
-
-

A D— AQ ~ 1 651 OHIO STATE UNIV COLUMBUS COMPUTER AN D IPJFOP.uAT1014 SC—flC F/G 5~2
Dec SOFTwA RE REQUIREMENTS FOR SUPPORTING JET NORV DATARAS ES.IIJ)
JUN 7? J tIAM RJEE • 0 K HSIA O. 0 S ICrRR N000II 75 c 0573

tJ’JCLASSIF Ito 05U C lSRC TP 77~ 4 i.

~~~~

II Unr : u
I
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

r ~~~~~~~

-.

‘ O ~~~~~~I. ~~~~~~
_ _ _

: ~ 32

~III~2

I.’ ~~ HIII~°
• _________

II~I ‘
.25 IIHI~

4 ~
MICROCOP’(RE~OLUTION TEST C~1ART

NAflONA L BUREAU OF SIAN DARDS - 1963 -t

TECH NICAL REPORT SERIES

~~O D C

~UMPLITEE 1
JI~1FUWiflTJEiI~18~JE 1~1E~E
E~ESEfIBE I4 I E I 1TE~i

~
Appro ,.d to, public ~~~~~• I bIsft1b~d.~ Uahimit,d

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



2’~~TiT ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

1 1 
(oSTJ—CISRc-TR-77-4)

DBC SOFTWARE REQUIREMENTS

FOR

SUPPORTING NETWORIC DATABASES

k by

Jayanta Banerjee, David K. Hsiao
and

Douglas S. Kerr

Work performed under: Contract N00014—15—C—0573 / YD ID C
• Off ice of Naval Research I ? c~t~na17~r

-
~~~ U jij i l5 1911

1

~~L 6 U U L ~— A
~ 1.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.P!STRIBUTI0N STATEMENT A
1.. Approv ed for public r.l.a.u ~Distzjbutj o~ Unlimit.d

• 1 1.. Computer and Information Science Research Center

• The Ohio State University

Colinubus, OH 43210

I June 77

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~~~——— ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



— —~~~~~~~~~~~~~~~~--~~
= -

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

I SECURITY CLASSIF ICATIO N OF THIS PAG E (W hen Data Eni~’,ed,l

DE
~~~~~ 

WIII1~~~K1TAT IAIJ  DA(’~~ kEAD INSTRUCTION S
~ I i % I  t.’~j~~~ iinCi~ ~~ ~~~~~~~ I BEFORE COMPLETING FORM

I / 1 EPO~~~ NUMBE R 
,

~~
.- 2. GoVT ACCESSION NO 3. RECIPIENT’S CAT  A~.OG N U M E E R

~ ~SU—CISRC — TR—77 —4

~
ç TIT~~~j 1ubt1I1.1 

~~~~~~~~~~~~ 
~~ ,

.e” 5. TYPE OF REPORT & PERIOD COVE RE3

f ~~~~~~~~~~ DBC Software Requirements for Supporting (
~5~’ ~~ chnica1,~ep~~tj~• 7 Network Databases ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~ ~. PERFORMING ORG REPORT NUMOER 
—

~L i .  AUTHOR(S) S. CONTRACT OR GRA NT NUMBER(s )

r ~~~~~ 

JaYanta 1Banerie~~~

\ 
(2 ~~4di4 75 C %5lj7’~~

Dot~gIas S~~ 1Cerr
~_ “5 fl ~~~~~~~~~~~~ U~~th~~~~i urjN NAME AND AD DRESS 10. PROGRA M ELEM ENT . PROJECT . T A Sr~AREA W O RK UNIT HUNGERSOffice of Naval Research

Information Systems Program • 41 -I Washington, D.C. 20360
II. CONTROLLING OFFICE NAME AND ADDR ESS 12. REPORT/ 1 JunØ ~~77 JI T3. NUMOER OF PAGES

____________________________________ 91
14. MONITOR ING AGENCY NAN ADD renI from Controliin4 Off ice) 15. SECUR;iY CLASS. (of th is  report)

L ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _

15. DECLA SSIF ICA1ION/DOWNGPArJ~NG
SCHEDULEI I ! 16. DISTRIBUTION STATEMENT (of thi a Repert)Approved for public release; distribution un1imiE~d,• Scientific Officer DDC New York Area” -

~~~
. - -

ONR BRO ONR 437
I ACO ONR , Boston ~~~~~ ~‘~~d i~~’ INRL 2627 ONR , Chicago

~~~~~~~~~~~~ 
j~~~~ j~~~ . ; .ONR 1O2IP ONR, Pasadena

17. DISTRIBUTION STATEMENT (of the abstract entered in lJIoek 20, II different from Report)

lb. SUPPLEMENTARY NOTES

• *9. KEY WORDS (Continue on reverse aide if necessary and identify by block number)• 
I Database Computer; data models; network data model; DBTG; CODASYL; keyword;

attribute; attribute—value pair; clustering; directory; associative search;
query; predicate; system performance; record type; record occurrence; set;
set occurrence; area; schema; data manipulation language .

20. A BSTRACT (ContInue on reverse aid. I t  n e c es sa r y  and ident ity by block number)

This is the second of a series of three reports aimed at demonstrating the
capabilities of a back—end database computer (DBC) in supporting known data
models and systems. In the first report it was shown that the hierarchical
data model can be supported on the DBC with a performance that is considerably
better than exièting hierarchical database systems such as IBM’s Information
Management System (IMS)..

~ f T  In this report we illustrate how a network data model can be supported on

1 ~~~• 
the DBC. The features of the network model ate those outlined by the CODASYL

I DD ~ ~~~~~~~ 
1473 EDITIoN OF i NOV 63 IS ODSOLETE / 3

_ _ _  ~~~4 SECURITY CLASSIFICATION OF THIS AGI~~~I~~~ D~~~~1~II~~~~~



___ ~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECURITY CLASS IFICATION OF~fTH IS PAGE(IIh,n bets Entered)

Data Base Task Gro~lp (I~~TG) . -

Early section~ of this report are introductory in nature. They h~ive been
included in order to familiarize the reader with important features of the DBC
and of the network data model. Thus, a reader without any detailed knowledge
of the DBC and the network data model can still study this report without much
difficulty.

We then deal with the representation of DBTG information on the DBC. A
DBC record is made up of elementary items called attribute—value pairs. Every
DBTG record occurrence, on the other hand, is characterized by a record type,
an area and its partitipation in an arbitrary number of sets, All these features

• of a record occurrence are captured in a DBC record by means of appropriate
attribute—value pairs. For storing records in the DBC database, the automatic
clustering facilities of the DBC are utilized.

We also show how user programs can be executed (via an interface module)
without conversion. A user comm and written in the DBTG data manipulation
language (DML) is intercepted by the interface module, which then generates
required commands for the DBC and takes appropriate actions needed to execute
the original user command. The main theme in designing the interface is to take
advantage of the content—addressability of the DBC and the knowledge that a user
program spends most of its time in traversing sets. We proceed then to discuss
the interface buffer management and the running environment of the interface.

A comparison of the performances of the DBC and a conventional, computer
• system in supporting a network database (namely, Ul’IVAC’s DMS 1100) is given.

Storage requirement and frequency of database accesses are analyzed. It is
found that for the same database the secondary storage requirement of the DBC may
be slightly higher than that of a conventional system. However, this increase in
secondary storage is more then compensated by better response time, smaller
directory memory and saving of the real memory. The number of database accesses
can be as much as fifty times fewer on the DBC. The directory memory requirement
on the DEC can be a hundredth of that required on a conventional system. In
addition, the DBC provides new and advanced data management facilities which are
not found in a conventional system.

Finally, we conclude with some remarks on the special features of the DBC
and what other purpose it can serve besides supporting multiple data models.

SECURITY CLASSIFICA TION OF THIS pAOE(fl7.en i)nta Entered)

I — — ~~
-— -—----

~~ 
— — 

~

—-—----- —



_________ ________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ‘~
‘ — ‘  ~~~~~~~~~~~~~~~~~~~~~ 

- 

• PREFACE AND ACKNOWLEDGEMENT

This work was supported by Contract N00014—75—c—0573 from the Office

~ 
of Naval Research to Dr. David K. Hsiao, Assoc iate Professor of Computer
and Information Science, and conducted at the Computer and Information

I Science Research Center of The Ohio State University. The Computer and

Information Science Research Center of The Ohio State University is an

I interdisciplinary research organization which consists of the staff,

graduate students, and faculty of many University departments and

laboratories. This report is based on research accomplished in cooperation

I with the Department of Computer and Information Science. The research

contract was administered and monitored by The Ohio State University

I Research Foundation.

The authors would like to thank Lorenzo Aguilar and Krishnamurthi
Kannan for careful reading of the manuscripts and comments on the work.

I

I
I
I
I
1

• POC ~~ ‘

• • m*!rnOuIICD
JUSHFICAIIOa • . . . .

p. ...-—..•• . • S

IT
,I$TIIIIJTISU;U$IU,ILIfl CSSEI

—

H I

~k I --~~~~~~~~~~ ~~~~~
- —- -~~~—~~~~~~~ ~~~~~~~~~~~~~~~~~~



• f I • 
TABLE OF CONTENTS

1 ABSTRACT PAGE

I 1, INTRODUCTION 1

2. THE DATABASE COMPUTER (J)BC) 3
2 1  The DBC Data Model 3

Hf A Query 3
B Security 4

- 

- 

C DBC Architecture 4
• 

I D Clustering 6
E DBC Commands 6~

• 3. TUE DBTG DATA MODEL 10

3.1 The Record Type 10
3.2 The Set Construct 11

A Hierarchical Relationship 11
B Network Relationship 13
C Relationship Among Records of the Same Type 13

3..3 Some Other DBTG Concepts 13

A Areas
B Database Keys 16
C Currency Indicators 16
D Record Location Modes Li

E Privacy Features 17

34 Set—Related Features 18

A The Set Membership Class 18
- • B Set Implementation Modes 18

C Set Ordering 18
D Indexed Sets and Search Keys 19

I E The Set Occurrence Selection 19
3,5 Some Data Manipulation Facilities 20

4. DEC REALIZATION OP A DBTG DATABASE 21

• 

•~~~~~~~~~~~ •~~~~~~ •~ •_____ ~~~~~~~~ 
_
-•~~~~~~~~~~~~~~ -~~~~~~ “ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~ _~~~~~~ S~~~~~ — —

• ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

• PAGE
-

- •
-

4,1. A Matter of Representation 21

4.1.1 RepresentatIon of a Record 21

A Representing the Record Type 22
B Handling the Area 22

C Database Keys and Key Space 23

D The Notion and Assignment of L—numbers 25
E Representing the Data Items of a Record 28

4.1.2 Representation of Set Membership 29
a I

4.1.3 Preserving Set Ordering 30

A Cases Where the Set Order is First or Last 32

B Cases Where the Set Order is Next or Prior 33

C Ordering by Sort Keys 35 _

4,2 Summary of Keyword Assignment 40

4.3 Type—D Keywords and Clustering 41 -

4.3.1 Clustering MethodB 41 -

A Clustering Method I 42
B Clustering Method II 42
C Choice of a Clustering Method 42

4,3,2 Directory Memory Requirement 42
4.4 Privacy 43

5. ThE TRANSLATION PROCESS 45
5.1 Set Occurrence Selection 47

5.2 Updating the Database 52

A Record Insertion into Sets 52 —
-

B Record Removal from Sets 54
C Deletion of Records fxos the Database 54

D Storing a Record in the Database 56

- • I E Modification of a Record 57
5.3 Data Structures to Improve Performance . 57

5.3.1 Set Information Table 57

5.3.2 Set Traversal 61

5.3.3 Sequential Processing of Records in an Area 61

5.4 Record Retrieval 63

L

-•• m~~~
~~ •- • ——~~~~~~~~~ -—- - ~~ - -~~~~~~~~~


~~~~~~~~~~~~~~~ -_~~ ____

1 1 1 1
PAGE

~ I-
6. BUFFER MANAGEMENT 67

6.1 Buffer Organization of the DBTGI 68

• 6.2 Buffer Space Management 70
• A Procedure for Deallocating the Space Occupied by a

t Logical Block 71
B Procedure for Allocating Space to a New Logical Block 73

• 7. EVALUATION OF THE INTERFACE NODULE (J)BTGI) 71A
7.1 Memory Requirement 74

1 7.2 Analysis of Access Time Requirement 78
A Finding a Record Based on Database Key 78t B Finding a Record Based on Caic Keys 78
C Record Retrieval via Sets 79

• D Set Traversal 84
E Other Operations 84

~ r 7.3 Summary of the Evaluation 86

8. CONCLUDING REMARKS 88

a,

S~~

• 

~
•
• ~~~~

~ ~!
:1,

i.H



-

~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1.~~ INTRODUCTION

This is the second of a series of reports aimed at studying the capabilities

of a database computer , known as the DBC , in supporting the three major data
models: hierarchical, network and relational. In the first report LJ~. DBC
software requirements for handling hierarchical databases have been presented .

• ~r-, *j1
’his report will be directed towards an investigation of the

software requirements for network databases. Relational database systems

will be treated in a forthcoming report.
•

• • -
The April 1971 repor t L~~~’f the CODASYL Data Base Task Group (DBTG)

is chosen as the def initive document of network databases and systems since
most commercially available network database management systems are based

• on the DBTG report. Even though many of these commercial systems use a

syntax that is slightly different from the DBTG specif ications, the main

concepts have been retained. The network database model studied in this

• report will be referred to as the DBTG data model. Our emphasis will be
on concepts rather than the detailed syntax of the DBTG language specifications.

S Database computers are a recent addition to the family of computers.

With the advent of large databases, there has been a growing awareness of the
necessity of a computer architecture that is oriented towards storage, re-

trieval and manipulation of large quantities of information.V~The DEC [3 ,4,5]
is a step in that direction. It utilizes content—addressable’~emories and

processors with various speeds and capacities. In addition, it~prov ides
powerful clustering mechanisms for performance enhancement and security
mechanisms for access control. The built—in hardware data structure enables

the DEC to interface directly with existing database management application
programs with minimal software. In other words, it is the purpose of this

report to show that the required software is minimal and that the new software

can replace existing database management systems with improved performance.

Furthermore , the advanced features of the DBC allows the development of

new user applications not now possible using present network database
• management systems.

• The most salient construct in the network data model is the “set”.

Implementation of sets on the DBC is extremely efficient. The ordering of

records within the sets is also considered important In the network data

model. Although the DBC is not inherently oriented towards maintaining data

in sequential or ordered fashion, this requirement will be satisf ied since

• the DEC has the capability of transmitting data in a sorted order .

•
~L_•.••••_•_, _•.•_.•..__• — ~~~~~~~~~ ~~~ —~~~-—~—-——~ ~..a_—. — — —

~~
— — - • — — — ——

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - — - - •— —~—



—2—

In this report, we will develop constructs that suppor t features of
the network data model in a manner that greatly outperforms “conventional”

implementatioim. In particular, the linkage structures based on pointers

used to represent sets on the regular secondary storage are replaced by
pointer—free structures utilizing content—addressable storage.

This report is organized as follows: Sections 2 and 3 are introductions

to the DBC and the network database management systems, repectively. In

Section 4, we demonstrate how network data is stored in the DBC. In Section

5, we discuss how network data manipulation commands are converted to DBC

queries. In Section 6, we propose a buff er management strategy required to
interface between the DBC and user application programs. The report is

concluded with an analysis of performance in Section 7 and with a discussion 
•

in Section 8 of additional features that can be supported on the DBC . •



— 
~

- —
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ TL~~~~ ~~~~~~

-—-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—3—

2 • TH~ DATABASE COMPUTER (DBC)

As a special—purpose computer , the DBC is intended to be used as a
back— end machine to a front—end conventional computer. It is designed to

* handle very large databases of ~~~ — 1010 bytes in an efficient manner . In
this section, we shall concentrate on the major architectural features of the
DBC.

2 ,1 The DEC Data Model

Let there be two primitive sets: a set AT of “attributes” and a set
VA of “values” . The meaning of the two sets is assumed to be understood and
Is left otherwise undefined in order to allow for the broadest possible
interpretation. A record R is a subset of the Cartesian product AT VA ,
with the restriction that every attribute in a record is distinct. Thus, R

is a set of ordered pairs of the form:

• <an attribute, a value>

The k~ywords of a record (or a group of records) are those attribute—value
pairs which characterize the record (or the group), i.e., those pairs that

may be used to distinguish the record (or the record group) from all others.

The other attribute—value pairs of a record, if any , are collectively called
the record—body.

The set of all records which are stored in the DBC is called the database.
The database may be partitioned into subsets called files, each with its

unique file—name.

A. Query

A keyword predicate is a triple of the form <attribute, relational
operator , value >. A relational ~perator is an element of the set ~~~~~~~~~~~~~~
A keyword <A ,V> is said to satisfy a keyword predicate <A1,.O~ ,V~> if and
only if A~A~ and V O~, Vi,, i .e. ,  V and V~ are related by the operator Or,. A

gj~ery is a Boolean expression of keyword predicates in disjunctive normal form.

- 
Thus, a query is a disjunction of conjunets known as gu~~y conj~ ncts, where
a query conjunct is simply a conjunction of keyword predicates. A record in

a file satisfies a query if it satisfies at least one query conjunct in the
query . The set of all records in a file that satisfy a query will be called
the response set of the query.

L As an example of the types of queries that may be recognized by the DBC,
consider the following:

• S 

~

• • 
S — 

~~~

• - -• • - —

~~ ~~~~~

• -——•-• —

~~~~

--

~~ 

— - •--

~~~

• —

~~ ~~~~~~~~

-•— • -•-•• •—

-—~~~•
- - - ,~~~ • • • - - - - • • • • • - • • - • . S

- ,— -

-4-

((DEPT”.’TOy’ J AJ SALARY<1OOOOJ)v(~DEpT=’ BOOK’] A [SALARY>50000J).

If the above query refers to a file of employees of a department store , then
it will be satisfied by records of the employees working either in the toy
department and earning less than lOpOO, or working in the book department

and making more than 50,000 .
•

Queries are used not only to retrieve a set of records among all the

records in the database but also to specify protection requirements and

clustering conditions.

B. Security

The DBC allows for security specifications based on the actual contents

of the database. A database access or simply an access is the name of a

DBC operation which transfers information to or from the database. Examples

of accesses are retrieve, insert and delete. For every user of the database,

the DBC maintains a database capability, which is simply a list of file

sanctions whose entries are of the form:

(F, fQ1,A1], 1Q2,A2],..., IQn,An])
where F is a file name , each Q1 is a query and each Ai is a set of accesses.
The database capability of a user determines the records he can access. For

example, for a user to be allowed to perform an access operation a on record
R of file F, the following condition must hold for every (Qj,Aj) in this file
sanction for F: • I

(R satisfies Qi) implies (a (A1)

This type of security specification is powerful and elegant. With this

specification, not only can security be enforced in terms of record types or

entire files, but security can also be facilitated at a much more detailed

level based on the actual content of the records in the database. And since

such a mechanism is directly provided in the DBC, it may be gainfully and

[

conveniently incorporated into any database management system supported by

the DBC. A more detailed and formal discussion of the DBC security provisions

will be found in [3].

C. DEC Architecture

The most natural way of addressing information in a database is in terms

of the content of the records. However, the secondary storages of conventional

computers have so far been restricted only to location—addressability . This

implies that in order to find a record in the database, the location of the

record must first be determined via software techniques and auxiliary data
- • ~

•
structures. The overhead therefore includes the complexity of software to

support auxiliary data structures. This overhead becomes particularly

—
- - •• ..••• . _ •, •~~~~~~ — • _ a . . . _ _ L S _ A _— & A~~l~~~~~~~~ _” ,’ ~~~~~~~~~~~ fl1...,.SS~S ~~~~~~~

~

—5—

intolerable when the database is large, since the search of the auxiliary
structure itself becomes a time—consuming process.

The DBC provides for the entire database an on—line storage which can

be content—addressed . Although associative memory also provides content—

addressing, it is not possible to develop a monolithic associative memory

with sufficient capacity for DBC storage. By partitioning the memory into

blocks , each of which is content—addressable , and by limiting access to
only one of these blocks at a time, the DBC can achieve some degree of
associativity and very large storage capacity. Such a processor and memory

organization is termed a partitioned content—addressable memory (PCAN),

The on—line mass memory (NM) of the DBC is a PCAN. Each partition of the

MM is called a minimal access unit (MAll). As an example, a — byte
database will have 1,000 MAUs each of which processes and stores 106 bytes,

which happens to be the size of a disk cylinder.

Another major component of the DEC is a processor called the database

command and control processor (DBCCP). When a command from the front—end

computer (the one which interfaces with the user) is sent to the DBC, the

DBCCP decodes the command , determines the MAlls to be searched in order to

satisfy the command , issues appropriate orders to the NM and transfers

data to/from the front—end computer.

Since a large database will contain many MAlls and since only one MAU

can be accessed at a time, it is not practical to search all the MAlls for

every search order. Hence, directory entries are made for certain keywords.

These keywords are called Type—D keywords or directory keywords. A directory

entry consists of a Type—D keyword and the numbers of the MAlls in which
records containing this keyword appear. Any query conjunct is expected to

have at least one predicate consisting of a directory keyword. Otherwise,

F an exhaustive search of the MM will be necessary to satisfy the query.

The directory entries also contain clustering and security information.

