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SUMMARY

\

\

The author's method for computing steady, inviscid, subcritical flow past
a thick cambered wing is extended to design applications. Four problems are
considered: (1) given thickness and doublet (first-order loading) distributions;
(2) given thickness and upper-surface pressure distributions; (3) given loading
and upper-surface pressure distributions; (4) a hybrid of (2) and (3) in which
the thickness is specified everywhere except near the root, and is determined
near the root when the doublet distribution is constrained to exhibit spanwise
invariance in that region. Convergence for the first problem is excellent.
For all problems, good convergence is obtained outboard. For the single case
reported of the second problem, convergence was secured near the root but cannot
yet be guaranteed. Near the root, slow convergence was obtained for the third
problem, rather better convergence for the fourth problem. This hybrid option

is tentatively recommended.

I\

* Replaces RAE Technical Report 76027 - ARC 36857.
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1 INTRODUCTION

This Report describes the development of computer programs to design
camber and twist distributions, and in some applications thickness distributions
also, for a wing without dihedral in steady inviscid incompressible (or sub-
critical) flow. Thé programs are extensions of the author's direct-calculation
program, described in Ref.l, in which the flow field is represented by suitable
source and doublet distributions in the wing chordal surface. A computer sub-
routine is available?"3 to calculate the corresponding flow fields. Linear
compressibility effects are accounted for by working in the affine (Prandtl-

Glauert) space.

The design methods are based on the second-order small-perturbation theory
of Weberh; the idea is to obtain an approximation for the planar source distri-
bution, and the planar doublet distribution when appropriate, compute the flow
fields due to these singularities, calculate the residual errors in the boundary
conditions on the upper and lower surfaces, and adjust the source distribution
using the symmetrical part of the error field, and the camber and twist distri-

bution using the antisymmetrical part. Four problems are studied.

In the first problem the thickness and doublet distributions are prescribed;
the doublet distribution is equivalent to the load distribution in linear theory,
and is roughly equal to the difference in lower and upper surface pressure
coefficients on the real, thick wing. The upper-surface (and of course the
lower-surface) pressure distribution is found as part of the solution, along
with the camber and twist. This method, which requires nothing beyond the
suggestions of Webera, converges very quickly, and takes comparatively little
computer time, as the velocity field on the fixed thickness surface due to the

fixed doublet distribution can be calculated once for all.

In the second problem, the thickness and upper-surface pressure distribu-
tions are prescribed. The doublet strength now has to be determined iteratively.
Weber has suggested4 a procedure for this task, in which we seek to cancel the
difference between the target pressure distribution and that achieved so far, by
a simple addition of suitable planar doublet strength at each point, the idea
being that the resulting extra streamwash will dominate. For the cases tried,
this method converges quite well in mid-semispan and - perhaps surprisingly -
near the tip, but near the root of a swept wing there are difficulties, in that
a small change in doublet strength, particularly near the root trailing edge,

does not necessarily produce a small change in the other two components,

s




sidewash and upwash, or in the residual error which determines the next source
distribution. This leads to a situation of the tail wagging the dog. Various
under-relaxation schemes have been tried, with limited success. More successful
was an inner iteration scheme in which the extra sidewash and upwash due to the
new doublet increments are estimated (on the chordal surface, with a direct
vortex lattice representation for the upwash), the new upper-surface pressure
distribution estimated and another increment in doublet strength obtained. This
inner iteration has increased the scope of the method, but there are still some ‘
cases when it fails to converge, probably because for the prevailing local and
temporal conditions the pressure is bounded away from the target, just as a
quadratic is bounded away from certain regions. For this case an optimization

routine would be appropriate, but has not been included in the program. Thus

] at the moment, this option cannot be guaranteed to work near the root of a swept

wing.

In the third problem, the loading and upper-surface pressure distributions
are prescribed, and the thickness is to be determined as well as the camber and
twist. Since it is the doublet strength, and not the exact lower-surface
pressure distribution, that is prescribed, this is not the same thing as the
spetification of both upper- and lower-surface pressure distributions, only
nearly so. This time, after the computation of the first set of velocity fields,
the shortfall in suction is regarded as a shortfall in streamwash due to sources,

and this is turned into a perturbation thickness distribution by making use of

the approximate formula of the RAE Standard Method6 as suggested in earlier work
by Weber7. Good convergence is achieved everywhere except near the root of a é
swept wing, where over-relaxation, or an inner iteration scheme similar to that
described for the second problem, to take account roughly of the changes in

velocity components due to the change in the thickness surface, might speed up ‘

convergence but have not been programmed. ‘

The fourth problem is a hybrid of the second and third problems. Again
the upper-surface pressure distribution is prescribed everywhere. A chordwise
section, n = n* in the non-dimensional spanwise variable, is chosen near the
root, Outboard of this section, the thickness distribution is prescribed, as
in the second problem. This forms the basis for an iterative computation of the
outboard doublet distribution. The condition is now imposed that inboard of

n = nk the chordwise variation of the doublet distribution shall be the same

as at n = n* ., In this way we expect to be able to maintain good upper surface




flow quality and wing loading right into the root, which should also be useful in
obtaining root stall rather than tip stall at high off-design incidence.

Finally, to secure the required upper-surface pressure distribution inboard of

n = n* | the thickness in that region is allowed to vary as in the third

problem. At each iteration the computed thickness distribution is faired into
the given outboard distribution by a least squares method; this means a certain
loss of freedom, as the upper-surface pressure condition may be satisfied only

in a spanwise mean sense, but it is judged important to take this precaution, in

order to avoid problems in final manufacture and attachment of the wing.

As for the second problem, good convergence is found in mid-semispan and 1
near the tip, and we can expect better convergence near the root since the diffi-
culty associated with the second problem in that region has been bypassed.

Since there is more internal freedom than in the third problem, the most we can
really expect a priori is that convergence near the root will not be worse than

for that problem, and in fact it is slightly better for the case reported here.

In our example cases for the second and third problems, the final results
are noticeably different from those which we would have obtained using first-
order theory, which has been the basis of classical design methods for many
years, and is used here to provide first estimates with which to start the
iterations, Thus, these programs should at least be useful tools for checking
and refining the results of classical low-speed wing design calculations. It
seems likely that the program for the fourth problem, which treats what seems to

be a quite practical mixture of design conditions, will also be useful.

For the cases considered here, which are slight variations of RAE wing
'B's, acceptable convergence was obtained for the first problem in two or three
iterations, for the second in four, for the third in five (except near the root)
and for the fourth in five (including the root). Thus the second, third and
fourth problems take around twice as long as the direct programl. This is
unfortunate, and may mean that the method is less competitive than the repeated

use of the BAC program9 in an incremental mode. But there is the possibility of

performing only one iteration at small cost and having a look at the results,
then deciding whether to continue or to change an unpromising set of design
distributions and start again, without incurring a large penalty in computer

timeo
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Two separate programs have been written, one for the first and second
problems, one for the third and fourth. The programs are written in Fortran
and occupy about 45K words of core store, with arrays dimensioned for a 12 x 15

collocation grid. The vortex lattice matrix is stored on a disc.

2 BASIC EQUATIONS

In this section, we summarize the basic equations and boundary conditions

as set out in detail in Ref.l.

We consider a finite wing in a uniform free stream with speed unity and
Mach number M_ < | . We take cartesian coordinates (x*,y,z*) with origin O*
at the apex of the wing, with the x*-axis O*x* in the free stream direction,
O*y to starboard and O0*z* upwards, 2z* = 0 then defining the datum plane of
the wing, so that at any plane station y = constant, the local wing section
incidence is just the angle of twist uT(y) s in what follows the distribution
an has to be determined as part of the design problem. In any plane
y = constant, we define local cartesian coordinates (x,z) such that the x-axis
is parallel to the local section chordline, the z-axis completes a right-handed
set with the x- and y-axes, and the origin O is the z-projection of the apex 0%
(Fig.1). These axes can be got by rotating the (x*,y*)-axes through the angle
aT(y) . Wing thickness (zt) and camber (zs) ordinates are defined as ordinates

z, normal to the local chord:
zw(x,y) = + zt(x,y) + zs(x,y) % (2-1)

Both 2y and zg vanish at leading and trailing edges.

