
Naval Ai Stm Comman
0 R (Fui Dyamc Prgrm

S N (P we Program)

S 0 S

ink* I, 1



The ;llustration on the cover is an entropy rise map in the
blade passage over a certain number of blade passing periods.
It appears by courtesy of Professor J. L. Kerrebrock of the
Massachusetts Institute of Technology.

I~k



A Project SQUID Workshop PU-R1-77

sponsored by

Naval Air Systems Command
ONR (Fluid Dynamics Program)
ONR (Power Program)

TURBULENCE IN INTERNAL FLOWS

Turbomachinery and Other Applications

Edited by

S. N. B. Murthy

....... . . . ..... -..

May, 1977

Project SQUID Headquarters
School f Mechanical Engineering

Purdue University
West Lafayette, Indiana

This document has been approved for public release.



Project SQUID is a cooperative program of basic research
relating to Jet Propulsion. It is sponsored by the

Office of Naval Research and is administered by
Purdue University through

Contract NOOO14-7501143, NR-098-038.

"\5



PREFACE

Turbulence is an important aspect of the fluid mechanics of
turbomachinery including ducting and diffuser. Whether one is con-
cerned with losses under steady state conditions or with flow dis-
tortion and nonsteady aerodynamic and aeroelastic forces, the
presence of turbulence introduces many complexities. In general,
turbulent shear flows in such machinery become complicated by dis-
tortion and interaction processes arising on account of geometry
and flow field.

This volume is devoted to a consideration of such complex
turbulent shear flows. It contains the contributions, papers and
discussions on them, made by a distinguished body of workers in the
field at a Project SQUID Workshop. The contributions are divided
into four groups. The first group is devoted to a discussion of
some of the current ideas on turbulent structure in shear flows.
In the second group, there are contributions dealing with analysis
and measurement, including predictive techniques and numerical com-
putation methods. Turbulent flow consideration in turbomachinery
are discussed in the third group. Finally, a report of a panel
discussion is presented that synthesizes the principal themes of
discussion at the Workshop.

Project SQUID workshops are intended to establish directions
in which further research will prove enlightening and useful in
various areas. The outcome of this workshop is due, of course,
entirely to the contributors to this volume. Professor Hans
Liepmann should be mentioned specially for his active participation
and perceptive contribution to the discussions.

The Workshop was cosponsored by the Fluid Dynamics Program of
the Office of Naval Research, the Naval Air Systems Command and the
Power Program of the Office of Naval Research. Dr. Ralph Cooper,
Dr. Herb Mueller and Mr. James R. Patton, Jr. supported the idea of
the Workshop and, in addition to providing valuable financial
assistance, contributed in many ways in the formulation of the Work-
shop program. Mr. James R. Patton has very kindly written in the
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immediately following pages both about the association of this Work-
shop with an anniversary of the ONR as well as about the background
in which Project SQUID Workshops are organized.

Mrs. Babara Pounds has typed the entire manuscript and this
volume is a testimony to her careful and elegant workmanship. The
art work in the volume was done primarily by Mr. Kurt R. Sacksteder,
and Mrs. Amanda Niemantsverdriet assisted in many ways in the prep-

aration of the final manuscript, Each of these persons deserves
the editor's appreciation.

Turbulent flows continue to present basic and far-reaching
challenges. It is hoped that this volume will provide some inspira-
tion to those engaged in understanding the nature of turbulent flows
in the coptext of turbomachinery and in some respects in a wider
context.

S. N. B. Murthy



CONTENTS

Thirty Years of Research .Ix

James R. Patton, Or.

xi
Welcoming Remarks..... ...........

James R. Patton, Jr.

Introduction................. 1
S. N. B. Murthy

PART I

FUNDAMENTAL PROBLEMS

Preliminary Report on Sheared Cellular Motion as a
Qualitative Model of Homogeneous Turbulent Shear Flow. . . 11

Stanley Corrsin and W. Kollmann

Interacting Shcar Layers in Turbomachines and Diffusers . . . 35
Peter Bradshaw

Some Preliminary Observations on the Effect of Initial
Condittons on the Structure of the Two-Dimensional

Turbulent Mixing Layer ......... ...... 67
0. Oster, 1. Wyqnanski, and H. Fiedler

On the Developing Region of a Plane Mixing Layer.. . .. 89
Stanley F. Birch

The Effects of an External Turbulent Uniform Shear Flow
on a Turbulent Boundary Layer. ............ 101

Q. A. Ahmad, R. E. Luxton and R. A. Antonia

The Effect of Swirl on the Turbulence Structure of Jets . . . 113
R. E. Falco

V

4(



vi CONTENTS

.!m, iLea. 's of t.he Struoturo of the Viscous Wall
!,ww..- . . . ................ 131

J. D. A. Walker and D. E. Abbott

Fu'ther rnNs! tion cf the Linear and ionii,zear
Theorv* ",' tan t-10emr, tur,-.ot- Wi ve A ;zcmome te?'s . . . . 169

Peter Freymuth

PART I I

MODE LL I NG PROCEDURES

szt, of . Two Equation Model for Turbulent Flows
at: Xt'el v.ov,-vnt of a Relaxxation Stres Model for
Apvii..ation fo Strain1ng and hotati'.j Flows. . . ..... 191

P. G. Saffman

4pp lica tion of the Turbulence-Model Transition-
Predictic-n :cthod to Flight-Test Vehicles ... ... .. 233

T. I.. Chambers and D. C. Wilcox

A Second Moment Turbulence Model Applied to Fully
Se;,arated Flw. ... .......... ..... 249

M. Briggs, G. Mellor and T. Yamada

Ah, Modeilin, of a TurbuZent Near Wake Using the
Tr.teractivc Ifzothesis ............... 283

B. S. N( and G. David Huffman

o"e Ihnortlant Ph, sica' Phenomena in Plows with
;'rczaled Turbulent Boundary Layers ..... ...... 311

Roger L. Simpson

lur'bu,-ncc Ve.lo,-'ty Scales for ""irZing Flows . ..... 347
Ronald M. C. ;'

Effeet-s of Frecestr- i Turbulence and Initial Boundaryj
Laye. on the Dt:.,,'opment of Turbulent Mixing Laurrs . . . . 371

Otto Leuchter

PART I I I

TUR BOMACH I NER APPLICATIONS

i4.,',mcn - n Jurved Flows ...... ...... 407
J. A. C. Humphrey and J. H. Whitelaw

,: ,'itrurbanc., in a Conqprs or :.,ih S"trong ;wi,l . . . . 439
Jack L. Kerrebrock



CONTENTS vHi

Wake Cutting Experim.nta.. ....... .. .. 463
Leslie S. G. Kovasznay

Some Turbulence and Unsteadineno Effects in
PTurbomachini:r.n ........... ..... . 485

R. L. Evans

Visual Study of Oscillating Flow oter a
Stationary Airfoil ......... ..... . 517

A. A. Fejer

Generation, Measurement and Suppression of Large
Scale Vorticity in Tnternal Flows. ........ .. 521

R. A. Wigeland, M. Ahmed and H. M. Nagib

PART IV

PANEL DISCUSSION AND SUMMARY

Panel Discussion ......... ..... . . 537

Surmnary Report ....... ............ .. 563
S. N. B. Murthy

(



THIRTY YEARS OF RESEARCH

There has been a resurgence of interest in recent years in
basic problems relating to air-breathing engines due to increasing
demands for higher performance, for smaller and lighter-weight
power plants, and for operation over a wider range of operating
conditions. This interest is exemplified in the current need to
develop deeper fundamental understanding of the physical phenomena
involved in all aspects of engine design and development.

To satisfy this need, the Power Program of the Office of Naval
Research, through Project SQUID, initiated a series of workshops to
consider selected topics from the standpoint of (1) a critical eval-
uation of current efforts, (2) determining the extent of agreement
in explaining various phenomena associated with the subject, and
(3) discussion of possible new approaches to solution of problem
areas. These workshops have been held:

" Research in Gas Dynamics of Jet Engines, ONR/Chicago,
December 4-5, 1969, Project SQUID Report

* Fluid Dynamics of Unsteady 3-D Separated Flows, Georgia
Tech., June 10-11, 1971, AD736248

* Laser Doppler Velocimetry Flow Measurements, Purdue
University, March 9-10, 1972, AD753243

* Aeroelasticity in Turbomachines, Detroit Diesel Allison,
June 1-2, 1972, AD749680

* Laser Raman Diagnostics, G.E. Research & Development Center,
May 10-11, 1973, GE-2-PU, Project SQUID Report

" Laser Doppler Velocimetry Flow Measurements, II, Purdue
University, March 1974, PU-R-5, Project SQUID Report

" Turbulent Mixing: Non-Reactive and Reactive Flows, Purdue
University, May 20-21, 1974, Plenum Press, New York

" Unsteady Fl in Jet Engines, United Aircraft Research
Laboratory, (UARL) now (UTRC), July 11-12, 1974, UARL-3-PU,
Project SQUID Report

" Measurement Techniques in Combustors, Purdue University,
May 22-23, 1975, ADA 020386, Project SQUID Report PU-RI-76

ix
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THIRTY YEARS OF R..,EARCH

" Transonic Flows in Turbomachines, Naval Postgraduate Sc~iool,
February 11-13, 1976

" Turbulence in Internal Flows, Airlie House, June 1976
(this volume)

The main objective of the workshop on Turbulence in Internal
Flows from our viewpoint was to be a forum for assessing the direc-
tion of scientific and technological progress in this area. A
secondary goal was to bring theoreticians and practical design
(Iroups tonether fron; industry, universities, and government, in an
effort to utilize their combined talents. There is a close rela-
tiion of tu-bulence proble:ms in turbomachines with the disciplines
covered in other SQUID workshops, such as measurement techniques
and aerodynamic-structural integration (blade flutter), etc.

At the time of this workshop, the Office of Naval Research was
actively ulanning its thirtieth anniversary for 1976. The year
1976 also marks the thirtieth anniversary of Project SQUID. This
volume is part of a set of scientific publications released by ONR
in recognition of, and on the occasion of, its thirtieth anniversary.

James R. Patton, Jr.
Power Program

Office of Naval Research
U.S. Department of the Navy

Anniversary Theme:

Exp'Zcz-ing netw ;%c'izon~s to -,'te't our, hcritzgc
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WELCOMING REMARKS

James R. Patton, Jr.

It is a great pleasure, and I am privileged, on behalf of the
Office of Naval Research, to welcome this group to the workshop on
Turbulence in Internal Flows. We are particularly happy to have in
attendance what we consider to be a well rounded group with repre-
sentation from the academic community, industry, and interested
government agencies. We are also happy to join with the Fluid
Dynamics Program of ONR and with the Naval Air Systems Command in
sponsorship of the Workshop. As I am sure you have already observed
the Airlie House conference center is a delightful location to hold
a meeting like this one. It offers great potential as a forum for
an effective and productive meeting while being removed from urban
distractions.

The year 1976 happens to be the 30th Anniversary of the Office
of Naval Research. In recognition of this anniversary, under Pro-
ject SQUID, we planned this workshop plus another which was held on
11-12 February 1976 on the subject of "Transonic Flow Problems in
Turbomachinery" at the Naval Postgraduate School, Monterey, Cali-
fornia. It is planned to publish the proceedings of both workshops
in recognition of the 30th Anniversary. These two workshops, in
turn, are part of a series of workshops we have held starting in
1969, all on basic subjects relating to air breathing engines for
aircraft and missile applications.

Proper understanding of turbulence and mixing phenomena is an
essential ingredient of jet engine design. This is an area in
which we have been devoting considerable research effort for several
years. It has close relevance to other areas of research in which
we are involved, such as aerodynamics, measurement techniques and
chemical kinetics and combustion. Such research efforts, designed

xi
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to develop accurate, detailed understanding of the internal flows
and interactions within jet engines are considered to be just as
vital and integral a part of an air breathing propulsion system as
is the development of the component parts of the engine. We feel
that by reviewing the status of research efforts in this field
with selected investigators and program managers there will be a
strong impact on the direction of future research and on the activ-
ities of the R&D community. In this manner, we seek to provide
more relevant long range support to aero propulsion programs and
to provide improved predictive techniques necessary for more effici-
ent, lighter weight and more reliable power plants capable of meet-
ing more stringent operating requirements.

In addition to the invitee list for this Workshop, there are a
number of people in attendance representing the Propulsion and
Energetics and the Fluid Dynamics Panels of AGARD (NATO). AGARD
has cooperated in arranging for thE Workshop because of its inter-
est in the subject. The two Panels of AGARD are in the process of
forming a Working Group on Turbulent Transport Phenomena and the
results of this Workshop will be utilized in the future delibera-
tions of that Group.

On behalf of the sponsors, I wish to thank the organizer,
Dr. S. N. B. Murthy, for arranging and planning the Workshop. We
look forward to participation with this group in its deliberations
and we deeply appreciate the contribution of your expertise,
knowledge and time, so essential to the success of this Workshop.

,I

9' 1



INTRODUCTION

S. N. B. Murthy

Purdue University

West Lafayette, Indiana 47907

The last conference dealing specifically with "Turbulence in
Internal Flows" was held in 1965 and the proceedings of that con-
ference, edited by G. Sovran (Ref. 1), is a convenient starting
point to examine the outcome of the current workshop.

In the 1965 conference, J. Ackeret referred to many implica-
tions of the presence of turbulence in turbomachinery flows and
drew attention specifically to (a) secondary flow and induced
losses in ducts, diffusers and compressors, (b) diffusers with
various geometry and entry conditions under optimum, stalled and
nonsteady state operating conditions, (c) elbows with separation
and reattachment and (d) compressibility effects in cascade flows.
In the past ten years there has been progress in understanding and
calculating such flows but designers of turbomachinery and related
flows continue to face difficulties in many flows of practical
importance. It is of course clear that there is no conceivable
way of predicting or measuring every practical flow in every detail.