The collection of all the directory entries is also stored in a PCAN with

different capacity and processing speed. This PCAN is known as the structure

memory(SM) . Typically, directories are of the order of 1% to 10% of the

database . Therefore , the SN has a capacity of l0~ to l0~ bytes. It is

estimated that a query conjunct will seldom have more than 20 predicates;

L

- - and a single MAll access will normally satisf y a query . Therefore , the
• access speed of the SN is about 1 millisecond which is about 20 times

• • faster than the time required to access an MAll . Thus , in the time required

• to process a query in the SM, another query may be satisfied by accessing

• - i
-

- • - -— • -~~~~~ -— —~~~~~~~~~~~~~~~ - ~~~~ ~~~~~— -— -~~--~~~~~~—~~~~~~~ ~~~~~~~~~
—•-

~~~~~~~~~
• • • •• • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-

~~~~ 
-



~~~~~~~~~~~~~~~~~~~~

—6— H -

an MAU, The relationship of SM, MM and DBCCP is depicted in Figure 2.1.

D. Clustering

Based on certain prespecif led information created by the user , clustering
of records is done automatically by the DBC , so that records being accessed
together are stored in the same NAU. As a design policy , no two f iles are
allowed to share the same MAll. The ••user is provided some degree of control
over the placement of records in the MAlls by application of the concept of
clustering keyword . Certain attributes of a file may be designated as

clustering attributes. Keywords whose attributes are clustering attributes
are termed clustering keywords. A cluster is then defined as a set of records
all of which have the same set of clustering keywords. Each record in the

file will then belong to one and only one cluster. The user may now impose

two types of clustering conditions on the records. For each record to be

• inserted in the DBC, there is a single mandatory clustering condition, which
is a query consisting of clustering keywords , that must be satisfied by one
or more records existing in an MAll in order that the new record may be
inserted in that MA1J. Frequently, however , more than one }IAU may have
records which satisfy the mandatory clustering condition accompanying a

record. So the user may also spe cify one or more optional clustering conditions,

• which are queries formed from clustering keywords, for the record to be in-

serted. With each of the optional clustering condit1ons is associated a

weight. The insertion process which determines the MAll in which the record

is to be placed is as follows: The set of MAlls containing records satisfying - - r
the mandatory clustering condition is first determined. For each of the MAUs • I

in this set, a cluster weight is calculated by summing the weights associated

with those optional clustering conditions that are satisfied by one or more

records already existing in the NAU. The record to be inserted is then

placed in the MAU whose cluster weight is the greatest.

E. DBC Commands

The front—end computer communicates with the DEC by issuing DBC commands.

Two types of commands are recognized by the DBC: the access commands and

the preparatory commands. Access commands are used to retrieve, insert,

delete, and update DBC records in a file. Preparatory coimnnads are issued to

manage file information and security specifications in preparation of sub—

sequent access commands. Seventeen different commands have currently been

provided .

A file may be opened for access by the open—database--file—for—access

1~
_____ - • - • -•--- S---- — ~~~~~~ S- -5- ••~-~ - -~~~~~~~~~~ •‘~~~~~~ - - -SS - ~~~~~~~~~~~~~~~~~~~~~~~~~ .5 — - • -

______ ~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~

-

A HI- •

~~~ 

~~~
,

• Structure Memory

& related processors
(Refer to j4 ])

&

- . • Command and
- - To a front—end Control

• computer Processor
(e.g, Univac 1108) (Refer to f5] )

Mass Memory
&

-
• 

• 

related processors
(Refer to 15] )

Figure 2.1. Basic architecture of the DBC

r

I

5

- - -••

~~~~~

——-- • - • - -• - -~~~~~~ -—----- •~~ —- S~~~~ -—- •~~~~~ -5-- —-- -5-~~-••- • - • -~~~~~~~~~~ 5--- -5---- • -S •55- -~~~~~

-

_ ‘ ,~~~5-5- 5-5

• - • •- ._-- ~- -~~~~~~~TT’ i p-~~—. -

-8—

command and closed from further use by the close—database—file command . -

Insertions, deletions and retrievals can be done on a file, once the -

file is opened for access. There are four commands to retrieve records from
a file. In the retrieve—by—query command, a query composed of keyword
predicates in disjunctive normal form is used to identify records desired
by the user . If the MAll number is known, the record may be retrieved by a
retrieve—by—p~ inter command. The retrieve—by—query—with—pointer command
is provided so that the user may determine the pointer values (addresses)

of a set of records satisf ying a query , in preparation of subsequent retrieve—
by—pointer commands. Retrieve—within—bounds requires two pointers as
arguments , which are used as lower and upper bounds of a set of records in
a file , all of which will be retrieved in response to the command .

The insert—record command is used to add a single record to an existing
database . The delete—by—query command deletes all records sat isfying a
query. Delete—by—pointer deletes the record in the location identified by]
a pointer and delete—file deletes an entire file.

The replace—record command updates certain fields of a record ,,which
is specified by a pointer provided as an argument . The MAlls occupied by a

file may be determined by the retrieve—NAIJ—addresses command . The identity -

of the users who may create files is specified through the load—creation— -

~~~~ bility—list command .

The remaining four commands are reserved for the actual creation of a j
database file . The open— database—file—for—creation must precede the actual

creation of a file . It provides information on the number of at t r ibutes  ]
that the file is to have , the number of MAlls that need to be allocated

initially, and the number of MAlls that may be allocated if the initial -]
allocation is insufficient .  The load—attribute—information command specifies

the attributes for the file and the load—security—description provides infor— -

mation on the security descriptions for the file. Finally, the load—record -

command is used in order to create the file by loading the initial records.

[ In sutmuary, each DBC record is a collection of attribute—value pairs.

Some of these pairs are called keywords so that the DEC can associatively -
search MAlls for records containing any given keywords. Some of the keywords

are designated Type—D. The DBC makes a directory entry in the structure

L 

memory(SN) for every Type—D keyword. Any Typ~—D keyword can also be 
-

designated as a clus tering keyword or as a security keyword or both . The

DEC automatically clusters records having identical clustering keywords. •

The security keywords are used for access control.  The DBC provides a host

-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ~~~~~~~~~~~ —~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~ . ~~~~~~[ 

--~ - -
~

•-.
~

~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~~~~~~~~~ -~~~~~ 

-_ __________

—9— -

of update and retrieval commands to facilitate its use. It also has a hard-
ware sorting capability in order to transmit records to the front—end computer
in a sorted order .

1-: - . -

- -

_______________________ ______________ -- _ _ . ~~A____ ~~~—-~~ - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 5-~~ _ _ _~~~~~~ _ 5-5-_


~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~ ~ T~T ’TT~TT i - ~ -

-10-

3. THE DBTG DATA MODEL -

The DBTG data model is of the network type. A complete language 
-

specification of data definition and manipulation facilities is presented
in the April’71 report of the CODASYL Data Base Task Group [2] . In this - 

-

section we shall extract the most important features of the network model
that have been supported or defined in this language. We will not be con—

cerned with the syntax of the language. -~

A DBTG database is defined in a schema by the database administrator.
The schema consists of four sections , namely:

(1) schema entry
(2) area entry

(3) record entry -

(4) set entry .
The crhema entry merely provides a name for  the schema itself .  The area entry

names the logical areas that together constitute the database. There is a

record entry for each record type existing in the database and there is a set -
entry for each set. The terms record , area and set will be explained in the
following sections. 

-—

3.1 The Record Typ~
The DBTG record is similar to a COBOL record. A record type (or record -

name) is defined as a collection of hierarchically related data item names ii
or field names. The hierarchy of field names is defined by a template in the
schema record entry.  Any occurrence of the record type , or simply a record ,
will then have specific values for these data tiems. Thus a record type or

record name is a generic name for all the record occurrences that have the —

same template or schema definition. As an example , consider the following

record type :

-• RECORD NAME IS EMPLOYEE -

02 NAME -

03 LAST—NAME PlC X(l0)

03 FIRST—NAME PlC X(lO)

02 SPOUSE
03 SPOUSE—NAME

L 

04 LAST—PART PlC X(lO) 
- -

04 FIRST-NAME PlC X(lO)

03 SPOUSE—AGE PlC 99

02 SALARY PlC 9(5) -

• 
- - - -  - I — - 5  • -~~~~~~ — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ;•;_ 5-~~ •-5_~_•~ •~~~ •~~



- 
~~~~~~~

—11—

In this example, the hierarchy of data items is shown by the hierarchical
tree of Figure 3.1. Normally, a record occurrence is stored in the database
without the data item names. The value of a data item for the record

occurrence can then be identified by its position within the record occurrence,

since the values for the data items are stored in a specific order.

Any data item within a record type may be declared to be an array by
using the OCCURS clause. Reference to any element in an array is accomplished

through the use of subscripts.

3.2 The Set Construct
Relationships between records in the ~)BTG model are indicated through

sets. A set (or set type) consista of a single record type called the owner

record type and one or more other record types called the member record types.
Record occurrences of the owner record type are termed owners and of the member
record types members. Thus a set type asserts the existence of associations

• between records of heterogeneous types in the database. This allows the

- - designer to interrelate diverse record types and to associate various entities
in the database into a network—like model of real—world database management

problems.

As in a record type , a set type also has occurrences . Each occurrence
• of a set must contain one occurrence of the owner record type and a number of

occurrences of each of its member record types. It should be emphasized at

this point that the owner record of a set is prohibited from being one of the

member records of the same set. All the occurrences of a set are pairwise

disjoint. In other words, a record occurrence cannot appear in two different
occurrences of the same set. We will now take up three short examples to

illustrate how hierarchical (one to many) and network (many to many) relationships
as well as relationships between records of the same type are represented by
set constructs.

A. Hierarchical Relationship

Consider an organization consisting of many divisions, each of which is
composed of many departments, each of which in turn employs many personnel [6].
The relationships may be expressed by the data structure diag~~~ depicted in

Figure 3.2. The arrows are labelled by set names and are directed from an

owner record type to a member record type.

Every occurrence of the set type DIV—DEPT is uniquely identified by an

occurrence of the division record type and consists also of zero or more
• occurrences of the department record type. Similarly, every occurrence of

- - • - ________________________________
~ ~~~_~~~~ - _g ~~~~ -L- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~


~~~~~ -- ~~~—“---.—--- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•

-

—12—

NAME SPOUSE SALARY

LAST—NAME FIRST- NAME SPOUSE—NAME SPOUSE—AGE

H’
LAST-PART FIRST—PART - •

Yigure 3 1 . A hierarchical tree for a record

J
Ii

—
- - Division

-
I

•

II DIV—DEPT

epartment

DEPT—EMP

~Rmployee

I
Figure 3.2. Data Structure diagram for a hierarchical relationship

5---—
- -- -5- - - —--5-- -- -—-5---- --~~-—5-~~

--— - - -
~~~~~~~~~ - -~~~~~~~~~~~~~~~~ 

- 5~;-~~ ~~~--~~~~
5-

~~~ -~~ ~~~~ -- - -. -—___ _ _ _~~ -_~~~-- - - • • 



~~~~~~~~~~~_ _ L__ 
~~~— ~~~~~~

‘
~~

— ‘
~~~---—-

~ _
~ -:~~ - ~~~~~~~~~~~~~~~~~~~~~~ •~_ — - •• —_.5-55-—•5- - -

— 13—

the set type DEPT—EMP is identified by an occurrence of the department record
type and consists also of zero or more occurrences of the employee record type.
In this representation no department can belong to more than one division

and no employee can work in more than one department . The set occurrences

are depicted in Figure 3.3.

B. Network Relationship

Very often two record types may have a many—to—many relationship to one

another. Consider, for example [7], student and course record types. A
- -‘ student may be taking many courses and a course may have many students. To

model this , it is not possible to construct the data structure diagram of
Figure 3.4. This is because a course with more than one student would
simultaneously be a member in two set occurrences of ENROLLED—IN, violating

the rule of unique ownership. Similarly, when a student takes more than one

course , the HAS—ENROLLED set condition is violated .
• The usual way of representing many—to—many relationships is to define

a third record type as shown in Figure 3.5. This new record type is used
to relate the two other record types; it contains information that pertains

specifically to both students and courses , e.g., grades .

C. Relationship Among Records of the Same Type

Consider another example. A par t is composed of other parts, which in
turn are composed of other parts, etc. The diagram in Figure 3.6 is illegal
since the DBTG rules forbid the same record type from being both owner and

member in the same set type. Thus an intermediate record type is introduced

called the assembly record type. The assembly record represents an assembly

of subparts. The structure is shown in Figure 3.7, where there are two sets
- 

- 
each with owner type as part and member type as assembly.

3.3 Some Other DBTG Concepts

{ In this section we shall group together a few other DBTG concepts for

discussion. The concepts of area and database key will be introduced. The

locations of records in a DBTC database are determined by record location

modes specified in the record entry of the schema . References to records

are made with respect to only certain records called the current records.

We shall also comment on the privacy features provided in the DBTG database

model.

A. Areas

The database may be split into logical subdivisions called areas. The

schema definition of a record may specify the areas in which occurr ences of

—.5---- —~~ - ~~~~~~ 
A LS~)S._ ~~~~~~~~~~



— -
~~— 

5- -.__,- 
-

~~~~~~~~~~~~~~~~
—

~~~-55- ~~~~ 

-

— 
—

~
,—---• 

—14—

E2 
El

(DEPT—EMP )

0 0 . 1 -

- E4 (DIV—DEPT) - - -

0
(DEPT—EMP) D3 -

:

E6 
E8 (DEPT— ) 

- I

(DEPT—EMI4 
• I7

D4
(DEPT—EMP) -

~

D5 V2 . 1
Eli

(DIV—DEPT)

E12 
-

D6 
D7 El? I

(DEPT—EM P )

(DEPT— -I
E14

E13 16Q : A division record occurrence. El I

0 : A department record occurrences (Set—Name) : A set occurrence .

An employee record occurrence.

Figure 3.3. A hierarchical relationship———tvo set
occur rences of DIV—DEPT and seven set

- - ~-—- --5- ----• ----55-~~ - ---- — - - - - —5---_5- -5_—-- -



- ~~~~~~~~~- ~ _u~~~~~~~~~~~~~~~ _ _ 
- 

~~~~~~~~~ ——-~~ ~~~~~~~~~~~~~~~~~~~~~ 
5- 5-

— 15—

Figure 3.4. An illegal data structure diagram

Figure 3.5. Data structure diagram for a many—to—many relationship

[
part

j ~II JIIIIIII~
HAS-SUBSTRUCTURE HAS—SUPERSTRUCTURE

USED-IN

1~~~~

- Assembly

ii Figure 3.6. Illegal data structure Figure 3.7. Data structure diagram for[J for parts and assembly parts and assembly of parts- —
of parts

-

- ~_~5____.__5 —-——- 5-——- -— --——— — —- .~~. —~~ --5---— —~—-5------
_ _;__~___~___ -- —-_• 5—-’——-_-’_—--_—_ -’_ _ ____5.___5_ _ •_ ___ __ •_-5__5____ _ -5 ~

5-

~~~~~~~~~~~~~

—16—

the record type may be placed. Each record occurrence, however, is placed in

only one area. There may be several reasons for dividing a database into areas .
Some parts of the database may be used only occasionally. If the database is

divided into areas, then the less frequently accessed parts may be stored

away from more frequently accessed parts. Secondly, there may be reasons of

database security. The more sensitive data may be stored in areas with stringent

protection. Physical clustering of records to facilitate certain processing

modes (such as sequential or direct) may be another reason.

B. Database Keys

When a record occurrence is first stored in the database, the DBTG system

assigns it a database key . A database key is a unique identifier of a record

occurrence . Thus , instead of physical addresses , database keys may be used
as pointers. In this way , even if record occurrences are moved around in
the storage, their pointers need not be modified , since database keys are

permanent and remain unchanged throughout the lifetime of record occurrences

in the database.

In a given DBTG implementation , however , a database key does have some -.

physical implications. For example, in UNIVAC’s DMS 1100 [8 ,9J, a database

key is made up of an area name and an area key. The area key, in turn, is

composed of a page number within the area and a record number within the page . 
-

In this way , a record occurrence with a particular database key is forced to

reside in a specific page (a fixed—size block) in the database. However ,
it can be moved around within the page if a local page index is maintained

in every page . If the page determined for  a record occurrence is full , the

- - record may be placed in an overflow page and linked to the original page.

C. Currency Indicators

For each program (also referred to as a run—uni t )  a table of currency • 

-

status indicators is maintained by the DBTG system. These indicators are

actually database keys identifying the most recently accessed record occurrence

for each of the following:

(1) current record occurrence of the run—unit

- 

- 

(2) current record occurrence of each area

(3) current record occurrence of each set type

(4) current record occurrence of each record type ]
(5) current set occurrence (identified by the owner

record occurrence) of each set type.

Most data manipulation statements refer  to the current record occurrence of

- - --
~~~~~~~

—5--—--
~~

-- -
~~~~~~~ 

-
~

— •••~~~~~~~~~~~~~~~ 5-~~~~~~~~~~~ 5~~5- . •~~



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —
-

—17—

the run—unit. Some others are with respect to the current record occurrence

of an area , set or record type . Insertion of a member record occurrence into
a set often requires the selection of a set occurrence, which may be the

current set occurrence.

D. Record Location Modes

The location mode of a record type determines the DBTG strategy to be

used for initial record pkcement in the database when a new record occurrence

is being stored. The DBTG record schema allows for three different location

modes for records. However, all occurrences of a given record type must have

the same location mode.

The location mode o~ a record is said to be direct when the user is

allowed the fac ility of ~pecifying the database key for each record occurrence
stored in the database. ~The record occurrence may then be placed in an area

and location determined by the database key. It is the user’s responsibility

to remember the database keys of these record occurrences in order that they

may be used for later reference.

If the location modei is defined to be calc , then the da tabase key for -
-

a record occurrence is computed by a procedure that uses some combination of

data items within the recprd as arguments. The data items are called caic keys.

The calc procedure may be either itnplementor—defined or defined by the data-

base administrator.

The location mode of a record may also be declared to be via a set in

which the record type is a member record type. In this case, the DBTG system

first selects an occurrence of that set based on the set occurrence selection

- - criterion (to be discussed in Section 3.4) . It then uses the set ordering

policy (also discussed in Section 3.4) to determine the logical positions

of the record within the set. It finally places the record occurrence in
- -

such a position that adjacent record occurrences within a set occurrence are

physically “close” or clustered.

E. Privacy Features

The DBTG proposal allows for privacy through locks and keys. For every

operation on each area , set type and record type , a privacy lock (or a procedure

to determine such a lock) may be specified in the schema. A run-unit which

requires a particular operation on an area , record or set , will have to provide

a matching key before the required operation is carried Out. The operation may

be opening or closing an area; retrieving, deleting or creating a record

occurrence of a particular record type belonging to a part icular area ;

- - - - • -- —~~~~~~- ~~~~~~~~-5- -- -—- - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ----5-

_________-------——.---
~~~~~~ ~- -r~~~~”~~ 

— -.- ‘- - - - - -

—18—

inserting a xecoxd into a set; etc. The SDBTG pxivacy m echanisms are not

content—dependent in the sense that a record occurrence can not be locked

out based on its contents. Either all records or no records of a particular

type in a given area are allowed to be accessed.

• 3.4 Set—Related Features

In this section we shall explain certain important aspects of the DBTG

data model that pertain to sets. In particular, we shall disc uss membership —

class , implementation mode, set ordering, indexed sets, search keys and set
occurrence selection.

A. The Set Membership Class

The membership of a record type within a set may be declared to be one

of the following four classes; automatic mandatory, automatic optional,

manual mandatory , and manual optional.

If the membership of a record in a set is automatic (whether it is mandatory

or optional), then whenever an occurrence of a member record type is stored in

the database, it is automatically made a member of an appropriate occurrence

of the set determined by the set occurrence selection criterion for the set.

The responsibility of inserting any new member record occurrence into a set

is left to the run—unit if the membership is manual.

The membership of a record type in a set being mandatory implies that once

the membership of a record occurrence in that set is established , the member-

ship is permanent . Its set occurrence may be changed by an appropriate command ,

for example modify, but the record occurrence cannot be removed from the set

without deleting ~t from the database. [f the membership is ~p~ional then a

record occurrence may be removed or reinserted into the set by the run—unit.

B. Set Implementation Modes

The manner in which a set is implemented is indicated through its mode.

Two possible modes have been defined by the DBTG. If the mode is chain, then

a chain of pointers is created which can be followed and which provides for

serial access to all records in the set occurrence. The pointers are normally

embedded in the records. If the mode is pointer array, then a member record

in a set occurrence does not point to the next member record . Instead , the

owner record contains a list of pointers (i.e., the database keys of the

member records) which point directly to its member records.

C. Set Ordering -
The ordering of the member records in a set occurrence is determined by

the schema set—entry specification. The order in which the member records  

- — —~~ - -—-5-—-- - - ---- 5- - 5 -  - -- - 

-



F- -

~~

-

~~~~~

--

~~~~ 
~~~~~~~~~~ ~~~~~~~~~~ _ 2

5-’

~~~~~~~~

5-

~~ ~~~~~~
-

~~~~~~~~~~~~~~
-

~~~~~~~
5- 5 - • 5 -  

-

~~

—19-.

are inserted in a set occurrence may be either in a sor ted order or in an
order dependent on the time sequence in which they are inserted and the position
of the current record in the set. A member record may be inserted first (or

last) meaning that its position in the set is next (or prior) to the owner

record of the current set occurrence . If the ordering of a set is declared
to be next (or prior), then any member record occurrence will be inserted in
a position next (or prior) to the logical position of the current record
of the set. On the other hand , if the set is declared to be sorted by some

data items (e.g., database key) of the member records, then the logical position

of a member record in a set occurrence will be such that all the member records

in the set occurrence are sorted by the specified data items.

D. Indexed Sets and Search Keys

Any set declared to be sorted may also be declared to be indexed. This

causes the system to build an index on the basis of the sort keys specified
for each occurrence of that set.

An arbitrary number of search keys may also be specified for a set

regardless of whether it is sorted or not. The arguments for such search

keys must be data items included in the member records of the set. The

declaration of a search key causes the system to develop some form of
indexing for each occurrence of the corresponding set.

