

PREDICTION OF IMPACT PRESSURES, FORCES, AND MOMENTS DURING VERTICAL AND OBLIQUE WATER ENTRY

15 JANUARY 1977
NAVAL SURFACE WEAPONS CENTER
WHITE OAK LABORATORY
SILVER SPRING, MARYLAND 20910

- Approved for public release; distribution unlimited.

IB. SUPPLEMENTARY NOTES
15. KEY WORDS (Continue on reveres aide If nteeecary and Identify by block number)
water entry, prediction, forces and moments, pressure distribution,
computer code

An engineering tool is described for calculating pressures and loads at highspeed water entry which is simple to use, inexpensive to exercise and applicable to a wide variety of geometries. A simplified potential model is used which replaces the water's free surface with an effective planar surface that is positioned using an empirical parameter available in the literature for a wide variety of shapes. To confirm predictions, calculations are compared to experiment for the oblique water entry of spheres,
uldity CLASSIFICATION OF THIS PACE(When Dala Entored)
cones, disks, and cusps, Surface presaures agree well with measurement reflecting both the model geometry and location on the model. The calculated drag and lift exhibit close agreement with experimental values, particularly prior to the peak loads. At later times the shape of the hydraulic cavity must be taken into account and an approximate procedure for doing this is described. A computer code listing and sample computer runs are provided as well as instructions for using the code.

PREDICTION OF IMPACT PRESSURES, FORCES, AND MOMENTS DURING VERTICAL AND OBLIQUE WATER ENTRY

This report describes a method for predicting pressures, forces, and moments on arbitrary bodies during vertical and oblique water entry. Also included is a listing of the computerized form of the technique, sample computer runs, and user instructions.

This work was supported by NSWC/WOL internal research funds and by NAVSEA Code 03512 under tasks SR1230y02. The authors would like to acknowledge Dr. Thomas Peirce of NAVSEA for his advice and continued interest in this effort.

table of contents

Page

LIST OF SYMBOLS 6
INTRODUCTION 8
PROBLEM FORMULATION 10
POTENTIAL FLOW SOLUTION 11
COMPUTATIONAL PROCEDURE 13
Solution of the Potential Problem. 13
Calculation of Surface Pressures. 14
USE OF THE NUMERTCAL MODEL 16
Selection of Δh. 17
Degcribing the Entry Body with Quadrilateral Elements. 18
Cavity Modeling Uaing No Load Elementa 18
Correcting Pressure on Modified Elements 19
APPLICATION OF THE CODE TO SPECIFIC EXAMPLES 20
Vertical Entry of Axisymmetric Bodies 20
Oblique Entry of Arbitrary Bodies 22
SUMMARY AND CONCLUSIONS 25
APPENDIX A - FORMULAS FOR THE INFLUENCE OF PLANAR, QUADRIIATERAL ELEMENTS A-1
APPENDIX B - DESCRIPTION OF THE COMPUTER PROGRAM $\mathrm{B}-1$
APPENDIX C - USER INSTRUCTIONS AND SAlPLE RUNS $\mathrm{C}-1$
TABLES
Table Title Page
1 Calculated Cone Drag as a Function of Depth 26
B-1 Program Flow Chart B-3
B-2 Main Variables B-4
C-1 Recommended Grid Options. $\mathrm{C}-12$
C-2 Sample Runs C-13
ILLUSTRATIONS
Figure Tit.le Page
Problem Formulation 27
Elements with Similar Source Strengtha, Only Half of a Body with $y^{\prime}-z$ ' Plane is Gridded. Each element has a corresponding symmetric, image and image symmetric element of the same source atrength magnitude. 28
Computation Grid. The model surface is divided into planar quadrilateral elements. Also shown is the intersection of the water surface and the model during the first three steps. 29
Elements Which are Intersected by the Nater Surface are Redefined. The three possible cases which can arise are depicted, Orepresents original nodes, 0 are generated nodes lying on the water surface 30
The Nodes Defining Each Element are Arranged in Clockwise Order. A ξ, η, γ coordinate system is defined for each element and located at the element centroid 31
Plate of Finite Width and Infinite Length Iintering the Water Obliquely Subject to the Assumed Boundary Condition 32 Drag of a Disk at an Entry Angle of 60 Degrees as a Function of C 37

TABLE OF CONTENTS (Continued)

Eigure	Title Page
8	Pressure Coefficient at the Center of a Disk
	C.o.................o.0..................................... 34
9	The Effect on Calculated Drag of Varying the Grid
	Size. The entry body is a disk cylinder at θ - 60 and $C=1.45$. 12 element grid, $\Delta 51$ element grid, - 92 element grid. 35
10	The Effect on the Pressure Coefficient at the Center of a Disk Entering Obliquely at $\theta=60$ of Various Grid Sizes, 12 element grid, $\Delta 51$ element grid, 092 element grid.
11	Predictad and Measured Drag on a Disk Cylinder at Various Entry Angles. - experimental data by Baldwin ${ }^{3}$-- calculated rasults with $C=1.45$ and using a grid covering both the nose and afterbody of the model.
12	Predicted and Measured Drag on a Disk Cylinder at Various Entry Angles. _-_ experimental data by Baldwin ${ }^{13}-$ calculated results with $C=1.45$ and uaing a grid covering only the nose of ${ }^{W}$ the model, Δ cavity shape modeled witn no load elements.............. 38
13	Profile of the Cavity About a Disk Cylinder at Several Entry Angles Calculated Using No Load Elements. effective planar surface, -- water-cavity interface...... 39
' 14	Pressure Distribution on a 45-Degree Half-Angle Cone Entering Vertically. The shaded circles represent calculated values at the element centroids while the horizontal linss indicate the extent of each element. The element adjacent to the water surface is modified. $C=1.45$. The solid curve is experimental data by BM1dwin ${ }^{13}$
15	Pressure Distribution on a 45 -Degree Half-Angle Cone Entering Vertically. The shaded circles represent calculated values at the element centroids while the horizontal lines indicate the extent of each element. The solid curve is experimental data by Baldwin ${ }^{13 .}$ The element adjacent to the water surface is not modified. $C=1.45$.
16	Môdified Element Correction Factor as a Function of Step Number.. 42
17	Pressure Distribution on a 22.5 -Degree Half-Angle Cone Entering Vertically. The shaded circles represent the calculated value at each element centroid while the solid horizontal lines indicate the extent of each element. The solid curve is experimental data by Baldwin ${ }^{13}, C_{w}=1.14 .43$

TABLE OF CONTENTS (Continued)
Figure Title Page18 Pressure Distribution on a 70-Degree Malf-Angle ConeEntering Vertically. The shaded circles represent thecalculated values at each element centroid while thehorizontal lines indicate the extent of each element.The solid curve is experimental data by Baldwin 13 ,Calculated and Measured Drag on Vertically EnteringCones. - measured by Baldwin 14 -- calculated.44Calculated and Measured Drag on a Vertically EnteringCusp. -- calculated, measured 16 calculated with acavity simulated by no load clements4621 Calculated and Measured Drag on a Vertically EnteringCusp, -- calculated, _measured 16 , a calculatedwith a cavity simulated by no load elements.................. 47Calculated and Measured Drag on a Vertically EnteringingOgive. -- calculated, _measured ${ }^{16}$48
Calculated and Measured Drag on a Vertically EnteringOgive, -- calculated, ... measured ${ }^{16}$, calculated witha cavity simulated by no load elementa...........................49
Calculated and Measured Stagnation Pressure on a Sphere Entering Vertically at $23.5 \mathrm{Ft} / \mathrm{Sec}$. ___ measured byNisewanger ${ }^{17}$ computed using a C_{w} value defined byequation (26)50Vertically Entering Sphere._ measured by Nisewanger ${ }^{17}$4 calculated using the C factor defined by equation (26). 51Calculated and Measured Pressure Coefficient on a VerticallyEntering Sphere, - measured by Nisewanger ${ }^{17}$, A calculateduaing the C_{w} factor defined in equation (26)52
Calculated and Measured, Drag on a Sphere at Various Entry Angles, - measured 2,17 -. calculated 53Measured and Calculated Pressure Distribution on aVertically Entering 45-Degree Half-Angle Cone at 0, 10,20-Degree Incidence. unpublished experimental databy Baldwin. Solid symbols are calculations.....................................54
Experimentally Determined Values of C_{w} for the ObliqueEntry of a Disk Cylinder55
Calculated and Measured Pressure-Time IIstiries at TwoDifferent Positions on the Surface of a Disk Cylinder,$\theta=60$ and $V_{I}=100 \mathrm{Ft} / \mathrm{Sec}$. measured at position 1($r=.098 \mathrm{~B}=4^{\circ}$) calculated at position 1 , - measuredat position $2(r=0), \boldsymbol{a}$ calculated at position 2 .56Calculated and Measured Pressure-Time Histories at TwoDifferent Positions on the Surface of an Jgive Cylinder,$\theta=60$ Degrees and $V_{T}=100 \mathrm{Ft} / \mathrm{Sec}_{0}$ - measured atposition $1\left(r=.112^{\prime}, \beta=9.5^{\circ}\right) \&$ calculated at position 1 ,- measured at position $2\left(r=0063^{\prime}, B=5.5^{\circ}\right)$: calculated
at position 2. Measurements are by Arunson. 57

TABLE OF CONTENTS (Continued)
Figure Title Page
32 Calculated and Measured Pressure-Time Histories atThree Different Positions on the Surface of an OgiveCylinder, $\sigma=60$ and $V_{I}=100 \mathrm{Ft} / \mathrm{Sec}_{0}$ - measured atposition $1(r=0), 4$ calculated at position 1 .-. meat ired at prsition $2\left(r=.043^{\circ}, \beta=90^{\circ}\right)$,calculated at position 2, measured at position$3\left(r=1.2^{\prime}, \beta=90^{\circ}\right.$), calculated at position 3.58
Calculated and Measured Load on the Center Elementof the Ogive Cylinder Model. A calculated,59Measured and Calculated Drag, Fitching Moment andNormal Force on a Slender Ogive Entering at $\theta=45$Degrees and $V_{I} * 100 \mathrm{Ft} / \mathrm{Sec}$. Solid curves areunpublished data by Baldwin. Dorted and dashédcurves are calculated results.............on...no...60
Measured and Calculated Drag, Pitching Moment andNormal Force on a Slender Ogive Entering at $0=75$Degrees and $V_{T} \sim 100 \mathrm{Ft} / \mathrm{Sec}$. Solid curves are unpublisheddata by Baldwin. Dotted and dashed curves are calculated. 61
A-1 Coordinate System. A-3
C. 1 Terms Defined C-14
C-2 Profile of Cone Grid. C-15
C-3 Grid of a Circular Plate C-16
$\mathrm{C}-4$ Elements Having a Pair of Edges Parallel to the Water Surface. C-17

LIST OF SYMBOLS

C_{p}	pressure coefficient ($\left.\mathrm{p}-\mathrm{p}_{\infty}\right) /\left(1 / 2 \hat{\sim} \mathrm{~V}_{\mathrm{I}}{ }^{2}\right.$)
$\mathrm{C}_{\mathrm{U}_{\infty}}$	drag coefficient assuming a constant model velocity
C_{D}	(drag force) $/\left(1 / 2 \rho V_{I}{ }^{2}\right) /\left(\pi D^{2} / 4\right)$
C_{X}	(force along x axis)/(1/2 $\left.\rho \mathrm{V}_{\mathrm{I}}^{2} \pi D^{2} / 4\right)$
C_{N}	(force along y axis)/(1/2 $\left.\cap \mathrm{V}_{\mathrm{I}}^{2}\right) /\left(\pi D^{2} / 4\right)$
$C_{M X}, C_{M Y}, C_{M Z}$	(moment about the x, y, and z axis respectively)/ $\left(1 / 2 \rho v_{I}^{2}\right) /\left(\pi D^{3} / 4\right)$
C_{w}	wetting factor, h / h^{\prime}
D	model diameter
\bar{e}_{n}	unit vector normal to the body surface
$\overrightarrow{e v}_{v}$	unit vector parallel to the entry velocity vector
$\overline{\mathrm{k}}$	unit vector in the z direction
h	model depth below effective planar surface (see Fig. 1)
h^{\prime}	model depth below original surface (see Fig. 1)
Δh	increment in effective depth between successive steps
N	number of elements in the model
p	pressure
r	$\sqrt{x^{\top}+y^{\prime}}$
t	time
$t^{*}{ }_{m}$	$V_{I} t / D$ where t is measured from initial model impact
${ }^{*}{ }_{c}$	$V_{I} t / D$ where t is the length of time the element centroid has been submerged
t^{*} e	$V_{I} t / D$ where t is measured from initial impact of the element
v	fluid veloclty $=-\cup \emptyset$

LIST OF SYMBOLS (Continued)

V_{I}	Initial entry velocity of center of gravity
V_{E}	velocity of points on the model surface
V_{s}	surface velocity
V_{p}	velocity of the deepesi point on the model
$v_{\xi}: v_{\eta}, v_{\gamma}$	velocity component in the element coordinate system (ξ, n, γ)
x, y, z	water surface coordinate syatem which is located un the surface at the point of initial model contact with the water (bee Fig. 1)
$x^{\prime}, y^{\prime}, z^{\prime}$	model fixed coordinate system (see Fig. 1)
$x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$	sea Fig. 6
${ }^{\text {cp }}$	(center of pressure measured from the model nose)/d
${ }^{2} \mathrm{c}$	depth of element centroid
α	see Fig. 25
β	$\tan ^{-1}\left\{-y^{\prime} / r\right\}$
θ	entry angle (measured from the horizontal)
θ_{c}	cone half angle
θ_{ℓ}	$\tan ^{-1}$ (dr/dz') where z^{\prime} is axial distance along the entry body and r is the local body radius
ξ, η, γ	element coordinate system. The γ axis is perpendicular to the element aurface while η and ξ are in the plane of the element
0	density
ϕ	velocity potential
Superscript	
\wedge	nondimenatonalized - see Eqs. (6)

INTRODUCTION

A common problem in the design of bodies which enter the water at lifgh speeds is the determination of the surface pressures, forces and moments during water impact. This paper describes an engineering method for calculating these quantities. A simplified potentlal model is used which replaces the water's free surface with an effective planar surface that is positioned using an empirical parameter available in the literature for a wide variety of shapes. To confirm predictions, calculations are compared to experiment for the oblique entry of spheres, disks, and ogives and for the vertical entry of spheres, cones, ogives, and cusps. Surface pressures agree well with measurement reflecting both the model geometry and location on the model. The calculated drag and 1 ff e exhiblt close agreement with experimental values, particularly prior to the peak loads. At later times the shape of the hydraulic cavity must be taken into account and an approximate procedure for doing this is described. A program listing and sample runs are provided as well as instructions for using the code.

Attempts to analyze the water-entry problem originate circa 1929 with the work of von Karman ${ }^{1}$. Comprehensive surveys of this field are provided by May ${ }^{2}$, Thigpen ${ }^{3}$, Szebehely ${ }^{4}$, and Moran ${ }^{5}$. The main thrust of early work follows the formulation developed by von Karman and Wagner ${ }^{6}$. In this approach a potential

[^0][low model is used and forces are calculated by the added mass concept. The submerged portion of the body is often ficted or replaced by another with the same surface cross-sectional ared lor which a closed form solution is available. A linearlized version of the free-surface boundary conditions is applied to determine the surface shape. Most of the theories are restricted to vertical entry of simple geometrics. In recent years, computational efforts have been made to obtain a solution using the non-linear boundary conditions. An early example of such work is that of Chu and Falconer. A relaxation method was used to solve the potential problem for arbitrary bodies. This project was abandoned due to problems with excessive computational time and surface contact discontinuities. The same formulation for the vertical entry of cones has been treated by Weber ${ }_{9}^{8}$ using a distribution of source dipoles. More recently, Shere and Vander Vorat 9 and Vander Vorst and Rogersi0 have used the marker and cell metiod to develop a detailed viscous model of vertical cone entry.

The objective of the current study has been to develop an engineering tool for calculating pressures and lnads which is aimple to use, inexpensive to exercise, and applicable to a wide varlety of geometries. Accordingly, the philosophy of the current program has been to include only those portions of the problem which can be shown empirically to be necessary. The current work combines a simple flow field model with the potential flow computational techniques of Hess and Smith ${ }^{11}$ to form an extremely versatile approach which can be applled to a wide varlety of geometries over a broad range of entry conditions. The success of this calculative method indicates that a detailed description of the free surface is not necessary for the purposes of calculating entry pressures and loads.