The velocity in the (x,y,z) system is now made up of the free stream

velocity
Em = (cos aT,O,sin aT) (2-2)
and a perturbation velocity field
u = (u,v,w)
which is to satisfy the wing surface boundary condition
(U, +u . grad(e, =2} = 0 . (2-3)

For compressible flow, with M_ > 0 , we transform into the affine
(Prandtl-Glauert, or Goethert) space (%,y,z) with the corresponding affine

perturbation velocity

——
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i = (Q,v,w)
by
X = XB
(2-4)
u = /B

where 82 =] - Mi 5

To a first approximation, the problem is reduced to an incompressible flow
problem in the affine space, which we proceed to tackle by placing source and
doublet distributions q(%,y), 2(%,y) on the chordal surface of the analogous

wing. These distributions will generate the affine perturbation velocity field

4 . We assume that at each station y = constant , § will not be significantly

affected if the source and doublet distributions are considered as lying in the
local plane 2z = 0 , so that it can be calculated using the Ledger-—Sellsz’3

computer subroutine.

Using this subroutine, the separate perturbacion velocities U due

t’EQ’
to sources and doublets respectively, will be calculated on the 'thickness
surface' z = z, and their values on the actual wing surface z = z, will be
derived using the first two terms of a Taylor expansion in 2 . The upwash

W, due to the sources, and the streamwash @ and sidewash v_ due to the

2 2
doublets, change sign on going from z = 2z, to z-= Ly and so the components
of Et and EQ are:
LR 9 ow
fi=ﬁtz—it- v+z—-\:'-:- tw+z.—-—t-
-t t s gz s BT t s 3z
3t AY ow
" 2 2 2
= . + — + + — + —
=2 <} e hE o PN Yt )

evaluated at z = z, . Upper and lower signs correspond to upper and lower

wing surfaces, respectively.

For the complete velocity U=U_ +u +

uotw - (U,V,W) , making use of

(2-4), we then have
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U = cos a,, + E§ i z 352 + |z -3—5 + { (2-5)
T B t S 3z 5 s 0z L
ov v
vV = v + 2z —Z + [z -—-E + v (2-6)
t S 9z E s 9z [}
awt aw2
= 1 -+ e =+ — s P
W sin o 2, s 4 w%) <%t 2 > (2-7)

These equations can now be used in the boundary condition (2-3) and will
also be needed to obtain the total velocity Q from 02 = U2 + V2 + W2 and the

pressure coefficient Cp from

or

(2-8)
Y/ (r-1)
[+ 10 - 20 - )] -1

i

™M >0,

where Y 1is the ratio of specific heats, taken here as 1.4.

Within second-order theory, for the boundary condition and for the calcula-
tion of Cp we can write sin op == an in (2-7), and for the boundary condition

(but not when calculating Cp) we can write cos ar = 1 in (2-5). Making these

changes, we have

B
V=Q2tQ3 (2-9)
LN

with
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Qs =

Substituting from (2-1) and (2-9) in the boundary condition (2-3), we find

whence we obtain the symmetric part of the boundary condition

and the antisymmetric part

where the residuals Rt and R2

R

R

=

L

= * Q

are given by

azt

— F — c— ————
% B Y it

y

9z

e i

2 dy

3z
s

By "%

th

By % -

(2-10)

(2-11)

(2-12)

(2-13)

(2-14)




It is convenient here to introduce the coordinate system used for compu-
tations, which is the same as that of Ref.l. The local percentage chord is

given by
¥ o= % (y) + EOE (2-15)

where iL(y) is the leading-edge ordinate, and &(y) the local chord, of the
analogous wing. The computation grid is then defined chordwise by equal

intervals of the angular chordwise coordinate ¢ where
= CIN=Scos S d) .

We use the nondimensional spanwise coordinate n = y/s . (The semispan s will
be taken as 1.) We also define a spanwise variable % =y to go with £ , and
use 3/3M to denote partial derivative with respect to T along lines of

constant percentage chord & . Then

AN G
3% T 3¢ K25
and
5?_ ASE T (2-17)
b an aX

= dx 2
where A = arctan <E—£ + 8 E) is the local sweep angle (for the analogous wing).

dy  dy
3 THE DESIGN PROBLEMS STUDIED
3.1 First problem: specified loading and thickness distributions

In this problem, the camber and twist distributions Zg,, Qp are to be
determined, and the upper-surface pressure distribution is found as part of the
solution. We have only to determine, in addition, the auxiliary unknown source
distribution, since the doublet distribution &(%,y) (which is equivalent to

the loading distribution in linear theory) is known in advance.

Since the doublet distribution is fixed, we can compute the velocity

field ﬁl on the thickness surface 2z = z once for all, Let us assume that

i~
we have also determined an approximation q(n)(i,y) to the final source
distribution, and that we have computed the corresponding velocity field ﬂén) .




(n)

We suppose also that estimates for the camber distribution z2 and twist
distribution a;n) are available. Using (2-13), (2-14), we compute the
corresponding residuals R(n), R(n) and examine how well the boundary conditions

2
(2-11), (2-12) are satisfied. Consider the first of these. The residual Rin)

can be thought of as a deficiency in W through the term (_QA)' and so we

attempt to cancel it by adding to q(n) a source distribution
B ZREH) : (3-1)
exactly as in Ref.l. To start the iteration and obtain the first estimate
. ; : ’ . ; 0 0
(the basic source distribution qB), we take the situation where EE ), Eé )

are both zero, giving the linear-theory result

o S
t B 3% OEE
again as in Ref.l.
(n)

in the other boundary condition can be used to

[
adjust the current values zén), aén) of 2 , O as shown by Webera. Putting

The residual error R

Zg = z(n) +

Az 3 T G b= a(n) + Ao
s s s

15 i T
in (2-14), neglecting products of the perturbations Azs, Ao, with other

perturbation quantities, and invoking (2-12), we have

dAz
s - - g

1
= - 3-2
B 0% bap ) 2 (e

To obtain the basic camber and twist distributions Zogs OTR with which to start
the iteration, we compute sz(i’y’zt) or estimate wQB(i,y,O) from the basic
doublet distribution %5 » and then (2-14) gives

=W

(0)
) B

to be substituted in (3-2), which leads to the standard result of linear wing

design theory.
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Integrating (3-2) from O to £ , using (2-16)

Az (E3n) = 8&(n) EAaT(n) e jF Rén)(ﬁ';n)di' (3-3)
0

where, since lzs(l;n) = 0 , we have

1

N 0l oo, 1 -

AaT(n) = ./ RQ (E*sn)dE" (3-4)
0

The integrals in (3-3), (3-4) are evaluated using Simpson's rule with ¢

as the independent variable. Then the accumulated z_, ap are extrapolated to

T
the wing root and tip stations, and the spanwise derivative azs/aﬁ (also

needed in the Taylor series expansions) is computed at each collocation point

by a cubic spline fitting routine.

We remark that the calculation of bz _, Ao, does not disturb the field

values T, § on z=2z , and so after finding bz, bag via the residual

error field from Taylor series, it is worthwhile to execute the Taylor series

sequence again with the updated values of Zgs Op o This updates the successive

)

estimates for the other residual field Rt , as well as the upper-surface
pressure distribution, which we shall need in the other design problems to be
considered.

3.2 Second problem: specified thickness and upper-surface pressure
distributions

In this problem, the doublet distribution & is to be determined
iteratively, as well as the source distribution q and the camber and twist

distributions z,, @ A sequence of upper-surface pressure distributions
c(@
AT R : : 4 v :

distribution Cpu . Again following Weber 1in broad outline, successive

T *
is generated, which (it is hoped) will tend to the specified or target

increments Af in & are determined from the shortfall in Cpu ; then, just

as in the first problem, successive increments Aq are found from the sequence

. n . 2
of residual errors RE ) , and successive increments Azs, Aa from the

T
sequence of residual errors R;n) .

A first estimate QB for & is provided by Locks. From the target

distribution Epu and the appropriate equation (2-8), we derive the target

upper-surface total speed distribution Q , and insert it into Lock's formula:
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2
2 (3) * )
DQ = [cos %, + u p cos ap + UQB(’ + S sec I\m/Brl
2
(3) * )
+ [vtB cos ap + VRB<| + S sec I\m/Bn
2 i 2
+ O - Kz)(D = 1) sin"Ay cos ap - (3-5)
The symbols D , etc. are defined in Appendix A. The velocity components are
taken in the plane 2z = 0 , so that the doublet strength is connected to the
(physical) component Uon by
Ly = ABUQB .
If we tentatively assume that v,p depends linearly on U through a
relation
Vop = T UYyp tanm Av (3-6)
where Av is also defined in Appendix A, then equation (3-5) becomes a quad-
ratic in Un (all other quantities being known), and one of the two roots can

be picked out as the required solution.