E. The Set Occurrence Selection -

The system may be asked to select a set occurrence among all the occurrences

of a set type. This is done by declaring a set occurrence selection clause for

each member record type of the set entry in the schema. Automatic set occurrence

selection is necessa~y when the system is required to find a set occurrence

in which a member record occurrence is to be inserted or found. Therefore ,
there is a set occurrence selection clause for each member record type and one

for the owner record type. For any particular member record type , its set
L - occurrence clause will be used in the following circumstances to determine

the appropriate occurrence of the set in which the member record occurrence
is to be inserted or may be found:

- - 
(1) During the execution of a particular type of find state—

- - tuent (namely, find m~mber—record—name via set—name) , a
• - set occurrence named set is determined using the

- - set occurrence cion clause for the member record

• type . An appropriate member record occurrence is then

found within that set occurrence.

L - - - _________- ~~_ M _~~~~~~~~ j - -~~~~~ - ~~~~~



- T = :  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,—

~ 
- - - - -

—20—

(2) During the execution of a store statement , when the
member record type to be stored is an automatic member
of one or more sets.

(3) During the execution of a modif y statement which changes
the value of a data item specified in a set occurrence

selection cluase.

A set occurrence selected may be the one containing the current record

of the set. Another case may be where an owner record occurrence of the set

is first selected using its database key or calc keys. This owner record

then identifies the required set occurrence. There are many other methods

of set occurrence selection. We shall reserve a more detailed discussion

until Section 4.

3.5 Some Data Manipulation Facilities

The user writes his programs using a general—purpose language that hosts

the DBTG data manipulation language (D~1L). DML facilitates operations on

sets, performed usually through navigation of the sets. The starting opera—

tional point of most DML statements is the current record of the run—unit. - -

Others can be based on current set occurrence or the current record occurrence

of a set, area or record type. A find statement may be used in order to

establish a record occurrence as the current record of the run—unit and also

(optionally) as the current record of an area, record type or set. The

delete statement may be used to delete the current record occurrence of the

run—unit and to delete also the mandatory members of all sets in which the

deleted record is an owner. The statement retrieves the current record

of the run—unit and places it in the user working area. A store statement

is used in order to place a new record occurrence in the database . To manually

insert record occurrences into sets, the insert statement is employed; and

any optional member record occurrence may be removed from a set by using the

remove statement. To modify the values of data items in a record occurrence,

the modify statement is used , which may also change the membership of the

record occurrence from one Set occurrence to another (of the same set type )

if the data items modified are those appearing in an appropriate set occurrence

selection clause of the schema. The syntax of each statement , together with

its detailed semantics may be found in [2]. j
•~~~ For each record type defined in the schema, the system maintains a user

working area(UWA ) for that record type. Thus, at any instant, one occurrence

of each record type may be stored in the IJWA, for ready reference by the run—unit.

-J

—- ——5 --—~~~ — ~~~~- ——- -—--~~--5 ~~~~~
- •i 5- -—— 

—- - -5 —- __  - - ____ •_ s_ ---————--~~~~~~ - _— ‘— 5- —— - — — 5 - ~~~~~~~‘~~~•



- _-‘v- ..~~ r- -~wc-’r---~~~~~ - 
— — —y- ~~~~~~~ -_ -

—21—

4. DEC REALIZATION OF A DBTG DATABASE

In representing a DETG database on the DBC , the primary goal is to
preserve the original information such that all operations performed on the
DBTG database may still be performed on the DBC database with the same effect.
To a user (or user program) , the DEC implementation will be transparent.
Aside from noticeable improvement in performance , the user will not be able
to determine whether the implementation is on a conventional computer or on

the DBC.

4.1 A Matter of Representation

A DBTG database is usually accompanied by a collection of indexes. An

index is maintained for each search key declared in the schema . We ,
however , intend to represent the entire DBTG database without the use of such
indexes . This will be possible due to the content—addressability of the

DBC . Secondly, any record in the DBC must contain as keywords all information

on which a user may choose to conduct a search . Thirdly, we would like to
locate a record without navigating through a sequence of other rec ords and
this Implies the elimination of pointers within records. Under the above

guidelines , let us take up the problem of representing a DBTG database .
Since directories are to be minimized , most of the search—related

information must be stored only as part of the DBC record. In addition ,
any other information related to a record will be preserved as at tr ibute—
value pairs. We may recall that the DEC can conduct an associative search
based on queries that are composed of conj uncts of keyword predicates;and each

keyword predicate consists of an attribute, a value and a relational operator .
It is important, therefore , to represent as keywords of attribute—value pairs

all information that can become part of a search argument . Any other informa —

-: tion may be stored in the record bod y as non—keyword attribute—value pairs.

Since the content—addressability of the DEC is restricted to individual
MAils , the search space should be limited to as few MAUs as possible . For

this reason, some of the keywords will be designated as type—D keywords while

L 

others will be treated as clustering keywords. A discussion on the proper

choice of such keywords will be found in Section 4.3. Both type—D and

clustering keywords require storage and processing in the structure memory (SM) .

- • 

4.1.1 Representation of a Record

We now consider what information must be included in DBC records so that

• they can collectively represent every feature of the DBTG records. A record

occurrence in a DBTG database belongs to a particular record type. It exists

- - —~~~~~~~~~~~~~~~ ----•-— ~~~~~~_a _-_-_ _  - 5--— --



- - • - -~~--- - 
-~ - -  -

~~. —— -~~~~~~~~~~~~=~~~~~~~- - -== ~:2 
• - -  

- _ 
- - 

- • —p—’ - - -

-22-

in one and only one area . It has a unique database key . If it is a member
of some set occurrences , the record occurrence must contain information that
indicates the set occurrences to which it belongs as well as its logical

position within these sets.

A. Representing the Record Type

The characteristics of all the record types are specified in the schema.

Occurrences of these record types are stored in the database. Thus , every
record occurrence belongs to a particular record type . We indicate this

fact by including the following keyword as part of the DBC record representing
the record occurrence:

<REC—TYPE, record—type>

where REC—TYPE is the attribute and record—type is the value; record—type

is one of the record names defined in the schema and the one to which the

particular record occurrence belongs.

B. Handling the Area

An area is a logical subdivision of the database. We have discussed in JSection 3 some of the reasons a logical subdivision may be useful. The various

areas are specified in the area section of the schema, for example ,
AREA NAME IS MEDICAL-AREA

where MEDICAL—AREA is destined to be a logical area name .

In the record section of the schema , a record type may be specified to 
• I

belong to one or more areas. However, when an occurrence of the named record

type is physically placed in the DETG database, it can only be placed in

exactly one area. The necessary area name is provided by the run—unit through

an area identifier.  For example , consider the schema definition 
)

RECORD NAME IS EMPLOYEE

WITHIN MEDICAL-AREA, EMP-AREA AREA—ID IS ID-l

Before storing a record occurrence of EMPLOYEE, the user can indicate the
necessary area to be used by initializing ID—i to either MEDICAL—AREA or

EMP—AREA , but not both.

We represent the fact that a DBTC record occurrence belongs to a given

area by including in the corresponding DBC record the keyword

<AREA , area-name>
• where AREA is the attribute and the value, area—name,is the name of the area

in which the record is to be placed .

• --- - 55----— ---~~~~~~~~~~~~~~~ 
-



‘
~~~~~~~~~~~~~~~~~~ - ---

~~~~~
- --  --- - — 

~~~~~~~~~

—23—

An area may be declared to be temporary in which case it is not shared
among concurrent run—units. Thus a temporary area is private to a run—unit .
For this reason , we use a keyword

<AREA , run—unit—id .area—name>

where the area name is qualified by the run—unit id. After a run—unit
terminates, all its temporary areas can be recovered by deleting all DBC
records containing a keyword of the above type, i.e.,

<AREA , run—unit—id .area—naine >

where area—name is one of the temporary areas used by the run—unit .

C. Database Keys and the Key Space

A database key is associated with every record occurrence to uniquely
identify it from all other records in the database. Although it is supposed

to be a logical identifier, its detailed structure in a DBTC implementation
is usually not without some physical implications. It is necessary to

determine a physical address of a record occurrence based on its database

key. This determination is more easily done if at least a portion of the

database key identifies a portion of the physical address.

In DMS 1100 [8,9], for example, a database key consists of an area

code and an area key. Every area is assigned a unique code among all the
areas . Each area is allocated a number of pages or fixed—size blocks in

the secondary storage . The area key consists of a page number within all
the pages allocated to an area , and a record number within the page. Thus ,

- - in DMS 1100 , a database key consists of

(1) an area code

(2) a page number

(3) a record number .

- - The database key for a record occurrence may be generated by the system

or it may be determined by the run—unit . The manner in which a database key

is to be generated for occurrences of a specific record type is governed

by the location mode of the record type . For example ,the schema definition of
- - a record type may look like

RECOED 1~AME IS R-1

LOCATION MODE IS DIRECT AREA-KEY , AREA-NAME

This specifies that before trying to store an occurrence of record type R— 1

the run—unit will initializ~ the variables AREA—KEY and AREA—NAME , which

together constitute a database key. In this case the run—unit directly

- - —--—--—--- - - - — -~~~~
---- - -S- - - - —

~~~~~~~~~~~~~~~~~~~~~~ 
- ~~~~~~~~ ~~~~



- —. _( “5

r~ 
“

~~~~~~~~~~
—

~~~~
“ I -— —

~
- —

—24—

determines the database key.

There are two other record location modes. One is based on a calculation

on certain data items of a record . For example ,
RECORD NAME IS R-2

LOCATION MODE IS CALC CALCSTATE IN NAMED-AREA
USING STATE-NAME DUPLICATES ARE NOT ALLOWED

02 STATE—NAME PICTURE IS X(12 )

- - - In this case , it is specified that the procedure CALCSTATE must be used with
the value of the data item STATE—NAME as argument to determine a page number

and a caic—chain number within the area called NAMED—AREA. The DUPLICATES

ARE NOT ALLOWED clause Indicates that no two record occurrences may have
the same colc keys, that is , they cannot have identical values for  the data
item STATE—NAME.

The other location mode Is via a set. For example,

RECORD NAME IS EMPLOYEE—EDUCATION

LOCATION MODE IS VIA EMPLOYEE—HISTORY SET

In this case, the database key (and thus the location ) of an occurrence of
EMPLOYEE—EDUCATION record is determined on the basis of its participation

as a member in the set called EMPLOYEE—HISTO RY . The area for the record
occurrence Is — pecified by the run—unit through an area identifier (unless
there is only one possible area for the given record type).  But the area
key is determined by using the fact that the record occurrence may be
located near its adjacent fellow—members in the EMPLOYEE—HISTORY set.

In the DBC , a database key need not have any physical implications.

We shall only be concerned with the fact that in some cases the database

key is created by the system and in other cases the run—unit  is given control

of determining a database key. We therefore create a key space of integers

and divide it into two parts.  A key space will be a set of integers from 1

to N where N is a very large number, usually a few orders of magnitude

larger than the maximum number of records that can exist in the database at
any given instant. A new record occurrence will be assigned the next un—

allocated number between 1 and N/2 as the database key, if the database key
is to be generated by the system. If, on the other hand , a key is determined

~~~~~~~ 
j

• . •- - — -- 5-

— —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-25-

by the run—unit , then the assigned database key is made N/2 larger than the
user—specified key. This is shown in Figure 4.1.

It must be remembered that the database key is there in order that the
system may refer to the various record occurrences. We may refer to a record - -
occurrence not merely by the database key but also by other means. For example,

when location mode of a record is direct, we may refer to a record occurrence
- . by its database key as well as its record type. When location mode is calc,

then the cale keys (data items in the caic clause) will be used , besides the
- . record type. In this case the database key need not be used at all. Finally,

- - when the location mode is via a set, then there will be other means to locate
a record as discussed in Section 5. Once the database key has been determined

in the manner described above, a keyword of the following form will be
included in the DBC record :

<DBKEY, database—key>

where DBKEY is the attribute whose value is the database—key of the record.

The DBTC model allows for a special record type called SYSTEM, which can
have only one occurrence. The database key of zero will be reserved for the

DBC record which represents this record occurrence.

D. The Notion and Assignment of L—numbers

A conventional DBTG implementation generates database keys based on the
location mode. A database key will then actually identify a physical address.

This leads to a degree of data dependence which we intend to overcome in the
DEC implementation. Instead of allowing a database key to represent a

physical address , the DBC can maintain database keys in the structure memory (SM).
Every database key <DBKEY , database key> could be declared a type—D keyword.

Thus , given a database key , the DBC determines the MAil number of its correspond-

ing record. However, an abnormally large amount of storage would be required

since there will be a directory entry for every record in the database.

Let us take a closer look at the problem. The DBTG data manipulation

features may require us to locate a record based on its database key if location

mode is direct , based on certain data items if location mode is caic and based

on its participation in a set occurrence if location mode is via a set. We

will use this knowledge directly to determine a strategy to locate records .

- - 
Although not specified in the April ~7l DBTG report , most implementations

require that the number of pages required for every area and also the size of

the pages in units of words or bytes be specified (see , for example , [8 ,9 J ) .

Since at a particular installation, the MAil size of the DBC will be known,
it will be possible to determine the number of pages that may be f i t ted into 

-
-

—-5 -~~ —5--— —.
~--- --- 

5- — —---——5- 5-—--



‘-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~~~~~~~~~~~~~~~~~
‘5’5

~ ~~~~~~~~~ “~~
_5-5- . 5- _

~~~~~~~~~~~~~~~~~~ 
-
-

- ~~~~~~~~~~~~— -5---- - -- - - — —5—- - -

-.26— -

1 .-

System keys If’ User—specified keys —--~~ -

-

~~~~~a~~~~~~~ d 

N/2 

+ user-

— next unallocated
- key 

s_ I  

-

— —
- 

Figure 4 .1. Determination of database key for the next record - I
occurrence to be stored in the database

I

I I
:1 -I 

~

-

~

L - 5 - —— - — - - -~~~~~~~~ - 5 -~~~~~~~ - --- -———-_ 5-



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
s __________ -- -

—27—

a single MAil. We can thereby determine the number of NAUs required for the
entire database . A scan of the schema will also allow us to determine the
number of record types in the database.

We will introduce at this point the concept of L-.nuinbers. An L—number
- t  - 

is a logical number assigned to every record occurrence in the database. It

will not be used to identif y a record but rather to aid the D3C in locating
the MAil housing the record . We shall see in Section 4.3 that both record

• - type and L—number will be used in locating records in the DBC . An L—number
will actually act as a record type partition n-umber. All record occurrences

of a particular record type will be placed in disjoint partitions. Every
such partition can be identified by a record type and an L—number.

The assignment of L—numbers is as follows . Let there be n MAils and
t r record types in the database . Thus all occurrences of each record type

can be accomodated in m (-air) MAils on the average. We theref ore need to
* assign m L—numbers uniformly among all the occurrences of each record type.
- We can thereby hope that all occurrences of a given record type and having

a given L—number will f i t  into a single MAU. However, because of the

variability of the number of occurrences per record type , we shall use mp —

L—numbers 1,2 , . . .mp, where p>l . Possibly p 4  or 5, which is a design decision.
If the location mode is direct , then the database key of a record occur-

rence is hashed in order to determine its L—nuniber from the range 1 through

mp. If the location mode is calc, then the caic keys are hashed to an L—

number. Finally, if the location mode of a record is via a set, then the
appropriate set occurrence is first determined by using the set occurrence

selection procedure for the given set. Once the set occurrence is determined ,

the L—number of the owner record of this set occurrence is known. We then
• - assign this L—ttumber to the record occurrence in consideration.

- - . - Once the L—number of a record occurrence to be stored has been assigned ,
the following keyword is included in that record occurrence:

- 
<L-NUXBER, L—number>

- 
-~ where L—number is the one determined for the record occurrence. This keyword

will be used both as a type—D keyword and a clustering keyword. Thus all

7 records of a particular type with identical L—numbers will likely be stored

in the same MAil. Besides , since the possible number of L—nuinbers is small

‘ I ~~ (only mp of them) , the size of the directory , and therefore the SM storage
• requirement , will also be small.

- - -~~1
1-i



-- -
~~

-
~~

-
~~~~~~

-
~~~~~~~~~~~ 

5-
- r~~~~~~~ ’~-

” ”5  ____________________

r

—28—

The sm,... na.hing procedure may be used for both the direct and calc - -

location mode.. The impl~~sntor -may also choose to have different procedures.
If , during the execution of a run—unit, a record occurrence is to be re-
trieved based on its location mode (direct or caic), then the L—number will
first be calculated using the same hashing procedure that was used for
storing the record occurrence. A DBC retrieval command will then be sent.
The comaand will include the predicate (L—NUMBER—L—number) as part of the

query. When location mode is via a set, the L—nuniber only serves the purpose
of clustering the records in a set occurrence; the location mode of such a
record is never used for retrieval purposes.

E. Representing the Data Items of a Record

The structure of a record type defined in the schema is similar to a
COBOL record with a hierarchical conf iguration of data items associated with
appropriate level numbers.

RECORD NAME IS R

0 2 A
0 3 B

04 C PlC 9(2) —

04 D PlC 9(2) j
03 E PIC~X(5)

O2 C PIC X(5)

The terminal nodes of the hie.rarchy tree are called leaves, and for each 7’

leaf we need to store a keyword in every occurrence of this record type. With-
in a tree, if the names of all the terminal nodes are not unique, then they
may be qualified by the names of nodes higher in the hierarchy such that the
qualified names are all unique. For example, in the above record , the two terminal
C—nodes are distinguished by qualified names B~C and R~C.

The keywords included for these data items will each have the qualified
item name preceded by the word “RECORD.” as attribute. The word “RECORD.”
is included only in order to indicate the fact that the attributes are asso— 

r
d a ted with the data items in a record . Thus the keywords for the data items
of this example are;

L

- - -- - 5- --- - -—5---  — 5 -— - - - ~~ss__ _
~
____ _ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5--~~~~~ -~~~~~-5 __________________ — -


.—*--,*--_

r~~~~~~~ i~
— T

~~ ~~~~~~~-~~-~~~-~~~~~~-- -
~~~~~~

‘

—29—

<RECORD . B - C , value>

<RECORD.D, value>

-. - 
<RECOBD .E, value>

<RECORD.R C, value>

where value stands for the value of the appropriate data item of an occurrence.
Storing data items as keywords of attribute—value pairs increases the

- - 

storage requirement since the data item names are stored (as attributes) in
• every record occurrence. However, in the DBC implementation, the data item

- 
- - names will be coded. Since there are usually only a few data item names

within a record type, the codes will be small in size.

• There is a tremendous advantage in storing data item values as keywords

. 
, of attribute—value pairs. Since they are not type—D keywords, there is no

- 
storage overhead for directory maintenance. Yet, a random search can be ef—

- ficiently conducted by the DBC for records containing arbitrarily specified
data item values. To conduct a random search on arbitrary data items, a
conventional DBTG system will require an index on every data item. In the
absence of such an index an exhaustive search of the database will be neces-
sary.

4.1.2. Representation of Set Membership

A set, as we have observed in Section 3, consists of one owner record
type aLd one or more member record types. A set occurrence will be identi—
f ted by an occurrence of its owner record and it may consist of an arbitrary
number of member record occurrences. It is important to remember that all
occurrences of a given set are pairwise disjoint implying that no tenant

(owner or member) may exist in two occurrences of the same set type.
- 

We shall now illustrate how the member records of a set are represented
in the DBC and how their logical positions are indicated. A schema set entry

consists of a set subentry and one or more member subentries. The set subentry

names the set, defines its mode, its owner record type, and the logical order—
t ~ ing strategy for its members. Each member sube~~~y names a member record type,

• • its membership class (mandatory or optional, automatic or manual), the sort

— keys for ordering, any search key for which an index may be created and the
set occurrence selection criterion.

[1 A member record occurrence belongs to a set occurrence identified by an

owner record occurrence. Let us assume that a record occurrence r is a member 

__i_____ —- ’—-—_~
_ _ - - - - —~~~~~- 5--— ---—5- —-———— ~~~- -—

-~.‘~--—- - —~
—---—---—— -

~~~~~--~ —— -.5 —---———-—*---— — - ---‘-—-—--- --- ‘--—-——~- - —5



~~~~~~~~~~~~~ _. - rr~— —  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~‘~~~~~~~~~~~~~~ 5- 5-

—30—

of the set called set—type and that the corresponding set occurrence is

identified by owner—database key, which is the database key of the owner

record occurrence. We then include in r the keyword

—~SET.set—type , owner—database key>

in order to identify the set occurrence in which it is a member. For each

set in which r is a member, a keyword of this form will be included in r.
Although the database key of the owner record occurrence uniquely

identifies a set occurrence, it is not enough to store only that in a member

record occurrence. This is due to performance reasons. Given a member record

occurrence, we shall often be required to locate its owner in a given set, 
- 

-

and this cannot always be done from a knowledge of the database key alone. We

also need to know the L—number (record type partition number) of the owner

record occurrence. Assume, once again, that a record occurrence r is a member

of the set called set—type and that the owner of the corresponding set

occurrence has an L—number termed owner—L—number. We then include in r the

following non—keyword attribute—value pair:

<OWNER-L-NUMBER.set-type , owner—L-number>

A record type may also be declared to be the owner record type of an

arbitrary number of sets. For each set of which a record occurrence r is an

owner, we include in r the keyword

<SET.set—type, OWNER>

where set—type is the name of the set.

4.1.3 Preserving Set Ordering

It is not enough to show only the presence of a member in a set. In the -

- - DBTG model, the logical position of a member record within a set occurrence is
also considered to be of significance. The member records may be ordered in

two different ways . The ordering may be based on the time of insertion of a

new entry into a set and also on the current record of the set. In the second

method , the ordering is based on certain sort keys of the member records. We

shall consider them in turn .

In the first type of ordering, the order of insertion may be declared

in the schema to be f i rs t , last , next or prior . The insertion point of a member

record occurrence in each of these four different  cases is shown in Figure 4 .2.