In the 1965 conference, G. Sovran and F. D. Klomp presented
very impressive correlations of diffuser data for two-dimensional,
conical and axisymmetric annular diffusers based on area ratio,
nondimensional wall length and blockage factor. The design of opti-

mum diffusers for different inlet conditions was discussed. The
passage of a nonuniformity or distortion through a diffuser is one
aspect of that problem. It was shown that there are serious limita-
tions to the application of both linearized theory (perturbed mean
flow) and inviscid analysis (dominance of pressure forces) when the
nonuniformity consists, for instance, in a relatively thick boundary
layer surrounding a core flow in a diffuser. Diffusers in practice
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sometimes include geometrical three-dimensionality and curvature.
Some experimental results were presented at the conference on such
flows. On the other hand the analysis of such flows was shown by
P. N. Joubert et al., E. A. Eichelbrenner and J. P. Johnston,
among others, to be restricted to correlation studies.

J. C. Rotta gave a summary of calculation methods for turbu-
lent boundary layers that were available in 1965. It was pointed
out that the von Karman momentum integral equation approach with a
first-order differential equation for the velocity profile shape
parameter was especially unsatisfactory in the presence of pressure
giradients. Another problem (related to which there was not ade-
quate guidance from experiments) was the method of incorporating
adequate upstream history of turbulent motion into the governing
equations. Lastly, the concept of eddy viscosity, used in conjunc-
tion with a two-layer model, was discussed and it was pointed out
that, in the absence of adequate physical information concerning
production, considerable empiricism would be required in cases more
general than F. Clauser's equilibrium boundary layers. Reference
was made to the then-current ideas of G. L. Mellor and D. M. Gibson
(1963), Mellor (1964, 1966) and P. Bradshaw and D. H. Ferris (1965).

Boundary layer separation is an important problem in turbo-
machinery and diffuser flows. Separation of skewed boundary layers
was discussed by E. S. Taylor at the 1965 conference within the
context of a definition for the process of separation in three-
dimensional flows. It was clear that considerably more detailed
measurements were needed in the "entire region of separation" before
one could attempt to establish the kinematic features of separation
to some degree of satisfaction.

Another example of practical importance discussed in the 1965
conference was the calculation of secondary flows (spiralling flows
in ducts and blade passages) and of the development of such flows.
in that connection, W. H. Hawthorne demonstrated the powerfulness
and limitations of inviscid flow theory under various approximations.
One of those, the large shear, small disturbance approximation,
yields wavy flows, which is still a controversial phenomenon. Once
an inviscid solution was available, a laminar or a turbulent bound-
ary layer as the case may be was to be included based on a compari-
son of a relevant characteristic length of the boundary layer with
a characteristic length associated with the geometry of the flow.
No mention was made of the effect of freestream turbulence in that
discussion.

Finally, among practical problems, there was discussion of
jets and wakes in the presence of various types of initial conditions
and pressure gradient along the flow. The limitations of calculation
methods based on 0imilarity assumptions were stressed bv B. G. Newman
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not only in view of the uncertainty of the role of initial condi-
tions in the development of flow but also in the far region where
one ordinarily assumes self-similarity.

The 1965 conference also discussed in substantial detail two
basic questions related to turbulent fiows: (1) development of
theory for turbulent flow (J. L. Lumley and the important discus-
sion on the paper) and (2) S. J. Kline's observations on the struc-
ture of turbulent boundary layers including transition and relaminar-
ization and the enlightening discussion on that paper. The two
problems are of course related and continue to be a challenge in
understanding turbulent flows that are even slightly more compli-
cated than homogeneous and isotropic flows, with or without the
influence of boundary walls, whether one pursues observation and
measurements or one adopts experimentation with numerical-
computation methods for postulated models. Although we are still
far, to this date, from incorporating ideas on the detailed struc-
ture of turbulence in practical engineering model calculations,
there are of course strong implications of advances in such funda-
mental ideas in the calculation of boundary layers and free shear
layers, jets and wakes. As illustrations, one can cite questions
pertaining to turbulence production processes and to the general
relation between large scale eddies and transport processes.
Regarding the latter, the nonlinear interactions between different
ranges of frequcncies in the turbulence spectrum is of central
importance in understanding the interchange of energy between the
large and small wave numbers, for example R. E. Kronauer illustrates
a case where energy had been transferred to the dominant wave length
of the pipe during turbulent flow in a pipe with an oscillating
circular cylinder embedded in the flow.

A convenient entry point to the literature on turbulence in
internal flows is Ref. 1. A second entry point is the interesting
and lucidly written survey article by J. P. Johnston (Ref. 2) on
"Internal Flows." The articles by P. Bradshaw, W. C. Reynolds and
T. Cebeci and H.-H. Fernholz in the same volume as Ref. &complement
the discussion on internal flows. Johnston's article is written
with applications to ducts, diffusers and turbomachinery in mind.
The duct flows include curvature, step and confined mixing effects.

Attention is also drawn to Refs. 3-52 that deal with various
aspects of the flows under consideration in this volume. Those
references are listed in alphabetical order and are indicative of
(a) some of the problems in internal flows under investigatiol in
the past few years and (b) some of the institutions, investigators
and journals reporting on such research. References to those who
have taken part in this workshop have generally been omitted.
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ORGANIZATION OF PROCEEDINGS

The proceedings of the workshop have been divided into four
parts.

Part I. Fundamental Problems: Corrsin, Bradshaw, Wygnanski,
Birch, Antonia, Falco, Walker and Freymuth.

Part II. Modelling Procedures: Saffman, Wilcox, Mellor, Huffman,
Simpson, So and Leuchter.

Part III. Turbomachinery Applications: Whitelaw, Kerrebrock,
Kovasznay, Evans, Fejer and Nagib.

Part IV. Panel Discussion and Summary.

It is possible to read each of the first three parts separately.
However, they are interrelated in the Panel Discussion and in the
Summary Report.
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PRELIMINARY REPORT ON SHEARED CELLULAR MOTION AS A QUALITATIVE

MODEL OF HOMOGENEOUS TURBULENT SHEAR FLOW

Stanley Corrsin and W. Kollmann

The Johns Hopkins University Technische Hochschule

Baltimore, Maryland Aachen

ABSTRACT

In the hope of gaining some insight into homogeneous turbulent
shear flow dynamics, the motion of a three-dimensional cellular
velocity field under a constant mean strain-rate has been computed.
Navier-Stokes velocity and pressure fields are calilated as power
series in time with coefficients periodic in space. The results
are used to compute various instantaneous fields, including vortic-
ity, velocity products and pressure/strain-rate products. The cell-
averaged results show rough agreement with statistical experiments
on nearly homogeneous turbulent shear flow, although the total mean
strain is limited by the computer time available to us.

The instantaneous fields allow a search for explicit hydro-
dynamic mechanisms of energy transfer, both from mean flow to
"fluctuations," and (especially) between orthogonal velocity
"fluctuation" components. The dominant "right way" intercornponent
transfer paradigm is a kind uf local stagnation point flow; local
regions of "wrong way" transfer include reduced pressure swirls
with particular relative orientations of local vorticity and strain-
rate tensor. Although the effective Reynolds number is modest, most
of the intercomponent transfer is contained in a rather small frac-
tion of the cell.

I am going to talk about relatively simple flows.

11



12 S. CORRSIN AND W. KOLLMANN

The attempt to understand the character of turbulent flows

naturally tends to focus on the simpler ones, and we are still quite
a way from what I consider satisfactory understanding of even the
simplest kind: that is isotropic turbulence, as introduced many
years ago by G. I. Taylor. Since this is a shear flow meeting, I Em
going to talk about some of our recent research on something which
resembles the simplest type of turLulent shear flow; that is homo-
get.eous shear flow. The sequence will be something like this: first,
I shall show some of our earlier data on an attempt to generate an
approximation to homogeneous shear flow in a wind tunnel. Our first
oaver on =nat was by Bill Rose (1966); then a few years later a some-
what improved version was done by Frank Champagne, Godfrey Harris,
and !,yself (1970). What I am going to show you is still later devei-
opment which was done quite a few years ago but has not been pub-
lished yet (Sroham, Harris, and Corrsin, 1970; Harris, Graham, and
Co,'rsin, 1976) because we seem to procrastinate as well as we do
res earch.

Then when Wolfgang Kollmann spent a year at Johns Hopkins on a
visit froi;i Aachen, we decided to try to generalize the Taylor-Green
(1937) calculation of unsheared cellular motion. We decided it would
be interesting to shear a cellular motion, finding out first whethl
it could in any sense be interpreted as a model of a homogeneous
turbulent shear flow. Secondly, if it did indeed seem to give a
rough approximation or even to show proper tendencies, we might fol-
low a suggestion I made at the 1961 turbulence symposium in Marseille
(1962), and use the computer as a "laboratory"; that is, not just
compute average results, but rather use the instantaneous computer
output field to look for fluid dynamic characteristics of local
instantaneous flow phenomena, local in both space and time. This is
the kind of information we'd like to get with probes, and the kind
people have been getting with dye, hydrogen bubbles, smoke, and so
on. The advantage of the computer is that it gives you a field full
of numbers; the disadvantage is that you see your budget used up in
a few minutes.

The results we have on the sheared cellular motion, which I am
just going to outline briefly for you, are not too satisfactory.
There were many other things that we would like to have done, but we
ran aut of computing time very quickly.

The first slide shows simply the ideal of homogeneous turbulent

shear flow, together with its simplest moment equations. This is an
idealized case that we wondered about once upon a time, i.e. whether
it would be possible to have a turbulent flow with a uniform shear
and, if so, whether it would be stationary in time. We found out
that it couldn't be. As indicated, the mean momentum equation for
an ideal homogeneous turbulent shear flow becomes trivial. The equa-
tion for kinetic energy of the mean flow becomes trivial. The

I
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Homogeneous Turbulent Shear Flow

Momentum, Kinetic Energy and

Shear Stress Equations

Mean Mom.: au =0
at

K.E. of mean flow: - U =0

X 2 , U,]

xl

K.E. of turbulent motion:

[ u au
dt2 k UIU2 dx ax. ax.

time rate ofl =productionl (dissipation)
increase J I. rate J rate

Slide No. I
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kinetic of the turbulent motion has the three familiar attributes;
this is hom:;ogeneous in space. We have the time rate of increase of
kinetic energy equal to the difference between the rate of production
and the rate of viscous dissipation.

On the second slide are the averaged component energy equations,
which are familiar to most of you. The downstream velocity component
of the turbulence receives all the energy, which it kindly doles cut
to the other two coponents through the pressure/strain-rate covari-
ances; the viscous dissipation rate terms are also there. The turbu-
lent shear stress balance equation for this example is written below.
'he production rate is proportional to the second moment of velocity
component in the gradient direction tines the (fixed) mean velocity
gradient. The viscous terms are presumably not important at large
Reynolds nt'rbers, because of the tendency toward "local isotropy";
in isotropic turbulence they are zero. The destruction of the Rey-
nolds stress comes about due to the off-diagonal term of the pressure/
strain-rate covariance, and we have determined the components of that
covariance tensor in our laboratory approximation to this idealized
flow.

The wind tunnel versions of this that we have created (Rose,
1966; Champagne et al., 1970) involve steady flow through some kind
of turbulent shear flow generator, with the hope that far downstream
we might get an approximation to homogeneity. It turns out that the
asymptotic state is only approximately homogeneous. As we showed at
an American Physical Society meeting about half a dozen years ago
(Graham. Harris, and Corrsin, 1970),* it has constantly increasing
scale and constantly increasing turbulent energy.

Our present shear flow generator amounts to a series of parallel
jets which are individually controlled by screens that throttle the
individual channel flows by different amounts at the upstream ends.
If we are lucky, we get a uniform velocity gradient far downstream,
outside of the wind tunnel boundary layers. We were able to get a
moderately homogeneous flow field. I am not going to show you the
degree, but over a distance of several integral scales transversely
we were able to get uniformity within a few percent.

Slide No. 3 shows the downstream development of the three Car-
tesian velocity component energies (Harris, Graham, and Corrsin,
1976). We are interested in whether we get a well-defined asymptotic
state, stationary or not. The experiment reported in the paper by
Champagne, Harris, and myself (1970) had a much smaller mean velocity
gradient at the same mean velocity. The velocity gradient (hence the

* See Harris, Graham, and Corrsin (1976).
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K.E. of Cartesian Turbulent Components:

-- 2 p __ 3

dt2 p x3  xk xk

i ntercom2ponlenlt
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Turbulent Shear Stress Balance:
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At large enough Reynolds number, we expect 
"local isotropy":
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mean strain-rate) was a factor of 3 smaller than the case shown here.
Therefore, the total strain reached in the equal test section length
was one-third of that reached here. By coincidence, the total strain,
(U1/x1)(dU1/dx2 ) for the flow shown here is very nearly equal to the
normalized downstream distance x1/h. h is tunnel height, an irrele-
vant length.

The earlier experiment ran out of test section at a total mean
strain of 3.5, just about when turbulent energy leveled off. We
realized that things couldn't remain that way, however, as we
remarked in our paper. Sure enough, if we go to a total strain of
about 9 or 10, things have pretty well settled to an asymptotic

jrowth state. ihe Reynolds shear stress has long ago reached a
fairly typical value of about -0.5 or a little bit less in magnitude.
So, we think that maybe we are pretty well in a nonequilibrium
asymptotic state.

