 7 percent. Finally, computations were performed for the magnitudes
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of the elgenvalues for at least the first three modes of the g = 1.8 :. -
resonator mentioned above. For that series, nine val ues for the

equivalent Fresnel number were selected so that 2.5 
~ 

N~ ~ 20/it. For

thi s ser ies , the difference was typically 4 percent or less , al though ~- 
-

in one isolated case , it did reach 7 percent.

The relative i ntensity and phase distributions determined for

rectangular m irror resonators also corresponded to symmetric resonators

wi th g = 1.8. These computations were limited to determining the

distributions for the first two even symmetric modes for values of t
~e

such that 21TNe 
= 18, 34, 36, and 40. With the oossibl e exception of

the phase distribution of the second mode for 2
~

TN e 
= 34 , these distnibu-

tions are certainly not In strong disagreement wi th those obtained by

Sanderson and Streifer (ref. 42, fias . 13-21). In fact, In most cases ,

these distributions can be said to be in qualitative agreement with those

obtained by these authors. By qualitative agreement, I mean that

al though the relative values for the peaks and troughs may differ some-

— 
what, the basic nature and trends for the distributions are the same.

The reason for any deviations in these results is covered in

the following section .

Discussion

The purpose of this section is to evaluate the computational

procedure emp loyed for this analys i s , as wel l as the results obtained

using that procedure. The procedure Itsel f will be considered first.

From earl ier discussions , It is apparent that the existing

procedure is Inadequate for determining the modal characteristics of

a wide range of laser resonators. However, the shortcomings associated

- —~~~~~ -~~~~~~— - - ~~~~~~— -~~~ - — — - . — ~~~—~~ 
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with that procedure result from the l imited range of applicability

of the author ’s computer routines and are not due to any fundamental

deficiency inherent in the procedure itself. In addition , the purpose

of these computations is somewhat limited in that they were performed

onl y to support the basic theory and method of solution presented in

the earlier chapters . When evaluated in terms of this limited purpose ,

the computational procedure is certainly adequate.

To aid in evaluating the results obtained using this procedure ,

the resul ts for which excel lent agreement (difference generally 5

percent or less) was achieved are listed bel ow.

1. Mode distributions for plane parallel resonators with
circular mirrors .

2. Eigenvalue data for plane parallel resonators with both
circular and rectangular mirrors .

3. Eigenva lue magnitudes and phases for circular mirror —

resonators with g = 1.1.

4. Lowest loss eigenvalues for circular mirror resunators
w i t h g = l . 2 .

5. Eigenvalues for odd modes for rectangular mirror
resonators with q = 1.2.

6. Eigenvalues for even modes for a wide range of rectangular
mirror resonators wi th a = 1.8 (one point had a difference
of 7 percent).

Listed below are the results which are considered as fair or

marginal .

1. Eigenvalues for higher order modes for a circular mirror
resonator wi th g = 1.2 and N = 8.

2. Elgenvalues for severa l modes for circular mirror
resonators with g = 2.6.

3. Mode distributions for rectangular resonators with g = 1.8.
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All of the cases falling into this second list correspond to instances

where computational difficulties were expected . Difficulties were

expected for cases 1 and 2 as they correspond to eigenvalue computa-

tions (mostly for higher loss modes) for which the equivalent Fresnel

number is In the intermediate to high range. Difficulties were

expected for case 3 because the actual mode distributions are espe-

cially sensitive to errors in the values computed for the expansion

functions. However, it is worth mention ing tha t the bas ic nature or

character of the modes is correctly described , even though some

differences are present in these plots .

From this discussion , one can see that in regi ons where no

computational difficulties were expected , the resul ts obtained in this

analysis are in excel lent agreement with those obtained by other

workers. In addi tion , in every case where agreement was fair or poor ,

that lack of agreement can be correctly attributed to the computer

routines employed and not to the basic theory or method of sol ution.

Thus , the numerical results discussed in this chapter and the analytic

results covered in appendix E strongly support the validity of the

basic theory and method of solution for symmetric resonators of various

geometr ies , Fresnel numbers , and magnifications. More importantly,

these same results should inspire considerable confidence in the

appl icability of this theory and method of solution for other more

comp lex systems.



VII. Summary, Conclusions , and Recommendations

The basic theory needed to analyze the modes of complex laser

resonators containing homogeneous media has been presented in this

-
- 

- 

report. That theory, which is firmly based on the fundamental equations

and principles of electromagnetic theory , culminates in a pair of

integral equations for the electromagnetic field within the resonator.

~ It is this pair of equations which must be solved simultaneously to

determine the modes of an arbitrary laser resonator . Unfortunately,

these equati ons are very comp lex , and solv ing them for the general case

is far beyond the scope of this effort.

As a result of this complexity , the integral equations were

gradually s implifi ed by mak ing var ious assum pti ons concerning the nature

of the resonators being analyzed . For example , it was assumed that the

resonators consist of two perfectly conducting mirrors and a homogeneous

medium. This assumption resulted in a pair of equations for the currents

induced on the resonator mirrors . It was further assumed that the

effect of any gain or amplification (resulting from polarization of the

las ing medium) is essentially constant between any two points on dif-

ferent mirrors . In additi on , the osc i llation wavelen gth was assumed to

be small in comparison to all resonator dimensions , and the mi rror

diameters were assumed to be small in comparison to the mirror separa—

tion and radii of curvature. Finally, it was assumed that the self-

induction integrals are negligible and that it is the mode losses and

— distributions , and not the precise frequency spectrum , wh i ch are of

Interes t in thi s anal ys is.
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After mak ing these assum ptions , the resulting equations for the

modal currents were solved using a technique that combines a variational

princi ple wi th the novel expansion functions discussed in chapter V. By

comparing these solutions to existi ng published work , the validity of

the basic theory and method of solution presented here has been verified

for a wide range of symmetri c resonators . However , in addition to

directly verifying the analysis for these symmetric resonators , these

same calcula tions and compar i sons strongly support the asser tion that

the theory and method of solution are also appl icable for more complex

systems .

In addition to providin g the basis for actually computing the

mode losses and distributions , the der i va tion of the bas ic equat ions

sheds considerable light on laser resonators and their physical char-

acteristics and fields. For example , the derivation clearly shows that

the modes of open resonators are damped with time . For many cases , suc h

as the lower loss modes of paraxial resonators , this damping has a

negligible effect on the actual mode distributions. However , in other

cases , its effect can be significant. In fact, by properly including

the effect of uampina at the beginning of the analysis , it has been

shown that it is not always possible to formulate the laser resonator

probl em in terms of a linear eigenvalue problem . In add ition , by

properly including the temporal behavior of the modes , thi s der i va ti on

has eliminated the need to define laser resonator modes in terms of some

mythical round trip through the resonator. In fact , from thi s analys i s ,

the modes are seen to be fields for which the relative distri butions

do not change at any time.
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This analysis also points out the need to distinguish between

the two types of energy flow associated with resonant systems. More-

over , by using continuity arguments) it shows that for energy flow ing

from the resonator to the surroundings , the open portion of the reso-

nator hull does not enter into the calculations for the fields wi thin

the resonator.

In addition to the points mentioned in the preced ing paragraphs ,

this analysi s clearly shows that one cannot always analyze the modes of

laser resonators by using only integral equations wh ich express the

current (or field) on one mirror entirely in terms of the current (or

field) on the other mirror. In fact, since both mi rrors normally affect

the current distributions , one should generally use a pair of coupled

equations which involve both self—induction and mutual—induction terms.

As a resul t, analyses which do express the current on one mi rror en-

tirely in terms of the current on the second mirror have two potentially

important deficiencies . First, such analyses completely neglect modes

for which the mutual-induction and self-induction terms are either

proportional to each other or have comparable magnitudes . Second , some

of the distributions normally regarded as resonator modes may not be

modes at all. This statement is based on the fact that some of these

distributions may not be consistent with the assumption that the self—

induction terms in the coupled integra l equations are negligible.

Another important point In this analysis is the fact that the

fields associated wi th open resonators may be discontinuous. These

di scontinuitles , wh i ch may occur at the mi rror edges or at mater ial

interfaces in segmented mirrors , are treated simply by allowing for the

presence of charges and currents at the points of discontinuity .
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Finally, by comparing the equations obtained at different stages of this

analysis to those obtained by other authors , one can gain considerable

insight into the actual range of applicability of other analyses . For

example , the integral equations obtained in this paper for paraxial

resonators with perfectly conducting mirrors are Identica l to those

obtained by other authors under what appear to be less stringent con-

ditions. As this analysis is strongly based on the principles of

elec tromagneti c theory, this suggests that the equations obtained by

those authors are not as general as they are normally considered .

- 
- In addition to the Insight obtained from the equations and

derivations themselves , one can gain further understanding of the be-

havior of resonator fields by actually calculating mode distri butions

and losses. The variational method presented in this naper is one

excellent technique for performing these calculations . Using this

technique , which is implemented by applying the Raylei gh-R itz procedure

in conjunction with the expansion functions developed in chapter V , the

analysis of laser resonator modes is reduced to a matrix problem that -J

can be solved using standard numerical techniques .

This reduction of the analysis to a matrix probl em , wh i ch can be

solved using standard numerical techniques , has two important advantages

over the standard lteration/orthogonallzation methods of solution.

First , the variational method is usually considerably faster than the 
- •

normal iterat ion app roach , which actually corresponds to solving the

integral equation by the method of successive approximations . In

addition , the varia tional approach yields information concerning several

modes at once , while the Iteration approach requires that a complete
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Iteration/orthogonalizati on sequence be performed for each mode.

Finally , the method of solution presented in this paper has at least one

important advantage over other matrix approaches . This advantage , which

is a result of the way in which the expansion functions are obtained , is

that modal calculations can be performed using a relatively small number

of expansion functions.

As indicated earlier , the numerical work presented in this paper

has the rather limited purpose of supporting the basic theory and method

of solution covered in the previous chapters . With that in mi nd , the

- 
- 

numerical work was performed us ing a collect ion of computer routines

which were easily accessible to this author. No extensive effort was

made to write or find routines which were very aeneral or extremely

efficient. As a result , this col l ection needs inprovernent in two

important areas. First and foremost , the subroutine used to compute the

confluent hypergeometric functions should be modified so that these

functions can be accurately evaluated for intermediate values of the

spatial variable z. This improvement Is essential if this method of

solu tion is to find wi despread application. Second , the integration

routines in this collection should be modified in a manner which will

reduce the effect of the rapid variation associated wi th the kernels of

these integral equations. Such a modification would allow accurate

computation of the matrix elements wi th a considerable time savings.

This is especia lly true for resonators with large equivalent Fresnel

numbers .

Another aspect requiring improvement is the analysis of the

condit ions under which the self-induction terms in the integral equations

~
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are negl igible. The estimates given in this paper will probably suffice

for the lower loss modes of paraxial resonators; however , they may begin

to break down as k” increases or as the mirror radii become large . As a
-

- 
- 

resul t, more accurate and more general estimates of these conditions are

definitely needed.

Following these improvements in the analysis and computer

routines , this analysis should be extended and applied to study the

modes of a variety of laser resonators . For Instance , thi s analys is

should definitely be extended to determine the characteristics of Class

II and Class III modes of conventional stable and unstable laser reso—

nators. It should also be used to study toroldal and hole-coupled

resonators to verify that the expansion functions obtained for these

cases have the desired characteristics . When the applicability of these

functions has been verified , and when the above improvements have been

made , the basic theory , method of solution , and computational procedure

presented in this report should be extremely valuable tools in the modal

analysis of paraxial resonators wi th perfectly conducting mirrors .

However , even wi th these improvements , this work will not be the last

word in resonator theory. On the other hand , the integral equations

derived in this paper can and should form the basis for studies of more

complex resonators for which one or more of the limiting assumptions do

not apply.
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APPENDIX A

Green ’s Function Derivation

-

. 