We can improve this first estimate in an iterative way, calculating 3
from the current estimate for u, and the equation of irrotational flow and
using this value instead of the éssumption (3-6). Details are again set out in
Appendix A. This is in principle an inner iteration, performed before the
E(])’ Eél)

velocity fields are computed accurately in the main iteration

cycle. In practice, one inner iteration is sufficient.

In an inner iteration cycle such as this, in order to estimate the
successive camber and twist distributions we would like to obtain a quick
estimate for the upwash correspondiug to a current, or intermediate, estimate of
the doublet field without performing the time-consuming Ledger-Sells double
integration for each intermediate estimate in turn. To do this, we use a direct
vortex lattice representation, as in Ref.l; the vortex lattice influence matrix
is not inverted (but as appreciable time is needed to generate it, it is stored
on a scratch disc by the computer after the first pass through the vortex
lattice subroutine). Near the root and tip, the vortex lattice method is not
very accurate and tends to overestimate the upwash o (ownwash, and so the out-
put values are multiplied by a spanwise under-relaxation factor Qv tentatively

taken (after numerical experiments) as:
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1

9] = —————————

v (1 + |.<2|)2

Ky is a spanwise interpolation function, similar to that of the RAE Standard |
Method, and defined in Ref.l. The errors in the resulting estimates for camber
and twist will not matter greatly, since they will be nearly corrected auto-
matically when EQ is computed accurately in the main iteration cycle.

(n) and C(n)
pu

end of the nth main iteration, we have next to generate an increment A% in the

As remarked earlier, after the calculation of Q at the

[ doublet strength from the shortfall in Cpu . This shortfall is, in principle,
) a second-order quantity and from it, following Webera, we can derive a second-
order expression for the corresponding increment Aul in (physical) streamwash
-

due to AL , where as usual A2 = ABAuR . Using the suffix u to represent

upper-surface values in the velocity components (U,V,W) from (2-5) to (2-7), we

have Q(n)2 = U2 + V2 + wz , and to second-order accuracy
u u u u
=2 2 2 2
Q = (UU + AUQ) + Vu + wu
()2
= Qu + 2UuAu2
whence
=2 2
a - o™ :
Auz = ZUU . (3-7)

i We now have all the equations needed to set up a closed iteration cycle for

i this problem.

In order to control some overshoot near the tip (and as a partial control
near the root also - this will be discussed further, later), it has been found
helpful to introduce an under-relaxation factor QD for the doublet strength
perturbations, again depending on the spanwise factor Ky &

G g 07E L

Near a wing tip of finite chord, the loading is expected (apart from the effect
of corner singularities) to decay elliptically; the factor QD is not expected
to represent this spanwise decay precisely, but is intended to introduce some

decay, under control, which seems in practice to be better than introducing none

at all,

ol s el iy
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It will be remembered' that, to assist the solution of the direct problem,
line source and doublet distributions were introduced on the wing centre line
y =2z =0 to reduce the residual errors Rt’ R2 at the root y = 0 . In the
present design problem, just as we adjust the planar doublet strength to produce
an extra Aul to correct the upper-surface pressure distribution outboard, it
is natural to try to adjust the line doublet strength to produce an extra stream

wash Auz to do the same job at the root. The resulting upwash adjustment

D

AwlD would then be incorporated into the camber and twist distribution at and

near the root. The difficulty is, that whereas (in the direct problem) a change

in line doublet strength to produce a certain AwlD did not tend to produce a

P
large change AUQD , a change to produce a certain AuﬂD does tend to produce a
large change AWED ; in other words, this calculation, although well--conditioned

in one direction, is ill-conditioned in the other. It was found that line
sources also tended to destabilize the iteration scheme; so the line singularity
technique has been abandoued and no target distribution is prescribed at the
wing root (though we can approach it quite closely with a suitable choice of
spanwise stations); all quantities such as z., q, & are extrapolated para-
bolically to the root (but Et’ EQ are still evaluated using the Ledger-Sells
subroutine), and the final residual errors and pressure coefficients at the root

are left to take care of themselves,

As in the direct programl, we can seek to reduce the number of iterations
by generating improved estimates for the perturbation quantities. The additional
velocity fields due to the perturbation source and doublet fields, calculated
in the main iteration cycle, can be estimated using the RAE Standard Method6 and
so it is possible in effect to perform one iteration cycle and to obtain a
further set of perturbation quantities, without actually performing the accurate
but lengthy Ledger-Sells calculations. To estimate the new residual errors, we
again invoke Maclaurin series (expansions about 2z = 0 , rather than 2z = zt),
modified to take account of concurrent changes in camber. The algebra is set
out in Appendix B. This can indeed be incorporated in a further inner iteration
cycle, but it has been found inadvisabie to do it more than once or twice;

convergence of the main iteration cycle is rather sensitive, perhaps because of

the level of feedback involved between the three unknown and interacting field
quantities, and it seems likely that any furthe:r benefit derived after the first
or second inner iteration is outweighed by the feedback effect due to the

accumulating errors in the successive estimates from each cycle.
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In the course of developing the program, a difficulty has arisen which has ;
still not been satisfactorily resolved. The symptom of this difficulty is the
onset of oscillations or divergence in Vor Wy Cpu and Rt near the root
trailing edge. In this region there seems to be a close coupling between all
the velocity components so that a small change in £ and hence in ﬁg does not
necessarily produce a negligible change in Ver Wy and in the residual error
Rt ; thus the effect of the small change A% given by (3-7) does not have the

required effect on Qu .

To prevent Rt and the resulting extra source distributions from growing
too large, after the first guesses for source and doublet fields the program has
been arranged to do two successive perturbation source calculations (including
Maclaurin series calculations), just as if it were performing two iterations of
the first problem, before calculating another perturbation doublet field. This
is an unfortunate necessity, but as the Ledger-Sells subroutine is adaptive, the

calculation times should decrease as the iterations proceed and Rt decreases.

The destabilizing effect of Avl and Awl is not so easily dealt with.
An attempt to take them into account in the derivation of equation (3-7), even
when only linear terms are included, leads to some heavy matrix algebra and
programming, and fails in the end because the non-linear terms are not negligible
in practice. For some of the cases studied, instability was successfully
averted by a simple addition to the inner iteration scheme, in which we take
account of the approximate values of Aﬁz, sz, Awg (and also of Aﬁt, Avt, Awt
generated within the Maclaurin series sequence, when appropriate) to update

approximately the upper-surface velocity components Uu’ Vi, Wu and the total

speed Qu and hence to generate a further perturbation do:blet field using (3-7)
again. This part of the inner iteration cycle can now be repeated until the
changes in doublet strength are sufficiently small, or for a maximum of
(currently) nine inner cycles. This inner iteration scheme can also be
profitably applied to the rest of the wing surface, even though the effect of %

sz and Awa on Qu is not so great.

This artifice has enabled us to obtain a solution for at least one case
which we could not treat without it., But there seems to be a class of cases for
which the program so far described still does not work; for these cases, it is
the inner iteration which oscillates or diverges. Relaxation methods do not
seem to help. A study of the computer output indicates that, even though a
‘ numerically exact solution of the whole problem is known (derived from the

program for the first problem, for instance), the unconverged state of the
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accurately calculated parts of Et and Eg , and the approximations used for
AEI in terms of A in the inner iteration scheme, are such that Qu has a
minimum value which is higher than the design value Q , just as a quadratic

in a real variable is bounded away from certain values, Thus in this situation
we cannot find a A2 to give Qu = Q everywhere, using just the inner
iteration scheme. An optimization sequence within this scheme, to detect the
situation and to seek a solution minimizing the overall differences between Qu
and Q (by least squares, perhaps) is indicated, but has not been devised at

the time of writing.