Now I'll tabulate some of the properties which seem to be typi-
cal for turbulent shear flows. Some of them are things we shall
look for in our sheared cellular flow. One of the things that is
fairly typical for nearly homogeneous turbulent shear flow, and for
almost all shear flows away from boundaries, is the turbulent shear
stress correlation coefficient magnitude tending to be about 0.5.
Another result very familiar to those of you who do experiments is
that, perhaps because the energy is fed into the downstream turbulent
velocity component from the mean flow, that component tends to be the
most energetic. It is hard to have any intuition about the reason
for the next property, found in boundary layers, wakes, pipes, and
channels: the component along the gradient direction, u2 here, tends
to be the least energetic of the three. The fact that the two trans-
verse component energies, u and u-2, are unequal makes it a little
bit doubtful that a linear intercomponent energy exchange_hypothesis
(Rotta, 195.) will turn out to be correct. In summary, u 2> u2 > 5 , 2

2
in nearly rectilinear shear flows, if x, is the dominant low direc-
tion and x2 is the velocity gradient direction.

Another thing that we have found clearly is that with the uni-
form shear, the turbulent structures are convected with the mean flow.
This makes "wave models" of this turbulent shear flow seem (to put it
euphemistically) inappropriate,, because nothing propagates relative
to the flow.

Slide No. 4 has to do with intercomponent energy transfer, the
particular physical phenomenon I want to emphasize in this talk.
About 25 years ago, J. C. Rotta (1951) proposed that the tendency
toward equipartition which comes from the pressure/strain-rate
covariance, as shown in the equations, at the top of Slide No. 2,
could be approximated as a simple linear approach to equipartition;
that is, the pressure/strain-rate products could be proportional to
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the departure of the kinetic energy of a particular component from
the mean energy in the three velocity fluctuation components. Some
people tell me that he didn't propose that the three "constants" of
proportionality should be equal, but a rereading of his paper still
seems to suggest that assumption. In any case, our experiments show
that where they are roughly constant they are unequal--and that they
are not necessarily constant. They remain fairly uniform until we
reach the asymptotic region, where one of them changes drastically.
Slide No. 4 shows the kinetic energy gain rate of each component
plotted against its "deficiency" compared with the component average.
The solid line is taken from the contraction-strained turbulence
data of Uberoi (1957) as computed by Rotta (1962).

The circles correspond to the downstream component, u , which
receives energy directly from the mean flow, so it has an energy
excess, and is in the third quadrant. The squares correspond to the
component u--2along the gradient direction. It has the lowest level.
Those two components don't seem to follow a linear intercomponent
transfer relation, but their behavior could be easily approximated
by adding a parabola to Rotta's linear hypothesis. This would be
even with the same linear term constant. However, the component u.,
normal to both the mean velocity and the gradient, exhibits rela-
tively "pathological" behavior and, although our data are too slight
to be certain, it even seems to slope the "wrong" way. It doesn't
look as though it is "trying" for equipartition.

The intercomponent exchange assumptions of simple linear, or at
least monotonic, dependence on departure from equipartition may work
sometimes, but nobody knows when. One of the things that we hoped
to learn from our sheared cellular flow computations was information
about this particular attribute.

Slide No. 5 illustrates our sheared generalization of the Taylor-
Green type calculation, schematically indicated. We start with a
simple cellular motion, with only two elements indicated by the
trigonometric expression at the top. We take constant mean shear,
dU,/dx, = constant.

We all know very well that turbulence is not a cellular motion,
so we wanted to find out whether the cell-averaged values of physical
variables would roughly approximate, or at least qualitative resemble,
the experimental values in the actual homogeneous turbulent shear
flow. A brute force time series computation was done with machine
time granted by the National Center for Atmospheric Research. The
power series in time was truncated at fourth power. Convergence was
good up to dimensionless time of 0.2, which corresponded to tilting
an originally rectangular three-dimensional cell by roughly the
amount sketched in Slide No. 5, about 1/3 of the wavelength.
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Uniformly Sheared Cellular Motion

(A model of homogeneous turbulent shear flow?)

e.g.
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Initial condition for Navier-Stokes

calculation in time series.

Extent of computation: 4 terms in Taylor series + 48 Fourier modes

and dimensionless time t = 0.2

- Compare cell-averaged quantities with turbulent shear flow

experiment

Explore instantaneous fields for possible dominant flow

configurations

- in turbulent energy production

- in intercomponent transfer

- in dissipation

etc.
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Slide No. 6 shows the evolution of cell-averaged quantities.
The initial state was chosen with u', u; . u,2 in order to hasten the
approach to a condition resembling the turbulence. However, we
decided to start with u?= u3 , in the hope that the ubiquitous
inequality u3

2 > u2
2would emerge. Also we decided to start without

turbulent shear stress (uju.2 Z 0), in the hope that this would be
created before our eyes. Slide No. 6 shows that both of the latter
events occurred as we had hoped.*

A principal shortcoming of the calculation-is that we were
unable to push it to t values large enough for u2

2 and u3
2 to increase

to be large fractions of uD. Preferable initial energy ratios would
be u 1/u1

2 = u'u 2 = 0.5, but the initial wave-number choices plus
mass conservation limited the choices of Fourier coefficients.

In any case, this configuration can be said to have averaged
behavior with a qualitative resemblance to the turbulent shear flow,
so we decided to look at detailed instantaneous flow configurations,
to see how the energy and shear are produced, in general what kinds
of paradigms of hydrodynamic structures we could find in the regions
where various key events took place. My presentation is on one proc-
ess, the intercomponent energy transfer, the pressure/strain-rate
covari ance.

Slide No. 7 shows freehand sketches of the evolution of the
pressure field and of the leading diagonal component of the strain-
rate tensor, au,/3x,. For each variable we see the initial field at
the left, then the two alternative evolved fields, the top one of
each pair being with zero mean shear, the bottom one with positive
shear, dU,/dx2 > 0. The sheared case is sketched in terms of
unsheared coordinates, to make comparison easier.

The initial pressure field is symmetric about a line parallel
to x,, and the au1/ax strain-rate field is anti-synmtric. There-
fore, their product p(aul/axi), the initial local rate of gain of u,"
energy from u2

2 and u3
2 is anti-symmetric. Therefore its cell-averaged

initial mean value is zero, even though uhas the most energy and
should be losing it to U2 and u. In each sketch, negative regions
are indicated by "---," positive regions by "+."** The dashed lines
are zero lines. At time t = 0.2, when we look at the contours of
constant pressure, we see relatively modest changes if there is no
shear. In contrast, the sheared case shows intensification of some

* For somewhat larger t, where convergence is less certain,

uiu-,'/(u12u72) increases back toward zero.

** Color coding made this clearer in the actual slides.
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Typical fields: (slide at x, constant)
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pressure peaks and destruction of others. Correspondingly the
strain-rate field evolution without shear is modest; with shear it
is considerable. But the mere fact that addition of a rather strong
mean shear causes big changes is to be expected. The most important
observation is the nature of those changes. A look at the p(aul/ax,)
product field (which we see only for t = 0.2 and with shear, on Slide
No. 8) shows that the principal effect is to amplify the local flow
structures which transfer energy the "right" way (away from the most
energetic component), and to suppress those which transfer energy the"1wrong" way (into the most energetic component)!

The obvious thing to do then is to look more closely at both
kinds of regions, in order to identify the flow configurations,
hoping eventually to find out why the wrong-way transfer configura-
tion got suppressed, and why the right-way one was amplified. Evi-
dently the mean shear favors certain types of structures, which may
initially occur by chance, but then are amplified, anid presumably it
quickly destroys flow configurations which locally transfer energy
in the wrong direction.

The energy exchange regions are relatively localized, although
the Reynolds number is not very large. The velocity derivative field
had no particular appearance of intermittency, however.

A detailed look at the velocity fields showed us that the two
stron negative regions in p(au1/axl) (identified as I and 5 in Slide
No. 8 are roughly axisymmetric "squashing"-type stagnation point
flows, i.e. with one negative principal strain-rate and two positive
ones. The negative one is essentially in the x, direction. Obvi-
ously such a flow structure transfers kinetic energy from uI

2 to u2I
and U , the "right way."

The high pressure region located at a point symmetrical to
region 1 (top left of Slide No. 7) is also a stagnation region, but
a reversed one (a "stretching"-type); it has au1/ax, > 0, and
au2/DX3, u3/aX3 < 0, so at t = 0 it was transferring energy into u
at exactly the same rate region I was transferring it out. The
remains of this "wrong way" structure sits at location 4 in Slide
No. 8!*

The extreme numerical values (in arbitrary units) associated

with the five locations tagged in Slide No. 8 are tabulated in Slide
No. 9. We see, for example, that in the relatively short time of

We may recall tha; for isotropic turbulence Betchov (1956) sug-

gested a predominince of squashing over stretching stagnation
regions, based on measured values of the skewness factor of the
velocity spatial lerivative.
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t = 0.2, region 4 has changed from "wrong way" exchange to "right
way" exchange.

At the bottom of Slide No. 9, qualitative sketches symbolize
the contrapuntal initial structures of regions I and 4.

There is at least one other region of peculiar interest:
region 2 is transferring energy the wrong way even at time t = 0.2.
If we scrutinize the velocity field in that neighborhood, we find
large vorticity and small strain-rate; it is nearly in local rigid
rotation.

We have done some theoretical analysis based on the differential
equations for the strain-rate tensor, the vorticity tensor, and the
pressure fluctuations, looking to see which terms are the ones that
contribute to this rapid destruction of the "wrong way" structure at
point #4, for example. It turns out that the pressure fluctuation
fields play a major role. The mean vorticity rotates the principal
axes of the strain-rate tensors a bit differently at #1 and #4, but
the change in the p field has the greater effect on the change in
the pressure/strain-rate products.

We have also looked at other local events important to the
energy and shpar stress balances, but time is too short to allow me
to describe them.

This research has been supported generally by the Office of
Naval Research, Fluid Dynamics Program; the computation was done at
the National Center for Atmospheric Research, which is supported by
the National Science Foundation. W. Kollmann was supported by a
postdoctoral fellowship from the Deutschen Furschungsgemeinschaft
(Federal Republic of Germany).
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DISCUSSION

BRADSHAW: (Imperial College)

I would like to start by saying that that was one of the most

fascinating papers I have heard for many years. We all very much

look forward to seeing it in black and white instead of red and 
green.

You said that intercomponent exchange gets rather spotty in

space. So, of course, do the ul, u2 Reynolds stresses. But would

you say that the pressure-strain correlation should really be repre-

sented in a turbulence model by scales of the small scale motion

rather than the energy containing range?

CORRSIN:

I haven't looked at it in detail. First of all let me say that

since we have a rather small time computation with only about 48

modes, all the real fine scale hasn't had time to develop yet. But

in looking at the pressure-strain rate covariances, we have one 
ele-

ment of the product which is characterized by very large scale,

namely the static pressure which tends to be very large-structured,

and the spatial derivative of velocity which emphasizes the fine

structure. So, if you have a product of a large structure and a fine

structure component you get (kind of) a modulated picture and 
it is

not easy to give a simple answer to that. I intuitively tend to

think of the smaller structure as dominating in that case but that

may be because of some other application that I was once involved 
in.

i cannot psychoanalyze myself on the spur of the moment.

BRADSHAW:

The really difficult part about the velocity gradient terms is

whether the part of the velocity gradient that correlates with the
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pressure comes from the large scale motion or the fine scale motion.
I am not trying to set you up, I just wonder if you had any real
thoughts about it.

CORRSIN:

Generally speaking what we've seen, I think, is that the regions
which do the right kind of "right-direction" energy transfer do tend
to be stagnation points of rather classical types with a modest
degree of axial symmetry. The "wrong-way" regions which of course
are very much in the minority, tend to be vortical regions. I am not
sure that the characteristic lengths associated with vorticity and
with strain-rate fluctuations are any different from each other,
since they are both first-order velocity derivatives. For instance,
in isotropic turbulence their spectra are identical.

BRADSHAW:

One last point. Perhaps you may have been a little bit unfair
to Julius Rotta who, in his 1951 paper,* did point out what we all
promptly forgot for 15 years, that the pressure-strain term had two
parts: the turbulence-turbulence part, which he suggested could be
represented as a return to isotropy, and of course a part that
depends on the mean strain rate. So, maybe, he would not be too
surprised at the constant going off to infinity.

CORRSIN:

I suspect that in our computations of the inter-component trans-
fer data, and we have also done that with some of the Tucker and
Reynolds data, which also gives us a point in the wrong quadrant,
that may be so in part, because our assumption of homogeneity for
their experimental configuration within their straining region is
not valid; we assumed homogeneous equations for interpreting their
data.

KLEBANOFF:

I have a follow up comment. It might be well to note that in a
turbulent boundary layer, if one looks at the spectrum of the trans-
verse fluctuation relative to that for the longitudinal fluctuation,
one finds that the latter has a -5/3 range and the former does not.
Perhaps the reason for this may be the effect of a pressure-strain

• Rotta, J. C., "Statistische Theore Nichtomogener Turbulenz,"

Z. fUr Physik, Vol. 129, p. 547 and Vol. 131, p. 51 (1951).
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correlation which is represented by scales different from those for
the Reynolds stress.

CORRSIN:

3That could be. I am trying to remember as you say that, how we
were spatially oriented. I don't remember now, for instance, whether
the negative uv correlation had its most active regions in the same
parts of the cell as the stagnation point. Maybe Dr. Kollmann remem-
bers. (To Dr. Kollman) Do you remember whether the instantaneous
uv product had its extreme values in the same region as the pressure-
strain rate had its extreme value?

