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by
,, i C. C. L ./ S el l s

SUMMARY

The author’s method for computing steady, inviscid, subcritical flow past

a thick cambered wing is extended to design applications. Four problems are

considered : (1) given thickness and doublet (first—order loading) distributions ;
(2) given thickness and upper—surface pressure distributions ; (3) given loading

and upper—surface pressure distributions ; (4) a hybrid of (2) and (3) in which

the thickness is specified everywhere except near the root, and is determined

near the root when the doublet distribution is constrained to exhibit spanwise

invariance in that region. Convergence for the first problem is excellent .

For all problems , good convergence is obtained outboard . For the single case

reported of the second problem , convergence was secured near the root but cannot

yet be guaranteed . Near the root , slow convergence was obtained for the third

problem, rather better convergence for the fourth problem. This hybrid option

is tentatively recommended.

* Replaces RAE Technical Report 76027 — ARC 36857. EJ D C 
—

JI 14 971
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INTRODUCTION

This Report describes the development of computer programs to design

camber and twist distributions , and in some applications thickness distributions

also, for a wing without dihedral in steady inviscid incompressible (or sub-

critical) flow. Tht~ programs are extensions of the author ’s direct—calculation

program, described in Ref.!, in which the flow field is represented by suitable

source and doublet distributions in the wing chordal surface. A computer sub-

routine is available2’3 to calculate the corresponding flow fields. Linear

compressibility effects are accounted for by working in the affine (Prandtl—

Glauert) space.

The design me thods are based on the second—order small—perturbation theory

of Weber4; the idea is to obtain an approximation for the planar source distri-

bution , and the planar doublet distribution when appropriate , compute the flow

fields due to these singularities , calculate the residual errors in the boundary

conditions on the upper and lower surfaces , and adjust the source distribution

using the symmetrical par t of the error field , and the camber and twist distri-

bution using ti’e antisyinmetrical part. Four problems are studied.

In the first problem the thickness and doublet distributions are prescribed;

the doublet distribution is equivalent to the load distribution in linear theory,

and is roughly equal to the difference in lower and upper surface pressure

coefficients on the real , thick wing. The upper—surface (and of course the

lower—surface) pressure distribution is found as part of the solution , along

with the camber and twist. This method , which requires nothing beyond the

suggestions of Weber4, converges very quickly, and takes comparatively little

computer time , as the velocity field on the fixed thickness surface due to the

fixed doublet distribution can be calculated once for all.

In the second problem , the thickness and upper—surface pressure distribu-

tions are prescribed. The doublet strength now has to be determined iteratively.
- Weber has suggested4 a procedure for this task, in which we seek to cancel the

difference between the target pressure distribution and that achieved so far, by

a simple addition of suitable planar doublet strength at each point , the idea

being that the resulting extra streamwash will dominate. For the cases tried ,

this method converges quite well in mid—semispan and — perhaps surprisingly —

near the tip, but near the root of a swept wing there are difficulties , in that

a small change in doublet strength , particularly near the root trailing edge ,

does not necessarily produce a small change in the other two components,

•
1
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aidewash and upwash, or in the residual error which determines the next source

distribution. This leads to a situation of the tail wagging the dog. Various

under—relaxation schemes have been tried , with limited success. More successful

was an inner iteration scheme in which the extra sidewash and upwash due to the

new doublet increments are estimated (on the chordal surface , with a direct

vortex lattice representation for the upwash), the new upper—surface pressure

distribution estimated and another increment in doublet strength obtained. This

inner iteration has increased the scope of the method , but there are still some

cases when it fails to converge, probably because for the prevailing local and

temporal conditions the pressure is bounded away from the target , just as a

quadratic is bounded away from certain regions. For this case an optimization

routine would be appropriate , but has not been included in the program. Thus

at the moment, this option cannot be guaranteed to work near the root of a swept

wing.

In the third problem , the loading and upper—surface pressure distributions

are prescribed , and the thickness is to be determined as well as the camber and

twist. Since it is the doublet strength , and not the exact lower—surface

pressure distribution , that is prescribed , this is not the same thing as the

specification of both upper— and lower—surface pressure distributions , only

nearly so. This time , after the computation of the firs t set of velocity fields ,

the shortfall in suction is regarded as a shortfall in streamwash due to sources,

and this is turned into a perturbation thickness distribution by making use of

the approximate formula of the RAE Standard Method6 as suggested in earlier work

by Weber7. Good convergence is achieved everywhere except near the root of a

swept wing, where over—relaxation , or an inner iteration scheire similar to that

described for the second problem , to take account roughly of the changes in

velocity components due to the change in the thickness surface , might speed up

convergence but have not been programmed.

The fourth problem is a hybrid of the second and third problems . Again

the upper—surface pressure distribution is prescribed everywhere. A chordwise

section, n n* in the non—dimensional spanwise variable , is chosen near the

root. Outboard of this section , the thickness distribution is prescribed , as

in the second problem. This forms the basis for an iterative computation of the

outboard doublet distribution. The condition is now imposed that inboard of

— y~* the chordwise variation of the doublet distribution shall be the same

as at n = n* . In this way we expect to be able to maintain good upper surface
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flow quality and w~ng loading right into the root, which should also be useful in

obtaining root stall rather than tip stall at high off—design incidence.

Finally, to secure the required upper—surface pressure distribution inboard of

= y~* the thickness in that region is allowed to vary as in the third

problem. At each iteration the computed thickness distribution is faired into

the given outboard distribution by a least squares method ; this means a certain

loss of freedom, as the upper—surface pressure condition may be satisfied only

in a spanwise mean sense, but it is judged important to take this precaution, in

order to avoid problems in final manufacture and attachment of the wing.

As for the second problem , good convergence is found in mid—semispan and

near the tip, and we can expect better convergence near the root since the diff i—

culty associated with the second problem in that region has been bypassed .

Since there is more internal freedom than in the third problem , the most we can

really expect a priori is that convergence near the root will not be worse than

for that problem , and in fact it is sli ghtly be tter for the case reported here.

In our examp le cases for the second and third problems , the final results

are noticeably different from those which we would have obtained using first—

order theory , which has been the basis of classical design methods for many

years , and is used here to provide firs t estimates with which to start the

iterations. Thus , these programs should at least be use fu l  tools for checking

and refining the results of classical low—speed wing design calculations. It

seems likely that the program for the fourth problem , which treats what seems to

be a quite practical mix ture of design conditions , will also be useful.

For the cases considered here , which are sli ght variations of RAE wing

~3t 8, acceptable convergence was obtained for the first problem in two or three

iterations , for the second in four , for the third in five (except near the root)

and for the fourth in five (including the root). Thus the second , third and

fourth problems take around twice as long as the direct program
1
. This is

unfortunate , and may mean that the method is less competitive than the repeated

use of the BAC progr am9 in an incremental mode. But there is the possibility of

performing only one iteration at small cost and having a look at the results ,

then deciding whether to continue or to change an unpromising set of design

distributions and start again , wi thout incurring a large penalty in computer

time.

~ 

~~~~~~~~~~~~ ~~~~~~~
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Two separa te programs have been written , one for the first and second

problems , one for the third and fourth. The programs are written in Fortran

and occupy about 45K words of core store, with arrays dimensioned for a 12 x 15

collocation grid. The vortex lattice matrix is stored on a disc.

2 BASIC EQUATIONS

In this section, we summarize the basic equations and boundary conditions

as set out in detail in Ref.1.

We consider a finite wing in a uniform free stream with speed unity and

Mach number M < 1 . We take cartesian coordinates (x*,y,z*) with origin 0*

at the apex of the wing , with the x*~ axis O*x* in the free stream direction,

O*y to starboard and O*z* upwards , z’~ = 0 then defining the datum plane of

the wing , so that at any plane station y = constant , the local wing section

incidence is just the angle of twist u
T
(y) ; in what follows the distribution

c*T 
has to be determined as part of the design problem. In any plane

y = constant, we define local cartesian coordinates (x,z) such that the x—axis

is parallel to the local section chordline , the z—axis completes a right—handed

set with the x— and y—axes , and the origin 0 is the z—projection of the apex 0*

(Fig.1). These axes can be got by rotating the (x*,y*)_axes through the angle

c2
T(Y) 

. Wing thickness (z
r
) and camber (z) ordinates are defined as ordinates

z normal to the local chord:
w

z(x ,y) = ± z
~~

(x ,y )  + z5 (x ,y) . (2—1)

Both and z vanish at leading and trailing edges.

The velocity in the (x,y,z) system is now made up of the free stream

velocity

U = (cos cxT,O,sln nT
) (2—2)

and a perturbation velocity field

u = (u,v ,w)

which is to satisfy the wing surface boundary condition

(U + u) . grad(z~ 
— z) = 0 . (2—3)

For compressible flow , with M
~, 

> 0 , we transform into the affine

(Prandtl—Glauert , or Goethert) space (~~,y,z) wi th the corresponding affine

perturbation velocity

I ,
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ii = (ü,v ,w)

by

x = 5~
(2—4)

u = ü/B J

where ~2 I — M 2

To a first approximation , the prob lem is reduced to an incompressible flow

problem in the affine space , which we proceed to tackle by placing source and

doublet distributions q(~~,y), Z(5~,y) on the chordal surface of the analogous

wing. These distributions will generate the affine perturbation velocity field

- We assume that at each station y = constant , ii will not be significantly

affected if the source and doublet distributions are considered as lying in the

local plane z = 0 , so that it can be calculated using the Ledger—Sells
2’3

computer subroutine.

Using this subroutine , the separate perturba .ion velocities ü~ , ti~ , due

to sources and doublets respectively, will be calculated on the ‘thickness

s u r f a ce ’ z = z , and their values on the actual wing surface a = z will be
t U

derived using the first two terms of a Taylor expansion in z . The upwash

due to the sources , and the streamwash and sidewash v
9, 

due to the

doublets , change sign on going from z = z~ to z = ~~~ , and so the components

of and ü are :

/ ~v
= tü ± Z  ~—! v ± z  —i ± W  +~~~—t ~\

t S~~~~Z ~ t S 3 Z  ‘ t s~~ z

/ ~v
= 

(
~± i i~~ + z 5~~ ._&. , ± v ~~~+ z 5 .5_! , w

i ± z s~~~
!

evaluated at z = z~ . Upper and lower signs correspond to upper and lower

wing surfaces , respective ly.

For the complete velocity U = U + u~ + u
~ 

= (U,V ,W) , making use of

(2—4), we then h ave