3.3 Third problem: specified loading and upper-surface pressure distributions

In this problem, the thickness distribution z, is to be determined

iteratively, as well as the camber and twist distributions zg, op and the

associated source distribution q . Again a sequence of upper-surface pressure
: : : n) . : e c
distributions C;u) is generated, which (it is hoped) will tend to the target

distribution C .
pu

As in the first and second problems, successive source increments Aq are

g (®)
t

found from the sequence of residual errors , and successive camber and

(n) .
T Rl . This

leaves the successive thickness increments Azt to be determined from the

twist increments bz_, Ao from the sequence of residual errors

shortfall in upper-surface C w " We can do this approximately, making use of

results from the RAE Standard Method6, if this shortfall can be converted

~

approximately into a shortfall Aﬁt in a . We may consider the following

three sets of ciicumstances:

(1) At the outset, we have no estimate at all for Z, . Given the

design upper-surface velocity au and the chordal-surface streamwash ﬁQB due

to the specified load (doublet) distribution, we have a simple basic estimate

for the streamwash due to sources:

ﬁtB = B(Qu -1) - Up -

This will lead to a first estimate 2.8 for the thickness distribution.

(ii) We can modify this initial crude estimate for z, with the help of

Lock's formula (3-5). From the known doublet strength, we again have ﬁQB

Vg on the chordal surface. If we assume that Up o

in the first term on the right side of (3-5), dominates the equation as far as

(hence uZB) and also

sources are concerned, we can substitute for all the other source terms, such as




Vep ° the values determined from the initial estimate 2.n and obtain a

revised estimate for ﬂt (and hence a revised estimate for zt). The details
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are filled in at the end of Appendix A.
(n)
pu
second problem we can derive a simple second-order expression for the required

(iii) After computing C in the nth main iteration, just as in the

physical increment Aut = Aﬁt/B due to the required extra thickness distribution

Azt . This expression is just the right side of equation (3-7) again:

_ |72 _ ()2
Aut = [é Qu ]/ZUU &

After a Maclaurin series cycle, the velocity components in this expression can

be approximately updated, as in the second problem.

The perturbation velocity Aﬁt and the extra thickness bz (which can

be thought of as an extra source distribution 23Azt/3i) are connected approxi-

mately by the formula of the RAE Standard Method6:
5 <8Azt> 1 BAzt/ai
A8 = cos A |ol—z=] - x,(M)f(N)
t % 2 2
FIRNCTENIT
with
] Az
ol i dg' =
°'F/<ai> F - £V (38)
0 T
glwbiqydatin
w 1 + sin A
Ko is the spanwise interpolation function, defined in Ref.l. One way of

dealing with this equation is to set up an iterative cycle in which the last
term (with 'Riegels factor') is treated as small and known from the previous

iteration - indeed, it vanishes altogether at certain mid-wing stations where

Ky = 0 . Thus we write
/8Az£m) ad, Y aAzgm_l)/ai
g = —— + « f(N) = F (3-9)
% cos A 2

Jl + (aAzém'])/Bi)z

© _ o

(m)
t

. The solution
(0) = 0 1is:

at the mth such cycle, and to start the cycle we put Az

of this equation (see Ref.7, for example) with Azém)(]) = Az
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1
aAZ(m) dC’

t 1 1 D
— = = eme——— F(&! (1 - ! % 3-10
oy T g[ & 45 ( ) T ( )

The program already incorporates a subroutine to evaluate the Cauchy
(principal-value) integral (3-8), and the Cauchy integral (3-10) can be evaluated
using the same subroutine; thus the method is more convenient than, for example,

an extension of Carleman's method as in Ref.7.

However, before actually coding the evaluation of (3-10) we should consider
that the initial guess Zp o and the corrections Azt , should represent a
wedge-shaped trailing-edge (£ = 1) for structural reasons; whereas, if F 1is
assumed regular at & = 1 , then aAzt/ai is o[( - g)-i] and bz, takes a
rounded or elliptical shape there, as well as at the leading-edge £ =0 . On
the other hand, when Azt is regular, o and F will show a logarithmic
singularity as & »> 1 , We therefore estimate the strength of the singularity
and subtract a suitable function from F to leave an integrand which we hope

will lead to a sensible trailing-edge shape.

A representative function AO which represents a closed section, with a

suitably small square-root singularity at the leading-edge and wedge-shaped at

the trailing-edge, is

= A, = }(3-5E)E (3-11)

which corresponds to a section shape

/e = -,

)

Inserting (3-11) in (3-8), we have
= 4l 2 1 1+/E_>
00 = -;[3" 3 5&)(3-/5_1n "= /E l] &

We now subtract a suitable multiple § of % from F . To help

determine this multiple, we have the values of F at discrete chordwise

stations 52, 53, cees Bp s L where 0 = £, < §

1 € aww & EL < 1 , We make

2
the hypothesis




F = 600(6) + ol(E)

where ol(g) varies slowly compared with oo(g) near & =1 , Putting

£ = EL-I’ EL in turn and subtracting, we find

F(g) - F(5_))
oo(E) - GO(EL_IT :

We then evaluate A* from the equation, similar to (3-10)

dg'

1
1 1 L : ' —
A* = - m;of [F(E ) = Boy(E )] £ = £} T

and then

(m)
aAzt
FR 3 Q"

This can now be substituted into F given by (3-9), with m increased by one,
to start the next iteration cycle. We have tested this cycle on a variety of
wings and shapes, and convergence always seems rapid, up to 10 iterations being

needed depending on the value of tho interpolation function «

5 *
Although the integral (3-10) and the function (3-11) always represent
closed contours mathematically, when Azém) is evaluated by numerical integra-

tion of BAzim)/ai this may not be exactly true because of numerical truncation

errors., At each cycle, then, we check the closure condition and rotate the

(m)
t

contour Az through a small correction angle about the leading-edge in the

(E,Azt) plane to make Azém) =0 at £ =1 ,

After calculating Azt we must check that the resulting contour does not
cross itself, i.e. the new z, is positive everywhere. Actually, we demand

rather more. To avoid the possibility of unrealistically small z, , ve check

’
that z, will not be reduced by more than half its former value anywhere; if
this condition is not met, i.e, bz, < - izt » then Az is everywhere multi-

plied by a suitable factor to give just the 50 per cent reduction in z,  at

some point which is the largest reduction we are prepared to allow.
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On the other hand, if the first estimate 2.8 fails this test, since there

is no previous distribution to compare it with, we have to improvise. First, we

examine z g mear the leading edge; if it is negative somewhere in that region,
then probably the input data for & and Cpu do not correspond to a reasonable
wing; the program exits. If Z.p is positive there, but becomes negative near

the wing trailing-edge, we charitably assume that the input data do correspond

to a reasonable wing and the initial guess for is in error. At each span-

ZeB

wise station we then find the maximum Zop o at & = é say, and also note the
. . o~ A .
derivative aztB/BE at & . For E£<E& <1 we construct a function G(&)

which is arcwise continuous with 2. at E=¢, becomes rapidly linear as we

recede from that point, and vanishes at the trailing-edge £ = 1 . A suitable

function 1is

G = ae_k(g-g) + bE + ¢

where we arbitrarily choose k so that
k(l -g) = 2

so that the exponential term dies out near £ =1 . a, b and c can now be

chosen to meet the three conditions (Appendix C).

We apply this procedure at all spanwise stations, even if a negative
Z.g has been detected at only one station, because aztB/ay (which is needed
for the boundary conditions) has to be computed from the values generated, and
if we only adjusted the values at one such station, the difference between the
adjusted section and the neighbouring unadjusted sections downstream of £ = £
might cause considerable fluctuations in this spanwise derivative. By applying
the procedure uniformly at all spanwise stations, we hope to avoid this possible

source of trouble.

Indeed, each time a fresh z, is computed for this problem, we have to
compute and store the new chordwise derivative azt/BE as well as azt/ay , and
we also need' the tables of arclengths along chordwise and spanwise curves on
the new thickness surface 2z = z, , and the Lighthill Z-shift factors rendering
the solution uniformly valid near the new rounded leading-edge.