It should be noted that only one of the four cases can be specified for insertion

order . When the order Is first, any new member record will be inserted next

to the owner of the appropriate set occurrence . When the order is last , the

new member record is inserted prior to the owner record occurrence . If the

L ~ 
_

~~_ — ~~~~~~~~~~~~~~~~~~~~ ~~~~-_- s _ ~~ 
_-__ _



- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ _

~~~ —~—- ~~~~~~~~~~~~~~~~~~~~ ~ ~~ ~~~ 
~~~~~~~~~~~ 

-

—31—

order is FIRST

/

current record

/
ofset

_

/ /
Set occurrence for insertj%n /

/ /

\ /
order is NEXT

- -
\

L order is PRIOR

- _- order is LAST

-

1.

owner record occurrence
-

-

: member record occurrence

- -
Figure 4.2. Insertion points to maintain set ordering

-

-

- — — - - ---5-— — - --— — —-5--

5- _
~~~~~~~

- -,—-—- .,- ~-____~~--,—--.-- ~~~~~
_
~~~~~

5-

------ 5- - --- --

—32—

order is next (or prior), then the insertion poin t is next to (or prior to) - j
the current record of the set.

A. Cases where the Set Order is First or lest

The ordering information may be maintained by assigning a sequence number
to the member records of a set occurrence. The owner record is numbered zero,

the first member is numbered 1, the second member is numbered 2 , etc. This
may be done easily when a set is first created . At any later stage, some

deletions or removals from the set may change the numbering but it will always
be the case tha t the owner record will be numbered zero and the i—th member
of a set occurrence will have a number larger than that of the (i—l)—th

member.

Let us f i rst take up the case where ordering has been declared to be last.
Assume that N5 is the maximum sequence number assigned thus far to any member

record of a given set occurrence . When the next member record is inserted 5-

into this set occurrence it may be numbered N5 + 1. When a member record is

removed from a set occurrence, nothing is done to the numbering of other —1
member records. Thus at some stage, after a very large number of removals and

insertions, the maximum assigned sequence number N5 may exceed a f ixed number N ,
and only then a renumbering of the members of the particular set occurrence
need be done . But these re—numbering operations will be extremely infrequent;
for example , if N is io~ (approximately, a 32—bit number) and the number of
member records in a set occurrence is always much less than N, then about

~~ insertion and removal operations will be required before a re—numbering will

be required .

A similar, but not identical, strategy will work in case the ordering is

declared to be f i r s t . To insure that at any instant the owner of a set]
occurrence is numbered zero and the i—th member is assigned a sequence number

larger than the (i—l)—t h member , we may do the numbering in reverse.

Once the sequence number of a record (owner or member) within a set

occurrence s is decided , it is stored as a keyword of the record in the form:

<SETPOSIT ION • set—name , sequence—number>

where set—name is the set to which the set occurrence s belongs. -

Global information on a set occurrence, such as the current number of - —

members and the maximum (minimum) assigned sequence number when ordering is

last (first), will be stored in the owner record of the set occurrence. Thus,
‘ the owner record occurrence R of an occurrence of the set named set—name will

L

contain the attribute—value pairs

<SET—MEMBER.set—name , p>

and <SET—SEQNIJMBER.set—name, N8> F’

- —— 5- — ~~ —~~~~~~~~-~~~~~~~~~ —- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -
-- ~~~~~~~~~~~~~~~~~~~~~~~~ - - - 5-— -~~~~~~~~~~~~~~~~

-
- - - -

- - - - - - - -

~~

*-- --—

~

-

~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~~~~~~~~~~ TTTTT P~~~~~-. - - 1

—33-.

where p is the current number of members in the occurrence of set—name ,

identified by the owner record occurrence R , and N5 is the maximum (minimum)
assigned sequence number for the same set occurrence. These two attribute—

value pairs need only be stored as a part of the record body and not as keywords,
since they will never be used in any content—addressing command.

It is clear from the preceding discussion that in the DBC the insertion

of a record into a set occurrence does not require any reference to other

member records when set order is first or last. Only the owner record

occurrence will have to be referenced in order to modify the current number of

members , p , and the maximum (minimum) assigned sequence number, N8. On the
other hand , in a conventional DBTG implementation with pointers, it will be

necessary to modify the link or pointer fields of one or two other records

(next and prior to the inserted record) depending on whether the list of member

records is singly or doubly linked.

B. Cases where the Set Order is ~~xt or Prior

When the set order is next or prior, a numbering scheme for the DBC

implementation is more involved. The numbering process will be discussed in

two parts:

(1) an assignment process for a new member to be inserted into

a set, and

(2) a re—numbering procedure when a new member cannot be inserted

without modifying the assigned number of at least one other

member record.

Let us assume the configuration of a set occurrence as shown in Figure 4 .3.

The existing member records are sequence numbered n1, n2 , . . . ,  n.~ where p is

the number of records that are currently members of the occurrence. Assuming

that ordering is next, the new member is to be inserted between the records

numbered n1 and nj+l. Its sequence number is chosen as

l ni+l — n j
fli~~f [._~ 2

if 
~~i+1 — ~1)> l .  Otherwise , the re—numbering procedure will be invoked to

re—number all the member records in the set occurrence. The reasoning behind

the above scheme is as follows: whenever a number is to be selected between

L 

- two numbers nj  and n~~ 3 ,  it is advantageous to select the new number halfway

between the two. Assuming that at a later stage, a number may have to be
selected with equal probability between the two halves thus created , there is
a good chance that the same process may be repeated without resorting to

4 ~~-— — — -~~~~~~~~~~~~~~~~~~~~
-
~ 

-——— -5  ~~~~~--~~ -~~~~ 5-—~~~~~~~~~~~~~~~ -~~~~~~ -5 —~~-~~~~~~—-—— - - -5
~~~ --~~~ -~~~~~~~~~ —— - -- -

~~~~~~~~



-— - —--~~-~~~~. 7~~~~ 
*-

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -5 -~~~~~~
5-’

~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-r5-~~~~~ -~~~~~~

.34...

‘ current of set

n0 0 n1 fl2 nj...1 ni nj+l np+l nP - -

current set occurrence /
/

~~ insertion point whenL insertion point when order is nextorder is prior

owner record 

-

~~

member record - -

The records in the set are labelled with their sequence numbers
indicating their positions in the set occurrence,

- 

~~
- n0 = O<n1<n2<...<n~. 

- -

H Figure 4.3. Sequence number generation of a new member when ordering is
next or prior



-- 
~~~~~~~~~~~~~~~ ~~~~~~ T ‘5- 

—~ - -

—35—

re-numbering ,

A new record is to be inserted as the last record of a set occurrence
—

when the curren t record of the set is presently the last member in its set
occurrence . In such a situation, if n~ is the sequence number of the last

a member in the set occurrence , then the new member is assigned a sequence
number

H

~~~+ [ N ~~~ j
if (N—n~ )>l , where N is a fixed , very large number. In case N = n~+l~ then
a re—numbering will be required. Notice that the special case just discussed

also takes care of the situation resulting from an empty set (that is, the
set occurrence consists of the owner record alone). When the set occurrence
is empty, then p=O and n~ 

= fl
0 

= 0 and the new member record will be assigned
a sequence number

In the event of a “collision” (i.e. , when a sequence number is to be
- 
generated between flj and but (ni+l — nj) = 1), then re—numbering is re—

quired for all the members in the set occurrence. This is done as follows.

Let p be the number of members currently existing in the set occurrence (p is
a count of the member records alone, the owner is not counted in p). Form

a real number b as
b -  N

p+l

The owner record is then given a sequence number no— 0, the f irst member is
assigned n1 .Ino + bj, etc. and the last member is assigned a sequence number

~ L~o + pbj. After re—numbering, the new member may be assigned a number
by the assignment process previously described . The re—numbering scheme ensures

that there is an equal number of unassigned sequence numbers between any two
assigned sequence numbers . The case of prior ordering can be handled in a

- - similar fashion.

Once again, the keyword needed for the sequence number in. every tenant
(owner or member) of an occurrence of the set named set—name is

<SET POSITION .set—name , sequence—number>.
The owner record also keeps track of the number of member records p, by means

of an extra attribute—value pair (which is only a part of the record body and

is not a keyword)
— 

<SET-NEMBER.set—name , p>

C. Ordering by Sort Keys

The members in a set may also be ordered by some sort keys. Special

attribute—value pairs to indicate the ordering are only needed when duplicates

5- —5- --—--’ —5- —5---



-
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ T ,.— -

—36—
1

are allowed (i.e., when two or more members in a set occurrence are allowed

to have identical sort keys). In this case, ordering information will be lost
in the DBC representation unless a special keyword is inserted in those member

record occurrences. There are a number of ways in which ordering may be

established through sort keys . Let us consider each in turn. In each of these
cases , we will take as example a set type S declared to have record type RO
as owner and record types Rl, R2 and R3 as members. Furthermore, we shall
concentrate on a single set occurrence of S in which there are the following

member record occurrences:

Type Rl , DBkey 100, sor t key 12

Type Rl, DBkey 200 , sor t key 9
Type Rl , DBkey 300, sor t key 10
Type R2, DBkey 250, sort key 24 -

Type R2 , DBkey 150, sort key 28

Type R3, DBkey 400, sor t key 15
Type R3, DBkey 080, sort key 17
Type P3, DBkey 500, sor t key 30

(1) Ordering on Database Keys — The members are ordered by their database

— keys, independent of their record types. Thus they are ordered as shown in

Figure 4.4. Since database keys are unique, no special keywords are needed

in the record occurrences to represent the ordering.

(2) Order ing on Record Types as well as Sort Keys — The major sort key
for member records may be the names of their record type (or their record codes

if every record type is assigned a unique integer as a code). The minor sort
-

keys will be the sort keys of the individual record types as indicated in the

schema. Figure 4.5 illustrates the configuration of our set occurrence with

respect to such an ordering. As before, no special keywords are necessary to

retain ordering information since such information is already stored in every

member record occurrence in the form of its record type and sort keys. The

special case arising due to duplicate sort keys will be considered later.

(3) Ordering on Sort Keys Irrespective of Record Types — This type of

ordering is relevant if a set is composed of more than one member record type.

Ordering on sort keys irrespective of record types means that the member
- - records in a set occurrence are to be maintained in a single sequence regardless

of the number of different member record types specified for the set. The

• corresponding sort keys for each member record type must, therefore , have

iden tical da ta charac teristics and must also match in terms of whether they are
ascending or descending keys. For example, if RA and RB are two different

iIl ~=LL ‘ —----- - ~-~--—~-.-.-~ __-~~.- -~------ —--—-~-—-~-—-- - - -—- -- -~~~~~ —~~~~~~-‘- —~~~- - - —‘-- —- ~---—-—- - - -
- 5-- —~~~~~~~~~~~~~~~—‘ --

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 
- 

1 (member records are labelled with their types
and database keys)

j Figure 4.4. Members ordered by database keys

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- (member records are labelled with their types

- -

and sor t keys)

- Figure 4.5. Members ordered by record type and sort keys

- - - - ~~ --- -5- 5- - ~~~~~~~~ —--‘ —~~~~— - _

“‘—-5 “ 5 -
~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -5-- -- 

—

—38—

member record types in a set, if RA is to be sorted by its data items Al

(major key) and A2 (minor key) and if RB is to be sor ted by its data items Bi - -

and B2 , then Al must have the same data characteristics (e.g., the same PICTURE
clauee) as Bl, and A2 must have the same data characteristics as B2. In our , 

-

example, assuming that Rl, R2 and R3 have sort keys with identical data charac-

teristics, our set occurrence will be as depicted in Figure 4.6.

With an ordering of this type, the DEC can retrieve records of a set

occurrence sorted by a major key only if all these records have the same key-

word to represent the data item that is the major sort key. To ensure this,

a new attribute, SORTKEY , is created for the major key, and in each member
record occurrence the keyword

c SORTKEY , value>
is stored, where ‘value ’ is the value of the major key. For example, if record

type BA is to be sorted in set S by data items Al and A2, where Al is the major

key, then every occurrence of RA will have the following two keywords, - 
-
~~~

<RECOED.A1, value—of—Al> and <SORTKEY, value—of—Al>.
Since the DEC cannot sort by more than one keyword, it is unnecessary to store

similar keywords for the minor keys . Sorting on the minor keys will be done in
—

the interface buffer . —

(4) Ordering on Sort Keys but Only Within Record Types — Within a set

occurrence , instances of a member record type may be sorted without regard to
the order of other record types in the set. This does not mean that there

is an implied major sort by record type, It only means that when a given

type of record is considered independently of any other member record type ,

it is in sequence by its own sort keys. In our example, it is possible that

occurrences of Ri, R2 , and R3 may be interleaved but all occurrences of Rl,
for example, will be in sequence within the set occurrence . In a given

implementation, however , it is most likely that all occurrences of any

particular record type will be clustered together, but the “inter—cluster”

sequence will not depend on the record type but may depend on the chronological

order in which the first occurrence of each record type has been inserted into

the set occurrence. Thus, a possible configuration of our set occurrence is

given in Figure 4.7. Once again, no special keywords are needed in the member

record occurrences unless duplicate sort keys of any record type are allowed.

The special case where duplicates are allowed will be considered later.

(5) Duplicate Sort Keys — If two or more occurrences of a record type R

in a set occurrence are allowed to have identical values for their sort keys,

then the DBC has no way to know the ordering among these record occurrences.

A
--— - — -—--— —-— —— —~~ -—‘ - - - --—~~~~~~ ‘—-‘—5- —-

__~~• ~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ W . - - - ___________________~
- - -

—39—

(l4ember records are labelled by their record types
and sort keys)

Figure 4.6. Members ordered by sort keys irrespective of
— record types

(Member records are labelled with their types
and sort keys)

Figure 4.7. Members, of each record type , ordered by sort
keys private to the record type

I

i ~~~~~~~~~
._ -

~~~~~~~~~~~~~ -~~~ — ——-— p -— -— ~~~~~~~~~~~~~~~~~~~~~~~~ -— --——- ‘ — ‘  -“— ‘ —--——-— --



5-— --- -- —5-,——- —5- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~

—
- --— - _,•.--_,~~ -~~~~~~~_ _

_
~~~_‘v__w-— - - — - ‘- ~~

-5-- _ _ _ _ _

40 
. I

Hence, some extra info~~ation needs to be stored in the form of attribute—
value pairs. For example, if three record occurrences, Rh , Rl2 and R13,
have identical sort key values, then they may be numbered n1, n2, and n3,
respectively, to indicate their positions with respect to one another. If

Ru precedes Rl2 and R12 precedes R13 in the set order, then n1<n2-<n3.
Now, when another record occurrence R14 is to be inserted into this

set occurrence, and R14 has the same values for the sort keys as those of
Rh , Rl2 and R13, then R14 must be placed logically before Ril or logically
after R13 depending on whether duplicates are to be placed first or last

(as determined by the schema). If R14 is to be placed f irst, then number it - -

n4 such that n4<n1. If it is to be placed last, then number it n~>-n3.
For a particular record type in a set, if the duplicates are declared

to be placed last, then all its occurrences with no duplicates are numbered
-

‘ 
zero. All subsequent duplicates will be numbered 1,2,3, etc. On the other

hand , if duplicates are to be placed first, then all member record occurrences

H with no duplicates are numbered N, where N is a very large number. All sub—

sequent duplicates will be number N—l, N—2, etc. : ~1i
Thus, when duplicates are allowed in a set for a given record type R,

all occurrences of R must have a numbering keyword

~~~ 

,~ <SETPOSITION.set—name, sequence number>

where sequence number identifies the logical position of the record occurrence

I - among its duplicates in the set occurrence.

(6) Search Keys — Sometimes a user may decide to search for one or more

records in a set occurrence such that some specified data items satisfy certain

given values. If these data items are arbitrarily chosen, then in a conventional

DBTG implementation many accesses may be required before locating an appro—

priate record because it will be necessary to sequentially traverse the members
of the set occurrence. Such a task is more efficient on the DBC. A query

involving the identification of the set occurrence, the record type and the

data items will force a search of a very few MAUs (usually only one).

-
‘ The DBTG model allows indexes for data items declared as search keys

in order to improve performance. Otherwise,there is no alternative to a

sequential search. These indexes of course take up much primary memory .

The DBC implementation, on the other hand , work out much be tter in these
situations.

4.2 St~~iary of Keyword Assignment

L

In su~~ary , each DBC record occurrence is made up of the attribute—value

pairs described below. Each pair is a keyword unless explicitly stated otherwise.

- - - -5——-— --5—~~ ‘-~~~~~~~ ~~~ 5- - - — 5 - ’~~~~~~~~~~~~~~ ’ - ~~~-—--~~~~~~~~ -~~~~~~ ——~~~~~ -— ‘- ---- -
~~~~~~ -

-‘ -- -~~~~~~~~



____ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - 

-

(1) Type of the record occurrence

<REC—TYPE , record—type>
(2) Area in which it is stored

<AREA, area—name>

(3) Database key

<DBKEY , database—key>
(4) L—number of the record occurrence

<L—NUNBER, L—nwnber> .

(5) For each data item

<RECORD.data—itein, value>

(6) For every 8et of which the record occurrence is

an owner ,
<SET.set—type, OWNER>

and a non—keyword attribute—value pair

<SET—14~~BER.set—type, current—number—of-members>,

(7) For every set of which the record occurrence is a member,

<SET.set—type , owner—db—key>

and <OWNER—L-NUMBER.set—type, owner—L—number>

(8) If the chronological ordering of the member records in a set is
required , then each member record occurrence will have the key-
word

<SETPOSITION.set—type , sequence—number>

and the owner record occurrence will have the non—keyword pair
<SET—SEQNUMBER. set—type, maxm—or—minm—seq—nuinber> .

4.3 Type—D Keywords and Clusterj~~
The choice of type—D keywords is always based on the type of keywords that

~ 1 appear in a query. Every predicate conjunct in a query must have at least one

predicate that consists of a type—D keyword. If this condition is not satisfied,
- 

- then the query can be answered only by searching every )IAU in the database.

- - With the requirements of data manipulation in mind, we have decided ~n type—D
keywords as all those that have one of the following attributes

- - (1) REC—TYP E
(2) AREA
(3) L—NIJMBER .

4.3.1 Clustering Methods

Some type—D keywords will also be made clustering keywords. We will

primarily be interested in clustering set occurrences, since set traversal is

the most important operation done on a network database.

--5’-—-’ —
~~~