- 

The objective of this appendix is to derive an outgoing wave
- 

- Green ’s function to be used in calculati ng laser resonator modes. This

Green ’s function is a solution of Eq. (20), which is repeated bel ow

+ k~
2 

~~ 
= — ~ 6(r — r’) (Al)

where k~ = k~ + k~ wi th k~ > 0, ¶ = 

~x~x 
+ + 

~~~~~~~ ~
S(r - r ’) is

the Dirac del ta function , and the Laplac ian i s understood to operate

on the rectangular components of I~. Substituting the form l~ = T~~ into
- 

-~ Eq. (Al), one obtains the followi ng equation for ~~~.

(A2)

To solve Eq. (A2), it is helpful to express both ~ and the

delta funct ion as Fourier integrals of the form

= (2~)3 
fdV ~~~~~ ~~~ (A3)
i~
.

and
4r

= (a yrJ dEe ’ (A4 )

V

where ~ = r - r ’ , and the integrals are evaluated over all V. Sub-

stituting these expressions into Eq. (A2), evalua ting v ’2 ~~~~~
solvin g for ~~, and substituting the result into Eq. (A3) leads to the

followi ng expression for ~~ .
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(2n)3J dV 
1E12 - k~2 

(A5)

Integrating over angles and denoti ng jt t by k and I~
] by R ,

this expression is simplifi ed to yield Eq. (A6).

L:~ = 
1 f k [e~~

kR 
- e~~~

t
~] dk 

(A6)(2tr)2iR J (k + k~) (k — k~)
0

I
By writing the right side as the sum of two integral s and letting

k + -k in the integral i nvolving ~~~~~ Eq. (A6) may be rewritten in

the form shown below.

i +ikR
= 
(2~)2iR f 

~k + k~) (k - 
(A7)

To obtain the outgoing wave solution for k~ < 0, one evalua tes

the integral in Eq. (A7) using contour integration and the theory of

residues. The closed contour in the complex k-plane , which Is traversed

In a counterclockwise direction , includes the real axis and a semi-

circle of infinite radius (centered at the origin) in the upper half-

pl ane as shown in figure 10. Since the integral over the semicircle

vanishes , • is given by Eq. (A8),

1 k +ikR
= 

(2~)2iR f(k + k~ ) ( k -  k~ ) 
(A8)

with the contour and pole diagram shown in Figure 10.
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Figure 10. Closed Contour in the
Complex k-Plane

To avoid systematically excluding outgoing wave solutions for

k3 > 0 , one must analytically continue this solution into the upper

half of the complex k 1-
plane. To do this , one simply distorts the

contour to insure that the path of integration includes the outgoing

wave pole as this pole crosses the real axis. That is , the contour

is distorted so that it does not cross any poles as -k. crosses the

~: real axis so that —k~ takes on negative values . This contour , which

analytically conti nues ~ into the upper half of the k~_Plane~ is

shown in figure 11 .

i
i
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Figure 11. Contour Defining the Analytic
Continuation of ~

Thus for all values of k,~, the only pole enclosed by the con-

tours is at k = —k3
. Accordingly, the contour integrals can be

wr itten as

+ikRf (k + k~) ( k -  k~ ) = 2~lL ’ (A9)

where L ’ , the res idue of the integrand at k = —k~~ is given by Eq. (AlO).

,, +ikR
— lim ~

- ‘
~ 

+ k~1 k e 
= 

1 _ ik~R (A lO)- k+~k~ (k + k~) (k - k~) 
2 e
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Thus , the funct ion c~ has the form 

-

-i k R

(Al l)
4irR

for k~ > 0 and -~~~ < kj < +~~ 

-

Finally, using Eq. i~A ll) and the rela tion ~ = !~, one obta ins

the following expression for the outgc ,~~ save Green ’s function .

-iI~ R
= y e (A12)
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APPENDIX B

Application of the Fiel d Equations to Resona tors

wi th Segmented or Open Boundaries

This appendix has two objectives . The first is to show that

the express ions for the f ields for both open resona tors and segmented

boundary resonators satisfy Maxwell’ s equations . The second is to show

that these fields can be divided into m partial fields such that

1. The ~~ partial field involves only the field over

• the mtl~ mi rror surface or the mtt
~ segment of a

closed boundary ; and

2. Each partial field satisfies Maxwell ’s equations .

The formulation and manipulations needed to accomplish these objectives

are covere d below .

Formulation

The f ield express ions for the two cases descr ibed above

(Eqs. (28) and (29), and Eqs. (32) and (33))can be summarized by the

following equations ,

= Ef ~
(
~
X
~m

) • v ’x~ + (~xv ’ xr~) ~ + (n.ç)v ’ . dS~,

- _ J__ EfV ’~~~
Hm~~~

(
~ m (Bi)

m

1 

Cm
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iT(~) = 

~:.[ I(~x~m) 
• V ’xG + (

~
xv ’xiTm

). 
~ 
+ 

~~~~~~~ 
. dS~,

(B2)

where ~ = ~q. For closed resonators, the sums in these equations are

taken over all continuous segments of the closed interface or boundary.

For open resonators , the sums are taken over the surfaces of the

resonator mirrors .

To obtain these two equation s, it has been assumed that both

the electric and magnetic fiel ds are square integrable. Thus , the points

of finite discontinuity have simply been removed from the above integrals ,

4 and the rema ining surface and contour integral s are cons idered to

extend to wi thin an arb i trar ily small di stance ~ from the po ints of

discontinuity . As they do not actually include the points of disconti-

nuity , the i ntegrands (and their derivatives) of these integrals are

continuous . As a result , integral theorems such as Stokes ’ theorem can

be applied to the surface and contour integrals in the above two

equat ions.

To accomplish the objectives of this appendix , the followi ng

approach is used . First , the fields ~(fl and 11(F) In Eqs. (Bi) and
(B2) are written as the sum of m partial fields ,

= 
~~ 

r ( F) (B3)

~~ 

j
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H 11(F) = 

~~~
11m~~ (B4)

m

where rm(F) and 11m~~ 
are the fields resultino from the m th segment or

- - 
- mirror surface. Then Eqs. (B3) and (B4) are substituted into Eqs. (Bl)

and (B2) to yield the pair of equations shown bel ow.

-

~~ ~~~~
rm~~~ Efj(nxc1) v ’x~ + (nxv ’xrm) 

. + (n.r~)v ’ . 

~ 
j dS~

m

- 
_L~~ .fv

t Wp~ d
~m 

(B5)

Ef {(~x11m) v ’x~ + (~
xV ’x11m) . + (~ .11 )v ’ . dS~

+ 1J_~~ f ~~~~
‘ 

‘
~
‘ 11

m ~ (B6)

Then it will be shown that each of the oartial fields rmcF) and 11~(F)

sati sfies Maxwel l’s eauations. From this demonstration , it follows

directly that the total fields In Eqs. (Bi) and (B2) satisfy Maxwell’ s

equati ons.

To show that these fields satisfy Maxwel l ‘s equations in all

space , it Is necessary to assume that they satisfy Maxwell’ s equati ons

over the indicated surfaces and contours . Of course, any assumo ti on

to the contrary immediately invalidates the assertion that the modal

fields are electromagnetic in nature . Thus , Eqs. (B7) and (B8)
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V x r = iW~1H (B7)

V x 11 = +Iw~! (B8)

can be used to simplify the field expressions as shown bel ow.

= 

f ~~xç) 
. v ’ x - i~~ (

~ x 11m) ~ 
+ (

~~~~m
)V ’ • 

~

_ _ Lf v ’~~ f f . d~ (89)
Cm

= f ~(~x11) . v ’ x + i~~ (~xrm) 
. + (ri•11

m
)V ’ 

~ 
dS~

r
(810)

‘C
11,

Then , subject to the condition that these fields must be square inte-

grable (which was assumed earlier in this aopendix), the objectives of

this appendix will be accomplished if rm(F) and lTm(F) given above are

- 
_ solenoidal (divercencel ess) and satisfy Eqs. (87) and (88).

• Finally , to further simplify these equations and to aid in

later man ipulations , the following vector identities are listed .

(vx ~~) •~~~= V ~~x~~ (811)

~~~~~
. (7x ~~)=~~~xv 4 (B12)

v x [~(F
’) x v ’ ~

] = 
~~
(F’) v ’v ’~~ - ~(F’)v ’~~ (B1 3)

(Bl 4)

- - --

~
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(815)

x VV~ = (V x ~~~ - ~ x (~v~) (Bl6)

v .  (~~x~~) W .  v x ~~-~~. V x ~~ (B17)

S 
Using Eqs. (B12), (B14) and (B15) , Eqs. (89) and (B1O) are rewritten as

shown below.

rm c~ 
= f 

f
xç) x v ’~~ - i~~ (~X11m ) ~ 

+ v ’~ 
~~~~~~

~~~~fv
I .f f .d~ (Bl 8)

iwc

= f 
j(

~~~:11~~) x v ’ ~ + i~~ (~x~~) ~ + v ’~~ (~.çJ dS~

+ ~~~ fV ’ E . di (B19)
Cm

Mani pulations

To show that the fields in Eqs. (B18) and (819) have the

desired properties , a procedure similar to that used by Stratton

(ref. 33, pp. 469-470) will be employed . One first takes the curl

of Eq. (Bl8) with the subscript dropped to obtain

v x ~~~ =ffv x [~xr(i~’) x v ’~] - Iw11V x r
~
xw(
~
’)]
~I dS ’ (B20)
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where v~ = — v ’~ and the Ident
ity V x v~ = 0 have been used to eliminate

the last two terms. Using Eq. (813) and the fact that ~ satisfies the

scalar Helmhol tz equation (Eq. (A2)), this expression is simplified to

- . 

- 
yiel d

v x ~(~) = - iu~if ~(~xFr) x v ’5 + Iw~ (~xfl dS ’

+ f (~ix~) . 7’v ’~dS ’ (821)
SI

Using Eqs. (B7) and (Bl6) , and the fact that

(~ixfl • vv~ . {rxvv,} (822)

this l ast integral can be simolifi ed as shown below .

f (~x~ . V’v ’~dS’ = - I~uf 
(~.11) V ’5

‘1 

— ‘

j ~ 
. Ev ’x(~v ’sfl dS’ (823)

The last integral in Eq. (823) is now converted to a line integral by

using Stokes ’ theorem applied to dyadics (Collin , ref. 34, p. 569).

The result is shown below .

f . [v’x(~~’5)] dS ’ = ~~~~~~~~~~ di (824)

S’ 
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Then substituting Eqs. (B23) and (B24) Into Eq. (821), one obta ins the

followi ng result.

V x ~(F) = - iwu
[ff(~

x11) x V ’5 + i~~ (~xr)s

+ (
~
.rnv ’

s I 
dS ’ +

~~~~
— fv

isr.  di] (B25)

Comparing the right side of Eq. (825) with Eq. (819), one can see that

Eq. (87) is satisfied . A similar procedure, whi ch i s not shown here ,

can be used to show that the fields in Eqs. (818) and (B19) satisfy

Eq. (B8).

The next step is to show that the fields in Eqs . (818) and

(Bl9) are solenoidal . One begins by taking the divergence of Eq. (819)

and applying Eq. (D17) to obtain

V . 1T(fl = i~~v • [(~x~(F’)~] - v ’2~(,S.1T) dS’

S’

- 

~
-1--- j  v 12

5r • di (B26)

Appl ying the Helmhol tz equation , thi s form Is simplified to yield

v • 11(F) = f f -  Iw ~ (rix~) v~ + k2 (ri .cr)
j 

dS’

~~~~~~ 

j .r. di (B27)
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Using Stokes ’ theorem , the l ine integral in Eq. (827) is expressed in

-

k 

terms of two surface integrals as shown below.

-

‘ js~
. di = f ~ x r + 5(v ’xI) j . adS ’ (B28)

Using Eq. (B7) and the fact that

(v ’~xfl 
. ii = — (~x~) • v ’~ (B29)

the l ine integral is expressed as

• di = J
. 
~ 

— (iix~) . V ’ 5 — i~~ (~.1T) dS’ (B30)

Substituting Eq. (830) into Eq. (B27) and using k2 = w 2u~~, one can

show that V . if = 0. A similar orocedure can be used to show that

v .r = o .

- ;

r
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APPENDIX C -

El imination of the Self— nduction Integral

On page 37 in this report , it i s s hown that for resonators

containing two perfectly conducti ng mirrors for which a/ IR I << 1 , the

currents on mi rrors #1 and #2 are governed by the following pair of

equations ,

~xi 
= K11J~i + Kl2 Jx2 (Cl )

= K21J,~1 + K22J~2 
(C2)

where
S 

kq2.Jx2. 
= 2 (~1) qf 

~X~~~~L) •~
(FIF~

)
~ 

dS~ (C3)

2.

l + i k l r — r ’I
KqqJxq 

= 2(~ 1)~~fJ~q(~~) — 
Ir - r~ l 

g 
~(F~lFq)

cos(r q — r~ iiq) dS~ (C4)

— — ~ik Ir q -

s(rq Ir~) 
= — _______ (C5)

4~i l r q 
- 

r~1

and cos (rq - r~, flq) is the cosine of the angle between the 
unit

normal at Fq and the vector rq - r~. It was further shown that when

the self-induction integrals (or terms) are negligible , that is , when

! k qq3xq l << 
~ xq 1 ’ for q = 1 , 2 (C6)

-

~ 

~~~~~~~~ - - - — -- -i- -~~ - j
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then a certain class of laser resonator modes obeys the equations

‘
~xl 

= K12K2i J~1 (C7)

3x2 = K21 K12JX2 (C8)

The purpose of this appendix is to estimate the conditions under which

the self—Induction integral s are negligible.

To obtain this estimate , the followina approach is used .

Fi rst, it is assumed that the resonators being considered contain

circular mirrors of radius a. Then the inequality In Eq. (C6) is

special ized to apply to the center of mirror #2 for modes which have no

azimuthal variation. Finall y, a simplified version of the expansion

functions (see chaDter V) is substituted for and the resultina

integral is approximately evaluated for mirrors such that a/ (RI << 1.

Thus , the estimate Itself will take the form of an inequality involving

the various resonator and mode parameters. However , since this inequal-

ity is merely an estimate of the conditions under which the self-

induction integrals are nealicible , the inequalit y is denoted by

the symbol ~~< .