Further, the device of computing only the (small) perturbation velocities
A3, 83,
adaptive (useful for the first and second problems), breaks down here because

from se, Ae2 , which saves time because the Ledger-Sells routine is
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the already-computed velocities are known only on some previously-generated
thickness surface, not at the current values of z, . (An attempt to calculate
values on the new thickness surface using Taylor series turned out, not surpris- |
ingly, very inaccurate near the leading-edge.) So for this problem it is
necessary to work with the complete source and doublet distributions all the |
time when calculating Et and E&. j
When the program so far described was run, inspection of the results
showed that despite the inclusion of Azt in the Maclaurin series theory, the
successive estimates for Azt would be improved if Azt was determined only i
after one Maclaurin series calculation, and not after the Taylor series.
Similarly to the second problem, there seems to be a coupling between Rt’ Azt
and the shortfall in Qu , such that if Azt is calculated every time, even
though the corresponding linear-theory source distribution is always taken
into account, Rt does not converge quickly to zero. By determining Azt
only half as often, the residual Rt is given more time to settle down; and by
determining it after the Maclaurin series calculations, we postpone it as long
as possible after the final Ledger-Sells calculation, so that for a given number
of these, Rt is likely to be smallest and the last output table of thickness
distribution is likely to be nearest to that giving the desired upper-surface

pressure distribution.

3.4 Fourth problem: hybrid

In this problem, the upper-surface pressure distribution is again specified
everywhere, but dif{ferent second conditions are imposed inboard and outboard of a
spanwise section fairly near the root, n = n* say. For n > n* the wing
thickness distribution is specified. In the course of iterations on this part
of the problem, a doublet distribution 2(&,n) 1is calculated (for n = n*) and
repeatedly adjusted as in the second problem; it is then necessary to extra-
polate 2 in some way to the inboard region 0 < n < n* , and one way to do
this is simply to require that the computed inboard doublet distribution be

independent of spanwise position:
ECEsn) = R(EN%) O<n<n*) .

In linear theory this would be equivalent to maintaining the chordwise load

distribution right into the root, and in our problem only small departures from

this condition should result. Finally, to satisfy the upper-surface pressure
condition for 0 < n < n* we adjust the thickness distribution in that region

as in the third problem.

- - “ - o ——
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The program has been arranged to treat n = n* as the third collocation
station ourboard from, but not including, the root, so that there are two
collocation stations inboard of n = n* on which the thickness distribution is
to be adjusted. In calculating the thickness perturbations, we consider that it
is essential to ensure that the thickness distribution for n < n* always fairs
smoothly into the given distribution for n > n* , and the most practical way to
do this seems, to fit (by least squares) quadratic curves with the required
(zero) first derivative spanwise to the calculated thickness perturbations at

each value of §

The same curve fit is used to extrapolate the new thickness distribution
to the root n = 0 , which is again not a collocation station but is still an
output station. This curve fitting means that near the root the upper-surface
pressure condition is now satisfied in a mean sense only, at each collocation

station value of § .
4 RESULTS

4.1 First problem

Results were available for the cambered and twisted RAE Wing 'B'8 at
Mach number 0.8, from the author's direct programl. Wing 'B' has planform
aspect ratio 6, taper ratio 1/3, straight leading and trailing-edges on each
half-wing, and mid-chord sweep angle 30° (Fig.2); the chordwise thickness
distribution is that of the 9 per cent thick RAE 101 section. As a test case
for the first problem, the final output planar doublet strength from these
results was input as data; its behaviour at three spanwise stations, near the
root, in mid-semispan and near the tip, is shown in Fig.2a. The program was run

for four iterations.

As the planar doublet strength, and hence the velocity field EZ 5. LS
fired, we may expect the overall spanwise loading properties (which depend only
on the doublet distribution in linear theory), the residual error RQ and hence
the camber and twist distributions, to settle down fairly quickly to their final
values; this expectation is borne out by Figs.2b and 2c in which the difference
between the spanwise twist and loading distributions calculated at the first and
fourth iterations can hardly be seen on the graph. The corresponding camber
distributions at three stations are shown in Fig.3, and except near the root,
the difference between results for the first and fourth iterations is also very
small, Also shown in Figs.2b and 3 are the actual values for Wing 'B', which do

exhibit noticeable differences with the converged results. At the outboard

- R - P —
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stations in mid-semispan and near the tip, these differences can be attributed
to numerical error in the trapezoidal integration method used to evaluate the
camber and twist integrals (3-3), (3-4), when data is available only at seven
interior Weber points; for this small number of chordwise points, which has been
taken for demonstration purposes only, the error in the twist distribution is
only of the order 5 per cent, and would be reduced (and more detailed input and
output secured) if more chordwise points were taken. The large difference in
camber near the root (in Fig.3) is almost certainly due to the absence from the
design program of the line singularities introduced at the root in the direct
program; although these line singularities have their major effect on the root
section, they do have some effect on the calculated planar doublet strength
(through cross—coupling with the boundary conditions) at the first outboard
station. These factors lead also to a considerable difference between values
from direct and design programs in the upper-surface pressure Cpu near the
root, as shown in Fig.4; however, for the two outboard stations, notwithstanding
the slight differences in camber there, the differences between converged values
and values from the direct program could hardly be distinguished on this scale,
and have been omitted for clarity. Fig.4 shows principally that Cpu takes
longer (but not unacceptably longer) to settle down than the camber and twist
near the root, and slightly longer at the outboard stations; this is because

the source distribution has to be adjusted repeatedly to reduce the boundary
condition error Rt , and we know from experience with the direct program that
this error is likely to be largest near the root, and has a rather uneven

convergence ratio,

Results from the program for this first design problem (to which we shall
refer as Option 1) have also been used as test cases for the other problems, a
procedure which seems likely to produce consistent results as the basic calcu-
lation methods, and the principal source of error in these demonstrative cases
(in numerical evaluation of the camber and twist integrals), are the same.
Also, any comparisons with results from the direct program would be bedevilled
by the effects of the line singularities, just as we have already seen for this
first problem; by instead taking results from the design program as test data
and convergence targets, it is much easier to assess the behaviour of the other

design programs near the root.
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4.2 Second problem

In the last section we obtained results for RAE Wing 'B' at Mach number
0.8 from the design program Option 1. To gain some experience of the program for
the second problem, we input the final upper-surface pressures Cpu as a target
distribution, along with the original thickness distribution, and again ran the

program for four iterations.

The target distributions, and the results from the first and fourth
iterations, are shown in Figs.5-7. The targets are the same as the final
distributions shown in Figs.2-4, and are now represented by full lines. A
first glance at Figs.5b and c for the twist and spanwise loading characteristics
suggests that convergence is good at the outboard stations, mid-semispan and
near-tip, but that the results are not fully converged near the root; Fig.5a
shows that the doublet strength near the root is also converging rather slowly.
The camber distributions (Fig.6) tell a similar story: outboard, very good
convergence to the target from a rather poor first-iteration result; near the
root, still some way to go though the general shape of the curve, including the
hump near the root trailing-edge, is well predicted. Fig.7 shows the corres-
ponding behaviour of Cpu , and it is rather surprising that the remaining
change required in Cpu near the root, in particular near the apex, corresponds
to so large a remaining change in camber and twist according to .igs.5b and 6.
This may be due, amongst other things, to the proximity of the root-line
singularity in upwash corresponding to the kinked doublet distribution, so that
a small change in doublet strength may produce a large change in upwash, a~1

hence in camber and twist.

It is perhaps worth commenting on the first guess for the doublet strength
as shown in Fig.5a. This first guess is calculated using the older version of
Lock's method5 in which the velocity components due to thickness are first
estimated using the RAE Standard Method6; but it is difficult to see how to
improve it substantially, as the accompanying first guess at the source distribu-
tion is such that the first estimate for Cpu is not too far out near the root,
and indeed seems excellent towards the trailing-edge for this case. These
results, with the attendant errors in the first estimates of camber and twist
shown in Figs.5b and 6, suggest that, in the design problem, second-order
effects are very important near the root, and that even though the pressure
coefficient Cpu from a first-order scheme may be near to the required value,
it is necessary to check that the boundary conditions on the wing surface are

well satisfied by the velocity fields assumed or implied by such a first-order

scheme,
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4.3 Third problem

It may happen that a wing can be designed to support a uniform spanwise
distribution of upper-surface pressure and of loading near the root, with bene-
ficial aerodynamic consequences, by increasing the section thickness/chord
ratio near the root. If this design also avoids an unrealistic increase in root
twist, and happens to be structurally sensible and convenient, so much the

better.