[^1]
PROBLEP FORMULATION

The flow field about the entering body is assumed to be described by a potential model. The free surface is simulated with an effective planar surface whose location is defined using the measured wetting factor C_{W}. This parameter is equal to the ratio of h / h^{\prime} where h is the effective depth of the model and h^{\prime} is its actual depth or penetration below the original free surface (see Fig. 1). The governing equations and boundary conditions are:

Governing equation:

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{1}
\end{equation*}
$$

Boundary conditions:
(d) On body surface: $\quad-\nabla \phi \cdot \bar{e}_{\mathrm{n}}=\overline{\mathrm{V}}_{\mathrm{E}} \cdot \ddot{e}_{\mathrm{n}}$
(b) On the effective planar surface:

$$
\left\{\begin{array}{c}
v_{s}=-\left(C_{w}-1\right) \bar{v}_{p} \cdot \bar{k} \tag{3a}\\
\phi=0
\end{array}\right.
$$

Pressures are calculated from auccessive solutions at differing depths using the unsteady Bernoulli equation:

$$
\begin{equation*}
\mathfrak{p}_{\rho}-\mathfrak{p}_{\infty}=\frac{\partial \phi}{\partial t}-\frac{1}{2}(\nabla \phi)^{2} \tag{4}
\end{equation*}
$$

This equation must be case in body fixed coordinates since ϕ is calculated at the same point on the body in successive steps. Thus, equation (4) becomes:

$$
\begin{equation*}
\frac{p-p_{\infty}}{\rho}=\frac{\partial \phi}{\partial t}-\bar{V}_{E} \cdot \nabla \phi-\frac{(\nabla \phi)^{2}}{2} \tag{5}
\end{equation*}
$$

The above problem can be put in nondimensional form by applying the following transformations:

$$
\begin{gather*}
\hat{\phi}=\phi / V_{I} D \\
\hat{x}, \hat{y}_{y}, \hat{z}=x / D, y / D, z / D \tag{6}\\
\hat{h}=\left(\hat{\bar{V}}_{p}{ }^{\circ} \bar{k}\right) C_{w} t V_{I} / D \\
\hat{V}_{g}=V_{s} / V_{I} \hat{\bar{V}}_{p}=\bar{V}_{p} / V_{I} \quad \hat{\bar{V}}_{E}=\bar{V}_{E} / V_{I}
\end{gather*}
$$

Now equations (1) through (3) become:

$$
\left.\begin{array}{c}
\nabla^{2} \hat{\phi}^{\prime}=0 \\
-(\nabla \hat{\phi}) \cdot \bar{c}_{n}=\bar{\varepsilon}_{n} \cdot \hat{\vec{V}}_{E} \\
\hat{V}_{B}=-\left(C_{w}-1\right) \hat{\bar{V}}_{p} \cdot \bar{k} \tag{3}\\
\hat{\phi}=0
\end{array}\right\} \begin{aligned}
& \text { on effective planar } \\
& \text { surface }
\end{aligned}
$$

The nondimensional pressure 1s:

$$
\begin{equation*}
C_{p}=2 \frac{\partial}{\partial t}\left[\left(\dot{\vec{V}}_{p} \cdot \bar{k}\right) t C_{w}\right] \frac{\partial \hat{\phi}}{\partial \hat{h}}-2 \hat{\bar{V}}_{E} \cdot \nabla \hat{\phi}-(\nabla \hat{\phi})^{2} \tag{10a}
\end{equation*}
$$

For constant entry conditions (i,e., \bar{V}_{p} and C_{w} are fixed) the above becomes;

$$
\begin{equation*}
C_{p}=2 C_{w} \sin \theta \frac{\partial \phi}{\partial h}-2 \bar{e}_{v} \cdot \nabla \hat{\phi}-(\nabla \hat{\phi})^{2} \tag{10b}
\end{equation*}
$$

These two equations indicate that the calculated pressure and force coefficients are independent of the model and entry velocity scale ($i_{u} \theta_{v}, D$ and V_{t} respectively). The value of these two parametara must be simulated through an appropriate choice of C. Also it is evident that for constant entry conditions, depth, not time is the most natural independent variable.

The boundary conditions used in the current study are gimilar to the linearized version applicable to slender bodies. The linearized conditions are that:

$$
\begin{array}{ccc}
\phi=0 & \text { on } & z=0 \\
\bar{v}_{s}=-\frac{\partial \phi}{\partial z}(x, y, 0) \bar{k} & \tag{12}
\end{array}
$$

These conditions follow from the nonlinearized form by dropping the quadratic terms which are second order as long as ϕ and its derivatives are amall near the surface. The present model applies an empirical correction to the surface velocity described by equation (12).

POTENTIAL FLOW SOIUTION

At each depth the problem requiring solution is described by equations (7) through (9) and is directly amendable to the potential flow techniques developed by Hess and Smith which use a distribution of sources and sinks. The surface of the body under consideration is divided into quadrilaterals and a constant source strength is assumed to exist throughout each element. The source strengths are determined by aatisfying equation (8) at the centroid of each element which results in a system of N simultaneous equations of the form:

$$
\begin{equation*}
\sum_{j=1}^{N} A_{1 j} \sigma j=\bar{v}_{E} \cdot \bar{e}_{n_{i}} \tag{13}
\end{equation*}
$$

Here σf is the source strength of element $f, \bar{e}_{n_{f}}$ is the unit vector normal to element 1 , and $A_{i f}$ is the normal velocity induced on element i by unit source strength on element J. Equation (13) is solved directiy using the method of reference 12. When the number of elementa exceeds 120 , solution is accomplished using a eeries of blocks.

Once the source strengthe are determined, the velocity and potential at the centroid of each element can be calculated:

$$
\begin{align*}
v_{\xi_{1}} & =\sum_{j=1}^{N} B_{1 j} \sigma j \\
v_{n_{1}} & =\sum_{j=1}^{N} C_{1 j} \sigma_{j} \\
\phi & =\sum_{j=1}^{N} D_{1 j} \sigma j \tag{14}\\
v_{\gamma 1} & =\bar{e}_{v}, \bar{e}_{n_{1}}
\end{align*}
$$

Here B if" $^{\prime} C_{j f}$, and $D_{f f}$ represent the quantities V_{ξ}, V_{n} and ϕ induced on element 1 by element f assuming element f has a source strength of one. The term of matrices [A], [B], [C], and [D] are evalunted using the closed-form expressions givan in reference 11 which are reproduced in Appendix A_{0} Equations (13) and (14) are cast in the inertial frame of reference where $V_{\infty}=0$.

In applying the above method to the water-entry problem, only the submerged portion of the body ($1 . e_{0}$, below the effective planar surface) is considered. The extra condition, $\phi=0$, is satisfied on the effective planar surface by locating image elements above this aurface as shown in figure 2. The strength of the image element is equal in magnitude but opposite in sign to the original one.

[^2]Lf the entry body possess symmetry about the $v^{\prime}-y^{\prime}$ plane, onlv half of the model is gridded since symmetric element pairs have the same source strength. For such a body, four types of elements have the same source strength magnitudes and their influence coefficients are grouped together. The terms $\Lambda_{11}, B_{1 f}, C_{i f}$ and $D_{\text {f }}$ reflect the influence on element 1 of clement f, its inage, the idrresponding symmetric element and its tmage. If the entry body does not possess planar symmet:y the entire face must be gridded. Here each influence coefficient reflects only the effect of an element and its image.

CONPUTATIONAL PROCEDURE

A serles of points or nodes are defined on the surface of the body of interest in $x^{\prime}, y^{\prime}, z^{\prime}$ coordinates. These are arranged into groups of four to form planar quadrilateral elements as shown in Figure 3. The several different optione avallable for defining nodes and elemente on arbltrary bodles are discussed in Appendix C.

Solution of the Potential Problem

The entire body may have an aribtrary entry velocity and rotation in the yoz plane is allowed. The computation proceeds by inserting the model into the water in a sorles of steps each at a depth greater than the provious one. The entry velocity and the increment in model depth can be varied from step to step. At every step the group of elementa comprising the aubmerned portion of the model are redefined and arranged into a form amenable to the calculative procedure outilned in the previous section. The nodes definining a particular element are checked to determine whether they are above or below the water line. blementa with all four nodes above the water line are discarded while thoge with all four below it are included without change. Element which are Intersected by the water surfane may have either one, two or threa submerged nodes as shown in Figure 4 . In all cases two new nodes are generated. Given two nodes, one below the water surface $\left(x_{1}, y_{1}, z_{1}\right)$ and one above it $\left(x_{2}, y_{2}, z_{2}\right)$ the new node located at the water surface on al ine intersecting these two points $j=s:$

$$
\begin{gather*}
z_{\text {nuw }}=0 \\
\left.y_{\text {new }}=y_{1}+\left(y_{2}-y_{1}\right) \frac{z_{1}}{\left(z_{1}-z_{2}\right.}\right) \tag{15}\\
x_{\text {new }}=x_{1}+\left(x_{2}-x_{1}\right) \frac{z_{1}}{\left(z_{1}-z_{2}\right)}
\end{gather*}
$$

When an element has only one node submerged, it is nocestary to define a thifd new node in order to obtain a quadritateral element. Thin last new bode is placed midway along the surface edge of the element. If anly onv node 1 a above the water surface the generation of two new nodes rosilts in a pratalatoral element. llere agidn, a thtrd new node is added and the element is broken futh two parts each of which is now quadrilateral

It is necessary to define a set of element coordinates associated with each quadrilateral element used in the computations. This η, ξ, Y coordinate syatem is shown in Figure 5 and the corresponding unit vectors are as follows:

$$
\begin{gather*}
\bar{e}_{\xi}=\frac{\left(x_{3}-x_{1}\right) \bar{i}+\left(y_{3}-y_{1}\right) \bar{j}+\left(z_{3}-z_{1}\right) \bar{k}}{\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}+\left(z_{3}-z_{1}\right)^{2}}} \\
\bar{e}_{\gamma}=\frac{\bar{e}_{\xi} x\left[\left(x_{2}-x_{4}\right) \bar{I}+\left(y_{2}-y_{4}\right) \bar{j}+\left(z_{2}-z_{4}\right) \bar{k}\right]}{\left|\overline{e_{\xi}} x\left[\left(x_{2}-x_{4}\right) \bar{I}+\left(y_{2}-y_{4}\right) \bar{\jmath}+\left(z_{2}-z_{4}\right) \bar{k}\right]\right|} \tag{16}\\
\bar{e}_{\eta}=\bar{e}_{r} x_{\xi} \bar{e}_{\xi}
\end{gather*}
$$

Here the subscripts rafer to the corner numbers shown in figure 5.
At every step, equations (1) to (3) are solved uaing the potential flow method discussed in the last section. The value of the velocity and potential at each alement centroid is stored for future use in determining C. In the case of elements which have been split into two (Fig. 4c), a single area wlighted average value is retained.

Calculation of Surface Presbures

At each depth the pressure coefficient, C, is evaluated at each element centroid using equation (5) which is in a bodk fixed frame of reference:

$$
\begin{equation*}
c_{p}=\frac{p-p_{\infty}}{\frac{1}{2} \rho V_{I}^{2}}=\frac{2}{V_{I}^{2}} \frac{\partial \phi}{\partial t}+\frac{2 \bar{V}_{E} \cdot \bar{V}}{V_{I}^{2}}-\left(\frac{V}{V_{I}}\right)^{2} \tag{17}
\end{equation*}
$$

The fluid velocity, \bar{X}, which appears in this equation is directly determined at each depth, but $\frac{\partial \phi}{\partial t}$ must be calculated using the value of ϕ at the same body locations in adjacent ateps. The general expression used to calculate this quantity at the nth step is:

$$
\begin{gather*}
\left.\frac{\partial \phi}{\partial t}\right|_{n}=\dot{\phi}_{n-1}+\left(\dot{\phi}_{n+1}-\dot{\phi}_{n-1}\right) \frac{\Delta t_{n-1}}{\left[\Delta t_{n+1}+\Delta t_{n-1}\right]} \\
\dot{\phi}_{n-1}=\frac{\phi_{c_{n}}-\phi_{c_{n}}-1}{\Delta t_{n-1}} \tag{18}\\
\dot{\phi}_{n+1}=\frac{\phi_{c_{n}+1}-\phi_{c_{n}}}{\Delta t}
\end{gather*}
$$

Here ${ }^{d} c_{n}$ is the value of the potential at the element centrold where the pressure is being calculated at the $n^{\text {th }}$ step. The quantity Δt_{n-1} is the time interval between steps $n-1$ and n. Similarly, Δt is the time Interval between steps n and $n+1$. Note that if $\Delta t_{n-1}=\Delta t_{n+1}$, the above expression reduces $t o$ the central difference.

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial t}\right|_{n}-\frac{\phi_{c_{n+1}}-\phi_{c_{n-1}}}{2 \Delta t_{n+1}} \tag{19}
\end{equation*}
$$

Special problema arise in calculating $\left.\frac{\partial \phi}{\partial t}\right|_{n}$ for elements which are modified
 is because the body fixed coordinate of a modified element controid differs from its unmodified value and hence ϕ is not known at the same point on the body surface for the required number of adjacent steps. To handle this situation local similarity is assumed. This assumption holds that at any point within an element ϕ is only a function of the length of time that this polnt has been submerged. Ihis removes the necessity of knowing ϕ at the same point on the body surface. Hence the values of ϕ assoclated with the same element centroid are used in equation (18) regardless of whether the element is modified in any of the three required adjacent steps. If an element is modificed, the associnted tima interval between $1 t$ and preceeding or following steps to be used in equation (18) is no longer the time interval between succeasive gtepa. The required time interval to be used in place of Δt_{n-1} is:

$$
\begin{equation*}
\Delta t=\frac{h_{n}-h_{n-1}}{C_{w}^{\top} V_{z}} \tag{20}
\end{equation*}
$$

An analogous expression applies for determining $\Delta t{ }_{n+1}$. llere h_{n} is the depth of the element centroid at atep n while C^{\prime} and V_{z} are the wetting factor and the z velocity component of the element centroid between ateps $n-1$ and n.. Since the model may rotate in the $y-z$ plane the velocity vector of different points on the body surface will vary with location. Hence the wotting factor C^{\prime} waed In equation (20) is a local value and not that preacribed for the ontry body. Butween steps $n-1$ and n this parameter is calculated from:

$$
\begin{equation*}
C_{w}^{\prime}=\frac{v_{z}+\left(\bar{v}_{p}-\bar{k}^{\prime}\right)\left(C_{w}-1\right)}{v_{z}} \tag{21}
\end{equation*}
$$

where C_{w} in the prescribed time interval and wetting factors betwoon $n-1$ and n. An analogous expression is used to determine C_{w} betweon steps n and $n+1$.

For modified elements located near the water surface it is also possible to use the boundary condition $\phi_{n-1}=0$ at $h_{n-1}=0$. This condition must be applied if the element at which the pressure in to be calculated is not present in the preceding step (i.e., no part of it was submerged). It has also been found advantageous to use this condition for elements modified in step n.

The local aimilarity asaumption is strictly applicable for the oblique entry under constant velocity and orientation of an infinite plate. For plates of infinite length but finite and constant cross-sectional geometry this assumpticn holds in x m constant planes shown in Figure 6. This assumption is well founded for bodias where conical aimilarity is applicable if for successive steps $\Delta h \ll h$. On three-dimensional models this assumption is most accurate on portions of the model where the surface geometry varies slowly.

The pressure coefficient on the modal at the water surface is aingular, This can be seen by casting equation (4) in a frame of reference moving with the effective planar surface.

$$
G_{p}=\frac{2}{V_{I}^{2}}\left[\frac{\partial \phi}{\partial t}+V_{s} " V-\frac{(V)^{2}}{2}\right]
$$

On this surface $\frac{\partial \phi}{\partial t}=00$ Due to a source discontinuity at the intersection of the model and the water surface $V \rightarrow-{ }^{-\infty}$ and $C \rightarrow-\infty$. Fortunately, the value of C_{p} recovers quickly with depth and assumes a positive value well before the Experimentally observed pressure peak. For the element sizes used in this study the first value of pressure calculated for each element is usually positive.

Negative C values can also be obtalned on the sides of the entering body if allowance if not made for the flow cavity. Such values are set to zero for the purposes of calculating total model loads.

USE OF THE NUMERICAL MODEL

In using the described numerical model it is necessary to specify the wetting factor, C_{w}, the increment in depth between successive steps (Δh) and to construct an appropriate grid. In some cases it is also advisable to apply a correction to the pressure calculated on modified elements. The parameter C_{w} can be determined from a body of existing experimental data which will. be reviewed in confunction with apecific applicationa. The numerical effect on $C_{D_{\infty}}$ and C_{p} of varying C_{W} is illustrated in Figures 7 and 8 respectively.

With decreasing values of $C_{w}, C_{D_{\infty}}$ is reduced in magnitude and peak values occur at a later time. The peak pressure coefficient increases with increasing values of C_{w}, but ite rate of decay is also nocelerated.