KOLLMANN: (Lehrstuhl f. Techn. Thermodynamik)

They tended to be more or less in the same parts of the cell.

MELLOR: (Princeton University)

As you went down your wind tunnel this time your length scale
never increased. Did it ever get large compared to the tunnel
dimensions?

CORRSIN:

As far down as we went, the region of pretty good homogeneity
was still about five times the integral length scale, maybe four
times, outside the boundary layers. The boundary layers were getting
pretty thick, of course, and they do induce fluctuations on the axis
and all that, so we weren't perfectly free of boundary interference.

MELLOR:

I don't understand my question now!

Your previous published data in the Journal of Fluid Mechanics
tend asymptotically to a point where the reduction in spatial is
fairly well balanced but the advection term was not. If we go fur-
ther now, how does the advection term compare?

CORRSIN:

The advection term is still negligible and the triple correla-
tion term, the turbulent transport of turbulent energy, which we
checked, also is still negligible, but the homogeneity is not good
if we use convected coordinates.
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KOVASZNAY: (ONR Tokyo)

Did you give much thought to Rotta's later formulation when he
splits the term and only one part of it goes to this mechanism?

CORRSIN:

No, I hadn't given much thought to it. That was what Peter
Bradshaw just said.

LIEPMANN: (California Institute of Technology)

I think that we should avoid using pressure as a variable in
incompressible turbulence. The rucial variable is vorticity.

CORRSIN:

Yes, we really do. We really use the velocity integral and all
that sort of stuff with the solution to the Poisson equation for
pressure.

It turns out that vorticity is not the be-all and end-all. It
turns out that working with the strain-rate conservation equation is
just as important as working with the vorticity conservation equation.

It is true that we do get rid of the pressure in making the
calculations. But I find that, in thinking about mechanisms locally,
I can (maybe) fool myself, but I think I can think a little bit
better about pressure gradients than I can think about infinite
integrals over all space of this complicated integrand with the
kernel being the sum of the strain rate and the vorticity tensors
divided by the radius and all that sort of stuff. I find that hard
to think about intuitively.

I am motivated to try again to measure static pressure fluctua-
tions in the middle of the flow and one of the nicest ways to do it
is with a computer, of course.

FALCO: (Cambridge University)

I agree with you. I am very excited about what you have just
presented and I just want to make a comment that might help clear
the picture a little bit. It is certainly my experience in observing
the instantaneous motions in turbulent boundary layers that the
Reynolds stress producing motion decrease in scale as Reynolds number
increases, but my recent work suggests that large scale motions may
produce important large scale (i.e., Reynolds number independent
pressure gradients). At low Reynolds numbers, the features which
produce large Reynolds stress contributions are large scale, so that
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it will not be easy to differentiate between scales which produce
the large scale pressure fluctuations and those which produce the
Reynolds stress, if such a differentiation is warranted. I am not
sure how much computer time you need to increase your effective
Reynolds number, but if your present Reynolds number is low, maybe
a factor of two will be sufficient to show a difference.

CORRSIN:

A Reynolds number based on cell size and initial cellular
velocity amplitude is about 500, which probably means R may be on
the order of 50 or less.

FALCO:

I don't think that there is an effective differentiation at
Reynolds numbers that low.

LUXTON: (University of Adelaide)

The fact that you can stack up your low strain rate results and
your high strain rate results suggests very much that the turbulence
does indeed forget its origin. Would you like t.' comment on that?

CORRSIN:

I started doing turbulent shear flow in round turbulent jets
many years ago and in those days I tended to think of turbulence as
forgetting its origin, but John Laufer was convincing us last week
that if the jet blows rings maybe it does not forget its rings; I
don't know. I think in the case of the moderate homogeneous shear
flow it may. In fact, in grid-generated nearly isotropic turbulence,
we found very little difference between turbulence generated by
"silver dollars" and by round rods and square rods and stuff like
that. We didn't look in very sophisticated detail at condition-
sampling data: maybe the rings behind our silver dollar grid were
hidden conditionally.

LAUFER: (University of Southern California)

I think you are misquoting me; we were looking at the early

development of a shear flow and jet flow and in those flows there
seems to be some indication that initial conditions are important,
but we certainly don't want to imply that further downstream the
"memory" still exists.
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CORRS IN:

Actually, although it also hasn't been published, 
I had a Dr.

Anatoly Utionkov in my lab for a year, some 
years ago (he was from

the Moscow Steel and Alloy Institute, later 
from the University of

Cairo, now back at the Moscow Steel and 
Alloy Institute), and he did

a series of experiments of the early neighborhood 
of jet development

in round jets with tailored velocity profiles 
at the start. He was

interested in furnace jets. He made velocity distributions ranging

from rectangular to conical by using variable 
solidity screens, and

the difference was detectable in the turbulence 
level, for instance,

only out to about 20 diameters.

BRADSHAW:

Since silver dollars have been mentioned 
I wonder if we could

ask how much the calculations with what one might describe 
as your

ravioli-cellular model cost per round?

CORRSIN:

It is $2000 per hour and it takes 8 minutes 
so that the cost is

approximately $300.

BRADSHAW:

So it is equal to the cost of about 3 or 4 cross-wire probes?

CORRSIN:

Who makes your cross-wire probes?!
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ABSTRACT

Three types of interaction between a shear layer and another
turbulence field are discussed. They are (i) the effect of free-
stream turbulence on a boundary layer or mixing layer, (ii) the
merging of two boundary layers to form an aerofoil or blade wake,
(iii) the interaction of two perpendicular boundary layers in a
wing-body or blade-hub junction. A brief description is given of
recent experimental work on these problems, including flow visual-
ization and temperature-conditioned sampling.

1. INTRODUCTION

The two main phenomena that distinguish real-life "complex"
flows (e.g. Bradshaw, 1975, 1976; Bradshaw in Murthy, 1974, p. 243)
from simple shear layers, are distortion of a shear layer by extra
rates of strain and the interaction between a shear layer and
another turbulence field. The second turbulence field can be
unsheared "freestream" turbulence; or a shear layer with the samnedirection of shear as the first one, as in the internal boundary

layer that grows behind a change in surface roughness; or a shear
layer with the opposite direction of shear, as in the merging of
two boundary layers to form an aerofoil wake, or a shear layer
whose plane of mean shear is inclined to the first, as in the flow
along a wing-body junction.

In the present state of our empirical knowledge of turbulence
these have to be treated as separate problems, and experiments
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should precede calculation methods. Experimental work on all the
above types of interaction, except the internal boundary layer
which has been investigated in depth by Antonia and Luxton (1971,
1972, 1974) and others, is in progress at Imperial College. All
the experiments are being done in low-speed wind tunnels and in
all cases detailed measurements of turbulence structure are being
made, with application to calculation methods based on the Reynolds
stress transport equations. "Turbulence structure" means dimension-
less quantities like anisotropy ratios, spectrum shapes, or even the
empirical constants that appear in transport-equation turbulence
models. Frequent use has been made of flow visualization, or its
quantitative analogue "temperature-conditioned sampling" (in which
heat is introduced instead of smoke and a fast-response resistance
thermometer generates an on-off conditioning function so that
velocity-fluctuation statistics can be accumulated for the "hot"
regions only). Paradoxes appear: the interaction of two opposed
plane shear !ayers is much easier to predict than the effect of
uns'leared freestream turbulence, because the changes in turbulence
structure in the former case are quite small. Again, the dominant
effect in a wing-body junction is not the secondary flow induced
by Reynolds-stress gradients but the axial vortex produced by quasi-
inviscid skewing of the body boundary layer around the wing leading
edge.

This paper is a progress report on the Imperial College work;
more detailed accounts have been, or are being, prepared by my
associates named below, and I am grateful to them for permission
to reproduce their unpuolished work.

2. FREESTREAM TUIBULENCE

Especially in turbomachine applications a distinction must be
made between "ordered unsteadiness" with wavelengths many times the
thickness of a shear layer, and small-scale turbulence with wave-
lengths of the order of the shear-layer thickness. The response
of a shear layer to ordered unsteadiness could be quite well pre-
dicted by ignoring effects on the turbulence structure--that is,
by using the same turbulence model as for statistically-steady flow
but performing a time-dependent calculation for the "mean" flow.
For example, the left-hand side of the transport equation for any
quantity Q, whether velocity or Reynolds stress, can be written as
DQ/Dt; the operator D/Dt is equal to )/ t + U, a/)x. but except for
numerical difficulties it is quite immaterial whether the substan-
tial derivative is wholly temporal, wholly spatial, or mixed.
Roughly speaking, calculations for a shear layer with ordered un-
steadiness in freestream will break down only when D(shear stress)/Dt
exceeds the value at which the transport-equation model becomes
unsatisfactory in stead, flow. A pictorial way of making the same
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point is given in Figure 2 (p. 41) showing the respective effects of
small-scale and large-scale turbulence on a jet in a moving stream.
Ordered unsteadiness or large-scale turbulence just causes the jet
to flap from side to side: the mean rate of spread, and the appar-
ent Reynolds shear stress -uv, are increased but the intrinsic
turbulence of the jet is little affected.

Note that, near a solid surface, even near-isotropic freestream
turbulence may count as ordered unsteadiness if its length scale,
say the longitudinal integral scale Lx.e where suffix e denotes the
external-stream value, is large enough. Since the normal-component
fluctuation v is reduced to zero on a solid surface, the continuity
equation 3v/3y = -(3u/ax + 3w/3z) implies vT U' uT y2/L' for y rather
smaller than Lx: the constant of proportionality should be of the
order of unity, so that a boundary layer of thickness 6 much smaller
than Lx will see a freestream turbulence field consisting mainly of
large-scale "sloshing" in the x and z directions, with little y-
component motion. The measurements of Karlsson (1959) suggest that
the effect of pure u-component oscillations on the mean motion is
very small.

Most of the available data for the effect of freestream turbu-
lence on shear layers have--very sensibly--been obtained for the
simplest case, a flat-plate boundary layer below a grid-turbulence
field with Lx/6 not much larger than unity. The data are summarized
by Bradshaw (1974). Consider the rough rules

6 0.015 (x - x,) (La)

Lx,e" 0.09 V(x - xg)M (1b)

"'7 0.1 x-x9 1)(10)
Ue

where suffix e denotes the external stream, xL and xa are the posi-
tions of the leading edge of the flat plate and of the grid, respec-
tively, and the ratio of grid mesh size M to bar diameter d is about
5 (a typical value, giving a pressure-drop coefficient of about
unity). At (x - x )/M = 20, about the smallest distance at which
the turbulence is Icceptably homogeneous, we have /i-?/Ue : 0.03 and
Lg,e % 0.02 (x - xg), so that even if the leading edge is close to
th grid L, e/6 is somewhat larger than unity. Smaller values of

Lx,e/6 can de achieved only at larger downstream distances where u
2

is smaller. Any freestream turbulence field that roughly resembles
grid turbulence will maintain a high turbulence level down the
length of a boundary layer only if the length scale is rather large
compared to 6. An alternative way of seeing this--and an alternative
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way of measuring a length scale--is to consider the decay equation

for isotropic turbulence

U-E - L (2)

where the dissipation length parameter LE is about 0.9 Lx and can
be deduced directly from decay measurements. If L = 6 and ,iW/Ue
= 0.05, the local decay rate of VI!Ue is 0.05 perc606, indicating
a large fractional decay in the distance taken for 6 to double.
If the decay rate is as fast as this it is meaningless to quote
shear-layer parameters and give the local value of u alone. Equa-
tion (2) implies, however, that the decay rate can be specified if
the length scale is known. There are therefore two possible reasons
why freestream turbulenc.e effects can depend on the length scale, as
well as the intensity, of the freestream turbulence; the ratio of
freestream eddy size to boundary layer eddy size, represented by
Lx/6 or L /6, is presumably important in its own right, and the
dimensionless decay rate (6/U2) d u-V/dx also depends on Lc/6 via (2).
It is not clear how much of the scatter in existing plots of--say--
the skin-friction ratio cf/cf,0 against 'uie/U for Lx/6 near unity
is attributable to neglected effects of length scale. Our own ex-
plorations suggest that one of the most important causes of scatter
is the effect of three-dimensionality of the boundary layer caused
by persistence of the wakes of the grid bars. This is most notice-
able if one attempts to obtain high intensities by putting the plate
leading edge near the grid.

The existing results for the effect of freestream turbulence on
boundary layers all agree that the logarithmic "law of the wall" is
not significantly affected by freestream turbulence: this is con-
0istent with the continued validity of the logarithmic law in bound-
ary layers which are themselves highly turbulent. It follows that
the increase in cf due to freestream turbulence is the result of
changes in outer-layer structure, leading to a decrease in the "wake
parameter" I. Simple extension of the conventional outer-layer
similarity analysis, based on the assumntion that the freestream
turbulence is adequately described by U2 and Lx, gives

Ue - u L
u - l,' u T ' 64 (3)

so

It- 0 = f , (4)0 u T
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If the law of the wall remains unchanged, the "overlap" skin fric-
tion formula is unchanged except for the value of iI, and Bradshaw
(1974) shows that, for small changes in II,

f 1 ( - fo) (5)

: f,o

Experiments show that, for /u-i/Ue < 0.05 at least, 1I - 11o is direct-
ly proportional to /uT and so (5) gives

ee
Cf, z 1 + constant x -e 

(6)

rather than the dependence on /'u, which one might have expected
a priori. The form (6) has been used, without justification, by
most experimenters. The "constant" is nominally a function of Lx/6
but most of the data imply values of the constant lying between 3
and 5.