It is apparent that this procedure involves many approximations

and assumpti ons concerning the resonators considered and their asso- 4
ciated fields . To show that this procedure at least leads to the right

order of magnitude of the conditions under which the self-induction

terms can be neglected , a second a~oroach is used to check the condi—

tlons for one particular case. This second aporoach , wh ich employs

the method of steepest descents to approximate an intearal , begins

with Eq. (C33).
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Using the first approach described and denotina the current

distribution for the ~th mode by u~(r)~ one specializes the Inequality

in Eq. (C6) to obtain Eq. (C9).

a , •— 1k r2 
‘I + ik.r2

fuj(r~) e 
~ 

r~2 
) cos (i~~~~,F~~) r~dr~ c< u~(o) (C9)

The expansion functions which were obtained in chapter V , have the form

~k4 , ~~
±~~~ -~Va

2 - l  r2
u~(r) = g~(r) e (d O)

where Re(k~) = k~ > o, and gj(r) is assumed to be slowly varying in

— ik!r ± L~i. ~
[ 2 — 1 r2compari son to the exponenti als e ‘~ and e ~L 
q

Substituting this form for u~( r)  into Eq. (C9), one obtains the

inequal ity shown below,

(c~(o) >~1f~~(r~) exp ~ik~ [~r~ ± ~~ r~ 2] cos â~~~~,F~~~)

1 + ik.r ’( r~ 
2) dr~ 

~ 
(Cl i )

where = 
~~~~~~~~~~~~~~ 1

To simpl ify this expression further , one needs to approximate

the term cos 
~~~~~~~~~~~~~~~~~~ 

To do this , one uses figure 12 to see that the

vector can be expressed in the form
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r’2

~ r~ a + —
~~~ ~~ 

(Cl2)

where R Is the radius of curvature of mirror #2 and the distance z

has been approximated by z = r~
2/2R , whi ch applies if -

~
$-

~
- << 1.

(

\
<

V

MiRROR ~ 2

Fi gure 12. The Geometry of a Larae
Radius of Curvature Mi rror 

- 

-~

Then using Eq. (Cl3),

a .F ’  a
cos (a ,F’) z 2 z 2 (C1 3)

Z

in conjunction wi th Eq. (C 12) , the estimated condition is simolified

to yield

~~~~~~~~~~~~~~~~~~~~ .
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a

2~R~ f
~j(r~) exp ~+jk. [~r~ ± ~~ r~~J ~

(1 + ikjr~
)dr
~I 

(Cl 4)

Since the integra nd contains terms of the form

~k’~ r2/2L
e ~ and e ~ 

g 
, the probability that Eq. (Cl4) will hold (for

both + and — signs) should increase as k’~ decreases. With •this in mind ,
3

• and to simplify the analysis as wel l , it is assumed that k’! is suffi-
P +k’~r 

k’~s r
2/2L “~

ciently smal l so that the functions e J and e - a g are slowl y

varying across the entire mirror surface. With this assumption , the

magnitude of the i ntegral in Eq. (Cl4) will be largely determined by

— ik~r ±ik~B r
2/2L

the osci lla tory functions e ~ and e ~ g . In fact, these two

osci lla tory functions should combine to produce a significant contribu-

tion to the integral in regions where

1. The exponentials oscillate nearly in phase , or —

2. The exponentials are nearly conjugates

over some significan t distance .

There are two types of regions over wh i ch these two conditions

appear l ikely to occur . The first type consists of regions surrounding

points where the two phase terms are equal ; that is , where

k~~
= 52(r) wi th ~1 (r) k~r and ~2(r) ~~ r2. Of course ,

~1 (r) =~~2(r) atr oand at r z 2 L /~9
.

Although the phase terms are equal at these two points , their

rates of change are not equal there . In fact , at r = 0 , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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d~1(r) d52(r)
dr 

= k~ and dr = (C15)

— whi 1e at r~~~~ , 
-

d~1(r) d~2(r)
dr = k~ and dr 

= 2k~ (d o)

At the optical or i nfrared waveleng ths of interest for th is analysis,

the difference in these two rates will be sufficiently large to prevent

the exponentials from being in phase (or conjugates) over any signifi—

- • cant distance . As a result , the contribution to the integral from

these two regions (especial ly the one near the point r = o) will be

small in comparison to the contribu tion from a stationary phase type

region where $1 (r) and ~2(r) are changing at nearly the same rate.

The only region of this second type is located in the vicinity of

r = L/~g~ To estimate the width of this stationary phase type region ,

it is assumed that the exponentials remain nearly in phase or nearly

conjugates over the di stance for which ,

I~~2
(r) - 

~~l
(r) = 

~~
. (Cl7)

where the changes in the are computed relative to their val ues at

r = L/~g Substituting the forms for ~1 (r) and ~2(r) into Eq. (Cl7),

one obtains Eq. (Cl8) below.

~~~
r2

~~~
r +

~~~~
= ±

~~ 
(C1 8)
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Th i s equation has real solutions of the form

r~~~— 11 ± (Cl9)

where S = X~ /2L. Thus , the so-cal l ed stationary phase region will be

taken as the reg ion extending from r = ‘
~~

_ (1 - sf?) to r = ~~
— (1 +

To estimate the magnitude of the integral (in Eq. (C14)) when

the mi rror radius a is sufficien tly large to i nclude all or part of

this region , the following procedure is used .

1. The assumed slowly vary ing functions , g~(r) and the

exponentials i nvolv ing ~~~ are evalua ted at the midpoint

of the integration interval and factored out of the

in tegral .

2. The remain ing exponentials are taken as being exactly in

phase or exactly conjugates over the integration interval .

3. It is assumed that k~ >> k~j .

Then applying these steps , tak ing I g~(~—) I~~I g~(o) 
~
, and assuming

g

a > (1 + ~J?) . the proposed inequal ity becomes
g

L
- - 

+ + i-c (1 + 

1k’

1 >~ e ~g e 
8g 

~~~~~ e~~~ 
~gr~

2 - 
•

21R 1 
-~~~(l •

~~~
‘)

(1 + ik~r~) dr~ (CZO)
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For the case where the exponentials are in phase (upper sign),

Eq. (C20) takes the form shown below .

3k~jL

? 
2
~g / —2ik~r~1 > >  e e ~ dr~2 1R 1 J

‘

I, g

~.— ( 1 +~r?) 
• 1

f g —i k~ ~~
+ ik~ J e ~~~ gr2 r~dr~ (C21)

By determining the bounds on these two integrals , one can show that

Eq. (C2l) will hold if

3k~L
1 >> ~~~ [

~
.÷ 

~
__ ] (C22)

If the exponentials are taken as conjugates (lower sign) over the

stationary phase reg ion , Eq. (C20) takes the form

? 28 r
1 >> 2~R j  e g j  (1 + ik~r~)dr~ (C23 )

g
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This inequality will hold if

k~L

1 >
~ ~~~~ 

~~~~ [1 
+ 

~~
-] 

~

•
g 

(C24)

-J One can use this same procedure to estimate the conditions

under which the sel f—induction integrals can be neglected for

- sf?) < a  <i— (1 + %f~
); however , for this case , a is

taken as the upper limit of integration in Eq. (C20). The result

is two rather complicated conditions which are not given in this

report.

This same procedure is also used to estimate the integral in

Eq. (d14) for the case where a < !~.— (1 - s[~). For this case , ‘it ~g

assumed that the integration region extends over the comparatively

small distance (see the discussion following Eq. (Cl6)) corresponding

to the condition ,

1±52(r) - ±Si(r) I = ± (c25)

where the changes in ~1 (r) and ~2(r) are computed relative to their

values at r = o. Application of this condition leads to the equation

1 8r 2 \
kJ t~~ L 

- r) = ± (C26)
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which has solutions of the form

r = ~~- 1 ±~~~l + S
’ (C27)

g

S ince r < ~g
(l — ~J?) , one chooses both minus signs; thus , the

region of integration has a width w given by Eq. (C28).

-~~ • = (i - - (C28)

For the case when S << 1 , w ~ A/4.

‘: To at least partially include the fact that the exponential s
+k’!r +k’!r28 /2L
e ~ and e ‘~ 

g increase wi th increasing radius , thi s region of

width w will be placed at the outer edge of the mirror of radius a.

Thus , for this case , the integral in Eq. (dl4) will be approximated

using the procedure described earlier and limits of integration of

r = a—w and r = a. Then evaluati ng the exponential s involving

kj at r = a - and factoring them and g~(r) out of the integral , the

proposed inequal ity takes the form

1 >> 
21R 1 

e~~~
r4 r2) 

k 
8g~~

2

a-w 

(1 + ik~ r~)dr~ (C2 9)

The inequal ity in Eq. (C29) will be satisfied if
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8
+ ~.9. a2) .

21R 1 
e L 1 + ~~~~~~ (2a - w) < 1 (C30)

For the case where S << 1, Eq. (C30) reduces to Eq. (C3l),
-

~~~~~ 8

~ 
+k’!(a + ~~ ‘~~

- a2) 
i 2’ira ? (C3l)

(1— - - ~-)+ A

wh ich w ill be satisfied i f

8 ______

1 +k’~(a + ~~~~~
. a2) 1 i 2’ 1 ~

21R 1 e ~~~ 
+ (i-) + ~— a J < 1 (C32)

For future reference , the estimates of the conditions under

which the self-induction integrals may be neglected are sumarized

below . First , for the case where -

~

-

~~

-

~

- << 1 , a < (1 - i?), and

x << .~~b. , this estimate corresponds to the condition shown in Eq. (C32).
g

For the resonators considered in this paper (those for which the wave-

length is smal l in comparison to all resonator dimensions), this

condition will hold for all but the lossiest modes. For the case where

<< 1 and ~-( l + ~J?) < a , this estimate corresponds to the pair

of condi tions shown below and referenced for your convenience.

3k’~L
- U

2 1 R 1 e 
28g 

[
~~

__
~~ ~

_] <~ 1 (C~2)
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H.
e 
28
~ 

[1 + 1 (C24)

These conditi ons will hold only for cases where the mi rror radi us of

curvature is very large in comparison to the mi rror separation.

As indica ted earlier in this appendix , various assumptions and

approximations have been made to obtain these estimates of the condi-

tions where the self-induction terms may be neglected . Many of these

assumptions were made to simplify the integral in Eq. (C14). To at

least show that this simplification process has led to the right

order of magn itude for these estimates (Eqs. C22, C24, and C3~), the

integral

I
~ =f g~(r~) e~~~~

2 + a 8g 2  (1 + i k~r~)dr~ (C33)

- 
- 

will be approximated for the case where ~~
— < a using the method of
g

steepest descents (Erdelyi , ref. 41 , vol. 2 , pp. 24-27). To remain

consistent with the calculations performed earlier in this appendix ,

it i s assumed that k,~ >> k~j. With this assumption , 10 may be written

in the form characteristic of the method of steepest descents ; that

is ,

k~f (z)
10 J h(z) e dz (C34)

0
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where
U 

8
- ‘

~~~~~ z~) U

h(z) = g~(z) (1 + ikJz) e (C35) 
-

f (z ) = i (
~

. z~ - z) (C36)

and z = x .+ iy. I’

To locate the saddle point , one determines the point at which

df(~~ = o (c37 )

For thi s problem , the saddle point is located at z = L/8
9 

and , the

steepest descents contour , which is specified by the equation

Im f(z) = Im f(L/89
), corresponds to the line .~i = x - L/8g in the

complex z-plane . As part of the overall procedure to estimate

this steepest descents contour (CSd) has been chosen as one segment

of the closed contour shown below in figure 13, where C1 and C2 are

lines parallel to the imaginary axis. C1 begins at the point j
z = a and ends at z = a(l + i) while C2 begins at z 

= -i and

~~~

‘ 

:f
o

a

o

2

x~~
o
~a.

Th1e segment C0 extends along the real axis from

4

H
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~ -- -~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _
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y
U a (l+i)

C o

Figure 13. Closed Contour Chosen to Include CSd ( U

By applying the theory of residues to the closed contour

shown i n f igure 13 , one obtains Eq. (C38)

= - 

~
1
~ 

+ 12 + 1Sd~ 
(C38)

where -

I — 
+k~f(z)

1 
— 

J h(z) e dz (C39)
Cl

and so forth. However , by writing out the expressions for l-
~ 

and 12
U and using the fact that k~ >> k~, one can show that these it.tegrals

involve exponentials which decay very rapidly wi th increasing distance
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from the real axis. As a result, 11 1 1 and 11 2 1 should be small in

comparison to II Sd I• Therefore, they will be neglected for the

remainder of this analysis.

Final ly, to simplify the analysis , only the first term in the

asymptotic expansion of tSd (Erdelyi , ref. 41, vol . 2, p. 26) will

be used. One thus obtains the followi ng expression.

ik~L

‘Sd~~SJkj8g 
g
~ (kg) 4LK~j/8g (1 + ik~ 1

L
) e (c40)

Taking the bound of the right side of Eq. (C40), the following condi-

tion is obtained .

k’!L

~ Sd~ ~ ~~~~ 
~~ (~

) ~ 
e~~~ + 2~ (C41)

Subs t i tu t ing  Eq. (C4l) into Eq. (Cl4) and taking

~ 1 (C42)

the proposed i nequality for the case where L/8
9 

< a takes the form

k ‘~ L

_ _  

+

~/7 8g IRI ~/i e 8g 
[1 + 2ir < s  1 (C43)
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Comparing this expression wi th Eq. (C24), one can see that the

two conditions differ by a factor . Al though this smal l difference

does not prove the validity of the inequalities in this appendix, it

- does indicate that they have the right order of magnitude .

1~
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APPENDIX D

Detailed Calculation of Expansion Functions

-
U 

This appendix presents the detailed calculations of the expansion

functions used in conjunction with the Rayleigh-Ritz procedure discussed

in the body of this report. These calculations are performed for reso-

nators containing toroidal as well as spherical mi rrors. The spherical U

mi rror cases are considered first. 
U

Spherical Resona tor Calcula tions
U Spherical Mirrors of Rectangular Projection. As indicated in

chapter V (page 56), the expansion functions used in computing laser

resonator modes are approximate solutions to an integral equation for U

a symmetric laser resonator. The particular synunetric resonator

chosen consists of two mirrors identical to the one on which the

current is being analyzed . The mirror separation is the same as in

the original probl em . Thus , to determine the expans ion func tions for

the current on mirror #2 with radius of curvature R and transverse

dimens ions 2a and 2b , one begins with Eq. (71) which is repeated below ,

— ikR 1 
- 

U

- 
ik f J

~i
(Fj ) e 

R21 
cos~21dS~ (Dl ) U

S.i

where R21 is the distance between two points on mirrors #1 and #2,

~2l Is the angle between R21 and the optic axis , and S~ i s the surface

of mirror #1.

-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ _~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~ U ~~~~~~~~~~
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However , as this equation is to be applied to a symmetric resonator,

= e~~
’ J~2 (r 2 ) (D2)

where c~’ = ~tq and q is an integer. One can see this by choosing the -

origin midway between the two mirrors and realizing that the fields

mus t be even or odd wi th respect to z. Then , writing Eq. (Dl) in terms

of rectangular coordi nates , using Eq. (02) to eliminate J
~i (

’F
2), and

dropping the prime , one obtains the followi ng result , -

a •kR

J
~2

(x 2,y2) = - 
1k e~

1
~

’ £ I J~2(x i ,y1 ) 
e~~~

21 
cosa21 dx 1dy1 (03) U

where the projec tion of R21 in the x-z plane , denoted R~1, is shown in

figure 14.

_ _ _ _ _ _ _ _ _  

U

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _  

‘U

Figure 14. Geometry of a Spherica l Resonator
with Rectangular Mirrors
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- The distance R21 is given by

R~1 
= (x 1 - x2)2 + (y1 - y2

)2 + (z 1 - z2
)2 (D4)

To simplify the procedure for obtaining the expansion functions ,

it is assumed that*

1R << 1 (05)

d2 2
<< (k;;•) - 

(Do)

k” << k’ (07)

dm << L (08)

where d~ = a
2 + b2.

T W ith these assum pti ons , cos~21 ~ 1 , and

e
_ 1k

~
R2 e_ 1k~~ e ~~~ (x~ + x~ + y~ + 

~~ e
’
~~~ 