Selection of Δh

The flow field propertiea at any particular depth are independent of solutions at other depths and hence of Δh. However, calculation of C, as discussed in the previous section, requires values of ϕ from adjacent steps. In as much as the present method calculates only a single pressure for each element, it is desirable that this pressure represent an average for the element. To ascertain an appropriate step size for accompishing this, the constant velocity and orientation entry of the flat plate of finite length shown in Figure 6 is considered. Defining \mathfrak{h} to be the depth of an arbitrary point p on the surface of the plate:

$$
\left.\frac{\partial \phi}{\partial t}\right|_{p}=\left.\frac{\partial \mathcal{K}}{\partial t} \frac{\partial \phi}{\partial h}\right|_{p}=\left.C_{w} s \operatorname{in} \theta V_{I} \frac{\partial \phi}{\partial h_{p}}\right|_{p}
$$

Transforming the above into the $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$ coordinate sybtem of Figure 6 which is fixed on the effective planar surface:

$$
\left.\frac{\partial \phi}{\partial t}\right|_{p}=\left(C_{w} \sin \theta v_{I}\right)\left[\frac{\partial \phi}{\partial y} \frac{1}{\cos \theta}\right]_{p}
$$

The average value of $\frac{\partial \phi}{\partial t}$ for the rectangular elements shown in Figure 6 with a pais of edges parallel to the water aurface is:

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=\frac{C_{w} \sin \theta V_{1}}{A \cos \theta} \int_{x_{1}}^{x_{2}^{\prime \prime}} \int_{y_{1}^{\prime \prime}}^{y_{2}^{\prime \prime}} \frac{\partial \phi}{\partial y^{\prime \prime}} d y^{\prime \prime} d x^{\prime \prime}=\frac{C_{w} \operatorname{din} \theta V_{I}\left[\phi^{*}\left(\tilde{h}_{2}\right)-\phi^{\star}\left(\tilde{h}_{1}\right)\right]}{\left(h_{2}-K_{1}\right)} \tag{23}
\end{equation*}
$$

or

$$
\frac{\overline{\partial \phi}}{\partial t}=\frac{\phi^{*}\left(t_{2}\right)-\phi^{*}\left(t_{1}\right)}{\left(t_{2}-t_{1}\right)}
$$

Here $\phi^{*}\left(t_{1}\right)$ and $\phi^{*}\left(t_{2}\right)$ are the average values of ϕ along the upper and lower edges of the element respectively, A is the element area, and $t_{\text {, }}$ and t are the lengths of time that the lower and upper edges of the element have been submerged.

Equation (23) is of the same form as the central difference expression used in evaluating $\frac{\partial \phi}{\partial t}$ (equ. (19)). If the pressure on the rectangular element of figure 6 is being evaluated at step n, equations (19) and (23) become identical if the gtep size $i s$ chosen such that at step $n-1$ and $n+1$ the element centroid lies at the top and bottom edges of the element in step n respectively. Hence the step size should te chosen so that each element is completely submerged It two steps or

$$
\Delta h m\left(y_{2}^{1}-y_{1}^{1}\right) \cos \theta / 2
$$

The preceeding analysis is not strictly applicable to three-dimensional bodies entering with variable velocity and orientation and composed quadrilateral elements with edges not necestarily parallel to the water surface. However, it is taken as a guide and Sh is picked to insure that the average element is submerged in two steps. Thus,

$$
\begin{equation*}
\Delta h \sim \ell \cos \theta^{\prime} / 2 \tag{24}
\end{equation*}
$$

where ℓ is the element characteristic length and θ^{\prime} is the typical element orientation angle with respect to the vertical. This criteria is easily applied on flat plates or cones. Spheres and other bodies with curvature in the axial direction are more difficult to deal with. The above is satisfied only approximately with elements perpendicular to the direction of motion being most heavily weighted. In practice, it is these elements which experience the largest preasures and hence are most crucial to the problem solution. On bodies with curvature in the axial direction the size of the elements is increased as their orientation approaches the direction of motion.

The effect of varying grid alze and henre $A h$ on $C_{D_{\infty}}$ and C_{p} is illustrated In Figures 9 and 10 respectively. On flat ?urlices an accuratp solution is obtained with only a small number of element: The principal effect of Increasing the number of elements is to reduce the peak calculated pressure. Since thase peak pressures act over small areas the drag coefficient is relatively insensitive to increases in the number of elements. More complex shapes naturally require the use of a larger number of elementa.

Describing the Entry Body with Quadrilateral Elements

In setting up a grid, beat results are obtained if the afterbody is neglected and only the nose of the entering body la gridded. The pressures and source strengths on afterbody elements are small. On models with well rounded shoulders exclusion of these elements decreases the required computational effort without strongly effecting the solution. Or. models with sharp edges such as disk cylinders, inclusion of the afterbody elements imposes the requirement that the flow make a sharp turn about the edge of the face. This requirement is physically unrealiatic since the flow will separate at the face edge. Uve of afterbody elements in this case increases the flow velucity on elements near the edge which in turn decreases the calculated pressures.. This is illustrated in Figures 11 and 12 which give the calculated drag for the oblique entry of a disk eylinder with ind without afterbody element reapectively. Resulte obtained in Figure 12 without the use of afterbody elements are in much closer agreement with experinental results and required a smaller amount of computational effort.

Cavity Modeling Using No Load Elements

At time following peak impact loading the exiatence of the flow separation region or cavity about the afterbody of entry models may have a aignificant effect on the model surface preasures and positive steps must be taken to model it.

Accordingly, no lade alements have been introduced into the computations, These elements are placed on the water-cavity interface and their purpose is to force the flow to attain the correct streamlines in this vicinity. Loads on these elements are not included in the drag and lift tutala for the entry body.

No load elements are placed on a surface extending from the position on the model where separation occurs to the effactive planar surface. The actual location of each element is adjusitod in successive runs until the pressures on it is at a deaired level ($C=0$ for a vented cavity). Typical rasulta for a diak cylinder are shown if Figure 13 assuming a vented cavity in this case $^{\text {a }}$ the cavity was modeled using a single ring of eloments extending from the edge of the face to the effective planar surface. Although the procedure for locating the no loads elemente is not automated and therefore somewhat tedious, the results doaccount for much of the difference between experiment and theory. Fortunately, it is generally not necestary to include the cavity at times prior to the peak load.

Correcting Pressura on Modified Elements

During the vertical entry of axisymmetric bodien it is appropriate to apply a correction to the prossures calculated on modified elements. Under these conditions the body is grldded with elements having a pair of aides parallel to the water surface. Following the step size rule of equation (24) elementa are submerged in exactly two steps. On odd numbered ateps the elementa adjacent to the water surface are all modified while in aven numbered ones they are not modified. Apparantly, the pressure levels predicted in the odd steps are not consistent with those calculated in the even ones. 'risis is illustrated by considering the vertical entry of a $22.5,45$ and 70 degree half-angle cones, The drag coefficients, non-dimensionalized by the local aurface diameter, are given fal Table 1 as a function of depth. Since this problem fa confeal in nature the drag should be the same at cach depth. For the first few otept error may be expected aince the entre cone in being modeled with only a few elements. However, results should converge to a common value. It fa clear from Table that the odd and even number steps are converging to different values. In order to determine the better of the two answers, calculated pressure ditutibutions are compared to experiment for typical odd and even numbered steps in pigures 14 and 15. Thase pressure distributions are very aimilar except near the water surface. Flgure 14 elearly ghow that the pressure on the modified element is too large. A simple correction factor, F, can be determined which when multiplied by the pressure on the modified element brings the total drag calculated in even and odd steps into line with one another The value of this correction factor has been plotted in figure 16 as a function of depth for the three different cones under congideration.

When applying the present model to the vertleal entry of axiaymmetric bodies, afther the drag enleulated in add numbered steps should be ignored or the correction factor $F_{\text {g }}$ should be used. In the remainder of this roport a value of 67 is used.

The above problem doce nut arlas during oblique ontry aince the edges of the generated elemente are not parallel with the water surface and the number of modifled elements fatrly constiant from ser tor stop. This does not mean that such a correction is ont neocsatary. Howover, there is nu aystematla method for
 length/D >1) n value of 67 should be unad and in all wother oblique entry cases F_{c} should be ret to unity.

APPLICATION OF THE CODE TO SPECIFIC EXAMPLES

The previously described computer program has been applied to the obilque entry of disk cylinders, ogives, apheres, and to the vertical entry of ogives, cusps, cones, and spheres. In this section thesa calculaiions are compared to exparimantal results. In assessing the validity of the water-entry model it should be kept in mind that some uncartaincy exists with regard to many of tha experimentally determined quantities. Also, measured quantities may not be equivalent to calculated ones. The measured pressure representa the value at a apecific point on the model while the calculated result reflects the average for an element of finite size. These two quantities become synonymous on elements well below the water surface.

Vertical Entry of Axisymmetric Bodies

In this section the vertical entry of cones, cusps, spheres, and ogives is considered. The two-dimensional nature of thesa problems insures that a ainale value of C accurately characterizes she rate of surface wetting abour the entire perifety of the model. Also, separation of flow on nones and cuape can ba categitically ruled out until after the shoulder of the model has entered the water. These cases thus provide an ideal opportunity for teating the proposed predictive method.

Vertical cone entry calculations are compared to the experimental reaults of Baldwini3, 14 which ware taken at entry velocities of 10 to $32 \mathrm{ft} / \mathrm{sec}$. Using a correlation daveluped in this work, an expression for the wetting factor can be obtained which is applicable to cones with a half angle greater than 7.5 degrees:

$$
\begin{equation*}
C_{w}=\frac{1}{\left[1 .-.396 \theta_{c}+.207 \theta_{c}^{2}-.124 \theta_{c}^{3}\right]} \tag{25}
\end{equation*}
$$

Here θ is the cone half angle in radians. Measured and calculated pressure coefficients on $22.5,45$, and 70 degree half-angle cones are shown in figures 15, 17, and 18. The experimental values represent a correlation based on

[^3]conical similarity which has been corrected to reflect a constant entry velocity Use of normalized depth as the independent variable is appropriate since the computational model also produces conically aimilar results. Excellent agreement is obtained between calculations and experiment. In particular, predicted pressure coefficients reflect the reversal in functional form exhibited by the data with increasing cone angle. Experimental data near the $t i p$ of the cone is not shown since Baldwin has indicated that there were an absence of measurements in the region ${ }^{15}$.

In Figure 19, the calculated drag of finite length cones are compared to Baldwin's results, Good agreement exists up to the point where the cone becomes completely aubmerged which coincides with the occurrence of peak drag. At later times the calculated values are too low. Improved agreement between experiment and theory would probably be obtained if the cavity were modeled.

The calculated drag on vertically entering cusps and ogives are compared to the experimental measurcments of reference (16) in Figures 20 to 23. The dimensions of these bodies are given in their respective figures. Predicted values are in good agreement with experiment prior to the drag peak. To accurately determine the drag peak on the cusp models the grid was extenced past the actual shoulder by one row of elements. The present calculative method anticipates the end of the cusp one step before it occurs making this procedure necessary (see Equ. (18)). At times following the point of peak drag, forces on the entry body are calculated both with and without a simulated cavity, In the cases depicted in Figures 20, 21 , and 23 , inciusion of the cavity brings the computed drag into close agreement with experiment. The formation of a cavity does not appear important for the ogive of ligure 2%. This body is the slenderest of the four modela with little surface discontinuity at the shoulder-afterbody function.

A systematic method for determinine C_{w} in the above four cases involves substituting the local body angle, θ_{ℓ}, into equation (25) to determine $C_{\text {a }}$ as a function of time. It would seem platusible to use either the local angle on the effective planar surface or at the original surface. The validity of these two approaches can be examined for the cuap modela where the peak drag can be assumed to occur as the shoulder of the model is watted. The better of these two methods is the latter, but even it overpredicts C_{w} reaulting in a premature werting of the shoulder. A correction factor can be detormined which

[^4]produces the actual time of shoulder wetting when multiplied by the C_{w} factors calculated from equation (25) using θ_{ℓ} at the original surface. The wesults shown in Figures 20 and 21 reflect correction factor values of .97 and .94 respectively. Correction factor with values greater than unity might be postulated for ogives since their profiles are convex instead of concave. However, this type of adjustment was not carried out and the computations for the ogive models used the values of C_{w} defined by equation (25). Examination of Figures 22 and 23 indicates that auch a correction would have reduced the discrepancy between theory and experiment.

Calculations for the vertical entry of a sphere are compared to Nisewanger's ${ }^{17}$ experimental measurements. These tests were made at an entry velocity of $23.5 \mathrm{ft} /$ sec. Pressures were measured at a number of points on the model surface and integrated to produce total drag. The response times of auccessive gages were used to give the following expression for the wetting factor:

$$
\begin{equation*}
C_{w}=1.736-.829 \sqrt{t^{k}} \tag{26}
\end{equation*}
$$

Calculated pressures are compared to measured ones in Figures 24 through 26. Only the pressure measurements made while the transducers were fully wetted are shown. The predicted stagnation pressure is over estimated at early times but in good agreement otherwise. At intermediate diatances from the stagnation point the predicted pressure is below the measured one. However, far from the stagnation point, as is shown in Figure 26, the calculated pressure is again close to experiment. The predicted drag is compared to experiment in Figure 27 with best agreement being obtained at early times. The measured drag does not account for model deceleration. However, these results are in good agreement with Mosteller's 18 constant velocity data.

Oblique Entry of Arbitrary Bodies

The oblique entry of arbitrary bodies constitutes a more rigorous test of the predictive method since these cases are three dimensional. Calculations are compared to experiment for cones, disk cylinders, apheres, and ogives.

[^5]${ }^{18}$ Mosteller, G. G., "Axial Deceleration at Oblique Water Entry of 2-InchDiameter Models with Hemisphere and Disk-Cylinder Noses", NOTS NAVORD Rept. 5424, (1957)

Predicted and measured pressure distribution on a 45 degree half-angle cone entering vertically but at an agle of alta: k are shown in figure 28. The experimental data are unpublished results of J. L. Baldwin of NSWC/WOL taken on the windward and leeward ray of the cone at Incidences of 10 and 20 degrees. Equation (25) was used to determine C. On the windward ray the cone angle was incremented by the angle of attack while on the leeward side it was decreased by this amount. As can be seen from this figure, results are generally in good agreement with measurements.

Experimental data on the oblique entry of disk cylinders can be found in the work of Norman ${ }^{19}$, Mosteller ${ }^{18}$, and $B_{a l}$ dwin 13, representing entry velocities of 25 to $325 \mathrm{ft} / \mathrm{sec}$. Based on the latter two sources and data taken in the present study, a C_{w} value of 1.45 is selected for all entry angles. Existing information for this parameter, shown in Figure 29, contains extensive scatter and hence this choice is a rough estimate. In Figure 12, the calculated drag is compared to Baldwin's empirical correlation of experimental data. Both theory and experiment agree quite well over a wide range in entry angle. Calculated pressures are compared to Aronson'a experimental data in Figure 30*.

In Figures 31 and 32 calculations are rompared to Aronson's pressure mensurements on a three-inch-diameter og.ve cylinder enterdng obliquely at $100 \mathrm{ft} / \mathrm{sec}$ and an angle of 60 degrees. This body has a flat face, 1.5 inches in diameter, and rounded shoulders with radil of .75 inches. The mean measure C_{w} value of 1.36 is used in the computations. Experimental results indicate that pressures rise more quickly, to a higher peak and fall more rapidly on the lower portion of the model fece. This is particularly evident for measurements made on the shoulder of the model. The computed results closely reflect this change in the pressure trace associated with transducar location. However, peak pressures are consistently overpredicted. Fortunately, the high peak pressures act on extremely small areas and thus have little effect on the actual load for the size elements being used. To fillustrate this point, experimental and calculated loads on the computational element nearest to the center of the face are plotted in Figure 33. The experimental load is obtained by applying the data from location 1 in Figure 32. The pressure-time history of each point in the computational element is assumed described by this relation.

[^6]In Figure 27 the calculated drag for the oblique entry of a sphere is plotted against experimentaliy smoothed curves given by May which are constructed from the data of references (18), (20), (21), and (22). This information reflectis entry velocities between 11 and $225 \mathrm{ft} / \mathrm{sec}$. The wetting factor for the oblique entry of a sphere has not been extensively investigated. A value of 1.35 was gelected based on White's 23 1imited results. Reasonably good agreement is obtained between calculated and experimental values.

Calculated loads on a slender ogive body entering obliquely are compared in Figures 34 and 35 to the unpublished drag, normal force and pitching moment data by Baldwin. The wetting factor for this case does not appear to have been investigated experimentally. A value of 1.1 is used which corresponded to the average value obtained for the vertical entry of this body uaing equation (25). Best agreement betwcen measurements and calculations occurred using the OGIVE grid option, discussed in Appendix C, which produces elements with a pair of edzes parallel to the water surface. Consistent with previous discussion, the calculated loads at odd numbered steps are discarded. Analytical reaults are In closest agreement with experiment at the entry angle of 75 degrees as shown in Eigure 35. The premature decrease in the calculated drag at $\theta=45^{\circ}$ in Figure 34 can probably be attributed to the formation of a cavity along the upper surface of the ogive. The use of no load elements to model the watercavity interface could conceivably decrease this discrapancy. Consistent with trends visible in previous examples, the underprediction of the drag initially occurs near the point where the total load on the slender ogive model peaks.