To provide a test case with a known solution, a wing somewhat similar to
RAE Wing 'B' and designated Wing 'B', was designed first, using Option 1. The
thickness distribution was specified as the RAE 101 section, the thickness/chord
ratio T being 9 per cent at and outboard of the collocation station
n* = 0.1563 , rising parabolically to 13.5 per cent at the root (see also
Fig.8a):

2
= = -—-—"—n < »
: 0.09 |1 + 0.5(1 0.1563) (n < 0.1563)

The behaviour of the specified doublet distribution at three stations, including
the Inboard region n < 0,1563 , is shown in Fig.8b. (This choice of doublet
distribution was a historical accident based on earlier work on the fourth

problem.)

The results from this run, representing the target distributions, are

again shown as the continuous lines in the remaining figures. The program was

run for five iterations. Fig.8c shows the convergence of the twist distributions,

and we see that the target is nearly attained everywhere, and that the first
shot was not far wide of the mark either. (In this case, the effect of root
thickening on the design root twist is marginal: a degree or so less than the

values shown for Wing 'B' in Fig,2b, for the same 1lift coefficient Cop )

Fig.9 shows the convergence of the thickness distribution, Considering
first the two outboard stations, we see that the results for the third and fifth
iterations are virtually identical, and that the corresponding pressure distri-
butions (Fig.10) and camber distributions (Fig.1l) are very nearly on target,
being indistinguishable except near the leading edge. However, the converged
thickness distributions are not quite on target. This must be due to numerical
error in integrating aAzt/ai , like the corresponding numerical error demon-
strated for the camber in Fig.3. The relative error seems smaller than that in

the camber; a likely mitigating cause is that part of the error in z, is




picked up when the velocity components are evaluated on the incorrect surface.

This error would likewise decrease as the number of collocation points chordwise

is increased.

Near the root, the thickness distribution converges very slowly, as the
gap between third and fifth iterations in Fig.9 shows. The difference between
the results for the fifth iteration and the target distribution is larger than
either the remaining convergence leeway we might expect or the numerical error
in integration we could anticipate from the results outboard, but can easily be

imagined as the sum of these two contributions.

The pressure distribution in this region (Fig.10) also exhibits slow
convergence in the first half-chord, but the final shortfall of the target is
little different from that outboard. It may be an inherent difficulty for the
third problem that the pressure distribution is less sensitive to the thickness
distribution near the root than outboard. It is not easy to decide how to cope
with this difficulty. An over-relaxation factor of about 2 could be introduced
near the root (it is not needed outboard), to speed up the convergence, though
we would prefer to build up more experience before citing this as the universal
panacea. It would also help if the basic estimate Z.p could be improved near
the root; inspection of the detailed computer output shows that the improvement
obtained with Lock's formula is not remarkable, so that the improvement would
need to be fairly drastic; we also note that the basic estimate definitely
overpredicts the thickness at the mid-semispan station, whereas the thickness
is underpredicted at the root. (There was no zero in the first estimate for
Zop s and so this estimate did not have to be modified as described in
section 3.3 and Appendix C.) There is also the possibility of setting up an
inner iteration cycle for the successive increments bz, as was done for the
doublet strength in the second problem, but it is very likely that in this
problem the dominant disturbance, not taken into account by the formula (3-7),
is the change in the velocity fields of the two singularity distributions when
computed on different thickness surfaces, rather than just the change in v
and v, due to perturbation sources. These changes could be estimated, using

Taylor series, if the program were rearranged to store the field derivatives

aut/az , etc. near the root, which are currently overwritten to save core store.

The remaining error in the camber distribution near the root (Fig.l!1) is
obviously associated with the errors in the other field quantities, but is at

least an order of magnitude smaller than the remaining error in the thickness
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distribution. We might expect this since the camber and twist distributions
depend largely on the input doublet strength. On the other hand, the outboard
results for the first iteration, which do differ somewhat from the target
distributions, show that the agreement in the twist distribution at the same
stage (Fig.8c) is probably fortuitous and that second-order effects are important

for this problem, outboard as well as near the root.

4.4 Fourth problem

For this final problem, the same test case was chosen as that for the
third problem: the wing we have denoted as RAE Wing 'B'. The section separating
regions where different conditions are applied was the section where the inboard
rise in thickness/chord ratio begins, n = n* = (,1563 . For this problem, the
basic estimate for inboard thickness has not been programmed as in the third
problem; instead, the first guess was simply taken to be the same as the fixed
outboard distribution, the 9 per cent thick RAE 101 section. The program was

again run for five iteratioms.

The target distributions are again shown as full lines in Figs.12-14. We
see that in mid-semispan and near the tip, all quantities converge well, as they
did for the second problem, to which this hybrid problem is essentially equival-
ent -outboard. We also observe the same poor nature of the first guess, which
corresponds essentially to established first-order techniques, despite the fact

that at mid-semispan the chordwise pressure distribution is not too far wrong.

Near the root, as usual, convergence is slow and the thickness distribu-
tion (Fig.l12a) has not converged to graphical accuracy. But we are somewhat
nearer the target than we were in the third problem, and indeed the major part
of the remaining error could be just the numerical integration error in bz,
(Fig.9). Convergence of the root twist (Fig.!2b) and camber (Fig.13) is not
quite as good as in the third problem, but much better than in the second prob-
lem. Here too, improvement on first-order results is noted. The graphs of
section lift and centre of pressure duly exhibit the expected spanwise invariance
near the root (Fig.l2c). The upper-surface pressure distribution has converged
to about the same level of accuracy as in the second and third problems (Fig.14);
the results near the root have been plotted for the second iteration rather than
the first (for which only the ad hoe first shot for the thickness distribution
was available) to show again the level of error when only one thickness pertur-

bation is calculated.
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Wing "B' is a special case, tailored for this problem so that the root
thickness distribution is precisely of the quadratic spanwise form which the
inboard least squares fit demands so that no difficulty arises with this
smoothing artifice. Moreover, the interaction between the unknown doublet
strength and the unknown thickness inboard happens to be favourable, so that
overall improvement in convergence is found compared with both the second and
third problems. Nevertheless, the results for this hybrid and somewhat

pathological problem at least seem promising.
5 CONCLUSION

In this Report we have studied four wing design problems, for two of which
the solutions have already been considered in principle by Webeta. The imple-
mentation of the first problem (given thickness z, and doublet strength, or
first-order loading, &) was straightforward and the program for it (Option 1)

converged rapidly.

The second problem (given z, and the upper-surface pressure distribution
Cpu) and the third problem (given £ and Cpu) have been satisfactorily resolved
in the outboard wing regions, mid-semispan (more or less sheared-wing station)
and, perhaps surprisingly, near the tip; but they have proved far less tractable
near the root of a swept wing. For the second problem, the camber and twist are
very sensitive to the doublet strength at the root, as we might expect from
first-order theory, and there is considerable cross-coupling between &, Cpu
and the residual error Rt in the symmetric boundary condition. Convergence
has been secured for a swept wing at high Mach number, but not for another in
incompressible flow, for which it seems likely that the sidewash and upwash
velocity components, which are not reduced in scale by the Prandtl-Glauert
factor relative to the streamwash, make it almost impossible to find a suitable
approximate doublet distribution to satisfy the upper-surface pressure condition
near the root trailing edge in the first one or two iterations, so that an
optimization technique, yet to be devised, is required. For the third problem,
Cpu does not seem to be very sensitive to z  at the root, again Rt has to
be allowed to settle down before z, is adjusted, and convergence is slow.
Also, since the velocity fields due to the complete source and doublet distribu-
tions have to be computed on each new thickness surface, the program runs for
rather longer than Options 1 or 2. But the program (Option 3) has not actually

failed to converge for any case for which a solution is known.
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The fourth problem is a hybrid of the second and third problems in which
2 1is to be determined outboard, and the thickness distribution inboard of a
certain section near the root. In our opinion this hybrid stands an excellent
chance of giving the wing designer the solution to his commonest problem out-
board, while avoiding the severe practical difficulties encountered near the
root in Option 2 and instead determining the required increase of thickness
there, to maintain good flow quality and to give additional structural strength.
The results for one particular case show better convergence than those from
either Options 2 or 3, and while the dangers of arguing from one case are
realized, this option (Option 4) seems promising and worth bringing to the

attention of designers,

It may be asked why we have used the programs to obtain results for wings
at the high subcritical Mach number 0.8, since it is known that the first-order
Prandtl-Glauert rule can only be expected to give good results for low sub-
critical Mach numbers for which the flow nowhere approaches sonic speed. One
answer is that a design application can be envisaged at high subcritical Mach
numbers, if a shockfree flow is sought and if a shockfree solution of good
quality sufficiently close to the design condition is available from another
method, or from experiments, which might even be for a wing-body or wing-nacelle
combination., In this case, we would assume that changes in wing-body interaction
effects due to small perturbations on the given wing are negligible over the
major part of the wing. Let us denote the upper-surface pressure distribution
Using our

from this given solution by Cp and that required by Cpu

u,E ,D °
direct programl, we can compute the Prandtl-Glauert solution Cpu P for the
.