-— - --- _
~~~~~~~~~~~

- —----- - - - - - - - - -—--—- —- — — - —- -
~~

----
~

---.- — ‘~~~~~~ ~~~~~-“ ‘~~~~‘~~~~~ 
‘ - “ ‘ “ ‘  -



_____________________ 
-‘  

- - 
- 

- - - 

-42-

A. Clustering Method I

We may cluster by L—numbers, because all members of a set occurrence have

the same L—number if the location mode of the member records have been declared J
to be via that set. Thus an entire set occurrence will be accommodated in as

few MAUs as possible.

B. Clustering Method II

A second clustering method is to cluster primarily by record type and

secondarily by L—nuinber. Thus all occurrences of the same record type will

be placed in an few MAlls as possible. For examp le, if a record type R has
10,000 occurrences and each MAll can accommodate 2,000 of them, then it is

conceivable that only 5 MAlls will contain all the occurrences of R. Cluster-

ing secondly by L—number will normally ensure that all occurrences of R that
have the same L—number will be placed in the same MAll.

C. Choice of a Clustering Method - -~

The first method is useful when many record types are located via a

single set S. In that case, an occurrence of S is likely to be placed in

a single MAU because all ‘the members of that set occurrence have the same L—

number. The second method will place an occurrence of S in possibly n MAlls
if there are n different member record types.

On the other hand , if a record type R has a location mode direct or calc

and is declared to be a member of a set S, then the second method is far better.

In the first method , a set occurrence of S is likely to be scattered over many

MAUs , a numb~ r not much smaller than the number of records in that set occurrence.
In the second method, a set occurrence of S will spread over approximately m

MAlls, where m is the number of MAlls required to contain all the occurrences of J
record type R, and this number is likely to be much smaller than the number

of member records in a set occurrence. In our interface, therefore, we shall
use the second clustering method . Incidentally, conventional implementations

- - do not cluster by record type, because the database keys are user—specifiable 
Iin some cases, for example, when the location mode is direct. Thus, traversing

a set 5, whose members do not have a location mode via S, will require many

more accesses in a conventional network database system than in the DEC .

4.3.2. Directory Memory Requirement 
J

Directory entries are stored in the DBC structure memory for every type—D

keyword . Our choice of type—D keywords is directed towards efficient processing

of data manipulation operations and also towards minimizing the directory

~~ILi ~~~~~~~~~~~~~~~~~ ~~~~~ ‘— . _ -_ - - ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- ------—--.---~~a - -_ -



—v ~~~~~~~~~~~~ 
_5-5-__5- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

T ‘ -~~~~~~

—43—

memory requirement. What follows now is a somewhat gross analysis to sub-

stantiate the claim that directory memory requirement on the DBC is indeed

very small.

Let the database consist of r record types, a areas and n MAlls. Let

in — fir. We shall then use mp L—numbers where p is a small number greater

than 1. Let us further assume, for simplicity, that each type—D keyword
requires four bytes of storage and each MAll number can be represented in two

bytes.

Each directory entry will consist of a type—D keyword and one or more

MAll numbers. Since we cluster records by their types, all record s of a given
type will be accommodated in n/r }~AUs on the average, Since we cluster

-
~

- secondarily by L—numbers, all records with a given L—number will be spread

over r MAlls (because all record occurrences of the same type and same L—

number will possibly be clustered within a single MAll) , If record types do
not, in general , span more than a single area , then we may expect n a record
types to be assigned to each area. Therefore, each area will be spread over
(n/r) (r/a) = n/a MAlls. Thus, under the above assumption, records are auto—

matically clustered by area as well.

We tabulate below the memory requirement for storing the directories

in the structure memory.

Type of No. of such No. of MAll Total directory
keyword keywords in references memory requirement

the directory per keyword (in bytes)

REC-TYPE r fir r(4 + 2n/r)

AREA a n/a a(4 + 2n/a)

L—NLJMBER np/r r (np / r) (4 + 2r)

Thus , the total directory memory requirement is
(4r + 2n) + (4a +2n) + (4np/r + 2np)

• 2(2a + 2r + 2n + 2np/r + np) bytes.
As an example, if the da tabase consists of 10,000 MAlls , 10 areas and 100-

- record types and if p is chosen to be 5, then the directory memory requirement

is approximately 143,000 bytes. This is an extremely small fraction of the

database size. In fact, if the MAll size is 10
6 bytes, then the directory memory size

i~ less than 0.01 percent of the size of the database.
4.4 Privacy

The DBTG model protects the privacy of portions of the database through

- ‘ __

-~~ -- — —5-- ,--- — — - — —P.-----
‘—S -•-~~~~ - - ~~~~~~~~~~~ ~1’~~ j ~~~~~~

-—
- - - --5 -

-44-

a mechanism of privacy locks and keys. There are various functions that may

be performed in the schema, on records as a whole and on the data items in

a record. These functions may be assigned privacy locks in their schema

definition. Matching privacy kev must be provided by a run—unit in order

to perform these operations. However, the specifications of privacy locks

are such that an operation may be performed on all the record occurrences

or on no such record occurrences in an area (or of a particular

record type). That is, the actual values of the data items in a record

occurrence have nothing to do with its privacy. Therefore, we need not have

any special representations of the record occurrences in order to ensure

-
privacy. All privacy checks can be done easily in the interface. However,

-

‘
if the DBTG model is enhanced to provide for privacy features based on record

content, then the very powerful content—addressing property of the DBC may
be utilized to satisfy such privacy requirements. Thus, the DBC can convenient—

-

-
ly support far more powerful privacy features in terms of data contents than

that provided in the DBTG model. ‘ -

L

- - -
—P.-—- -

-
—45—

5. THE TRANSLATION PROCESS

The DBTG data model provides the user with a moderately large number of

operations, In this section, we shall illustrate the design of an interface

to support these operations. The essential properties of the data manipu-

lation operations will be extracted and simulated by an interface, called
the DBTG interface (DBTGI) or interface module. The user programs issue

the DBTG DilL coinniands which are routed to the DBTGI. The interface, in

turn , actually processes the DML commands by translating them into equivalent
DBC commands and by sending the translated commands to the DBC,

The overall organization of the DBTGI is depicted in Figure 5,1. The

DilL commands issued by a user program are passed on to the DBTGI which
consists of a DML translator , a system buff er manager , a system buf fe r and
several auxiliary data structures, The DilL translator (DMLT) translates

DML commands into DBC commands and -monitors the DBC execution of these

commands. The system buffer manager (SBM) does the buffer storage manage-

ment in the front—end computer. Auxiliary data structures, the set iriforma—
tion table (SIT) and the area information tables (AIT1 and AIT2), serve
to improve the system performance. They will be discussed in Section 5.3.

The current—pointer (C—P) is the buffer address to the current record

occurrence of the run—unit.

One record occurrence of each record type can be made available to
the user in an area called the user working area ~UWA). The UWA has just

enough space to accommodate an occurrence of each record type. The portion

of the ‘UWA reserved for a given record type is commonly referred to - as the

UWA for that record type. The user can directly manipulate any data in

his WA. To fetch a record from the database, the user issues a get call. —
--

‘ It is intercepted and processed by the DBTGI; an appropriate record

occurrence is then placed in the IJWA by the DBTGI.
- -

As we have seen in Section 3, there is one record occurrence in the
database that is called the current record of the run—unit. Similarly,

there is a current~record or current record occurrence of each area, of
each record type ‘and of each set type. In addition, every set type also

ha8 a current set occurrence that is identif led by an occurrence of the

owner record , The current records are established by the run—unit using

DilL find statements. The DBTGI stores currency information in the currency

indicator table (CIT). The information maintained in the CIT consists of:

(1) For each area
a) area name

J ~~~ ~~~~~~~~~~~~~~~~~~~~~~~

- ~~ ‘~~
-

—46—

(

Program Module

g
~~~~~1ng~~~ 

~~~~~~~ ograms _ _ _  

Table or Buffer

\
~u~~~nit~j

/
— — — -— Information Flow

—~~~~~~~~~~~~ ~D~~~ca1 s

DBC
DNLT DBC

-

-
-- ,

Software
_ _(DBTGI)

SBM
\ ______

/
Records

(a back—end computer)

1
r

Buffer
Area
(ISB)

(a front—end computer)

L

DBTGI ; DBTG Interface Module DMLT: DilL Transla tor
SBM: System Buffer Manager CIT: Currency Inc~icator Tab le
DBC : The Database Computer SIT : Set Informa tion Tabl e
C—P : Current—pointer (pointer to the AlT: Area Information Tables

current record of the run—unit) ISB: Interface System Buffer

S Figure 5.1. The interface, DBTGI

- --~~ — - - - ——-S ~~~~~_s~~_~ _ is ~-S—~~~~~~~~~~~~~~~~~ -~~-- - -
~~~~~~

— ____________
-----5 --—

~

-----

~

— -

~

— ~-~~--- —.-- --~— - - - — -5- - -  -5—’ - - 



- - - -5 , - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~T i~

’
~
’-S ’,;— -

-

- —47—

b) record type of the current record of the area
c) L—nu-mber of the current record of the area

d) database key of the current record of the area.

(2) For the run—unit:

a) record type of the current record of the run—unit

b) L—number of the current record of the run—unit

c) database key of the current record of the run—unit

(3) For each record type:
a) record type - -
b) L—number of its current occurrence

c) database key of its current occurrence.

(4) For each set type:
a) set type
b) information about current set occurrence

i) owner record type
ii) L—number of the owner of the current set occurrence - :
iii) database key of the owner of the current set occurrence

c) information about the current record of the set

1) whether current record is a member or the owner

ii) record type of current record

iii) L—number of current record

iv) database key of current record
v) position information about current record

— either the sequence number in the set occurrence

or the values of the sort keys,

5.1 Set Occurrence Selection

Whenever an occurrence of a set has to be selected automatically for

the user program , the selection of a set occurrence with respec t to a given
— - member record type is governed by a set occurrence selection clause in the

corresponding member subentry of the schema set entry. For example, suppose

an occurrence r of an automatic member record type R of set S is to be stored

in the database . The operation requires not only that the record be stored

in the database but also that it be inserted into an occurrence s of set S.
- - To select s, the procedure specified by the set occurrence selection clause

for S with respect to R must be activated , Once s is selected, the record
occurrence r is then inserted into s, in a position governed by the ordering

specifications for S.

-

-
~~~~ 

Li - - - ~~~- - -~~ - 
--



- ~i~~~ri 
~~~~~~~ 

~~~~~~~ — -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - P~~~~

—48—

There are a number of ways in which a set occurrence selection clause

may be expressed in the schema. We shall illustrate the general methodology
of this selection process. When a set occurrence selection clause is in-

cluded in a schema, a piece of code is generated which is called upon by the
DBTGI if automatic selection of a set occurrence is required by the user

program. Three possibilities are considered. In the following, a set

occurrence will be identif led by a triple consisting of the owner record
type , L—number of owner record occurrence and its database key.
Case 1: Set Occurrence Selection through Current Record Occurrence of the Set

In this case, the set occurrence to be selected is the one that contains

the current record of the set. For example, in Figure 5.2, the set type

SETX has three occurrences Xl, X2 and X3. The current record of the entire

set is the record occurrence labelled r. Since r is contained in the set

occurrence X2, the latter is therefore selected as the set occurrence for

consideration,

The code to be generated for selecting a set occurrence through its

current record is as follows: 
- -

(1) Let the set name be called set—typ e and the owner record type

be called owner—type.

(2) From the currency indicator table extract the current set

occu.rrence of set—type, Let it be identified by the triple

(owner—type, owner—L—number , owner—db—key).

(3) The required set occurrence is (owner—type, owner—L—number ,

owner—db—key).

Case 2: Set Occurrence Selection through the Location Node of the Owner

The selection strategy in this case is simple. Since it is necessary

that the owner record type of the set be declared in the schema to have

a location mode of either direct or calc, an occurrence of the owner record

type can be identified by the run—unit with the dataLase key or cele keys.

Once the owner record is identified , the set occurrence of which the

record is an owner becomes known. The code generated is:

(1) Let calc—keys represent the set of calc keys taken from UWA if

location mode is calc; let  db—key represent the database key ,

if location mode is direct.

(2) Determine owner—L--number from caic—keys or db—key , whichever

is applicable.

(3) If location mode is direct , then the required set occurrence

is (owner—type, owner—L—nunber, db—key).

- 
-~ 

— -5----—-. -~~ -— ~- 5 - ’  — ~~~~~~~~~~~~~~~~~~~ —— ——-——— - 
5-~~~~i~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-S “-S- ’~’~
-S’-5

~~~~
-S5 -


~~~_~~~~~
-
~~~~

‘— ~~~~~~ - - -~~~~~~~~~~~~ ---~—~~~~~~ ‘-~ —- -~~~~~~~ ~~~~~~~~~~~~~~~~~~

—49—

- , -

current
-

record of

current set occurrence

~~~~~~~~~~~~~~~~~~~~~

o

~~~~~~~~

c

~~~~~~~~~~~

o

~~~~~

o

1

Figure 5.2. Set occurrence selection through the current
record occurrence of the set

- ——-- ——— ---
~~~~~~~~~

--



--S 
- -

~~~~

-— - -

~~~~ 

- 
=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=
~~
-

— 
~;~~-:‘~

:--‘ 
~~~~~~~~~~~

- - -~o—~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

(4) If the location mode is caic, do the following:
i) issue command to DBC to “retrieve the record that satisfies -

<REC-TYPE ’~owner-type> A <L—NUNBER—owner—L-number> A calc keys” ;
ii) let db—key be the DB—key of the retrieved record. Then

the required set occurrence is (owner—type , owner—L—number ,

db—key).

Case 3: Set Occurrence Selection through the Location Node of the Owner

using Database Identifiers

When the location mode of the owner record type R of a set SETX is

neither direct nor calc but -via another set SETY , it is not possible to
directly select an occurrence of the owner record type. An occurrence of the

owner record may then be selected on the basis of its participation as member
in SETY . In such a situation, an occurrence of SET? is first selected using

SETY’s set occurrence selection specifications with respect ~o R. Having ‘
~~~~ ~~- -

selected an occurrence of SET?, it is traversed until a member occurrence r

is found that is of type R and has specified values for certain data items

— vl, v2,..., included in the original set occurrence selection clause, The

occurrence of SETX in which r participates is, finally, the required set 
- - 

-

occurrence. Figure 5.3 illustrates the selection of an occurrence of SETX j -

using this method. The occurrence Yl of SET? is first selected based on

SETY’s set occurrence selection clause. Yl is traversed to find the record 
- 

I 

-
occurrence r, of ty-; e R and satisfying vl, v2. Since r is the owner of

the set occurrence X3 of SETX, the required set occurrence is X3.

It may be noticed that the selection of an occurrence of SET? may in

turn, involve a reference to another set. Thus there may be a second level

of indirection. The process can repeat to an arbitrary but finite number

of levels. At the ultimate level, the set occurrence must be selected through - 
-

V 
the current record of the set or through the location mode of the owner,

either direct or caic. Our code generation for set occurrence selection

of the object set must follow the code generation for the sets that it

depends on at any level of indirection . For example , the code to be generated

for set occurrence selection of SETX through the location mode (via SET?) j -

of owner (of type R), using data items (vi, v2 ,...,vn) is as follows :
(1) Copy the code for set ocv~urrence selection of SET? with respect

to its member record type R. This generates a set occurrence 

of- SETY Identif led by, say, (owner—type—of-SET?, L—number-y,

db—key—y) .

(2) Retrieve the record satisfying (vi, v2,..,,vn) by giving a

- 
- - — —  —-

~~~~ 
- - - ————.—— ‘

~~~— —- -—~~~~~—~~ — - 5---—— -~~~~~~~~~~- ~~~~~~ --—--—--- ~~~— -—- -—--~- ——— ---—- - —-----—--—- —--—-— ——- — --- 5 — . -  — — 



- 
—----. --

~~~~~
-

-

--- --

~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ‘ “

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~T ~~~~
—

.

SETX -

~~~~~~~~~~~~~~~~~~~~~~~
--

JC2

~ ?~O~O~C0i
(record occurrence r is an owner in SEDC)

SETY

Q~~~Q~Q Q1set occurrence selected for SETY

-

12 Q~Q~Q~Q~Q1
(record occurrence r is a member in SET?)

Figure 5.3. Set occurrence selection through the
location mode of the owner using database

- identifiers

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~ 
‘ ‘ - - -

~~~~~~~~~~~~~~~
‘
~~~~~~~

—‘- —‘ ~~~~~~~~~ ~‘1, Ti - ~~ —. .
—- - -~

--

—52— - - - - - - - - -‘

command to the DBC to “retrieve the record tha t satisfies

<REC—TYPE~R> A <L-NUNBER—L—nuuiber-y> A <SET. SETY db—key-y>
A <RECORD ,vl—value—of—vi ’- A <RECORD ,v2—value—of—v2> A . • .A -

<RECORD .vn—value—of—vn,-” . -

(3) Let db—key and LN be the database key and L—number , respectively, -

of the retrieved record , Then the required set occurrence
-

is (R, LN, db—key).

5.2. Updating the Database - I -

-

The run—unit can update the database by inserting a record into a set , -

removing a record from a set, storing a record inthe database, deleting a record - I

from the database and by modifying existing records. We shall consider them -

in turn.

r A. Record Insertion into Sets -
On an insert command , the current record of the run—unit is inserted into -

specified sets. The specific occurrence of each set is determined by the —

current record of that set. The object record is inserted into each such -
-

- S . -

set occurrence in accordance with the set ordering criteria defined in the

schema. ~- ~ -
According to our strategy , the object record being the current record

of the run—unit is already in the buffer and is pointed to by the current—

pointer . In order to Insert this record occurrence r into set S, the follow—

ing procedure is invoked. -

(1) Using the current—pointer, find the record r in the buffer.

Let R be its record type, -
(2) Check if r has a keyword with attribute SET.S, in which case

-

1:.
-

r is already a member of S and therefore , the insert command
is illegal.

(3) From the CIT entry for set S, determine Its current set - -

occurrence . Let it be identified by the owner record
-

occurrence (owner—type, owner—L—nuniber, owner—db—key), which
is referred as p. -

I
(4) Retrieve the owner record occurrence p from the database by - 1

issuing a command to the DBC to “retrieve the record satisfying - -
<REC-TYPE-owner—type~. A <L—NUNBE R—owner—L—number> A J

<DBKEY—owner—db—key > ” ,

(5) Delete r and p from the database by issuing delete commands

with their L—nuiubers, database keys and record types in the

5-— - --—-5---- —-------—-—-- -- - ——- - -~~ — - - - -- -5 —-
~~~~~~~

-—-— 5--S —--
~~~~~~~

—
~~~~~~

—----- - -- — 
- - -~~--~~ -



- —
~~~~~~~~~

- -
~~~~~ 

- - 

~~~~~~~~~~~~~~ - - -  

-
~~~~~~

- - - -~~~~~~~-~~~~~~- -  - - - -  

-
~~~3- -

-— query part.

(6) Modify r and p and store them back in the database. The

-— necessary modifications are as follows. Adjust the keyword

~
- .. with attribute SET—NEMBER.S in p, so that it correctly indicates

the current number of members. Adjust the keyword with

attribute SET—SEQNIJMBER,S in p if ordering Is chronological.

Include the keyword <SET.S, owner—db—key> in r, thus in—

dicating its membership in set S. Include a keyword with

attribute SETPOSITION in record r, if set ordering is first,

last, next or prior. The value for SETPOSITION is determined

as outlined In Section 4. In case re—numbering is necessary

then the entire set occurrence is retrieved, deleted from the
database , re—numbered in the buffer and inserted back in the
database.

- .A general procedure to retrieve an entire set occurrence is given below.- —
- - -- -

• The identification of the set occurrence (át-
~ef—~ype-,---owner—db—key, owner—

~ 9
~~ L—number) is provided to the routine, The given set type is S.

(1) From the schema entry for set S, determine the member record
types. From the schema entry for each of these member record

types , determine their location modes. Let R1,R2,.,.,R~ be the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Any 
-

occurrence of these record types will have an L—nuuiber which 

is the same as that of its owner. Let Rn+lIe~~~I
Rm 

be the other
member record types of set S.

(2) The required set occurrence is now retrieved as follows,
(I) For each record type R1, 1 ~ I ~ n, issue a command

to the DBC to “retrieve all records that satisfy
- 

- , <REC-TYPE-R1> A <L-NU~~ER~owner-L-number>
<SET, S’-owner—db—key~”.

(ii) For each record type Rj , n+l ~ i ~ m, issue a command
to the DBC to “retrieve all records that satisfy

<REC—TYPE—R 1> A <SET, S—owner-db—key>”,

In the above procedure , the eTr-t&re set occurrence is retrieved, except

the owner record occurrence. Normally,the owner record occurrence will al—

ready be present in the buffer. If it is necessary to retrieve the owner
I . record occurrence as well, then issue an extra command to the DBC to “retrieve

~~~~~~~~~~~~~~~~~~~~~~~~ the record satisfying

.~~_~~~~~~E:TY
~~~~

0 mer_ type> A <  L-NUMBER-ovner—L—number> A <DBKEY—owner—db—key>”.

_ _ _  ~~~~—- -5~~~~~~~~~~~~



~ -5- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~‘~~-r - ~-‘ IT - - ~~~

-
~-‘. - - -

-

—54—

Storing a record back in the database Involves the specification of its

constituent keywords to the DBC, The DBC will then automatically update
its directories and perform the appropriate clustering.

B. Record Removal from Sets

Removal of the current record r of the run—unit from a set S is straight— -

forward, Its copy is already in the buffer and is located by using the

current—pointer. Since r is a member of set S, it has two keywords

<-8ET.S, owner-db-key> and <OWNER—L—NUNBER,S, owner—L—number>-. These two

keywords and the owner record type (got from the schema) may be used in a

query to the DBC to retrieve the owner record of the set occurrence in which

r belongs. The owner record is deleted from the database, its copy is

modif led in the buffer to correc tly indicate its current number of ~bei~s

and it is stored back in the database. The object record r is also deleted

front the database, its keywords related to set S (namely , the ones with

attributes SET.S, OWNER—L—NUNBER,S and SETPOSITION,S) are removed, and the
record is then stored back in the database. In the commands to delete the

object record and its owner, the appropriate L—nuinbers and database keys
- - are used in the query.

C. Deletion of Records from the Database - - - -

The current record of the run—unit may be completely deleted from the

database by means of a delete statement. However, a deletion is usually

associated with certain associated side—effects. Deletion of the current

record of the run—unit may trigger a series of further deletions depending

on the type of deletion requested by the run-unit. The delete statement
-: can take one of three forms: delete—only, delete—selective and delete—all.

A complete description of the significance of all these forms may be found

in f21. We, however, shall consider only the implementation of the delete—
only operation which will serve to illustrate the other forms as well.

The delete—only statement deletes the object record r and all the

mandatory members in the sets in which r participates as owner. The

optional members are removed from these sets but are not deleted from the

L

database. If any of the deleted mandatory members are themselves the

owners of any set occurrences, then the delete statement is exec uted on - - -
-

such records as if they were the object records of delete—only statements, -

Thus all mandatory members of such records are also deleted , which In turn

cause this process to continue down the hierarchy. Another effect of the
—

statement is that the

:TTT::
T::::TTCQrn TT:

“~~~~~~~~~
-S-5

~ ~~~~~~~~~~~~

-55-

The execution of the delete—only statement requires a call to a

recursive subroutine, delete—only, ~~~~~~~~~~~ record of the run—unit

as argument. The subroutine calla itself whene~~t--any further record is
- to be deleted. Prior to any call for delete—only with a record as argument,

- - the record itself is first deleted from the database but its copy is re—

- tam ed In the buffer, A delete—only statement is, therefore ,executed as
follows:

(.1-) Using the current—pointer,find db—key, record—type and
L—nuiuber of the curren t record of the run—unit.

(2) Issue a command to the DBC to “delete the record satisf ying
the query

-

I
<REC-TYPE—record-type> A <L— N UMBER=L—number> A <DBKEY—db-key>”. -

• Thus the current record is deleted but its copy Is still in

- - the buffer.

a (3) Call delete—only with the current record of the run—unit

- — as argument.

(4) Change the currency indicator of the run—unit in the currency

-

indicator table (CIT) to null.

Procedure delete—only (r):

- -
(1) Let db—key , LN and R be the database key , L—number and record

type, respectively of the given record occurrence r

(2) For each keyword <SET,set—naine, OWNER> In r , do steps 3 through

(3) Issue commands to the DBC to retrieve the set occurrence of

-~ - set—na-me In which r Is an owner. This is done as shown in

part A of Section 5.2 .
~
- - - (4) Issue commands to the DBC to delete the set occurrence of set—

name in which r is an owner, Thus the set occurrence is deleted

-
- but its copy is already in the buffer .

(5) For each of the records retrieved in step 3, if It Is a
- mandatory member of set—name (as determined from the 8chema),

then call delete—only with that record as argument.

(6) For each of the other records retrieved in step 3, remove the

- keywords related to the set set—name (In particular, those

- keywords with attributes SET.set—name, OWNER—L—NUMBER,set—naine ,

SETPOSITION.set—naine) and Issue a command to store it back in

the database.

L
-r!

