u AD=AQ40 992

UNCLASSIFIED

RAYTHEON CO BEDFORD MASS BEDFORD LABS

SOFTWARE SYSTEMS RELIABILITY:
JUN 77 H E WILLMAN.
BR=9568

T A JAMES

A RAYTHEON PROJECT HISTORY.(U)

F30602—76'C-01u0

RADC=TR=77=188

F/6 9/2

| o
-....... 5

DATE
FILMED

T -7

oo

RADC-TR-77-188
Final Technical Report
June 1977

SOFTWARE SYSTEMS RELIABILITY:

ADACA0992

A RAYTHEON PROJECT HISTORY
Raytheon Company

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

—
- —————————E

|
-
|

DDC FILE _COPY

AD |

|

This report has been reviewed by the RADC Information Office (0I) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign nations.

This report has been reviewed and is approved for publication.

5
(g
APPROVED: \ @ e & %%4@(7))\/‘

5

"JAMES V. CELLINI, JR.

Project Engineer

,) ” . y
APPROVED: k‘. {) ; [; E
ROBERT D. KRUTZ, Col¥hel USAF

Chief, Information Sciences Division

FOR THE COMMANDER:)// %A -

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

SSIFIED §
SECURITY CLASSIFICATION OF THIS PAGE (When DallLFn!Prt'd).
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORI“N“BER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AL ™
RADC3+TR-77-188 _+

Fr—T1TCE ramd-Subtitio) 5. TYPE OF REPOAT.& PERIOD CQVERED

/
SOFTWARE SYSTEMS RELIABILITY: LA iigaisfechnicgé »!Gap-tt-r
M . e ~= Nov
A RAYTHEON PROJECT HISTORY , ’\ A R
_[4)|BR-9568
T AU THOR(8). o v v/,: .~ CONTRACT OR _GRANT NUMBER(s)
H.E. ‘Willman, Jr., Vb A.A. Beaureguard ({1, | F30602-76-C-0140 . Pl
T A James 7 P. /Hilcoff L e P

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJEESST, TASK

AREA 8 WORK UNIT NUMB

Raytheon Company 62702F
Bedford Laboratories .- Fobh 55811405 ; f
Hartwell Road, Bedford MA 01730 JE~ e L
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE
! June 1977

Rome Air Development Center (ISIS) [TSTNUMBER OF PAGES
Griffiss AFB NY 13441 184 % f
14, MONITORING AGENCY NAME & ADORESS(if difterent from Contsolling Office) 15. SECURITY CL ASSM»-*"
Same

UNCLASSIFIED |

15a. DECLASSIFICATION DOWNGR‘\D!NU ﬂ

SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

i s
18 SUPPLEMENTARY NOTES
RADC Project Engineer: James V. Cellini, Jr.(ISIS)

,,,,, il

19. KEY WORDS (Continue on reverse side if necessary and identify by block pumber)
Software Data Collection Software Reliability Modeling
Software Fault Taxonomy Software Tools

Software Development
L

SRR D ———————

20. ABSSTRACT /Continue on reverse side If necessary and identify Ly block number)

This report presents results of a project to collect software data from the
records of development of a large Department of Defense ground-based system. A
description of the subject systems software development process, characteristics,
tools, and test methods are presented. Qualitative and quantitative data
gathered from configuration management files are included as well as statistical
summaries of this data. A detailed description of the data base files is
included as well as portions of the actual data base. Recommendations are made

DD ,jf:i, 1473 ECITION OF | NOV 65 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

'
\ UMCLASSIFIED
CURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

for the use of the data as well for the future collection of such data.

The data consists of three files, viz:

1) Module Description File (109 entries) .

4
2) Software Problem Report File (2165 entries)”’
3) Error Category File (193 entries)

Each problem report was assigned an error category from the fault taxonomy
and the data was cross correlated and summarized. The most frequent problems
were in the categories of:

a) User Requested Changes (35%) ,
b) Data Handling (19%) , <+ &

¢) Logic (18%) ,

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu'® PAGE/Whoen Data Frtered)

PREFACE

This report is the final technical report (CDRL Item A003) for the
Software Data Acquisition contract, Number F30602-76-C-0140. It presents
results of a project to collect historical software development data from the
records of development of a large Department of Defense ground-based system.
It includes a general description of the subject systems software character-
istics, the software development approach and the software tools that were
used. Qualitative and quantitative data gathered from configuration manage-
ment files are presented. Software reliability model development and evalua-
tion is expected to be a primary use of this data and therefore, a summary of
project characteristics useful to the modeling task is also included.

The following personnel participated in this project:

A. Beaureguard R. Leary

C. Braun W. Polak

N. Goddard A. Shores

P. Hatton I. Wescott

P. Hilcoff H. Willman, Jr.
T. James

Acknowledged for their contributions in establishing the procedures and

collecting the original data are G.J. Kacek, W.R. Murphy, and J.J. Shanley.

AGCESSION tw___ s
(111 White Sectie

soc o i O DDC

7O AVAIL and/or SPECIAL

D

UNANNGINCED (]
JUSTIFIGATION .. [@Eﬂﬂ qu'jw:-' g
Bt it JUN 28 177
OISTAMBUTION,/ATAILABILITY COBEB RES——
SOOI

R

TABLE OF CONTENTS

PREFACE e L a0 & & W s w4 if k& % s % w s f e s 0 o
I E N TR O G) e Bt I R SR P
2. SOFTWARE DEVELOPMENT PROCESS ., , .,

3. OPERATIONAL SOFTWARE CHARACTERISTICS , , .,
3.1 Object Computer Description, , .,
3.2 Data Base SEXuCtUres + + « » « » & & & & « »s

3.3 Control Structures and Mechanisms.

3.3.1 Task Management . - « « +» = « » 5 s +»

3.3.2 Memory Management o .
3.3.3 I/O Management .+ « o « & 5 « 5 % § 0w w e
3:3.4 System Budielng « ¢ o &« & ¢ o o 9 ¢ 8w s
3.3.5 Centralized Error Processing. , «
3.3.6 System Service Routines

3.4 Build Charascteristies: + . « '« = & @ « 4

4. SUPPORT SOFTWARE CHARACTERISTICS

4.1 Cross Compiller « « + = = s & = & % & « o » « &
4.2 Compiler Support Software.

4 Crosa AsaembBler: « « « « 5 & & o o W & o 8 %
4 Digital Simulator.

4

Digital System Simulator .

&

+ 3
+ &
«+3 Dperating SYStEm » = 2 + =« o 6« W b ox v oo w &
+6
o7

Data Collection/Data Reduction . . « « « « « .

5. TEST METHODS -
5.1 Unit Testing -
5.2 Integration Testing.

5.3 Operational Testing. « . . . « . .

TABLE OF CONTENTS (Cont.)

6. DATA BASE. « « « . .

6.1
6.2

6.3

Data Base Development Task .

Data Base Contents .

6.2.1 Software Module Descriptions.

6.2.2 Software Problem Report File.

6.2.3 Error Category File .

Supplementary Information.

6.3.1 Build Apallysis. . . & o < 6e wie e e s
6.3.2 Acceptance Test Data.

6.3.3 Operational Data.

7. RECOMMENDATIONS.

7o

Subject Project Characteristics That May Affect
Modeling .

Data Collection. .

UUlse of Fresh Data. . o « s s » 5 s » &

TABLE OF CONTENTS (Cont.)

APPENDIX A
DATA BASE DESCRIPTION FILE FORMATS

APPENDIX B

SOFTWARE MODULE DESCRIPTIONS
FILE NO. 1 LISTING

APPENDIX C

SOFTWARE PROBLEM REPORTS
SAMPLE OF FILE NO. 2 LISTING

APPENDIX D

ERROR CATEGORIES (FAULT TAXONOMY)
FILE NO. 3 LISTING

APPENDIX E
STATIC STATISTICS FOR JOVIAL SOURCE MODULES

APPENDIX F

CONSTITUENT PROGRAM MODULES OF
BUILDS "F" AND "G"

REFERENCES.

BIBLIOGRAPHY.

Page

BG-1

Figure

LIST OF ILLUSTRATIONS

Software Development Process .

Program Unit Release Notice

Build Release Notice

Coftware Problem Report.

Software Modification Notice .

Data Accessing Techniques.

State Control Table Structure.

JOVIAL Compiler System .

Distribution of SPRs

Build "F" Problem Reports by Month and Error Category.
Build "G" Problem Reports by Month and Error Category.

6-13
6-18

LIST OF TABLES

MODULE SIZE DISTRIBUTION...
DISTRIBUTION OF SPRs BY MODULE TYPE
SPRs NORMALIZED TO 1000 LINES OF SOURCE
SERIOUSNESS OF SPRs .
OCCURRENCE OF SPRs
SPRs BY CATEGORY GROUP
BUILD "F'" PROBLEM CATEGORY DATA .
COMPUTER TIME FOR SOFTWARE INTEGRATION IN
BUILD "G'" PROBLEM CATEGORY DATA
ACCEPTANCE TEST ERRORS BY CATEGORY
OPERATIONAL ERRORS BY CATEGORY.
EXECUTION LOADING BY MODULE TYPE

6-14
6-16
6-19
6-20
6-21
6-22

EVALUATION

The mandate for producing reliable, maintainable and quality software,
has been expressed in various '"studies'" and 'working groups,' that have been
generated by different departments of DOD. In addition, there have been
other meetings held concerning the same topics, with participation of indi-
viduals from concerned DOD organizations. As a result, the requirement for
devising methods to analyze software error data to attain these goals, has

continually surfaced as a need that has to be dealt with. However, recent

error data analysis has been deterred by the lack of ample data from large
software developments, that can be utilized for analysis as well as in soft-

ware model testing.

This effort was undertaken in response to these needs and lack of soft-

ware error data. It fits into the goals of RADC TPO No. 5, Software Cost ﬂ
Reduction (formerly RADC TPO No. 11, Software Sciences Technology); specif-
ically in the area of Software Quality (Software Data). The report presents
results of collecting software error data from the records of a large DOD
ground-based software development project. The significance of obtaining
this data, is that it will be used to support current software model develop-
ment projects as well as be analyzed with the goal of develcping software
measurements. By utilizing this data as stated, it is expected that we will
be better able to determine the causes of software errors and develop means

to predict and possibly prevent them. Additionally, this data will be used

ix {

h-u.___m—-———'—”"‘"' iy - S——— - - J

along with other acquired software error data, to aid in establishing a base-

line for ground-based software projects in quantitative terms. This type of |

F information will, in the future, lead to better methods of developing ground-

based software projects.

) &
s LTl

JAMES V. CELLINI, Jr.
Project Engineer

'r
|

1. INTRODUCTION

This is the final report of a task which provided a software error data
base to be used in support of further research in software error analysis and
software error prediction model analysis. The effort provided a complete
error history from a large Department of Defense software development project.
The subject project was the development of software for a large, ground-based,
radar data processing dominated system. The error data base was extracted
from 2165 Software Problem Reports (SPRs) written against 109 operational
software modules. The data base developed by this task consists of three

files, viz:

1) Module Description File (109 entries)
2) Software Problem Report File (2165 entries)

3) Error Category File (193 entries)

The task included assigning each of the SPRs to one of the error tvpes
contained in the error category file. This faulp taxonomy is a modification
of one developed by TRW as reported in Reference 1. This report discusses
the modifications made to the fault taxonomy and makes recommendations for
further usage.

The subject project was an advanced development phase project whose pur-
pose was to demonstrate new concepts. The software development was a formal
process with full documentation required. Engineering change order (ECO)
control was used for all software and its documentation from unit release to
operational (demonstration) testing. Software Modification Notices (SMNs)
were written to close out each opened SPR. This formality resulted in a very
successful project and produced a wealth of documentation which formed the
basis for this data base generation effort.

Because one of the problems of software reliability modeling is the sim-
plistic assumptions made about the software development and testing process,

this report includes discussions which are intended to assist the model users

Lo

and developers in placing the error data base in context of the software
development process (Section 2), the type of operational software and its
modularity (Section 3), the tools used (Section 4), and the testing process
(Section 5). The data base section (Section 6) discusses the data collected
and provides additional summary and statistical information. Recommendations
(Section 7) are made with respect to the data collection process, the fault

taxonomy, and the modeling process.

2. SOFTWARE DEVELOPMENT PROCESS

Figure 2-1, the Software Development Process, provides an overview of the
process followed during the development of the software for the subject proj-
ect. All activity flowed from the system requirements. These were developed
by a System Engineering group who also developed the software requirements
with the aid of senior software engineers. Software requirements were devel-
oped and released for design in several functional packages over a two year
period. This lengthy 'requirements phase' resulted in considerable redesign
which contributed to the high percentage (35 percent) of SPRs prompted by
changes in requirements.

Following the release of a set of requirements, the software functional
specification would be updated to reflect the new requirements and softwa
modules would be identified and described functionally. Next, a design speci-
fication for each software module was developed and the 'module'" or '"program
unit'" was then tested and released for integration. Figure 2-2 is the release
notice that is filed when such a release takes place. The module then enters
build integration testing. This integration phase was responsible for the
largest number (1984) of SPRs of any of the test phases. Integration testing
is the testing of program modules with the system executive and the system
data base. This constitutes a build. Following successful integration test-
ing, the build was then released (see Figure 2-3) for acceptance testing.

This took place at the hybrid test facility or at the demonstration site.
Acceptance testing accounted for a very small number of SPRs (19). Follow-
ing acceptance testing the build was released for operational demonstrations.
SPRs were filed for any problems, changes, or suspected problems to a program
unit after that unit had been released for integration testing.

Figure 2-4 is the SPR form. It may be filled by anyone, e.g., systems
analyst, programmer, or user of the software. The program unit author may
issue SPRs against his own program unit to alert others to deficiencies under

correction.

w
w
)
o
—\ =
-
- _#§ix - s -
1YNOI1dO) | . =
] wonvw)) ’) { m
S¥3SN | , £
! | &
_, _ | ©
{ |
4 ,)
, | &
15937134 AT | &
aune IDNVYN |) S =
-JINIVA v !
, 5 o~
[o
i 2
3dS)
SIrnes | 1D 4¥IIN w—
L{ stins3 { o
1531 . A 2
{ {
, [t
, | |
|~
| 0
A¥v¥EN - # | =~
3¥YM140S
v
=
1¥NOILdO 2
— voNww o
S¥3sN J m“

Jevaia IVANYW \o::mﬁ

o IDNVYN 1INN
WY3OO¥d -3INIvYW WY3O0¥d

ong3aq
aNY 3002

- sinsy f ainviia
1531

(n)

B - e e i i . ———

_N—

PROGRAM UNIT RELEASE NOTICE

1. IDENTIFICATION

ACRONYM VERSION

TITLE
MACHINE AREA
CONTRACT/PROJECT
CUSTOMER

DATE:
MOD

PHASE DM () ED(_—)

RELEASE: INITIAL _______ FINAL

PROGRAMMER

BUILD

It. DOCUMENTATION
REQUIREMENTS
FUNCTIONAL DESIGN SPEC
DETAILED DESIGN SPEC
ACCEPTANCE TEST PLAN
ACCEPTANCE TEST PROC

DOCUMENT NO.

DOCUMENT NO.
ACCEPTANCE TEST RESULTS
TEST RESULTS DATA
MAINTENANCE MANUAL
USERS MANUAL
LISTING

I11. PROGRAM MEDIA
ASSOCIATED COMPOOL

ASSOCIATED INITIAL CONDITIONS

TAPE NO./FILE NO.