(x 1x~ + y1y2 ) (D9)

where g = 1 - L/R and the first two terms of the binomial expansion have

been used to approximate R21. Finally, it is assumed that

+k”R21 +k”Le ~~e (DlO)

*For resonators for which Eqs. (05) through (D8) are not valid , the
effect of these approximations will be simply to require the use of a
rela tively large number of expansion functions to represent the modes .

tIn general , d~ = (x~ + 

~~~~~~~
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across the entire mirror surface. Using these approximations , Eq. (D3)

- can be manipulated to yield

u(~2) = y~ 
~~~~~~

LX

X 
u(~1 ) e 

+ ç~) + 
~1~2 d~1 (Oil)

v(n2) = v(n 1 ) e 2 ~~~ 
+ + 

~~~ dn 1 (012)

U 

— +i~ ’ — ikL— e (013)

where = 

~
r’
~ ~~ ~i 

= 

~~~~~

‘

~~

— Y~’ H~ 
= a, H~ = b , and

1 J
~i (x ,Y) = u(x)v(y).

Since Eqs. (Dli) and (D12) are uncoupled equation s of identica l

- form, the rema i ning calcula tions are performed cons ider ing only the -

x—var iation. To simplify these calculations , one lets

- i q , 2  2’
- — 

2 ~ l + 
~~ 

+ 1
~ l~2U K(~2I - ~1) 

= e (014)

- so that Eq. (Dli) can be written in the form shown below .

~
Hx

u(~2) = y,~ J u(~1) K(~2 l~ 1 ) d~1 (0½)
- 

~
Flx
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In the next step, one determines the operator NI (see pages

57 - 62) associated with the eigenvalue problem for the expansion

functions. To do this , one beg ins with Eqs. (D16) and (017) below ,

d2u(~2) ~~ d2K(
~2I - ~1)

______ = y ~ 
u(~1) d~1 (016)

d~
2 X j  dr 2
“2 _Fl

~ 
“2

H
~ d2u(~1) 

H
~ d2K(

~21~1)

- 
- 

1x f d~~1
K(~~2

L U ~ 1
) 

d~~ 

= 

~ f u(~1) d~~ 
d~1

x

+ Y~
RU(

~~i
) (017)

where Eq. (016) was obtained by computing d2/d~~ of Eq. (015), and

Eq. (D17) was obtained by integrating the term K(~2I~ 1) 
d2u(~1 )/d~~ by

parts twice. The function Ru(~1) in Eq. 
(017) is defined by Eq. (018)

below .

dK(~2I - ~1) 
du(~1 )Ru(~1 ) 

= u(~1) — — K(~2 I~ 1) (Did)
d~1 d~1

Then , evalua ti ng the derivatives , substi tuti ng the expression

for d2K(~2 ~~
)/-d1 i~to Eq . (D16), and using Eq. (Dib) to simplify

terms of the form JX ~ u(~1 ) K(~2j~ 1 ) d~~, ~n& can obtain the 

in tegrodifferential equation shown bel ow.
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(d2
— + g2~~ + ig u(~2) 

= - 

~ f u(~~) K 2~~1) ~ d~1

+ 2g~2 ‘~~~ ~1u(~1) K(~2 I~ 1 ) d~1 (019)

~ A similar procedure involving d2K(
~2I~ 1 )/d~~ and Eq. (017) yields

Eq. (D20). -
‘

~~ , 
-(~ + ig) u(

~2
) = Y

xf 
K(:2I~ 1) ~~~~~ g2~~ u(

~l )

— 
~~~~~~~~~~~ •f ~1u(~1 ) K(

~2I~ 1) d~1 + 1xRti(.~i ) (D20)

_H
x

One then adds Eq. (019) to Eq. (020) to obtain

H
~

Mu(~2) J’ K(~2 l~ 1 )Mu (~1 )d~1 — y
~

Ru(
~i

) (021) -
~ 

-
-

_H
x 

U

where

M = + (g2 - 1) ~2 (022)

is the desired operator. Using this operator , the eigenvalue problem U

is formulated as the followi ng differential equation.
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d2u(~) + (g2 - l)~2 + s2 u(~~) 
= 0 (023)

d
~

2

To solve this equation , one f i rst cons iders the case where

g2 > 1 and makes the substitutions d2 = 2 ~ (g2 - 15’ and z = ~fi’ ~d
to obtain Eq. (D24),

d2u1z~ z2 1
+ - + (

~~ 
+ 

~~) 
u(z) = 0 (D~4)dz2

where v + 1/2 = - is2/d2. This equation is Weber ’s differential equation

(W hi ttaker and Wa tson , ref. 39 U

p 347), which , if v is not an integer , 
U 

-

has a general solution of the form

-~~ u(z) = AD (z) + BD
~
(_z) (025)

where the D (z) are parabolic cylinder functions (Lebedev , ref. 40,

chapter 10).

By letting B = ± A , these solutions are specialized to apply

to either odd or even modes. Making this substitution and writing the

U D
~
(z) in terms of the confluent hypergeometric functions of the first

kind (Erdelyi , ref. 41 , vol. 2, p. 123), one obtains the follow ing

expressions.

Ae _Z2/4 
~~~~ ~~

-, 
~~
.
, 4) for even modes

Ae~~
2’
~ z~ (1?., ‘~~

.
, 4~ 

for odd modes (D26)

At this point , the only rema i ni ng step Is to specify the
parameter v by following the procedure outlined on page 62. That

procedure corresponds to the requirement that as g -
~ 1 , the expansion
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funct ions must reduce to the plane parallel solutions of Vains hte i n

shown below ,

cos s~ for even modes
u(~) = sin s~ for odd modes (027)

where s= m’ir/(M+ (1 + i)8), 8 = -c(l/2)/~/~’~~ 0.824, M 
= ..J~~N’, and N

is the resonator Fresnel number . For even modes , m = 1,3,5--- and for

odd modes, m = 2 ,4,6--- .
This procedure for specifying the parameter v can be simplified

considerably by realizing that as g -
~~ 1 , d2 -~~ 0, and ~~ 

-
~~ ~~~ . Letting

= - v/2 or (1- v )/ 2 and y = z2/2, thi s procedure also corresponds to

investigating the behavior of the s~(ct ,y,z) as -‘ ~~~ . Several in-

vestigations of this type nave been performed.

To obtain the particular form used for one such investigation ,

one sets K = y /2  - c~, and requ ires cty to be bounded in absolute value.

Then , s i nce y = 1/2 or 3/2, icy is also bounded in absolute value. With

these restrictions , it has been shown that (Erdelyi , ref. 41 , vol . 1,

p. 280)

y, y) r(y) (Ky )  

~ 

2~~ e~~ 
j

1 (2~
/
~~) (D28)

One then uses the fac t that s i nce K = (v/2 + 1/4) = - is 2/2d2 ,

= 52~ 2/4. This expression for icy is then substituted into Eq. (D~8)

U 
to obtain Eq. (029).

/ ~l - y  id2~
2

y ,  y) -
~ r(y) I~5) e 4 J.~_ 1 (s e)  (029)

li i -
~
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_ U t

I-
Then , for the even mode solutions of Eq. (D26), one lets -

y 1 /2, -

u(~) -
~~ A r (~) ’~J~5 J~~ (se) (030)
g -~ l 

-

and for odd modes , y = 3/2

u(~) Ad~r (~)~J~ ~ ½ 
(sc) (031)

Substituting the well-known forms (Whittaker and Watson , ref. 39,

p. 364)

(se) = sin s~ (032)

~—½ (se) = ~~~~~~~~~ cos s~ (033)

into Eqs. (030) and (031), one f i nds that for even modes , —

u(~ ) -‘- A cos s~ (D34)
g - ~ l

and for odd modes ,

A 
i

u(~) 
—S in S~ (035)

— g- . l

Thus , for the desired reduction to occur , it must be true that -

S = m’ir/(M + (1 +i)8). Therefore , v has the value given below .

v = - 
~ ~l + 2i [ m~/d i)8]~~ 

(03b)
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To complete the procedure for obtaining the expansion

functions , one returns to the differential equation , considers the

case g2 < 1 , and makes the substitutions h2 = 2 .sfl - g2’and y =

The result is Weber ’s equation as shown below.

d2u(y) 
+ (v + 

~~) 
- 4 ~ u( y ) = 0 (037)

dy2

For all values of v , the general solution of this equation may be

written in the form (Whittaker and Watson , ref. 39, p. 348),

u(y ) = AD
~
(y) + BO 1 (iy) (038)

However , for real values of y, D -1 ( iy ) increases exponentially as

U 

~~ 
increases. Since this directly contradicts the known behavior of

the modes of stable resonators, one requires that B = 0. Finally, the

— requirement that the modes be either even or odd yields v = 0,2,4,6,---
for even modes and v = 1 ,3,5,--- for odd modes. Thus , for g2 < 1 , the

U 

expansion functions are given by Eq. (039).

n I  2
e 

~ 

(. 2. -

~~

-

~ 

for even modes , n = 0,2,4,---
u(y)  = 

2

e ~4- y~Qjn., 
~~

.
, 4) for odd modes , n = 1,3,5,--- (039)

Then combining the forms in Eqs. (026) and (039), the expans ion

U functions for one transverse dimension are given by,

2 2
___

e 

~ 
( v 1 h2~2

’
~ for even modes

u(~) 2 2  
/

U ~e 

h 

~ 

(1_v 3 h2~2) for odd modes (040)

U 

- - U 

~~~ 

— — — — U - - U

~~~~~~~~

• -- —

~~~~~~

- -~~~~~— -



---- 

where h2 = 2 ‘~~l - g2’ and ~ = [k~/L’ x. For stable resonators ,

v = 0,2,4,--- (even modes) or v = 1 ,3,5,--- (odd modes). For unstable

resonators , v is given by Eq. (D36) where m = 1 ,3,5,--- (even modes)

or m = 2,4,6,--- (odd modes).

Spherical Mirrors of Circular Projection. To obtain the

expansion functions for spherica l mirrors of circular projection , one

- 
begins with the integral equation ‘for a symmetric resonator in circular -

cylindrical coordinates as shown below ,

~~~~~ 
e1) 

= - ~~ e~~~’f de
2f ~xi~~2’ ~~ 

e 12

coscs12p2dp2 (041)

U where c~’ = irq as before. Then , in addition to assuming that Eqs. (05)

through (DlO) hold , one assumes solu tions of the form

~x2~~’ 
e) = u~(~ ) e+~hle (042)

and applies the identity (Erdelyi , ref. 41 , vol . 2, p. 7),

i~ 2~rJ~ ( z)  =f  e~Z C055 + ins d~ (D43)

where Jn(z) Is a Bessel function of the first kind . The result is the

followi ng integral equation for the radial mode function

Ha !.(~~~ +~~~ ) 
U

u~(~1) 
= 

~nf 
u~(~2) e 

~n i ~2~~2~~2 
(D44)

U 
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where 1n 
= 
~~~~~~ ~n+l 

~ 
= ~Jk’/L~ ~~ 

and g = 1 - L/R. Finally,

one converts this equation to an integral equation with a symmetric

kernel by making the substitution u~(~) = v n (
~~

)/
~/~

’• The resul t i s

shown below in Eq. (045),

Ha
vn(~i ) 

= 1
nJ 

v~~(~~2 ) Kn(~i k2
) d~2 (D45)

where

_ _ _  

_ 19 ( 2 + 2)
Kn(~l I~2

) =~J~1~2
1 e 

~n i ~2~ 
(046)

To obtain the eigenvalue probl em for the expansion functions ,

one begins with the following pair of equations ,

d2vn(~i ) 
= 

~ a 
~ ~ 

d2K~(~2l~ 1) d~ 
(D47 )

n d~~ 
2

0

Ha d2v 
~~~ 

Ha d2K (
~2 k1)

Y
nf 

Kn(~2l~ l ) d~~ 
d~2 

= y
~j• vfl(~2

) 
d~~ 

d~2

+ y R v (~2) (D48)

where

dv dK (
~2 k1) Ha

Rvn(~2
) = Kn(~2l~ i ) ~ 

- vn(~2
) ~ 

d~ 
(049)

o
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,

The indicated derivatives of Kn(~2ki ) are then evaluated ,

- 

- and a procedure identical to the one used for rectangular mirrors is

followed to obtain Eqs. (050) and (D51 ) shown below ,

g2~
2 + 2ig + 

( n 2)
~Vfl(~l ) 

-

— 

~
m
nJ
0

H 3
— 2ig i

nJ 
(~1~2)

2 J1 (~1~2) E(
~2I~ 1) d~2 (050)

{2ig +

II
= 

~ Ja Kn(~2I~ i ) ~~~~~+ g2~~ +~~~ 

n2)~ 

v~(~2)d~2

+ 21g y fa ~~~~~~ 
J~~~1~2) E(~2l~ 1 ) d~2 - ynRvn(~~

) (D~l)

where
- !~. (~~~ +

E(~~2 I U ~1
) = e (Dbz)

dJ (x)
and J~(x) = n

dx
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Finally , one adds Eqs. (050) and (051) to obtain Eq. (D53).