~~~~~ 
_ _  _  _ _ __ _ _ _ _  

_ _ _
____ — ~~---~~~- ________________________
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U = cos a
T 

+ 

~~ [(at 
+ as 

.~.&) ± ( + (2—5)

v = 
(vt 

+ a .~.&) ± (~ ~~~~~~ + 
v )  (2—6)

W = sin aT + ( aw
~ 

+ ± (~ + a .~.&) . (2—7)

These equations can now be used in the boundary condition (2—3) and will
also be needed to obtain the total velocity Q from ~2 = + + and the
pressure coefficient C from

p

C = 1 - Q 2 
(M = 0 )

or

(2—8)
Y/(Y—1)

[1+~~~(Y_ 1 ) M ~ (1 _ Q 2
)] — 1

C = —
~~ (M~~ > 0 ) ,

J
where I is the ratio of specific heats , taken here as 1.4.

Within second—order theory , for the boundary condition and for the calcula-
tion of C we can write sin a

T aT in (2—7), and for the boundary condition

(but not when calculating C )  we can write cos a
T 

I in (2—5). Making these

changes , we have

V = (2—9)

W = Q5 ± Q4

with
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= + (
~~

+ 

~~
= 

(

~~~~~ t 

:v:~~~

’

~= v
~ 

+

(2—10)

tQ3 
=

Q = w + z
4 t s~~ z

Q5 
= aT

+ z
a + w

~ .

Substituting from (2—I ) and (2—9) in the boundary condition (2—3), we find

± R
~ 

+ R~ = 0

whence we obtain the symmetric part of the boundary condition

R = 0 (2—11)

and the antisymmetric part

= 0 ( 2 — 1 2 )

where the reszduals R
t 

and are given by

~z ~z

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2- 1 3)

az  3z
= 

~~~~~~~~~~~~~~~ 
Q 3~~~~~ Qs . (2-14)

- -.-- —- —.~ - ..~- -- ~ — .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-.— - — - -. --.. —~~~~..- ---—, —---—— - —-~~— .. . -— ..~—--- —
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It is convenient here to introduce the coordinate system used for compu-

tations, which is the same as that of Ref.1 . The local percentage chord is

given by

x = X~~~()’ ) + ~ (y)~ (2— 15)

where ~~ (y) is the leading—ed ge ordinate , and ~(y) the local chord, of the

analogous wing. The computation grid is then defined chordwise by equal

intervals of the angular chordwise coordinate ~ where

= ~ ( 1 — cos

We use the nondimensional spanwise coordinate r~ = y/s . (The semispan s will

be taken as I.) We also define a spanwise variable ~ = y to go with ~ , and

use 3/~~ to denote partial derivative with respect to ~ along lines of

constant percentage chord ~ . Then

= .
~~~~~~~

_ (2—16)

and

a a — a
— = —~~~~~

— t a n A — ~ (2—17)a y ax

where = arctan + 

~~ 

is the local sweep ang le ( for  the analogous wing) .

3 THE DESIGN PROBLEMS STUDIED

3. 1 Firs t problem: specified loading and thickness distributions

In this problem , the camber and twist distributions z , aT 
are to be

determined , and the upper-surface pressure distribution is found as part of the

solution. We have only to determine , in addition , the auxiliary unknown source

dis tribution , since the doublet distribution ~~~~~~ 
(which is equivalent to

the loading dis tribution in linear theory) is known in advance.

Since the doublet distribution is fixed , we can compu te the velocity

field ti on the thickness surface z = z once for all. Let us assume thatt owe have also determined an approximation q (~~,y) 
to the final source

dis trib ut ion , and that we have compuced the corresponding velocity field ~~~~
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We suppose also that estimates for the camber distribution and twist

dis tribution c4~~ are available. Using (2— 1 3), (2—14), we compute the

corresponding residuals R(n), ~~~~ and examine how well the boundary conditions

(2—11) , (2—12) are satisfied. Consider the firs t of these. The residual R
~

can be thought of as a deficiency in w~ through the term (—Q ), and so we

attemp t to cancel it by adding to q
(n) 

a source distribut ion

= 2R~
n1) (3—1)

exac t ly as in Ref.I. To star t the iteration and obtain the first estimate

(the basic source distribution 
~~~ 

we take the situation where ~~~~~ 
~(O)

are both zero , giving the linear— theory result

az
= !. ~~~ =

t Bx

again as in Ref.1.

The residual error ~~~~ in the other boundary condition can be used to

adjust the current values ~~~~~ cz~~~ of z , a as shown by Weber
4. Putting

s T s T

(n) (n)
z = a + Az , a = a + Act

5 S S T T T

in (2—14) , neglecting products of the perturbations Az , AOT 
wi th other

pe r tu rba t i on  q u a n t i t i e s , and invoking  ( 2 — 1 2 ) ,  we h ave

aA z
I .—z.

~ — Act = — R
(n) 

. (3—2)
~ ax T 2.

To obtain the basic camber and twist distributions Z
SB~ 

ctTB 
w i t h  which to s ta r t

the iteration , we compu te w
2.B

(5t,y,z
~
) or est imate wfB

(
~~
,y,O) from the basic

doublet distribution 2.
B 

and then (2—14) gives

R2. — w
2.B

to be substituted in (3—2), which leads to the standard result of linear wing

design theory.

I ,

~ 

~~~~~~~~~~~~~ .
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Integrating (3—2) from 0 to ~ , using (2—16)

~z ( ~~;n) B~~(n) ~
Aa
T
(n) - / R~~~ (~ ’;n)d~ ’ (3—3)

where , since z (1;~~) = 0 , we have

= f R~~~(~ ’;rl)d~~ (3 4)

The integrals in (3— 3.’, ~3—4) are evaluated using Simpson’s rule with •
as the independent variable. Then the accumulated z , ctT 

are extrapolated to

the wing root and tip s tat ions , and the spanwise derivative ~z5/~
ij (also

needed in the Tay lor series expansions) is computed at each collocation point
by a cubic sp line fitting routine .

We remark that the calculation of Az , An does not disturb the field
s T

values fl
u , 

U ) on z = z
~ 
, and so after finding Az , An

T 
via the residual

error field from Taylor series , it is worthwhile to execute the Taylor series

sequence again wi th the updated values of z
8, 

ct
T 

This updates the successive
estimates for the other residual field R

~ 
, as well as the upper—surface

pressure dis tribution , which we shall need in the other design problems to be

considered.

3.2 Second problem: specified thickness and upper—surface pressure
distributions

In this problem, the doublet distribution 2. is to be determined

iteratively, as well as the source distribution q and the camber and twist

dis tributions z , - A sequence of upper—surface pressure distributions

is generated , which (it is hoped) will tend to the specified or target
— 4distribution C . Again following Weber in broad outline, successive

increments A2. in 2. are determined from the shortfall in C ; then, just
Pu

as in the first problem , successive increments Aq arc found from the sequence

of resid!lal errors R~
’
~ , and successive increments Az , An

T 
from the

sequence of residual errors R~
’
~

A first estimate for is provided by Lock
5. From the target

distribution and the appropriate equation (2—8), we derive the target

upper—surface total speed distribution Q , and insert it into Lock ’s formula:
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= [cos ct
T 

+ u
~B 

COS a
T 

+ uzB(I + sec

+ [v~B 
C05 ct

T 
+ v B(I + 5C3) sec )]2

+ — K2)(D — 1) sin2A~ cos a
T . (3—5)

The symbols D , etc. are defined in Appendix A . The velocity components are

taken in the plane z = 0 , so that the doublet strength is connected to the

(physical) component u
2.8 

by

=

If we tentatively assume tha t V
2. B depends linearly on °2.B through a

relation

v — — u  tan A  (3—6)ZB v

where A is also defined in Appendix A , then equation (3—5) becomes a quad-

ratic in u
2.8 (all other quantities being known) , and one of the two roots can

be picked out as the required solution.

We can improve this first estimate in an iterative way, calculating v
2.

from the current estimate for u ç and the equation of irrotational flow and

using this value instead of the assumption (3—6). Details are again set out in

Appendix A. This is in pri nciple an inner iteration , performed before the

velocity fields i~~
1)
, U~

’
~ are computed ~ic curately in the main iteration

cycle. In practice, one inner iteration is sufficient.

In an inner Lteration cycle such is this , in order to estimate the

successive camber and twist distributions ~.e would like to obtain a quick

estimate for the upwash correspond i~~g r~ a current , or intermediate , es timate of
the doublet field without performing the time—consuming Ledger—Sells double
integration for each intermediate estimate in turn. To do this , we use a direc t

vortex lattice representation , as in Ref. I; the vortex lattice influence matrix

is not inverted (but as appreciable t ime is needed to generate it , it is stored

on a scra tch dis c by the computer after the first pass through the vortex

lattice subroutine). Near the root and ti p, the vortex lattice method is not

very accurate and tends to overestimate the upwash o’ ownwash , and so the out-

put values are multiplied by a spanwise under—relaxation factor 
~~ 

tentatively
taken (after numerical experiments) as:

-.-.-.. - - - . -~ .— — -  ~ :Th -.~--- --- -~~~--- -.~. 
_ ~_~~~~~ .II1 ~~~~~~~~~
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= 

(I ÷ I K ~ I)~

(
2 is a spanwise interpolation function , similar to that of the RAE Standard

Method , and defined in Ref.1. The errors in the resulting estimates for camber

and twist will not matter greatly, since they will be nearly correc ted auto-
matically when U

2. 
is computed accura tely in the main iteration cycle.

(n) (n)
As remarked earlier , after the calculation of Q and C at thePu

end of the nth main iteration , we have next to generate an increment A2. in the

doublet strength from the shortfall in C . This shortfall is , in principle,
pu

a second—order quantity and from it , following Weber , we can derive a second—

order expression for the corresponding increment Au
2. 

in (physical) streamwash
due to A9. , where as usual A9. = 4~Au 2. 

. Using the suffix u to represent

upper—surface values in the velocity components (U ,V ,W) from (2—5) to (2—7), we
have Q

(n) 2 
= U

2 
+ V 2 

+ W 2 
, and to second—order accuracy

2 2 2
Q (U + A u )  + V  + W

- u 2. u u

* 0
(n)2 

+ 2U Au

whence

—
Au 2. 

= 