The physics of freestream turbulence effects are not well under-
stood. Flow-visualization pictures like those of Figure 1 (unpub-
lished work at Imperial College by P. E. Hancock) show that the
intermittency interface between (smoke-filled) boundary layer fluid
and (smoke-free) freestream fluid becomes much more ragged when free-
stream turbulence is present, with thin streamers of boundary layer
fluid being dragged out into the freestream. The result is that the
profiles of shear stress and velocity defect are flatter near the
outer edge (corresponding to reduced Il) but although this seems
obvious it becomes less obvious on further thought, because there is
no fundamental reason why the interaction of unsheared freestream
turbulence with the delicately-structured eddies of a shear layer
should increase the shear stress, rather than reducing it by inter-
fering with the existing organization. Charnay (1974) has made some
conditionally-sampled measurements in which the boundary-layer fluid
was heated to distinguish it from freestream fluid, analogous to the
qualitative use of smoke in the work shown in Figure 1. Unfortunately
Charnay's system did not pick up the fine detail of the interface
structure: further work using temperature-conditioned sampling is in
progress at Imperial College.

A contaminant plume in an isotropic turbk-lence field will spread
out with a standard deviation of v'Mx/tU and a nalf-thickness from
center-line to edge of about three times this, or 0.15x if AU/Id
0.05. Now in a boundary layer with V7e/Ue = 0.05 the growth rate is
about 0.04, i.e., 6 = 0.04 x, this is less than one-third of the
growth rate expected if boundary layer fluid were passively convected
by the freestream turbulence. Part of the reason may be that the
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(a) Freestream Turbulence 0.2 percent.

(b) Freestream Turbulence 3 percent. LX/6 0.5.

Figure 1. Instantaneous Edge of Smoke-Filled toundary Layer at

Ue ON 700.

-I
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Figure 2. Effect of Freestream Turbulence on Jets.

interaction decreases the efficiency of the shear-stress-producing
processes, as hinted above: but a simpler reason is the reduction
of v near a solid surface, also mentioned above.

P. E. Hancock and N. H. Thomas (to be published) have investi-
gated the effect of the inviscid "no-transpiration" boundary condi-
tion, v = 0, and the viscous "no-slip" boundary conditions u = 0,
w = 0, on grid turbulence near a wall. Ideally the experiment
should be done near the floor of a box filled with decaying turbu-
lence, but the absence of a mean translational velocity makes hot-
wire measurements difficult; Hancock and Thons have done a steady-
state experiment, downstream of a grid and close to an endless belt
wnich forms the floor of the wind tunnel and moves at the speed of
the freestream. Intensity measurements for one of the configura-
tions tested are shown in Figure 3, and it is seen that the inhomo-
geneity layer extends for a distance of nearly 2Lx above the surface.
The increase of uT , which would be accompanied by an equal increase
in wT if the turbulence were truly isotropic, is the natural conse-
quence of the decrease in vT: eddies "splash" on the floor. At
the surface, of course, u = w = 0, but the thickness of the layer
dominated by the viscous boundary condition was too small to resoiv
in the present experiment. The previous experiment of Uzkan and
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Figure 3. Turbulence Intensity in the Unsheared "Inhomogeneity
Layer" near a Moving Wall: Unpublished Imperial College
Compared with Data of Uzkan and Reynolds (1967).

Reynolds (1967), at a mesh Reynolds number UM/v less than a tenth
of the present one, was dominated by the viscous boundary condition.
They stated, correctly, that the viscosity-dominated region is
roughly the same thickness as a laminar boundary layer, 5/vx/Ue ,
but in their experiment Lx was almost the same as this. The invis-
cid "splashing" effect was therefore not detectable. Both sets of
experiments agree well with an analysis by J. C. R. Hunt and
J. M. R. Graham (to be published) using rapid-distortion theory for
the inviscid effect.

As well as affecting fully-developed turbulent shear layers,
freestream turbulence can have a large effect on transition. Our
measurements (Chandrsuda et al., 1976) strongly suggest that this
is the main reason why the two-dimensional orderly structure found

in the two-stream mixing layer of Brown and Roshko (1974: see also
~Roshko in Murthy, 1974, p. 295) was not found in previous work on

mixing layers in still air. We set up a two-stream mixing layer in
the 4 ft. x 2 ft. (120 cm. x 60 cm.) smoke tunnel at Imperial Col-lege, with the configuration shown in Figure 4. When the turbulence

' in the two streams was low (the tunnel turbulence level without the
splitter plate is about 0.2 percent) the two-dimensional "spanwise
vortices" that arise from instability of the laminar mixing layer
grew to a large amplitude, pairing in an approximately self-preserving
fashion and gradually acquiring some small-scale three-dimensional
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Figure 4. Conversion of Smoke Tunnel for Study of Two-Stream
Mixing Layer.

turbulence (Figure 5a). Our photographs, taken with smoke injection,

look somewhat different from the shadowgraphs of Brown and Roshko
but evidently show the same phenomenon. The intensity of the two-
dimensional structure increased as the stream speed ratio U2 /U1
decreased towards zero. When the turbulence level in one stream
was high, breakdown to fully-three-dimensional turbulence occurred
after only one or two stages of pairing. We introduced turbulence
by sticking a grid of masking tape to the last screen, but as this
also caused strong three-dimensionality of the mean flow near the
grid it could be criticized as an unrealistic configuration. Figure
5b, however, was taken with one stream completely shut off so that
the flow approximated that over a backward-facing step--.1iical of
many industrial examples of mixing-layer flows. Turbulence in the
secondary "stream" was supplied by the unsteady recirculation from
the reattachment point. Figure 5b clearly shows conventional
(three-dimensional) turbulence in the shear layer. Because of the
rapid diffusion of the smoke it was difficult to observe the flow
much further downstream than in Figure 5, but even with low free-
stream turbulence the flow pattern seemed to become increasingly
three-dimensional with increasing distarx. downstream.

The smoke-tunnel experiment was in fact the last in a series
of flow-visualization tests whose early stages were reported in
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(a) U2/U1  0.03 (low freestream turbulence).

(b) U,,/U1 = 0 (high turbulence in recirculating flow below mixing
layer).

Figure 5. Two-Stream Mixing Layer in Smoke Tunnel, Hfigh-Speed
Stream Below. Picture width about 60000 v/U1 .



INTERACTING SHEAR LAYERS 45

Murthy (1974, p. 243). As mentioned there, studies of a smoke-
filled plane mixing layer in "still air" showed that two adjacent

I I quasi-laminar vortices often became significantly non-parallel so
that when pairin,. occurred the vortices merged into a double helix,
as seen in the plan view of Figure 6, and breakdown to three-
dimensionality ensued. It is now clear that "still air" in a

,f., laboratory can in fact be sufficiently highly turbulent to intro-
SgEduce three-dimensionality into the transition pattern, because the

laboratory air is stirred up by the jet flow and then re-entrained
into it. Our jet nozzle, 75 x 12.5 cm., was near the middle of a
large and otherwise undisturbed laboratory (about 10 m. x 7 m. x
5 in.) about 1.5 m. from the floor, which suggests that almost any
mixing layer not formed between two low-turbulence streams will
become conventonally turbulent quite close to the nozzle rather
than developing the two-dimensional large structure of Brown and
Roshko. However, observation does suggest that axisymmetric dis-
turbances in circular jets in "still air" are rather more persistent
than the corresponding two-dimensional flow, probably because axi-
symmetric pressure fluctuations help to synchronize the transitional
disturbances and prevent helical pairing.

Our experiments do not prove that the two-dimensional large
structure in Brown and Roshko'-experiment would eventually have
distintegrated into the conventional turbulence structure found when
two-dimension&lity of the transitional disturbances is destroyed by
freestream turbulence, but it seems very likely that this is the
case. With hindsight and the aid of Figure 7 it can now be seen
that the measurements of Bradshaw, Ferrise, and Johnson (1964) were
made in "conventional" mixing-layer turbulence. Figure 7 is a
photograph taken by them at a speed between the two cases shown in
their paper and may be compared with the latter. They also found
very distinct large structures in the flow but correlation measure-
ments showed that these structures were three-dimensional, with
spanwise scales much less than the longitudinal scales, and appeared
to be roughly the same as the "mixing jets" found in other shear
layers (Grant, 1958). Townsend (1976) shows that the "mixing jet"
approximates to an inclined horseshoe vortex (pointing downstrea,,)
and its induced velocity pattern. Now the inclined horseshon vorL(.,
is exactly the instability mode of an isolated spanwise vortex in
the presence of a mean shear once it is perturbed by a spanwise-
periodic disturbance (Figure 8): Hama (1963) shows that an isolaLed
vortex is unstable, in a horseshoe mode, because of its self-induced
velocity. Figure 7 suggests that vortex-ring disturbances in a
circular jet may break down directly into a ring of horseshoe vor-
tices without helical vortex pairing. The circumferential wavelength
of the secondary instability seen in Figure 7 is roughly equal to the
primary wavelength (vortex spacing) at the position where the second-

*ary instability is first noticeable, and therefore varies with jet
speed; it does not scale on jet diameter. Similar secondary
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(a) Side View. Picture width about 10000 v/U1 .

(b) Plan View. Picture width about 40000 v/Ui: each array of
streaks is a vertex core (streaks arise from smoke
injection through discrete holes).

Figure 6. Smoke Pictures of Miixinq Layer in "',tIll Air," Hiqh-
Speed Stream Below.
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Figure 7. Schlieren Picture of Circular Jet (with Small Concentra-
tion Of C02) in "Still Air." Picture width about
400000 v/U1.

(A.).Wh14

I //

Figure 8. Intermittency of Temperature Fluctuations in a Plane Jet



48 P. BRADSHAW

instabilities are seen in Brown and Roshko's Figure 8 but apparently
do not lead to full three-dimensionality whereas in the circular jet
they do, the longitudinal streaks in Figure 7 being obliterated at
about one diameter from the exit. The above evidence strongly sug-
gests that the life history of a mixing layer developing from lami-
nar flow at the nozzle lip is

(i) instability of the laminar mixing layer in a spanwise-
vortex mode,

(ii) quasi-self-preserving "pairing" of the spanwise vortices,
(iii) development of secondary instabilities, either (a) small-

scale local ones or (b) the large-scale phenomenon of
helical pairing, the probability being that (b) precedes
(a) if the freestream turbulence is large enough forivor-
tices to become significantly non-parallel between

- stages of pairing,
(iv) onset of fully-three-dimensional turbulence, at a much

slower rate following (iiia) than following (iiib),
(v) breakdown of any quasi-two-dimensional large structure

into horseshoe-vortex/mixing-jet large eddie's,
.(vi) a final self-preserving state.

Clearly option (iiia) allows the spanwise vortices (the invis-
cid instability mode) to persist until a fluctuation with large
spanwise scale somehow arises and precipitates helical pairing.
This appears to be the course of the Brown-Roshko experiment and of
the low-turbulence case in our own work (Figure 5a). Option (iiib),
which can occur when fluctuations with large spanwise scale are
imposed externally, by freestream turbulence (Figure 5b) or other-
wise, seems to be typical of experiments on mixing layers in still
-air. Judging by the work of Hill (1976) the two-dimensional (or
axisymmetric) large structure is not found at all in plane or circu-
lar jets which originate from fully turbulent boundary layers, and
it seems likely that the tripped boundary layer in Brown and Roshko's
experiment did not become three-dimensionally turbulent before reach-
ing the nozzle exit. There is no reason to suppose that the final
states are different in case (iiia), case (iiib) and the case of an
initially turbulent boundary layer; but in case (iiia) it may not be
reached before the end of the test rig. It must be recalled that
even in case (iiib) self-preservation is not reached for a distance'
of order 1000 times the initial momentum thickness, while Dimotakis
and Brown (1975) have pointed out that pairing is an infrequent
process, so that breakdown depending on gradual loss of organization
will take a very long streamwise distance indeed, perhaps almost as
long as the decay of the Karman vortex street behind a two-
dimensional bluff body. Once a fully-three.-dimensional state is
established it seems improbable that correlations over large spanwise
distances can recur, even though the inviscid instability mode is
two-dimensional: th& medium-scale turbulen,;e will ensure that break-
down to horseshoe vortices occurs. While t-ansient disturbances
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coherent over a spanwise distance of a few shear-layer thicknesses
might well occur, they are evidently rare enough not to have much
effect on spatial correlations (a two-dimensional large structure
would be shown up by conventional correlation measurements, as an
unusually large spanwise integral scale, despite the suggestions
to the contrary in Brown and Roshko (1974)).

The characteristic Reynolds number of a mixing layer is that
based on, say, the momentum thickness at the nozzle lip: the Rey-
nolds number based on the length of the apparatus is not relevant
as such, although the ratio of apparatus length to initial momentum
thickness is important since it determines the maximum number of
pairings t6-t can occur. Even the initial momentum-thickness Rey-
nolds number does not play a very important part because the basic
instability of a laminar free shear laypr is inviscid, and the
growth rates are practically independent of Reynolds number for
Ue x/v > 104, as can be deduced from Fiture IX.22 of Rosenhead
(1963) where R = (Ue x/v) . Therefore the demonstration by Dimotakis
and Brown (1975) that large-scale structures occur at higher Reynolds
numbers than in Brown and Roshko's experiment does not prove that the
large-scale structures are not of transitional origin. In any case,
Dimotakis and Brown apparently did not check the two-dimensionality
of the large structures they observed, and the presence or absence
of two-dimensional large structures is the central point of the con-
troversy: Bradshaw et al. (1964) showed that the mixing layer is
certainly dominated by large structures, but in that case they were
three-dimensional large eddies.