(
~~~~n

2)

- 1 ) + 
~
vn(~i ) 

=

(g2 - 1) ~ + v~(~2)d~2 (053)

One can see that this equation has the same form as Eq. (113) in

chapter V. However , Eq. (053) will not have the characteristic de-

scribed in condi tion #1 fol l owing Eq. (122) unless the term in braces

in Eq. (049) vanishes at = 0. Since the functions vf~
(
~2
) have

not yet been selected , it is initially assumed that this term

vanishes at the origin. The validity of thi s assumption is demon-

strated later in this appendix (beginning wi th Eq. (077)).

Then , subject to the above assumption and in accordance wi th

Eq. (125), the operator M is chosen as shown below .

~ d2 (~~~~n2)

2 ( 054)
d~
2

Thus , the eigenvalue problem for the expansion functions is expressed

as the following differential equation.

“1 2d2 v ( ~ )
+ (g2 — 1) ~2 + + ~2 v~ (~~) 0 (055)

d~
2 ~2

141

- - ~ - — —  ,A- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
._-,____s_ _-_- ----—-



_______ ~~~~~~~~~
‘. 

~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

To solve thi s equation, one first considers stable resonators

(g2 < 1) and makes the substitutions ,

W n(~
) = v~ (~~) ~Jj’ (D56)

z = ~ ‘~ 2 (D57)

where c~’ 
= 
~~l — g2. Then , l etting 52 = — (2v + l)c~’ , one obta ins

Eq. (058).

dZwn ( z)  
— 

i 
~ + 

(2v + 1) 
+ 

(n 2 — w (z) = 0 (058)

H 
dz2 z z2 n

Equation (D58) is Whittaker ’s equation (Whittaker and Watson , ref. 39,

p. 337), which has a general solution of the form

W
K P  

(z)  = A 
~~~~~~, ~(z) + B W~ 

~ 
(-z) (059)

where K = - 1/4 (2v + 1), p = n/2, and W (z) is a Whittaker function

of the second kind . Now , the Whittaker functions are related to the

conf luent hypergeometric functions of the second kind , v(c~,y,z), by

the followi ng equation (Lebedev , ref. 40, p. 274),

r - 
z y

W 
~ 

(z) = e ‘2 
z~ v (ct , y, z) (060) 

U

where ~ = (n + l)/2-K and y = n + 1. When ii is zero or a positive U

in teger , which it is for this problem , v (c~, n + 1 , z) is represented

by the series (Lebedev , ref. 40 , p. 264),
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k
- 

I n (a)kz‘I~(a,n+l ,z)  = 

r (a—n) k=0 (n+k)!k’. ~,(a+k)-~,(l+k)—*(n+k+l)+ln (z)

n—i , ,~ k, /- . ~ — i j  ~n—k—l) !~a—n)
+ E k’ 

k a
k_n 

(061)
U 

(a, k=0 U

where (a)k 
= r(c~+k)/ r(ct) , and ~,(x) is the logarithmic derivative of the

gamma function (Erdelyi , ref. 41 , vol . 1 , p. 15).

-

~ U~ From this series , one can see that, unless a = - m where m

U is zero or a positive integer , ~i~(a , n + 1, z) has a singularity at

z = 0. However , if a = -rn , the series is indeterminant , and

n + 1, z) must be evaluated using a limiting process. For this

case , one finds that (Erdelyi , ref. 41 , vol . 1 , p. 268)

n + 1 , z) = (_l)mm! Fm
n(z) (062)

where Fm~
”(z) is a general ized Laguerre polynomial. Thus , if the

origin (z  = 0) is included , the solution to Ec. (058) becomes

a ’~
2

w ( ~) = A’e ~n + Fm~ 
(~~

1
~~2)

U 

+ a ’
~~

2

+ B’ e 2 ~n + 1 F n ( -ct ’~
2) (063) 

U

However , since stabl e resonators do not produce current distri-

butions for which the current grows exponentially wi th increasing

mirr~c..rad~ijs (Bergstein , ref. 2, p. 500), B’ ~~~~~ 
b~~~ t 

~~~~~~~~~~~~~~
zero. Thus , the expansion functions are given by Eq. (064).

143

- - U  ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_______ - -— 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- - - ~~~~~~~~ - - -

- 
a’~

2
wnm(~) 

= A ’e 2 ~ fl + 1 F~~ ~~2) (064)

For unstable resonators (g2 > 1), it is advantageous to convert

the differential equation back to an equation for u~(~). To do this ,

one subs titutes u~(~) = v,,(~~)/ -~/~’ in Eq. (055) to obtain ,

d2u (z) , du (z) 2
+ -i- ~ + 4z2 - - 4t u (z) = 0 (065) U

dz2 z dz z2

where z = 
~~~~~~~ ‘r = - (s/2c~

)2, and ~2 = 1/2 ~Jj2 - 1~. Th i s equation

has a general solution of the form (Erdelyi , ref. 41 , vol . 2, p. 126),

Un t  
(z) =

~~~~ AM 
~ 
(iz2) + B W 

~ 
(+iz2) (066)

it , ’~ it ,2.

where the NI and W are Wh ittaker functions of the first and second
K ,~~ L

kind .

As with rectangular mirror resonators , one must now insure

that these soluti ons ,

U 
1. Have no singular ities , and

2. Reduce to the proper forms as g -
~~ 1 (~~ -

~~ 0).

Deal ing with the singularities first, one uses the fact that
- W~ ~/2(X) has a singularity at the orig in unless it = - (ni + (n + 1 ) 12) ,  1

U where m = 0,1 ,2,——— . For this case (Lebedev , ref. 40, p. 274),

iz2 n + l  -

-. M 
~ 

(iz2) = e 2 ~~~~~~~~~~~~~~~~~~~~~ -
~~(rn +n+ ’ l ‘ n -+--l-, ‘i’iz2~~ (‘D67~ 

- ‘ * __

it , 
2.
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iz2 n + l

W 
~ 
(+iz2) = e (+iz2) 2 ‘~(m + n + 1 , n + 1, +iz2) (068)

it , ‘2.

and

iza

u~ (z ) = z~ A ’e 
~~~~~ ~~~, iz2)

I z2
+ B’ e ~~~ v(L 1, +iz2) (069)

where ‘

~~~ 
= m + n + 1 and ~ = n + 1. However , as c~ ~ 0, z ~ 0 and

~~~~~~~~~ ~~~, iz2) -~~ 1 and ~~~ ~~~, 
+jz2) -

~~ 1 (see appendix H). Thus , as
÷ 0, the solution un (z) app roaches a cons tant value , wh ich does not

- 
- - correspond to one of the solutions (for the plane parallel case)

shown below ,

I v p/a
- 

unm(P) = ~n t~l + (1 ÷ i)8/NI) (070)

where is the mth root of the nth order Bessel function of the first

kind, ~ = 0.824, M = ~J~ i’, and N i s the resonator Fresriel number . As

a resul t, the case where i’r — (m + (n +1)12) will not be cons idered
further . Therefore , to avoid the singularity at the origin , one

must set B = 0 in Eq. (066) to obtain

u (z) = AM ( iz2) I (D7 1)n zit , 
2.

-
.. where the yet to be determined values of t correspond to those for

which the u (z) reduce to the functions in Eq. (070) as ~ -. 0.fl ,t -

145 —

~~~~~~~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- - - -~~~ - -



__________________ -~~~~ - -,- ~~ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

- -

From the rel ation ‘r = — (S/2~)2, one can see that as ~ -~~ 0,

— 

~itI 
-

~~ ~~~ . Thus , as with the rectangular mirro r case , it i s necessar y

to investigate the behavior of the solution as a parameter becomes

large. To do this , one fi rst wr ites 
~~~ 

(z) i n terms of ~ (a , y , iz2)

as shown below (see appendix H).

n + l i~22 
~~M ,,

~ 

(iz2) = Ae ~~~~ 
1 

- it , n + 1 , iz2) (072)
it ,2.

Then , using Eqs. (071) and (072) in conjunction with Eq. (028), where

(n-t. l)/2+ i (s/2c~)2, y = n ÷ 1 , ic = y/2 - a , and icy = icIZ2 = (5~/2)2,

one can show that if licy l is bounded , then

— n

U
n t  (~~

) A ~ (i t)  
2. n! J~ (s~ ) (073)

Thus , the ~~~ (~~) reduce to the desired form if

= 

a~l i)8
} 

(074)

where 8 and M were defined in the discussion fol l owing Eq. (027).

Eq. (D74) corresponds to a value of ‘r such that

2
vnm 1 U

t M + ( l + i ) 8  ~r 
(075)

‘ For resonators containing mirrors with central coupling apertures ,

thi s expans ion set mus t be al tered somewha t. The al terat ion , which 
U resul ts from the fac t that the s ingular ity at the or ig i n i s no longer

presen t, simply corresponds to retaining the terms
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w (z) = 
~~
. w n (iz2) (076)n ,t 
~~ 2.

in Eq. (066) wi th t given by Eq. (075).

In the discussion just following Eq. (053), it was assumed that

I dv 
~~~ 

dK 
~~~~ 

1
I K ( ~~ 2~~ U~~1

) ~ - v~~(~~2
) r~ = 0 (077)

L d~2 d~2 J
~2

0

where Kn(~2ki ) is given by Eq. (046) and the v~ (~ 2) are the expansion

functions for resonators with spherical mirrors of circular projection.

H Using Eqs. (064) and (D7l), one can show that for stable resona tors ,

a ’ç 2
Vn ,m ~~~ 

= A’e ~ ~ 2. Fm
n (a ’~~ ) (078)

and for unstable resonators ,

~nt  ~~~ 
= B’~2 M 

~ 
(i~2q) (079)

it , ‘2.

Further , by using a relation (see appendix H) between M1~ n/2~~
and ~(a , y, z), Eq. (079) can be rewritten in the form shown bel ow .

n+l n+l _~~ 2 2

~~~ ~~~ 
= B ’(I~22) e ~2 ~~~~~~~ — it , n + 1 , j~~2~~~) (080)

S ince the func tions Fm
”1 (c& ’q) and ‘~((n+l )/2 — it , n+1 , ic~

2
~~)

are ent i re functions of 
~2’ 

the expansion functions of both stable and

unstable resonators can be summarized by the form

~U U

H
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v~~(~ 2 ) = 

~2 
F(~2) (D8l )

where F(~2) is an entire function of ~~ 
The kernel , K~(~2I~ 1)~ can be

written in a similar form as shown below ,

Kn(~2ki) 
= 
~2
2 G~(~2k1) (082)

where

~Gn(~2I~ i ) = e J~(~1~2) (083)

is an enti re function of
-

- To show that Eq. (077) holds , one di fferent iates v~~(~~2 ) and

Kn(~2~~i
) using the forms in Eqs. (081) and (082) to obtain the

followi ng pair of equations.

U dv 
~~~ 1 

- 

2. 2. 
dF(~2)n 

= 
2. ~2 

F(~~) + (084)
d~2 d~2

dKn(~2k1 ) 
= 
2 ~2 

G~(~2j~ 1 ) + 
~2 

dG~(~2R1 ) (085)
d~2 d~2

Substituting Eqs. (084) and (D85) into the term in brackets in

Eq. (077), one obtains the following result.

~48
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U dv (~ ) dK 
~~~~ 

)
~ n 2 , ~ n 1

Knt~2 ~l
) - V fl~~2

)
-: d~2 d~2

dF(~ ) dG (
~ k )

= 

~2 G (
~2I~ l ) 

2 
— F(~2) 

n 2 1 (086)
d~ d~2 2

Since the functions F(~2) and Gn(~2~~l
) are entire functions of 

~2’ 
the

- term in braces in Eq. (D86) is finite at = 0. Thus , Eq. (077) holds

as assumed .

Toroidal Resonator Calculatio ns

As wi th spherical mirror resonators, one begins thi s procedure
U 

for obtaining expansion functions wi th the integra l equation for a

U symmetric resonator as shown bel ow,

b 2ir -ikR
ik +io~~

( C e 12 
U

‘
~xl Pp e

1 
= - e j  J ~xi P 2~ 0

2 R12
- - a O

cosa12p2dp 2dO2 (D87)

where R12 is given by

R~2 
= p~ + - 2p 1p2cos(02 - 01 ) + (z 2 

- z1
)2 (088) 

- U

and a and b are the inner and outer mirror radii as shown in figure 15.
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Figure 15. Intersection of a Toro idal Mirror
With the x-z Plane

The distance (z2 - z1) is equal to

(z2 — z1 ) = L - - 
~2 

(089)

where the di stance &
,
, which is depicted by ~ i n f igure 15, is given

by

(p. — p
2R

where R is the radius of curvature of the individual arcs shown in

figure 15 and is the distance the axis of each of these arcs is

displaced from the optic axis. Substi tuting Eqs. (089) and (090)

in to Eq. (D88) and neglecting terms of second order in &
~
, one obta ins

the follow ing expression for R12.

U~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~- ‘~~~~~~~~~ • • • ~A-•~
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~T~~~~~~T

R12 ~ L) 
1 

- 

~~~~~ ~~2 - p
e)2] 

1
p
1
2 + p2

2 2p1
p
2 

2.