The present calculative procedure does not include the contribution to normal force and pitching from the formation of an underpressure cavity. Hence in cases where this effect is important the calculated normal force and pitching moment will not be very accurate.

[^7]
SUMMARY AND CONCLLUSIONS

This technical report outines a systematic method for calculating surface pressures, forces and moments on arbitrary bodies during the early phases of water entry. A potential flow model is assumed and the free surface is approximated by an effective planar surface emplifcally located at the splash helght. The computational techniques of Smith and Hess are used to solve the the potential problem. This requlres that the surface of the body be described by planar quadrilateral elementa. Using Bernoulif's equation the average presaure is calculated on each alement and then integrated to produce total forces and moments on the entry body. Through the use of no load elements it is possible to nodel the cavity which form about the entry body, but this is generally not necessary,

The described method of calculation has been applied to a number of different cases in which experimental data is available. For vertical entry this includes cones with and without angle of attark, ogives, cuspe, and spheres. The oblique entry case has been studied for disk cylinders, spheres, blunt and slender ogives covering entry angles between 30 and 90 degreen. The predictad pressure traces accurately duplicate experimental results, reflecting not orily overall body geometry but also location on the body surface. The calculated loads are In good agreement with experimental values, particularly prior to the point of peak loading. At later times no load elements must be used to model the watercavity interface.

Although the current predictive method is a viable engineering tool, some shortcomings are evident. Most notably, pressures on elements adjacent to the water surface are often overpredicted. This is not surprising considering the singularity which exists at the water surface in the current formulation, An empirical correlation acheme based on an experimental data correlation (e.8., reference (24)) might offer substantial improvement. Finally, it is clear from the studied examples that positive stepis must be taken to model the cavity after the point of peak load. Provisions should be made for automating this procedure.

[^8]TABLE 1 CALCULATE CONE DRAG AS A FUNCTION OF STEP NO. AT ODD NUMBER STEPS ELEMENT ADJACENT TO THE WATER SUR FACE IS MODIFIED WHILE ON EVEN NUMBER STEPS IT IS NOT.

NSWC/WOL/TR 77-16

FIG. 2 ELEMENTS WITH SIMILAR SOURCE 8TRENGTHS. ONLY HALF OF A BODY WITH Y' $\cdot z^{\prime}$ PLANE IS GRIDDED. EACH ELEMENT HAS A CORRESPONDING SYMMETRIC, IMAGE AND IMAGE SYMMETRIC ELEMENT OF THE SAME SOURCE 8 TRENGTH MAGNITUDE.

FIG. 3 COMPUTATIONAL GRID. THE MODEL SURFACE IS DIVIDED INTO PLANAR QUADRILATERAL ELEMENTS. ALSO SHOWN IS THE INTERSECTION OF THE WATER SURFACE AND THE MODEL DURING THE FIRST THREE STEPS.
ORIGINAL ELEMENT DISPOSITION WITH RESPECT TO THE WATER SURFACE

FIG. 4 ELEMENTS WHICH ARE INTERSECTED BY THE WATER SURFACE ARE REDEFINED. THE
THREE POSSIBLE CASES WHICH CAN ARISE ARE DEPICTED. OREPRESENT ORIGINAI THREE POSSIBLE CASES WHICH CAN ARISE ARE DEPICTED. PREPRESENT ORIGINAL wODES. OARE THE GENERATED NODES LYING ON THE WATEG SURFACE.
(b)

(a)

FIG. 5 THE NODES DEFINING EACH E:LEMENT ARE ARRANGED IN CLOCKWISE ORDER. A ξ, η, γ COORDINATE SYSTEM IS DEFINED FOR EACH ELEMENT AND LOCATED AT THE ELEMENT CENTROIDE.

NSWC/WOL/TR 77-16

FIG. 6 PLATE OF FIMITE WIDTH AND INFINITE LENGTH ENTERING THE WATER OBLIOUELY

FIG. 7 DRAG OF A DISK AT AN ENTRY ANGLE OF 60 DEGREES AS A FUNCTION OF C_{w} '

FIG. $\frac{8}{}$ PRESSURE COEFFICIENT AT THE CENTER OF A DISK CYLINDER ENTERING AT 60 DEGREES AS A FUNCTION OF C_{w}.

FIG. 9 THE EFFECT ON CALCULATED DRAG OF VARYING THE GRID SIZE. THE ENTRY BODY IS A DISK CYLINDER AT $\theta=60$ AND $C_{w}=1.46$. 12 ELEMENT GRIDAE1 ELEMENT GRID $\square 92$ ELEMENT GRID.

NSWC/WOL/TR 77-16

FIG. 10 THE EFFECT ON THE PRESSURE COEFFICIENT AT THE CENTER OF A DISK ENTERING OBLIQUELY AT 0 - $\mathbf{6 0}$ OF VARIOUS GRID SIZES. 12 ELEMENT GRID $\triangle \mathbf{5 1}$ ELEMENT GRID O92 ELEMENT GRID

NSWC/WOL/TR 77-16

FIG. 13 PROFILE OF THE CAVITY ABOUT A DISK CYLINDER AI SEVERAL ENTRY ANGLES CALCULATED USING NO LOAD ELEMENTS. - - EFFECTIVE PLANAR SURFACE ---WATER.CAVITY INTERFACE.

NSWC/WOL/TR 77-16

FIG. 14 PRESSURE DISTRIBUTION ON A 46 degree half-ANGLE CONE ENTERING VERTICALLY. tHE 8HADED CIRCLES REPRESENT THE CALCULATED VALUES AT ELEMENT CENTRIODS WHILE THE HORIZONTAL LINES INDICATE THE EXTENT OF EACH ELEMENT. THE ELEMENT ADJACENT TO THE WATER SURFACE IS MODIFIED. $C_{w}=1.45$. THE SOLID CURVE 18 EXPERIMENTAL DATA BY BALDWIN ${ }^{13}$.

FIG. 15 PRESSURE DISTRIBUTION ON A 45 DEGREF HALF ANGLE CONE ENTERING VERTICALLY. THE SHADED CIRCLES REPRESENT THE CALCULATED VALUES AT ELEMENT CENTROIDS WHILE THE HORIZONTAL LINE INDICATE THE EXTEND OF EACH ELEMENT. THE SOLID CURVE IS EXHERIMENTAL DA TA BY BALDWIN ${ }^{13}$. THE ELEMENT ADJACENT TO THE WATER SURFACE IE NOT MODIFIED. $\mathrm{C}_{w}=1.46$.

H10. 16 MODIFIED ELEMENT CORRECTION FACTOR AS A FUNCTION OF STEP NUMBER.

FIG. 17 PRESSURE DISTRIBUTION ON A 22.5 DEGREE HALF.ANGLE CONE ENTERINO VERTICALLY THE SHADED CIRCLES REPRESENT THE CALCULATED VALUE AT EACH ELEMENT CENTROID. WHILE THE HORIZONTAL LINES INDICATE THE EXTENT OF EACH ELEMENT. THE SOLID CURVE IS EXPERIMENTAL DATA BY BALDWIN ${ }^{13}, \mathrm{C}_{\mathrm{w}}=1.14$.

FIG. 18 PREssURE DIETRIBUTION ON A 70 DEGREE HALF-ANGLE CONE ENTERING VERTICALLY. THE BHADED CIRCLES REPREBENT THE CALCULATED VALUE AT EACH ELEMENT CENTROID WHILE THE HORIZONTAL LINES INDICATE THE EXTENT OF EACH ELEMENT. THE SOLID CURVE IS EXPERIMENTAL DATA BY BALDWIN ${ }^{13}, \mathrm{C}_{\mathbf{w}}=1.39$.

FIG. 10 CALCULATED AND MEASURED DRAG ON VERTICALLY ENTERING CONES.
MEASURED BY BALDWIN ${ }^{14}-=-$ CALCULATED.

NSWC/WOL/TR 77-16

NSWC/WOL/TR 77-16

FIG. 22 CALCULATED AND MEASURED DRAG ON A VERTICALLY ENTERING OGIVE. - CALCULATED - MEASURED ${ }^{10}$.

FIG. 23 CALCULATED AND MEASURED URAG ON A VERTICALLY ENTERING OGIVE. - - CALCULATED MEASURED ${ }^{16}$. ACALCULATED WITH A CAVITY SIMULATED BY NO LOAD ELEMENTS.

FIG. 24 CALCULATED AND MEASURED 8 TAGNATION PRESSURE ON A SPHERE ENTERINO VERTICALLY AT 23. 5 FT/8EC. MEASURED BY NISEWANGER ${ }^{17}$ COMPUTED USING A C_{W} VALUE DEFINED BY EQUATION (26).

FIG. 25 CALCULATED AND MEASUHED PRESSURE COEFFICIENT ON A VERTICALLY ENTERING SPHERE. - MEASURED BY NISEWANGER ${ }^{17}$ CALCULATED USING THE C_{W} FACTOR DEFINED BY EQUATION (28).

NSWC/WOL/TA 71-18

FIG. 27 CALLULATEO AND MEASURED DRAG ON A SPHERE AT VARIOUS EMTRY

45 DEIBREE HALT.ANGLE CONE ARESSURE DISTRIBUTION ON A VERTICALLY ENTERING
EXPEFIMENTAL DATA BY BALDWIN. SCLID SEE INCIDENCE.

NSWC/WOL/TR 77-16

FIG. 30 GALCULATISD AND MEASURED PRESSURE-FIME HISTORIES AT TWO DIFFERENT PO3ITIONS ON THE SURFACE OF A. DISK CYLINDER, $0=60$, AND V Y 100 FT/SEC. NEASURED AT POSITION $1\left(r=0.098 \beta=4^{\circ}\right)$ CALCULATED AT POSITION $1 .-\infty-$ MEASURED AT POSIIION $2 \mathrm{lr}=0$ I TCALCULATED AT POSITION 2. MEASUREMENTS BY ARONSINN.

fig. 31 CALCULATED AND MEASURED PRESSURE-TIME HISTORIES AT TWO DIFFERENT POBITIONB ON THE SURFACE AT AN OGIVE CYLINDER, $0=60$ DEGREES AND V1* $100 \mathrm{FT} / \mathrm{SEC}$. MEASURED AT POSITION 1 i $r=0.112^{\prime}, \beta=9.5^{\circ}$) ACALCILLATED AT POSITION $1 .-\infty$ MEASURED AT POSITION 2 $\left(r=0.063^{\prime}, \beta=5.5^{\circ}\right)$ CALCULATED AT POSITION 2. MEASUREMENTS ARE BY ARONSON

FIG. 32 CALCULATED AND MEASURED PRESSURE.TIME HISTORIES AT THREE DIFFERENT POSITIONS ON THE 8URFACE OF AN OQIVE CYLINDER, $\Theta 60$ AND $V_{I}=100$ FT/ $/ 8 E C$. MEASUREDAT ONTHE 8URFACE OF AN OGIVECYLINDER, 60 AND VI 100 FT/8EC. MESITON $1(r=0) \triangle$ CALCULATED AT POSITION $9 .-\infty-$ MEASURED AT POSITION $2\left(r=0.04 B^{\prime}, \beta=90^{\circ}\right)$ - CALCULATED AT POSITION 2. - MMEASURED AT POSITION $3\left(r-0.112^{\prime}, \beta-90^{\circ}\right)$ CALCULATED AT POSITION 3. DATA ARE BY ARONSON

FIG. 33 CALCULATED AND EXPERIMENTAL LOAD ON THE CENTER ELEMENT OF THE OQIVE CYLINDER MODEL. \triangle CALCULATED. - EXPERIMENTAL.

FIG. 34 MEABURED AND CALCULATED DRAG, PITCHING MOMENT AND NORMAL FORCE ON A SLENDER OGIVE ENTERING AT $0=45^{\circ}$ AND VI* 100 FT/8EC. SOLID CURVES ARE DATA BY BALDWIN. DOTTEC AND DASHED CURVES ARE CALCULATED RESULTS.

FIG. 36 MEASURED AND CALCULATED DRAG, PITCHING MOMENT AND NORMAL FORCE ON A BLENDER OGIVE ENTERING AT $\theta=76^{\circ}$ AND $V \sim 100$ FT/8EC. SOLID CURVES ARE DATA BY BALDWIN. DOTTED AND DASHED CURVES ARE CALCULATED RESULTS.

APPENDIX A

FORMULAS FOR THE INFLUENCE OF PLANAR, QUADRILATERAL ELEMENTS

This section lists formulas for calculating the influence of planar elements on arbitrary point in apace, x, y, z. These expression are taken from reference (ll) and are listed here for the sake of completeness. The symbols to be used are defined in Figure $A-1$. Calculations are carried out using the element coordinate system and hence the velocity components are referenced to these axis:

$$
\begin{aligned}
& V_{\xi}=-S_{12} Q_{12}-S_{23} Q_{23}-S_{34} Q_{34}-S_{41} Q_{41} \\
& V_{n}=C_{12} Q_{12}+C_{23} Q_{23}+c_{34} Q_{34}+C_{41} Q_{41} \\
& V_{\gamma}=\operatorname{sign}(z)\left[\Delta \theta=J_{12}-J_{23}-J_{34}-J_{41}\right] \\
& \phi=\phi_{12}+\Phi_{23}+\phi_{34}+\phi_{41}=|z| \Delta \theta
\end{aligned}
$$

where:

$$
\begin{aligned}
& \Delta \phi-0 \text { unless } R_{12}, R_{23}, R_{34}, R_{41}>0 \text { Then } \Delta \phi 1 s 2 \pi \\
& \phi_{1 j}=F_{1 j} Q_{1 j}+|z|_{J_{1 j}} \\
& R_{1 j}=\left(x-\xi_{1}\right) s_{1 j}-\left(y-n_{1}\right) c_{1 j} \\
& Q_{1 j}-1_{n}\left[\frac{r_{1}+r_{j}+d_{i j}}{r_{1}+r_{j}-d_{i j}}\right] \\
& J_{1 j}=\operatorname{sgn}\left(R_{i j}\right)\left[\tan ^{-1}\left(\left|\frac{z}{R_{i j}}\right| \cdot \frac{S_{1}^{j}}{r_{j}}\right) .-\tan ^{-1}\left(\left|\frac{z}{R_{i j}}\right| \frac{S_{1 j}^{1}}{r_{i}}\right)\right] \\
& r_{1}=\left(\left(x-\xi_{1}\right)^{2}+\left(y-\eta_{1}\right)^{2}+z^{2}\right]^{1 / 2} \\
& s_{i j}^{k}-\left(F_{k}-x\right) c_{i j}+\left(\eta_{k}-y\right) s_{i j} \\
& c_{i j}=\frac{\boldsymbol{\xi}_{1}-\xi_{1}}{d_{i f}} \\
& s_{1 f}=\frac{n_{1}-n_{1}}{d_{1 j}} \\
& d_{1 j}=\left[\left(\xi_{j}-\xi_{1}\right)^{2}+\left(\eta_{j}-\eta_{f}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

At large distances from the element $\left(r_{0} / t>4\right)$, the element may be treated as a point source. This greatly simplifies calculation of the velocity and potential:

$$
\begin{array}{ll}
\phi=\frac{I}{r_{0}} & V_{2}=\frac{I}{r_{0}^{3}} \\
V_{\xi}=\frac{x_{0}}{r_{0}^{3}} & I=\frac{1}{2}\left(\xi_{3}-\xi_{1}\right)\left(\eta_{2}-\eta_{4}\right) \\
V_{r_{1}}=\frac{y}{r_{0}^{3}} I &
\end{array}
$$

The equations for ϕ and \bar{V} can ba evaluated in any coordinate ayatam. The final velocity components will be referenced to whatever system is used. At intermediate distances from the element, $2.45<r_{0} / t<4$, multipole expansions are used to evaluate the influence coefficients.

$$
\begin{aligned}
& \phi=I_{00} w+\frac{1}{2}\left(I_{20} w_{x x}+2 I_{11} w_{x y}+I_{02} w_{y y}\right) \\
& v_{\xi}=-\frac{\partial \phi}{\partial x}=-I_{00} w_{x}-\frac{1}{2}\left(I_{20} w_{x x x}+2 I_{11} w_{x x y}+I_{02} w_{x y y}\right) \\
& v_{\eta}=-\frac{\partial \phi}{\partial y}=-I_{00} w_{y}-\frac{1}{2}\left(I_{20} w_{x x y}+2 I_{11} w_{x y y}+I_{02} w_{y y y}\right) \\
& v_{\gamma}=-\frac{\partial \phi}{\partial z}=-I_{00 w_{z}}-\frac{1}{2}\left(I_{20 w_{x x z}}+2 I_{11} w_{x y z}+I_{02} w_{y y z}\right)
\end{aligned}
$$

where:

$$
\begin{array}{ll}
w=r_{0}^{-1} & w_{x x x}=3 x\left(3 p+10 x^{2}\right) r_{0}^{-7} \\
w_{x}=-x r_{0}^{-3} & w_{x x y}=3 y p r_{0}^{-7} \\
w_{y}=-y r_{0}^{-3} & w_{x y y}=3 x q r_{0}^{-7} \\
w_{z}=-z r_{0}^{-3} & w_{y y y}=3 y\left(3 q+10 y^{2}\right) r_{0}^{-7} \\
\left.w_{x x}=-y_{0}^{-7}+2 x^{2}\right) r_{0}^{-5} & w_{x x z}=3 z p r_{0}^{-7} \\
w_{x y}=3 x y r_{0}^{-5} & w_{x y z}=-15 x y z r_{0}^{-7} \\
w_{y y}=-\left(q+2 y^{2}\right) r_{0}^{-5} & w_{y y z}=3 z q r_{0}^{-7} \\
p=y^{2}+z^{2}-4 x^{2} & q=x^{2}+z^{2}-4 y^{2} .
\end{array}
$$

NSWC/WOL/TR 77-16

FIG. A. 1 8YMBOL.S

FIG. A-1 COORDINATE SYSTEM

APPENDIX B

DESCRIPTION OE THE COMPUTER PROGRAM

The computer program consists of the main routine, ENTRY, eighteen aubroutines and one function. The flow chart for the program is given in Table $B-1$ and the main program variables are listad in Table $\mathrm{B}-2$. A program listing is provided in Table B-3.