SOURCE TAPE NO./FILE NO

OBJECT TAPE NO./FILE NO.

CARD DECK (DATE)

CURRENT LISTING (DATE)

ED JOVIAL KEYWORDS

(if appropriate)

(V. CAPABILITY
A) DESCRIPTION:

B) CHANGES FROM PRIOR VERSION/MOD
C) GOVERNING DOCUMENTS (MEMOS)

D) SPR/SMN CORRECTION NO's.

E) STATUS OF UNIT ACCEPTANCE
TESTING (CIRCLE ONE)

FULLY PARTIALLY % NONE -

F) TESTED WITH ALL REQUIRED
HARDWARE (CIRCLE ONE)

V. RELEASE TYPE
SECTION APPROVAL

BUILD LEADER APPROVAL

CARDS/TAPE ON MASTERS

DOCUMENTATION COMPLETE

YES NO
DATE —_ INITIALS
INITIAL
RELEASE
DATE ____
=)
DATE
FINAL
DATE RELEASE
DATE ==l

Figure 2-2 - Program Unit Release Notice

ATTACHMENT D

BUILD RELEASE NOTICE

1 BUILD VERSION/MOD_V M
SYSTEM BUILD TITLE
BUILD LEADER RELEASE: INITIAL FINAL
CUSTOMER

II. DOCUMENTATION DOCUMENT NO. ER CONTROL NO.
FUNCTIONAL SPEC.
REQUIREMENTS
BUILD PLAN
TEST PLAN
TEST PROCEDURE
TEST REQUIREMENTS SPEC.
TEST RESULTS
TEST DATA
USERS MANUAL
MAINTENANCE MANUAL

III. BUILD COMPONENTS
A. ASSOCIATED COMPOOL
B. PRECEDING BUILD(S)
C. THIS BUILD CONSISTS OF FOLLOWING PROGRAM UNITS (See Below)

D. BUILD CORE IMAGE TAPE NO.
ACRONYM V/M FILE NO. ACRONYM v/M FILE NO.
11.

12:
13.
14.
15.
16.
17.
18.
19.

20.

O ® NS W N -

—
o

IV. OPERATIONS OFFICE CONCURRENCE
I CERTIFY THAT THE OPERATIONS OFFICE FILES CONTAIN CARD DECK5>, MAGNETIC TAPRS, UP-~TO-DAT
LISTINGS FOR EACH OF THE BUILD COMPONENTS LISTED IN III ABOVE.

DATE OPERATIONS OFFICE MANAGER
V. INTEGRATION
1 CERTIFY THAT ENTRIES IN I, II AND III ABOVE ARE CORRECT. IHE SYSTKM KUILD DESCIINED IN |
ABOVE 1S UP-TO-DATE, MEETS ALL KNOWN SPECIFICATIONS, AND IS READY FOK RELEASE AS OF TillS DATHK.
DATE INTEGRATION JSECTION MANAGER

Figure 2-3 - Build Release Notice

O s

APPLICATIONS SOFTWARE DEPARTMENT

(SOFTWARE PROBLEM REPORT)

Log No.
SUBMITTED BY: Associoted Build:
(Signature) (If Applicable)
Date:

Program Unite Version/Mod: _ Computer:
STATEMENT OF THE PROBLEM: (Typ= or Print Plainly)

(Describe the problem beth in programming und operational tems.

Indicate the manifestation and the significance of the problem.)
PROPOSED SOLUTION: (If Known)
PRIORITY: (Optional) CLASSIFICATION

Design Change (]
Improvement (]

Error el
ECO No. sl
Special -

Figure 2-4 - Software Problem Report

SPRs are generated as soon as a problem is identified and are not delayed
until a solution is devised and tested. Their purpose of to give technical
and management personnel early visibility of problem areas for earliest solu-
tion and correction. They are submitted to the department control activity.

The department control activity logs in the Software Problem Report and
routes copies of the SPR to the report originator, the appropriate program
unit author and his immediate supervisor, integration manager (within one
working day), Department Management, designated personnel in Systems Analysis,
and other specified activities (within four working days).

The Software Modification Notice (SMN) shown in Figure 2-5 is used by the
program author to log and correct a specific program problem which corresponds
to a Software Problem Report. An SMN may be issued directly by a program
author to correct an error even though no SPR has been filed. A total of
822 SMNs were filed to record such corrections. SMNs were submitted to the
control activity, with the corrections properly sequenced to reflect their
position in the original source. SMNs are distributed by the control act vity
in similar fashion to SPRs.

For each submitted Software Problem Report the control activity obtains
a corresponding Software Modification Notice form. For example, a submitted
Software Problem Report which does not identify a legitimate program problem
still must be closed with a Software Modification Notice form. The control
activity insures that the Modification form is correctly approved (signed by
the program author, Section/Group Manager, and systems integration activity
Manager) when the change in implemented. The control activity maintains the
master file for both forms, issues a weekly log report, and maintains a his-

torical file of SPR/SMN submissions and disposition.

2-6

TY Ty 1_4___4<ﬂ.-|—..ﬁqﬁ._d._d_ﬁ_~.4~«_4d-«J__—4—4_~_q<4< _41_41411...4.-.- Si
]-ﬂﬂ~jlj’1344<4»<-.A.u_ﬂ_u_,«ﬂ_._<4a<,4<__<._-<~j;.~ U R e e B
TETETT 4‘ﬁ4._,_____q_—-1«‘______—__.«q‘____q<_____:___ : o i s G m____‘_;_______.__<

iqjiji.lj,q.«ﬂﬂﬂ_qﬁ..<~q.__q___a-q_.ﬂﬁ__._~_~______,__:_._ ._.._~___.___‘—_‘.
| fh B =1 5 § ﬁﬁqu;Jl_J.ﬁa_.——qq:_q‘—q._«_qﬂ—ﬂ_._f__a___i:,:__ﬂ_q.q4_-__‘__ 1
{ 5 5 0 ¢ 4_ﬂ~q_q«4-4a.<j41___d_J_ﬂ,__J_ﬂ_ﬂ._.-|1144--~]|1;|]4|14|114|44JJJI1144JJ|10

BB jl«jiﬁ%ﬂﬂ—qﬂq_u———______J_q_ﬂ—q__________ A

{13i4«4«4ﬂ4\3ﬂqq44__ﬂ_;;_q«_______<____—___ _AA.A_;_«_,_...._‘JI_JJJI_JI]L
TTT Y 4_««aqqquﬂﬁﬂﬂﬂ___—a_,—q__ﬂ«A_aﬂ_~_<““_4___ (S T) (| ﬂqaqﬂﬂ1_14_ﬁ._..1__«

AR q«!_fﬁq—.;_ﬂ-_ﬂﬂ‘,!ﬂq—:‘__a«‘qﬂﬂ#.:___qa.:::_ A e (e i G S R A R R LS |
LRI S T T D (RTINS0 0 0 R 55 08 1) LA, 5 0) R 59 I o 5 7 6 0 65 7 L S
«4--14j.ﬁ13q_,ﬂl—w41ﬂq4j.—ﬂaﬂ4—<|«_._~_J__ﬁ_q___-_d____4____~<<.,<M.__._____.__
LT L L L B L L 5 o 5) o 0 6 o 6 L 0 o o g o T o

r.JJ,]‘le.A;—‘__«._q_‘ﬁ..—A-«—____._:_____‘.___H___~_,__j_ﬂ‘__‘_,<V«4q_.__~:i.f~

i A TR AR R A ‘Wm414~<-q.ﬂ—4~«,.~«4\4 ﬂf4|<l.|&[f..,1‘_, <u|ﬂ._aq~,. .j1|4|11|1|4I14v4__n.< _A.1|_|..

oe €. Ol) 3) 13 (%3 o e

4apoa] dnoicy sepoay dnog) sonjiny umiBiosy

uolyouBaju) wysAg

2=

:Q3A0NIV

*ONISN
V NI 338WNN 3NIT JHL 3LVDIAONI OL YO VIVd 3IDN3INOIS ¥D3A YO ¥3H113 G3SN 36§ AVW 08 €7 sewnic) 13JPON "S7H9) NWs
|OUCI{IPPD SN /SPIDD IA|3M} UDYY IOW IS0 JIIY §| *MO[3q ULIO} Giff LO WIY! 1a{ua ‘paitnbal ain spivd UCH 281100 : SUIVD NOH DI¥a)

|o123dg (wog styy of wayy YroHD dswet ‘p3iinbas 2up 5| p11iDUI K10yDUDYIXS §i)

10133 ON

jusweroiduw)

)
)
) J0113
)

Figure 2-5 - Modification Software Notice

‘oN 003
() 9Buoyd ubisag

NOILISOdSIa (wajqoiq jo uoiiisodsiq 10) UK DI1j1poW JO wond1IdsaQ

PIIM *s31jddo NWS sty ya1ym of o UOISIIA T LINN WY¥O0¥d

:Aq paytwgng ‘Aud y1 ‘Y4 T T T raiog | T toN 6o 3DILON NOILYDIHIGOW 3¥VMI40S

3. OPERATIONAL SOFTWARE CHARACTERISTICS

& The subject project is a real-time control system for a land-based radar

system. The operational software was developed by Raytheon and executes in

a multiprocessor computer built by Raytheon.

Operational software was developed in a modular fashion. Nearly all of
the modules are written in JOVIAL/J3. The chief exception is the Executive
program, which, along with a few other modules and subroutines, is written in

assembly language.

3.1 Object Computer Description

The Raytheon computer consists of two identical processors and 81,920
words of 24-bit core memory. One of the processors is utilized as a Central
Processing Unit (CPU) and the other as an I/O Control Unit (IOCU); eithe:
processor is physically capable of assuming either role without any special
reconfiguration. Each processor has its own set of internal registers. Both
processors have common access to all primary memory locations.

Each processor contains two accumulators, two accumulator extension regis-—
ters, 16 index registers, 16 program counter registers, 16 pairs of 1/0 control
registers and miscellaneous special-purpose registers. A repertoire of 61
instructions includes hardware square root and register-to-register operations.
Add time is 2us. All arithmetic is fixed-point.

Other features of interest include:

® Unlimited indirect addressing

. A "register-substitution mode,'" which allows registers other
than the accumulators to be specified in arithmetic operations

) A linked-list ''search within limits'" capability which automati-
cally stacks list elements successfully meeting the search
criteria

. Special arithmetic instructions for evaluating nested
polynomials

® Interprocessor communication capability

3~-1

I1/0 is performed via 16 independently-programmable, bidirectional chan-
nels. The I/0 channels operate in accordance with a multiplex scheme based on
channel priority and channel mode of operation. A single channel may be con-
nected to several individually-selectable devices. Data transfers can be

performed in either block mode or single-word mode.

3.2 Data Base Structures

The subject system features a common data base, whose overall layout is
defined by means of a COMPOOL. The JOVIAL compiler is COMPOOL-sensitive, and
s0 it creates at compile time the linkages necessary for operational programs
to gain access to the data base.

COMPOOL data is segmented into blocks, and the absolute location of a
particular data item is defined in terms of the base address of the block con-
taining the item and displacement of the item within the block.

In general, the compiler generates code to look up block base addresses
in a directory (see Figure 3-la). A limited subset of COMPOOL blocks, howcver,
is accorded a special status: whenever the compiler determines that a data

item resides in one of these so-called '"special blocks,"

it assumes that
block base address to be preset in a uniquely associated index register (see
Figure 3-1b).

Data sets which are subject to heaviest use are assigned to the special
blocks and significant reduction in acces:ing overhead results. 1t is the
responsibility of the Executive program to maintain the special block base
addresses in the associated index registers for use at run—-time.

Initialization of COMPOOL data is accomplished by means of an Environment
Generation program. Series of JOVIAL assignment statements are used to assign
values to data items and thus create data sets which can subsequently be
loaded into memory. All nonvolatile data is initialized in th.s fashion.

In addition to nonvolatile data, which consists of syvstem parameters,
constants and permanent files, there are two classes of volatile data --
"volatile data tables" and program working storage.

Volatile data tables are used to contain raw or processed data whose
source is external to the system and whose life span is relatively short. Radar

input data is an example. Application programs call system service routines to

SYMBOL TABLE BASE ADDRESS TABLE

.

I i BLOCK BASE ADDRESS)
ITEM NAME|BLOCK N] DISPLACEMENT D

INDEX REGISTER X

—={ BLOCK BASE ADDRESS]———J
1

DATA ITEM ADDRESS = D + (X)

(a) GENERAL SCHEME

SYMBOL TABLE

Bl e e e T e S
i |

1
ITEM NAME|BLOCK NSIDISPLACEMENT D

)

INDEX REGISTER XS
| SPECIAL BLOCK BASE ADDRESS]—|

'

DATA ITEM ADDRESS = D + (XS)

(b) SPECIAL BLOCK SCHEME

Figure 3-1 - Data Accessing Techniques

assign and deassign volatile data tables of various types as necessary.
Unused tables of each type are held in free pools. Table structures are
defined in the COMPOOL and allocated to special blocks. From the JOVIAL com-
piler's viewpoint, there is only a single table of each type defined. The
Executive, however, updates the address in the special block index register
to link an application program to a particular data table and therebv makes
that table the "current'" one of its iype.

Program working storage is allocated and deallocated by the Executive and
is intended strictly as a local scratch area, rather than a medium for passing
data from program to program. In order to avoid usage conflict, two working
storage areas are available -- one for interrupt programs and one for noninter-
rupt programs (only one level of interrupt program is possible). FEach area
consists of a chain of blocks, with the first block provided for main programs
and successive blocks provided for successively nested subroutines. The
JOVTAL compiler automatically generates code requesting working storage as
part of the standard calling sequence for subroutines; the Executive respo~ds
to these requests by advancing the working storage index pointer to the next
block in the chain. The procedure is reversed when exiting from a subroutine.

This design allows reentrance.

3.3 Control Structures and Mechanisms

The subject system operates under the control of a highly centralized,
modular Executive program which supervises all rea'-time activity on both the
CPU and the IOCU. The functional units comprising the Executive and described

in the subsections that follow.

3.3.1 Task Management

This unit regulates the scheduling, selection and sequencing of appli-
cation program modules. Tasks are selected for execution on a priorityv basis
in adherence to a limited multiprogramming philosophy: The limitation is that
only a task of the maximum priority value can cause immediate preemption of

the current program module; in the absence of such tasks, program modules are

always allowed to run to completion. In order to assume timely execution of

all program modules under this scheme, application functions are deliberately
segmented into small, logically coherent program units. The Executive uses
a device called the State Control Table (discussed below) to sequence from
one module to the next to form processing threads. At the completion of each
program unit in the thread, the Executive checks for higher-priority tasks,
whose presence will result in temporary suspension of the current thread.

New tasks are scheduled either in response to the arrival of fresh
input data or in response to an explicit request from a program module. Sched-
uled tasks are placed either in a "Run Queue," for execution as soon as

resources become available, or in a "Delay Queue," to delay execution until

a specified time interval has elapsed.

3.3.2 Memory Management

This unit is responsible for the allocation and deallocation of work-
ing storage and volatile data tables. All such memory areas are predefined;

the Executive performs no dynamic carving of memory.

3.3.3 1/0 Management

This unit governs IOCU activity, including coordination and activa-
tion of data transfers and processing of external interrupts. It also reports

the arrival of new input data to the Task Manager.

3.3.4 System Auditing

This unit records information about program executions, service
routine usage and error occurrences in a table in memory to assist in system

performance analysis and debugging.