given isolated wing, and it will exhibit an error C =€ which would
pu,P pu,E

also include the interaction effects in a wing-body combination. Since Cpu D
b

does not differ much from C we could expect that the wing we seek does

pu,E °’
not differ much from the datum wing, and that the error in the Prandtl-Glauert

solution Epu for the wing sought would not differ much from the error in the

Prandtl-Glauert solution Cpu’p for the datum wing:

Epu - Cpu,D = Cpu,P & Cpu,E
hence

Epu ® Cpu,D * Cpu,P - Cpu,E :

. ——— " S W O e T+ Y e e




S il

31

If, then, we design our wing to have the upper-surface pressure distribution
Epu , it seems likely that the true result will be close to the target distri-

bution C Which option is used would depend on whether the thickness or

the loadin;’gistribution is to be retained; we remark that if the thickness

distribution is to be retained outboard, Option 4 might be better than Option 2
(since the centre line distributions in the direct program are not reproduced or
used in the design programs), but would be less important if the wing thickness

can be increased at the root.

It is also worth mentioning briefly a possible use in landing and take-off
design studies. The programs cannot be used to design wings with separate slats
or other high-lift devices, but they might be used to obtain a suitable camber
line for the RAE variable aerofoil mechanism (RAEVAM), which can under some

circumstances compete with separate high-1ift devices.
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Appendix A
LOCK'S FORMULA FOR THE FIRST ESTIMATE OF WING LOAD DISTRIBUTION
Lock5 has proposed a formula for the total velocity Q on a wing in
compressible flow, suitable for use in the design problem:
: 8. {3 ¢
= — *
DQ cos a + = (U g COS O + U 1 + 5 sec Am
{ n n
2
82 NE)
- *
+ 5 | Vep COS @ ¢t VB 158 A sec Am
B n
n
+ (l - KZ)(D - 1) sinzAx coszu (A-1)

where the upper signs are taken on the upper surface;

a is the local section incidence, and is therefore equal to our a, ;

T ’
A is the local sweep angle on physical wing;
Am is sweep angle of maximum thickness line on physical wing;
M M
= {1 = fe, ) :
*
A A

K, is a spanwise interpolation function, taken as in section 5.2 of Ref.l;
3.2 ¢
" Q - M_ c¢os Ax) :

{82 + M3 cos A Q = |, | sinZA )"C "}i ; it is su ested5 that "C_."
n L X 2 x/ Tpi 2 g pi

W
|

B =
n
should be obtained by writing Bn =1 in (A-1), giving Q = "Qi" , and
taking "C_." = 1 - "Q."2 ;
pi i ’
2
D =1+ sec’ar P 82 .
¢ M A\Tx n °’

utB(x,y,O), vtB(x,y,O) are estimates from linear theory for the velocity
components due to wing thickness, for example, see Ref.l;
ulB(x,y,O), vgB(x,y,O) represent the thin-wing components due to doublets in

linear theory, and are to be determined;

(3)

S represents the second-order interaction effect between wing thickness

and incidence.
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It is convenient to mention two details here. First, Lock's formula is a
semi-empirical extension of the Goethert rule to take into account higher-order
compressibility corrections through the factor Bn . Since our method is based
on the affine transformation which yields the Goethert rule, there is no point
in including these higher-order terms O(Mi) in Bn , and so we simply take
B =8, . This reduces (A-1) to equation (3-5) of the main text.

(3)

Secondly, we have slightly modified the classical derivation of § to
derive an expression which seems more consistent with the problem at hand than
the one given in Ref.6, even though it is only one of the several second-order
effects present, and only holds for two-dimensional swept wings. Consider such
a wing, with uniform sweep angle A = A , and incidence a . The analogous wing
will have the uniform sweep angle A where

tan A = B tan A .
We have, for the thin-wing velocity components,

Yoy = T U tan A (A-2)

and hence, with up = GRB/B , we have the corresponding relation for the

analogous wing in affine space:

vep = " Yp tan A .
The first-order boundary condition wg=" 0@ is satisfied by the doublet
distribution Lp with
T A
a = | = el
U ‘ZB a< : ) cos A s

The second-order boundary condition gives:

s ) i BZt 5 th b asz
9 B2 a% 2B 3y =T T
Using the sheared-wing relation 3/3y = - tan A 3/o% , and the zero divergence

of ERB in our affine space, we obtain
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9z 3l
2 1 2%\~ t 2B 2~)
Aw2 (;5 + tan %)uQB °F3 + zt 3% (l + tan"A
- o5 E)i SEEREE TR
£ B2 EE c 2E(1 - & *

¢ is the analogous wing chord. Transforming the square bracket to physical

variables, and noting that

cog A _ cos A i & o 32D A (A-3)

we get

th/ax zt/c

}
L ofisE¥ s ;
aey a( g cos R g2 261 =8| °
n

We satisfy this boundary condition by a doublet strength A& giving the further

streamwash
1 g fls ey i e\ _ag'
- = \}
&8, = (M = = ( 3 ) cos A ./ bw, (& )(, s
0
i B8 _l_s(3*)
2B cos R g2
n
1 2
3z z B
(3%) _ 1 ER € n dg'
o, “?/[‘zﬁ" 'c'zs'(l-a')]a-s' :
0
(3)

This integral differs from the standard definition of § by the presence of

83 in the integrand.

Using (A-3) again, we have finally

= & sec A (3%)
u, = uQB+Au2 = uQB[:l+—.8-;—s ] 3

and similarly for v, s and these are the formulae customarily modified to

give (A-1).
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To obtain a first estimate for Upp s Lock5 now replaces cos o by 1,
while o is still an unknown quantity, and z, by z, in the expression for
D ; and the dependence of Vo O Ugg is taken to be similar to that exhibited
for the sheared wing by (A-2):
X - -
VB u,p tan AV (A-4)
ot -
2 cosz(xﬂm) 2 cosZ(AAm)
where tan Av = |B 5 =B =8B R 1 .
cosA J cos A
m m
Finally, Q 1is put equal to the design value Q . Then (A-1) becomes a
quadratic in the variable X = u 1 + S(3) sec A*/B .
B L m n
2
AX" + 2BX + C = O
2
where A = sec Av

= + -
B 1 utB vtB tan Av

2 . 2 2 =2
(1 + utB) + Men + O - Kz)(D - 1) sin Ax -DQ .

(o]
]

Since B is of the order (J + small quantities), the required solution is

x = [B%-ac)!-38)m .
Hence follow the estimates for Us and the affine doublet strength:
QB = AUEB = IOBUEB .
Since a small change in VB has a second-order effect on the value of
(A-1) compared with that of a small change in u g » We can discard the assump-
tion (A-4) and replace VB in (A-1) by the value calculated from the first
estimate W and the more accurate formulalt ;
|
f |
ol ~ v, vl &= X
Yis = 3p g(n) ! 4, (' 5n)dg upg tan A .
From QB we can also compute the first estimate arg for the twist and write

cos & = cos a in (A-1). This leads to a r

TB

|

op Biven by

evised estimate u
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(o) o X
LB (3)

1 + S sec A*/B
m n

4
2 2 2
= (} - KZ)(D - 1) sin Ax cos GT%] .