Program execution is initiated in ENTRY by calling subroutine INDATA which reads the required input (see Appendix C for a description of input carda). Based on options specified by the user a grid is set up on the aurface of the model using subroutines STANG, LISTG, and OGTVG. Node points describing the surface of the body are stored in body ($x^{\prime}, y^{\prime}, z^{\prime}$) and water surface coordinates (x, y, z) in arrays X and $X T$ respectively. The identification numbers of the four nodes defining the J th element are stored in array $\operatorname{IN}(1, J), \operatorname{IN}(2, J), I N(3, J)$ and IN $(4, \mathrm{~J})$. The coordinates of each node point, nodes making up each element and element centroids are printed in subroutine ELEMST. This terminates the element definition portion of the program which 18 executed only once.

The following sequence is executed at each step. The center of gravity of the entry body is inserted the prescribed increment in depth and the corresponding position of each node point is calculated by aubroutine ADVN. Subroutine CREL is called which examines all elements to determine which are submerged. Elements aplit by the water surface are redefined using new node points which located on the water surface and stored at the ands of arrays X and $X T$. The nodes making up submerged elements are stored sequentially in array IT. The original reference number of each submerged element is stored in array IQ and the code indicating its state (i.e., modified, unmodified or split) in array IM. Upon completion of subroutine CREL, MAN is called which calculates the area, centroid and unit vectors of each element. If the PRINT option is used, element information is printed out by ELEMST for elements which are modified or unmodified for the first time. This information includes centroid and node locations in both coordinate systems, element areas and unit vector components. The arrays $X, X T$, IN, XC, XCP, VNO, E, IT, PHIO, IQ, IM are written on TAPE 1.5 by ENTRY. The coefficiente of matrices A, B, C, and D are calculated by subroutine AMAT using the equations of Appendix A and written on TAPE 16. To determine the induced velocity normal to each element centroid ($1, e_{\text {. , the }}$ right hand side of equation (13)) subroutine VNORM is called. The source strengths of equation (13) are calculated using DDECOMP and DSOLVE. These subroutines are called from SUAS which sets up matrix A in appropriate blocks using information on Tape 16. The element information gtored on TAPE 15 and the matrices B, C, and D stored on TAPE 16 are recalled to allow velocity and potential values to be calculated at each centroid element in gubroutine OUTPUT using equation (14). If the PRINT option is used, this information is also printed. Data necessary for calculating pressures and loads are stoied on TAPE 17.

The above procedure is repeated until termination occurs. Tiils can be triggered by reaching a step number greater than IMAX, having the number of submerged elementa exceed NDIM, or having the computational time approach the job time limit. This last option is nacessary since pressures and losds, of principal concern, are calculated at the end of the program, To inaure that these quantities are computed the code astimatas the amount of time requirad to complece each step before starting it. If the total estimated time eatimated exceads 90 percant of the job time limit, the flow field calculation is terminated and the program branches to subroutine PRESF which calculates pressures and loade using the equations (18) through (21).

TABLE B-1
PROGRAM FLOW CHART

TABLE B-2
MAIN VARIABLES

VARTABIN	TYPE	DEFINITION
AN, AX, AY, ANS, AXS,AYS	ARRAY	TEMPORARY STORAGE IN AMAT AND OUTPUT
CGL	SIMPLE	z^{\prime} COORDINATE OF CENTER OF GRAVIIY
CW	ARRAY	WETTING FACTORS IUSE DURING CONSTANT ORIENTATION ENTRY
CWT (I)	ARRAY	WETTING EACTOR BETWEEN STEPS I* 1 AND I
D	SIMPLE	MODEL DIAMETER, USED ONLY IN CALCULATING DIMENSIONLESS QUANTITIES
D'r (1)	ARRAY	INCREMENT IN TIME BETWEEN STEPS I-1 AND I
$E(I, J, K)$	ARRAY	ELEMENT UNIT VECTORS, I. $1,2,3$ ARE COMPONENTS ALONG x, y, z AXIS. $J=1,2,3$ ARE UNIT VECTURS ξ, η, AND γ RESPECTIVELY. K IS ELEMENT NUMBER
HMMIN	SIMPLE	INITIAL MODES DEPTH
HMAX	SIMPLE	INCREASE IN MODEL DEPTH DUE TO RISING MOTION OF SURFACE
ICON	SIMPLE	If ICON $=0$, CONSTANT ORIEUTATION ENI'RY IS ASSUMED. IF ICON a 1 VARIAble ORIENTATION IS USED
IEM	SIMPLE	NUMBER OF SUBMERGED EIEMENTS
IM(I)	ARRAY	I IS ELFMENT NLMBER, $I M=0$, $I M=1$, AND IM - 2, INDICATE NOT MODJFIEI, MODIFIED AND SPLIT ELEMENTS RESPECIIVEIY
IN(I, J)	ARRAY	NODES DEFINING CORNER LOCATIONS. I IS THE CORNER NUMBER AND J IS THE ELEMENT NUMBLER
INP	SIAPLE	total number of deftned nudes. includes nodes generated to descriee mudified ELEMENTS
IP	AKRAY	USEI TN UD'SCOMP AND DSOLVE

ThBLE. 3-2 (Continued)

VARIABLE	TYPE
IPRINT	SIMPLE
IPHI	SIMPLE
IQ (K)	ARRAY
$\operatorname{IT}(\mathrm{I}, \mathrm{K})$	ARRAY
NCW	SIMPLE
NDIM	SIMPLE
NEL	SIMPLE
PHI	ARRAY
PHIS	ARRAY
SIG (K)	ARRAY
STOR	ARRAY
SUMT	SIMPLA:
VENTKY	SIMPLI:
VEX (I), VEY (I), VEZ (1)	APRAY
VNO (I)	ARRA ${ }^{\prime}$
WX (I)	ARRAY
$X(T, K)$	ARRAY
XC($1, K)$	ARRAY

IFIPRTNT - 1 PRTNI OPTION IS RXERCISED
IF IPHI = 1 PIANAR SYMMETIRY IS ASSUNEU
ORIGINAL IDENTITICATION NUMBER OF SUBMEKGED ELEMUNTS. K T.S CHE IDENTIFICATION NUMBER OF THE SUBMERGED ELEUENT

IDENTII'TCATION NUMBER OF NODES DESGRIBING THE Kth SUBMERGED ELEARNT

RUMBER OF WETIING FACTORS TO BE USED DUKING CONSTANT ORIENTATION ENTRY

MAXIMUM ALLONABLE NIMBER OF' SUBMERGED ELEMENTS

NUMAER OL: ELEMENL'S INJTIALLYY DEFINED
TEMPORARY STORAGE IN AMAT
THMOURATY STORAGE IN OUTPUC
SOUREE SCMFNCTH OT ELEMENT K
TEMPORARY STORGGE IN SUAG
gO PERCENT OF TIME LIMET
ENTRY VELOCIII
VFLIJCTCY COMPONENTS IN THE x, y, ALS z DIKECHION LSED BETWELN STEPS I nnci I-1

VELOCITY NORMAL TO ELAMMENT I
angular velcelty in the pitch rlant BETWEEN STEPS I AND 1-1

COORDINATES OF THE Kth NODE. $1=1,2,3$ REFER TO THE $x^{\prime}, y^{\prime}, z^{\prime}$ AKES RESPRCTIVELY

COORDINATES OF THE CLANTROID OF THE Kth ELLSIPNT. I m $1,2,3$ RYFER TO THE x^{\prime}, y^{\prime}, AND z^{\prime} AXES RESPEGTVELSY

TABLE B-2 (Continued)

Cartable	TYPE	DEFINITION
XCP (I, K)	ARRAY	COORDINATES OF THE CENTROID OF THE K th ELEMENT. I = 1,2,3 p.EFER TO THE x, y, AND 2 AXIS RESPECTIVELY
$\mathrm{XCPB}(\mathrm{I})$	ARRAY	COORDINATES OF THE CENTER OF GRAVITY. I = 1,2,3 REYER TO THE x, y, z AXES RESPECTIVELY
XI($1, i c)$	ARRAY	CODRDINATES OF the Kth node. $\mathrm{J}=1,2,3$ REFER TO THE x, y, z AXES

.

Prognan entay $73 / 73$ OPT=1

$$
73 / 73 \text { opt }=1
$$

 CALL CREL
IF (IEM. $6 T$, NOIM)
IMG 10
21 C........BOLYY TO WATEP COORDIMATES

C......ternimate corfick

Sump
SUM $=$ SECONO (AO)

SUMD=SUM-SIEM2
$C P C=S U N / X I E M 2$

. :

FTW $-5 *+10$

 C......REAB IM OPTIONS

SugROUTIME
 IMODE $=0$
READ $15: 10$
ICON $=1$

OEADIS.IEGOSCONI COM2.CEN
IPHI=1

2001 FOMMATIN FAOX,

 IFITCGN, WE OSVO IO 30
C....-CONSTANT VELOCITY

sceroutine indaita

 $8 \quad$ 占
nswc/wol./TR 77-16

pact 77/01/17. 11.07.10 FTN 4.5e4ie

$111:$


```
FIN 4.5**10
```



```
-
```


page
77/01/17. 11.07.10

แแแb!

 suerdutine

~~
~~

	 1011.Im(1).E13.3.1) URITE:6.2630)15TEPAH	ELEMST ELEMST ELEMSI ELEMS
2030		ELEMSt
2010	Formatelho.lex.lShGemerateo modess	ELEMSt
	MPIt $=\mathrm{mpt} 1$	ELEMST
	URITE16.2010)	mave3
	पRITE 6.28061	ELEMST
	$0025 \mathrm{I}=\mathrm{mPTIFINP}^{0}$	ELEMST
25		ELEmSt
	WHITE16,2011)	ELEMST
	URIT: (6-2008)	ELEMST
2011	FOMmatitho.10E.I2HPUN ELEMENTS)	ELEMST
	DO 36 Imlsicm	ELEMST
36	WHITE (6.2069)I, (ITIJ.I).J=1.4)	ELEMSt
	WHIE (6.2619)	EREmSt
2019		ELEMST
	D0 $35 \mathrm{I}=1.15 \mathrm{~m}$	ELEMST
		ELEmST
	IFIm(I).EO.0)PMIOI).IO(I) $=1$.	ELEMST
		ELEMST
2012		ELENST
		ELEMST
	3 (21.FFE.4)	ELEWST
	URIVE(6,2813)	ELEMST
2013		ELEMST
		ELEwST
	D0 $45 \mathrm{~K}=1.4$	ELEMST
	Ji=It $\mathrm{K}_{\text {, }} \mathrm{I}$)	ELEMST
		ELEMSt
2016		ELEMST
	WHITE 6,20171 HICA2.I)	ELEMST
2017		ELEMST
	$0050 \mathrm{~K}=1.3$	ELSMST
50		EtEmSt
2018		ELEMST
35	COMTIMUE	ELEMST
	RETUNM	ELEMST
2006		wovo 3 ELEWST
2007		ELENST
2008		ELEMS:
2809		ELEmST
	EW0	ELEMS:

\%

~

侖

COMTIMUE

FTN 4.5×418

73/73 OpT=1
suaroutime elemst
莌
17/01/it. il.07.16

 $00+1 I=1,3$
$X C P I!1)=X C P(1, j)$
A(I)=AB(I)=AYIII=PHIII)=0.0
Cal $11 L=1.4$
$0010 \quad \kappa=1.3$
$0010 K=1 \cdot 3$
$F(K)=x T I(K \cdot L)-X C P I(F)$

- $=$

YIII=DS1/24.0
OSN-
C3)

SUBROUTIME

\qquad

\&

$\stackrel{\text { 出 }}{4}$

FTN 4.5*410

\because ロ
SUBROUTINE OUTPUT $13 / 73$ OPT=1

 $C 1=$ PH ${ }^{-A R A+C 1}$
$C Z=V 1 X=A R A+C 2$

$C A=V H 2=A R A+C 4$
$C S=X C P I(1)=A R A \cdot C S$
$C 6=x C P(2.1)=A R A \cdot C 6$
 0.0
05
77/01/17. 11.07.10
电

TI/O1/17.	11.07 .10
OUTPUT	59
OUTPUT	60
OUTPUT	61
MOYO日	20
OUTPUT	63
OUTPUT	64
OUTPUT	65
OUTPUT	66

FTN 4.50410

Shathoutime paesf

Subroutime presf

$73 / 73$ OPT=1
 \title{

}
 \title{

}

SMK=SMX RAY OF SHAREF?

$\stackrel{N}{0}$
1FIIPHI $\left.-E O_{-1} 1\right) F X=S N Y=5 N Z=0.0$
$F N=F Z O S I W T-F Y=C O S I$

 $C W=F M / S C A L E$$C D=F D / S C A U E$

-

OPT $=1$

73/73
subroutine presf
宸
77/01/17. 11.07.10

dingmosis of proble 4

severity
N N N

$10 \times 1=$ I0x

~ page

FTN $4.5+410$

page

subroutine cent

APPENDIX C

USER INSTRUCTIONS AND SAMPLE RUNS

The current version of the code can be applied to arbitrary bodies. It was developed on a CDC 6500 and requires about 105 K storage octal. The grid describing the entry body may contain up to 750 nodes* and 500 elements, however, execution will terminate when more than 300 of these elements become submerged. This appendix described the available program options, necessary input cards and output format. Sample runs are provided to lllustrate the use of this program.

Program Options and Required Input

Program input can be divided into three parts. In the first, the basic program options are specified:

Card No.
Variable
Format
1 CONSTANT or VARIABLE body orientation 2A4
2 PRINT or DON'T PRINT 3A4
3 ASYMMETRIC or SYMMETRIC mode 3A4
Under the CONSTANT body orientation option the entry model is assumed to retain its initial orientation and velocity throughout the entry process. Al discussed previously, the natural problem variable in this case is depth rather than time. With iittle increase in computational time, pressures and forces can be evaluated for a number of different wetting factors, C. The VARIABLE body orientation option allows the velocity, orientation, wetting factor and time increments between steps to be varied. The only restriction is that the angular velocity of the body must be small enough to insure that the depth of the body increasea monotonically in time. The maximum number of steps is limited to 49.

The PRINT option is used to obtain flow field and element information at each step of the calculation. It is applied only for diagnostic purposes. The gecond option, DON'T PRINT, is recommended and produces only grid information and the final pressures and forces on the model.

If the SYMMETRIC mode option is used, the entry model is assumed to possess planar symmetry about the $y-z$ plane. The ASYMMETRIC option does not assume any symmetry and hence can be applied to arbitrary bodies. This mode is also used on symmetric bodies where V_{x} is nonezzero.