3.3.5 Centralized Error Processing

This unit processes errors detected by other software modules or by
hardware error traps. Responses vary for different types of errors as dictated
by an Error Response Table. This table, moreover, contains two sets of
responses, one for the tactical environment and one for the test and develop-

ment environment.

I=S

3.3.6 System Service Routines

A variety of system-level subroutines are collected within the Exec-
utive to eliminate programming redundancies and promote visibility. Functions
provided include program queuing services, data management services, 1/0
device handlers, math routines and miscellaneous special-purpose services.
(Some of these services fall within other Executive units as noted prior.)

Sequencing of application program modules, while carried out by the
Executive, is prescribed by a "State Control T:'.le." This table is broken

"states.”" Each state corresponds to a

down into a number of sections called
single program module and consists of a group of entries representing all the
various queuing and sequencing options for that module (see Figure 3-2).

Two indices are used to access State Control Table entries: a "cur-
rent state'" index is maintained by the Executive; a "condition" index is
supplied by any program module that exits to the Executive or calls the Exec-
utive to queue a new program. These indices determine a unique table entry,
from which the Executive retrieves the identity of the new program to call a
queue, the new state associated with the program, and the priority of the
program. The State Control Table entry may alternatively indicate that there
is no new program (end-of-thread situation), in which case the Executive will
select the next program module from the Run Queue.

The State Control Table may be viewed mathematically as a state-
input device defining a function of such that, given a current state S and an
input condition C, the new state is S'=f(S,C).

The State Control Table enhances modularity by eliminating the need
for program modules to call one another explicitly; program module control
interfaces are under centralized management and can be modificd without impact-
ing the program modules. During the development phase of the subject system,
the State Control Table facilitated substitution of dummy programs and driver
modules, and also proved to be a convenient tool for tuning the system by

ad justing program priorities.

3-6

v
7
b
".

;
STATE 14
>
STATE 2 <
L /-\/
A e
o CONDITION 1
. P - . e - - - - - - - —- —
CONDITION 2
............... .1
/\—/ °
[]
STATE n ﬁ /\/ °
TNEWSTATES ~ 77 i
NEW PROGRAM P CONDITION m
| _ NEW PRIQRITY. Q_ _ _ |
/\/ []
L]
°
\
STATE n+1 <
\
)
. /__/
°
Figure 3-2 - State Control Table Structure

-

3.4 Build Characteristics

The method of construction of the subject system was a synthesis of top-
down and bottom-up techniques. Program module specifications were derived
from the top-down, beginning with system-level requirements and progressing
through functional and detailed design specifications.

The highest level component of the system, the Executive, was the first
program designed and the first to be up and running. Beyond providing the
control functions and services described above, the Executive, in conjunction
with the State Control Table, served in a broader sense as a development
medium for the rest of the operational software.

Within the framework and ground rules established by the Executive, inte-
gration of the remainder of the system was performed in a rigorously controlled
series of incremental steps called "builds." The initial builds consisted of
groups of functionally related program modules. More advanced builds were
formed by combining elementary builds and introducing additional new modules.
The last build in the sequence was the fully integrated system.

Each build represented an increment in hardware capability as well as
sof tware capability. The purpose of a particular build was not only to check
the interrelationships among the component software modules, but also to check
program interiaces with new hardware (some of which was itself being tested
for the first time under realistic conditions).

Program modules which were not part of a given build were replace? with
dummy modules. Driver programs performed whatever functions were necessai'y
to keep the system cycling smoothly. Owing to the modular nature of the
system, early builds, such as the initial radar and display builds, were
functionally independent to a significant degree and thus were able to be

developed in parallel.

BR-9568

4. SUPPORT SOFTWARE CHARACTERISTICS

A modest array of software development tools were used in the production

of the subject project's operational software:

° Cross Compiler

° Compiler Support Software

° Cross Assembler

® Digital Simulator of the Object Computer

® Operating System with a Debugging Package
. Digital System Simulator

° Data Collection/Data Reduction Software

Much of the software was developed at a dedicated software developnent
facility using a UNIVAC 1108 as the host computer. All of the above mentioned
software, except for the operating system, executed on the 1108. Software
development and maintenance statistics for these software development tools
are not included in the software reliability data base, but brief descriptions
of each of these tools follow to provide a more complete understanding of the

software development process of the subject project.

4.1 Cross Compiler

The Higher Order Language specified for use in the subject project was
JOVIAL/J3. JOVIAL/J3 is the standard programming language for Air Force
Command and Control Applications (Reference 3). As a general purpose procedure
oriented language, JOVIAL has been widely used for many other types of appli-
cations. It has been used by all three services. A cross compiler for
JOVIAL/J3 was implemented on the host computer to produce binary code for the

object machine. The computer implemented the full J3 standard except for the

features listed on the following page.

T ——

P

° Boolean Items

° Dual Items

) Exchange Operator

° Alternative Statement
o Input/Output Commands

The compiler does allow embedled direct code and this feature was used
extensively in eight of the subject programs. These programs have been
identified as DIRECT (rather than JOVIAL or ASSEMBLER) and consist of at least
50 percent assembly language embedded in a JOVIAL program. (See Appendix B.)

All system input/output was centralized in the executive program, thus
relieving the JOVIAL programmer of this aspect of coding.

The average processing rate of this compiler is 33 source statements
per second, including the use of the COMPOOL (central data base definition)
and the generation of Set/Used information.

Appendix E contains statistics about the static occurrence of various
elements of the JOVIAL language taken from a sample of 9 programs from the

subject project.

4.2 Compiler Support Software

The JOVIAL Compiler Support Software consists of the following:

® (Communications Pool) COMPOOL
® COMPOOL Assembler

° COMPOOL Disassembler

° Data Base Picture Cenerator

° Environment Generator

° Source Library

o Source Reformatting Program

. Set/Used Program

Figure 4-1 depicts the relationships of these support programs. The
COMPOOL Assembler is used to create and maintain the COMPOOL. The COMPOOL is

the system data base description and contains the global data item definitions,

=

T T

viva

1004W0D 410
NOILVIN3S34d3d
JIHAYYO

JOLVYINIO
34NLOId
3Sve vivd

P]

ONILSI

1004dWO0OD

—

JOLVIINID \
INIWNOYIANT

vivad 1S3l
DITOEWAS

i

SNOILINI43IAQ
1004W0O2

|

_OOag

ONILSIT
ATEW3SSY
WYYOOYd

SENE]
153rg80
AdVYNIg

ONILSIT
a3asn/ 13s

4N8W3ISSvsIa e 4318W3ISSY
1T004dW0OD 1004dWQOD
AdVEg11
4311dW0OD
WY IO Oud
43711dWOD 3D4N0OS
TVIAOT JOVNONWI
TVIAOT
1
4
WY390Yd ISN/13$
ONILSIT
SN/ L3S
\
ID¥NOS -
IOVNONYI WY IO ONd

IVIAOr
03ZIQ¥VANVLS

ONILYWIO4N

JOVIAL Compiler System

Figure 4-1 -

~r

primary memory mapping information, and parameter information for system
subroutines. It is used by the JOVIAL Compiler and also used by environment
generation and data reduction software. The COMPOOL Disassembler produces
formatted listings and summaries of the COMPOOL contents to aid in the manual
housekeeping of the data base. The Data Base Picture Generator provides a two-
dimensional graphic listing of the data base and is useful in maintaining
densely packed or overlayed data.

Data may be generated for initial conditions or for testing by the
Environment Generator software which accepts symbolic test data, converts it to
object code using the COMPOOL, and creates a 'oad file ready for use.

The Source Library contains subroutines for inclusion directly in a source
module prior to compilation.

The Source Reformatting Program produces well formatted, indented listings
and will optionally resequence the source file.

The Set/Used Program is actually an optional pass of the JOVIAL Compiler

and provides information on which data items are set (updated) and/or referc-nced

(used) by the compiled program.

4.3 Cross Assembler

To provide the capability for generating programs at the instruction level,

a cross assembler was developed. Since the JOVIAL Compiler produced no code
to support input-output processing, multiprocessing control, diagnostic code
sequences, and special instructions*, assembly language was used in these
instances. The cross assembler was created by utilizing the PROC statement of
the UNIVAC assembler to develop a macro for each object computer instruction.
Thus, the cross assembler was a simple extension of the UNIVAC Assembler with
a format conversion added to provide the proper binary formatted output for
loading into the object machine. The advantage of this approach is a rapidly
and inexpensively developed, highly reliable assembler. The disadvantage is

that the macro processing of instructions is relatively slow, vielding an

*e.g., a linked list search/compare instruction was used for rapid correlation
of track data.

assembler that averages 11 lines of source input processed per second. This
is one-third the rate of the JOVIAL compiler; less if object instructions are

compared.

4.4 Digital Simulator

Unit testing of individual program modules was not generally done on the
object machine, but via a digital simulator of it, which executed on the
UNIVAC 1108. The simulator was more accessible to the individual programmer
because of the limited availability of the object computers. In addition, the
fidelity of simulation was excellent and extensive debugging capabilities were
provided. All instructions were simulated except for Input/Output and Multi-
processor Control instructions. This exception did have an impact, as the
highest incidence of SPRs were written for problems relating to Input/Output.

The job control language for the digital simulator was syntactically
identical to the object machine operating system control language and most
of the commands were provided. This allowed most unit tests developed o. the
simulator to be executed without alteration on the object machine. The effect

of this on testing was not measured but was believed to be highly beneficial.

4.5 Operating System

The operating system which supported software development for the object
machine was not primarily resident on the object machine, but instead resided
on a Honeywell DDP-124. The DDP-124 was linked via direct memory access to
the object machine. This support computer provided an early test bed capable
of supporting the development of a new object machine. The DDP-124 was also
used as a real time Input/Output satellite processor for the object machine.
The DDP-124 Operating System also provided a program load carability for the
object machine and was used to host a variety of debugging aids.

The DDP-124 included the following peripheral devices:

Magnetic Tape Drives (2)
Line Printer

Paper Tape Reader/Punch
Typewriter
Disc Drive

4.6 Digital System Simulator

Integration of software modules into builds was accomplished with the
use of a large digital system simulator as the test bed. The test facility
included the object computer with its peripherals and operator stations. The
object computer was linked via an interface device to a UNIVAC 1108. The 1108
based digital system simulation software provided a real time model of both the
radar and the environment against which the object machine was exercised.

Test scenarios were developed by hand and processed by an environment
preprocessor. This data was then used by the real time simulation to provide
realistic test conditions for the object computer. The vast majority of SPRs
were generated during the integration phase which occurred in this digital

simulation environment.

4.7 Data Collection/Data Reduction

The data collection and data reduction software provided the capabilitv
for selective recording of data in real time and selective postprocessing of
this collected data. This process was aided by the use of the previously
discussed COMPOOL which provided data structure and location information for
the collection process, and data format and content information for the post-
process reduction.

The data collector executed under control of the real time executive
module and selectively recorded data before and/or after program module
execution. The data was recorded on magnetic tape for later rcduction oun the

1108.

5. TEST METHODS

Testing of the subject system was performed in conformance with a
meticulously planned and structured regimen. The overall approach to testing
closely paralleled the combined top-down/bottom-up approach described in
Subsection 3.4 for system integration.

Testing proceeded in three phases: wunit testing of individual program
modules, including the Executive program; integration (build) testing; and

operational testing of the system in the field.

5.1 Unit Testing

The first stage of testing was unit testing of individual program modules.
In accordance with the Software Management Plan for the subject system a Test
Plan was conceived for each program module as it was being developed. The
purpose of the Test Plan was to outline the tests necessary to demonstrate
that the module fulfilled its functional requirements and to verify the
module's logical integrity.

When the design of a particular program module was completed, a detailed
Test Procedure was produced. Based on the parent Test Plan, the Test Procedure
spelled out the specific techniques to be used in the tests, and included lists
of input and output data as well as step-by-step instructions for performing
the tests. The Test Procedure also described test driver program functions;
such functions typically included interfacing with the test operator, simulating
interfaces with other modules, and data base reinitialization between test cases.

Unit testing was carried out on the Digital Simulator (see Section 4)
rather than the live computer in order to take advantage of the simulator's
extensive repertoire of debugging tools, including a full instruction trace
capability. An additional benefit of this approach was to conserve live

machine time, which became an increasingly precious commodity as system

development progressed. The Simulator not only proved entirely adequate for
unit testing of application program modules, but was also utilized successfully
in later stages of testing to help debug system problems,

Unit testing of the Executive program deviated slightly from the standard
pattern in that it was further subdivided into testing stages of its own, and
was performed on the live computer as well as the simulator. Due to its com-

plexity, the Executive was tested at the individual routine level, and at the

fully interactive level, where it operated as a skeletal version of the system.
Because system 1/0 is one of the Executive's principal functions, and because
the simulator was weak in the I/0 area, the Executive unit tests performed on
the simulator were repeated on the actual computer. This dual testing approach
also provided an opportunity to use the Executive as a benchmark to evaluate
the accuracy with which the simulator modeled the computer's behavior.

In most cases, unit testing of program modules was performed by the pro-
gram authors. After a module had successfullly passed its unit tests, it was
formally released to an integration team for incorporation into a software

build.

5.2 Integration Testing

Integration was performed in a series of '"builds'" as described in Sub-
section 3.4. FEach build was tested separately in a manner specified by its
associated Test Plan and Test Procedure (counterparts to the program module
Test Plan and Test Procedure). Because of the complex hardware interfaces
required (whether actual or simulated), all build testing took place on a real
machine.

Several facilities, each with a computer but otherwise featuring different
hardware complements, were provided to support integration testing. All builds
were initially tested at a software facility which contained a minimum hardware
configuration (computer, peripherals, display unit) supplemented by a large
scale simulation program to take the place of the remaining hardware and
simulate the physical environment. The simulation program ran in a separate
computer, which was connected to the tactical computer by means of a special

interface device.

The chief purpose of integration testing at the software facility was to
check out control and data interfaces among the program modules comprising the
build. A special Executive service allowed temporary suspension of real time
processing in order to return control to a build test driver program for
varying test parameters or interacting with the operator. Test driver modules
and dummy modules were also employed to fill processing gaps left by programs
which were not included in the build.

After successful completion of integration testing at the software
facility, a build was released to a facility which contained the actual hard-
ware of central interest to the build; other hardware, where needed, was
simulated by various means. The integration tests were repeated at the hard-
ware facility, this time to check out interfaces between build software and

pertinent hardware components. Acceptance testing was done at this facility.

5.3 Operational Testing

Foilowing successful integration testing, the more advanced builds,
including the full-scale system, were released as integrated hardware/software
packages for operational testing in the field.

Operational testing consisted of a series of increasingly demanding
missions designed to exercise the system and evaluate its response under various
loads and in diffe-ent physical environments. Operational missions were first
rehearsed in conjunction with a Mission Simulator, then performed with a full

hardware complement under actual field conditions.

5-3

6. DATA BASE

This section describes the subject project data base development task,
discusses the data base contents, and supplies supplementary information use-

ful in interpreting the data.