~~~~
5-_._M ._. .5-..L , ISUA.~ . _.&L~~ — 5 - 5 - 5-5- ~~~~~ 5 - &  - - - M S ~ £~~

_
~~~~~~~ sa a--5-


- ~~~~~~~~~~

—56—
-

D. Storing a Record in the Database

The user can store in the database a new record occurrence r of type - -

R by first building up the data items in the user working area for R and

then using the store statement. This statement also has the following effects.

The new record occurrence r Is made a member of appropriate set occurrences

of those sets for which R has been declared to be an automatic member. Further-

more , r is made the current record of the run—unit, of the area in which It
is stored, of the record type R and of all the sets in which it is an owner
or an automatic member. Any of these currency updates may be suppressed by

a qualified suppress command associated with the store statement. Finally,
new set occurrences are established for each set for which R has been de-
clared as owner.

The following steps are, therefore, necessary to store a record of type

R in the database:
(1) For each data item name d with a value v as found in the WA,

create a keyword <RECORD d, v>. Include the keyword in the

record occurrence r.

(2) For each se~ S in which R is the owner, include the keywords

<SET.S, OWNER> and <SET—MEMBER.S, O>,which shows the count of
the current number of members In the cori’esponding set

occurrence owned by r. Unless the set Is sorted, include also - :

the keywords to indicate the position of r and the maximum

-
(or minimum) position of any of Its members in set S. The

first of thé t1~o keywords is <SETPOSITION.S, 0>-, if set

ordering is f irs t, last, next or prior. The other keyword is - - -

<SET—SEQNTJMBER,S, tn> if set ordering is first or last, where
m Is 0 If set ordering is last and m is a large number N If set
ordering is first.

(3) Determine a database key and L—number for r based on the pro—

cedures outlined in Section 4. Include the corresponding

keywords in r.
-

(4) For each set S in which R is declared an automatic member,
determine an occurrence of set S by using the set occurrence
selection clause (in schema) of S with respect to R. Insert

r into this set occurrence as described in part A of Sec tion
5.2.

(5) Update the currency indicator table (CIT).

- - - - - -- --- —- -~~~~~~~~~~~~ —----~~~~~~~~~ -5 —-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— _

~~~
‘
~~~~~~~

_ —‘5--- ..- - - -—~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~ -5 - - —  —

E. Modification of a Record - -

Modification of a record can be done by first deleting it from the
database and then storing it back in the database. Storing the record is

done exactly as shown in part D of Section 5.2,

5.3. Data Structures to Improve Performance

We shall make use of some tables so that we can fully utilize the
capabilities of the DBC. These tables are required for the sequential pr~~~~—~~~

- - cessing of sets and areas.

- - 5.3.1 Set Inforntation Table

- 
- 

- We have already talked about the currency indicator table, which is
- - placed ln the interface buffer. An internal description of the schema must

- - - v .  also be stored in order that data manipulation commands may be executed by

- . referring to this description, This information is no different from a

-. - standard implementation of the DBTG model. Without discussing any further

what other information a standard implementation may need In the buffer ,
we will describe forthwith the tables and other data maintained In the

— I buffer to efficiently support a DBC implementation.

The DBTG model has been designed to work best when a user performs

operations on the database by navigating through sets. In fact, a great

majority of the t ime , the user may be traversing one or more set occurrences
in their entirety. A typical situation in which a user traverses through

sets in a hierarchical order is illustrated in Figure 5.4 in which each of
- three different sets have only one member record type. SETX with owner type

- - - - A and member type B has currently three set occurrences labelled Xl , X2 ,

- . 
and X3 in the database . SETY has only two occurrences and SETZ has three. - J
The user may perform the following traversal routine. The set occurrence
X2 is obtained directly by locating the owner record occurrence a2. X2 is

- 5- 

now completely traversed by accessing every member bi in X2 and by travers—

-

- - ing every occurrence Yj of SETY in which bi Is an owner. While traversing
- - an occur:ence of SETY, in turn, every member ck in that occurrence is

- accessed and every occurrence Zm of SETZ in which ck is an owner is also
- traversed. Thus the traversal order is the following sequence of set

occurrences: X2, Yl, Zi, Z2 , ‘f 2, Z3. In implementIng this traversal

sequence we will have in the buffer  complete set occurrences , at most one

- 
of each set type. The buffer will have set occurrences as shown below at

- 
differ ent stages of process ing:

_
-~ -~~~~~~ ~~—-—-- — -



~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,—~ 
-
~

-- - -

-58-

Xl
_ -

- - -

X3

-

-

SETX: Owner type A, Member type B

Yl
~~~~~~~~~~~~(J~~~~&1® J~~Ø

1

SETY : Owner type B, Member type C

- 

Zl 

_ _ _ _ _

Z2 

_ _ _ _

SETZ: Owner type C, Member type D

Figure 5.4. Example of set traversal

- 
L-~~~~~~~ - -  - ~~~~~~~~~~~~~~~~~ ~~~~

—- — - - 
~~~~~~~~ 

-
--.- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~

--

_________________________ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—

- — - -

—59—

Stage 1. X2 : process b6, b7

- - Stage 2 . X2 , Yl : process ci

Stage 3. X2, Yl, Zi : process dl, d2 , d3, d4
Stage 4. X2, Yl : process c2 , c3,- - - -c4

- Stage 5. X2, Yl, Z2 : process d5, d6
Stage 6. X2 , Yl process e5

r 
- Stage 7. X2 : process b8 

~~~
— --- -

Stage 8. X2, Y2 : process c6, c7
Stage 9. X2, Y2 , Z3 : process d7, d8, d9

I
-

- - Stage 10. X2, Y2 : process c8, c9, d O

• Stage 11, X2 : process b9

- - - The user traverses a set occurrence only after making it the current -
-~

set occurrence . Thus at stage 5 of the above buffer configuration, X2, Yl
and Z2 are the current set occurrences of SETX, SETY and SETZ respectively.

In a general implementation, we may not have knowledge whether the current
- -

set occurrence of some set may be needed at a later time or not. It will

be an unnecessary expense to keep a set occurrence of every set of the data— i -

• . base in the interface buffer, if some of them are not to be referred again,

Thus we shall undertake a policy of replacement (similar to the Least—

- . Recently—Used policy of paging systems). We will detail this policy in

Section 6 under the topic of buffer management, For the present, we will

-
be interested in the tables necessary to keep track of the buffer information

- - related to the set occurrences. 4-

The set information table (SIT), will have an entry for every set type

in the database, to indicate whether its current set occurrence resides in
— the buffer or not. The format of an entry of the SIT ~s shown in Figure 5.5.

The pointers are buffer addresses, where entire set occurrences are

stored in consecutive locations, The member records are ordered as specified
j

in the schema and the logical adjacency is reflec ted in physical adjacency .
In case physical adjacency cannot be maintained , pointers (links) are em-

ployed . If the current occurrence of a set is in the buffer , then its owner

record contains information on its database key and L—number . The fourth

Item of an entry in the SIT Is useful when a user is interested in traversing

the occurrences of only a particular member record type In a set occurrence,

but is not concerned with the other member record types. In this case, the

DBTG Interface will retrieve only that part of the set occurrence which

consists of member records of the specified type , thus prevent ing a wastage
of buffer space and the time required to order unnecessary records.

- Li - - - - -

- --5- ;—--- -—•- ~~~~~~~~~~~~~~~ —~~~~~SJ ~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ .~~
_,- ~~~~~~~~~~~~~

-
-

—~~ - — -
________________ - - -

-
—60--

Item Description

1. Set type

2. Pointer to owner of current set occurrence

—— null if current set occurrence Is not in the buffer
3. Pointer to current record of the set

—— null if current set occurrence is not in the buffer
4. Record type of member record

— —— valid only if all occurrences of a single member record
type (and no other) of the current set occurrence is in •

the buffer
5. Number of member records in the set occurrence as stored in the

buffer

Figure 5 .5 . Format of an entry of the SIT

- - - - - - -5 - - --- ~~-—~~--—
——-

—~~ —-~
--

~~
. ---- -.-----.- ,,--—— --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-‘-- ---5--

— 61—

5.3.2 Set iraveraal

A set is traversed by executing a sequence of find statements of the
form

FIND NEXT (or PRIOR, or LAST , etc,)  RECORD OF SET set—name

This statement retrieves the database key of the next or prior record with

respect to the current record of the specified set, or it retrieves the
n—th record (which may be first or last or any number) of the current set

- - 
occurrence of the specified set. Another version of this statement also

• indicates a member record type (e.g., f ind the tenth record of type R in
the current set occurrence of set S).

• Because of the SIT and because of the fact that we retrieve entire set

- • occurrences into the buffer, set traversal by using a succession of find

statements of the above type will mostly involve sending a record from the

• 
- 

buffer to the user. Only when the required set occurrence is not already
a in the buffer, must a command be sent to the DBC to retrieve that set - 

-

occurrence.

To execute a find statement for traversal of set S, the following pro—

cedure may be invoked:

(1) From the currency indicator table (CIT) determine the current
- set occurrence of S. Let it be identlf led by

(owner—type, owner—L—number , owner—db—key)

(2) Use the pointer of item 2 of the SIT (Figure 5.5) to

determine if the current set occurrence is in the buffer.

(3) If the current set occurrence is in the buffer then go to

step 5; otherwise, fetch the set occurrence by using the procedure

described in part A of Section 5.2.

(4) Update the SIT to indicate the fact that the current set

occurrence is now in the buffer.

- • (5) Find the new current record of the set, It Is already in the

- - buffer.

(6) Update the currency indicator table (CIT)

- - 5.3.3 Sequential Processing of Records in an Area

Occasionally, a user may decide to process records sequentially in an
- - area irrespective of the sets in which the records belong. This is an efficient

way of processing a group of records if the order in which the records are

handed Out to the user is of no consequence. The DBTG system allows for

- this type of processing by letting the user request each record in an
area one at a time . However , the records are ac tually given to the user in 

-‘-_ •--__—--_—-- “—-5— - ~~ 
- - -- - ~~~~~~~~~~~~~~ - 

5-s- — — --



— 62—

an order determined by their database keys. This is the most natural way

f or a regular DBTG implementation because the records are actually Btored
in an order decided by database keys (even though database keys are defined

to be logical identifiers and not physical addresses). In our implementation.

records are clustered in MAUs by their L—numbers and not by area or database

key. Since an area may be scattered over the entire database, sorting by

database keys would imply storing an entire area in the interface buffer.

A more logical method of sequential processing on the DBC is to access records

sorted by L—numbers as the major key and the database keys as the minor key.

Thus all records in an area are returned to the user in an order determined

first by their L—numbers and secondarily by their database keys. This is a

minor deviation from the DBTG definition but should really be of no concern

to the user since he is primarily interested in sequential processing of

records. However, if it is felt that the original definition (sorting by

database keys alone) should be retained, then enough buffer space must be

allowed to store all the records in an area. In our discussion, we shall

assume that sequential processing in an area involves sorting, primarily ,

by L—numbers and, secondarily , by database keys. Consequently , we keep

the following information as tables in the buffer. j
AIT1 is a matrix that has an entry for each L—nutnber and each area In

the databaae. The value of AIT1 (A,L) is equal to the number of records in 
I

the database that belong to the area A and have an L—number L.

AIT2 is a one—dimensional array that has an entry for each area. An - 

I

entry of AIT2 has the following information:

(1) Area name.

(2) Database—key of current record of the area.

(3) L—number of current record of the area.

(4) Pointer (in buffer) to the first record belonging to this

area and having the above L—nuznber ---- null if such records
are not in the buffer.

(5) Pointer to current record of the area ———— null, if stein 4 is null.

(6) Logical position of the current record of the area with respect

- 
- to all the records of this area that have the L—number of item 3.

— -
~ (logical position is governed by L—number and database key).

The user may request the n—th record in an area. He may also request the

next or prior record in an area with respect to the current record of that area.

To answer such reques ts for an area A eff iciently on the DBC, the following j
procedure is invoked :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - --- — - - -- -5-- --5_-

~~~~

--— - --- -5 -— -- --—-

~~~

- - --

~~~~~~



- -_ 
- ____________

—63—

(1) Determine the L—number LN of the requested record. If the
request Is for the n—th record, then the L—number is deter-

mined by using the area information table 1 (AIT 1). If the
request is for the next record or prior record with respect
to the current record of the area , then the L—number Is
determined by using AIT2.

(2) If all records with L—number LN belonging to the area A are
- already in the buffer , then the requested record is also in

— the buffer .

• 

- - - (3) Otherwise, issue a command to the DBC to “retrieve all records
- . that satisfy the query

- - <L-NUMBER=LN> A <AREA A>”.

- The DBC must be asked to sort these records by database key .
The requested record is now in the buffer.

(4) Update table AIT2.
Suppose we hypothetically number all the records in an area A as deter-

mined by their L—numbers and database keys. To find the n—th record , then ,
we may use the table AIT1 to find the L—number L for this record and also

its position among all the records of that area with the same L—number.

Referring to table AIT2 , we may check if that record is already in the
buffer. If it is not in the buffer, then issue a command to the DBC to

retrieve, in sorted order, all records that satisfy the query <L—NUMBER L>

A <AREMA,.. Then update AIT2 by appropriately adjusting the pointers and

record position in items 4 , 5 and 6 of the entry for A.
AIT1 is updated easily whenever a new record is stored in the database.

- 
Since the L—number and area—name for a new record is known before it is

- - stored, the entry in AIT1 corresponding to these subscripts is incremented
-

- - byl.

- - Notice that, for sequential processing of records in an area, at no
- moment do we need in the buffer more space than that required by all records

L 

- with any given L—nurnber. Since L—numbers are so chosen (or calculated) that

- 
- 

all the records with any particular L—number usually occupy a memory size

• much less than an MAIl size, our buffer storage requirement for sequential

processing is not likely to exceed the MAU size.

5.4. Record Retrieval

- j - There are many different ways In which the user may write a find state-

ment in order to locate a record occurrence. Inspite of the variety, the

- 

I - - - ~~~~~~~~~~~~~~~~~~~~~~
-5- — --5— —---5- --5— -5— —-5-



‘ w-w.. 
- ____ - - - - - _ - - -

—64—

possible number of find statements may be classified into two categories.
Either one finds a record occurrence based on its participation In a set

(or area) or one finds a record occurrence based on knowledge of how It was

Initially stored in the ~iatabase. We have already observed how a record

occurrence is located based on its position in a set or area perhaps with

respect to some other record occurrence that belongs to the same set or

area.

The simplest type of find statement is the one in which the user -~ 
-

specifies a record type R and a database key D. In this case the location

mode of the record is direct. Retrieval of such a record can be done by
using the query <REC—TYPE—lb A <DBKEY—IP. However, records are clustered also

by their L—numbers . Hence the ab - - ~ query may require a search of more - -

MAUs then actually required although record type is an attribute of a type—D - 
-

keyword . We, therefore, compute the L—number L of the record occurrence from

its database key by hashing, as described in Section 4. The revised query ,

then , is <REC—TYPE R� A <DBKEY D> A -azL—NUMBER L>.

Another find statement requires locating the owner record occurrence

of type R in set S, the occurrence of which is determined by the current

record of a set X (or of a record type R1 or of an area A or of the run—unit).

The following steps may be performed to find the required owner record S.

(1) From the CIT entry for set X (or record type R1, or area A or

run—unit) extract the L—number L, the database key D and

record type R2 of the current record .
(2) Issue a command to the DBC to “retrieve the record satisfying

the query

<REC-TYPE—R2 A -‘zL-NUNBER=L> A <DBKEY D>”.

This retrieves the current record occurrence r of set X.

(3) From record r,extract the keyword with attribute SET.S, whose

value is, say, owner—db—key. Also extract the keyword with
— attribute OWNER—L— NUMBER.S , whose value is, say , owner—L—number.

(4) The required owner record occurrence of S is now retrieved by

using the query

<REC—TYPE=R> A <L—NUMBER~owner—L—number> A <DBKEY=owner—db—key~ . 
-

Another type of find statement locates an occurrence of record type R,

whose location mode is calc. The data items dl,... ,dn specified in the

location mode clause are initialized by the run—unit  and stored in the UWA .

The user may retrieve all occurrences of type R that have the same values for

—--‘---—------ - -- --5— ----5----. -- —--—-5--- —-—-5- -5—-—- —- -— ---5- --— —-~-5----5---•— --5— — ---5 — ----- —-5”-- -5’ -



-5--— .••—-•- 

~~~~~~~~~~~~~~~~~~~~~~ 
- -5 -

~~
-

~~~~
- 

~~~~~~~~~~~~~~~~~~ — --5 •1

—65—

the data items dl, d2 ,...,dn by executing a sequence of find statements of
this type , but qualified by the next—duplicate—within clause ; for example ,

FIND NEXT DUPLICATE WITHIN RECORD TYPE R
Such a sequence of find statements can be very easily executed, and,

in fact, in only a single access to the DBC. By hashing the data items

dl,...,dn, determine an L—number L. Now issue a retrieval command to the
DBC based on the query

<REC—TYPE ’ R> A <L-NUNEER=L~ A <RECORD .dl=value—of—dl> A

<RECORD . dn value—of—dn> .
• - All the required records have the same values for L—number and the specified

• , data items. Thus, they are all retrieved simultaneously. Only a single access
will be required because of clustering based on record type and L—numbers.

Finally, we shall consider a find statement in which a set name S and
the values of certain data items dl , . . . ,dn are specified for a record type R.

J
~ An occurrence of S is selected based on either the current record of the

set or the set occurrence selection criterion for S. A member record occurrence
of type R is now to be located that has given values for data items dl , , . , ,dn,

• To execute such a statement, an occurrence s of set S is first selected. Let

—
- this occurrence be identified by the owner record with L—number L and data—

base key D. The required member record occurrence in this set occurrence
is found by using one of the two following queries depending on whether the
location mode of R is via the set S:

(i) If the location mode of R is via S, then the L—number of

the required member record occurrence is the same as that of
its owner. Therefore , use the query

— cREC-TYPE=R> A < L-NUMBER ’L> A <SET.S~D>
A <RE CORD.dl~ value—of—dl,. A , .

A <RECORD.dn=value—of—dn,

(ii) Otherwise, the L—number of the member record occurrence is not

known; so, use the query

<REC-T?PE=R> A <SET.S—D>

A <RECORD.dl—value—of—dl,. A ,

A <RECORD.dn—value—of-dn>

This query will , in fact , retrieve all records of the set occurrence s that

satisf y the specified data items. Thus any subsequent find statement re-

questIng duplicates can be executed without fur ther references to the data—

L

base.

A user program may fetch the current record occurrence of the run—unit ,

-

- -& - -— -—-a -rn -~~~~~~~~~ -S --- ~~~~~~~~~~~~~~~~~~~~ -- - .~a ~~~

pur: ~~~~~~~~~~~~~~~~~~~~~~~~~
_________________ ~~

-66-

or parts of it, into the WA by using a get statement, The DBTCI processes

such a statement by simply transferring the record from the buffer into the
WA because the current record of the run—unit always resides in the buffer
(possibly retrieved from the database in response to a find statement) and
because the current—pointer points to this record.

• To summarize our discussion in this section, we have tried to illustrate

how DBTC commands are executed and what data structures are needed to support
these commands in an efficient manner. We have shown how a member record

can be retrieved from a knowledge of its owner and how an owner can be
retrieved if the member record is given. We have also shown how entire set
occurrences can be retrieved , how sequential processing can be done and how
the database can be updated . Many of the procedures have been described
only in outline in order not to burden the reader with excessive details.

The level of abstraction has been chosen such that the basic design philosophy
is expounded in a simple manner without sacrificing the consideration of
important features of the DBTG model.

L

- H
-

u
H

_ _ _ _

_
_ _

_ — I~~~~~~~~~~ -___•-_ __~ _a_L~~__ s______
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~- ~I_ -5-- 

- - - 
-



- — - — —--5- -5- ,--- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

- -

—67—

6. BUFFER MANAGEMENT

Like contemporary DBTG systems, which maintain system buffers for
performance enhancement, the interface , i.e., the DBTCI also maintains a
buffer space in order to enhance the performance of the DBC. Records from

the database are retrieved by the DBTGI and s tored in the buffer before any
portion of this information is transmitted to the user working area (WA) .

Although user commands may request records only one at a t ime , the DBTCI
retrieves information in bulk. Thus, subsequent user commands need not
necessarily cause the DBTGI to access the mass memory (MM). As long as the

required record is in the buffer , it is directly sent to the user (or user ’s
run-unIt) .

It is interesting to compare the buffer management policy of the DBTGI
with one for a conventional DBTG system. The latter requires storage space

both for buffering I/O blocks and for storing index tables. Index tables
are partly system—determined and partly schema—determined. If a set is to be

searched on specific data items for member records, then the conventional - - L
system must be induced to maintain index tables on these data items by in—
cluding appropriate SEARCH clauses in the set entry of the schema . For

singular sets (those sets of which the SYSTEM is the owner), the system

normally maintains index tables to facilitate searching of the member records.

The buffer area in a conventional system is normally composed of two

parts: the f irst part is a buffer work area for accommodating all the records
that are absolutely necessary for carrying out a command such as delete ,
modify, insert , etc. Although the user- - may issue a command to process a
single record , that command may trigger references to additional records

- in order to complete the processing (for example , the delete—only command

described in Section 5). The other part of the buffer area is the I/O buffer .
Because of the nature of secondary storage, such as disks , it is necessary
f or the conventional system to retrieve Information ~3,b~t~cks ; for example ,
a track. In response to a command, the address~~kirecord Is determined from

the pointer field of another record in the)i~(er work area, or directly from
• the ca].c keys or from the database ke~~,~~”if the block corresponding to that

address is already in the buffer~).~~~ no I/O access is required; otherwise,

that block must be retrlevecL—i’iiC the I/O buffer and the contents of the

addressed record must then be placed In the buffer work area .

In a conventional system, the records in a block may have diverse

characteristics and need not always be logically related. When a block is

- - —--—a— -- _
~~~~~~~~

- —— --5— - —-5— 
~~~~~

-— - —
~~
--5—’ -—--5 —— — —


~~~~~~~
— 

~~~~~~~~~~~~~~~~~ —_ ~~~~
—

~~~~~
______

—-5- - — -5- ~~~~~~~~~~~~~~~~~
-,==----•, 

- 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --5-

transferred from the database to the buffer , it is certain that one of the
records in that block is of immediate use. However, the information content

and characteristics of the other records in the block are not known . Thus ,
many of these records are likely to be Irrelevant to the processing of the -

current or subsequent commands, thereby decreasing the effec tive buffer size
and increasing the frequency of data transfer from the database to the b u f f e r .