3. THE NEAR-WAKE OF AN AEROFOIL

In earlier work on interacting shear layers at Imperial College,
briefly described by Bradshaw (1974) (see also Bradshaw, Dean &
McEligot (1973) and for an account of experimental work, see Dean
& Bradshaw (1976)) we found that the turbulence structure in the
core of a plane duct flow was close to that of two boundary layers
whose intermittent regions "time-shared" near the duct center-line.
In Reynolds averaging, time-sharing is indistinguishable from super-
position, and good results were obtained from a calculation method
treating duct flows as superposed boundary layers. Superposition as
such is not possible in a non-linear system, but the rms turbulenceintensity on the center-line of a duct is only about 3 percent of

the mean velocity so that the duct is not a very severe test case.
Work on the merging of two mixing layers at the end of the potential
core of a plane jet is now being written up by Weir and Bradshaw.
As in Dean's work, one shear layer was heated so that its fluid
could be distinguished from that in the other layer even after the
two started to merge. Figure 8 shows the temperature intermittency
profile (nominally identical, in an isolated mixing layer, to the
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usual velocity-intermittency profile) plotted against the similarity
coordinate for an isolated mixing layer, y/x, with origin at the
start of the "hot" layer. Even at 18 nozzle heights downstream
three or four times the distance at which the two mixing layers
start to overlap, the collapse is still good. This is not a very
severe test of the time-sharing or superposition hypothesis but more
detailed results suggest that the latter is a good approximation.

J. Andreopoulos and the author have recently started experi-
mental work in the wake of a flat plate, one of whose boundary layers
is heated to permit study of the near-wake interaction in the same
way as in the duct or jet interactions. We do not expect the wake
to behave like two superposed boundary layers; it is probably closer
to the superposition of two mixing layers with very thick initial
boundary layers. A plate 2.5 cm. thick, 2.5 m. long was used, to
provide sufficient thermal insulation. The trailing-edge angle is
about 3 degrees, but the center-line velocity in the wake seems to
be nearly the same, in inner-layer similarity coordinates, as in the
measurements of Chevray and Kovasznay (1969) on a thin flat plate
(Figure 9). Inner-layer scaling, using the friction velocity u, at
the trailing edge as a velocity scale, is appropriate for a flat-
plate wake close to the trailing edge. According to our hyperbolic
turbulence ;iodel (see for instance Bradshaw & Unsworth (1974)) a
small disturbance at the surface below a boundary layer propagates
0 autwrds at an angle close to 0.55 u,/U, about 0.03 if we take U/uT
= 15-20, and therefore reaches the outer edge of the inner layer,
y = 0.2,S say, at a distance of about 76 downstream of the disturb-
ance. Roughly the same limit should apply to the strong disturbance
constituted by the termination of the solid surface at the trailing
edge. The general result for the mean velocity profile in the
region x < 7A, -0.2S < y < 0.2 ,, where x and y are measured from the
trailing edge, is

U ~T u~y I  (ux

UT _ v' or f.. . (7)U% T V X

of which the scaling in Figure 9 is a special case. Another useful
special case is

Vedg e  Vy=0.26 = u f 3 (uT x/v) (8)

where suffix "edge" denotes the local edge of the "inner wake" and
the approximation sign implies that JU/ x is small in the region
between the edge of the inner wake and the point y = 0.26. Equation
(8) provides a universal solution for the displacement thickness of
the first 76 of a flat-plate wake. Since for x • 76 outer-layer
inviscid scaling should apply if the viscous sublayer at the trail-
1,iq ed(;e is neoiqi:,ly thin, we also have
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Figure 9. Center-Line Velocity in the Wake of a Flat Plate,
Plotted in Inner-Layer Similarity Coordinates with
UT as Trailing Edge Value. , Chevray &
Kovasznay (1969). 0. J. Andreopoulos (unpublished).
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Extensions to the above scaling can be made for a thin flat plate
with different values of u. on each side, inserting the friction-
velocity ratio as an extra parameter. It is of course invalidated
by pressure gradient.

So far our data analysis of turbulence recordings has been
confined to the region outside the near wake: unconditional-average
intensities and the intermittency (deduced from the temperature sig-
nals) agree well with previous data. Analysis of the data in the
near wake is about to begin, with the object of improving our
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turbulence model, referred to above and under investigation by
Huffman (as reported elsewhere in these Proceedings).

4. FLOW IN A SIMULATED WING-BODY JUNCTION

In turbulent flow in a long, straight non-circular duct,
cross-stream gradients of Reynolds stress set up circulations in
the cross-stream plane (i.e. streamwise vorticity) called secondary
flow of Prandtl's second kind, or "stress-induced" secondary flow
(see Johnston, 1976). Even in inviscid flow, lateral skewing of
the streamlines of a shear flow can induce streamnwise voriticty via
the (il.V) U term in the vorticity equation, and this is secondary
flow if Prandtl's second kind, or "skew-induced" secondary flow.
We have made measurements in a simplified wing-body or blade-hu0
junction consisting of an "aerofoil" of constant thickness following
a seni-elliptical nose, mounted on a flat tunnel wdll simulating the
body. The body boundary layer thickness at the leading edge of the
wing was about half the wing thickness. Figure 10 (Shabaka, 1975)
shows the longitudinal-component velocity at a distance measured
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Figure 10. Longitudinal-Velocity Contours in Idealized Wing-Body
Junction, 26 Wing Thicknesses Downstream of Leading
Edge. Wing Thickness 5 )nun, Initial Boundary-Layer
Thickness on body 25 nm (Shabakd, 1975).
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from the leading edge equal to 26 wing thicknesses (the trailing
edge of an aerofoil 4 percent thick). The secondary flow of the
first kind generated by the skewing of flow at the leading edge
(the horseshoe vortex), resulting in a trailing vortex in the
corner, has completely overwhelmed the stress-induced secondary
flow. This suggests that the rather large amount of work done on
stress-induced secondary flow is not likely to be relevant to mary
strearnwise corner flows, because there can be few practical cases
in which non-circular ducts are straight for a long enough distan-e
for skew-induced secondary flow to decay and stress-induced secon(l-
ary flow to take over. In Figure 10 the position of the horseshoc
vortex is conjectural: V and W component mean-velocity neasurement-
are about to begin. Figure 11 shows the u-component intensity
measurements at the same station as Figure 10, and the vortex posi-
tion shown is at least plausible. The vortex can still be detected.
Dy the eye of faith, in surface oil-flow pattern, at this station.
Of course, the circulation around the vortex is gradually decaying,
under the action of Reynolds-stress gradients---thus the latter, far
from generating secondary flow, act to reduce it. It seems rather
unlikely that the same turbulence model will suffice to Predict
both the single-vortex pattern of decaying skew-induced secondary
flow and the double-vortex pattern of stress-induced secondary flow.

- C,
-I "

Firgure 11. Longitudinal-Intensity Contours in Wing-Body Junction.
Conditions as in Figure 10 (Shabaka. unpublished).
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5. CONCLUSIONS

The experiments described above relate to highly idealized
situations, which were chosen so as to show up the main ihenorenor
5einq studied. The data are being, or will be, used in calculation
:ethods, and this writer believes that such basic experiments are a
necessary preliminary to the development of reliable calculatio.1
methods. The assumption commonly used is that the effects of t,,,
cr more basic phenomena on the empirical constants or functiors jf
a turbulence model are independent and therefore additive (or .

least expressible as separable-variable functions). The success of
'his assumption depends, of course, on choosing the pienomn" , .ire-
U.uy: almost certainly, the turbulence structure of t'eie near-wail,-

of an unstalled aerofoil is not affected by fr streu;:- tr .
(except that the problem may become an unsteady one), so r'a:r "inear
wakes" and "freestream turbulence" are independent phenomena .- :h1
present sense; but the horseshoe trailing vortex in a wing-body
/unction interacts so strongly with the two boundary layers that
the phenomenon "wing-body junction flow" cannot be broken dow.,n ito
the ohenomuena "isolated trailing vortex" and "stress-induced
secondary flow in streamwise corner." We now have enough infor:;a-
licn on courplex. flow phenomena for the temptation to asse..ble Dra-
-1cal flows froin several known phenomena to be a strong one. iiow-
ev-Cr ;t must be remembered that the complex-flow concept is ',s&
" oerturbations of simple shear layers, by distortior or by ir,.r-

.,tion with another turbulence field. Further perturbations by
intoraction of two or more complex-flow phenomena need treatwrc with
respect!
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DISCUSSION

SAFF AN: (California Institute of Technology)

I want to make a comment on the effect of freestream turbltence
on the large structures in mixing layers. It is to point out. a'i
has recently been shown, that arrays of vortices are, in fact, sub-
ject to a three-dimensional instability, the axial waveler'gth of tPe
instability being about the diameter of the vortex core. I just
wonder whether the freestream turbulence may not be exciting thiS
instability, which may be a partial reason for the ability of fri,,,-
strea turbulence to destroy the organized structures.

PRADS'iAW:

This is at least possible. I wasn't aware of this work. Is
this an extension of the work that Jimenez* did where he proved
stability of a co-rotating vortex pair in the linear case?

A FXAN:

No, Jimenez uses the cutoff approximation for the vortices.
Oe ignores the internal structure. The instability tlat I an refer-
i,.i to is an effect of the internal structure. The calculativ., "as

.,1y been done, so far for the inviscid vortices with unifo,., cores
and no turbulence. A reference is D. W. Moore and P. ;. Saffnan:
Oroc. Roy. Soc. A346, 413 (1975).

_EPMVN,: (Californil Institute of Technology)

At the IUTAM meeting last week Garry Brown** discussed experi-
,ients by Konradt demonstrating the development of three-(imensional
structures from two-dimensional ones. The most exciting result
obtained was the reappearance of the two-dimensional structures
further downstream. This fact is not too difficult to understand
in mixing layers because large scale two-dimensional vortices are
.eino produced all the time, hence the overall tendency to two-
dimensional flow. Turbulence in the freestream should definitely

* Jimenez, J. "Stability of a pair of co-rotating vortices,"

Phys. Fluids 18, 1580 (1975).

Proceedings of IUTAM Symposium on Structure of Turbulence and
Drag Reduction, Washington, D.C., June 7-12, 1976, to appea,- ,
Physics of Fluids.

Konrad, .1. I., Caltech, Pasadena.
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iffect the phases of the two-dimensional vortces cowing off an

.his fact is, after all, already clear from the Brown and Roshko
experiments. A stationary hot wire exposed tc these vortices witr,
random phases should show a perfectly normal turbulence spectrum.
"irthiennore, it is possible that a slight modulation spanwise of
the initial phase could produce a more rapid %.ransition to three
dimensionality.

'ALCO: (Cambridge University)

I have a coiient dnd a question. rhe first point is, that thc
:'irst slide (Figure I of your paper) you showEd appeared to ire to
oe a truly very low Reynolds number turbulent boundary layer with
R6 on the order of 500 rather than 5000 as you indicated. That is
probably worth looking at again. The second is that I tried a year
and a half ago to look at smoke filled turbulent boundary layers
that were generated downstream of the grid, in this case a bi-plane
jrid (,I/D = 4) with nine meshes across my tunnel. But, 1 couldn't
in fact come up with an edge to the boundary layer. What i did was
:o put the grid in a boundary which already was turbulent and smoke
.illed and looked downstream of the grid. The angle between the
,.-,oke and the wall was truly phenomenal and smoke got right across
,nu tn other side of my tunnel in about eight feet. I had a four

.rch thick boundary layer before it hit the grid. At that point i
;,,s gave up. So I am quite interested to know if you started out
,.th a turbulent boundary layer or if your grid was placed upstream
of the tripping point in the boundary layer?

:,RADSllAW:

We have looked both at the tunnel floor boundary layer and at
-re boundary layer on a flat plate with its leading edge some dis-

, downstream of the grid. I strongly recommend anyone who wants
z do experiments on freestream turbulence not to use the wind

, nne1 floor., because all sorts of funnies happen arouna, thv bottom.,
if trie grid. lhe main purpose of tite flow visualization experimer,'

siowed was to sort out this matter for ourselves. The;1.
,ertain conceptual advantages in using the tunnel floor oecause .I tnen don't have to worry about the possibility of traihsient si-~r -

.ions, pressure gradients and odd behavior near the leading edje of
,i flat plate in freestream turbulence. But in fact the hassles tha
.ou (Jet into with the flow around the bottom half of the grid crt
yite considerable whether the incoming boundary layers are Ia,,i'r.,
or turbulent. Things are worse if they are laminar, but in any Cat-

jou ere liable to find boundary fluid being drawn up behind the
vi--rtical bars of the grid.

[he two pictures in Figure I of my paper were at about the ,,:
k:, roughly 750 and for the purposes of this lecture I aci mereiy
ing that there was a fairly spectacular difference between them.
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KLINE: (Stanford University)

I want to say first that I always appreciate hearing what is
new, different and well-put, which, as usual, characterizes Peter
Bradshaw's presentation. I want to ask a question about the com-
parison between the Reynolds-Acharya* experiment and your data.
You explained it, but can you expand on that Reynolds number effects
a little bit, why you think you should get different results in the
two cases?

BRADSHAW:

I think I owe Bill Reynolds an apology for showing Figure 3 of
my paper in public before having a chance to show it to him pri-
vately, but it was made very shortly before I left. The basic point
is that the effect of the no-slip condition spreads out like a lami-
nar boundary layer. This is what the Uzkan-Reynolds scaling shows.
If the scale of the freestream turbulence at given X-position is
large compared with the thickness a laminar boundary layer would
have at the same X-position, then it is the normal component con-
straint, the "splat effect," that matters and you get a high Rey-
nolds number behavior. If however the experiment is done at so low
a Reynolds number that far downstream the thickness of a laminar
boundary layer would be about the same as the integral scale of the
freestream turbulence (as was the case in the Uzkan-Reynolds experi-
ment) then you get a monotonic decrease in u-component turbulence
to the wall.