6.1 Data Base Development Task

The Application Software Department at the Bedford Laboratories has col-
lected a file of approximately 10,000 SPR/SMNs. The format and use of these
was discussed in Section 2. The first task was to extract each of the SPR/
SMNs belonging to the subject project from the central file and reproduce it
for use in the categorization task. Two files were then defined to constitute
the data base (the third was added later). The SPR file was defined bas:d on
a format used by TRW for the Project 3 data. Changes were required because
additional data was being collected and some data items were deleted. The
second file defined was the software module file which was to contain the
characteristics of the software modules against which the SPRs were written.
See Appendix A for a detailed format of each of these files. Each SPR/SMN
was then reviewed bv a programmer who had worked on the subject proiects
integration task, and an error category was assigned using the TRV fault
taxonomy as presented in Table 4~1 of Refe;ence 1. Several programmers worked
at this task which required about seven man/months to complete. Over 2400
SPR/SMNs were reviewed. Other historical documentation, some on micrecfilm
files, were then reviewed and data on module c¢haracteristics were extracted.
At this point the data was kevpunched and placed on a computer for editing.

program was written to match the module description file against the SPR/

SN file to correlate program names. This program also presented formatted

Q.

itput and did some editing of the data (see Appendices B and C). At this

noint a third file was developed which contained the error categories.

This file was used to verify that the error category codes cn the SPR/SMN

file were valid (see Appendix D). Later code was added to accumulate the

‘ number of SPRs written against each program module and against each error
| category. Statistical routines were then added to produce summary statistics.
Finally a fourth file was developed and a code was added to translate the sub-

ject project's program module names into innocuous names to preserve project

anonymity.

6.2 Data Base Contents

The resulting data base as delivered to RADC consisted of the three files
whose formats appear in Appendix A. FEach will be briefly discussed in this

section. Those data items requiring interpretation are specifically discussed.

6.2.1 Software Module Descriptions (Refer to Appendices A and B)

This file consists of 109 entires, each containing the characteristics
of an individual program module. Ther version identification shown is that of
the last released version/modification of that particular program. The version
number represents a major functional release of the program. Thus version 2
indicates that three major functional releases had been made. The modification
letter represents the number of modification releases (minor functional changes
or error corrections) within the version. E represents the fourth modification
release. PROG0O27 AO would be the initial release of PROG027. PROGO36 4J
indicates that the program has had five major functional releases and the
current version has had nine modification releases. This data is generally
inadequate to allow determination of the total number of releases since each
version may have from no modification releases to many.

The next field indicates the generic function of the i1iodule and is
somewhat subjective although few programs were difficult to assign to a generic
function. The complexity characteristic was also assigned in a subjective
fashion, although again no difficulty was encountered in assigning complex or
simple to a module. Moﬁe of construction was limited to modular or unstructured,

as top-down or structured development was not used. Appendix B contains a

complete listing of the module description file.

Table 6-1 contains the distribution of modules by number of source

statements and by object size (in memory words).

TABLE 6-1

MODULE SIZE DISTRIBUTION

MODULE SOURCE SIZE

(No. of Statements)

00000-00049
00050-00099
00100-00149
00150-00199
00200-00249
00250-00299
00300-00349
00350-00399
00400-00449
00450-00499
00500-00549
00550-00599
00600-00649
00650-00699
00700-00744
00800-00849
00850-00899
00900-00947
01000-01049
01050-01099
01100-01149
01150-01199
01250-01299
01350-01399
01400-01449
01450-01499
01500-01549
01650-01699
01700-01749
01750-01799
01900-01949
02000-02049
02050-02099
02100-02149
02150-02199
02250-02299
02500-02549
0340003449
05100-05144
05600-05649
05900 -05949
06350=0¢ 399
07750-07799
0KR50-08899
08900=-08949
10050 -10099

.

NO. MODULE OBJECT SIZE
(No.

e m e e W — = = e U= 0B 0

_—— e e e [e e = = e

00000-0014"
00020-00399
00400-00599
00600-00799
00800-00999
01000-01199
01200-013499
01400-01599
01600-01799
01800-01999
02000-02199
02200-02399
02600-02799
02800-02999
03200-03399
03400-035949
03600-03799
03800-03999
04000-04199
04400-04599
04400-04799
04800-04299
05200-05399
05400-05599
05800-05999
06000-0/199
06600-04H799
08000-08199
08200-08399
08600-08799
10000-101949
13200-13399
1800018199
19800-19999

of Words)

NO.

t

b

~ N

el ettt PNT e o (it pie Nt e e e i e e N N OV e o W0 ©

S S

PTG R o

-3
3
ig

Table 6-2 contains the distribution of SPRs by module type and also

gives the distribution of module types.

TABLE 6-2
DISTRIBUTION OF SPRs BY MODULE TYPE

Module Type Percent of Total Percent SPRs
= 2 TNl U e S e S e |

Logical 20.2 96

Control 8.3 9.5

Mathematical 19.3 18.7

1/0 5.5 | 5.0 |

DATA BASE 8.3 { 17535 f
‘ Microcode 0.9 % 1.3
i COMPOOL 09 ‘ s, :
| Data Manipulation 11.0 5 18. 4
l_ Test Driver 'l 5.5 J 10. 3 i

This table reveals that the DATA BASE modules should have been given
more attention. The DATA BASE modules for the subject project are not data
base definitions (that is the COMPOOL) but are initial conditions for a build.
Perhaps better tools could have helped here. One problem with this table is
that the size of the modules is not taken into consideration.

Table 6-3 shows the number of SPRs normalized to 1000 lines of

source code.

TABLE 6-3 E
SPRs NORMALIZED TO 1000 LINES OF SOURCE
SPRs /1000 Lines of Source | Percent of Total Size
Control 18 25 4
|
Data Manipulation 29 31 |
Logical 34 14
1/0 36 74
Mathematical 40 23

The five module types represent the operational executable modules
and were ratioed to 100 percent. The relatively low figure for the control
module can be attributed to the fact that significant portions of the real

time executive program were derived from a previous project.

6.2.2 Software Problem Report File (Refer to Appendices A and C)

The SPR file consists of 2165 entries each containing data on a
single SPR/SMN pair or SMN only, if no SPR was filed. Note that the SPR
numbers are not a dense set since they are not project specific. The termina-
tion code is '"SOFTWARE" if an unexpected test termination attributed to a soft-
ware problem was specifically mentioned on the SPR: similarly "hardware" for
hardware problems which caused an unexpected test termination which was thought
to be software (thus an SPR was filled out) but later attributed to hardware.
Of the 2165 SPRs, 47 resulted in specifically identified unexpected software
terminations and seven resulted in specifically identified unexpected hardware
terminations originally though to be software problems. The seriousness of
the error was determined to be CRITICAL if the discoverer indicated that it
was impeding project development, LOW if it was not really necessary for a
correction to be made for the current development to proceed, IMPROVEMENT if
it was a suggestion for improvement but not necessary for satisfactory opera-
tion, and MEDIUM otherwise. Table 6~4 lists the occurrence of each of these

levels of seriousness.

TABLE (-4
SERIOUSNESS OF SPRs

Seriousness Type Number Percent of Total
Critical 134 6.2
Medium 1642 75.8
Low 105 4.9

LA Improvement 285 13, 1
6-5

The test periods of concern to this data base are the Integration,
Acceptance, and Operational periods. Integration occurs following unit
development and formal release, and occurred at a software development facility.
Acceptance tests were then run at a hybrid test facility. SPRs which speci-
fically mentioned acceptance testing or were known to be found during accep-
tance testing by integration programmers were identified as Acceptance SPRs.

All SPRs filed from the operational site were identified as Operational SPRs.

Table 6-5 lists the occurence of SPRs during each of these periods.

TABLE 6-5
OCCURRENCE OF SPRs

Test Period Number Percent of Total
Integration 1984 91. 6
Acceptance 19 .9

L Operational 162 | TA:

The error category code is the code indicating the error category as
listed in file 3 (see Appendix D).

The SMN number should in all cases be the same as the SPR number;
except that some clerical errors were made during the original assignment of
numbers. Cases of this are indicated by an * to the right of the SPR number.
As mentioned in Section 2, some SMNs were filed without a corresponding SPR.
These were usually the result of a programmer discovering the error, correct-
ing it, and then issuing an SMN to release the correction. A total of 822
SMNs (38 percent) were filed without SPRs.

The Correction Type indicates the type cf change or update made as
a result of the SMN. Unfortunately this data was not generally captured and
is insufficient for statistical use.

The Days Open data was extracted from the Raytheon Manufacturing
Davs calendar and represents the number of working days between the date open

and date closed. SMNs filed without SPRs were set to 1 day opened.

The 2165 SPR/SMNs were opened for a total of 17,015 days, or an
average of 7.9 days. This is distorted somewhat by the relatively high per-
centage of SMN-only reports. Removing the SMN-only reports yields 1343 SPR/
SMNs opened for a total of 16,193 days or an average of 12.1 days.

Because of the file length only a small portion is included in
Appendix C. RADC does, however, have the entire file.

File 6-1 shows the distribution of the SPR/SMNs by month opened
during the 38 months of integration through operational testing.

The curve peaks at 133 SPRs opened during month 5 of the second year,

and drops to a low of three opened during month 10 of the third year.

140
130 4
120 4
110 1
1004
901

oo N

NO
OF 70

SPR'
1 & eoﬁ

40 A
30+
20+

ol

‘“‘r“_T—‘T-“T_"r"*_7-_T””T—“T"_T‘“L_T"_T‘—T"“r——r_
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
MONTHS

IR

Figure 6-1 - Distribution of SPRs

6.2.3 Error Category File (Refer to Appendices A and D)

The error category file consists of 193 entires, one per error
category. The error categories were based on the 184 as defined by TRW in
Reference 1. Added categories are flagged with an asterisk to the right in

Appendix D. Additions were made to categorize the following errors:

a) Scaling

b) New of enhanced function ~ display

c) Modifications for special test purposes
d) Unidentified hardware error

e) Nonrecurring problems

f) No error

g) Insufficient information for error analysis

h) Missing cards (source lines) in a compiled program
i) Inadequate/Inefficient requirements

i) Enhancement requirements

Table 6-6 contains the summary of SPRs by category group. Refer to
Appendix D for the meaning of the category group code.

The most frequent errors by category group were the User Requested
Changes (35.3 percent), with Data Handling Errors (18.9 percent) and Logic
Errors (17.6 percent) making up the largest percentage of the remainder. The
high incidence of user requested changes is most likely a characteristic of

the evolutionary development approach.

P —

TABLE 6-6
SPRs BY CATEGORY GROUP

Category No.
Group SPRs Percent
AA Computational 115 5.5
BB Logic 382 157 1
CcC 1/0 21 1.0
DD Data Handling 409 18.9
EE Operating System/Support Software 4 0.2
FF Configuration 18 0.8
GG Routine/Routine Interface 16 0.7
HH Routine/System Interface 17 0.8
JJ User Interface 10 0 4E
KK Data Base Interface 32 .5
LL User Requested Changes 764 35,3
MM Preset Data Base 162 {95,
NN COMPOOL Rejection 45 2,1
i PP Recurrent 39 1.8
! QQ | Comments 15 0.7
| RR - Requirements Compliance 10 0.5 ‘
s$ | Unidentified 77 3.6 |
e | Operator 15 0. 7
uu Questions 3 0.1
vy Requirements Specification 1L L !
x
i J

6.3 Supplementary Information

This subsection contains supplementary information of possible use to
modelers. It presents an analysis of build information, acceptance test data,

and operational data. |

6.3.1 Build Analysis

As mentioned previously, there were several builds implemented during
the life of the project. As a final deliverable item, there were two builds
delivered. These builds consisted of an Initialization Build (Build G) and an
Operational Build (Build F). The Initialization Build performed hardware
diagnostics, hardware and software confidence test, and initialized both hard-
ware and software data bases. The Operational Build was comprised of 55 pro-
gram modules which were implemented and tested in Builds A through E and then
put together as a system. Appendix F contains the list of program modules
for those two builds for possible use in further analysis.

During the life of the project, records were kept to be used fou

estimating new projects in the future. The types of data collected were:

° Record of ali software problems by number and date
] Amount of computer time using wall clock time
® Manpower allocated to each build within the project

The following subsections discuss the software problems associated

with each of the two delivered builds.

6.3.1.1 Build "F'" Discussion

6.3.,1.1.1 Background

Integration testing of Build F was performed over a 35 ;
month period. Within this time [rame, there were a total of 41 releases of
the build reflecting error corrections, design changes and improvements.
Months 1 through 7 were devoted to testing the build using the Digital Svstem

Simulator. During the next five months the build was tested at a test site

with hardware and also in parallel on the Digital System Simulator.

6-10

It is appropriate here, to mention that the software was
being tested on hardware that was not completely checked out, thus adding to
the amount of time necessary to resolve problems. Hardware diagnostics were
not sophisticated enough to diagnose all problems and many were found during
operational software testing.

Testing for the remaining 20 months was accomplished by
first testing a particular release of the build on the Digital System Simulator
and then shipping to a field site for operational testing on the hardware in a
live environment.

During the entire integration period, a total of 136 man-
months of effort was expended. There is no record for computer time used
while testing with the hardware. The computer time (wall clock time) utilized
for testing with the Digital System Simulator amounted to 1890 hrs and 47 min.

See Table 6-8 for the monthly usage of computer time for the builds.

6.3.1.1.2 Discussion

In a 35 month period, there were 1198 problems reported,
investigated, and resolved. Figure 6-2 depicts the number of problems
reported each month. After investigating the file of problem reports, it was
discovered that the peaks and valleys shown in Figure 6-2 tracked each major
release of the build. The peaks represent the time of build release when
several problems had been resolved. The valleys represent the end of testing
particular functions and preparing to work on the next release, which is based
on the results of the tests and addition of new functions of complicated test
aimed at final checkout of the system.

Another factor which attibuted to the rise and fall in
numbers of problems was the parallel effort of hardware integration and hard-
ware downtime. When hardware is malfunctioning or down, the software problems
are not readily found.

Months 12 through 15 reflect the period which had the
largest number of problems reported. While reviewing the problem reports, it
became visible that the build during this time period was being tested for

the first time at the field site in preparation for the first mission. During

8

HHT)

-1
1]

— ot

e

e SR

! -

J -
1 e
{ -
|
| .

168
i

=
F_ —
-
|}
= B
1P
: -4 :j
] e
w4 ¥ 1 :j e :]
—~ b~ -
1 o =t
R -

1]

i)

T T

> M4l
I

5 :
i
H1

o ~ - gEE-8 -
i] :ﬁ ~TP*F- :: —
e bed L =
—— —~
‘ - —1 - ’_"_4 b B :__l —H o
b — -—-1-_‘ 1 1 o e me=

Figure 6-2 - Build "F" Problem Reports by Month and Error Category

the testing, it became evident that some of the interfaces with site hardware,
which could not be tested with simulation tools, and the environmental data,
were different than had been anticipated. New software logic had to be added.
Software was also modified to adapt to environmental interference (ground or
weather clutter) which was overloading the system.

After the 15th month of integration testing the number of
software problems decreased, which also resulted in a decrease of manpower
levels. In essence, the remaining months were devoted to fine tuning the
system. Software errors were found in areas that had not been completely
tested using simulation. However, most of the problems were user requested
changes, product improvements, and modifications to initial conditions due
to environmental conditions.

Table 6-7 lists the number of total problems and the per-
centage of total problems reported for each problem category. It is readily
observed that the majority of problems, in fact 38 percent, were due to design
changes and improvements. Logic errors and data handling errors were 18 and
16 percent respectively. These three categories of problems constituted the
major system problems.

It was rather difficult to collect data with respect to an
individual build release. For example, Build F had 41 releases and the pro-
blem reports did not usually connect a problem to a build release. To generate
this report, a great deal of time was devoted to correlating the problems and
build releases using supervisor status reports and bracketing build release

dates with problem report dates.