+ L2 — L2 cos (82 
— 01) (D91 )

Then , in addition to assuming that Eqs. (05) through (Dl0)

hold , one assumes solut ions of the fo rm

= un(P) e~
1”
~
0 (D92)

and appl ies Eq. (043) to obtain the followi ng equation for u~(~)~

u~(~1) 
= y

~ u~(~2) ~~~~~ PiP2)e~~~ 
l~~e

)2 + 2~~e
)2
~

ik’ / 2 2— 

T ~~~ ~2e p2dp 2 (093)

where = ~
n+l e~~~

L+
~~

’.

Equation (093) is simplified considerably by making the sub—

stitution = V~7~ ~~ 
The resul t is shown in Eq. (094),

Hb -
~~~~

(
~~~

+
~~~

)
Un(~ i ) 

= i
nf 

Un(~2
) 
~~~~~~ 

e

- 
Ha

+ i(g - l)~ ~~ 
+ 
~~ 

U

— e e 
~2d~2 (094)
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where Ha = ~4-i:~-7:~ a , Hb = ‘sjk’/L b , ~ 
= 

~,; e e 
, and

g = 1 — L/R. Finally, to simplify the forthcoming computations ,

the followi ng definitions

Kn(~2I~ l ) = J~(~2~1 ) E(~2I -~1 )~2 (095)

E(~2l~ 1 ) = e ~~ 
+ 

~~) +i(g - 
~~e~~l 

+ 
~~ 

(D96)

are employed to yield Eq. (097).

Un(~i ) 
= I

n] 
u~~(~~2 ) K

fl
(~~2 I U ~l

) d~2 (097)

a

The man ipulations used to obtain the expansion functions for

these toroida l resonators are somewhat more complex than the manipu la-

U tions already performed for spherical mirror resonators. For this

case , one begins with the following two equations ,

+ 1 du~(~1) 
= 1b ufl(~2

)

K~(~2l~1) d~2 (098)

Ynf K~(~ 2 I~ 1 ) ~~~~~~~ ~~~~ ~~~~~~~~~~~ = jb u~(~2)

~~~ ~~~~
+ K~(~2j~ 1 )d~2 + y

fl~
u
fl

(
~~2

) (099)
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where Eq. (098) was obtained by operating on Eq. (D97) with

d2/d~1
2 + l/~ d/d~1, and Eq. (099) was obtained by integrating the

integrand of the left side of Eq. (099) by parts twice. The function

Sun(~2) in Eq. (D99) is defined below in Eq. (0100).

H
u du dK (

~2k1) 
b U

Su~(~2) = K~(~2k1) ~ ~~
j

~~] 
“n d~2 

(0100)

Ha -~~~

One then calculates the indicated derivatives , substitutes
-
, 

the results into Eqs. (D98) and (099), and uses Eq. (097) for

simpl ification purposes. The two simplified equations are then added - U

U to yield the rather complex equation shown bel ow. -

U; Hb
L u~(~1 ) = f  Kn(~2I~ l ) L u~(~2) d~2 - Yn5Lmn(~2)

Ha

Hb
+ 21yn~e

(l - g) f (~~ 
— 

~~ ~~~~~~~~~~~~~~ 
d~2 (0101 )

Ha

where

L = 
~~~~~~~

- +  

~- fr + (g2-1)~2 - 

~~~~~~~~ 
- ____ - 

~~~~~
. (0102)

To simpl ify the forthcoming eigenvalue problem for the expan—

sion functions , it is desirabl e to elimina te the integral i nvolving

To do this , one appl ies the same sequence of operations

(the sequence described between Eqs. (0100) and (DlOl)) to the pair

of equations below ,

U 

- 
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~fun ~~~ 
= 

1

b 
u~(~2) ~~— K ~(~2I~ 1 ) d~2 (D103)

Hb du (~2)‘f
nf Kfl(~2I U ~1) 

~~2 
d~2

Ha

Hb dK (~ I~l )
= - inf 

un(~2
) d~2 

d~2 + InTUn(~2
) (0104)

where
Hb

Tu~(~2) = u~(~1) K~(~2k1) (0105)

Ha

The result is Eq. (0106).

~~~~ + ig~1~ Un(~l) 
= 11b K~(~2I~ 1)

ig~2 
~ HU

n(
~
2) d~2

- inIb Un(
~2 ) ~ (~2I~ 1 )~2 

E(~2j~ 1) ~~l 
- 

~~ 
d~2

Ha

+ y TUn(~2
) (0106) —
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One then multi plies Eq. (0106) by 2i~~(1_g ) and adds the result

to Eq. (DlO1 ) to obtain

Hb
Mu~(~1) 

= y
~J

’ K~(~2I- ~1 ) Mu~(~2) d~2 - 1n Ru(~2)

Ha

H
- 

~~~~~~ 
— 

~) J  Kn(~2I~ l ) 2 ~~~~~+ -i-— u~~(~~~) d~~ (0107)

where

d2 1 d •i~ (1 — g) 2
M = 

~~~~

-

~~~~~
+ i•+ 2i~~(1 - g) ~~~~~

.+  (g2 - 1)~2 + e 
- 

~~~~~
- (0108)

and

Ru~(~2) = Su~(~2) 21
~e
0 — g) Tu~(~2) (0109)

Then , using the operator M in the manner discussed in chapter V

(pages 57— 62), the eigenvalue probl em for the expansion functions

corresponds to the followi ng differential equation.

d2u ~~ 1 dL’~()~~
d~2 

+ r’ 2i
~e

(l - g)  d~

i(l — 2
+ (g2 — l)~2 + 

e 
— + ~2 un(~

) = 0 (0110)

As a first step in solving this equation , one lets
_ i
~e(l

_ g)~u(~) = w(~ ) e and substitutes this form into Eq. (0110).

r This substitution l eads to the following equation for w(~).

- ___ _ _ _  - - - 
- -
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d2
~~~) + + {(g21)~2 - ~~~ + s2 + (9~1)2~~

} 
w(~) = 0 (Dlii)

Then taking g2 > 1 , and letting z = ~~~~~~~ ~22 = 1/2 *~
‘g2 - ~~~~ and 

U

i (s
2+(g—1)2~

2
~

= - ~~~~~~~ ~ one obtains Eq. (0112).

d2 w(z) + I d~~~ (Z )  
+ {4Z2 - ~~~~~- - 4r} w(z) = 0 (0112)

This equation , which is identical to Eq. (D65), has a genera l solu tion
U 

of the form

~~~ (z) = ~1~ AM n(’~
z2) + BW~ (+iz2)~ (0113)

I ~ it , 
2. ~~~ 2.

For these toroidal resonators , the values of ‘r are chosen so

that the solutions reduce to the spherical mirror expansion functions
- as 

~e 
÷ 0. This choice , which automatically incorporates the proper

reduction to the plane parallel solutions , simply amounts to the

requirement that (see Eq. (D75))

U 
_ _ _ _ _ _ 0 4

Thus , for unstable resona tors , the expansion set consists of U

funct ions u~(~ ) given by

+i~ (g — 1)~ ~A ’e e NI n (ic2
2
~2)

~~ 2.
un ,t (~~) 

= 

+ g (~~~ 
- l)~ 

~~~~~~~~~ n (+i~
2
~
2) (0115)

U - 

it ,2.
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where t is given by Eq. (0114). :
For g2 < 1 , one returns to Eq. (Dill) and makes the sub-

stitutions w(~) = v(~)/~ and z = c& ’~
2 , to obtain Eq. (0116), 

U

d2v(z) 
- 

1 + (~
2 ~~ + 

2v +  1 v(z) = 0 (0116)

where ci ’ = ~ l - g2’and s2 + (g - 1)2 ~~~~ = — a’(2v + 1). As pre—

viously indicated (see -Eq . (058)), the genera l solution of this

equation is

-

~ ~~ (z) = AW
K P  

(z) + 
~~~~~ 

(-z) (0117)

I where K = - v/2 - 1/4 and p = n/2. By requiring these solutions to —

reduce to those for the spheri cal case as 
~e 

-
~~ 0, one obtains the -

followi ng expression

Wn m  (~~) = e
+i
~e

(9 - l)~ e 
~~~

‘
~~~~

2 

~n + 1 F~ (~~~~
1
~~~~2) (0118)

U for the expansion functions when g2 < 1.

k . i
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APPENDIX £

Analytical Results for Simple Systems

The purpose of this appendix is to present the results obtained

from the analysis of three relatively simple resonant systems. These

analytical resul ts , which supplement the numerical results presented in

chapter V I , were obtained to support the basic theory and method of

solution discussed in the body of this report. The three systems con-

sidered are all symmetric resonators wi th perfectly conducti ng mirrors .

They are an infinite radial waveguide , a stable resonator with rec-

- 

tangular mirrors , and a stable resonator wi th circular mirrors .

For each of these resona tors , the analys is i s performed in the U

following manner . First, the applicabl e integral equation is con-

verted to an integral equation involving a surface integral over a

single resonator mirror. Then using the expansion functions presented

in chapter V , and replacing the f i nite limits of integration w ith

infin i te limits , the integral is evaluated to yiel d an oscillation

condi tion for the resonator being considered . This oscillation condi-
U tion is then compared to similar conditions obtained by other authors .

The Infinite Radial Waveguide

The system considered in this section consists of two plane

mirrors that are infinite in extent. The region between the two

mi rrors , which are separated by a distance L, conta i ns a homogeneous

medium characterized by parameters .~~, c , and a, where a > 0. Since 
U

the mirrors in this system are infinite in extent, finite fields

will be present only if any gain resulting from the polarizati on of
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- 
the medium is less than the loss resulting from the conductivity a.

- Thus , the propagation constant k is written in the form k = k’ + 1k” ,

- 
with k” < 0.

- 

- 

I To take advantage of the symmetry , a system of coordinates is

- established so that the orig in is located midway between the two mirrors .

With this system, a point on the ~th mi rror has position vector

= ± L/2 
~~ 

where = p 1a , a is a unit vector in the radial

direction , and is a unit vector parallel to the optic axis. Then , 
U

using this system of coordinates and Eqs. (53) and (54) as the basic

: fo rms , one substitutes Eq. (54) into Eq. (53) and applies the fact

- 
that the self-induction integrals vanish identically (cos(~ , ~~i~’) 0).

The result is the followi ng expression for the current, u(~1 ), on

mi rror #1,
-
~ 2 r r ik(R12 + R21)

- 

u(I~1) 
= (
~
) j u(~~j )j

e 
R12R21 

cOsa12 cos~21dS2ds~ (El)

where R12 = 1r 2-r1 1 , R21 
= l~~f-r2 t .  and a.~~ i s the ang le between R1~

and the opt ic axis of the guide.

The next step i n the ana lys i s i s to assume that the current at

a point wi th coordinate on mirror #1 is primarily a result of the

current over a small region surrounding the point wi th coordinate

on m i rror #2. This effective region is assumed to be sufficiently

small so that the paraxial approx imation and the condition shown in

U 

Eq. (E2) are satisfied over the entire reg ion. 

U U~~~ -U~~~~ -—-~~~~~~~~~~~~ U ~~~~~~~~~~~~~ ~~~~~ U 
U U
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1 
- r2I ikL 2E I~1 - 221 

(E2)

U 

As will be seen la ter, these assum pti ons , wh ich certa inly apply for

- lossy systems , correspond to paraxial modes within the radial guide.

Applying the paraxial approximation , the di stances ~~ are

approximated by R1~~~L in the ampl i tude terms to yield

u(
~l ) 

= 

(

~~~

[)
2f u(~j) K(~1 j~~) dS~ (E3)

where

K(~1 (~~) = f e~~~~~1 - 
r21 + Ir~ 

- r2I~ d52 (E4)

S2

Substi tution of Eq. (E2) into Eq. .(E4) yields the following expression

for the kernel K(~1 li~).

= e 2iftf e ~~ ) 1P 1 P 2 12 + 
~~ 

- ~~~~~~ 

dS2 (E5)

To evalua te thi s integral , one makes the substitution

q - v - p
2 

(E6)

where V = 1/2 (p 1 + ~.j ) and ~ = (
~ -~f) to obtain Eq. (E7).

K(V~~ = e 2
~~~fe 

~~~~~~~~~~ + 
~~~~ 

~~~~~~ 
(E7)

~ 
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Writing out the terms in the exponent and integrating over angles

yields

X(VI~) 2~e
2 L  e 4L ~ f e L q q dq (E8)

Recall ing that k = k ’ + ik” with k’ < 0, the integral in Eq. (E8) is

easily evaluated by making a change of variables . Substituting the

result into Eq. (E3), one obtains an integral equation in terms of an

integral over a single mirror.

= (
~

) e 2
~~~~
f 

u(~~~) e 
~~~~ - ~~ dS~ (E9)

Si

To reduce thi s equation to one i nvolving only the rad ial 
U

coord inates , one assumes that the modes have the form

u(
~~

) = un(P i ) e+1~1O i (ElO)

and performs the azimuthal integration. The result is shown below .