[^9]The second set of input cards describes the entry conditions and the required information differs depending on whether the CONSTANT or VARIABLE body orientation option is used. For the CONSTANT option the following data cards are required:

Card No. 4 5 6

7

Variables
IMAX, D, VENTRY, ANG, SUMT, HMIN, DH, ALPHA CGL, FCF, ANGB, NNLD NCW, CW(1), CW(2).........(CW(NCW)
omit

Format

15, 5X, 7F10.0
3F10.0, I5
15, 5X, 7F10.0/ (8F10.0)

These variables are defined as follows:
IMAX Number of steps at which pressures and loads are calculatad. The present calculative procedure inserts the model into the water in a series of steps, each at a greater depth than the preceding one. When the step count becomea greater than.IMAX execution is terminated

D
Diameter (in feet). This quantity is only used for calculating force coefficients

VENTRY Entry velocity in ft/sec
ANG Orientation of the model (in degrees) relative to the water surface (see Fig, C-1)

SUMT Program time limit. This must correspond to the time limit on the job card

HMIN Initial body depth (1.e., measured from the lowest point on the body). This parameter is zero if the loads ara calculated from time of initial wetting. Note that if this variable is not zero pressures and forces are first calculated at HMIN + 2DH. This parameter allows pressures and forces at a purticular depth tc be determined without calculating the entire force-time history from initial wetting.

DH
Increment in depth in feet between successive steps. It is necessary to coordinate this variable with the apecified model grid which is defined on the last set of data cards. The following apply to determining DH:
a. OBLIQUE ENTRY WITH STANDARD GRID OPTION. DH should be picked so that the average element is submerged in two steps. On models of complex shape this criteria can only be satisfied in the mean and primary consideration should be given to the portion of the body which experiences the greatest load. Generally this will be on elements whose plane is perpendicular to the direction of motion.
b. VERTICAL ENTRY WITH STANDARD GRID OPTION OR OBLIQUE ENTRY WITH THE OGIVE OPTION. For vertical entry or if the OGIVE grid option is used, elements will have a pair of side parallel to the water surface. In this case it is important to choose the step size very precisely so that each element will be submarged in exactly two steps. To insure that the top row of alements is included in an unmodified state in the code and that the next row of elements is excluded, the actual water surface should fall a \quad mall distance ε above the upper edge of the top row of elemant to be includad as shown in Figure c-2. Here $0<\varepsilon<\Delta h$ where $\Delta \mathrm{h}$ is defined by

$$
\Delta h=\frac{\sqrt{\text { everage element area }}}{1000}
$$

ALPHA Ang1e of attack in degrees (aee Fig。C-1)

CGL $\quad z^{\prime}$ coordinate of the center of gravity (see Fig. C-1)
Prassure correction factor on elements with a modification code of 1 . For the oblique entry of blunt bodies (nose length/ diameter (1) set to unit. For other cases use a value of $\mathbf{6} 67$.

Yaw angle in degrees of $\overline{\mathrm{V}}_{\mathrm{I}}$, Velocity components in the x, y, z direction are $V_{1} \ln$ (ANGB), $-V_{I} \cos (A N G) \cos$ (ANG + ALPHA) and $-V_{I} \cos$ (ANG) $\sin (A N G+$ ALPHA $)$

Number of watting factors to be used. Since the most appropriate value may not be clear, for little extra computational coat pressure and loads may be calculated for several different wetting factor values

Wetting Factor. This parameter describes the rate of surface rise and is equal to the ratio of $\mathrm{h} / \mathrm{h}^{\prime}$ defined in Figure 1. For best results, the test cases reported on should be used as a guide. An approximate rule for deteimining this parameter is as follows:
(1) POIN'TED BODIES (ALSO INCLUDES SLIGHTLY BLUNTED ONES). Determine the angle, θ_{c}, between the tangent to the body surface and the body axice at both the nosetip and base of the nose, at the nose neglect any effect due to body blunting. Insert the two resulting values of θ_{c} in radians into:

$$
\begin{equation*}
c_{w}=\frac{1}{\left[1-.396 \theta_{c}+.287 \theta_{c}^{2}-.124 \theta_{c}^{3}\right]} \tag{c-1}
\end{equation*}
$$

Average the two calculated values of C to obtain the final one to be used in the code. If ALPHA Is non-zero increment θ_{c} by ALPHA
(2) ELAT PLATES, Use a value of 1.45 for ANG >45 degrees and 1.55 for ANG <45.
(3) SPHERICAL BODIES. Use a value of 1.55 for near vertical entry and 1.35 for oblique entry.

The clasaification of an arbitrary body into one of the above categories is a matter of experience. On complex shapes classification should be based on the portion of the body austaining the majority of the impact loading.

If the VARIABLE body orientation option is used the following data cards are required:

Card No.
Variables
Format

The variables on cards 4 and 5 are defined above. In this case, VENTRY is only used in determining the force and pressure coefficients and ANG is the initial body orientation. The body velocity, wetting factor, and increment in depth for each step is deifined in cards 7.

NVP Number of different steps at which entry conditions are specified
$V X(I), V Y(I), V e l o c i t y$ components in the x, y, z directions of the center of
VZ(I) gravity in ft/sec applied between stepa I-1, and I
WX(I) Angular velocity in degrees/aec in the pitch (y-z) plane applied between steps $I-1$ and I

CW(I) Wetting factor applied between the $I-1$ and I step. If the value of this parameter remains constant from atep to step use the instruction for determining this variable given in the CONSTANT orientation section. For the vertical entry ($V X=V Y=0$) of pointed bodies an eatimate of this parameter for each step can be obtained by:
a. Determining the depth of the entry body, H, below the oifginal surface at the start of the step
b. Calculating the angle, θ^{\prime} c between a tangent to the body surface and the body axis, $z^{f}=H$

c. Substituting Into equation ($C-1$) to determine C_{w}. Where

$$
\theta_{c}=\theta_{c}^{\prime}+90-\text { ANG }
$$

d. For blunt bodies, [(nose length)/diametar] <.75, increase this angle by 7% on ogives and decrease it by the same amount on cusps

DH(I) Increase in depth in feet of the center of gravity between steps I-1 and I. See instruction in the CONSTANT orientation entry section

The entry velocity at step I is taken to be the average of that at ateps I-1 and I. It is only necessary to apecify data cards for the first faw steps in which the above parameters change. For steps larger than NVP the parameter values at step NVP are used.

The final set of data cards is used to define the grid on the surface of the entry body. The three avallable options for constructing a grid on the body surface are STANDARD, OGIVE and LIS?. These can be used aingularly, in combination with one another and can be called in arbitrary sequence. The only rastriction is that the lowest point on the body ahould occur on that part of the grid constructed by the first option called. To indicate the desired options, the following input cards are required:

Card No.	Variable	Format
8	N	15
9.1	option 1	$3 A 4$
.		$3 A 4$

Here N is the number of options to be used. Recommended option are provided in Table C-1.

The grid representing the surface of the entry body should cover only the nose of the model and not the afterbody. In all cases the pressures on the afterbody are amall. Furthermore, on bodies with sharp shoulders such as a disk cylinder, the flow separates at the adge of the model face. If the afterbody is gridded, the flow is required not to separate aince the invicid boundary conditions are enforced at the centroid of each element. This is physically unrealiatic and hence neglecting the afterbody is appropriate.

A description of the three available options follows. Under no circumstances should right angles be modeled directly. If the body under consideration has such a surface discontinuity, it should be modeled with a 89.9 or 90.1 degree angle.

STANDARD
This option is applicable to axiaymmetric bodies or axisymmetric portions of arbitrary bodies. The user specifies rings along which nodes ara located. Adjacent nodes are combined to form elements. A typical grid for a flat, circular plate is shown in the Figure $\mathrm{C}-3$. The required input is:

Card No.
Variables
Format

10	NROWS, IANG, ISUP 315
11.1	$\mathrm{R}(1), \mathrm{Z}(1) \quad 2 \mathrm{~F} 10.0,15$
-	
11. NROWS	R(NROWS), Z(NROWS), IW(NROWS) 2F10.0,15
IANG	If IANG $=0$, only half of the fiace is gridded as shown. If IANG = 1 , the complete face is gridded
NROW	Number of grid rings
ISUP	If ISUP = 1, the stagnation element (number 1) is removed. This option is used for running pointed objects. For such bodies, $R(1)$ should be very mall (1.e., $D / 1000$) but must be Einite.
	If ISUP $=0$ this element is included.
R(I)	Radius of ring I In body fixed coordinates ($x^{\prime}, y^{\prime}, z^{\prime}$) in feet.
Z (I)	z^{\prime} coordinate of ring is in fect.
IW (I)	number of elements in the area between rings I and $I-1$, Delete this variable on card 1 . If IN = O, elements are automatically selected so that they are approximately square.

LIST

This option requires that the user input the list of nodes and elements to be used in the run and hence is applicable to arbitrary bodies. The nodes can be read in any order, however, they are numbered sequentially for internal use in the code. Each element is constructed using nodes from the input list. The identification numbers of nodes defining the four corners of each element must be read in a clockwise order with reapect to an observer on the outar surface of the element. The required input cards are:

Card No.	Variable	Format
10	NP, NE	215
11.1	$x^{\prime}(1), y^{\prime}(1), y^{\prime}(1)$	3F10.0
-		
$11^{\circ} \mathrm{NP}$	$x^{\prime}(N P), y^{\prime}(N P), z^{\prime}(N P)$	3F10.0
12.1	$\operatorname{IN}(1,1), \operatorname{IN}(2,1), \operatorname{IN}(3,1), \operatorname{IN}(4,1)$	415
12.NE	$\operatorname{IN}(1, N E), \operatorname{IN}(2, N E), \operatorname{IN}(3, N E), \operatorname{IN}(4, N E)$	415
NP	number of node points to be read in.	
NE	number of elements to be read.	
$\begin{aligned} & x^{\prime}(I), y^{\prime}(I) \\ & z^{\prime}(I) \end{aligned}$	location of the Ith rode in body fixed coordinates ($x^{\prime}, y^{\prime}, z^{\prime}$) in feet	
TN(1,I),	Identification number of the nodes defining the	
$\operatorname{IN}(2, I)$,	four corners of the element	
IN(3,1$)$,		
IN(4, I)		

ogive

This subroutine is applicable to pointed axisymmetric bodies entering obliquely. It grids the body surface with elements having a pair of edges parallel to the water surface as shown in Figure C-4. This feature is particularly deatrable for conical bodies where ANG is less than 90 degrees. Under these conditions the described code produces conical reaults and the complete pressuretime history can be obtained uaing calculated values at a single depth. This subroutine allows elements to be packed near the water surface and minimizes the nead to use the local aimilarity assumption. Use of this auhroutine is also recommended for examples in which normal force is of importance. Alignment of elements with the water surface will produce more accurate reaults than the STANDARD grid option. If this subroutine is used to grid non-conical bodies, the constructed element will be slightly non-planar, however, thls does not seriously effect the calculations.

Card No.
Variable
Format

10	NROWS, NBODY, IANG	315
11.1	R(1), Z (1)	2 F 10.0
-		
11. NBODY	R (NHODY), Z (NBODY)	2 F 10.0
12.1	$\mathrm{H}(1), \mathrm{B}(1), \mathrm{IW}(1)$	2F10.0,15
12.NROWS	H(NROWS), B (NROWS), IW(NROWS)	2F10.0.15

Here cards 11 are used to apecify the body shape while cards 12 define the grid. Up to 50 points may be used to define the body. Between these points the body is defined by ifnear interpolation.

The above varlables are defined as:
NkOWS Number of element rowa
NBODY Number of points defining the body geometry
IANG If IANG $=0$ only the right half of the body is gridded. If IANG - 1 the entire body is gridded
$\mathrm{K}(\mathrm{I}), \mathrm{Z}(\mathrm{I}) \quad$ Polar coordinatea of body profile in feet. $\mathrm{R}=\left(\mathrm{x}^{\prime 2}+y^{\prime 2}\right)^{1 / 2}$, $Z=z^{\prime} . R(1)$ and $Z(1)$ must be zero
$H(I) \quad n$ coordinate of the upper edge of the Ith element row in the $y^{\prime}-z^{\prime}$ plane in feet
$B(I) \quad$ Orientation in degrees of the entry body uxis with respect to the water aurface at the end of step 2 I . if the entry is under constant condition $B(I)$ is equal to $A N G$

TW (I) Number of elementy in the ith row. Must be apecified.

SAMPLE RUNS

Four sample runs have been provided to illustrate the use of varlous code options. In each case a brief discussion is given of the entry problem and its particular peculiarities. This is followed by a liating of the input cards and the resulting output. In the final section of this appendix a discussion. is given of the output format. Table C-2 gives a brief outline of the four cases to be present.

Example 1

A disk cylinder entering at 60 degrees and $100 \mathrm{ft} / \mathrm{sec} 1 \mathrm{~s}$ modeled using a coarse, 12-element STANDARD grid. Consistent with the preceding discussion, the grid, shown in Sketch 3, covers only the face of the model. Noting that the distance between successive grid ring la. 05 ft , an increment in depth of . 0125 feet is chosen insuring that the average element is submerged in two steps. Consistent with instructions, C_{w} and FCF are set to 1.45 and 1 respectively.

Example 2

The vertical entry of a 45-degree halfwangle cone at 20 degrees incldence is studied using an OGIVE grid with 10 rows of elements and 8 elements in each row. This problem is conically similar indicating that pressurea and loads are adequately defined by considering only a single depth, hence IMAX $=1$. HMIN is selected as .47814 ft which places the water level just above the 8 th element row and $D H$ is set at .02988 ft to insure that each element is submerged in two steps exactly. Pressures are calculated at HMIN +2 DH which corresponds to a level fust above the 9 th element row. Two values of C are used. These are arrived at by substituting $\theta \pm$ ALPHA in equation ($C-1$) . The larger value is most appropriate on the windward ray of the cone while the smaller applies to the leeward ray.

Examp1e 3

The vertical antry of an ogive traveling at $50 \mathrm{ft} / \mathrm{sec}$ is considered under the variable entry option. A STANDARD grid consisting of 90 elements is constructed on the body nose. The entry velocity and orientation are fixed throughout but the wetting factor is allowed to vary from step to step. The value of this parameter is determined using the procedure outlined for calculating CW under the VARIABLE entry option. The increments in depth between succesaive steps, $\mathrm{DH}(\mathrm{I})$, are selected with care to inaure that the water surface is a amall distance, E, above the upper edge of elements adjacent to the water surface at even numbered stepa. In examining the total calculated drag a higher degree of reliability is placed on result obtained at even numbered steps.

Example 4
Entry of a disk cylinder at 60 degrees and $100 \mathrm{ft} / \mathrm{sec}$ is considered in this example. This case is included to demonstrate the use of no load elements in modeling the water-cavity interface. Each depth must be considered separately since the cavity shape changes in time. Accordingly, IMAX is set to 1 . The STANDARD grid option is used to define alements on the face of the disk cylinder while LIST is applied to define a ring of no load elements extending from the edge of the disk cylinder surface to the effective planar surface. The depth of interest is taken to be 15 and hence HMIN and DH are dafined as .125 and .0125 respectively, Several runa are made and the positions of the no loads stementa are adjusted until the calculated CP value on each of the no load fements is near zero. The illustrated output is the final run only.

PROGRAM OUTPUT

Under the initial heading of $I, X, Y, Z, X C, Y C, Z C$ are 1 isted all nodes. Column I ia the node identification number, columns X, Y, Z, are the node positions In the $x^{\prime}, y^{\prime}, z^{\prime}$ coordinates and $X P, Y P, Z P$ are the node positions in x, y, z coordinatea when $h=0$. The second section of the output lists the constructed elements. The integers under the heading ELEMENT are the element reference numbera, $X C, Y C, Z C$ are the coordinates of the element centroid raferenced to the axes $x^{\prime}, y^{\prime}, z^{\prime}$ and RC and TC are the radial location measured from the z^{\prime} axis and the angular position measured from the $+y^{\prime}$ axis of the element centroid. The third section of output indicates numbers of the completed stepa and the time required to execute that particular step. If a problem occurs during execution and the program does not terminate normally, the step in which the problem occurred can thus be determined.