TABLE 6-7

BUILD "F'" PROBLEM CATEGORY DATA

Percentage of Total
Problem Category Number of Problems Problems
AA 72 6. 01
BB 223 18, 6l
CC 10 0. 83
DD 199 16, 61
EE 3 0, 25
FF 8 0. 67
GG 3 0525
HH 5 0. 48
I ! 1 0. 08
Jd | 7 0,58
KK 11 0. 92
LL 458 38..23
MM 80 6, 68
NN 28 2. 34
P 15 1,25
QQ 11 0. 92
| RR 4 0..33
| SS 45 3. 75
[EF 5 0.48
Uuu 1 0. 08
}’_-_ VA | 9 0S5
L Total 1198
6-14

6.3.1.2 Build "G" Discussion

6.3.1.2.1 Background

Build G had a 37 month span of integration testing. The
Build was comprised of hardware diagnostics, hardware confidence tests, and
hardware/software initialization programs. The diagnostics verified the
operability of the computer while the confidence tests verified each subsys-
tem within a radar system such as, receiver, transmitter, signal processor,
etc.

In developing the programs, the majority of them could be
tested individually on an off line computer, except for the actual 1/0 inter-
faces. The hardware interfaces had to be tested on the actual hardware as it
became available. For Build G, the hardware and software development was
being performed in parallel. A simulator was not available to test the I1/0
interfaces.

It should be pointed out that the programs in this Build
at the start of the system were designed as independent programs. Tt was not
until some time into system generation that a decision was made to automate
the programs to operate sequentially without operator intervention as a Build.
Therefore, testing of a majority of the programs had been completed indepen-
dently. The Build testing basically consists of hardware integration testing.

Table 6-8 shows the monthly use of computer time (wall
clock time) used to integrate the software before testing with actual hardware.

Over the three year period, a total of 720 hours and 18 minutes were utilized.

TABLE 6-8

COMPUTER TIME FOR SOFTWARE INTEGRATION
IN WALL CLOCK HOURS

Note:

Total ' Total

Month | Build F | Build G Usage Month | Build F Build G Usage
1 T:15 57:45 127:45 150 42:45 23:40 7:3:55

2 3:10 46:23 122:10 20 40:40 18:15 74:50

3 7:05 34:10 122:52 21 96:45 16:10 134:55

4 T7:20 28:55 109:53 22 88:35 16:15 157:55

5 7:15 12:42 97:56 23 56:45 13:20 117:20

6 1235 27:04 82:54 24 79:15 35:40 121:30

7 19:55 54:12 110:23 25 73:30 1:00 99:20

8 52:30 51:50 160:53 26 65:20 - 6255

9 47:11 50:24 150:12 27 67:50 - 70:20

10 95:06 68:08 238:16 28 11655 -2 1655

11 55:45 24:40 134:20 29 88:05 - 89:05

| 7 59:15 21:30 177:25 30 78:05 - 7.8:05

13 43:35 PATAAE 1211:30 31 37:55 3:5 41:10

14 44:45 8:15 141:19 52 41:05 - 41:05

15 42:20 22:10 140:20 33 54:30 - 54:30

16 75:00 k5:35 124:05 34 63:00 - 63:00

17 62:50 9:50 94:05 35 3930 - 43:50
LIS 73:35 3LE55 L78:37 36 - - 39:30

Months without computer time indicate testing performed at
acceptance test site or operational site.

6.3.1.2.2 Discussion

There were 173 problems and 59 man months of effort
reported over a 37 month period, which appears to be low, compared to Build F.
However, the low number of problem reports is attributed, on the most part,
to only hardware integration versus the combination of software and hardware
integration. The logic and data handling errors were found only in a few
programs which had not been completely tested on the hardware prior to being
put into the Build.

The peak months of problems reported in Build F occurred
in the field when intensive testing and fine tuning of the system was being
performed. In some instances, data formats and interface bit configurations
were changed to make the system more efficient. There were also changes made
to software to bypass hardware fixes which were more costly.

Figure 6-3 shows the errors that were reported each month
and the problem categories they represented. The Build was so dependent on
hardware scheduling that it is impossible to generate curves representing,
software reliability. The software was tested in spurts over the 37 month
period. The other variable in the software testing was that all hardware was
not available for testing until late in the 25th month of the Build.

While analyzing the types of problem reports, there was a
definite resemblance to all other builds with respect to percentage of prob-
lems by problem category. Table 6-9 reflects the types of problems and their
percentage of the total number or problems.

Approximately 50% of the problems were devoted to user
requested changes or product improvements. The data handling errors reflected
227 of the problems and logic errors 147. All remaining problems only accu-

mulated to 147 of the total problems.

6-17

T T T R T W R R e TR N W R W R T Te s Sy [T g

£10893®) 1011g pue yauop Aq sizrodoay wayqoiy .9, PIINg - €-9 2Inbtrg

. SHINOW
L€ 9E SE VE €€ ¢€ 1€ 0F 62 8C L& 9T ST ¥T € TT 1T O 61 8L LL 9L SL YL €L ZL Li Ol 6 8 L9 S ¥ € z |
. S D Bt B L
o Fef | FabET I RTES 8 of Fatalad
C rv gt . fet A_.,m 9 14 mv.m.. m..m_l rulﬁm‘r 4 —~——
@ N HE F §1 af1 afa 1 H ik SE
— a S 3w - 1% 14 . q] v * ¢l 5 o 4 €
I M T H T THE s i
S SO R ¥ S
qy & & § 225 i AID o a B
I B ool] al a ¥ ?
2 S 7 1 1 H | h
N R — Py 1 e 2
N 1S H 1 -
o b bt] Pt L -8 &
X H
= 1 1 — FoL 2 =
S & [, 2 _
L & S O°
& | 2
el o
oo
el =
Lyl 3
1 Lot &
_, ©
oL 8
=
/i P
8l
61
N @

TABLE 6-9
BUILD "G'" PROBLEM CATEGORY DATA

Problem Number of Percentage of
Category Problems Total Problems

AA 0

BB 25 14. 45
CccC 1 0.58
DD 38 21.96
EE 0

FF 0

GG 0

HH 9 5,210
LI 0

I Z P15
KK 3 15573
LL 86 49.71
MM 0

NN 0

PP 3 1.73
QQ 2 Stis
RR 0

SS 2 1.15
TE 2 L. 15
uu 0

A% 0

Total 173

6-19

6.3.2 Acceptance Test Data

Acceptance test data is sparse and unreliable. Most often the
authors of SPRs did not indicate on the SPR that the problem occurred during
an acceptance test. Only 19 SPRs were so marked. This made it impossible to
gather significant information about the impact of software problems on the
acceptance test process including the impact on other testing. There were a
total of 19 Acceptance Test SPRs or 0.9% of the total. Of the 19, 17 were
critical, one was an Improvement, and one was Low Seriousness. The 17
critical SPRs were corrected in an average of 4.3 days, with a standard devia-
tion of 4.3 days. The distribution of errors by category group is shown in

Table 6-10.

TABLE 6-10
ACCEPTANCE TEST ERRORS BY CATEGORY

Category Group 2 Number of SPR's
AA Computational 2
BB Logic 3
CC I/0 1
KK Data Base Interface 1
515 User Requested Changes 11
SS Unidentified 1
6-20

6.3.3 Operational Data

Operational demonstrations took place at a remote site.

Again data

is sparse with respect to the impact of software errors on the entire test

effort.

Of the 162 operational SPRs, 31 were designated as critical.

The 31

critical SPRs were corrected in an average of 11.6 days, with a standard devia-

tion of 11.3 days.

The distribution of errors by category group is shown in

Table 6-11.

TABLE 6-11

OPERATIONAL ERRORS BY CATEGORY

Category Group

Number of SPR's

AA
BB
(5(2
DD
GG
HH
h
KK
Li
MM
PP
RR
Ss
TT
Uu
vV

Computational

Logic

1/0

Data Handling

Interface - Routine/Routine
Interface - Routine/System

Interface - User

Interface - Data Base
User Requested

Preset Data Base
Recurrent

Requirements Compliance
Unidentified

Operator

Questions

Requirements Specification

4
24

Again the high level of user requested changes reflects the evolution-

ary nature of the development.
Table 6-12 indicates the load placed on the software in the opera-

tional environment. This may be useful in the analysis of operational errors.

TABLE 6-12
EXECUTION LOADING BY MODULE TYPE

Module Type Light Load Heavy Load
Control 109, 109,
Mathematical 0 447,

Logic 11% 169,
Data Manipulation 13% 26%
I/0 3% 3%,
3779, Loaded 999, Loaded

n——

P T R e

7. RECOMMENDATIONS

As mentioned in the introduction the intended use of this data base is
to support the development of software reliability models. During the pro-
cess of building the data base, the primary purpose of this project, some
thought was given to the significance of the data and the uses to which data
of this type might be put. This section identifies some of the characteris-
tics of the subject project and data which may influence the accuracy of the
models. Recommendations are also made with respect to the collection of
such data in future projects and the potential uses of the data while it is

still “fresh,"

7.1 Subject Project Characteristics That May Affect Modeling

Several characteristics of the subject project may be of some interest
to those constructing software models. While quantitative data was not
gathered for this project, these characteristics might serve to assist in the
selection of an applicable model as well as indicating possible areas for
future extension of models. For the subject project these characteristics

were:

1) evolutionary development of software requirements
2) evolutionarv development of the system

3) parallel hardware development

4) multiple system configurations

5) build process

6) uneven application of resources

7) previously existing software

8) lack of development phase data

As mentioned earlier in this report, the software requirements for the
subject project were issued in several releases over a two year period. Due
to schedule pressure, informal or preliminary releases were also made. This
characteristic probably contributed heavily to the large percentage of '"User
Requested'" changes to the software. Many large DOD system developments have
this characteristic. It is really related to the evolutionary approach to
system development which seeks to minimize risk by testing concepts and
evolving the system in a step-by-step orderly fashion. This approach is com-
mon when a system is being developed which does not use off-the-shelf compo-
nents and proven technology.

Another characteristic of this project was parallel hardware development.
Early users of the new hardware suffered from the 'serial-number 1" syndrome
and the high incidence of hardware failures had a pronounced effect on the
software development. However, since most of the early failures were imme-
diately recognized as being hardware problems, no software problem reports
were filed. The data was not captured.

Software developed for the subject project was executed on three similar

computer configurations, each 'slightly'" different in its usage of input/
output channels and its suite of peripherals. These '"slight'" differences
contributed to the high incidence of Input/Output errors. Software checked
out at the integration facility would require minor modifications in input/
output areas when executed at the acceptance test facility and later at the
operational site. Each of these modifications was recorded via a SMN to main-
tain configuration control, and so entered the error data base. This type of
"error" should be filtered out before using the data in a reliability model
as these modifications are really adaptations.

Another possible problem for the modeling effort is the build process.
In such a process, each successive build jeopardizes the reliability function
(R(t)) of the previous build. Therefore, R(t) should increase as build testing
progresses. Then, at the next build, it would probably decrease. The new

functions that are added to each build differ in size and complexity. As one

would expect, the simple functions were integrated before the more complex

functions. Therefore, succeeding builds became more difficult to test
because of the larger number of interconnections and interactions between
the various modules. Therefore, the total errors (Et) increase with each
succeeding build.

A careful look at Figure 6-1 reveals several sharp dips in the number of
SPRs opened. Several of these occur at the end of the calendar year, the
end of the fiscal year, and at the time of summer vacation. Most likely, the
intense activity just preceding the dip occurred at a build release or a major
system milestone which are likely to fall just prior to these above-mentioned
times and are followed by a lull in activity. These indicate uneven applica-
tion of resources, primarily manpower, and supplementary data on applied
manpower is needed to normalize the data and accurately relate error dis-
covery to applied effort.

Another area which affects software reliability is the extent to which
previously developed software is used. Previously developed software may
occur as library routines, entire programs, or as published algorithms. It
is known that a small percentage of the software (probably < 107) of the
subject project was developed previously, but the actual data is lost in the
past.

Software error data from the development phase is not available. Many
of the error categories (e.g., compiler errors, job control errors, etc.)
would show up predominantly in this early phase. It is a reasonable suspicion
that a program with poor reliability during the development phase is likely
to have poor reliability in later phases, but it would be helpful to have hard
facts in this area. On the other hand a program may have high reliability
during the development phase and poor reliability during integration. This

would indicate problems in development testing, or interface design.

7.2 Data Collection

Reference 1 emphasizes the need to provide accurate error categorizing

at the time the error is identified. To do this at a later date requires some

degree of interpretation from historical documentation which can introduce

further error and distort the reliability information. We recommend that

the programmer who creates the fix for the problem also does the error
category assignment. The assigned category should be independently verified,
possibly by a software quality assurance engineer. Since the error category
assignment does involve an element of interpretation, this concurrence would
enhance the reliability of the assignment.

One problem with the fault taxonomy used for this data base development
was the large number of categories, some of which were overly specific (e.g.,
time conversion error). This overspecifying of error categories led to incom-
pleteness and it seemed to us that a level of generality was needed (e.g.,
conversion error). The major complaint by the category assigners was that
the number of categories was too large and the amount of subjectivity involved
in assignment led to an uncomfortable feeling that some assignments were
ambiguous. Subsequent to our categorization of errors, the final report was
issued (reference 2) and the number of categories were reduced to 79, less
than half the original list. (See Table 3-2, of reference 2). We believe

that this taxonomy is a significant improvement.

7.3 Use of Fresh Data

We recommend that data also be collected during the development phase.
This could be done in larger systems by automatic collection of data during
compilation and testing and would allow important feedback to the developers
that would allow improvements to be made early enough to have an effect on
the software reliability. This feedback of "fresh" data could be used to pro-
vide improvements in the areas of training and development tools. For example,
a high incidence of improperly formatted data errors might indicate that fur-
ther training in the data definition capability of the HOL in use is necessary.
In the subject project, Input/Output software had a high incidence of soft-
ware errors (36 SPRs/1000 Source Lines). This can partially be attributed to
the fact that different configurations of hardware required different I/0
coding. It is also probable that the fact that the Digital Simulator had no
/0 simulation capability, caused software to be released to integration testing
without actually exercising the 1/0 code. This feedback early in the project

could have resulted in I/0 simulation being added to the Digital Simulator.

This potential feedback benefit would also justify the collection

during the development process rather than "after-the-fact," and therefore

increase its own reliability.

7=5

APPENDIX A
DATA BASE DESCRIPTION FILE FORMATS

File #1 Software Module Descriptions

The Software Module Descriptior file contains software descriptive data
and consists of one record per module. It is used to validate file #2 data

and provide statistics.

Record Format:

Columns Field Code
I File Identification i
2-6 Project Identification Alphanumeric
7-8 Project Code Alphanumeric
9-15 Module Identification Alphanumeric
(left justified)
16-17 Version Identification Alphanumeric
18 Module Function Alphanumeric
X = Control
P = Input/Output
L = Logical
D = Data Manipulation
M = Mathematical
T = Test Driver
C = Confidence Test
B = Data Base
0 = COMPOOL
R = Microcode
19 Module Complexity Alphabetic
S = Simple
M = Medium
C = Complex
20 Source Language Alphabetic

A = Assembler

J = JOVIAL
F = Fortran
D = Direct Code
21-25 ff Source Statements Numeric

Right justified

e an e e

Columns

26-30

31

Field

Object Size

Including literals and
local data. Not including
buffers. Must be in deci-
mal. Rignt justified.