~~~ 
(3—7)

We now have all the equations needed to set up a closed iteration cycle for

this prob lem.

In order to control some overshoot near the tip (and as a partial control

near the root also — this will be discussed further , later), it has been found
help ful to introduce an under—relaxation factor for the doublet strength

perturbations , again depending on the spanwise fac tor K
2

= (1 + K
2

I) ~~~

Near a wing tip of fini te chord , the loading is expected (apart from the effect

of corner singularities) to decay elli ptically ; the factor is not expected

to represent this spanwise decay precisely , bu t is intended to introduce some

decay , under contro l, which seems in practice to be better than introducing none

at all.

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  ‘-~~~~- —~~-~~~~-
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It will be remembered ’ that , to assist the solution of the direct problem ,

line source and doublet distributions were introduced on the wing centre line

y = z = 0 to reduce the residual errors R
t, 

R
2. 

at the root y = 0 . In the

present design p roblem, just as we adjust the p lanar double t s trength to produce
an ex tra Au

2. 
to correct the upper—surface pressure distribution outboard , it

is natural to try to adjust the line doublet strength to produce an extra stream—

wash Au
2.D to do the same job at the root. The resulting upwash adjustment

Aw
2.D 

would then be incorporated into the camber and twist distribution at and

near the root. The diffi culty is , that whereas (in the direct problem) a change

in line doublet strength to produce a certain Aw
fD 

did not tend to produce a

large change A u
2.D , 

a change to produce a certai n Au ID does tend to produce a

large change Aw
fD 

; in other words , this calculation , although wel l- conditioned

in one direction , is ill—conditioned in the other. It was found that line

sources also tended to destabilize the iteration scheme ; so the line singularity

technique has been abando.ied and no target distribution is prescribed at the

wing root ( thoug h we can approi~ch it qu i t e  c l o se ly  w i t h  a su i tab le  che ce of

spanwise stations); all quantities such as z , q, 2. are extrapolated para-

bolically to the root (but ~~~ are still evaluated using the Ledger—Sells

subroutine), and the final residual err or ,~ and pressure coefficients at the root

are left to take care of themselves.

As in the d i r ec t  program 1
, we c~in seek to reduce the number of iterations

by generating im proved estimates for the perturbation quantities . The additional

velocity fields due to the perturbation source and doublet fields , cal culated

in the main iteration cycle , can be estimated using the RAE Standard Method
6 and

so it is possible in effect to perform one iter~’ti on cycle and to obtain a

further set of perturbation quantities , without actually performing the accurate

but lengthy Ledger—Sells calculations . To estimate the new residual .rrors , we

again invoke Maclaurin series (expansions about z = 0 , rather than a = z
r
),

modified to take accoun t of concurrent changes in camber. The algebra is set

out in Appendix B. This can indeed be incorporated in a further inner iteration

cy cle , but it has been found ~nadvisabie to do it more than once or twice;

convergence of the main iteration cycle is rather sensitive , perhaps because of

the leve l of feedback invol. d between the three unknown and interacting f i e l d

quantitie s , and i t  seems l i k e l y t h a t  any f ur t h e r  b e n e f i t  derived a f t e r  the f i r s t

or second inner iteration is outwei ghed by the feedback effect due to ti

accumula t ing  e r ro r s  in the  s u c c e s s i v e  ~~ t im at e s  f rom each cycle .  

: : . ~~~~:i~j .: :~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In the course of developing the program, a difficulty has arisen which has
still not been satisfactorily resolved. The symptom of this difficulty is the

onset of oscillations or divergence in v , w , C and R near the root
2. 9. Pu t

trailing edge. In this region there seems to be a close coupling between all
the velocity components so that a small change in 9. and hence in does not

necessarily produce a negli gible change in v
9.
, w

9. 
and in the residual error

R
t ; 

thus the effect of the small change M~ given by (3—7) does not have the
required effect on Q

To prevent R
t 

and the resulting extra source distributions from growing

too large , after the firs t guesses for source and doublet fields the program has
been arranged to do two successive perturbation source calculations (including

Maclaurin series calculations), just as if it were performing two iterations of

the first problem, before calculating another perturbation doublet field. This
is an unfortunate necessity , but as the Ledger—Sells subroutine is adaptive , the

calculation time s should decrease as the iterations proceed and R
~ 

decreases.

The destabilizing effect of Av
2. 

and Aw
2. 

is not so easily dealt with.

An attempt to take them into account in the derivation of equation (3—7), even
when only linear terms are included , leads to some heavy matrix algebra and

progranining, and fails in the end because the non—linear terms are not negli gible
in practice. For some of the cases studied , instability was successfully

aver ted by a simple addi tion to the inner iteration scheme, in which we take
account of the approximate values of Au9., Av

9.
, Aw

9. 
(and also of Mi

s, 
Av

e, 
Aw
~

generated within the Maclaurin series sequence , when appropriate) to update

approximately the upper—surface velocity components U , V , W and the total
speed Q and hence to generate a further perturbation doublet field using (3—7)

again. This part of the inner iteration cycle can now be repeated until the

changes in doublet strength are sufficiently small , or for a maximum of
(currently) nine inner cycles . This inner iteration scheme can also be

profi tably applied to the res t of the wing surface , even though the effec t of
Av

9. 
and Aw

9. 
on Q is not so great.

This artifice has enabled us to obtain a solution for at least one case

which we could not treat without it. But there seems to be a class of cases for

which the program so far described still does not work ; for these cases , it is
the inner iteration which oscillates or diverges. Relaxation methods do not

seem to help. A study of the computer output indicates that , even though a
numerically exact solution of the whole problem is known (derived from the

program for the firs t problem , for instance), the unconverged state of the
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acc urately calcu lated parts of and U
9. , 

and the approximations used for

AU
9. in terms of A2. in the inner iteration scheme , are such that Q has a

minimum value which is higher than the design value Q , just as a quadratic

in a real variable is bounded away from certain values. Thus in this situation

we cannot find a A2. to give Q = Q everywhere , using just the inner

iteration scheme. An optimization sequence within this scheme , to detect the

situation and to seek a solution minimizing the overall differences between Q
and ~ (by least squares , perhaps) is indicated , but has not been devised at

the time of writing.

3.3 Third problem: specified loading and upper—surface pressure distributions

In this problem , the thickness distribution z~ is to be determined

iteratively , as well as the camber and twist distributions z
5, aT 

and the
associated source distribution q . Again a sequence of upper—surface pressure

distributions ~~~~ is generated , which (it is hoped) will tend to the target

distribution ~ -pu

As in the firs t and second problems, s uccessive so urce increments Aq are
found from the sequence of residual errors R

(n) 
, and successive camber and

t 
. (n)

twist increments Az , An
T from the sequence of residual errors R

9. - This

leaves the successive thickness increments to be determined from the

shortfall in upper—surface C • We can do this approximately, making use of
results from the RAE Standard Method , if this shortfall can he converted

approximately into  a s h o r t f a l l  Au
~ ~~ . We may consider the followi ig

three sets of cL aumstances:

(i) At the outset , we have no estimate at all for z~ . Given the

design upper—surface velocity Q and the chordal—surface streamwash ÜjB due

to the specified load (doublet) distribution , we have a simp le basic es timate

for the streamwash due to sources:

U
tB 

= — 1) — U
9.B -

This will lead to a firs t estimate z~~ for the thickness distribution .