6.1 Buffer Organization of the DBTGI
-

The DBTGI does not require any space for index tables, but it does
require buffer space to retain set occurrences and portions of an area. This
buffer space, the interface system buffer (ISB), is designed to be implemented
in a virtual memory environment as shown in Figure 6.1. Management of space

in the ISB is done by the-- system -buffer -manager (SBN) . When the DBTGI issues
DEC commands for retrieving a group of records , the SEM requests the host
operating system for virtual memory space for these records . Memory is
assumed to be allocated in fixed size blocks , called pages.

Fo~c a given database , the DBTGI makes an estimate of the maximum buffer
j

space requirement by referring to the average size of all set occurrences.

Since the buffer primarily serves to enhance performance by storing a set

occurrence of each of a few sets , the maximum buffer space estimate must be
enough to accommodate four or five set occurrences , Whenever the DBTGI runs -

Out of its virtual memory space, it throws out a set occurrence thus making - 1
place for another. During sequential processing, ISB also stores a portion

~~~ef an area (a fraction of an MAU). - I
The SBN, when required to find virtual memory space, always requests

enough space for a group of related records, such as records belonging to
a given set occurrence or records with a given L—number and belonging to a

given area. We shall refer to such a group ‘f records as a lo,&ical block

which may be stored in one or more pages.

Whenever the DML translator needs to refer to a record In a logical

block , it first checks its own tables (e.g., SIT and AIT2 discussed in Sec tion
• 

- 
- 5) to determine if the record is already in the buffer or not. If the record

- 
I is already in the buffer then no further DBC access is necessary.

There are basically two types of DML statements affecting the DBTGI buffer

requirements. First, the find statements that are used by a run—unit in

order to traverse an area or a set; for example, find next, find prior , etc.
The other, non—find,statezuents include modify, insert, delete, get, etc.
The DBTGI normally expects the object record of a find statement to be

present in the ISB. Only if it is not there is a reference made to the DBC

~

- : a  & ~~~~~~~~~~~~~~~~~~~~~~~~ - -



____________________________________________________________________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

_
~~

_
~ -

— 69—

I -

H, ~-
- Back—end The DEC Database

- machine:DBC . . .Modlfied
r moving-head

disk
—

DBC access

•
~~~B

- - Front—end I
- - machine: 

F
general—purpose i Real Memory

- computer, say [ Space . . • • . . , .Main Memory- Univac 1108 4 II Paging

- - 

i VirtualL Memory Space J . . . , .Drum/fixed head- - F disk

~~~~~~~ 
I

-

- Figure 6.1. The virtual memory environment of the ISB
FR- .

I,

— ~~-~-~~- ___________ ~~~~~~~~~~~~~~~~~~~~~~~~
-
~~~~~ ‘

~~~
“

—70—

to retrieve a logical block of records. This block may occupy a number of
fixed—size pages in the virtual memory, and its information content is
accounted for by making an entry in the set information table SIT or in the
area Information table AIT2. Non—find statements may trigger accesses to

a sequence of logical blocks. In this case, no information is assumed to

be present in the ISB. Groups of records , as they are required , are fetched
from the database and stored in the ISB. A logical block of records fetched

into the ISB in response to such a statement will , at some stage during the
execution of the statement, become unnecessary. The virtual memory space

occupied- by these records may then be released immediately. Thus, at the

end of the execution of such a statement, all the space used by the statement

becomes free.

The difference in buffer management with respect to these types of state-
ments is as follows. The SBM will not free any virtual memory space being

used by a non—find statement, unless there is an explicit request from the
DML translator to do so. On the other hand, logical blocks of records

occupying the buffer are not essential to the execution of a run—unit . They

are there only in order to improve performance. DBC accesses can be saved - -

If a record belonging to a given logical block is already in the buffer .

Therefore , pages used by find statements may be released by the SBN at

any time if space is needed for new records . It is necessary, however , to

inform the DML translator of any release so that the translator can make

appropriate updates to its tables.

6.2 Buffer Space Management

Whenever necessary , the SBN requests the host operating system for

additional pages of virtual memory space. These pages are kept by the SBM

in a doubly-linked list. If the operating system is unable to provide more

space, then the SBM releases some space to the operating system. The SBM

releases only those pages that are occupied by a logical block of records

used in the processing of a find statement. In addition, in choosing such a

block of records , a least—recently—used policy is employed. The idea is

to throw out a block of records that has been referenced least recently.

Information on the logical blocks occupying the buffer is kept in a I -

table called the logical block control table (LBCT). There is an entry in

this table for every logical block of records currently occupying the buffer.

Each entry of LECT has the foll owing f ields corresponding to a logical block:
(1) FPADDR : address of the first page used by the logical

block; used for forward traversal of the block.

- ~~~~~~~~~~-~~~~~~~
--

~~~
--- -- -,—-

~~~~~~~~~~


—71—

(2) LPADDR : address of the last page used by the logical

block; used for backward traversal of the block.

(3) TYPE : the type of statement that requested this block;

• either ‘find ’ or ‘non—find’ ,
(4) TIME : the time at which the block was last referenced;

generated from the system clock.

(5) NAME : name of the area or set type to which this logical
block belongs; used by the DNL translator in making
updates to its tables when the logical block is

thrown out of the buffer .
(6) USE : a control field of one bit indicating whether this

- - - LBCT entry is currently in use or not.
LBCT is a sequential table of a very few entries, say at most 100,

- - because it is expected that no more than 100 logical blocks will ever reside
in the buffer simultaneously . Whenever a new block is to be entered in the
buffer , a roving pointer , called ROVER, is incremented until a free entry is -

found in LBCT. The increment is modulo the maximum number of entries in LBCT .
- -

Each page in the buffer has three pieces of control information in addition
to a part of the contents of the logical block using that page . These three
pieces of information are

(1) FPTR : forward pointer to the next page used by the

logical block.
(2) BPTR : backward pointer to the previous page used by

-
the block.

(3) NREC : number of records stored in this page; used, for

example, in finding the n—th record in the block.
Figure 6.2 shows an example where there are a maximum of only eight

entries possible in LBCT. Three of these entries are currently In use.
- The roving pointer ROVER points to the sixth entry in LBCT so that the next

logical block entering the buffer will have its control information in the
- seventh entry of LBCT.

• - Management of buffer space by the SBM consists of two main procedures

- - discussed below .

A. Procedure for Deallocating the Space Occup ied by a Logical Block

Given a number n , this procedure releases the space occup ied by the

logical block corresponding to the n—tb LBCT entry.

(1) Traverse the chain of pages stat~ Ing at the page indicated

- , I by the FPADDR field of LBCTIII) (where LBCT[nl refers to the

i~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~

- - -- -

~~~~ 

~~~~~~~~~~~ —- — —~~~~~ — —- - -‘--~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - - -



— — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —T_,—
— --5. ,

—72— -

~ P FPTR

BPTR PAGE -

(NRE C
FPADDR - -

— LPADDR

_ _

N I

~~~~~~~~~~~~~~

TIME

_ _  _ 

-

~~~~~~~~~~

—ROvE
~I1

(There are three logical blocks occupying the buf fe r .
Backward Pointers from one page to another in the -

• buffer are not shown.)

Virtual Memory Pages

Figure 6.2. Relationship ~nong ROVER , LBCT and virtual
memory pages

-

_

j
___ - ___ ~~ _-__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_____ ~~~
,--5

~~—— ~~~~~~~~~~~~~~~~~ I______
-- -—

.73..

n—th entry of LBCT). Return each of these pages to the
operating system.

(2) Turn off the USE bit of LBCTjnJ .

B, Procedure for Allocating Space to a New Logical Block
This procedure allocates in pages to a new logical block used by a state—

ment of type T. The name of the area or set type to which the block belongs
is X.

(1) Request in pages from the operating system.

(2) If the request is successful then do the following :
(i) Increment ROVER (modulo the table size of LBCT) ,
(ii) Turn on the USE bit of LBCTJnJ . Enter the current time

in the TIME field , X into the name field , and T into
the TYPE field of LBCTIn] . Enter the addresses of
the f irst page and the last page in the FPADDR and LPADDR -

fields of LBCTInJ .

(lii) Chain together the in pages and enter the records in
those pages.

— (Iv) Return the value of n to the DML translator and stop.
(3) If the request is unsuccessful, then scan LBCT for an entry

with the USE bit on, whose TYPE field has a value of ‘find ’

and whose TIME f ield is the minimum (least recently used).

Using the previous deallocation procedure , return the pages j
corresponding to this entry to the operating system . Go T
back to step 1.

Notice that instead of providing the address of the f irst page of a

block to the DNL translator , the SBM provides it with the entry number in

-
-

-

LBCT corresponding to that block. The DIlL translator can now refer to the
- -

records in a logical block via the LBCT entry. And whenever it does so, it

adjusts the TIME field in that entry so that the TIME field always reflects

the most recently referenced time .

- - - - - -~~~~~~~~~~
- -

~~~~~~~~~~~~~~~~~
—

~~~~~~~
--—

~~~~~~
— - 



~ - 

‘-

—74—

7, EVALUATION OF THE INTERFACE MODULE (DBTGI)

Our discussion of the interface module will not be complete unless we can
demonstrate its low complexity and high performance. In this section, we shall
make an attempt to analyze the interface module and evaluate its memory and

access time requirements against a conventional Implementation of the DBTG

model. While there is some agreement as to the relevance of these two criteria, 
-

there has not been any outstanding work in the performance study of database

management systems. The difficulty arises due to the tremendous variability 
- 

-

of the size, content and organization of the databases. To complicate matters,

the variety of user requirements makes the evaluation of data models and their

associated systems difficult. Since the users may be more concerned with quick -
- 

-

installation, they may be apathetic to change, Once accustomed to using a

particular data model, they may resist the installation of a new model. So

the criteria for evaluation are not merely the memory requirement and response

time, but also the simplicity of the system and general user acceptance.

Simulation is perhaps the most common method of evaluating a system .

Analytical results on an entire system at different levels of detail are im—

possible especially for a large database management system. But simulation

also is very tedious and difficult. A simulation model must unify all the

diversities of a system. In addition, it must be based on specific knowledge

of user behaviour in terms of the tynes and order of queries, characteristics -

of the database, etc.; and such statistics may be difficult to obtain .

In the light of the above discussion, we shall ask ourselves to conduct

a comparative study by making an operation—by—operation analysis of the two

systems involved. The idea is that if each part of one system works as well

or better than the comparable part of the other system, then it is plausible

that the former will perform better than the other as a total system. This

approach can provide an insight into the type of differences that arise in
— using the DBC v.s. a conventional computer for implementing the DBTG model.

7.1 Memory Requirement

The on—line storage cost of the DBC is comparable to that of a conventional

system , such as DMS 1100 [8,9]. We shall point out that the DBC requires

L 

slightly more secondary storage but DMS 1100 requires more primary memory for

storing and manipulating indexes. The directory memory requirement of the -

DBC is extremely small. Besides, DBC directories are stored in the structure
memory (SM) and no extra space is required In the front—end computer to

_______ 
-



~-, ~~~~~~~~~~~ 
- -

..75...

manipulate these directories,

A record stored in DMS 1100 consists of a database key , the values of -

data items and some pointers. One or two pointers are required (depending 
-

on the type of linking) for every set in which the record participates as a

member or owner, On the other hand, every record stored in the DBC consists

of a combination of attribute—value pairs. There is such a pair for every

data item, one for the database key, one for the record type, one for area
name, three for every set in which the record is a member and three for every

set in which the record is an owner, Now, some of the attributes consist

only of one part, namely , the special -word REC-TYPE, AREA, DBKEY or L—NUNBER.
- - The attribute related to a data item consists of two parts: the special word

RECORD and the name of the data item. An attribute related to a set also

- - 
consists of two parts: one of the special words SET, OWNER—L—NUMBER ,

• SETPOSITION , SET—MEMBER or SET—SEQNIJNBER and the name of the set. Since

there are only ten special words in all, they can be coded by 4 bits of in-

formation. If there are R record types, A areas, S set types and I data
items for each record type , then they can be coded by log2R, log2A, log2S

and log2l bits respectively. In a practical database, we do not expect

any of these four numbers to exceed 4,096. Thus, they can be coded by 12

bits, and the attribute part of any keyword will never exceed 4+12 l6 bits.

The database storage requirements f or a single record in the DBC and

in DNS1100 are given in Table 7.1. The unit of storage is assumed to be

a byte (8 bits), We assume a size of 4 bytes for database keys, data item

values, sequence rnmibers, pointers, etc.
Hence, if a record has r data items and participates in s sets (as

either an owner or a member), then , the storage requirements are:

for DBC, 14 + 6r + 18s bytes
f or DMS 1100, 4 + 4r + 4s bytes(if sets are singly—linked)

or 
~ + 4r + 8s bytes(if sets are doubly—linked).

A an ex~~ple , if a record participates In two sets and has 5 data items, then

~ is r.pre.ented by 56 bytes on the DBC and either 32 or 50 bytes in DMS 1100.

n ~.n. r aI , the storage ratio S~ is

if sets of DMS llCO use single links

if sets of DMS 1100 use double links.

• -

(~. c h n  S~ —

~

1 —
~~~~~

— -- ——

-~ _ nrL .~ ~
- - -

—76—

I

S

-IS

Record DBC DMS 1100

Inf ormation to Keyword Storage Storage
be stored Requirement Requirement

(in bytes) (in bytes)
-

-

—

Record type <REC—TYPE , record—type> 2 0
-

Area <AREA , area—name> 2 0
Database key <DBKEY , db—key> 1 + 4 = 5 4

L—number <L—NUMBER , L—number> 1 + 4 = 5 0

For each
data item <RECORD ,data—item , value> 2 + 4 = 6 4

For each
-

set membership <SET.set—type , owner—db—key> 2 + 4 = 6 4 or 8 1
~OWNER-L-NUNBER. set—type,

owner—L—number> 2 + 4 = 6 0 -

<SETPOSITION. set—type,
sequence—number> 2 + 4 = 6 0

For each
set ownership <SET.set—type, OWNER> 2 + 4 = 6 4 or 8 -

<SET—MEMBER.set—type, n> 2 + 4 = 6 0 - —

<SET—SEQNUMBER.set—type, in> 2 + 4 — 6 0 j
-

- Table 7.1. Storage requirement for a single record
]

I ,
-
~~~

- 
- - - -



— 
-3-

~~~~

—77—

(ii) if r>>s, then
~~~~~

(iii) if s>>r then S cx -2- or s~~!in 2 4 ’
In general , it may be concluded that the DBC mass memory requirement is
approximately one and a half times - that of DNS 1100, because in most practical 

—

casesr>s,

However, the excess cost in mass memory requirement is amply compensated
by the avoidance of maj or tables in the main memory. In DMS 1100 , there is —

an index table on every data item which is specified as a search key in the

schema. A set may be searched for member records with specified search keys ,
and, in the absence of indexes, these searches will be expensive in terms
of access time. Therefore, since there is a wide variety of ways in which a

set may be searched , indexes may have to be maintained on many data items.

The DBC has directories on record types, area names and L—numbers. These

directories are stored in the structure memory and are maintained automatically
by the DBC. Thus no storage space is required in the front—end computer for

software maintenance of these directories. In addition , since the number of
record types , areas and L—numbers is very small compared to the number of

values for various data items, the DBC directories are generally much smaller

than the OHS 1100 indexes.

In a somewhat simplified analysis in Section 5, we have seen that a

large database of 10,000 NAUs, approximately iol0 bytes, requires a directory

size of less than io6 bytes. Even if we assume a case in which the directory

is ten times larger than this estimate, it still does not exceed 0 ,1% of the

database size.

In contrast, consider the index memory requirement in DMS 1100. In

keeping with practical network databases, assume that the bulk of the records

belong to at least one set. Assume , further , that every set is indexed , on

the average , on one data item belonging to its member records. Thus, for every
record , there is at least one index entry . If an index entry is 8 bytes

(4 bytes f or a data item value and 4 bytes for a database key or pointer) and

- • 
if the average record is 100 bytes long, then the size of the index is about
12% of the size of the database. Thus the index memory requirement in DMS 1100

is likely to be- -at least 100 times more than in the DBC.

The buf fe r  size of DMS 1100 need not exceed the size of two or tnree

f ixed size blocks (or pages), since records are needed only one at a time but
- - are retrieved in pages , On the DBC , records are retrieved by content and

- I



—7 8—

the number of such records retrieved together will be the largest when an
entire set occurrence is brought into the buffer . Sets are usually not
traversed more than a few at a time . Thus, the buffer need not store more

than a few set occurrences. We conclude that if the size of an average set

occurrence is five times the page size of DMS 1100, then the DBC buffer storage - 

-

requirement will be about five times that of DMS 1100. However, every record
in the DBC buffer is a “valid” record in the sense that part of its content

is known to the DBTGI and can therefore be used in processing subsequent DML
statements. The contents of a DMS 1100 page , on the other hand , are unknown

to the DNS 1100 system,

7.2. Analysis of Access Time Requirement 1:

An important measure of performance is the efficiency with which DML

programs are executed. In this section, we shall compare execution rates by

estimating the number of mass memory accesses required to perform various

operations. With an approximate knowledge of the relative frequency of these

operations, the overall performance ratio can then be estimated,

A. Finding a Record Based on Database Key

If the location mode of a record type is direct, then it may often be

necessary to locate one of its instances through its database key. In DMS

1100, the database key consists of an area name, a logical page number and a

record number . An <area , page> index is used to locate the physical page -

(or block) corresponding to the area and logical page number. The required

record must reside in this page; thus enough space must necessarily be available

in the page while storing the record . Thus , a single access will suffice.

— 
- In the DBC , the database key is used to derive an L—number~ and a record

is found that satisfies this L—number , the record type and the given database

key. Since clustering is done on record type and L—riumber , it is extremely

unlikely that more than one database access will be necessary to locate the

record. However, while direct record placement in the DBC is data independent,

that is not the case with DNS 1100. To determine a database key correctly,

the DMS 1100 user must have exact knowledge of the records that have already

been placed in the same page.

B. Find ing a Record Based on Calc Keys
In OHS 1100, given the caic keys , a procedure is invoked to produce

a page number and a cale—chain number. The procedure determines these number-s

• by means of a table look-up, or by key transformation , or by simply Incrementing
• a special counter . The calc record placement logic will place the object



-
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -3-.-.-- - - - - - - -

—79—

record on the data page indicated by the page number, as long as sufficient

space exists in that page. In case of insufficient space, an overflow page

may be used and chained to the original data page. All records that produce

the same page and calc—chain numbers will be in the same caic—chain but may

spread over an initial data page and one or more overflow pages. Thus, to

f ind a record from the caic keys, usually one access, and sometimes more,
will be necessary. In addition, a table is required on every page for each

calc—chain beginning in that page,

In the DBC , an L—number Is determined from the caic keys. The L—number,

together with the record type, automatically identifies an MA1J number (since
a directory is maintained on record types and L—numbers). An associative

search using the given calc keys will now find the required record. Thus,

a single database access is sufficient,

To find duplicates or all records having identical calc keys requires

the same single access on the DBC since they all have identical L—numbers

and are of the same record type. In DNS 1100, however, the entire chain
— 

corresponding to the given calc keys must be traversed, requiring one or more

page accesses,

C. Record Retrieval Via Sets

The single most important group of operations performed on a network

— 
database are the operations involving the manipulation of records based on

their participation in Sets. In such an operation, a record must first be

located by an appropriate find statement. We shall soon discover that when

sets are being manipulated, the DBC attains the maximum gain in access time

as compared to DNS 1100. Since set manipulation constitutes a major portion

of a run—unit, the use of the DBC in implementing a network da ta model will
be rewarding.

In OHS 1100, a page is the unit of retrieval from the secondary storage

• - and usually corresponds to a track in a disk unit, In the DBC, an entIre MAU

- - can be searched in one access , and the size of an MAU corresponds to the size
of a cylinder of a disk unit. A realistic assumption Is that there are 40

- - 
tracks per cylinder. Therefore,the DBC can access as much as 40 times more

information than can DNS 1100 in any given period of tit~e. Assume, further-

more, that all records are equal in size, 100 bytes in the case of DMS 1100

and be tween 150 and 200 bytes in the case of the DBC (since DBC records are
• about f if ty percen t larger , as we have seen in Section 7.1), We shall take

the worst case estimate for the DBC and assume a record size of 200 bytes.

Let a page size in DMS 1100 be 10,000 by tes , thus accommodating as man’.’ as

— —--• —— — --5— —— -— —--5 —-5—— — —-5—.- —-5—. ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ —



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
- 

- 
- -~~ 

- 
-

—
-—S

- 
.—~~ —80—

—
--

-

100 records in a page. The )~A1J sIze in the DBC is 40 times the page size
of D~ S 1100; thus, an MAU can accommodate 2,000 records , We assume one

member record type per set type since, in practice, this is most common.
Let

N = total number of occurrences of a member record type;
we will consider N = 10, 100, 1000, 10000,
and 100000,

n = number of member record occurrences in a set occurrence; we will

consider n = 1, 10, 100, 1000 and 10000.

e = clustering efficiency (to be defined shortly); possible values

considered are 0,1, 0.2, 0.3, 0.4 and 0.5.

OHS 1100 tries to cluster all member record occurrences of a set occurrence

into as few pages as possible if the member records have been declared In the

- 
~- schema to have a location mode via that set. In the DBC, all occurrences of

any record type are clustered into as few NAUs as possible. In addition , all
occurrences of a given record type that have the same L—number are further

— clustered. However, both in the case of DNS 1100 and the DBC, clustering may
- - not always be perfect because of insertions and deletions from the database.
- s - Therefore, we introduce an efficiency measure e, which is the ratio of the

number of physical blocks (pages in OHS 1100, NAUs in the DBC) absolutely

[ required to store a cluster , to the number of physical blocks actually used

to store the cluster,

Let us consider, now, the problem of finding a member record in a set

occurrence. Given the identification of the set occurrence, it is required

to find a member that satisfies given values for certain arbitrary data Items.

If a directory is available on these data items, then the number of accesses
required will be small , at the cost of main memory space. However, if the

diversity of values of the data items is large, then a directory Is almost

infeasible. Besides, if the data items required to be compared are totally

arbitrary , then a directory cannot be expected. We, therefore, analyze the

problem with an assumption that directories are not available on the data items,

There are two cases:
(1) the member record type Is declared to have a location mode via the set

P under consideration,

(2) the member record type is declared to have a location mode via some

other set or direct or caic.

Case 1. Location Mode is via the given set.

In this case, the set occurrence is clustered Into as few blocks as 

— ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~ S 4  ~~~~~~~~~ - — ~ A*_~~~’_ _ ~~~ - - - -



____ —— ~-—~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -  -‘~~~~~~ 
- -  - - -

—81—

possible. In OHS 1100, it may be assumed that it will be necessary to travel

half—way through the set occurrence before the required record is found. In
the DBC, all the MAUs corresponding to the set occurrence are associatively

searched by hardware. All the members of the set occurrence have the same

record type and L—number and are therefore clustered .

In DMS 1100, since there are 100 records per page and the set occurrence

has n members , the entire set occurrence will be accommodated ~~~~~~ 
~~ 

pages,
where e is the clustering efficiency. Assuming that the member records are

stored in such a way that it is not necessary to retrieve a single page twice

while traversing a set occurrence, we need
~~~~

iaccesses to find a record

half—way through the set occurrence,

In the DBC, since there are 2,000 records per NAU,12~~j e 1MAUS will be
accessed . Notice that when n is large or e is small there are about 10 times

as man~’ DNS 1100 block accesses as DBC MAli accesses. In addition , the DEC

reduces the CPU processing time as well since a hardware associative search

is performed rather than a software search. In Table 7.2, we have tabulated

the number of accesses corresponding to various values of n and e,

Case 2. LocatIon Node is Not Via the Given Set

When the location mode of the member record is not via the given set,

then it cannot be assumed that member records of a set occurrence will be

clustered. In fact, the member records are likely to spread over the entire

database. However, in the case of the DBC, since clustering is primarily by

record type, the member record occurrences, being all of the same type, will
be clustered with all other occurrences of the same record type.