Mode of Construction

= Unstructured

= Modular

= Top Down

Modular Top Down

= Structured

= Modular Structured
= Top Down Structured
= Modular Top Down
Structured

NoOoO LS~ EO
]

File #2 Software Problem Reports

This file consists of data from Software Problem Reports and Software

Code

Numeric

Numeric

Modification Notices and consists of one record per module.

Record Format:

Columns

2-6
7-8
9-12

13-19

20-21

Field

File Identification
Project Identification
Project Code

SPR Number

Right justified
Blank if no SPR#

Module Affected
Identification

Left justified

Version Identification

Code

|I2l|
Alphanumeric
Alphanumeric

Numeric

Alphanumeric

Alphanumeric

Record Format:

Columns

22-29

30

31

32

33-37
38-41
42-46

Field

Date SPR Opened

(MM/DD/YY)
Blank if no SPR

Termination Code

Blank = Terminated

Normally
S = Software

Aborted
H = Hardware

Aborted

Seriousness of Problem

1 = Critical

2 = Medium priority
3 = Low priority
4 = Suggested important
Test Period
D = Development -
Unit Test
V = Validation -
Unit Acceptance
= Integration
A = Acceptance of Build

0 = Operational
Demonstration

Error Category
Applicable SMN Number
Type of Correction

New Module Update
X in Col 42

Document Update
X in Col 43

A-b

Code

Alphanumeric

Alphabetic

Numeric

Alphabetic

Alphanumeric
Numeric

Alphabetic

Record Format:

Columns Field Code

42-46 COMPOOL Change
X in Col 44
Data Base Change
X in Col 45
Explanation
X in Col 46

Leave column blank

if not applicable. Use
more than one type if
several apply.

47-54 Date SPR Closed Alphanumeric
(MM/DD/YY)

The SPR is closed

by an SMN, therefore,
this data is taken from
the SMN.

55-57 Days Open Numeric

Total of working

days between the open

and closed date. If only
an SMN appears it reflects
1 day open.

Right justified.

b N AT U b L, T

. : -

W

File #3 Error Categories

This file contains the error categories and descriptions. It is used to
validate file #2 data and is listed for reference. It consists of one record

per error category.

Record Format:

Columns Field Code
1 File Identification g
2-6 Error Category Alphanumeric
7-80 Error Description Alphanumeric
A-6

APPENDIX B

SOFTWARE MODULE DESCRIPTIONS
FILE NO. 1 LISTING

(1%
ol

§!

91
12

s
S92

%

L1l
vl

wei

(3
[

SHaS=~

Q38NLINMLENN
QIUNLINHLENN
QIBNLINHLIENND
3YINQ0Ow
QIVNLINYLENN
¥y INQ0Ow
4V INUOw
Q3uNLINMLIENN
qIENLIANYLSNN
8y INQ0W
¥vYINQ0w
¥V INQO0w
Q34NLINYLISNN
Q38NLINNLSND
¥vINQow
Q33NLINuiSNN
Q3¥N4LINMLSNN
Q3¥NLINUIEND
Q3¥NLINNMLSAN
¥vINQOw
Q34N4LINMLASNN
Q3¥NLINYLISNA
Q38NLIMYLSNN
Q38nLINNLSND
Q38NLINHLSNN
Q38NLINNLISNN
Q38NdINNLSNN
Q3yNLINYLSNN
Q38NLINYLSNN
4vINQ0w
J38NAINYLSND
Q38N4INHISNN
Q34NAINMLSNN
Q3aNdInyisnn
¥y 1NQ0w
Q38NLINYLSNN
GIENLINMLSNN
4vINA0w
038NAINYLAENN
Q38NLINMASND
v INQ0w
4y INJ0w
QINNLINMLISNA
Q3¥NLINNLISNN
Q38NLINHLSNN
8y INQ0w
4y 1NQ0w
4vINA0W
G3uNiInuisnn
Q3¥NLINHLISND
QINLINKLENN

NOLLJINELSNGD 40U 3U0W

000t
99¢
nsé
nos!
950014
L22t
nsot
9L
15Y4
LA%Y
0
negl
(19
91in
0

66
2n9e
625
656
geLh
nLLn
88n
69
009
g$ing
ghnt
s2o
£8¢2
ins
ion
996
nsn
neng
ien
nes
9?2
4
69L%
r
S99
6t}
228
st
oLl
ang
058
8606
gnn
1522
(131
i19¢

3418 1J3rH0

oon
SgEn
S9
i29e
Song
€1
195
958
et
Lo
2nis
CLARS
CL
£82
inoe
S9
LSt
oLs
S9
1168
4851
26n
ne
99
Sie
068
898S
691
eng
26n
seo61l
£81
he9l
282
QLt
9g2
tn
LAY
e
g0t
et
9in
6L2
£es
6ng
92¢
058
tne
Sne
902
gen

3218 3J4N0S§

aviaor
Aviaor
Aviaor
Aviaor
CEREEEIS
Aviaor
AviACr
83 1w3SSV
Iviaor
aviaor
Aviacr
AviAGe
Aviaop
aviaor
aviaor
133410
Aviaor
Iviaor
aviAaor
¥3THWISSY
L ERUEEINN
CERUTE NN
(J38lq
AviAOpP
Aviacr
Aviaor
AviAQL
WIACr
1J3ala
CERLETEISN
viaor
Aviaor
Aviaul
Aviaor
viaur
1J3alc
IviAQr
aviaor
AviAaur
viaur
123810
Aviaor
AviAaor
Iviaurp
AviaQr
YvIaor
viaor
viaor
Aviaor
aviacr
viaor

39vNONY T 3D8N08

wilddm
x31dgmwod
3anls
Xx3agmUd
EREEDEY
WNLU3n
X41gn03J
WNLU3Iw
wWN103w
4ldnlS
3Tanis
ERELIS
A LU3In
X41gn02
ni0an
AlLU3n
wWiLU3n
LERFTIE]
Alludn
Xx3Tanu2
woildan
AN LU 3w
ANiU3n
N0 3N
Ao lUgn
LIPSO
AN LlU3n
A ld3An
nlldan
ALl 3w
N U 3n
X3lanuJd
LIPS L]
ICED
WOLU 3w
47gnlS
A E03n
AN 0 3n
ERFTR 8
nl03n
wNiG3n
W lUdnw
Ignls
wWhlCan
wWNLEd 3w
ni0an
WN1U3Iw
x374w02
aNldan
w10 3w
WLG3w

ALIX3 (anld

1v3Llivndnivm
AL VmINiVn
Ivdis0n
Wl VndrniVn
1834 3In3Ul 0D
AVIL vamdriye
VIl Vmarnivn
RLPOR PFLIE N
NOLLY TNaInNYw vi o
e3dAlul L1844
100an3d
3Sve Vavl
Ivai9u
IvJi907
iSvg Vivy
TvILYu
83Alau 4534
VIl (Vdmivn
osi
TuML™ud
uzi
Grs
usl
Ratvud
HIAlEG 45 4Y
VOLLV INGdNTn Vave
VOLLY IN@dNY R Vv
RLPUT PE TS
BTV EELFE I
NULLYINGINY - vyvy
VeLLYINdL v¥e vavg
WOl vmdnive
NCLLYINaINY - vyw
IvJdlue
VOLLYINGUNYw Wyvy
4SveE VivQ
LELYE-1'IP S ¥ P
23Al8C 1831
Ivdivul
LIS PF LIS IS
AvIi9u
Iv3isul
WOALYINdINY W ¥
uzi
Tv3i9u
ISy YAy
iSve Vivy
RAEP S LFLPS AN
Aoudud
ACLTS)
Ty3i90
L T TL Tpepepn

NULAINGA 3 Tilun

4
L {4
He
v
Ve
BiY
bl
Ch
v
uc
e

on
C

re
e
e
B

»U
41

iSedn

1909Cue
(909Cee
6509004
¥5090u¢
1S090¥e
§50900e
2509044
165090k¢
0S09Cug
6n090ua
Lh080ae
9%090kd
SnU90de
fru90ee
¢nluone
irv9Ceg
0rUSuad
6§ 09ued
¥rlouba
9¢C9Ldg
StUllse
rs0ylag
fivyLte
S LEVEP
1£090gq
Cs0Yueq
e200cte

¥cvilaee
12095U8e
Gcd90ag
Sduuune
réluled
Lleg
90¥e
Jved
ellulee
Wilulee
1109Cua
Sloyled
S1090u4
Pi0ylee
§£ 109004
2iV90ee
110908¢
600908¢g
vUl09008e
(0090ke
SLv9lee
SC0SLee
20090be
tocylee

Gl 31NCOm

Q3¥NLINELENN {68 092 Aviaop w103n Tvdioun U riluleg

s Q38NLINYASNN 129 (141 Aviaor MLU3n Ivdlvon 1Y §£11908d
Y4 Q38NLINYLENN 6SS CAR4 Aviaor LI L o/si ElY 211908¢
£ QI¥NLINMLENN S90S 6lg Aviaor wNi04n Rl] 3V 111908¢
W QIVNLINNLENN (119 LSt Yviaopr ANlQ3an AR S DE VS I U 0119C¢e¢
st ¥y INQ0w 22Le BLlL LERUEFINS wN1U3n 1834 FONIUISNUD 21 6019CHe
on aA3eNLINMASNN LIst 24LS Iviacr W LCin RAFROS T LY I = v01900e
i U3aNiINuisnn LT ihn viaor wNl03n 18344 AIn3ulanud wy L{01908g
s avINaow net ne Aviaor ERFEVES 3SVH Vdvy J1 9019C¢ke
v Q38NLINULENN nid Sneg viacr nNiU3m 4834 3JON- L4000 Qv Su190ee
4 UIYNLINKLENN 2eng nell Tviaop FREEYEY 4834 3IONzC[anu)d = n0190aa
i ¥vINUOW 9n99 1002 Aviace nlU3n 1834 3OnaUs L2 i §0190ne
9 Q38N4INELSNN SS9r 92s1! viaor AN 10 3In 1834 3In3ulgnud 34 201908e
] L A lalefol% 002s 8L02 Aviaor nNlU3n 4834 IINIUT 4NUD 34 101908e
s Q3¥NLINHLSNN Vo008 (LT CERUCTEINYS aNlU3An 4634 3InaGlanud bl VeT1yCue
I Q3¥N4INyLSNN (Y31} 1868 LERILF N nNi03m 1834 4IN3UTaNUD v 66090080
4 Q3aNLINYLASNN 6201 seet 123u8l1Q ERETYEY 1S31 30~n3ulgnud Bl *olulee
e 8vINA0wW 259n 2262 viaor nlU3nm 1841 3IN3AUTaN0D ri Le09vee
(! 8y INA0W 0819 69l vlnaor ANLUdn 4834 32ndA0Lanud vl SRCY0na
£t uvINA0w 108 02¢ Avinor wN103n Tvdivun 4l Ge0yleg
(¥4 avINACw esigl 25¢9 Aviaor wNlU3n 4831 3INIUL 3D -0 re0Yleqd
] avINQ0w LeLn 9Lt Aviaor ANIC3m 1834 3IINAGL 4D v $609008a
n QIYNLINYLSNN LI ns Aviaur PRETY Ivaisun L d60uled
9 Q3uNLINNLSNN 196§ 6g1e aviaur Allilan 1834 dIn3CLanuY “y 160s0bg
s Q3¥NLINYLSAN nie 201 Iviace ERETS 8 RE VI vy Le0ylae
91 Q3uNLINYLISND 128681 8s001 Avlaur nN104n 1544 3In4Ulgnu2 G ewlSlee la)
I3 Q3¥NLINYLENN fint 6n0t Iviaor nN1U3n v iV v #50uleg |
! QG3¥NLINHLSNN sne (48 vinor ilanis 0LV 1diNVA vAVC e Lyly0ke =
n Q3dNLINYASNN 961l g21 Iviaor AN 103N AvIIivadriva bl 9% 0902e
1 %4 Q38NLINHASND L02¢} 2els Aviaor AN1U3In NOLAYINAANVA wivL an S§090ce
3 Q3UNLINHLSNN 628 9n2 AviAur 37anis RIFT-PRIVE] ol Pyl9led
(4 Q3IuNLINHLSNN fLes L4911 Aviaor 4lgnls 1844 3InN3ulanod by $¥0908e
31 Q3¥NLINHLISNN 128 oLr Iviaor Adwls qomaved Y 2elylee
in Q38NLINMLEND £802 2ntt aviaor x374n03 RAEP VS L ELFS Y 3 le(90ee
s Q3¥NLINYLSNN nh9on 9651 FERLCLEINN AN1U3IN JouaNU2 v 0gL90ke
el A33NLINALSNN 606n Lnsi 4374m3SSY nolUAN 1S31 4In3Clanud 9¢ £4090ee
ni Q38N4INMLSNA 08t 6L aviaur ilanls Tvdiven ud ¥LUS08e
n Q34NLINYLISNN 9981 L6S aviAor ERPTPEN 3SvR Vive ve L10Y0ee
R Q34NLINYLSNN §9 0s Ivinor ERELYEY Tv2iYeT av Y090ke
91 Y INUOw tsnt 999 Aviaor wWhiU3n RAFRUS E LIS v St09Cue
S Q3¥NLINHLISNN 92s 9¢2 Aviaor ERETR S 3SvA Vuvy &Y $40900¢ |
ni Q3¥NLINNLENN 266 9ng viaor x37gn02 Ivdi9un a¢ 2(0900¢
v Q38N4INYLASNN LAAL 029s 4318n38SY wi03n 1834 3IN3ULaNUD rs 1(C9vae
02 4YINQ0w 99n§ seh CERCTEINY P TEL 400Juedin bL] Vil90ad
on ¥4y INA0w L0Ln 1891 Aviaor wNiUIn 53AIu0 1S3y v #909Cee
nn 8vINQOW £L91 908 aviaor wNICIn AVILLVRINLYR b1 1909C8g
4S1 v INQA0wW 6562 el Aviaor nNlG3n NOLLYINGINYR YivU s 9809Cue
b v Q3YNLINBASNN 692 621 Aviaor x314m03 ILF S CE LV (1% SY090ke 1
i Q3¥NLINYLSNN 8Li82 0L0l aviaor P e RLFPYS LELPE 14 Qi PSC090eg |
2 Q3¥NLINHASNN gne 2ne 1J3ula x37gnw02 RA 2D O8I E LY %) Gl £9090¢¢
/%4 Q3YNLINNLEND neot 99§ Aviaor W lUIw NOLLAYINGINYW wivC 3 29090x¢

cnanca Sceca .o ecacsecase scsccen=

SydSeN NOLLIN¥LISNOD 40 300w 3218 123re€o 3Z1s 3J¥N0s 19VNONY 1 3)8N0S ALIX31adw0C2 NULAINNA 3701QUa NOlSman ¢l 377u0m

B-4

. QIWNLINMLIENN 9L (L] viaor wN103n Iv2L9V) vo 12190u¢
0 QIMNLINMAENN sfi2 font Aviaor FRETE Y JouINUD vo 02190¢e¢
¢ QIMNLINWLENN et Lt 1J3ulaQ nN103W v vo 6119084
[QIeNLINMIEND 19 Lo Iviaor wNIQ3w Iv2i907 v ¥1190uwe
174 8vINQ0w nis 9ng Aviaor wNLU3w 3sve vivQ 2 L11908e
] QIMNLINMAENN £95¢ 1822 Aviaor NN1O3w L1834 3IN3ULaN0D G 91190¥¢
. QIWNLINMLENN 9e8s £int Avinor LN F L] 1834 3IN3UT AN ve S1190%e
- e.tee - - - Caccscnccsscase ceaveancane Sescsscsccacacs cscncas ccancscnn
Suasen NOILJNMIENOD 40 300w 3216 423060 321§ 324008 29v/ON¥) 304N06 ALIX31dw02 AOLLINNE 47010Un NOiS¥3A U1 3In00w