(ii) We can modify this initial crude estimate for z~ with the help of

Lock’s formula (3—5). From the known doublet strength , we again have

(hence u
9.B
) and also V

2.B , 
on the chordal surface. If we assume that u~~

in the first term on the right side of (3—5), dominates the equation as far as

sources are concerned , we can subs titute for all the other source terms , such as

.— ----. — ~~~~~~~~~~~~~~~~~ ---~~~~ T TJT~T TT~ _~~~TT1~ — --- --—— .. ---~~~~~
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v
8 
, the values determined from the initial estimate Z

tB 
and ob tain a

revised estimate for ~1., (and hence a revised estimate for 
~~~~~~~ 

The details

are filled in at the end of Appendix A.

(iii) Af ter computing C~
”
~ in the nth main iteration , just as in the

second problem we can derive a simple second—order expression for the required

physical incremen t Au
~ 

= Au
~
/8 due to the required extra thickness distribution

Az
~ 
. This expression is just the right side of equation (3—7) again:

[.2 - Q ( n ) 2]/ 2 U  -

After a Maclaurin series cycle , the velocity components in this expression can

be approximately updated , as in the second problem.

The perturbation velocity Au
~ 

and the extra thickness Az
~ 

(which can

be thought of as an extra source distribution 2
~

Az
~
/a
~
) are connected approxi-

mately by the formula of the RAE Standard Method 6:

[ 3Az 
— 

BAz / a~
= cos A - K

2
(f l ) f ( A )  

4i 4

with

p f ~Az \ 
_ _ _ _S = 

— J  ~
—

~~
—
,) ~~

-
~~--~~~~ -,- (3—8)

0

1 1 + sin A
f = — i n  —

~ 1 + s i n A

K
2 

is the spanwise interpolation function , defined in Ref.1. One way of

dealing with this equation is to set up an iterative cycle in which the last

term (with ‘Riegels factor’) is treated as small and known from the previous

iteration — indeed , it vanishes altogether at certain mid—wing stations where

K
2 

= 0 . Thus we write

/aAz (m)

~~ 

) 

= 

cos
t

X 
+ K f (A ) 

T~ 
( z ~~~U/~~)2 

F

at the mth such cycle , and to start the cycle we put Az~
0
~ = 0 . The solution

of this equation (see Ref.7, for example) wi th A5~~~~(1) = AZ~
m) (O) = 0 is:

_ _ _ _ _ _ _ _ _ _ _ _  __________ _ _ _ _ _  A
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= - 

~ 
J F(~ ’) ~~~~ - c ’) dc ’

, . (3-10)

The program already incorporates a subroutine to evaluate the Cauchy
(principal—value) integral (3—8), and the Cauchy integral (3—10) can be evaluated

using the same sub routine ; thus the method is more convenient than, for example,
an extension of Carleman ’s method as in Ref.7.

However , before actually coding the evaluation of (3—10) we should consider

that the initial guess , and the corrections A~~ , should represent a

wedge—shaped trailing—ed ge (~ = 1) for structural reasons ; whereas , if F is

assumed regular at ~ = I , then aAz
~

/ B
~ 

is O[(i — 

~)~~] and takes a

rounded or ellip tical shape there , as well as at the leading—ed ge ~ = 0 . On
the other hand , when Az

~ 
is regu lar , c and F will show a logarithmic

singulari ty as ~ 
-

~ I • We there fore estimate the strength of the singularity

and subtract a suitable function from F to leave an integrand which we hope

will lead to a sensible trailing—ed ge shape.

A representative function A
0 

which represents a closed section , with a

suitably small square—roo t singularity at the leading—ed ge and wedge—shaped at

the trailing—edge , is

= 

~o = - (3-11)

which corresponds to a section shape

z
~ 0

/
~ 

= (I —

Inserting (3—11) in (3—8), we have

S = ![ .~~~+ (3- ~~~~~ 
,/
~~ln ~ 

‘ 

~~~~~

- 
I)]

We now subtract a suitable multi ple 5 of from F . To help

de termine this multi p le , we have the values of F at discrete chordwise

stations 
~2’ ~3’ ~ ~L— 1’ ‘L wh ere 0 = < 

~2 
< < < 1 . We make

the hypoth esis

~~ —-.-—- -— . ~~~~~~~~~~~~~~~~~~~~ . .~~~ —--—--- - -- ——- ——-- . .. — — . - — . . .  
——- ---- . ---- — -- ..- p 
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F = t5ci0 (~) +

where o1 (~) varies slfowly compared with a~ (~) near ~ = I . Putting

= 

~L—1~ ~L 
in turn and subtracting, we find

F(
~L
) — F(

~L I )
— 
°O~~L—1~

We then evaluate A~ from the equation , similar to (3—10)

= - 
‘/
~ (1 

~ ~ ~
1 ~ 

- 

~°o”’)]~~’~’ - ~
‘)

and then

_ _ _ _ _  =

This can now be substituted into F given by (3—9), with m increased by one,

to start the next iteration cycle. We have tested this cycle on a variety of

wings and shapes , ar.J convergence always seems rapid , up to 10 iterations being
needed depending on the value of the interpolation function K

2

Although the integral (3—10) and the function (3—11) always represent

closed contours mathematically , when AZ
(m) 

is evaluated by numerical integra-

tion of z~m)/a~ this may not be exactly true because of numerical truncation

errors. At each cycle, then , we check the closure condition and rotate the

contour AZ~
m) 

through a small correction angle about the leading—edge in the

(E
~
,Az

~
) plane to make AZ~

m) 
= o at ~ =

After calculating Az
~ 

we must check that the resulting contour does not

cross itself , i.e. the new is positive everywhere. Actually , we demand
rather more. To avoid the possibility of unrealistically small z~ , we check
that z~ will not be reduced by more than half its former value anywhere; if
this condition is not met , i.e. Az

~ 
< — 

, then Az
~ 

is everywhere multi-

plied by a suitable factor to give just the 50 per cent reduction in z~ at

some point which is the largest reduction we are prepared to allow.

r _:..~~ ~_. - -‘ ~~. ~,.. -
. . _- .  — 

~~~~~~~~~~~~ ~ .- - .-----__—- -- ~~~~~~~~~ ________
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On the other hand, if the first estimate Z
tB 

fails this test , since there
is no previous distribution to compare it with , we have to improvise. First , we
examine Z

tB 
near the leading edge; if it is negative somewhere in that  reg ion ,

then probably the input data for 9. and C do not correspond to a reasonable

wing; the program exits. If Z
tB 

is positive there , but becomes negative near

the wing trailing—edge , we charitably assume that the input data do correspond
to a reasonable wing and the ini tial guess for Z

tB 
is in error. At each span—

wise station we then find the maximum z
8 , 

at ~ 
= ~ say, and also note the

derivative at ~ . For ~ ~ 1 we construct a function G(~)

which is arcwjse continuous with Z
tB 

at ~~ 
= , becomes rap idly linear as we

recede from that point , and vanishes at the trailing—ed ge ~ = 1 . A suitable

function is

c = ae ’
~~~~~ + b~ +

where we arbitrarily choose k so tha t

k(I — ~) = 2

so that the exponential term dies out near ~ = I . a, b and c can now be
chosen to meet the three conditions (Appendix C).

We apply this procedure at all spanwise stations , even if a negative

Z
tB 

has been detected at only one station , because (which is needed

for the boundary conditions) has to be computed from the values generated , and
if we only adjusted the values at one such station , the difference between the

adjusted section and the neighbouring unadjusted sections downstream of ~ =

might cause considerable fluctuations in this spanwise derivative. By applying

the procedure uniformly at all spanwise stations , we hope to avoid this possible

source of trouble.

Indeed , each time a fresh z~ is computed for this problem , we have to
compute and store the new chordwise derivative ~z~ / B~ as well as 

~
z
~
/ay , and

we also need 1 the tables of arclengths along chordwise and spanwise curves on

the new thickness surface z = z~ , and the Lighthill c—shift factors rendering

the solution uniformly valid near the new rounded leading—ed ge.

Fur ther , the device of computing only the (small) perturbation velocities
Au

9. 
from Ae

~
, Ae

9. , 
which saves time because the Ledger—Sells routine is

adaptive (useful for the first and second probl ems), breaks down here because
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the already—computed velocities are known only on some previously—generated

thickness surface , not at the current values of z~ . (An attempt to calculate

values on the new thickness surface using Tay lor series turned out , not surpris-
ingly, very inaccurate near the leading—ed ge.) So for this problem it is

necessary to work with the complete source and doublet distributions all the

time when calculating 2~ 
and

When the program so far described was run , inspection of the results

showed that despite the inclusion of Az
~ 

in the Maclaurin series theory , the •1

successive estimates for Az
~ 

would be improved if Az
~ 

was determined only

af ter one Maclaurin series calc ulation, and not after the Taylor series.
Simi la r ly to the second problem , there seems to be a coupling be tween R

t, 
A~~

and the shor tfall in Q , such tha t  if Az
~ 

is calculated every time, even

though the corresponding linear—theory source distribution is always taken

into account , R
t 

does no t converge quickly to zero. By determining Az
~

only half as often, the residual R
t 

is given more time to settle down; and by

de termining it after the Maclaurin series calculations , we postpone it as long

as possible after the final Ledger—Sells calculation , so that  for a given number
of these , R

t 
is likely to be smallest and the last output table of thickness

distribution is likely to be nearest to that  giving the des ired upper—surface

pressure distribution .