Lock's formula can also be used to modify an initial crude guess for the
thickness distribution z, in the third problem, when the doublet strength is
known. From the doublet strength, we can find u and v, . We now assume

2B 4B

that U in the second term dominates equation (A-1), just as we assumed that

in the same term dominated the equation when the doublet strength was

YeB
RE)

unknown; we find Ve’ D and

distribution, and then a revised estimate uLB is given by

from the initial guess for the z,

al, = 062 - {v cos a._ + Vv (l + 8(3) sec A*/B )}2
tB tB TB 2B m n

4
2 o 2
(l Kz)(D 1) sin Ax cos aTB]

- USLB(] + 8(3) sec A;;/Bn) - cos aTB}/cos Grp
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AEEendix B
MODIFICATION OF PERTURBATION QUANTITIES WITH MACLAURIN SERIES

The main iteration cycle involves the execution of the lengthy Ledger-Sells

~

subroutine to obtain the velocity fields Agt, AG, (or g, ER) accurately. We
might obtain a considerable saving in computing time if we could in effect
perform one iteration cycle by using suitable estimates for these velocity
fields instead; we would then hope that any errors due to the estimates would
be small enough to be absorbed in the main iteration cycle the next time the

velocity fields are accurately calculated.

For convenience, we drop the bracketed iteration superscripts from all
quantities except the residual errors R(= + R_ + RQ) . Let us suppose that in

" + ﬁg and the camber and twist

distributions Zos Gp s and have determined perturbation source (and possibly

t
the nth iteration cycle we have computed & = @

doublet) distributions Aq, A% and perturbation camber and twist distributions

Azs, AaT to cancel the residual field
& 9z 3z
(n) u) 1 " w
= — — — — —
R 1 + 5) 8 3% v 5y A w

on the wing surface z = z, -

The next residual field on the perturbed surface z = z, * bz, will be

(suppressing the x,y~dependence)

R(n,]) sl T " 1 W

8 8 Ao

u(zw + Azw) Au(zw + Azw) AL BAzw
Ix X

azw BAzw
* [v(zw + Azw) + Av(zw + Azw)} 3-;— + —é—y—

- (uT + AaT) - [w(zw + Azw) + Aw(zw + Azw)] .

In this expression, {, z, and ap are first~order small quantities while

At, Azw and Aa,, are (at least) second~order small quantities, being derived

T
: : (n)
from such expressions as R

(n,1)

which is itself second-order. We therefore
expand R in powers of Azw and retain only quantities up to and including
third-order, ignoring for instance terms 0(iz Az ), O(AﬁAzw) . With all

quantities again evaluated at 2z = z, » this leads to
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dlz
sy o) 1 W
R = R Aw +-é-_é-i-{— AO.T
a BAzw AR azw BAzw azw e
+ — e Y + AV —— = Az — .
82 X S2 X ay y W 3z

We now further expand @ in powers of z, (Maclaurin series), so that from
this point on all quantities are evaluated at z = 0 , and continue to retain
terms up to third order. We can ignore further contributions from the second
line which is already third-order. Thus only Aw contributes further to the
expansion:
AW 2
Aw (z = Aw(0) + z — + 0(z Aw .
(z) (0) = k-
We have already taken our perturbation source, camber and twist distributions

according to equations (3-1), (3-2) to make

(n) 1 BAzw
R - Aw(0) "‘ET'AGT = 0 .
We also have
3z A% dy

and a similar relation for Aw . Hence we can eliminate w, Aw and obtain

R(n’l) S L 1 d iﬁfﬁ + Al zfﬂ b (z. ATG + Az ) +-3— (z. Av + vAz )
62 o ax X W w dy w wWo &

Proceeding on the lines of section 2, we write for upper and lower wing surfaces

N
([
I+
N
+
N
.o
I+
o
N
+
>
N

Az =
w

and

with similar expressions for v, Afi, Av . (For the first and second design

problems, Azt = 0 ; and for the first and third problems, A, = sz =0.)

(n, 1) (a,1) . .(n,1) .
R Rt + RQ

now splits into + with
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9z 9z dAz dAz
(n,1) e & S 4 t s
B = 1] |48, mg= * 80, opm * @, g + 1, =2
+ iL z AU+ z AU+ 01 Az + 4 Az
X | ol ') e = L s
+ iL z Av, + 2 Av, + v Az + v _Az )
oy \'t™ t 8- ENSE 2 %s
9z 9z dAz dAz
(n,1) 1 s - t = s I t
= - ) — —— +
Ry 2 i " e "3 5
+ iL z AU+ 2z Ati, + 8 Az + U Az )
X t t t L

)
—_ + + + -
+ 3y (ztsz zSAvt vtAzs vazt)
When Az = 0 , these expressions reduce to those given in Ref.l. As in that
document, we must ensure that they are uniformly valid near the wing leading

edge £ =0 . We require at worst

- =] i s
R, = 0 ; R, = 0() .

These expressions are satisfactory except for the second and fourth terms in
(n,1)
2

this square bracket (Rzg’ say) by

the square brackets in R . We introduce a Riegels type factor and replace

n i s s ‘ ~2)
Rap ™ M REF S Rm/(] * R
with

- th BAzt

L oA thw -

This completes the derivation of residual errors by Maclaurin series.

To estimate these residuals, given Aq and perhaps Af , we need quick
estimates for four velocity components on the chordal plane 2z = 0 . We use the
approximations for Aﬁt, Avt (derived from the Standard Method6) and AQ, Av

L
as set out in equations (5-12) to (5-17) of Ref.l. We also need ﬁt , etc. which

— - - - . S —
R TN ~r- —
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are just the accumulated Aﬁt , etc. on the plane 2z = 0 . However, instead of
simply accumulating them, after each main iteration we reset ﬁt by a Taylor

series based on the accurate value at z = z

t H
3ﬁt
5.0 = 8. (z,) - 2, z

and similarly for Ve ﬁl, Vo . This avoids the possibility of large errors

piling up in the accumulated estimates for Gt , etc.
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Appendix C
AN IMPROVISED FIRST ESTIMATE FOR WING THICKNESS NEAR THE TRAILING EDGE

When solving the third design problem, if the first estimate for the wing
thickness takes negative values near the trailing edge on any section, we
& improvise a distribution to replace the first estimate in that region

temporarily, until the main iteration scheme gets under way. In such a plane

section n = constant , let us denote the first chordwise collocation point
downstream of the estimated maximum thickness position by E , and denote the
estimated thickness by z and its derivative by v at £ = £ . Then we would
like to have a curve G(£) which passes through (£,z) and has the same deriva-
tive c'(E) = v , becomes rapidly linear further downstream and vanishes at
the trailing edge & =1 . A function which becomes rapidly linear for £ > £
and contains three unknowns, a, b, ¢ with which to satisfy the other three

conditions is

ae_k(g-g) + bE + ¢ (g; <EL)

where we arbitrarily choose k so that

]
N

A o= k(1 - E)

so that the exponential term dies out near §& 1 . X 1is an adjustable program

constant. The other three conditions, in order, now give:

a+b£+c=£
-ka+b = v
ae " +b+c = 0 .
The solution of these equations is written:
GCl - E) + %
5 e 8 _i) z
Ii=ne =)
b = ka+v
c = z-a-bk .

We observe, as a check, that a vanishes and G becomes precisely linear if

¢ & =Bt~

which is the slope of the straight line joining the two end points (E,Q) and
(1,0).

Adales
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SYMBOLS

local chord

pressure coefficient

doublet function £ sin ¢

planar doublet strength (loading)

free stream Mach number

planar source strength

local speed

residual error in symmetric boundary condition
residual error in antisymmetric boundary condition
semispan (taken as 1)

general perturbation velocity vector

general perturbation velocity in affine space
components of u

free stream velocity vector

complete velocity vector: U + Yty

components of U

local Cartesian coordinates for section
leading-edge ordinate

wing thickness ordinate

wing camber ordinate

wing section ordinate: zg * z,
local section twist

wing incidence (taken as 0)

Prandtl-Glauert factor: b

y/s

y ;3 but 3/3n% denotes differentiation along lines of constant £

n = n* 1is section dividing root and outboard regions in fourth
(hybrid) problem

local sweep in affine space (i.e. on analogous wing)

section percentage-chord: x = xL(y) + c(y)E

]

1 Rlss ae?

T A% £ - &'
0 E!

angular chordwise coordinate: £ = }(1 = cos ¢)

under-relaxation factor applied to estimate of output by vortex
lattice technique

PR Np—
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Suffices

Overszmbols

SYMBOLS (concluded)

basic estimate
due to doublets
due to sources

value on upper surface

design quantities (e.g. Cpu’ Qu)

quantities in affine space (e.g.

% = x/B, @ = uB)

e T ——

vy -
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