Un(P i ) = e 2
~~ 

k ~n+l e 
~~~~ f u~~~(~~~~~) e 

~~~~

fkp 1p~\
2L ~~~~ (El i )
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Finally, substituti ng the form for the plane parallel resonator

expansion functions given in Eq. (129) (J~(k~~)~ where ~~ the rad ial

component of the wave vector , is chosen to be real so the expansion
- 

- functions remain f ini te as p -
~~ 

co) in to Eq. (Eli), and evaluating the

resul t (Erdelyi , ref. 41 , p. 50), one obta ins

ik 2

~~~~~ 
{ 1 - e_2i kL e~ 

~ L 
= 0 (El2)

- Th i s cond i tion , wh i ch must hold for all p on the mi rrors , w ill

be satisfied if

U k 2
k = 1 ~~+-~~ (El 3)

where q is an integer .

The exact resul ts for this problem (specialized to the lossless

case) are reported by Harrington (ref. 32, p. 209). For real k ,.and

wi th p = 0 incl uded, these results correspond to waveguide current modes

of the form , -

un(P
~~

8) = J~(k~~) e~””8 (E14)

where k’ is specified by

k’ 
~
J

~~~ 2 
+ k: (El5)

At opt i cal or infrared wavelen g ths , k’ is a large number .

Thus , if k~ i s not large , q must be a large integer . Under these

conditions , the square root i s accura tely approx imated by using the

first two terms of its binomial expansion . That is ,
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L k2
k’~~~~~+~ —~- (Ei6)

wh ich is very nearly equal to
k2

~~~~~~~~~~ (E17)

Then , special izing Eq. (El3) to the case where k” -
~~ 0 and

comparing the result to Eq. (El7), one can see that for parax ial modes

(modes for wh ich k
2
/k’<<l ), the procedure for approximately solving the

integral equation yields essen tially the same resul ts obta ined by otter

authors.

Stable Resona tor Calcula tions

The systems considered in this section are symmetric, stable

resonators (o<g<l) satisfying both the paraxial approximation and the

condition shown in Eq. (E2). For these resonators , wh ich are formed

by two perfec tly conduc ting mi rrors of either rec tangular or c i rcular

cross sec tion , the spatial dependence of the modes separates to yield

two independent governing equations. Each of these equations is written U

in operator notation bel ow,

- u1 
= 1k12 k21~1 (El8)

where u1 represents the current distribution on mirror # 1 , and the

involve the coordina tes of both mirrors .
U U 

As the resonators being considered are symmetric , the integral

operators K12 and K21 are identical in form . Therefore, the eigen-

vec tors of the operator K21

u1 
= ± y1 K21u 1 (El 9)
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are also eigenvectors of the operator K12K21, wi th = y. As a

resul t, the followi ng analysis of these stable resonators is based

on relatively simple equations of the general form shown in Eq. (E19).

Rectangular Mirror Resonators. For resonators wi th rectangu-

lar mi rrors, the set of equations corresponding to Eq. (E19) is shown

- 
I below (Eqs. (Oil) through (013)),

Un(
~~2

) = 1n u~(~1 ) e ~ 
+ Q + 

~~~ d~1 (E20)

Um(fl 2
) = 1

m 
Um(Ti l) e ~~~ + 

~~
) + 

~~~ (E2l)

1n1m 
= ~~~~~ 

- kU (E22)

where ~ x, n = 

~~~~~y’ Hx 
= a , H~ = b , and q is an

integer .

To obtain the oscillation condition , the general form of the

expansion functions for this resonator (see appendix D) is substi-

tuted into Eq. (E20). As that form is negl igi ble for  large l x i , the

finite limits of integration are replaced by infinite limits to

obtain the equation shown below ,

j a

= f D~(o ’~ 1 ) e 1 d~1 (E’a)
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1~’
where Dn(tS ’

~
i) is a parabolic cyl inder function of order n ,

= 2~%f(l ...g2~
’
, and i is a complex constant such that O<argt<-n’/4.

Next, the following contour integral representation for

Dn (s5 ’
~
) (Whittaker and Watson , ref. 39, p. 350) -

(0+)
6 ’2~

2 r
4 I ~~~~~~~~~~~~ 2.

= - 
n.e 

2~i J + ~ 
dt (E24)

is substituted into Eq. (E23) and the order of integration is inter-

changed . Then, the integral over 
~l 

is evaluated by completi ng the

square in the exponen t, and the result is simplified to yield the

fol low ing equation ,

— ~~~ I i ‘ — ‘
~2~ ~~~ ~

‘
Dn(6~~2

) — — 

2ti j
~~’~ 

e
‘
~~ —2.-+ig

(0+)
~2~~2

I 2 —A6 ’~~tj  e 
+ 1  e dt (E25)

(_ t)n

~1

where A = g + i sf1 - g2’. Chang ing variables and applying Eq. (E24)

leads to the relat ion

1n = ~~~ 
+ 

(E26)

An identical procedure involving the y-variation yields a

similar result for 1m~ 
By substi tuting these expressions into

Eq. (E22), the desired oscillation condition is obtained.
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‘ I

+ i{ t q  - kL} 
= A -(n + m + 1) ( E27 )

Finally, assuming that k i s real , this equation is manipulated to

U 

I 

yield , 1 :

‘
~mnq = 

~
t. {q + ~~~~ 

rn + 1) cos~ g} (E28)

which is identical to the result reported by Pressley (ref. 43, p. 433).

Ci rcular Mirror Resonators. The appropriate set of equations

for these resonators is (see Eq. (044))

u~(~2) = u~(~1 ) K(~1 l~2) d~1 (E29)

U where

Kn(~l I~2
) = e 2 1 

~~~~~~~~ 
(E30)

U and

flit+1{’rr q + - kL}
Yn i e  3 U

As before, the general form of the expansion functions (see

Eq. (064))

~~L~~z
u~(~2) 

= 

~2 
e 2 2 Fm

r
~(a

u
~~) (E32)

wi th a ’ = sf1 — g2
’
, i s  subs t i tu ted in to the integral equation . Then

using Infinite limits of integration , the integral is converted to a U

known form (Erdely i , ref. 41 , vol . 2, p. 43), and the resul t i s

simpli fied to yield the fol lowi ng expression.
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~~~ + (n + 1) kL}e ~ itq 2 
— 

= (, .1)
m (a’ + jg)2fl + m + 1 (E33)

For real k , Eq. (E33) is manipulated to yield the following

oscillation condition.

~mnq ~~ {q 
+ (2n +m  + 1) cos~~g } (E34)

As with rectangular mirror resonators, this result is identical to

the one reported by Pressley (ref. 43, p. 433). ‘

I

I-
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APPENDIX F

Addi tional Numerical Results

- 

- The purpose of this appendix is to present the ci rcular

mirror results not included in chapter VI as well as all of the

rectangular mirror results . The circular mirror results are pre-

sented f irst, followed by those for rectangular mirror resonators.

C i rcular Mi rror Resonator Resul ts

The only resul ts for circular mi rror resona tors not covere d

in chapter VI are six mode plots in the series for a plane parallel

resonator wi th N = 10. These six plots include the third and fourth

azimuthally symmetric (n = 0) modes and the first four n = 1 modes .

As was the case for the two modes covered in chapter VI , there is

excellen t agreement between the distributions obtained by this author

and those obtained by Fox and Li (ref. 25, p. 464, figs . 5 and 6).

This agreement is especially good for the relative phase distributions

(in degrees), where the only disagreements of any sign i ficance occur

in regions where the field magnitude is quite small.

These mode dis tributions (denoted by +) as well as the

comparative distributions from Fox and Li (denoted by *) are given

U in figures 16 through 21 on the followi ng pages . 
U
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Rectangular Mi rror Resona tor Resul ts

As wi th circular mirror resona tors , there are two types of data

to be presented . The eigenvalue data , whi ch correspon d to a s ingle

pass through the resonator, are covered first. These data are followed

by a series of mode plots for rectangular mirror resonators wi th g = 1.8.

Ei genvalue Data. The first cases for which eigenvalue data

were obtained were two plane parallel resonators with N = 0 and

N = 8/it. The percentage power loss for the first several even symmetric U

modes of these two resonators is presented below in tables X and XI.

- - The comparative data were taken from Sanderson and Streifer (ref. 9,

p. 135, tables IV and V).

— 
Table X

Percentage Power Loss for Rectangular Mirror Resonator
wi th g = 1.0, N = 10 for Even Symmetric Modes

GAUSS IAN
DOUGHTY FOX & LI VAINSHTEIN QUADRATURE

0.355 0.36 0.35 0.35

:
1 

- 3.16 ---— 3.18 3.19

- - U 8.44 ---- 8.84 8.45

Table XI

Percentage Power Loss for Rectangular Mirror Resonator 
U

wi th g = 1.0, N = 8/ir for Even Symmetric Modes
GAUSSIAN KERNEL

DOUGHTY QUADRATURE EXPANSION U

2.217 2.273 2.347

19.746 19.923 20.46~

47.457 47.397 48.445

74.93 74.440 73.242 
I U
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As reported in chapter VI , the difference for any of the f i rs t three

modes is less than 2.5%.

The next cases considered were symmetric rectangular mirror

resonators with g = 1.2. The percentage power loss for the first three

odd symmetric modes for three values of Ne ~s di sp layed in table X II.

For thi s ser ies , the comparative data were taken from Sanderson and
- Streifer (ref. 42, p. 2131 , fig. 7).

Tabl e XII
- Percentage Power Loss for Rectangular Mirror Resonator

-‘ with g = 1.2 for Odd Symmetric Modes

- 

DOUGHTY SAI4DERSON & STREIFER Me

0.542 0.54 1 .0

0.681 0.68

0.913 0.92

k 0.562 0.57

- 0.677 0.68

0.793 0.78

0.600 0.60 2.0

0.668 0.68

0.773 0.72

Finall y, ei genvalue data for a wide range of equivalent Fresnel

numbers for symmetric resonators wit ’~ g 1.8 are presented in tables

U X III , X IV , and XV . The data listed correspond to the percentage power

loss for several even symmetric modes (Sanderson and Streifer , ref .  4~,

p. 2132, fig. 10).
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Table XIII

Percentage Power Loss With g = 1.8 for Even Symmetric
Modes at Three Non- i ntegral Values of 2Ne

DOUGHTY SANDERSON & STREIFER 2Ne

0.639 0.64 4.5

0.864 0.90 U

U 

0.923 0.92
- — 0.997 1.0

0.717 0.75 7.5

0.909 0.86
0.924 0.94
0.947 0.95
0.794 0.72 28/it

0.794 0.77
0.927 0.96
0.979 0.98

U Table X IV
Percentage Power Loss wi th g = 1.8 for Even Symmetric

Modes at Three Integral Values of 2Ne
DOUGHTY SANOERSON & STREIFER 2Ne

0.712 0.72 6.0

0.866 0.81
0.933 0.98
0.968 0.98 

- 

U

0.647 0.66 9.0
0.916 0.90
0.954 0.91
0.959 0.96
0.738 0.74 12.0
0.858 0.86
0.869 0.91

0.937 0.94

i
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Tabl e XV

Percentage Power Loss with g = 1.8 for Even Symetric
Modes at Large Values of 2Ne

DOUGHTY SANDERSON & STREIFER 2IT Ne

0.652 0.65 34.0

0.899 0.91
0.931 0.93
0.709 0.68 36.0
0.899 0.91
0.924 0.92

0.651 0.65 40.0

0.861 0.89
0.905 0.91

Examination of the results in these three tables reveals that the

differences are typically 4 percent or less. However, the maximum

difference was 7 percent, which occurred for the second mode with

Mode Distributions. To further check the analysis presented

in this paper, a series of mode plots was made for resonators with

g = 1.8. These mode plots (figs. 22 through 28) include the relative

intensity and phase C radians ) for the first two even symmetric modes

for 2lrNe 
= 34 , 36, and 40 and the relative intensity distributions for

211’Ne 
= 18. For this last case, relative phase data were not included

as they were not available in the paper from which the comparative

data were taken (Sanderson and Streifer, ref. 42, p. 2133 , figs. 13

through 20).

-: After comparing the results for these cases, several general

remarks are offered in the next few pages. FIrst , the Intensity

distributions obtained in this analysis are rather slowly vary ing .

l7~
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Second, the relative values of some of the peaks and troughs are

somewhat different. Although this is especially true at points

where the intensity is low , it is certainly not uncomon at other

points. These two facts are likely the result of

1. The tendency of a variational method to average the

field distributions when the convergence criterion is

based only on the eigenvalues , and

2. Computational errors in determining the expansion

functions. This last fact also causes errors in the

expansion coefficients, whi ch might further explain any

errors or differences.

However , despi te these differences, sharp d i sagreement does not

exist for any of these intensity distributions. In fact, the basic

behavior or nature of the intensity distribution is correctly pre-

dicted in every case.

F Further examination of these plots reveals that, except for

the second mode with 2lIN
e 

= 34 , there is basic agreement between the

phase distribu tions for all modes . For the one case, the di sagreemen t

occurs over a region in which the phase is changing qu ite rapidly so

¼.: that the difference could result from

1. Inabil ity of the variational method to fol low such

rapid changes wi th the number of functions used ,

2. Computational errors, or

3. 2ff ambigu ities In the phase data .

Interestingl y, for regions where the phase is not changing so rapidly,

el imination of these 2rT ambiguities results in excel l ent agreement.



In any case, improved computer routines would allow the use of more

expansion functions and would likely result in excel l ent agreement for

these modes .

Since these and other results in this paper are di scussed in

the last section of chapter VI , no discussion is included with the

mode plots presented in this appendix. In these plots , the resul ts

obtained by Sanderson and Streifer are denoted by an * while those

obtained by this author are denoted by a +.

1
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APPENDIX G

Mathematical Approach for Solv ing

the Matrix Problem

In chapter IV , the probl em of determining the modes of

:1 paraxial resonators was reduced to solving a particular matrix

tion. The equation , which involves the symmetric matrices K and v

and ~‘ e column matrix A , is shown bel ow.

KA = yvA (Gi)

The purpose of this appendix is to describe the procedure for solving

Eq. (Gi) such that the resulting approximations to the modes, u~(~)~

obey the orthogonality condition

(u
J
(
~
)Iu k(c)) 

= 

~jk 
(G2)

where

(u j(~)lu k(~
)) = fuj(~) Uk(~

) d~ (G3)

However, before describing the procedure , the method used to obtain

Eq. (Gl) is briefly reviewed .

The original problem of solving for the resonator modes,

u(~), was formulated in terms of the integral equation

Ku(~) = ~u(ç) (64)

where K denotes the appropriate integral operator, and ~ 
= y