3.4 Fourth problem: hybrid

In this problem , the upper—surface pressure distribution is again specified

everywhere , but different second conditions are imposed inboard and outboard of a
spanwise section fairly near the root , n = n~ say. For n ~ q* the wing
thickness distribution is specified. In the course of iterations on this part

of the problem , a double t distribution c’(~~,n) is calculated (for r ~a ~*) and

repea tedly adj us ted as in the second problem ; it is then necessary to extra-

polate 2. in some way to the inboard region 0 ~ n < ri~ , and one way to do

this is simply to require that the computed inboard doublet distribution be

independent of spanwise position:

= 9.(~~,fl*) (0 ~ ~ < ~*) .

In linear theory this would be equivalent to maintaining the chordwise load

distribution ri ght into the root , and in our problem only small departures from

this condition should result. Finally, to satisfy the upper—surface pressure

condition for 0 <
~ n < n* we adjust the thickness distribution in that region

as in the third problem.
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The program has been arranged to treat n = n~ as the third collocation

station ourhoard from , but not including , the root , so that there are two

c o l l o c a t i o n  s t a t i o n s  inboard of n = on which the thickness distribution is

to be adjus~ ed . In calculating the thickness perturbations , we consider that it

is e s sen t i a l  to ensure t h a t  the th ickness  d i s t r i b u t i o n  for n ~ n~’ always fairs
smoothl y i n t o  the g iven d i s t r i b u t i o n  for  r ~ , and the mos t prac tical way to
do t h i s  se~~ms , to f i t  (b y least  squa res )  quadra t i c  curves wi th  the required
(zero)  f ir s t  de r iva t ive  spanwise to the ca lcu la ted  thickness per turba t ions  at

each val ue of ~ -

The same curve fit is used to extrapolate the new thickness distribution

to the root n = 0 , whi ch is again not a collocation station but is still an

ou tpu t  s t a t i on .  This curve f i t t i n g  means that  near the root the upper—surface

pressure  condi t ion  is now s a t i s f i e d  in a mean sense only, at each collocation
s ta t ion  value of ~ -

4 RESULTS

4.1 First problem

Resu l t s  were ava i lab le  for  the cambered and twis ted  RAE Wing ‘B’
8 

at

Mach numbe r 0.8, from the author ’s direct program 1
. Wing ‘B’ has p lanform

aspect ratio 6, tap er ratio 1/3 , strai ght leading and trailing—ed ges on each

half—wing, and mid—chord sweep ang le 30° (Fig.2); the chordwise thickness

d i s t r i b u t i o n  is tha t  of the 9 per cent thick RAE 101 scction. As a test case

fo r  the f i r s t  p r o b l e m , the f i n a l  o u t p u t  p lanar  doub le t  s t r e n g t h  from these

results was input as data; its behaviour at three spanwise stations , near the

root , in mid—semispan and near the t i p ,  is shown in Fig.2a. The program was run

for four iterations.

As the p lanar doublet strength , and hence the velocity field , is

fixed , we may expect the overall spanwise loading properties (which depend only

on the doublet distribution in linear theory), the residual error R
9. 

and hence

the cambe’- and tw i s t  d i s t r i b u t i o n s , to settle down fairly quickly to their final

va lues ;  this expec ta t ion  is borne out by Figs.2b and 2c in which the difference

between the spanwise twis t  and loading d i s t r i b u t i o n s  ca lcu la ted  at the f i r s t  and

fourth iterations can hardly be seen on the graph. The corresponding camber

d i s t r i b u t i o n s  at th ree  S t a t i o n s  are shown in Fig.3, and except near the root ,
the d i f f e r e n c e  be tween r e s u l t s  for  the  f i r s t  and f o u r t h  i t e r a t ions  is also very
smal l .  Also shown in Fi g s .2b  and 3 are the  ac tua l  va lues  for Wing ‘B’, which do