APPENDIX C

SOFTWARE PROBLEM REPORTS
SAMPLE OF FILE NO. 2 LISTING

i $4/701710 X 2ne0 oeosw NOILva93iINI nN1Q3w TvynaON YA AVA L 5 990908¢ eneo
/89 14/720/%0 X Ineo veoss NOILVY93INI I ek I R LT T $4/01/710 2% 99090Nc Irso
LA LL/me/t0 X 9L60 0s00Q NOILVH93INI wWNIU3Iw RALTTL $4/n0/10 ve s+ 1908¢ ¥i60
nl 1L/ne/ 10 X 4560 08000 NOTLAVHE93LINI wWN1Q3w Tyna0N S$L/00/V0 Ve S91190e¢ L1560
nl tL/ne/io X 9€60 0s0ad NOILVHO3UNI wWIUIN TvmyON $4/7h0/710C vi $11904¢ 9%te0
nt s4/02/710 X $f060 08000 NOLLvY¥93INI WId3n TywaON SL/n0/ 10 v s!190ae S€60
nt LL/nezio X g6l 04088 NOILvy¥93INI WN1G3w TvmHON §L/P0/ 10 ve 511905¢ ITY
ntl LLrne/to X £560 04088 NOILVH93UINI WALUIN Tvryg0n SL/N0/VO Ve Silunae 560
| £4720/10 X 2§60 05000 NOLLVvH93LINI WOTAIN Ty mdON s§4720/10 el rulyoee 2t60
4 L0070 X ige0 08000 NOILVH93INI WN103W TvwdON §£L/7€0/10 20 w90908ae 1fe60
2 $4/00/710 X 0f60 0S0Qu NOLLiVH93IN] WNIQ3w TvwdOn §4720/10 v ¥90Y0aa VL6
2 LL/ne/o X 6260 0%00Q NDIivH93iN] wN1U3w ALY -1 §L720/710 Jv W9UY0aa 6260
4 LL/n0/10 X 8260 Ot ivy NOILivy93NI LI ETY Jv~y0n §L/720/10 v BY090ac #2600
2 LL/n0/10 X 4260 04088 NOILVH93INI WN1G3Im AvwyON $4720/710 ¢ M90902a¢ L2600
2 LL4/70/10 X 9260 05000 NOILvVH93LINI ANIUIN TvwalnN 4720710 Bl ¥90Y0aa 9260
& LL/no/to X S260 09088 NOILvy93INI WNIU3Iw RAT-14 §4/7¢0/10 20 ¥90902ad S200
] L4/720710 X n260 onige NOILV¥93UN] W103w TvndON $4720/710 2 990908¢ 260
4 £4/720/10 X 2260 05000 NOILvH93UNI WO IdIn TvaulN 2Lrwes/en v 89uulhe <200
2 w/2c/ie X 1260 0toxx NOLLV¥93LINI ANTUIN Tvmdln eL/wesed 0 w90u0ae i2e0
9 $L720710 X 0260 020MM NOTLva93INI Ai1dIw v HON eLsiersel v ¥9090a¢ 0ce0
S 14720710 X 6160 04088 NOILivy93INI WaliIed ELLAFETN eLrigrsed v 890908a 6le0
S L4L720710 X 9160 09014 NOILvH93INI LRRMVETY RL LT eLsrersel =]V ¥90yled glou
| eL/se2/el X L1860 02088 NOILVH93UINI WIILlly2 AvndlN eL/versel Js 990908d 1160
v LL/720/710 b3 9160 0soad NUILlvy93UNI WN1U3m TvndUN eLrvérsed 3% 9G0yNeea Sle0 o
9 LL/720/710 X S1e0 0500d NOILvHE93INI nNIUIw TywaON eLsversel Js 99040 ae S1e60 |
9 24720710 X X nteod 0F0xx NOTLVYO3UNI W LU3In Tonu0n 2Lsverset 3% 9YQuCed rloo (&)
St £L/720710 X $160 inoaa NOILvHu93INL ANTUIm TvanUN 2L/Lnseh Js Y90y0ad 160
A eLsee/el x 2160 0408 NOILvd93IN] A1d3m RLETTON eLsivsed 2 99y90¥e <160
LA cL/e2/21 X 1160 05000 NOILvH93INI wWNTUIN Tvadln eL/Lised J 9YuYlea ileo
LA clsee/21 X 0160 viLod8 NOILvH93UINI variiwd TvmnyglN eL/e0yel 3 99(4Y0ag vleo
ni <Lree/el 3 6080 140a0Q NOLivH93iND W3Iilwd RALT-T8AY 2Lrivsen)% 9vputag U0
é £2/50/710 X 9060 PEREeIe) NOILlvy¥23uNI woIi12 ELLAS I eLrverei rr 9t 0uleaa v060
) L4/780710 3 4060 00tay NOILVvEOIUINI vaIL1wd d¥v¥ L1408 eL/wlsel rn 98 090a¢ L0060
() 24750710 X 9060 00tqa NOILiva93in] WNTUIN TymaOn eusglsed rn 9% 0Y0ne v0e0
Y 24750710 X S060 0n00Q NOILv¥93INI U9 Tvmyl L/wli/2i re 91 090Ng SUe0
4 14720710 x noed ve0ad NOILvH9dUNG LI'R| TvmalnN cLrwersel ol #L090xd 060
S 24720710 X £060 0800Q NOTLVH¥93IUINI va1LiIud Tomalh eLriersel e ¥L040ag £Co0
S %L/720/10 2060 08004 NOILvE93UnN vo11lud Tvms0ON ciriersei s ¥L0Y08¢ <060
[T LL/n2/n0 X 1060 0lown NOLLvH93UNI Tvllilwd ELL LDV IVN 2Lsoerel ¢ 9¢0UCHe 1060
Vi fL/60720 X 6680 0toM NOILVH93UIN] WN1U3Iw Tvmaln eL/¥0/s2i p] 1s090ue 66V
1% nL/ie/ 10 X 9680 01071 NOILivy93UIN] WNTUIw TvmaON SL/wozed Je 1509Caa wewo
vy 24792720 x $680 oLiae NOLLAvH93UNI ~07 Rl LT Teld 2L/iozel re 600Y0ad Sevo
ve Li/8t1710 X ne8o 0108y NOIJVYH93INI WNIU3Iw TvnalOn 2473072} e L90902e royld
0% LL/94/140 X 680 92077 NO1Llvyd93IN] INIW3AUYERN L NvnaUN eL/siuzen un $2090ac tow0
ve L£L/791710 X 2680 [LIRR NOLLAVHOIUNI WNIUIW TvmyUN 24710720 s 9u0Ylaa 411
aes asswe sevss eveewnw senasses veinassueseabbeEY [csshasnbene i cconscas ceccncas ceeccesn
~340 035072 davalu *ON NKS A¥0931V2 Q0l¥3d 1§34 S§SINENUINIS NOLLvNImE3L ¢3n340 ANCiSedn EVEEEEL L al)
SAvQ iiva X1in00 ¥0uy3 EPS I 3INL0n tes

avoam

Qd

3dAL

NUTAI3INE0?

APPENDIX D

ERROR CATEGORIES (FAULT TAXONOMY)
FILE NO. 3 LISTING

COCC -t = C =N~

N o
-nN £ -

- o

~OOAMLOoOALCTLLMALCC —N~C
-

c -
~Non

C—=NMOoCE~—&N~C

-
Suds=~

iNadiiu 9183G 40 v
(NULLVINGRNIOU N9LS3C 04 4ALLVI48) mATI60¥d A0NdLNI0 9130
J4VNUSUYNL 4208 U314 UNglnp
iNdinN0 3AL1SS32x3 &0 31vdi g0
(NUTLAYIO0T 9rusm ONTUATINL) dUnMI dVma04 LNgliiu
1X3L 399SSdm HOHM3I JLVYNIIIVUNL 8U YNL0V3IISIm
NOLLVININNIOU N9L630 MAIM 376iivan0d Lot 3JVSSdw HUB83 8U LNglii0
U3H8v9 3UVSSIn E0HB2
1a100 LON 49VSSdm HUME 4
S414i~N3 vivQg ONISSIw iNgliiD
ANadNU 9v1SSinm
sxs SpOu¥3 U/l sss

(W3TH08d 4aV2L40s) aUmad IINJ0I445 49V LS
JdYvl 4A188323X3
JI90 1 INFIIL 454N
X37dnlJ ATSSIT0IIN J1907
QOOLSHAONNSIA YU C4XU0 IN4AU *miTbuee 40 SOAASLIESLIVEVAHD 1¥I1SAnA
1-01nCa YNUemM WU Jl9uT
SLMIS 48 SnOmy 14I(1G08a 4GUI VI YU
UdNIwndl 40 ATLD3am0dvi 3418 934S nulivmidll
EEELERERISE LIVERET- T8 B F b EEIFE FES
aubEd ONLIHd)4
S34LIAL1IIV 40 JINIU4S
4907 124a8u0N]
C31S4L LUN 3079A VIVU C3I144034S 88U 9v s
13wJdMI LUN X3JUNL
4S41 ~0LLLONDD U JIYUT 9NISSI-
tulivaddl ANl Lidn OnlghU eLl SS3 N
OnvISS 43080 41313w0IN
473A3 Yugm NU UALIX3 guu
NInvL HInvaE JIY9UT Ynuav
dUsad NULAYNAIRB L340 L niD
t8s Solxsd JIUOT ses

9o

sudeld YNl ivIs

Muddd NOULLVINOQEL/NULLYZ ANVt

JY¥IAN0I UL STIYS NULLVINDTv)

sU8M4 NOILY IO IV 504244

i ay8d NOLISEIANUD SLIND

sUEH3 NULANIANGD AYIYS

HOMu3 NULBEIANCD 4mly

a0a43 NOLLAVINDIV) 3mid

HOuEd Jlldnmflov 40UW Udx]n

G3423ax3 SV LON/ILVMNIIYNL ~ULAY INIIVI DiidwmiiBY 40 S1INSaw

w3 TH0ud ONLTI300m IVIIAVWINIYA

A4SN NOULINIANUD w0 NUULYILY 9nNuUa™

80883 NOLAYLNGWUD X JUN]

ATLI3880INL U3LNigwud S318iNT 40 aduwiin Tyiold
sxs BHOHEY TYNOILVLIIEN0DD s

L D e L L L L T T T T L L L T T P,

NUldclyds 40

1032
V0123
U603
0wvd3
04033
v903)d
us0dJ
un0dld
vELd3d
02033
1033
vuedd

FERRCT]
LLiRE
UG lke
uSlegk
Uriwe
Ug IEE
(8 -]
Cline
O 1)
Nelnb
UHOHE
ULlky
¢9C0EB
190k
(90HE
vGorE
uniee
VL]
uelHe
vitkw
VOUHn

=2

uglww
elvy
Vliwy
Cotvwy
veuvy
uEuvY
FEAAJ
uLowy
PCTAAS
vSovy
inovy
unovy
orovy
viovy
ocovy

ABU934Y) eouN3

cs3soc OCNM - —C

rerNCcCCcCUrcN—~MOCCC—~CO

0
0
0
0
0
}
0
i

-9 —cCOo

" o

SudSen

Ha0H80 VAVQ LNdNL OL 3AIL4Sn3S 3nNILNOw

vivQ 37gY11lvAvY 380 QL STivy aINILNOE

fHILINYEYA INOHM IN14I3dXx3 3INILNOY

SLINN H0 S¥3ILInvHVd INOU™ ONLISSVd 3INILNOWN

HONW 004 ¥0 ANIIJI44NSNI viIVO JU ANNOWY L1IINHOINL INISSVd INILNON

*8s SHONY3 3IvIy3inl INLINOy/3NLLINOE sas

LIVH WY H¥00¥d 3TWYNLVYIdX 3NN
NOILIdNELENT Tv937T)
wW3T808d NOLLYINIWD3S
d0883 NOILYIlawe2
sxs SHOHYI NULLVENOLINCD »ss

ALITL8YAYD 03034N INISSIm SO
30U 3INIMIVYM SNUANUNE3 S3J11UUde TVLIAUP
#s% SHOMHEI 3UV~L40S L1N0ddN® WILSAS/WILSAS ONILVEIMO sss

80684 INJ&d34Ny 3V600Q
H0¥g3 NUILINIANGD IN1LlalaldSuiis
HUaa3d AVigdng
80843 luus
HoMa3d INISS4I0Md 1VYMILIT 9nNDI
Cv3y LON YIVQ J1EVILVAY Ty
u0sa3 Qviy
8OMM3 9N1883JUnd ~0T4u3AU ¥O mUTJN3IAU VUVY
BUBY3 YNINIVHD vivo
NOLAVIUIA Sunnog
Q80238 IN3IYISIXI=NUN NI viVO 8U4 ONIX00T 3INLLNON
gOaM3 ONINIVENIIZONINIVE ViVU
(38117438 80 NOILINI430) ¥Oou¥3 378VIHVA TVNH3LAND
H0¥¥3 NULISHIANDD ¥393IUNI/ANIOG INILVO4
4314100~ L1® UNISN ¥OME3
80883 NOLAYINdINYA LiH
(JL3 *Avyyy 316Vvi) 034vyIn3D SITuiNd SNUINYHIXS
AT1234409N1 Q34VAUdN S31udNI 40 s3EWNN
ANLD3%800N1 Q31vUa 80 U31 4100~ 9VI4 ¥U *X3OND ‘vivo
AN1335409N1 138 SIIudNI 40 H3EmIIN
ATL1234¥0INT CIZIAVILINIZLAS BU L3S AUN 9V 14 w0 *x30nl *vivy
U3H0L8 AUN/ZLSUY vive
NOLLAVIUT %8IQ ¥0 3dvie UNO¥» wO¥4 UVIE &0 NO NILLla™ vivg
U3sN/13S A1M3Id0udnl YLIVQ LngNl QLlIvA
s2% SHOHHI UNLITUNVN VLIVU %8s

SNULdgU LidanNu ANJ1I144NSNT

N9L§40 N1 G3UlAO¥d LON 4N@dn0 Q3Q33N
¥oN¥d 1J3r3 39Y4/4NN0I 3N1T

1044N0D y3uNidg NI HOB¥3I

w0uba LYwWNO04 UMYVI LNglND

¥04N3d AVwd04 3d¥vi LNglNO

w380ud 4NdAN0 ¥3QV3IW

911830 WINW 004

NOlidlvds4dQ

A¥0931Vv) wOuN3

451

CCCN~C =t e

©NI-—- c©ccccc

O~ C - -

SudSen

*ss SHON83 ISVYH YIVU L3S3Tda sse

$360auNd 1834 TV1J3dS H04 NOLLVILI4IUUW

3Jv483UNL wYHO08d TVYNEILX3

ALLB93UNL OUNY UINIWIOVNYW 38YE vivQ

Alidvdv)

NCLLVINIWNGASND d8v™ 408

ALLTLEYAYD SO/ 3uVYmMUNYN M3N

ALluid3s

Avi4sio

ELT]