In DNS 1100, since a set occurrence consists of n member records, an

average of records will have to be searched before the appropriate record is

found. Since the records are not clustered,e-very record access will usually

require a page access so that .~~
. pages will have to be accessed,

In the DBC, it will be sufficient to search all occurrences of the given
record type in order to find the right record. Because all these records are

clustered and there are M occurrences per record type, the records will be

clustered in I2p~pelMAUs, and only these MAUs need be accessed , In Table 7.3

we have tabulated the number of accesses required by DMS 1100 and by the DBC.

The ranges of values chosen for n and N are realistic. Thus, in general, we

can conclude from this table that the DBC requires at least an order of magni-

tude fewer accesses than does DMS 1100. On the average, perhaps, DMS 1100
— — will require about 50 times a~ many accesses as the DBC, since the clustering

efficiency of 0.5 should be easily attainable . As an additional advantage,

—‘-A-—-—-- *~~~~~~ -~~ - ~-5-5AAASS ~~~~~~~~~~
- L~~~-~~~~ - -5- -

-r -r --- —
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -- — - -

H ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----~~~~. -  -

—82— - -

n — number of member record occurrences In a set occurrence 
-

- 
~- e = clustering eff iciency

10 100 ~~~0oo0~~ 
J

(a) number of page accesses in OHS 1100

e~
\
\ 

1 

- 

10 

- 

100 

— — 

1000 

— 

10000 -

.1 1 1 1 5 50

.2 1 1 1 3 25 
-

.3 1 1 1 2 17

.4 1 1 1 2 13

.5 1 1 1 1 10 -
~~~~~

(b) number of MAU accesses in the DBC
-
‘A

/ -

Table 7.2. Number of block acces~~s (for vari~~s values n and e)to find an arbitrary member record in a set occurrence
when location mode is via that set

-
_j

- ~~~~~~~- - --- - -- —- -- —- ~~ - - --


~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—“-“ - 

~~~ ---- =
~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ - -

—83—

e — clustering eff iciency
n — number of member record occurrences in a set occurrence
N — number of occurrences of a member record type

1 10 100 1000
—

l000~~J
~~ cesses 1 5 50 500 5000

(a) number of page acc~c~aes in DMS 1100

10 100 1000 10000 100000

t t
~ .1

-

1 1 5 50 500
.2 1 1 3 25 250
.3 1 1 - 2 17 167
.4 1 1 2 13 125
.5 1 1 1 10 100

(b) number of NAIJ accesses in the DEC

Table 7.3. Number of block accesses to find an arbitrary member
record in a set occurrence when location mode is not
via that set -

I~~
j

- - — - - - - - -~~~~ - - - - - - -

~
~~-~~~~~ - --

. ——- .-~~~~-~~~~~~~~~~~~~~~~-———
--~—-.—

~~~~~
- -

~~~~~_ ~~-~~rLi —,--~---- - —--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ .

—84—

once again, the sof tware search of DI~1S 1100 is replaced by an associative j
hardware search in the DBC.

Extending the study a little further, suppose that we are to find dupli—

cates on cer tain data items. In other words , it may be necessary to find all
member records in a set occurrence that have the same values for specified

data items, In such a situation, the number of accesses required on the DBC

is unchanged from our previous example, If the location mode of the records

is via the given set then the number of DBC accesses are as shown in Table

7.2(b). If the location mode is not via the given set then the number of

DBC accesses are as shown in Table 7,3(b). But in the case of DMS 1100, it

may now be required to traverse the entire set occurrence instead of only

- - half of it, doubling the page accesses and thus doubling the entries in
Tables 7.2(a) and 7.3(a). Therefore, if the location mode of the member

record type is not via the given set, then the DEC performance is likely to

-: be 100 times as good as that of OHS 1100,

0. Set Traversal

A very frequent operation on sets is the traversal of a set. Since sets - 1

are the only link between two diff erent types of records, all inter—record
type operations will require the traversal of sets. The system also will

of ten have to navigate through sets without any direct user command , For

example, while storing an automatic member record occurrence In the database

or during the modification of certain data items in a record, it may be

necessary to insert the record in a new set occurrence, The selection of the

appropriate set occurrence has to be done automatically by the system, using

the set occurrence selection criterion. As we have diacussed in Section 4,

there are many ways of selecting a set occurrence, some of which involve
(recursively) traversing one or more sets, The remarks we have just made
are only to illustrate the fact that set traversal is indeed a very frequent

phenomenon.

It is easy to observe that analysis of access times for set traversal is

identical to what we have discussed for record retrieval via sets. The number

of DBC accesses are as shown in Tables 7 ,2(b) and 7.3(b). DMS 1100 requires

double the number of accesses shown in Tables 7.2(a)and 7,3(a). Thus the DBC

performance in set traversal will be usually between 10 and 100 times better
—

than DMS 1100.

E. Other Operations

The other operations of importance are insertion of a record into a

- i

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
-



___ -— --5 —5 ~~~~~~~~~~~~~~~~~~~~~ — ---~~~ ~~
, 

~—:r-~~=- -- —‘-
~~~~ ‘________ - - 

- --
—

- —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --

—85—

set, removal of a record from a set, storing a record in the database and
deleting a record from the database. Host of these operations are usually

preceded by initializations of the currency indicators of sets, record types

and the run—unit . Thus, once again, set traversals may be necessary, but

in this section we only consider the specific operations of Insertion, re—

moval, deletion and record storage.

In DMS 1100, the insertion of a record into a set involves access to -~

the record to be inserted as well as the prior record in the set, in order to

adjust its link field . If the sets are doubly—linked then another record,

the one next to the inserted record, must also be accessed and its link field

modif led, Thus, either two or three records must be accessed to conduct an

insertion operation,

In the DBC , if the set ordering is first, last or sorted then only two re-

cords need be accessed (the owner record and the inserted record). In case -
-

the set ordering is next or prior, then the entire set occurrence can be

retrieved in 1 to 10 accesses, if clustering efficiency is 0.5 (refer to

Table 7,2(b)).

The removal of a record from a set requires access to only a single record
in the case of the DBC since there are no pointers to adjust. In OHS 1100,

however, up to three records will have to be accessed if sets are doubly—

linked.

The deletion of a record from the database, as we have observed in Section

5, may involve accesses to a series of set occurrences when it is an owner
record . We have already noted that set occurrences are accessed or traversed

at least an order of magnitude faster in the DEC than in OHS 1100. In

particular , we have also seen that the speed in traversing a set occurrence
can be improved by a factor of 100. Besides, all records retrieved during

this traversal process are either deleted or modified . Finally , the deletion

of an entire set occurrence from the DBC is done by a single command to delete

all records that satisfy the query consisting of the identification of the

owner of the set occurrence and the set name, In OHS 1100, on the other hand ,
deletion of each record of the database is done only one at a time.

The operation of storing a record in the database requires a single access

in the case of the DEC. In DMS 1100, it will require only one page access if

location mode is direct and one or more page accesses if location mode is caic,

While storing a record it may be required to insert the record into one or more

sets. Once again, if these insertions involve set traversals then the DBC turns

out to be an order of magnitude faster than OHS 1100,

- 

- - 
— - - - - - ___ ~~~~~

__
~~~~_ _ _ _ -__p_-_~~~ a-— -- - ~~~~- --- ~~ -~~~-‘ 

s
~~~~~~~~~~ -S -



~ 
- --

~~~~~~~
,- -

~~~~~~~
-
~~~~~~~~~~~~~~~~~~~~~~~~~

——- - - -- ~~

—86—

7.3. Summary of the Evaluation

En the absence of a group of representative network programs, it is

not possible to make an analysis or a simulation experiment that will reflect

the performance of the DBC or DMS 1100 with absolute precision. Our, approach

in this section was to make an operation—by—operation analysis to quantita—
-

-
tively and qualitatively demonstrate the superiority of the DBC. The greatest

gain in performance has been achieved in set manipulation, the basic operation

In the network data model. We therefore may expect between 10 to 100 times

performance improvement if the DBC is used to replace a conventional computer

system and software.
A

- -

The main reasons for improved performance are that, first, an MAli is

about 40 times as big as a page and, second , the clustering policy allows all

occurrences of a record type to be placed together. Since the DEC can retrieve

as much as one MAli rather than a page of valid information in one access, it
-

-~

is a much faster machine, In a regular DBTC implementation, the placement

of records is guided by their database keys, Thus set occurrences tend to

scatter over many pages. Our policy of clustering first by record type and

then by L-nuniber ensures that all members of a set occurrence will always

lie close to one another.

The reason why it is possible to access an entire MAli is the hardware

associative search capability. Without resorting to having a very large 1/0

buffer , it is possible to access information in bulk because records are re-
trieved by content and therefore only those records that satisfy a given query

will be retrieved , No records which are unknown or unaccounted for will

spill into the buffer, as would happen if the memory were not content—addressable. -

Furthermore, no “pointer—pushing” is necessary in the main memory since we -
-

have not allowed pointers in the DBC records. Consider, for example , the

problem of retrieving a record from a set, with specified data item values. -

In the DBC, the record (and duplicates, if any) will be directly retrieved

by content. No storage space will be required in the front—end computer for

conducting any software search, CPU cycles will also be freed up since soft-

ware search is not necessary. In the case of DMS 1100, It may be necessary

to travel halfway through the set occurrence, and this, as we have seen in

Table 7,2(a), may require 10 page accesses, if the clustering efficiency is
—

0.5 and if there are 1000 records in the set occurrence. But the approximately

100 member records within a page must be searched in the main memory. Thus,

J

for each page access ed, 100 pointer—pushing operations are required in DMS 1100. - -

— - ~~~~~~~~~~~~~~ - -5—- —- _ _ S- - - - - A” - ~~~_~~~~~~ _ A-~-

____ ~~~~~~~~~~~~ T~~~~~
’Ti ~~~

-
~~
-‘: _~

- T
~~~~T~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~

—87—

Furthermore , storage space will be required to conduct a software search
for the given data item values.

In traversing a set occurrence, the DBC requires retrieval of the set
occurrence in a sorted order, But then, this sorting is dora by hardware and
should not be very time—consuming. DM6 1100 will require sorting during the
time of creating the database and Inserting a member record occurrence into-

.

a set. It will, further, require many page accesses to retrieve all the
member records of a set occurrence.

7

J

______________________ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - -~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

I-
- ~~~~~=~~~ _~~~~~~~~

—
~~=:_ - _ -_ - - -

—8 8—

8. CONCLUDING REMARKS

Our aim in this report was to demonstrate that the built—in hardware

data structures of the DEC can emulate a network CODASYL—like data model in

an effective manner. We also demonstrate the efficiency of the DBC in

supporting CODASYL—like operations and systems. These studies are part of

the overall goal of proving the efficacy of the DBC in supporting any exist-

ing data model and system, That the hierarchical data -m odel can be efficiently

emulated on the DBC has already been demonstrated in 11]. In a forthcoming

report, we shall attempt to emulate the relational model and system.

The process of supporting an existing network database necessitates

a one—time conversion of the database, to generate an equivalent DBC database.

This process is straightforward . It is only necessary to represent each

record , its area of occurrence and its existence in sets. This is easily

accomplished by including all this information in the DEC rec~rd in the form

of attribute—value pairs, called keywords. The DBC record is dicested of all

address—dependent pointers. However, in a conventional system pointers are

also used to indicate the fact that a record belongs to a set and to indicate

the position of the record within the set, With the elimination of pointers

(in order to fully utilize the associative—searching capability of the DBC),

this information is represented in the DBC by two keywords , one indicating

the membership in (or ownership of) a set occurrence and the other showing

the position through a sequence number , While loading the database, for each

record stored , some keywords are designated as directory keywords, Directories

are necessary since the database store is not a monolithic associative memory.

Instead , only partitions are individually content—addressable . Each partition

is called a minimal access unit (MAli) and corresponds to a disk cylinder with

parallel read—out and associative search capability. Therefore, directories

are maintained in order to minimize MAli accesses. Records are automatically

clustered by designating certain directory keywords as clustering keywords.

With proper clustering , all searches may be limited to only a few NAUs -.

Record8 can also be automatically grouped by designating certain directory

keywords as security keywords as well. Properly grouped records are said to

form security atoms. It is important to note that records of a security atom

have the same security requirements. Thus , directory keywords play the addi—

tIonal role of clustering keywords for performance enhancement and security

keywords for access control. Because conventional CODASYL systems do not

have any mechanism for protection by content , we did not elaborate this DBC

~~~~~~~__ - __ —-- - - - —-
~~~~~~~~~ 

—
~~~~~ 

- _5_ —~~~~~~~~~~~~~~~~~



AD—AO%1 651 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC—ETC F/6 5~2
DAC SOcTWAR E REQUIREMENTS FOR SUPPORTING NETWORK DATABASES . IU)
1fl4 77 J BANERJEE • D K HSIAO, D S KERR N000IU—75 ’C 0573

UNCLASSIFIED OSU CISRC TR 77 4

2~~2 END
__________________________________ DATE I

I

II



‘ O Lt ~ ~ 2.5
I. L

_ _ _  
~~~~~~ 11 2.2

~: ~
I ~ IOO~0

IHII~.25 (((((1.4 ItM~
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDA RDS - I%3~*

—89—

feature in the present report. Such features will be discussed in a future

report.

Database conversion is done only once in an installation that already

has a network database, The manufacturer of the DBC also supplies the inter-

face module (DBTGI) which is a software package running in a front—end computer

system to support user application programs. In Section 5. we have presented

the design of this interface module. The interface module will intercept

all storage, search and update commands issued by the user programs. It will

then use the DBC to carry out all the database accesses necessary to execute

these commands. Due to the simplicity of the interface software, its imple-

mentation is also easy. Users will have no knowledge of the type of computer

system being used. They can still run their existing application programs and

the only difference they will notice is a drastic reduction in response time.

Furthermore, the freed-up main memory and CPU cycles will enhance the per-

formance of the front—end computer.

In making a performance analysis, it has been observed that the mass

memory requirement on the DBC is almost fifty percent more than that required

by a conventional pointer—based implementation. However, this price in mass-

memory storage is more than compensated by a large perforL.~nce enhancement,

by the removal of the conventional database management system software and by

the saving of the real memory of the front—end computer. In fact, the average

number of mass memory accesses required by the DBC is 10 to 100 times fewer

than that required by a conventional system. Furthermore, the DBC directory

size may be expected to be 100 times smaller than the size of the indexes

of a conventional system .

There are other advantages as well in using the DBC. The DBTC model

does not provide for accessing record occurrences by content, except through

sets. Given any arbitrary data item values, it may be of considerable advantage

to find all records of a particular type that contain these values, no matter

what sets the records participate in (for example, finding all employee records,

whose salary fields have a value greater than $10000, is Independent of any

consideration of sets). This type of command can be easily supported on the

DBC because of its associative—search capability together with the policy of

clustering by record type. In a conventional implementation, extensive

directories will be necessary, and even then it will involve perhaps one page

access for each record occurrence, since records are not clustered by their

types. Another feature that can be easily included in a DBC—supported network

model is the provision of security and protection mechanisms based on record

U

.

~~~ —_.—---

~ 
-—————

~~
--—-— - -— -~~~aM~.~~~~~~ U Sa.4. ~~~~~



_ _ _ _ _  
_ _ _ _ _ _ _ _  _ _ _  I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~2~ _ r~ -_ ~‘ — _________ —

~~~ 

-

—go—

content. This feature is directly supported on the DBC, The DBC will 
U 

U

associatively retrieve oniy those records that satisfy a given query and

also satisfy the security specification , while a conventional system will
first retrieve the page containing the required record and then check via I
software means whether the record violates security specifications or not,

We have shown how useful the DBC can be in emulating a network data I
model, However, the network model is definitely not the best data model to 

U

support on the DBC, even though it can be implemented more efficiently on

the DBC than on a regular computer system, The network model provides I

for a sequential type of processing that was originally designed for a * U

conventional location—addressing computer system. The DBC has far greater *

powers and in order to use it effectively, the data model must allow for U

a larger amount of parallel processing. Thus, with the advent of database

machines, new data models will evolve that are much more powerful and flexible 
-

than existing models. Database computers will support these powerful models ., ,
with an ease that can never be emulated by present—day computers. In addition,

it must be noted that the performance gain in implementing existing data

models on the DBC is further enhanced by automatic garbage collection (by

hardware), large storage capability (of the order of iolO bytes), automatic

directory search as opposed to a search by software means, sophisticated U~ *

security provisions (also automatic) and finally by high reliability since

large and complex software systems can be replaced by specialized hardware

functional modules, 
-

~~
U.i • 1 •

—~1



—~~
- -

~~~~~~~~~~~~~~~~ - ——-~~
---~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

—“ —-~-~~~~~~ --‘-- -~ ~~~~~~~~~ —- ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —— — ____- —

H —91—

H ~U

References

El] Hsiao, D.K., D.S. Kerr and F. Ng, “DBC software Requirements for

I Supporting Hierarchical Databases ,” The Ohio State University, Tech.
Rep. No, OSU—CISRC—TR—77—l, April 1977 ,

- [2) CODASYL Data Base Task Group, April 1971 Report, ACM, New York,
*

. [3] Baum, R.I,, D.K. Hsiao and K. Kannan, “The Architecture of a Database
U Computer — Part I : Concepts and Capabilities”, The Ohio State

University, Tech. Rep. No, OSU—CISRC—TR—76—1, September 1976,
U

U

-
[4] Hsiao, D.K. and K, Kannan, “The Architecture of a Database Computer -

Part II : The Design of Structure Memory and its Related Processors”,

The Ohio State University, Tech. Rep. No, OSU—CISRC—TR—76—2, October 1976.
[5] Hsiao, D.K. and K. Kannan . “The Architecture of a Database Computer —

• U * Part III : The Design of the Mass Memory and its Related Components,”

The Ohio State University, Tech, Rep. No. OSU—CISRC—TR—76—3,December 1976.
[6] Date, CJ., An Introduction to Data Base S~~tems, Addison—Wesley Publishing

U
Company, Reading, Massachussetts, 1925.

17] Taylor, R.W. and R.L. Frank, “CODASYL Data—Base Management Systems,” ACM
Computing Surveys , Vol. 8, No. 1, March 1976, pp. 67—103.

I [8] UNIVAC 1100 Series, Data Management System (DMS 1100) Schema Definition,

Data Administrator Reference, Sperry Ráod Corp., 1972. 1973.
[9] UNIVAC 1100 Series, Data Management System (DMS 1100) American National

U
U Standard COBOL (Fieldata), Data Manipulation Language, Programmer Reference ,

-- Sperry Rand Corp., 1972.

• •

U - .

~~ UU

~
i-i

L i
~~~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

___________________