e x h i b i t  n o t i c e a b le  d i f f e r e n c e s  w i t h  the converged resul ts. At the outboard

- 
~~~~~~~~~~~ :~=- T#zi : ~~~~~~~~~~~~~~ 
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stations in mid—semispan and near the tip, these differences can be attributed

to numerical error in the trapezoidal integration method used to evaluate the

camber and twist integrals (3—3), (3—4), when data is available only at seven

interior Weber points ; for this small number of chordwise points , which has been

taken for demonstration purposes only , the error in the twist distribution is

only of the order 5 per cent , and would be reduced (and more detailed input and

output secured) if more chordwise points were taken. The large difference in

camber near the root (in Fig.3) is almost certainly due to the absence from the

design program of the line singularities introduced at the root in the direct

program; although these line singularities have their major effect on the root

section, they do have some effect on the calculated planar doublet strength

(through cross—coupling with the boundary conditions) at the first outboard
station. These factors lead also to a considerable difference between values

from direc t and design programs in the upper—surface pressure C
pu near the

roo t , as shown in Fig.4; however , for the two outboard stations , notwithstanding
the slight differences in camber there , the differences between converged values
and values from the direct program could hardly be distinguished on this scale,

and have been omitted for clarity. Fig.4 shows principally that C takes
longer (but not unacceptably longer) to settle down than the camber and twist

near the roo t, and slightly longer at the outboard stations ; this is because

the source distribution has to be adjusted repeatedly to reduce the boundary
condition error R

~ , 
and we know from experience with the direct program that

this error is likely to be largest near the root , and has a rather uneven

convergence ratio.

Results from the program for this first design problem (to which we shall

refer as Option 1) have also been used as test cases for the other prob lems , a

procedure which seems like ly to produce consistent results as the basic calcu-

lation methods , and the principal source of error in these demonstrative cases

(in numerical evaluation of the camber and twist integrals), are the same.

Also , any comparisons with results from the direct program would be bedevilled
by the effects of the line singularities , just as we have already se en for this

firs t problem ; by ins tead taking results from the design program as test data

and convergence targets , it is much easier to assess the behaviour of the other

design programs near the root.

_ _ _ _ _ _ _ _ _ _ _ _  ~ — - . - -. _ _ _
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4.2 Second problem

In the last section we obtained results for RAE Wing ‘B’ at Mach number

0.8 from the desi gn program Option I. To gain some experience of the program for

the second problem , we input the final upper—surface pressures C as a target

distrib ution , along with the original thickness dis tribut ion , and again ran the

program for four iterations .

The target distributions , and the results from the first and fourth

iterations , are shown in Figs.5—7. The targets are the s~i~ €~ as the final

distributions shown in Figs.2—4 , and are now represented by f u l l  l ines . A

first glance at Fi gs.5b and c for the twist and spanwise loading characteristics

suggests  tha t  convergence is good at the outboard s ta t ions , mid—semispan and

near—tip, but that the results are not fully converged near the root; Fig.5a

shows that the doublet strength near the roo t is also converg ing rather slowly.

The camber distributions (Fig.6) tell a similar story : outboard , very good

convergence to the target from a rather poor f i r s t— i t e r a t i o n  r e s u l t ;  near the

root , still some way to go though the general shape of the curve , inc luding the
hump near the root t r a i l i n g— e d ge , is wel l  p red ic ted .  Fi g .7  shows the corres-

ponding behaviour of C
pu , 

and it is rather surprising that the remaining

change required in C near the root , in particular near the apex , corresponds
to so large a remaining change in camber and twist according to ;i gs.5b and 6.

This may be due , amongst other things , to the proximity of the root—line

singularity in upwash corresponding to the kinked doublet distribution , so that

a small change in double t  s t r e n g t h  may produce a large change in upwash , a~~i

hence in camber and twist .

It is perhaps worth commenting on the first guess for the doublet strength

as shown in Fig.Sa. This firs t guess is calculated using the older version of

Lock’s method 5 in which the velocity components due to thickness are first

estimated using the RAE Standard Method 6; but it is difficult to see how to

improve it substantially , as the accompanying firs t guess at the source distribu-
tion is such that the first estimate for C is not too far out near the root ,

Pu
and indeed seems excellent towards the trailing—ed ge for this case. These

results , with the attendant errors in the first estimates of camber and twist

shown in Figs.5b and 6, suggest t h a t , in  the desi gn problem , second—order

effects are very important near the root , and that even though the pressure

coefficient C from a first—order scheme may be near to the required value ,

it is necessary to check that the boundary conditions on the wing surface are

well satisfied by the velocity fields assumed or imp lied by such a first—order

scheme.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4.3 Third problem

It may happen that a wing can be desi gned to support a uniform spanwise

dis tribution of upper—surface pressure and of loading near the root , wi th bene-

ficial aerodynamic consequences, by increasi ng the section thickness/chord

ratio near the root. If this desi gn also avoids an unrealistic increase in root

twist , and happens to be structurally sensible and convenient , so much the
better .

To provide a test case with a known solution , a wing somewhat similar to

RAE Wing ‘B’ and designated Wing ‘i’ , was designed first , using Option 1. The

thickness distribution was specified as the RAE 101 section , the thickness/chord

ratio r being 9 per cent at and outboard of the collocati~ni station

= 0.1563 , rising parabolicall y to 13.5 per cent at the root (see also

Fig.8a):

T = 0.09 + 0.5(1 - 0.1563)
] 

(~~ ~~ 0.1563)

The behaviour of the specified doublet distribution at three stations , including
the nboard region n ~~ 0.1563 , is shown in Fig.8b. (This choice of double t

distribution was a historical accident based on earlier work on the fourth

problem.)

The resul ts from this run , representing the target distributions , are
again shown as the continuous lines in the remaining figures. The program was

run for five iterations . Fig.8c shows the convergence of the twist distributions,

and we see that the target is nearly attained everywhere , and that the firs t

shot was not far wide of the mark either . (In this case , the ef fec t of roo t

thickening on the des ign root twist is marg in al: a degree or so less than the

values shown for  Wing ‘B ’ in Fi g .2b , for  the  same l i f t  c o e f f i c i e n t  CLL ~~

Fi g.9 shows the convergence of the thickness distribution. Considering

firs t the two outboard s t a t i ons , we see tha t  the resul ts  for  the third and f i f t h

iterations are virtuall y identical , and that the corresponding pressure distri-

butions (Fig. 10) and camber distributions (Fig. 11 ) are very nearly on target ,

being indistinguishable except near the leading edge . However , the converged
thickness distributions are not quite on target. This must be due to numerical

error in integrating 3
~
z
~
/3
~ , 

l ike the corresponding numerical error demon-

strated for the camber in Fig.3. The rela tive error seems smaller than that in

the camber; a likely miti gating cause is that part of the error in z~ ~~
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picked up when the velocity components are evaluated on the incorrect surface.

This error would likewise decrease as the number of collocation points chordwise

is increased.

Near the roo t , the thickness distribution converges very slowly , as the

gap between third and fifth iterations in Fig.9 shows. The difference between

the results for the fifth iteration and the target distribution is larger than

e i the r  the remaining convergence leeway we mi ght  expect or the numerical error

in in tegra t ion  we could an t i c i pate  from the r e s u l t s  outboard , but can easily be

imagined as the sum of these two contributions .

The press ure distribution in this region (Fig.1O) also exhibi ts slow
convergence in the f i r s t h a l f — c h o r d , but  the f i n a l  s h o r t f a l l  of the ta rge t  is

li ttle different from that outboard. It may be an inherent difficulty for  the

third problem that the pressure distribution is less sensitive to the thickness

distrib ution near the root than outboard. It is not easy to decide how to cope

w i t h  th i s  d i f f ic u l t y .  An o v e r— r e l a x a t i o n  f ac to r  of about  2 could be introduced

near the root ( i t  is not needed o u t b o a r d ),  to speed up the convergence , though

we would prefer to build up more experience be fo re  c i t ing  th is  as the universal

panacea. I t  would  also hel p if the bas ic  es t imate  Z
tB 

could be improved near

the roo t ;  inspect ion of the d e t a i l e d  computer output  shows that the improvement

obtained w i t h  Lock’ s fo rmu la  is not remarkable , so tha t  the improvement would

need to be fairly dras tic; we also note that the basic estimate definitely

overpredicts the thickness at the mid—semispan station , whereas the thickness

is underpred ic ted  at the root .  (There was no zero in the first estimate for

Z
B 

, and so this estimate did not have to be modified as described in

section 3.3 and A ppendix C.) There is also the possibility of setting up an

inner iteration cycle for the successive increments Az
~ 

, as was done for the

doublet strength in the second problem , but it is very likely that in this

problem the dominant disturbance , not taken into account by the formula (3—7),

is the change in the velocity fields of the two singularity dis tribut ions when

computed on different thickness surfaces , rather than jus t the change in v
~

and w~ due to p e r t u r b a t i o n  sources . These changes could be estimated , using

Tay lor series , if the program were  rear ranged to s tore  the field derivatives

e tc .  near  the  roo t , which  are c u r r e n t l y  o v e r w r i t t e n  to save core store.

The remaining error in the camber d i s t r i b u t i o n  near the root (Fi g.11) is

obvious ly associated with the errors in the other field quantities , but is at

leas t an order of magnitude smaller than the remaining error in the thickness

_ _
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dis t r ibu t ion.  We mig ht  expect this since the camber and twist distributions

depend largely on the input doublet strength. On the other hand , the outboard
res~.lts for the first iteration , which do differ somewhat from the target

distributions , show that the agreement in the twist distribution at the same

s tage (Fig.8c) is probably fortuitous and that second—order effects are important
for this problem, outboard as well as near the root.

4.4 Fourth p roblem

For this final problem , the same test case was chosen as that for the

third problem: the wing we have denoted as RAE Wing ‘s’. The section separating

reg ions where different conditions are applied was the section where the inboard

rise in thickness/chord ratio beg ins , ri = 0.1 563 . For this problem , the

basic estimate for inboard thickness has not been programmed as in the third

problem; ins tead , the first guess was simp ly taken to be the same as the fixed
outboard distribution , the 9 per cent thick RAE 101 section . The program was
again run for five iterations .

The target distributions are again shown as full lines in Figs.12—14. We

see that in mid—semispan and near the ti p, all quantities converge well , as they
did for the second problem , to which this hybrid problem is essentially equival-

ent outboard. We also observe the same poor nature of the first guess , which
corresponds essent ia l ly to e s t a b l i s h e d  f i r s t — o r d e r  technique s , desp ite the fact

that at mid—semispan the chordwise pressure distribution is not too far wrong.

Near the root , as usual , convergence is slow and the thickness distribu-

tion (Fig.12a) has not converged to graphical accuracy . But we are somewhat

nearer the target  than we were in the th i rd  problem , and indeed the major part

of the remaining error could be just the numerical integration error in

(Fig.9). Convergence of the root twist (Fig .12b) and camber (Fig.13) is not

quite as good as in the third prob lem, but much better than in the second prob—
lem. Here too, improvement on first—order results is noted . The graphs of
section lift and centre of press ure duly exhibit the expected spanwise invariance

near the roo t (Fig.12c). The upper—surface pressure distribution has converged

to about the same level of accuracy as in the second and third problems (Fig.14);

the results  near the root have been p lo t t ed  fo r  the second iteration rather than

the first (for which only the ad 120 0 first shot for the thickness distribution

was available) to show again the level of error when only one thickness pertur—

bation is calculated .
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Wing ‘B’ is a special case, tailored for this problem so that the root

thickness distribution is precisely of the quadratic spanwise form which the

inboard least squares fit demands so that no difficulty arises with this

smoothing artifice. Moreover , the interaction between the unknown doublet

strength and the unknown thickness inboard happens to be favourable, so that

overall improvement in convergence is found compared with both the second and

third problems. Nevertheless , the results for this hybrid and somewhat

pathological problem at least seem promising.

5 CONCLUSION

In this Report we have studied four wing design problems , for two of which

the solutions have already been considered in princip le by Weber 4. The imple-

mentation of the first problem (given thickness z~ and doublet s trength, or
first—order loading , 9.) was straightforward and the program for it (Option 1)

converged rapidly.

The second problem (given z~ and the upper—surface pressure distribution

C )  and the third problem (given 9. and C )  have been satisfactorily resolved

in the outboard wing reg ions , mid— semispan (more or less sheared—wing station)
and, perhaps surprisingly, near the tip; but they have proved far less tractable
near the root of a swept wing. For the second problem, the camber and twist are

very sensitive to the doublet strength at the root , as we might expec t from
first—order theory , and there is considerable cross—coup ling between 

~~~
, C

and the residual error R
t in the syuznetric boundary condition. Convergence

has been secured for a swep t wing at high Mach number , but not for another in

incompressible flow, for which it seems likely that the sidewash and upwash

velocity components, which are not reduced in scale by the Prandtl—Glauert

factor relative to the streamwash , make it almost impossible to find a suitable

approximate doublet distribution to satisfy the upper—surface pressure condition

near the root trailing edge in the first one or two iterations , so that an

optimization technique, yet to be devised , is required. For the third problem,

C
pu does not seem to be very sensitive to z~ at the root , again R

~ 
has to

be allowed to settle down before z~ is adjusted , and convergence is slow.

Also , since the velocity fields due to the complete source and doublet distribu-

dons have to be computed on each new thickness surface , the program runs for

rather longer than Options I or 2. But the program (Option 3) has not actually

failed to converge for any case for which a solution is known.

— —~~~~~~~~~~~~~ —-. -~ 
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The four th problem is a hybrid of the second and third problems in which
2. is to be determined outboard , and the thickness distribution inboard of a

certain section near the root. In our opinion this hybrid stands an excellent

chance of giving the wing designer the solution to his commonest problem Out-
board , while avoiding the severe practical difficulties encountered near the
root in Option 2 and instead determining the required increase of thickness

there , to maintain good flow quality and to give add itional structural strength.

The results for one particular case show better convergence than those from

either Options 2 or 3, and while the dangers of arguing from one case are
realized , this option (Option 4) seems promising and worth bringing to the

attention of desi gners.