The remainder of the output defines the loading on body at each atep in the entry of the model. At each step the program calculates the time and dimensionless time ($V_{I} \mathrm{t} / \mathrm{D}$) from initial impact. This la followed by a liating of the submerged elements. The reference number ($L_{u} e_{\text {. }}$, refu no.) of an element is the original identification number asaigned to it while its number (no.) is a temporary identification parameter for the particular dopth in question. The integer under the heading of MOD identifies whether the element is modified or split. The codes 0,1 and 2 refers to unmodified, modified, and split elements respectivaly. The area of each element is that of its aubmerged portion. Also listed for aach element are its preasure coefficient (CP), centroid depth in dimensionless time (T*), pressure (P), and total load (force). I'he output for each depth is concluded by providing:

FX
CX
FD
$C D$
FN
FD
SHLX MY MZ

SMY $\quad y$ component of the moment about model conter of gravity

SMZ $\quad z$ component of moment taken about the model center of gravity
force along the x axis
X force coefficient $\left(F X /\left(\left(\pi \frac{D^{2}}{4}\right) 1 / 2 \rho V_{I}{ }^{2}\right)\right.$
drag force
drag force coefficient $\sim \mathrm{FD} /\left(\left(\pi D^{2} / 4\right) \frac{1}{2} \rho V_{I}{ }^{2}\right)$
normal force (i.e., in the $-y^{\prime}$ direction)
normal force coefficient ($F N /\left(\left(\frac{\pi D^{2}}{4}\right) 1 / 2 \rho V_{I}{ }^{2}\right.$)
x component of moment taken about the model center of gravity x moment coefficient $\operatorname{SMX} /\left(\left(\frac{\pi D^{3}}{4}, \frac{1}{2} \rho V_{I}{ }^{2}\right)\right.$ y morent coefficient $\operatorname{SMY} /\left(\left(\frac{\pi D^{3}}{4}\right) \frac{1}{2} \rho V_{I}{ }^{2}\right)$ z moment coefficient $\operatorname{sMZ} i\left(\left(\frac{\pi D^{3}}{4}\right) \frac{1}{2} \rho V_{I}{ }^{2}\right)$

TABLE C-1

RECOMMENDED GRID OPTIONS

TYPE OF BODY	RECOMMENDED OPTION		COMMENTS
	Vertical Entry	Oblique Entry	
Axisymmetric	STANDARD	OGIVE	
Pointed	OGIVE		
Axisymmetric	STANDARD	STANDARD	
B1unt			
All other bodies	LIST	LIST	On pointed bodies, it is advisable to construct elements with edges parallel to water surface as done in OGIVE

Grid Options
STANDARD
OGIVE

STANDARD

STANDARD
LIST
table c-2

首 \quad ~

C-13

FIG. C. 1

TERMS DEFINED

FIG. C. 2 PROFILE OF CONE GRID

FIG. C. 3 GRID OF A CIRCULAR PLATE

F1G. C. 4
ELEMENTS HAVING A PAIR OF EDGES parallel tothe water

C-17


```
            G
```



```
            O
```



```
                    data caros for example a
```

```
    .
    .0125
        .125e
        &
        %
    data caros for erample *
        :0
        NMNNNNNMN
                Nべス呙N心R
```


	＊0．	REF．NO．	\cdots	adea	\pm	r	z	$1 *$	CP		${ }^{P}$	FORCE		
	i	1	0	－8119E－03	－ 009623	．05，0000	． 000000	－1195	$2.9 n$		．2888E－05	－2365E•02		
	2	2	0	－176AE－02	．019151	－．045234	－．000000	．0454	4.29		－4159E－05	－7353E－02		
	3	3	0	－1768E－n2	－ 146334	－．019151	－．000）00	－890	3.39		－3286E－A5	－5889E－02		
	＊	4	0	． $17 \mathrm{TGEE-a2}$	－046234	－0i9151	－000ncs	－150n	2.48		－2408E－05	－4257E－92		
	5	5	0	． $1768 \mathrm{E}-\mathrm{q} 2$	－019151	－046234	．090800	．193i	2.20		－21306．85	－3766E•02		
	6	6	1	－134E－43	－ 022936	－．672524	－．090300	． 0039	12.12		－1176E－86	－1577E－02		
	7	7	1	－952aE－43	－ 860.746	－． 365238	－．080500	．0155	7.19		－6973E－AS	－6639E－E2		
	A	8	2	．2162E－02	－089643	－．043868	－．eseoso	－0509	4.53		－4396E－05	．9584E．E2		
	9	9	0	－21696－42	．099524	－000860	－800ns0	－1195	2.15		－2110E－05	－4578E．02		
	10	10	0	－2149E－¢2	． 289668	－043182	－600300	－1842	1.79		－1733E－85	－3759E．42		
	11	11	0	－21696－02	－062n52	－077811	－080000	．2434	1.61		－1567E－85	－3398E•e2		
	12	12	，	－2169E－02	－A22146	－697029	－008000	－374n	1.55		－1506E－ 85	－3267E•02		
	$\begin{aligned} & \text { Fx }= \\ & \text { Cx }= \end{aligned}$	$0.0 .00$	005000	$\begin{aligned} & \text { FO }= \\ & C D= \end{aligned}$	$\begin{array}{r} -1125 e 73 E \cdot 04 \\ 2.3428937 \end{array}$	$\begin{aligned} & \mathrm{FM}= \\ & \mathrm{CN}= \end{aligned}$	$\begin{array}{r} .9505129 F-87 \\ -66000-0 \end{array}$	$\sin _{\sin }=$	$\begin{array}{r} -.8170671 \\ -.868 \end{array}$	$\begin{aligned} & 15 \times 11 \\ & 3 \sin 31 \end{aligned}$	$\begin{aligned} & \mathbf{S N Y}= \\ & \mathbf{N Y}= \end{aligned}$	0．03000e0	$\sin z=0 ._{\omega Z}$	－．0000000
		STEP	9	DEPTH＝	．1125600 1	IWE＝．00	008959 DIM	－SIOMEES	TIME	． 35835	53 WETT	6 FACTOP＝	1.4598000	
	O．	DFF．NF．	400	abea	x	Y	7	T	CP		P	FOPCE		
	1	1	－	－A119E－n3	－069423	． 040000	－098000	． 1593	2.41		．2334E＊05	－1895E－02		
	？	2	－	－1760F－a2	－019151	－．046234	－． 340003	． 0454	3.68		．3298E－05	－5331E－82		
	3	3	－	－176EE－A2	－946734	－．019151	－．aconno	．128A	2.56		．2481E－05	－4306E－82		
	－	4	0	－1760E－n2	－466234	．019151	－438noc	－149月	2.07		．200EE－E5	－3509E－02		
	5	5	0	－1760E－n2	－419151	． 646234	－440000	－2329	1.90		－184CE－E5	－3252E－02		
	5	6	1	－11ask－n2	－ 921401	－．086337	－． 000880	．021a	6.76		－6564E－05	－7791E－82		
	7	7	2	－2031t－n2	－0623r3	－．07sels	－．0000ne	． 0342	5.35		．51921－85	－105SE－83		
	－	8	0	．2169E－n2	－m89ana	－．643182	－． 000300	． 0485	2.51		－2436E－05	－5285E－02		
	＋	9	0	－2169E－42	－n93524	－006000	－090nco	． 1593	1.75		－170EE－05	－3689E．82		
	10	10	－	－2169E－02	－089688	－643182	． 5089500	－2245	1.56		．149EE．65	－3233E－02		
	11	11	6	－2189E－02	－062052	．077d11	－648908	． 2837	1.42		－1379E－05	－2992E－82		
	12	12	0	－2149E－n2	2.022146	．097429	－600906	． 3139	I．3月		－1339E－05	－2906E－12		
$\underline{8}$	$\begin{aligned} & F_{x}= \\ & r_{x}= \end{aligned}$	0.0 .00	006000	$\begin{aligned} & \text { FO }= \\ & C O \end{aligned}$	$\begin{array}{r} .1107051 E+04 \\ 2.3751276 \end{array}$	FN =	$\begin{array}{r} .93537895-67 \\ .0074000 \end{array}$	$\operatorname{sen}=$	$\begin{array}{r} -.2367068 \\ -.198 \end{array}$	$\begin{aligned} & 58 E+02 \\ & 98+611 \end{aligned}$	$\operatorname{SNMY}_{\boldsymbol{M r}}=$	－4saces	$\sin _{\operatorname{mi} Z}=\theta_{*}$	0．0000000
		STEP	10	neptm $=$	－1250600 T	IWE＝．OE	309956 UI	WSI I Mal ES	S Tine	． 3981	776 UETT	G FACTOR＝	1．4500000	
	no．	QEF．NO．	409	ARE 4	\cdots	V	2	T＊	CP		P	FORCE		
	1	1	0	－ $11195-43$	3 －019423	－090098	－00epra	.1991	1.86		－1894E－35	－1465E－02		
	？	2	0	－176－1＊－${ }^{\text {a }}$	2 －615151	－．046234	－－000760	－1254	2.27		－2281E－85	－3091E－02		
	3	3	0	．1748E－02	2 －ntel34	－0019151	－－0ascas	－1684	1.89		－1836E－05	－3246E－92		
	＊	＋	G	．176SE－42	2 －04＋234	－019151	－008not	－2294	1.67		．1620E＊ 5	－2864E－02		
	5	5	0	－176AE－A2	2 －n1－151	－046234	－0Bena	－2727	1.58		－1534E－A5	－2712E－02		
	6	6	0	． $21694-42$	$2.02 \overline{146}$	－0097029	－．7000ct	－0445	3.34		． 3238 E － 25	－7E26E＊22		
	\boldsymbol{r}	7	0	－2149E－62	2 －n6in52	－－077811	－．090090	． 2752	2.33		－2266E－35	－4913E－02		
	－	8	0	． $2169 \mathrm{E}-02$	2 －n89568	－．063182	－． 005068	－ 1383	1.63		－1580Eets	－3929E．e2		
	9	9	0	．2189E－52	2 －n94574	－600cet	－000ned	－1991	1.39		－1347E＊C5	－2923E＊92		
	11	10	0	－2159E－42	2 －nausta	－043182	－000990	－2679	1.28		－1240E＊OS	－270日E－02		
	11	11	－	－2169E－n2	2 －062．052	．077811	－000nco	$=323 n$	1.21		．1178E－45	－2555E－02		
	12	12	0	．2169E－82	2 －n2．l46	．097827	－009nat	．3536	1.19		－1155E－95	－2505E－E2		
	$\begin{aligned} & =x= \\ & \text { rx } \end{aligned}$	0．0．e		$\begin{aligned} & \mathbf{F O}= \\ & \mathbf{C D}= \end{aligned}$	$\begin{array}{r} -34452904=03 \\ 1.6997432 \end{array}$	$\begin{aligned} & \mathrm{Fm}= \\ & \mathbf{C N}= \end{aligned}$	$\begin{array}{r} .6797563 F-67 \\ -000 n 900 \end{array}$	$\sin x=$	$\begin{array}{r} -.1430395 \\ -.1> \end{array}$	$\begin{aligned} & 95 F \cdot 02 \\ & >01597 \end{aligned}$	$\operatorname{SNY}_{\boldsymbol{N Y}}=$	－．ceeceso	$\begin{aligned} & \mathbf{S W Z}=0 \\ & m Z \end{aligned}$	$0.00000 n 0$
		STEP	11	necte＝	－1375eno T	TIME＝－00	010450 U14	WIOMLE	5 TIME	－4379	899 WETI	6 FACTOR＝	1．45006ec	
		日EF．mo．	mon	area	\times	$\boldsymbol{\gamma}$	7	$7{ }^{*}$	CD		P	FOACE		
	1	，	－	．8119E－n3	3 －notac3	－000000	－099ano	.2380	1.51		－14635．05	－1188E－02		
		2	－	－176AE－A？	2 －nlylsi	－．046234	－． 080000	－1653	1.57		－1521E005	－2689E•02		
	3	3	－	－174af－n2	2 －046734	－66191－1	－0990no	－2084	1.49		－1446E－05	－2556E－02		
	4	－	n	－ 17 chat－n？	2 －ncbis36	－017153	－000ヶno	－2694	1.41		－1370E－AS	－2422E－02		
	5	5	0	－176AE－H2	2 － 14151	1.046234	－0907no	－ 3125	1.37		－1332E－25	－2354E－62		
	6	6	0	－2169E－n？	$2-n 22145$	－．647029	－．nf9nco	－nkica	1.62		－1570E－05	－3406E－82		
	T	7	0	－21608－の？	$2-952052$	－007011	－．000n30	－1156	1.41		．1369E－6S	－2971E－02		
	\square	a	，	－ 3 1acc－n	2 －nfakko	－．n＋314＝	－．nnaman	17n：	130		$13375 \times n 6$			

u

䈎

$\%$

$\underset{\sim}{\mathbf{N}}$

[^10]

. 6760

 .n0000

-n........ $=:$:

[^11]苞 4
y

Element

Hayc/mol/TR 77-16

 $-\infty$

[^12]
$\stackrel{9}{9}$

$0 \stackrel{5}{2}$

1
0.0
0.0

0
0
0
0

 5
 Ex
0
0
0
0
0 ${ }^{M}$
花 T苚 54

英 cix x等荡

 -154 rni
-154 and
$-15 A$ ing 0
5
5
5

 3
f_{n}
N

 （s）

 0
0
0
0
0
0
0
0 o
N_{1}
0
0
0
0
0

 0
5
5
5
5
5
0 2
3
0
0
0
0
5 R2S5035
 n
N
4
4
i
i
i
i

 \begin{tabular}{l}
0

$\stackrel{0}{0}$

\hline

0

\＆

\＆

！

\hline
\end{tabular}

 n
n
n
n
n

 0
0
0
0
0
0
0
0 n
0
0
0
0
0
0
0
 n
0
0
0
0
0
0
0
0

 M
ín
\hat{n}最名 20
8
8
0

 Cotithe号

妾

 9
0
0
0
0
0
年
 0
0
0
0
0
0
0

$\%$

0
景
4
4
STEP

$\sin =$

 $-.4525+$ A4F-07
-.0000000
 11
y_{6}^{3}
3
 $-.5301693 F-97$
$-.000 n 004$
 1111
2
2

BEEBEEBEEENNNNNNN
 1111
08
48

 8
8
8
8
8
0
0

Copies

Copias
Director of Intelligence
Headquarters, USAF (AFNINDE)
Washington, D. C. 20330
AFOIN-3B
Department of the Army
Office of the Chief of Research and Development
ABMDA, The Pentagon
Washington, D. C. 20350
Director, Defense Nuclear Agency
Headquarters DASA
Washington, D. C. 20305 STSP
NASA
600 Independence Ave., SW
Washington, D. C. 20546
T. C. Schwenk, Director Research (Code RR)
Superintendent
U.S. Naval Academy

Annapolis, MD 21.402
Dr. B. Johnson
Commander
David Taylor Naval Ship Research \& Development Center
Bethesda, MD 20035
Central Library Bra (5641)
Commander (ADL)
Naval A1r Development Center
Johnsville, PA 18974
Naval Air Teat Facility
Lakehurst, NJ 08733
Dr. W. Sule
Commander (5632.2)
Naval Miasile Center
Point Mugu, CA 93041
Technical Library
Commander, NCSL
Panamb City, FL 32401
Dr. D. Humphreys

Commanding officer
Naval Intelligence Support Ctr 4301 Suitland Road Washington, D.C. 20390
Superintendent
Naval Postgraduate School
Monterey, CA 93940
Dr. A. E. Fuhs
Director, U. S. Naval Reeearch Laboratory
Washington, D. C. 20390 Library
Officer-in-Charge
Naval Underwater Systems Ctr
Newport, RI 02840
R. A. Nadolink

Commander, Naval Weapong Ctr
China Lake, CA 93555
Technical Lib (533)
Commanding officer
USA Aberdean Research \& Development Ctr
Aberdeen Proving Ground, MD 21005 STEAP-TL (Tech Lib Div)
U.S. Army Ballistic Misaile Defense Agency
1300 Wilson Bollevard
Arlington, VA 22209
Dr. S. Alexander
Commanding officer
Harry Diamond Laboratoriea
Washington, D. C. 20348
Library, Rm 211, B1dg. 92
Headquarters, Edgewood Arsenal
Edgewood Arsenal, MD 21010 A. Flatau

Commanding General
U. S. Army Misaile Command

Redstone Arsenal, AL 35809
Commander
U. S. Army Natick Development Ctr

Natick, MA 01760
ANXNM-UBS

Commanding Officer
Picatinny Argenal
Dover, NJ 07801
Fluid Dynamies Laboratory
Wright Pattermon Alr Force Bane
Dayton, OH 45433
Dr. D. J. Harnay
Aic Univergity Library
(SE) 63-578
Maxwell Aix Force Base, AL 36112
Armament Development \& Test Ctr
Eglin AFB, FL 32542 Technical Lib. DLOSL
Headquartera, Arnold Engineering Development Ctr
Arrold Air Force Station, TN 37389 Library Documente
Air Force Wapons Laboratory
Kirtland Air Force Base
Albuquerque, NM 87117
Technical Library (SUL)
Department of Aeronautice
DFAN
USAF Academy, CO 80840
NASA
P.O. Box 33

College Park, MD 20740
NASA Ames Research Center
Moffett Field, CA 94035
Dr. M. Horstman
NASA
Langley r. zearch Center
Hampton, VA 23665
MS/185 Technical Library
NASA
Lewis Research Center
21000 Brookpark Road
Cleveland, OH 4413.5
Library 60.-3
NASA
George C. Marshall Space Flight Ctr
Huntsville, AL 35812

DISTRIBUTION (Con't)

Copies

Aeronautical Reaearch Associates of Princeton
50 Washington Road Princeton, NJ 08540

Dr. C. dup. Donaldson
Aerojet Electrosystems Co. 1100 W. Hollyvale Avenue Azusa, CA 91702