KLINE:

So you are visualizing the effect of the incoming disturbance
acting on the wall as if it were then some superposed laminar bound-
ary layer. Is that the concept you are using?

BRADSHAW:

Just for purposes of exposition, yes. I am not claiming that
there is anything one would strictly call a laminar boundary layer,
simply that in the case of the no-slip condition, as distinct from
the no-transpiration condition, the effects propagate outwards as
viscous diffusion.

* Acharya, M. and Reynolds, W. C. "Measurements and Predictions of
a Fully Developed Turbulent Channel Flow with Imposed Controlled
Oscillations." Stanford M.E. Department Report TF-8, May 1975.
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CORRSIN: (Johns Hopkins University)

You said that you were embarrassed by the anisotropy of the
turbulence coming off your freestream turbulence generating grid
but that is the way that almost everyone finds it, so why be
embarrassed?

BRADSHAW:

I was embarrassed because we didn't have the time to put in a
contraction downstream of the grid to produce a better approximation
to isotropy.

LAKSHMINARAYANA: (Pennsylvania State University)

The difference between your picture and the Brown and Roshko
picture is obviously the way you visualize the flow. You introduce
smoke for visualization. Was the smoke injected uniformly?

BRADSHAW:

The smoke was injected as uniformly as we could manage. We
did in fact try some shadowgraph pictures in the single stream mix-
ing layer (which was the one that I showed first), and the results
certainly did not show the Brown and Roshko type of structure. I
am not, I think, prepared to go very much further than that, because
we had certain difficulties with the shadowgraph installation. I
grant that there is a difference between the two techniques: the
shadowgraph technique is much more likely to show up (and indeed to
emphasize) two-dimensionality. I think that I can claim that the
two-stream mixing layer pictures without freestream turbulence
(Figure 5 of the paper) did in fact have a pretty strongly two-
dimensional structure. It really is very spectacular to see these
things. Most of you have seen them in two-dimensional movies, but
seeing them in a three-dimensional flow is spectacular. The Brown
and Roshko structures undoubtedly exist and there are undoubtedly
cases where they are important but those cases do not include mix-
ing layers in "still air" or, I suspect, most industrial type mix-
ing layers in which at least one of the streams will be either
recirculating or, for other reasons, will have a fairly high turbu-
lence level.

LAKSHMINARAYANA:

Can you elaborate on the secondary flow you mentioned in con-
nection with wing-body combination flows?
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BRADSHAW:

The present case is the sort of secondary flow that occurs in
a long straight duct, the secondary flow of Prandtl's second kind,
which I prefer to call stress-induced secondary flow. On the other
hand, there is secondary flow of Prandtl's "first kind," the quasi-
inviscid secondary flow type which turbomachinery people are accus-
tomed to, and that is what one would expect to get (admittedly in
modest quantities) in horseshoe vortices around the front of the
thin wing. If we had used a thicker wing the results would have
been more spectacular. The point is that even this comparatively
weak skew-induced secondary flow completely obliterates the stress-
induced (long duct) type of secondary flow.

COMTE-BELLOT: (University of Grenoble)

I would like to come back to the channel flow. I think that
you said that you have investigated the merging of the two lateral
boundary layers with heat as a tracer. Could you describe how the
merging takes place? For example, what does happen to the super-
layers?

BRADSHAW:

I can't go into too much detail. Consider the boundary layer
that grows on the upper wall, and the secondary boundary layer that
grows on the lower wall of a duct. One of them is heated, the other
is not and one can detect the statistics of the interface between
the heated and unheated fluid. Is that the detail that you wanted
or did you want some more?

COMTE-BELLOT:

I would like to know more precisely how the two boundary layer
edges, which may be quite contorted, can fit together.

BRADSHAW:

The large eddies do seem to fit together, in fact they seem to
time-share. It is not really superposition. What in fact seems to
happen is a sort of "meshing" like gear wheels. In other words,
the large eddies from one side and the large eddies from the other
side reach a sort of d~tentg and establish their own spheres of
influence. The superlayers do not fit in detail. There seems to
be a thin region of low-intensity turbulence separating the large
eddies. This is a crude way of looking at it!



INTERACTING SHEAR LAYERS 61

WALLACE: (University of Maryland)

Could you tell me how far downstream, in terms of channel
thicknesses, this persists, this clear delineation of the outer
layers?

BRADSHAW:

We were able to detect it in our experiments to be about twice
the distance that the boundary layers took to meet.

WALLACE:

There does it die out or you can't detect it?

BRADSHAW:

No, it doesni't die out. I think it is true that, far enough
downstream in our experiment, small-scaee mixing would give uniform
temperature across the flow, but large--dy time sharing can be
regarded as happening indefinitely further downstream. The practi-
cal use of the superposition idea is that you can take a boundary
layer calculation method and by calculating both a "hot" shear
stress and a "cold" shear stress, you can calculate a duct flow
and we succeeded in getting very good results for fully developed
duct flow. So we regarded that as being a sort of post-diction if
you like, showing that the superposition hypothesis was not too far
out even indefinitely further downstream.

WALLACE:

If I understand correctly then, you see this sort of delinea-
tion right to the end of your channel?

BRADSHAW:

I think that if we introduced a new source of heat on one side
only, far downstream, then we would again see the same sort of
interface between one shear layer's fluid and the other shear
layer's fluid.

WALLACE:

What would then be the relationship between the traditional
parameters for determining fully developed channel flow and the
distance that this interface persists?

i
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BRADSHAW:

I think that one would simply define full development in the
conventional way. I think the interface persists indefinitely,
there are always two "boundary layers" on the two sides of the
duct, they've always got large eddies, the large eddies always
interact in a certain manner.

MILLER: (Naval Postgraduate School)

I was happy with this experiment until you drew it for us on
the board! Was it heated above or below and what was roughly the
Grashof number?

BRADSHAW:

We convinced ourselves that the buoyancy effect was negligible.
The flow speed was about 30 meters a second, the duct height was
5 centimeters, the typical temperature difference was on the order
of a couple of degrees Centigrade, the lower side being the hotter.
We did in fact do some checks: things like the unconditioned
intensity profiles were as symmetrical across the duct as one could
expect in this imperfect world.

NAGIB: (Illinois Institute of Technology)

As far as the case of the turbulence in the free shear layer,
did you see any pairing? We saw just a still picture and you did
not comment on the pairs you get.

BRADSHAW:

What seems to happen is that the usual transitional oscilla-
tions appear, but after, at the most, one or two stages of pairing
the freestream turbulence stirred the flow up to such strong three
dimensionality that any further vortex pairing resulted in the
double-helix type of pairing and then virtually an explosion into
turbulent flow. After the double-helix pairing occurs there is a
very rapid development of the small scale structure because there
are all sorts of horrible tertiary instabilities that occur.

CORRSIN:

I was going to comment on the doctoral dissertations of Don
Johnson (at Johns Hopkins) and Chris Nicholl (at Cambridge) back

_-I
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in the 50's, where they ran turbulent boundary layers over small

step functions in temperature in fully developed turbulence.*

The point is that the sharpening of the temperature jump inter-
face within the fully turbulent fluid takes place by mechanisms
which are closely analogous to the one that Kistler and I proposed
for vorticity interface at freestream with turbulence (NACA Report
1244, 1955). The only difference is that this one depends on the
surface stretch rate of the fluid elements as contrasted with the
line stretching rate. Except for this counterpoint, they are
analogous.

BRADSHAW:

If I can chip in myself I find one of the most interesting
things in all of this is that although the interface between a
boundary layer and unsheared freestream turbulence is all mixed
up and raggedy, as I showed in Figure 1, yet the time-sharing-cum-
superposition of two shear layers still seems to work rather well.
I am almost prepared to say that unsheared freestream turbulence
is likely to be more difficult than at least the simpler cases of
interacting opposed shear layers.

WILLMARTH: (University of Michigan)

Does the contaminant (smoke or heat) always follow the boundary
between the unsheared freestream turbulence and the sheared and
stretched turbulence at the edge that Corrsin is talking about?

fBRADSHAW:

The honest answer is that we don't know because we haven't
checked it. The slightly more helpful answer is that although the
Schmidt number for smoke is of order 30,000 the Reynolds number in
the practical cases (though not necessarily in our flow visualiza-
tion experiments) is probably high enough that the thickness of the
viscous superlayer is probably fairly small. Essentially if the
Schmidt number is large, the smoke is going to extend out to the
inside of the viscous superlayer, whereas, the vorticity fluctua-
tions are going to extend to the outside of the viscous superlayer.
This is a crude way of putting it but I think it is the most helpful.

D. S. Johnson, Jour. Appl. Mech. 24 (Trans. A.S.M.E., Vol. 79)
pp. 2-8, 1957.

D. S. Johnson, Jour. Appl. Mech. 26 (Trans. A.S.M.E., Vol. 81)
pp. 325-326, 1959.

C. I. H. Nicholl, Jour. Fluid Mech., 40, pp. 361-384, 1970.
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WALLACE:

Would you say, based on this picture then, that a fully
developed channel flow could be treated as a boundary layer with
a very high freestream turbulence?

BRADSHAW:

No, one couldn't. This is what I was commenting on a little
while ago. I think that in order for the superposition ideas to
work reasonably well one has got to have two interacting flows
which are roughly similar. I think one could probably stand a
factor of four or five on length scale, so maybe this idea would
still work for, say, a wall jet in which you have a fairly small
scale boundary layer interacting with a jet-like layer. But cer-
tainly when the turbulence structure of one layer is totally foreign
to that of the other they are not really likely to reach what I call
the d4tante very well.

NAGIB:

As far as the interaction between the base and the wall, we
made some measurements around a bluff body in a thick turbulent
boundary layer.* While trying to trace the horseshoe vortices
around the body we found out that the vertical velocity away from
the wall, and its fluctuations, and the cross correlation in the
Reynolds stress, between the vertical and the streamwise velocity,
are much more sensitive in detecting this kind of large scale vor-
tical motions compared to the streamwse velocity. I just wondered
if you wanted to comment.

BRADSHAW:

That is a very helpful comment. It will give us a little more
hope in making turbulence measurements. There are very few worth-
while measurements of the vw Reynolds stress in this business so
far, but we are just hoping to be able to make some. I think that
we may decide to go a little further upstream than the plane which
I showed where the secondary flow is really comparatively quick.

SOVRAN: (General Motors Research Laboratories)

How would you visualize this merging of boundary layers occur-
ring for an axisymmetric flow like that in a pipe?

Corke, T. C. and Nagib, H. M., "Sensitivity of Flow Around and
Pressures on a Building Model to Changes in Simulated Atmospheric
Surface Layer Characteristics," lIT Fluids and Heat Transfer
Report R76-1, 1976.
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BRADSHAW:

I think one probably has 360 boundary layers all merging, so
if 35 people from the audience (with 10 fingers each) would like to
come up and help me I will demonstrate. To give a serious answer,
I very much doubt if the superposition idea would be worth applying
in that case. I think probably the better way of dealing with a
pipe flow would be to try and regard the core part of the flow as a
turbulence module in its own right fed by energy from the surround-
ing highly sheared region. Also I doubt if it is worthwhile trying
to use the superposition idea for dealing with wing-body junctions,
because everything is dominated by the secondary flow (whether of
the first or the second kind).
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SOME PRELIMINARY OBSERVATIONS ON THE EFFECT OF INITIAL CONDITIONS

ON THE STRUCTURE OF THE TWO-DIMENSIONAL TURBULENT MIXING LAYER

D. Oster, I. Wygnanski,* and H. Fiedlert

School of Engineering

Tel-Aviv University, Tel-Aviv, Israel

ABSTRACT

The effect of a trip wire on the large structure in the mixing
layer is examined at moderately high Reynolds numbers. It is
observed that the trip wire may either enhance or inhibit the
spreading rate of the mixing layer depending on the velocity ratio
between the two streams. The effect of the trip wire extends down-
stream beyond the 1000 initial momentum thicknesses and is felt in
a region which is supposed to be self-preserving.

Correlation and spectral results indicate that the large struc-
tures in the mixing layer consist of quasi two-dimensional row of
vortices which are convected approximately at the average velocity
of the two streams. The abrupt change in the predominant wave
length of the correlations with downstream distance suggest that
vortices interact and possibly pair while being convected.

1. INTRODUCTION

The mechanism of growth of the two-dimensional turbulent mixing
region is not completely understood in spite of the fact that the
flow has been continuously investigated during the last decade. A
detailed discussion of the views held by many researchers on turbu-
lent mixing is presented in a volume edited by Murthy (1975) to which
the reader may refer.

* Present address Department of Aerospace Engineering, University
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'1 lcrmann Fdttinger Institut fiir Thermal und Fluiddynamik Tecknische

Universitit, Berlin.
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It is becoming increasingly evident, however, that the flow in
the turbulent mixing layer is dominated by a row of large vortices
which retain their basic structure over long distances. The indi-
vidual vortices in the row grow as they proceed downstream, but the
overall spread of the mixing layer is attributed largely to the
interaction between neighboring vortices which roll around each
other to form larger coherent structures. Since the initial observa-
tions on vortex amalgamations were made at low Reynolds numbers
(Winant and Browand, 1974, reported Re z 103) it is important to
establish that the mechanism persists at Reynolds numbers for which
viscous effects are considered to be negligible. Dimotakis and
Brown (1975) showed that the fundamental periodic structure of the
mixing layer is retaIned at Re = 3.106 but the observed moderate
pairing process of adjacent vortices is more often than not replaced
by a more violent interaction causing a momentary disappearance of
identifiable order.