It m ay be ask ed why we have used the progr ams to obtain results for wings

at the hi gh subcritical Mach number 0.8, since it is known that the first—order

Prandtl—Glauert rule can only be expected to give good results for low sub-

critical Mach numbers for which the flow nowhere approaches sonic speed . One

answer is tha t a desi gn application can be envisaged at high subcritical Mach
numbers , if a shockfree flow is sought and if a shockfree solution of good

quality sufficiently close to the desi gn cond i t ion  is available from another

me thod, or from experiments , which might even be for a wing—body or wing—nacelle
combination. In this case, we would assume that changes in wing—body interaction

effects due to small per turbations on the given wing are negli gible over the

major part of the wing. Let us denote the upper—surface pressur e distribution

from this given solution by C 
E 

and that required by C 
D • Using our

pu , pu ,
direct program , we can compute the Prandtl—Glauert solution C~0 ~ 

for the

given isolated wing, and it will exhibit an error C — C which would
pu ,P pu,E

also include the interaction effects in a wing—body combination. Sinte CP u D
does not differ much from C

pu E 
we could expect that the wing we seek does

not differ much from the datum wing , and that the error in the Prandtl—Glauert

solution ~ for the wing sought would not differ much from the error in thePu
Prandtl—Glauert solution C for the datum wing:pu ,P

- C  = C - Cpu pu ,D pu ,P pu,E

hence

C C + C  — Cpu pu ,D pu ,P pu ,E

_____ _____ 
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If , then, we design our wing to have the upper—surface pressure distribution
Cpu it seems likely that the true result will be close to the target distri-

bution C . Which option is used would depend on whether the thickness orpu, D
the loading distr ibution is to be retained; we remark that if the thickness

distribution is to be retained outboard , Option 4 might be better than Opt ion 2

(since the centre line distributions in the direct program are not reproduced or

used in the design programs), but would be less important if the wing thickness

can be increased at the root.

It is also worth mentioning briefly a possible use in landing and take—off
design studies. The programs cannot be used to design wings with separate slats

or other high—lift devices , but they might be used to obtain a suitable camber

line for the RAE variable aerofoil mechanism (RAEVAM), which can under some

circumstances compete with separate hi gh—lif t devices .

-
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~pp~ndix~ A

LOCK ’S FORMULA FOR THE FIRST ESTIMATE OF WING LOAD DISTRIBUTION

Lock5 has proposed a formula for the total velocity Q on a wing in
compressible flow, suitable for use in the design problem:

= ci + 
~~~ 

cos ci ± + sec 
)} ]

2

2~~B I / ~(3)
+ _.

~~
. 

[vt~ 
cos ~ ± V

9.B 

~

I + ~~~~~~~~~~ sec A*
B n

+ (i — K~ )(D 
— I) sifl2A ~~~~ (A — I )

where the upper signs are taken on the upper surface;
ci is the local section incidence , and is therefore equal to our

A is the local sweep angle on physical wing;

is sweep angle of maximum thickness line on physical wing ;

Ax x
= ( I  — 1K I)2 

Am m

K
2 

is a spanwise interpolation function, taken as in section 5.2 of Ref.1;

= — M2 cos 2
A )

l

2 3 2 5
= 

~~~ + M,, cos 
~~~~ 

(‘ 
— 1K 2 1 sin A

~
)”C .”} ; it is suggested that

should be obtained by writing B = I in (A—I), giving Q = “Q~” , and
taking “C .“ = I — “Q. ”2 ; ii

p1 1

~~~ ~2 ,
D = I + sec2A* ( ....... ~~~ /B~- x~~~ x j ~ fl

utB
(x,y,O) , v

~8
(x,y,O) are estimates from linear theory for the velocity

- componen ts due to wing thickness, for example, see Ref.1;
utR

(x ,y,O) , vpB (x,y,O) represent the thin—wing components due to doublets in

linear theory , and are to be determined;

represents the second—order interaction effect between wing thickness
and incidence .
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It is convenient to mention two details here. Firs t , Lock ’s formula is a

semi—empirical extension of the Goethert rule to take into account higher—order

compressibili ty corrections through the factor B . Since our method is based

on the affine transformation which yields the Goethert rule , there is no point

in including these higher—order terms O(M~) in B
n 

and so we simply take
B = . This reduces (A—I) to equation (3—5) of the main text.

Second ly , we hav e slightly modified the classical derivation of ~~~ to

derive an expression which seems more consistent with the problem at hand than

the one given in Ref.6, even though it is only one of the several second—order

effects present , and only holds for two—dimensional swept wings . Consid er such

a wing ,  with uniform sweep angle A
~ 

= A , and incidence r~ - The analogous wing

will have the uniform sweep angle ~ where

tan A = 
~ tan A -

We have , for the thin—wing velocity components ,

V
9.8 

= — U
2.~~ 

tan A (A—2)

and hence , with °9.B 
= , we have the corresponding relation for the

analogous wing in a f f i n e  space:

V
2.8 

u
2.8

tan A

The firs t—order boundary condition W ZB 
= — ci is satisfied by the doublet

dis tribution 2.B wi th

U
9.B 

= 

~
2.
B 

= cos A

The second—order boundary condition gives:

U9.B ~~t 
3Z

t
= _ — _ — + v  ——— — z

9. ~2 351 ZB 3y t ~~Z

Using the sheared—wing relation 3/3y = — tan A 3/351 , and the zero divergence

of !2.B in our affine space , we obtain

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_i~~
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= (_!_ + tan 2
~
)

~ 
t 

+ z 9.B 
+ tan2~)

2 \ 3z 5
t I 1= (I 

~ 
cos ~ sec

2
~ [(cos ~ + sin 2X

j  3x T2~ (1 — 
~ )]

c is the analogous wing chord. Transforming the square bracket to physical

variables, and noting that

cos ft 
— 

cos A - sin A
sin A = (A—3)

B — 

8n

we get

= (I 
~~ 

/3x Z I c  1
_ _ _  _ _ _  

I t t

X I 2 
— 

2~ (I —

L B~

We satisfy this boundary condition by a doublet strength A2~ giving the further

s treamwash

I (I_-
= = — 

~ 
)
~ 

cos 
~ 

f Aw
9.(~~’)(1 ~~~~~~~~ 

d~ ’
—

0

= — B J_ s(3*)
cos A B

2
n

(3*) 1 I3z~ ~ ~2 1n d~ ’where S = — f k~ 
- 

~~ 2~ ’(I 
— 

~‘)j ~~
---

~
-
~
-

IT

This in tegral differs from the standard definition of ~~~ by the presence of

B
2 

in the integrand.
n

Using (A—3) again , we have finally

u2. 
= u

2.~ 
+ Au 2. 

= u
2.B[I 

+ 
sec A s(3*)]

and similarly for v
1 

; and these are the formulae customarily modified to

give (A—I).

- -

~ 

- - -
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To obtain a first estimate for 0
9.8 , Lock5 now replaces cos tI

T 
by I ,

while ci
T is still an unknown quantity , and Zw 

by in the expression for
D ; and the dependence of V

9.B 
on u

9.8 
is taken to be similar to that exhibited

for the sheared wing by (A—2):

v9.8 
— U

9.
~~ tan A (A—4)

[ ~~~~~~~ ) 1~ 
[2 ~~~

where tan A = 18
2 m 

— 8
2

1 = al m 
— I Iv i n 2 i i 2j cos A i i cos AL m J L m

Finally, Q is put equal to the design value Q . Then (A—I) becomes a

quadratic in the variable X = u
2.8[l 

+ ~(3) sec A*/B
]

AX2 + 2BX + C = 0

where A = sec2A

B =  I u
8

v
8

tan A

C (1 + u
2.8
) + v

2
8 

+ — K
2)(D 

— 1) sin2A — D~
2

Since B is of the order (5 + small quantities), the required solution is

x = [(8
2 

— AC)~ 
— B]/A

Hence follow the estimates for u
2.8 and the affine doublet strength:

=

Since a small change in V
2.8 

has a second—order effect on the value of

(A—I) compared with that of a small change in u
9.8 , 

we can discard the assump-
tion (A—4) and replace V

9.B 
in (A—I) by the value calculated from the first

estimate 0L8 and the more accurate formula
1
:

V
2.8 

= ~L 
[E(~
) 

f 

u2.(~~;n)d~
] 

- tan A

From LB we can also compute the first estimate cI
T8 for the twist and write

cos a — cos cIT8 in (A—I). This leads to a revised estimate u~8 given by

~ 
-
I

_ _ _ _
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x’U
9LB 

= 

~~~ ~~~ sec

where X’ = — ( 1 + utB) cos ciTg

1_2 (3) 2
+ LDQ — {vt8 

cos ciTB + v
9.g(I + S sec

— (I K~)(D 
- I) sin

2
A cos

2
ci
TB]~ 

-

~~~~~~ formula can also be used to modify an initial crude guess for the

thickness distribution z~ in the third problem , when the double t streng th is
known. From the doublet strength , we can f ind u

9.8 
and v

9.8 
. We now assume

that U
tB in the second term dominates equation (A—i) , just as we assumed tha t

u 9.8 in the same term dominated the equat ion when the doublet  s t r eng th  was
unknown; we find v

~8, 
D and from the initial guess for the

distribution , and then a revised estimate u
~8 

is g iven by

Ir _ 2  (3) 2
= — 

~{vtB 
cos cITE + v

9.B(I 
+ S sec

— (I — K~~)(D — I) sin
2
A cos

2
ci
TB]~

— uZB(1 + S~~~ sec A*/8
) 

— cos cI
TE) /cos 

ciTB

4 

~~~~~~~~~~~~~~~~~~~~~~~~
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~~pendix B

MODIFICATION OF PERTU RBATION QUANTITIES WITH MACLAURIN SERIES

The main iteration cycle involves the execution of the lengthy Ledger—Sells

subroutine to obtain the velocity fields 
~~~~ 

(or u , i~~) accurately . We

mi ght obtain a considerable saving in computing time if we could in effect

perform one iteration cycle by using suitable estimates for these velocity

fields instead; we would then hope that any errors due to the estimates would

be small enough to be absorbed in the main iteration cycle the next time the

velocity f i e l d s  are accurately calculated.