0s1

advy

»810Q

Nd3

SNOLLINIS U3INVYHNI aU/ZONY Mgn

AINAINIANGD B0/ONY 4IV483UNL U3L410gnls
*as SHONH3 LON SININIAO¥EW] LINU0O¥E SIUNVHI GILS3INCAE HIBI sss

83811 IND NVHL 340w AB SLN3W3T3 VLVQ 40 38N U3LVNLIUE00INN
ALINIBLAVAWOINT 38VH VUVO/3IND lun
#3% Sa0¥¥3 IIVA¥IUINL ISVYE VLIVU sss

ALINIBYAYD LNVLISIH UNY LdNduIANL 3LVI830vy]

JIVAHIUNT EULY¥3d0 ~D NY1SI0 yUUg

ATL03HB0IN] 03SS3J0¥6 VAV Lndnl Iy93)

13S$3204d ANY G31d3D20V Vivd LigNI Tv94717)

Q3sn dun Lus U3 vAVO Ahdv)

Q3sn Lh® 0342303a viva LNgn]

andLi108 A® 03811 40N ¥0 0312303 viVU LNdND GlvA

ANIANOE AW AT4AJ3uy0In1 Q3L3udyIanNi VLIVA ANdn]

Y0¥¥d INISSII0Ud (¥vd T¥ILIS01/08YI TvIiSAMd 31dldi1Nw

ALLITEILVANOINT INILNON/UNYD VIVJ H0 L4S3IN03s SNUILVy34O
#8s SHOMHI FIVANIINL ¥3SI s

AvWyU4 3dV1 LNAN] SI03INOME3
NOIL3Tdw0D 8344V 3dVL UVOINA OL ST1vy INILNQN
3dvi NOLLYANLIANUD OV3® 01 STIvd 3nDLNgy
30VW 10N XI3HD UINdwdd! U3 LINN 34V
xxs HO8¥3 IVINIUINL INISS3II0ND 3dVL sse

AT¥3dUddnl HILIMS ownl/73SNIS S38n 3Nl nux

A1LI38¥0INT 38YM] 40S L¥U4ANS w3LBAS ONLLSIXI 838N 3Inlinux

(NOILYZIIVILINL WU 3ON3INO4E 9INIVTYD) w0m¥3 43Viaddni so
sxs SHOMNI 3IVJUILN]L 3FVVYMLIJ0S wWILBAS/3INLLIION *hs

G3UY0T Nawm 3J¥0D SMO 1483A0 INLILNOUN

CALITIHLIAYEWOINT 3NLLN0N) QY07 4WNOM INILNUN

NOLAVLIINIT NOLIS3U 3QISLINU U3ISN NI Nuy

¥J018 VLIVU INOHM WONOMML ONILVIINNAAOD S3NnIiNuy

40883 NOLLVZIVILINI 3INILANO¥/3NLANUY ¥0 2ININDAS INITTY)

NUIldludes0Q

%0 d) Ul b R 7 e 2o i o Skl S] e DA« § a0 e

000mwm

060717
08070
oLeMm
09011
vseM
0r0M
0g0M
920711
s20M
n2097
£2077
2201
1207
02077
vion
00077

IR
CIoxx
000¥M

voirr
oeorr
owore
oLorre
voorr
osorr
omorre
esorr
ozorr
otorre
voorr

onell
0g0I1
0ol
vloll
cooll

UROKNM
U20mK
0TONM
00QHH

00199
06099
08099
04099
09099

A¥093,V) w0uy3

D=4

o nN®

—

ccccccceono~N

cmo
- Ll

cCECWPoCnNnC -~

-
"

SudSen

- nae

u3gn (6)3d4vL INOH*
038N NOLLYHNOLINOD BILSYW INOHN
U3sN 38VE ViVU ONOaM
NOWWOD 8318¥W/0UdnDI 9NOHM LSNIYOY 0374aw0D 3INILNON
d0ud3d NOLLNJ3X3 1S4l
ss% SHOHYA WILSAS LOUN HONMI HOLVE3dU sss

SISATYNY D443 204 NOLJYWHOINL ANIIJI44NENI]
¥0y¥¥3 ON
WATH0N¥d INIHHIDIN NUN
¥0u¥3 IYYMQEYK
ssa SHOUNI UBL141ANITINI s28

_140d3¥ 40 3IwIl Av Q3u3AL730 LON ¥U UINUUTE3AU ALLT1EYAVD G381N04Y

$3Wll Nilw IN1ES3IX3
sa% SHOHNA IINVLITGNUD SUININIABINOIY s3x

39NYRD J113wS0J/740883 1VId0LLIQ3/70dAL
NOJAVYINAWNIOU wW3ILSAS INILV¥3Id0
NOL4vIN3WNI0Q 38vD (S3L
341379W00 AUN/BY3TD LON NUILVANIWNIUG
Avwd04 ANginNo
NOiidlydS83u T¥NOILINNA SEIANILNDY
39VSS3dn HO¥B3
LlywH04 Q8VI 1S3NU3E NLLLvy3IAU/0HYD VIVO
lvwtiog 3dvi
3002 ONV L¥YWD MUT4 Ndamide dINIFE34410C
$3uNQ3J0ag INILVyIQU
NOLAVAlwd] 3INDILNON

SINIWWUD WYBOUND ss#

1840d3y SNulalad 40 31vILTanNu v 1¥Ud3¥ w3luldud
U4NIdUIY Lb8uddd wiTe0ud
SidUd3IY LNIyBIIIIY e

SNOL4LN1 440 CAUdINNT 343740
yUBH SINIWWUD
1J3Mu0INL NOSLINLd4U 40 WIONIT
473840981 NOLAINI43Q 308YY
yodd3 NOLLINIZ3Q VvivE
¥0d¥3 3IN3NO3IS NOLLINL1430
(¥J07H YLVU 9NOMM) NOILVIOT 9NUMM NI Sw3ll
sss SHO¥HI NOILINIAIQ 100an0I/3T6Vi¥VA IVEDTY sse

§9n11138 38Ve YAVO INISSIw

SN3IL3InVNYY (ONIN¥4S 118D A¥WNOLLDIQ
SH3ILINVEYY Slu3nindd

SHILIWYEYE ONITFUOW UNY BUNYLENOD TVIISAwWd
SANIVA NIW/XYW *T7v937 441 INVIIU *AUNIWUN

AX34 39vESan ¥ONM3

SNOTLd1NI830 GuYI 4S3N03N SNO1AYE3IdO MO vivg

0s044
onodl
08044
0z2ell
01044
00044

onoss
0£08S
02088
010ss
000SS

020y
cloyy
0004y

02100
oriog
voioe
06000
08000
0L000
090008
05000
unooe
ogono
02000
vione
00000

020de
010dd
00Cdea

0SONN
0nONN
OEONN
120NN
020NN
1TONN
0TONN
QOONN

090mh
0SOWN
1n0ww
ONCwm
0EOwnm
020mm
ALY

NOLLdIw2830

AM093,v) wOun3

D-5

I

© = - -

SydSen

-

SANINIYNINOAY ININIINVHNSI
SANIWIBINUIY ANIIIII4INIZ30vN030YN]
NOLLYIL41D3dS SUINIWININOTY ses

ELD ORIV
NOLLVHNOLANDD wiLSvm
3Sve vivo

*xs ENUILSING .

WYHO0Hd Q3T16n0d NI SUMYD INIgSin

NOlselodsac

APPENDIX E
STATIC STATISTICS FOR JOVIAL SOURCE MODULES

Nine modules were examined by the U1108 JOVIAL program (STATGT) to see
how frequently certain statements are used in practice. Tables E-1 and E-2
show the distribution of statement types. Also, calculations are provided
for executable statement types. Certain changes were made to the data to
eliminate discontinuities*. The most frequently used language construct is
the = sign. This is because of its use in the assignment statement (23 per-
cent). The next most used construct is subscription (14 percent), followed
by GOTO (8 percent) and IF (8 percent). Nothing can be said about the pro-
cedure call mechanism because the same construct is used for other features.
The BEGIN-END delimiters are used about 6 percent of the time. This implies
some blocking in the decision making logic. The EQ relational operator was
most highly used (5 percent). The most used executable statements were
assignment (54 percent), IF (19.7 percent), and GOTO (19.6 percent).

A typical program consisted of assignment statements and blocked condi-
tion checking statements. Programming with the use of tables appears to be
prevalent. Some explicit loops are seen. Bit and byte manipulation do not

appear to be frequently used.

*See Note 3 of Table E-1.

TABLE E-1

DISTRIBUTION AND MODULE USAGE OF STATEMENT TYPES
(9 OPERATIONAL MODULES)

E=2

No. Constructs Number Percent All
i EE 454 6.76
2 IF 512 7162
3 GOEO 534 Teo 95
4 FOR 82 22
5 TEST 19 0.28
6 CLOSE 15 0. 22
i RETURN 33 0. 49
8 STOP 2 0.03
9 = 1543 23, 0
19 AND 24 0. 36
114 OR 64 0,95
12 EQ 307 4.57
13 GR 89 1.32
14 GQ 23 0.34
15 Lo 45 0. 67
16 LS 67 150
17 NQ 67 1.0 g
18 + 241 3.6 :
19 - 246 3. 66
20 | °© 138 2.0
21 / 28 0.42
- 70 4 0.06
23 ABS () 1) 0. 19
24 (/ /) 12 0.18
25 NENT 21 0.31
26 NWDSEN 13 0.19
AT ALL 5 0.07
\28 ENTRY 3 0, 04

L — ——

E=3

TABLE E-1 (Cont.)

No. Constructs Number Percent All
29 'LOC 13 0.19
30 ASSIGN 25 0.37
31 BIT 57 0. 85
32 BYTE 97 1.4
33 ,3 438 - =
34 .3 330 e
35 $3 3251 - -
36 BEGIN-END 401 5.98
37 START-TERM 9 0,13
38 DIRECT-JOVIAL 71 1. 06
319 ($-%) 929 13,8
40 ITEM 438 6.5
41 TABLE 26 0.38
42 ARRAY 4 0.06
43 PROC 20 0.3
44 SWITCH 14 0.2
45 OVERLAY 6 0..09
46 "PROGRAM
47 BLOCK 0

Subtotal 10733

less 4019

Total 6714 100
Note: 1) expression grouping, procedure, function call

2) assignment, FOR, procedure call parameter delimiting

3) deleted from total for reasons of ambiguity

TABLE E-2
% DISTRIBUTION AND MODULE USAGE OF EXECUTABLE STATEMENTS
No. Constructs Percent All
1 IF 19.70
2 GOTO 19. 60
: 3 FOR 3.18
4 TEST 0.73
5 CLOSE 0. 58
6 RETURN 1. 27
7 STOP 0. 07
8 -(assignment) 54, 00

APPENDIX F

CONSTITUENT PROGRAM MODULES
OF BUILDS ““F”” AND “G"”

Refer to Appendix B (Software Module Descriptions) for further informa-

tion about each of these modules listed.

Build F - Operation Build (55 modules)

PROGOO1, 6, 8, 9, 11, 12, 13, 14, 15, 16, 20, 21, 24, 25,
27, 28, 29, 36, 39, 41, 43, 45, 46, 50, 52, 53,
58, 59, 60, 62, 64, 65, 66, 67, 72, 75, 76, 81, 82,
84, 86, 87, 88, 92, 95, 106, 108, 110, 111, 112, 113,
114, 117, 118, 119.

Build G - Initialization Build (25 modules)

PROGO0OZ2, 57, 70, 71, 77, 79, 855 89, 91, 93, 94,
961 91705798 5 7995 10U 00 102, 1035 104, 1055
107, 109, 116, 120.

=]

T ——

1)

2)

3)

4)

REFERENCES

Thayer, T. A., et al, "Software Reliability Study," TRW Defense
and Space Systems Group, Interim Technical Report, RADC-TR-74-250,
October 1974. AD-787-784.

Thayer, T. A. et al, "Software Reliability Study,'" TRW Defense
and Space Systems Group, Final Technical Report (16 Oct 73 - 27
Feb 76), RADC-TR-76-238, August 1976. AD-A030-798.

Air Force Manual AFM 100-24, "Standard Computer Programming
Language For Air Force Command and Control Systems,'" CEC-2400,
21 April 1972.

Sukert, A. N., "A Software Reliability Modeling Study,"
RADC-TR-76-247, August 1976.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

BIBLIOGRAPHY

Tucker, A.E., "The Correlation of Computer Programming
Quality with Testing Effort,'" SDC, TM-2219/000/00,
26 January 1965.

Barney, D. R., Giloth, P. K., and Kiengle, H. G., '"System
Testing and Early Field Operation Experience,' Bell System
Technical Journal, December 1970, pp. 2975-3004.

Knuth, D. E., "An Empirical Study of FORTRAN Programs,'
Software Practice and Experience, 1, 1971, pp. 105-133.

Shooman, M. L., "Operational Testing and Software Reliability
Estimation During Program Development,' 1973 IEEE Symposium
on Computer Software Reliability, 30 April ~ 2 May 1973,

pp. 51-57.

Boehm, B. W., "Software and its Input: A Quantitive Assess-
ment,'" DATAMATION, May 1973.

Wagoner, W. L., "The Final Report on a Software Reliability
Measurement Study,'" ASCO, TOR-0047(4112)-1, 15 August 1973.

Brooks, F. D., Jr., "The Mythical Man-Month-Essays on
Software Engineering,' Addison-Wesley, 1975.

Thayer, T. A., "Understanding Software through Empirical
Reliability Analysis,' Proceedings of the National Computer
Conference, 1975.

Elshoff, J. L., "An Analysis of Some Commercial PL/1 Pro-
grams,' IEEE Transactions on Software Engineering, Vol.
SE-2, No. 2, June 1976, pp. 113-120.

Wichmann, B. A., "A Comparison of Algol 60 Execution Speeds,"
CCU Report No. 3, NPL, Teddington, Middlesex.

BG~1

BASE UNITS:
Quantity
length
mass
time

electric current

thermodynamic temperature

amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS: *
Acceleration

activity (of a radioactive source)

angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric. field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

SI PREFIXES:

METRIC SYSTEM

Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

Multiplication Factors

1 000 000 000 D00
1 000 000 000

1 000 000 =

1 000

100 -
10 =

01

0.01

0001

0.000 001

0.000 000 001

0.000 000 000 001

(.000 000 000 000 001

0 .000 000 000 000 H00 001

* To be avoided where possible

) {9
10
10*
= 10*
102
10"
8)=
10?2
16"
= 10=*
= 107
1012
10
10"

SI Symbol

m

kg

s

A

K

mol

cd

rad

st

F

S

T

\I

\/

J

2

Hz

Ix

Im

Wb

T

A

w

Pa

C

J

l;a

v

)
Profix
tera
Riga
mega
kilo
hecto®
deka®
deci®
centi®
milli
micro
nano
pico
femto
atto

Formula

m/s
(disintegration)/s
rad/s
rad/s
m
kg/m
A-slV
AN
Vim
V-s/A
WA
VIA
W/A
N-m
JIK
kg-m/s
(cycle)/s
Im/m
cd/m
cd-sr
A/m
Vs
Wb/m
Jis
N/m
A-s
N-m
Wisr
J/kg-K
N/m
Wm-K
m/s
Pa's
m/s
WA

m
(wave)/m
N:m

S Symbol

MISSION
of

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the ¢? areas of information sciences D
and intelligence. The principal technical mission areas %)
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

o
3
8

\)O\'UY 10y

()

S
P
=
m
$
‘\A\

’)’6"916

RICA
NN

>