~~~. 
To

solve this equation , the modes were expanded in terms of a set of

known functions (~q(C)} wi th coefficients Aq s
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n
u(~) = 

~~~ A iJ, (
~

) (G5)
q 1  q q

and the Rayleigh—Ritz procedure was applied . That procedure led to

Eq. (61) with the elements of the matrices K and ‘I’ given by

Kqm = (
~l~q(c)IKhP m

(
~
)) (66)

‘
~qm 

= ‘q~~ ’~’m~~~ 
(67)

The first step in solving this matrix problem is to reduce

Eq. (61) to an elgenvalue probl em involving a symmetric matrix B. To

do this , one decomposes the symmetric matrix ‘~ using a Cholesky

decomposi tion (Wilkinson , ref. 44, p. 229). This decomposition yields

the form,

~Y = L L T (68)

- 

where L is a lower left triangular matrix and LT is the transpose of

L. —

To determine the matrix L , it is helpful to write Eq. (68)

in the expanded form shown below.

~ll ~12~~ 
vln ~ll 

0 £11 ~l2 
-- &lfl

‘
~l2 “~22

” ‘V 2n = 
£12 ‘22 0 0 R.~~~

I I I I I

I I S I I

~ln 
‘
~2n~~ ~

‘nn~ 
21n £2n

_ £nn •
0 0 -- ~~~~

~~ (69)
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~
i.

Then , performing the multiplications involving the first row of L,

one obtains the relation

‘eli = £ii Lu (610)

for I = 1 ,2,--n. These equations can be solved for the elements of

the first row of LT. To compute the (n - 1) unknown elements of

row 2, one uses the (n - 1) known elements, £11 , and the relation

2

~
‘k2 = 

~~ 
£12 £ik  ( G i l )

This process, which involves the general relation

~kr 
= 

~~ 
~~ tik (Gl2)

is continued until all of the Ljk have been determined .

Using that decomposition , one premul tipl -ies Eq. (Gl) by C1

and makes the substitution

A = (LT)
_1

F (G1 3)

With these man ipula tions, one obtains the eigenvalue problem ,

BF yF (G14)

where B is a symmetric matrix given by B = L ’ K (LT)
_l
.

To solve this eigenvalue probl em , B is reduced to a t n—

diagonal matrix using Householder ’s method (Acton, ref. 45 , p. 3~4).

That method , which preserves symmetry and eigenvalues , involves the

use of symmetric , orthogonal transformations as described on the

following page.
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In the first step of the procedure to tridiagonalize the matrix

B = 

•

: ::: - - - b
i~ 

(615)

b1~ b2~ - - — ~~

one finds a symmetric , orthogonal matrix P1, such that

b12 1
0

= (616)

b1~ 0

n L
where f~ = E b~1. The matrix P1 is then applied in the manner shown

1—

below ,

1 0 - -  0 1 0 -- 0 b11
f 1 o-- o

0 0 f

pi [
~
] : = 

1 
c

0 0 0 . .1
(G17)

where C is the (n - 1)th order matrix

~cll Cl2  ----Cl,n~l 
-

C = 
c 12 c22 ~ c2 ,fl~.1 (618)

,~~~~~~ 
C2 ,n..l~~

Cn..l ,n-1
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This procedure is then repeated to yield a matrix P2 such that

-

P2 1 = f 2 
(Gig)

.~~~~~~~~~~.

n-i
where f~ = ~~ Ci.. The matrix P2 is then applied to yield thei=2 1

resul t shown below ,

r 1 r i b11 f1 -- 0 r 1 1 1 b11 f1 0
III t o t  III l o t
L i  U f 1 

U U f 1 C11 f2 --0

[o] ~ 23 
[c ]  N = 

.
1 12  [ D ]  

(620)

where I is the identity matrix. This procedure of applying symmetric ,

orthogonal transforma tions P.s, is continued unti l a tridiagonal r~atnix

T is obtained . The method used to obtain the I~ is covered in Acton

(ref. 45, pp. 326-329).

Once the matrix T is known , the eigenval ues are determined using

the “LR° algor i thm (Acton, ref. 45, p. 350). This algorithm , which is

not normally used for a general matrix , was chosen because the tn-

diagonal form is preserved at every step of the iteration procedure.

This preservation of form ma kes it possible to accomplish each iteration

using only (n — 1) multIplications and (n - 1) divisions.
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To apply this algorithm , one first decomposes the matrix T

such that

T = L R  (621)

where L and R have the followi ng characteristics:

1. L is a lower l eft triangular matrix ,

2. R is an upper right triangular matrix , and

3. The elements on the main diagonal of L have the

value one.

Then , the matrix T-~ is computed according to

T1 
= RL (622)

and the procedure is repeated . After the (s + 1) th iteration , one

obtains

T5 + 1 
= R5L5 (G23)

such that

T 5 + 1 
= L5

1 T 5L5 (624)

This process is continued until the set {T 5 } converges to an upper

right triangular matrix with the eigenvalues on the main diagonal .

In the next step , these eigenvalues are used to compute the

eigenvectors of I by employing a procedure which utilizes all n

equations of the homogeneous system

(T - 
~~~~ 

W k 
= (Gb)

where Wk is a column matrix with n elements . This inverse iteration

procedure (Ac ton , ref. 45, p. 357) is based on the i teration scheme ,

(1 - ‘
~k~~ 

v~ + 
= ~~

k (62 6 )
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where ~.k (the 1 th approximation to the kth eigenvector of I) is

determined using Gaussian elimination wi th interchanges . As the eigen-

values have already been determined, this i teration procedure

rapidly converges to the desired eigenvectors. These solutions are

then used to obtain the eigenvectors Fk (of B) by applying the same

similarity transformation used to obtain I from B. The Ak) whi ch are

obtained by applying the relation shown below ,

H Ak 
= (LT)~~ Fk (G27)

are then substituted into Eq. (65) to obtain the resonator modes .

To show that the eigenfunctions u~(~) are orthogonal (see

Eq. (62)), one computes the scalar product

(uj (
~

) lu k (c ) )  = E Ajq ~~~~~~~~~~~~ 
A~~ (628)

m ,q

which can be written in matrix form as shown bel ow .

(u j (
~

) lu k (
~

)) = Aj
T
~Ak (629)

One then applies Eq. (627) to obtain the followi ng result

Is

,. (uj(~fluk(~
)) = F~

T L~~ ~(LTY~Fk (630)

Then using Eq. (G8), one obtains

(uj(~)~uk(~ )) = Fj
TFk (631 )

Since the eigenvectors F~ of a symmetric matrix B obey the relation ,

F
J
TFk 6jk  (G32)

the modes u~(~) obey Eq. (G2) as asserted .

I
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APPENDIX H

The Confluent Hypergeometr ic Functions

• As was shown in chapter V 1 the expansion functions for the

modes of both rectangular and circular mirror resonators are directly

• related to the confluent hypergeometric functions of the first and

second kind. The purpose of this appendix is to present some of the

more important characteristics and relationships involving those

functions. For more detailed di scussions , the reader is referred

to the sources of this appendix (Lebedev , ref. 40, chaps . 9 and 10;

Erdelyi, ref . 41, chaps. 6, 8, and 10).

As the name impl ies , these funct ions are solutions of the

confluent hypergeometric equation which is shown below (Lebedev,

ref. 40, p. 262).

z 
d2)
~~~ + (‘I’ - z) du(z)~ - c&u(z) = 0 (Ml )

The solution of the first kind , denoted ~(ci, y, z), is an enti re

function of z , but it does have simple poles at the points
= o, —l ,-2 ,-— - . For values of y $ 0,—1 ,2 -—- , this function is

F defined by the series (Lebedev, ref . 40, p. 260),

k
• 

~(c& , y, z) = 

~ ~~~~ (H 2 )
k=O ‘~“k

where (T)~ = 1, (T) k = 
r(T
(
+
,
k), and T = a or y .

Unfortunately , the solution of the second kind , denoted

• h1~(ct , y, z), is somewhat more complex . For values of y such that

— ~~~ •— ~
. 

~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~ — —— ~~~——  — ———S — —



y ~ O,±l ,±2,--- this function is defined in terms of the

y, z) as shown below (Lebedev, ref. 49, p. 263),

r l — y )
~r z) — 

F ( 1  + a ~
,) ~(a , y, z)

+ 
r ( y - l )  

~~ 
- Y)~~(1 + a - y, 2 -y , z) (H 3)

wi th ~arg z~ < i~. However , for y = n + 1 , where n is zero or a positive

integer, this expression is indeterminant and ‘V(a , n + 1 , z) mus t be
-

• I evaluated using a limiting procedure. The procedure, whic h involves

the substitution of the series representations for • and r into

Eq. (H3) as wel l as the application of L’Hospital ’s rule , leads to

the following equation (Lebedev, ref. 40, p. 264),

n+l (cs)k k
= r(c~-.n) (n+k)!k ! i$ ,(a+k)—$(l+k)—*(fl+l+k )+lfl (Z)

n-l k
+ 

-

~ 

(-1) (n — k— i) !  (cz_ n) k k—n ,
r( a) k~ 

z ~H4,

k=0

where qs(x) is the logarithmic derivative of the gamma function

(Erdelyi , ref. 41 , p. 44) and ~arg zt c ~. In additi on , Eq. (114)

can be used In conjunction wi th a recurrence relation (Lebedev, ref. 40,

p. 265 ) to define ‘~(a , y, z ) for all values of y.  As a result ,

y, z) is not only an analytic function of z in the plane cut

along {- 
~~~, 

0), but It is al so an entire function of a and y.

For values of y such that y ~ O ,-l ,-2 ,--- and for va lues of

z such that ~arg z( < n , one can calcula te the Wronskfan of these
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two solutions to obtain the result shown below (Lebedev, ref. 40,

p. 265).

W {~ (c& ,y,z); ‘V(a ,y,Z) ) = — z~~e
Z (Ha)

From this expression , one can see that if a $ O,-l ,-2,--- , then
y, z ) and ‘V(a , y, z) are linearly independent solu tions of

Eq. ( H i ) .

In addi tion to the series representations shown above , ~
and ‘V are also represented by asymptotic expansions as jz( (or one of

• 1 the parameters) becomes large. For example , if Izi is large ,

y $ 0,-l ,-2,-—— , and Iarg zj < i t  - o , then (Lebedev, ref. 40, p. 271),

• •(a,y,z) = ~-a 
~~~~ ~~ 

(_l )k(a)k(l +a-.y)k 
~
-.k

+ o~~~zi-n-~~) ~ + 
:~~ •~~

Z 

~~~~~ 
~~

+ 0 (I~ l
-n-1) (H6)

where the plus sign is chosen if Im (z) > 0 and the minus sign is chosen

if Im (z) < 0. Similarly, one can show tha t for the id en tical condi-

tions on z (Lebedev , ref. 40, p. 270),

• ‘V(a,y,z) = ~~~ 
(~ l ) k(a)k(l+a-.y)k 

~
-k 

+ ~ (lzl
-
~~1) (117)

k=0

Another asymptotic relation involving ~~(a , y, z) can be

obtained by letting the magnitude of a become large . For that case ,
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wh ich is appl ied several times in thi s report, one lets K = — a.

Then if y and cZ are bounded and if I arg z-arg KI <11 (Erdelyi ,

ref. 41, p. 280),

~(a ,y, z)~ r(y ) (K z)~~~~e~~J~~1 (2~~~~ ) + 0 (~~~~~1
) (H8)

IKH

In addi tion to these expressions , there are many important

• relationships between the confl uent hypergeometric functions which

have played a key role in this analysis. Several of these relation-

ships are l isted in the followi ng paragraph.

The first two relationships involve the Whittaker functions

of the first and second kind (Erdelyi , ref. 41 , p. 264),

MK~~
(z ) = z~~ e (½-K+~,2~+l ,z) (119)

-

I 
z

WK ,~
(z ) = zl1

~~ e~~ ‘V (½-K+~,2~i+l ,z) (1110)

where (arg zi < Ti. Next, an important relation involving the

parabol ic cylinder function of order v , D (z) is shown in Eq. (Hll)

(Erdelyl , ref. 41, vol . 2, p. 117).

~ ~~~~~
+

~~~ 

~á~
i) ~~~~ 

~~~

, ( N i l )
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Finally, the generalized Laguerre polynomial , Fm~
’(z)

~ 
is related

to •(a , y, z) in the followi ng manner (Lehedev , ref. 40, p. 273),

(n+l )
Fm~
(Z) = 

m •(-m,n+l ,z) (H l~)

where (n+i )m = 
(n+m)!
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