For convenience , we drop the bracketed iteration superscri p ts from all

quantities except the residual errors R(= ± Rt + R
2.
) . Let us suppose that in

the cith iteration cycle we have computed a = + ri
2. 

and the camber and twist

dis tributions z , cIT , 
and have determined perturbation source (and possibly

doublet) distributions Aq, At and perturbation camber and twist distributions

Az , AcIT to cancel the residual field

—(n) 1 u ’ I  w w
R (I + — J — — ~-.— +v—-— — c z  — W

\ B’ B ~x 3y

on the wing surface z z
V

The next residual field on the perturbed surface z = z~ + will be

(suppressing the x,y—dependence)

+ 

~ 

A z )  
+ ~ ; AZ

)] 
(

~~w +

3z 3Az
+ [v(z + A z )  + Av(z + Az )] 

~~~~

— (U
T 

+ Aci ) — Ew(z + A Z )  + i~w(z + As )]

In this expression , ~ z,~, and UT are f i r s t — o r d e r  small quan t i t i e s  while

~~ ~~w 
and Ac *T 

are (at least) second-order small quantities , being derived

from such expressions as ~~~~ which is itself second—order. We therefore

expand ~~~~~ in powers of Az
~ 

and retain only quantities up to and including

third—order , i gnoring for instance terms 0(üz A z), 0 (AuAz
~

) . Wi th all

quantities again evaluated at z = z~ , this leads to

- 
- “ ‘C 

— — • .. - — - 
- - - -‘-- —

- -!‘
~~~~
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~
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3Az

,~ w MI w w w
—

8
2 351 

8
2 Bx 3)7 

~y w 3z

We now further expand ~i in powers of z~ (Maclaurin series), so tha t from
this point on all quantities are evaluated at z = 0 , and continue to retain

terms up to third order. We can ignore further contributions from the second

line which is already third—order. Thus only Aw contributes further to the

expansion:

Aw ( z  ) = Aw(O) + z 2-~ . + O(z2Aww w 3z

We have already taken our perturbation source , camber and twist distributions

according to equations (3—I ) , (3—2) to make

3Az

~~~~ 
- Aw (O) + ! ~~~~~~~~~~ — An

T 
= 0

We also have

BR By

and a similar relation for Aw - Hence we can eliminate w , Aw and ob tain

/ r BAz ~z l
= f _i-. — ~) j

~ —
~~~ 

-t All —~ I + -
~~~
. (z All + llAz ) + (z Av + vAz )

~ 8~ I L ~ 3x 
J 

Bx w w By w w

Proceeding on the lines of section 2, we write for upper and lower wing surfaces

z = ± z  +~~~~ ; Az = ± A z  +~~~~~~
V t 5 w t S

and

= i:i ± u~t ~

with similar expressions for v , All , A v . (For the firs t and second desi.;n

problem s , Az = 0 ; and for the first and third problems , All = Mr = 0 .)
R n,I) now splits into ± ~~~~~~ + R~~ ’~~ with 

-_ ;• , _ .- - - —-.--

~~~~~~~~~~~ ~~~~~~~~~~~~~ —-~~~~~~~~~~~~~ , ~~~~~~~~~ -
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BAz

+ _i. 
(z~~ü + + u A z

~ 
+ ul

9.Az )

+ . (z~~v2. 
+ z A v

9. 
+ vtAz~ 

+ v
9.A z )

Bz Bz BAz
= (_.

~ 
— 

~) [~ ~~~~~~~ 

+ All9. ~~~ + 
~~~ ~~~~~~~~~~ 

+ ut

+ zA i j  + l l A z  + f l A z
351 ~~t 9. s t t s 9.

+ zA v  + v A z  + v A zBy~~~ t £ s t t s 9. t

When = 0 , these expressions reduce to those given in Ref.I . As in tha t

document, we must ensure that they are uniformly valid near the wing leading

ed ge ~ = 0 . We require at worst

= O((~ ) ; = 0 ( 1)

These expressions are satisfactory except for the second and fourth terms in
(n ,I )

the square brackets in R
9. 

. We introduce a Riegels type factor and rep lace

this square bracket (R* 9., 
say) by

R 9. 
= AI1

~ 
.._

~L + 

~~ 

____
~~

. + R9./(I +

with

= A!i
9.~~~~

.+ l I
9. —~j .~. .

This completes the derivation of residual errors by Maclaurin series.

To estimate these residuals , given Aq and perhaps A l. , we need quick

estimates for four velocity components on the chordal plane z = 0 . We use the

approximations for A&,, Av~ 
(derived from the Standard Method6) and

as set out in equations (5—12) to (5—17) of Ref.I . We also need 
~~ 

, etc. whi ch

- . 
. 

~~7 .
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are just the accumulated MI
~ , 

etc. on the p lane z 0 - However, instead of
simply accumulating them , after each main iteration we reset £l

~ 
by a Taylor

series based on the accurate value at z = z~
311

—

and s imilarl y for v~ , 
~~~~ 

V
9. 

• This avoids the possibility of large errors

piling up in the accumulated estimates for ll~ , etc.

~

—

~

-

~
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Appendix C

AN IMPROVISED FIRST ESTIMATE FOR WING THICKNESS NEAR THE TRAILING EDGE

When solving the third design problem, if the first estimate for the wing

thickness takes negative values near the trailing edge on any section, we

improvise a distribution to replace the first estimate in that region

temporarily, until the main iteration scheme gets under way. In such a plane

section r~ = constant , let us denote the first chordwise collocation point

downstream of the estimated maximum thickness position by ~ , and denote the

estimated thickness by z and its derivative by ~ at ~ = . Then we would

like to have a curve C(~ ) which passes through ~~~~ and has the same deriva-
tive ~~~ = , becomes rapidly linear further downstream and vanishes at

the trailing edge ~ = I • A function which becomes rapidly linear for ~ >

and contains three unknowns, a, b , c with which to satisfy the other three

conditions is

= ~~~~~~~~ + b~ + c (~ ~ ~ I)

where we arbitrarily choose k so that

A k(1 — 
~~) 

= 2

so that the exponential term dies out near ~ = I . A is an adjustable program

constant. The other three conditions , in order , now give:

a + b ~~+ c  =

— k a + b  =

ae
A + b + c = 0

The solution of these equations is written :

a — ~(I — 
)

~ +

I — e
X

b = ka+~~

c = ~~— a — b ~

We observe , as a check, that a vanishes and G becomes precisely linear if

= —
~~ /(I —~~)

which is the slope of the straight line joining the two end points (F ,~ ) and

(1 ,0). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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SYMBOLS

c l ocal chord

C~, pressure coefficient

doublet function 9. sin ~
9. p lanar doublet strength (loading)

M free stream Mach number

q p lanar source strength

Q local spe ed

R t res idual  e r ror  in symmetr ic  boundary condition

R
9. res idual  error  in antisymmetric boundary condition

s sernispan (taken as I)

U general pe r tu rba t ion  ve loc i ty  vector

Ii general perturbation velocity in aff ine space
u , v , w components of U

U free stream velocity vector

U comp lete velocity vector: + +

U, V, W components of U

x, y, z local Cartesian coordinates for section

X
L 

leading—ed ge ord ina te

wing thickness ordinate

z wing camber o rd ina te

z,~, wing section ordinate: z5 ± z~

cI
T 

local section twi s t

wing incidence (taken as 0)
B Prandtl—Glauert factor:

n y /s
ii y ; but B/B~ denotes differentiation along lines of constant

= ~~~ is section dividing root and outboard regions in fourth
(hybrid) problem

A local sweep in affine space (i.e. on analogous wing)

section percentage—chord: x = X
L

(y)  +

I fBA z
~ \ 

______

0

angular  chordwise  coo rd ina t e :  ~ = ~(I — cos 4)

under—relaxation factor app lied to estimate of output by vor tex
lattice technique 

- --- -  ~~~~~~~~~~~~~~~~ _______
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SYMBOLS (concluded)

Suffices

B basic estimate

9. due to doublets

t due to sources

U value on upper surface

Oversymbols

— design quantities (e.g. 
~~~~~
‘ ¶

- quantities in affine space (e.g. 51 = x/8, 11 = uS) 
I

-

~

- -

~

- - - - --~~~~~~~ --_  - - - - -- - ---- _ -~~~--~~~-- -~~~~~~~~~~~~ ------ - --
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