Engineering Library
Aerophysics Company
3500 Connecticut Ave., NW
Washington, D. C. 20008
Mr. G。 D. Boehler
The Aerospace Corporation
P.O. Box 92957

Los Angeles, CA 90009
Technical Information Service
American Institute of Aeronautica
and Astronautica
750 Third Avenue
New York, NY 10017
Miss P。Marshall
Applied Mechanics Review
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78228
ARDE Associates
P.O. Box 286

580 Winters Avenue
Paramus, NJ 07652
Librarian
AVCO Misailes Systems Div.
201 Lowell Street
Wilmington, MA 01887
AVCO-Everett Research
Laboratory
2385 Revere Beach Parkway
Everett, MA 02149
Library
The Breing Company
P.O. Box 3999

Seattle, WA 98124
87-67

Calspan Corporation
4455 Genesee Street Buffalo, NY 14221

Library
Chrysler Corporation
Space Division
P.O. Box 29200

New Orleans, LA 70129
Chrysler Corp. Defense Division
Detroit, MI 48231
Dr. R. Lusardi
CONVATR Division of General Dynamica
Libiary \& Information Services
P.O. BOX 12009

San Diego, CA 92112
Fairchild Hiller
Republic Aviation Div.
Farmingdale, NY 11735
Engineering Library
General Applied Science Laboratorles, Inc.
Merrick and Steward Ave.
Westbury, Lang Island
NY 11590
General Dynamics
P.O. Box 748

Fort worth, TX 76101
Research I,Ibrary 2246
George Kaler, Mail Zone 2880
General Dynamics
Pomona Division
P.O. Box 2507

Pomuna, CA 91766
Tech. Doc. Center, Mall Zone
6-20
General Ejectric Company
2198 Chesnut Street
Philadelphia, PA 19101

NSWC/WOL/TR 77-16
DISTRIBUTION (Con't)

Copies

The Whitney Library
General Electric Research
and Development Center
The Knolls, K-1
P.O. Box 8

Schenectady, NY 12301
Mr. F. Orr, Manager
General Electric Company Missila and Space Division P.O. Box 8555

Philadelphia, PA 19101 Dr. J. D. Stewart, Mgr. Research \& Engineering

General Electric Company AEG Technical Information Center, $\mathrm{N}-32$
Cincinnati, OH 45215
General Research Corporation
5383 Hollister Avenue
P.O. Box 3587

Santa Barbara, CA 93105
Technical Information Oftice

Grumman Aircraft Engineering Corporation
Bethpage, Long Island
NY 11714
Library
Hercules, Inc.
Allegheny Ballistic Lab.
P.O. Box 210

Culiber1and, MD 21502
Library
Honeywell, Inc.
600 Second Street
Hopkins, MN 55347
S. Sopezak

Hughes Nircraft Company
Centinela at l'eale
Culver City, CA 90230 Company Tech. Doc. Center 6/E11, Bu Wu Campbell

Hughes Aircraft Company
P.O. Box 3310

Fullerton, CA 92634
Technical Library 600-222
Hydronautics, Inc.
7210 Prinde11 School Road Laurel, MD 20810

Dr. M. Turin
Kaman Science Corporation
P.O. Bax 7463

Colorado Springa, CO 80933 Library
Kaman Science Corporation Avidyne Division 83 Second Avenue
Buriington, MA 01803
Dr. J. R. Ruerenik
LTV Aerospace Corporation
Missiles \& Space Diviaion
P. O. Box 6267

Dallas, TX 75222
MSD-T Library
Lockheed Missiles \& Space Co. 3251 Hanover Street
Palo Alto, CA 94304
Tech. Information Ctr.
Lockhead-California Company
Burbank, CA 91503
Central Library Dept. 84-40, B1dg. 170
PIT. B-1
Vice Preaident \& Chief Scientist
Dept. 03-10
Lockheed A1reraft Corporation P.O. Box 551

Burbank, CA 91503
Lockheed Misailes \& Space Co.
Continental Bldg., Suite 445
E1 Segundo, CA 90245
Lob Alamos Scientific Laboratory
P.O. Box 1663

Los Alamos, NM 87544
Report Library

Martin Company
3211 Trade Winds Tra11
Orlando, FL 32805
Mr. H. J. Diebolt
Martin Marietta Corporation P.O. Box 988

Baltimore, MD 21203
Science-Technology Library (Mail Nou 398)

Martin Marietta Corp。
P.O. Box 5837

Orlando, FL 32805
James M_{0} Potts
Marquardt Aircraft Corporation
1655.5 Saticoy Street

Van Nuys, CA 91409
Library
M.I.T. Lincoln Laboratory

P。O. Box 73
Lexington, MA 02173
Library A-082
Dr. A. Bu Wardlaw
McDonnell Douglas Research labs
St. Louis, MO 63166
James H. Pajnter
Unit Chief - Laboratory
Dept. 222B102
McDonnell Douglas Astronautics Co. West
5301 Bol.sa Avenue
Huntington Beach, CA 92647
Near, Inc:.
5.10 Clyde Avenue

Mountain View, CA 94043
Northrop Noralr
3901 West Broadway
Hawthorne, CA 90250
Tech.. Info. Libravy
Philco-Ford Corporation
Aeronutronic Division
Newport Beach, CA 99660
Dr. D. Demetriades
Prototype hevelopment Associates
1740 Ginry Avenue
Sulte 201
Sancal Ana, (A 92705

The Rand Ccrporation 1700 Main Street Santa Monica, CA 90406 Library - D
Raytheon Company
Missile Systems Division
Hartwell Road
Bedford, MA 0.1730
Dr. Pa_{a} Forsmo
Rockwell International
$\mathrm{B}-1$ Divisiun
Technical Information Ctr (BA08)
International Airport Los Angeles, CA 90009
Rockwell International Corporation
Technical Information Ctr
4300 E. Fifth Avenue
Columbus, OH 43216
Sandia Laboratortes
Mall Service Section
Albuquerque, NM 87115
Sandia Corporation
Livermore, CA 94550
J. K, Kryvoruka

Stanford Research Institute
333 Ravenwood Avenue
Menlo Park, CA 94025
Dr. Gu Abrahamson
Systems Control, Inc..
1801 Page Mi11 Road
Palo Alto, CA 94304
W. Earl Hall, Jr.

Systems Research Labsi., Inc.
2800 Indian Ripple Road
Dayton, OH 45440
Dr, C, Ingram
TRW Systems Group
1 Space Park
Redondo Beach, CA 90.78
Technical Library/Doc. Arquisitions
dISTRIBUTION (Con't)

Copies Copies
GASDYNAMICS
University of Callfornia Richmond Field Station 1301 South 46th Street Richmond, CA 94804
A. K. Oppenheim

University of California Los Angeles
Dept. of Mechanics \& Structures
Los Angeles, CA 90024
Prof. J. D. Cole
California Polytechnic State University
San Luis Obispo, CA 93407
Dr. J. D. Nicolaides, Head Aeronautical Engineering Dept.

Department of Aerospace Engineering
Univeraity of Southern California
University Park
Los Angeles, CA 90007 Dr. John Laufer

University of California San Diego
Department of Aerospacs and Mechanical Engineering Sciences
LaJolla, CA 92037
Dr. P. A. Libby
Case Western Reserve University
Division of Fluid, Thermal, and Aerospace Engineering
Cleveland, OH 44106 Dr. E11 Reshotko, Head

The Catholic University of Amer:ca
Washington, D.C. 20017
Dr. G. C. Chang
Dr. M. J. Casarella
Mech. Engr. Dept.
Unsveraity of Cincinnat
Cincinnati, OH 45221
Department of Aerospace Engineering
Dr. Arnold Polals

dISTRIBUTION (Con't)

Copies
Department of Aerospace Engineering Sciences University of Colorado
Boulder, CO 80302
University of Delaware
Mechanical \& Aeronautical Engineering Dept.
Newark, DE 19711 Dr. Jumes E. Danbery
Georgia Institute of Technology
225 North Avenue, NW
Atlanta, GA 30332
Dr. Arnold L. Ducoffe
Technical Reports Collection
Gordon McKay Library
Harvard Univeraity
Div. of Eng.

Applied Physics
Piarce Hall
Oxford Street
Cambridge, MA 02138
Illinois Inseitute of Technology
3300 South Federal
Chicago, IL 60616
Iowa State University
Ames, IA 50010
The Johns Hopkins University
Baltimore, MD 21218
Prof. S. Corrain
The Johns Hopkins University (C/NOW 7386)
Applied Fhysics Laboratory
Johns Hopkins Road
I aurel, Md. 20810
Document Library
Department of Aero. Engineering, ME 106
Louisianna State University
Baton Rouge, LA 70803
Dr. P. H. Miller

Cop1es
Michigan S:ate University Library
East Lansing, MI 48823 Documents Department

University of Maryland
College Park, MD 20740 Dr. John D. Anderson, Jr. Dept. of Aero. Engx. Dr. Dirse Sallet
University of Maryland
Baltimore County (UABC)
5401 Wilkens Avenue
Baltimore, MD 21228
Dr. R. C. Roberts
Mathematics Dept.
Massachusetts Institute of Technology
Cambridge, MA 02139
Mr. J. R. Martucellı
Rm. 33-211
Prof. M. Finston
Profu J. Baron, Dept. of Aero. \& Astro. Rm. 37-461 Prof. A. H. Shapiro He-d, Mech. Engr. Dept. Aero. Engr. Library Prof. Ronald F. Probestein Dr. E. E. Covert Aerophyaics Lab.
University of Michigan
Ann Arbor, MI 48104
Engr. Library
Serjals and Documents Section
General Library
Univeraity of Michigan
Ann Arbor, MI 48104
Missiasippi State University
Dept. of Aerophysics \& Aerospace Engineering
P.O. Drawer A

State College, MS 30762
Mr. Charles B_{o} Cliett

New York Un:.versity
University Heights
New York, NY 10453
Engineering \& Science Library
D. Ho Hill Library

North Carolina State
University
P.O. Box 5007

Ralelgh , NC 27607
University of North Carolina
Chapel Hill, NC 27514
Dept, of Aero. Engineering
Library, Documents Section
Northwestern University
Technical Institute
Evanston, IL 60201 Dept, of Mech. Engr. Library
Notre Dame University
Notre Dame, IN 46556
Library
Virginia Polytechnical Institute
Blackaburg, VA 24061
Prof. G. Inger
Department of Aero-Astro Engineering
Ohio State University
2036 Neil Avenue
Columbus, OH 42310
Engineering Library
Ohlo State University Libraries
Documents Diviaion
1858 Ne 11 Avenue
Columbus, OH 43210
The Pennsylvanin State University
University Park, PA 18602 Library, Documents Section Dr. B. R. Parkin
Buvier Englneering Library 126 Benedum Hall
University of Pittaburgh
Pittaburgh, PA 15261

Copies
Copies
Princeton University
Aerospace \& Machanical Science Dept.
D-214 Engrg. Quadrangle
Princeton, NJ 08540
Purdue University
School of Aeronautical \& Enginearing Sciences
LaFayette, IN 47907 Library
Rensselaer Polytechnic Institute
Troy, NY 12181
Dept, of Aeronautical Engineering and Astronautics
Department of Mechanical Industrial and Aerospace Engineering
Rutgers - The State University
New Brunswick, NJ 08903
Standford University
Stanford, CA 94.305 Librarian, Deptu of Aeronautics and Astronautics
Stevens Institute of Technology
Hoboken, NJ 07030 Mechanical Engineering Department
Library
Dr. C. J. Sediak
The University of Texas at Austin
Applied Research Laboratorie:
P.O. Box 8029

Austin, TX 78712
Director
Engr S. B. 114B/Dr. Friedrich
The University of Texas at Austin
Auxtin, TX 78712
Dr. Win.. Oberkamp f
Dept, of Mech. Engr.

Copies

University of Toledo 2801 W. Bancroft
Tol.edo, OH 43606
Dept. of Aero. Engr.
Dept. of Mech. Erigr.
Univeraity of Virginia
School of Engineering
and Applied Science
Charlottesville, VA 22901
University of Washington
Seattle, WA 98105
Engineering Library
West Virginia Univeraity Morgantown, WV 26506 Library
Federal Reports Center University of Wisconsin Mechanical Engineering Building
Madison, WI 53706
University of Wyoming University Station P.O. Box 3295

Laramie, WY 82070 Head, Dept. Mech. Engr.

[^0]: von Karman, T., "The Impact on Seaplane Floats Muring Landing," NACA TN 321, Oct 1929
 ${ }^{2}$ May, Albert, "Forces at Water Impact," Alden Research Laboratories, ARL 119-72/SP, Dec 1972

 3Thigpen, A., "Nater-Entry Technology - A Review," Sandia Corporation Techinical Report SC-Dr 710196 (Jun 1971)
 4szebehely, V. G., "Hydrodynamic Impact," Appl. Mech. Rev., 12, 297-300, 1959
 5Moran, J. P., "On the Hydrodynamic Theory of Water Exit and Eatry," Therm Advanced Research Technical Report TAR-TR 6501 (Mar 19ú5)
 ${ }^{6}$ Wagner, H., "Über stoss-und cileitvorgänge an der Oberfläche von lilüsigkeften," ZAMM 12, 4, 193-215, 1932

[^1]: ${ }^{7}$ Chu, W. - Hi_{L}, and Falconer, D. R., "Further Development of a More Accurate Method for Calculating Body-Nater Impact Pressures," Southwest Res. Inst. Tech. Report No. 5, 1963

 8 Weber, Cn F., "The Vertical Water Entry of a Cone," NOLTR 69-26, Jan 1969
 ${ }^{9}$ Shere, K. D。 and Vander Vorst, M. M., "Vertical Water Entry of Finite Cones A Numerical Calculation," Naval Surface Weapons Center, White Oak Laboratory, NOLTR 73-22, 1973

 10
 Vander Vorst, M. J., and Rogers, J. C. W., "Calculation of Vertical Water Entry by the Partial Cell Marker and Cell Method," Proceedings of the 1976 Heat Transfer and Fluid Mechanice Institute, McKillop, Vaugh, and Dwyer, Standford U. Press 1976

 11
 Hess, J. L. and Smith, H. M. O., "Calculation of Potential Flow About Arbitrary Bodies," Progress in Aeronautical Sciences, Edited by Du Kuchemann, Vol. 8, pp 1-138, 1967, Pergamon Press, New York, New York

[^2]: ${ }^{12}$ Foraythe, G., and Moler, C_{0}, Computer Solution of Linear Algebraic Syatems, Prentice-Hall, Englewood Cliffs, NJ, 1967

[^3]: 13Baldwin, J. L., An Experimantal Investigation of Water Entry, PhD Dissertation, U. of Maryland, 1972

 14
 Baldwin, J. L., "Vertical Water Entry of Cones," Naval Surface Weapons Center, White Oak Laboratory, NOLTR 71-25 (1971)

[^4]: 15
 Baldwin, J. L. Private communication
 ${ }^{16}$ Baldwin, J. L., "Vertical Water Entry of Some Ogives, Coner, and Cuspa", NSWC/WOL/TR 75-20, Mar 1975

[^5]: 17Nisewanger, C. R., "Experimental Determination of Pressure Distribution on a Sphere During Vater Entry", NAVWEPS Report 7808, Oct 1961

[^6]: ${ }^{19}$ Norman, J. W., Burden, W. J., and Suter, R. A., "Deceleration at Water lintry-IV, The Effects of Velocity, Entry Angle and Pitch on a Projectile with a Flat Cylindrical Head", ARL/R5/G/HY/2/3, 1960
 *
 A brief summary of this experimental work will soon be avallable from the National Technical information Service in a report titled "prediction of Surface Pressures During Water tmpact" by Wardlaw and Aronson

[^7]: 20 Hobbs, E. V., Breakstone, H. I., and Woodson, J. B., "Oblique Entry of Spheres into Water", NBS Rept. 2788 (1951)
 ${ }^{2}{ }^{1}$ Hydrobaliistics Design Handbook, BuOrd Navord Rept. 3533 (1955)
 ${ }^{22}$ Norman, J. W., Burden, W. J., and Suter, R. A., "Deceleration at Water Entry-III, Velocity, Entry Angle, and Pitch Effects on a Projectile with a Hemisphere Head", ARL/R4/G/HY/2/3 (1959)
 : ${ }^{3}$ White, F. G., "Photographic Studies of Splash in Vertical and Oblique Water Entry of Spheres", NAVORD Report 1228, 1950

[^8]: ${ }^{24}$ Baldwin, J. L., and Steves, H. K., "Vertical Water Entry on Spheres", NSWC/WOL/TR 75-49, May 1975

[^9]: *Storage is set up for 800 nodes. However, this must also include roum for nodes generated at each step.

[^10]: $\frac{\text { EXAPLE } 3}{\text { PWOGPAM OPIIUNS }}$

[^11]:

[^12]: 曾