In contrast to many other turbulent shear flows the mean proper-
ties of the mixing layer are not universally determined. Spreading
rates which are summarized in Figure 10 of Brown and Roshko (1974)
or in Table 1 of Champagne, et al. (1976) vary by as much as 30%.
Variations of this magnitude cannot be easily attributed to errors
of measurement, so there is reason to believe that the effects of
initial conditions persist over long distances downstream in spite
of the fact that the flow passes the general criteria of self
preservation (Townsend, 1956). Unfortunately, the effects of the
initial conditions were seldom examined whenever similarity of
velocity and intensity profiles was established in a given flow,
because theoretical consideration of such similarity imply that the
flow is independent of the initial conditions. Although Bradshaw
(1966) concluded that as many as 1,000 initial momentum thicknesses
may be required for the flow to become independent of its origin,
effects of initial conditions on spreading rate of the mixing layer
were not seriously considered nor documented.

When Wygnanski and Fiedler (1970) reported that their mixing
layer was spreading more rapidly than previously observed by Liepman
and Laufer (1947) they alluded to the possibility that a trip wire
which they had placed on the splitter plate was responsible for the
difference but it was Batt, et al. (1970) who actually proved that
the trip wire enhanced the spreading of the mixing layer between a
uniform stream and a quiescent surrounding fluid.

The ability to control the spreading rate of the mixing layer
by a simple device like a trip wire is interesting because it may
have numerous technological applications, furthermore a careful
assessment of the effects of the initial conditions on the growth
of the mixing layer may contribute to our understanding of the com-
plicated process at hand.
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2. EXPERIMENTAL APPARATUS

The apparatus which was constructed by Dov Oster consists of
two independent cascade blower tunnels discharging into a common
test section (Figure 1). The two streams are separated initially
by a splitter plate which extends upstream through the contraction
section and into the settling chamber. The splitter plate ends 20
cms downstream of the contraction allowing the two streams to
become parallel before mixing. The spatial velocity variations did
not exceed 1% outside the boundary layers and the turbulence level
in that region is approximately 0.2%. The trailing edge of the
splitter plate was milled out of an aluminum plate at an included
angle of 30. The test section is 50 cm high, 60 cm wide and 150 cm
long. For the series of tests reported here the velocity of the
lower stream was maintained at 15 m/sec while the velocity of the
upper stream was varied from 0 to 15 m/sec. Pressure gradients at
various velocity ratios were eliminated by adjusting the top and
bottom walls of the test section which are mounted on small screw
jacks. To test the effect of changing the initial conditions a trip
wire was placed on the surface of the splitter plate which faces the
high velocity stream, 10 n upstream of the trailing edge. The wire
was 1.6 an in diameter giving a Re based on the freestream velocity
and the diameter of the trip of 1.6 * 103.

In future experiments an orderly disturbance will be introduced
into the mixing layer by replacing the trip wire with a vibrating
ribbon or an oscillating small flap.

adjustable top
-r- and bottom plates

I E~~s st ion

674 cm 150 cm-

Figure 1. The Wind Tunnel.
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3. RESULTS AND DISCUSSION

Four velocity profiles plotted in the usual similarity coordi-
nates are shown in Figures 2a, b and 3a, b. (n = (y - yo 5)/(x - x,)
where yc.5 gives the y coordinate at which (1(y) - U)/(U2 - U) -

0.5 and xo presents the location of the virtual origin from the
trailing edge of the splitter plate). In Figure 2 the mixing occurs
between a single stream and a quiescent surrounding fluid (Ul = 0)
while in Figure 3 U/U2 = 0.4. Part a of each figure represents the
result without a trip wire while in part b, the trip was attached to
the splitter plate.

In all cases the velocity profile becomes self similar at dis-
tances larger than 500 mm from the discontinuity, and, yet, the
spreading rate of the mixing layer is affected significantly by the

Og10--~ x
300 0

o 700 C'

0.8 900 .
1100 o

U,
L- 0

NO TRIP

0.4

0.2 $9,

-0.1 0 0.1 17

] Figure 2a. The Mean Velocity Profile in Similarity Coordinates.
9 U1/U2 = 0, no trip.
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presence of the trip wire. The results are sumarized in Table 1
where db/dx =(Yo. - y0.,)/(x - x,) for which the subscripts 0.1
and 0.95 represent the elevations at which U - U1/U2 - U1 = 0.1 and
0.95 respectively and * represents the presence of a trip wire.
Note that the trip wire caused an increase in db/dx when U1/U2 

= 0.

These results are in good agreement with the previous findings of
Liepmann and Laufer (1947), Wygnanski and Fiedler (1970) and Batt,
et al. (1970), thus reducing significantly the possibility that the
large discrepancies in the reported spreading rates are due to
experimental difficulties. More surprising however, is the apparent
reduction in db/dx due to the presence of the trip at U1/U2  0.4
and 0.6.

When the results are plotted on Figure 10 of Brown and Roshko
(using the appropriate variables) the Abraniovich-Sabin relation

300

so Ll-Us 500
700 U

0.8* 900

* 1100 9

* U'-SO
Us

TRIP ON HIGH

VE LOCIT Y

0.4-

-om0 0.1 77

Figure 2b. The Mean Velocity Profile in Similarity Coordinates.
UU2 0, with trip wire.
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b = 0.18 U- U2 0.18 AU, + U2

fits the untripped data fairly well; on the other hand, the tripped
results define a curve of b vs. A which is concave upwards and, thus,
in contraction with models suggesting that it should be concave
downwards (see Brown & Roshko, 1974, pp. 787-789).

Preliminary measurements of the longitudinal component of the
turbulent intensity were made using a DISA 55D35 rms meter. Although
these results should be viewed with caution they indicate the effect
of the trip wire on the fluctuation intensity u'. Thus, while the
trip was responsible for an increase in u' at U1/U2 = 0 (see also
Figure 5 of Champagne, et al., 1976) it had the opposite effect at

1.0. x
O-t 300 0

UrL; 500 0
700 0

8 o.a 90
0 1100 o

NO TRIP

0.A

-0.050 0 0.050 V7

Figure 3a. The Mean Velocity Profile in Similarity Coordinates.
U1/U 2 - 0.4, no trip.
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LJ/U 2 
= 0.4 and 0.6. In general, u'/(U 2 - Uj) attains a constant

level independent of x (i.e., indicating self preservation) except
in the two cases marked by + for which a very slow dependence on x.
was detected. It is possible that for U1/U2 = 0.6 the tripped mix-
ing layer, which develops rather slowly does not attain its asymptotic
similarity within the test section, but the relatively low level of
u' at U1/U2 = 0 is attributed to the lack of low frequency response
of the rms meter.

The initial momentum thickness Oi which was calculated from
measurements at x = 10 mm is shown in Table I for all cases under
consideration. It indicates that the length of the test section is
adequate to attain self preservation according to Bradshaw's (1966)
criterion. A difficulty arises when one considers the two limiting
cases U1/U2 = 0 and U1/U2 0 0. In the first case only the boundary

1.0. X
O-U, 300

U--- , 500
700 .

0.8 900 A
1100 0

A

-Y0.4*U
TRIP ON HIGH
VEL"CIT Y

0.4

02--
9

-0.050 0 0.050 77

Fiyure 3b. The Mean Velocity Profile in Similarity Coordinates.
Uj/U2 = 0.4, with trip wire.
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Table 1

U1/U2 Oix0 YQ.5 YO db U

mm cm X0  dx U 1J

0 0.46 -15 0.049 0.178 0.140

0* 0.62 +1.5 0.058 0.215 0.146 "

0.4 1.13 -12 0.021 0.080 0.166

0.4* 1.35 -14 0.019 0.073 0.142

0.6 1.01 -18.5 0.013 0.050 0.166

0.6* 1.11 -28.7 0.014 0.043 0.13

t The asymptotic condition which is independent of x was not
attained.

layer on the high speed side of the splitter plate contributes to
6i, in the second the momentum thickness of the low speed boundary
layer has to be added. Thus, according to Bradshaw's criterion the
mixing layer may not become self similar when U1/U2 + 0 at any
reasonable distance downstream of the splitter plate, for the fixed
geometries under consideration. The discontinuous jump in 6i when
the second stream was added underlines the difficulty in applying
Bradshaw's criterion. If one considers an initial vorticity thick-
ness in a manner analogous to Birch and Egger's (1972) for the fully
developed mixing layer (see also Brown & Roshko, 1974), then

6Wj U2 -U1

Lyay- Y]max

where (U/MY)ma x represents the slope of the velocity profile at the
surface of the splitter plate near the trailing edge. If the two
boundary layers develop in the same manner on both sides of the plate
and are both laminar, they may be expressed by Blasius' solution:

'2 -0.332

v2 0.332
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This length scale remains continuous as the low speed stream U1 is
turned off, however, it presents a problem when U. + U, because the
initial wake component associated with ei is neglected. Thus, the
attempt to scale the effect of initial conditions by a single length
scale may be an oversimplification, in particular, when U1/U2 0 0.

The initial wake regime generated by the two boundary layerson opposite sides of the splitter plate is associated with a wake

characterized by discrete vorticity of opposite signs, and the decay
of the wake-like component of the initial mixing layer profile is
characterized by the cancellation of these vortices. This process
occurs at a different rate than the growth of the mixing layer vor-
tex street, which is essentially-characterized by discrete vortices
of the same sign.

Preliminary measurements of power spectra and auto-correlations
near the trailing edge of the splitter plate indicate that:

1. A strong peak in the spectrum at f = 225 Hz disappeared
after the trip wire was introduced at U/U 2  o.

2. The dominant peak in the power spectrum (at f = 460) was
not destroyed by the introduction of the trip wire at
U1/U2 = 0.4.

Additional correlations and power spectra of the fluctuations
existing outside the turbulent interface of the shear layer were
computed. Dimotakis and Brown (1975) argue that the surprisingly
high intensity of these fluctuations can only be associated with the
large organized structure within the shear layer. They also show
that the fundamental periodicity of the auto-correlation function is
consistent with the similarity scale (i.e., 0.4 < (ToUc/x-xo) < 0.5
where To is defined as twice the time lag to the first minimum of
the auto-correlation function and U5 is the convection velocity).
Consequently, the fundamental periodicity should be altered by the

introduction of the trip wire. We, thus, expected T* > To for
U1/U2 = 0 and T* < To for U1/U2 = 0.4 provided the convection
velocity remained unchanged by introducing the trip. The results
for U /U, = 0.4 are shown in Figures 4a, b, c and d. The fundamental
periodicity as defined above, indeed, increased with x but the
expected relationship between the tripped and untripped case did not
materialize. On the contrary, the untripped time scale is always
smaller for U/UA2 = 0.4 than the tripped time scale. Comparison of
Figure 4d with 4b indicates that the fundamental time scale made a
quantum jump of a factor of 4 which may be interpreted as indicating
that on the average two amalgamations take place between x = 700 imii
and x = 1100 mm. However, the power spectra shown in Figure 4 indi-
cate that the above definition of the fundamental periodicity may be
misleading because a fundamental frequency of fo = 11.5 Hz which
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Figure 4b. Auto-correlation and Frequency Spectra. U10U 2  0.4,
x= 700.
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Figure 4c. Auto-correlation and Frequency Spectra. U1/U 2 = 0.4,
x = 900.
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Figure 4d. Auto-correlation and Frequency Spectra. U1/1,12 =0.4,
x 1100.
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:orresponds to the largest time scale (Figure 4d) exists at all
values of x. It is more apparent far downstream because the high
frequencies in the power spectra disappear and, in particular, the
fourth harmonic frequency which is so dominant at x = 500 mm and
700 mm. The existence of the strong peak in the spectrum at f for
all values of x shown in Figure 4 may render the similarity scaling
invalid since it implies that a feedback mechanism associated with
the scale of the entire apparatus may exist (Uc/fo 1 meter).
Because the measurements in Figure 4 were taken at almost identical
values of n in both the tripped and untripped case (i.e., the co-
ordinate y was adjusted for a given x) the stronger intensity of
the spectral peak at fo in the tripped case may be interpreted as
a larger degree of order which is introduced by the trip at U1/U2

0.4. This effect is consistent with the measured ccrraiations in
Figure 4 and is in agreement with the findings near the splitter
plate. One may conjecture that the more orderly structure inhibits
the occurrence amalgamations of the large eddies, thus, reducing the
spreading of the shear layer. The auto-correlations on both sides
of the mixing layer are very similar in spite of the fact that the
local velocities differ by a factor of 2.5. The most plausible
explanation for this behavior is the existence of a single row of
large eddies moving with a unique convection velocity. Space-time
correlation measurements on the same side of the shear layer outside
the turbulent interface at constant r enabled us to calculate the
velocity at which the large structures are being convected. The
results are summarized in Table 2.

Table 2

X 2U c/Ul + U2) 2Uc/(Ui + U2)

U High vel. side Low vel. side

0.4 300 1.087 0.935

0.4 1100 1.059 0.955

0.4* 300 1.087 0.916

0.4* 1100 1.051 0.966

0 300 1.077

0 900 1.077

A

.1
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The convection velocity on the high speed side of the layer is
between 10% -15% higher than on the low velocity side; it also
decreases slightly with increasing x while the convection velocity
on the low speed side increases with x. A single row of eddies is,
thus, being slowly stretched and tilted while proceeding downstream.
This process may reflect itself in the continuous growth of the
fundamental time scale To which was discussed before. The trip wire
has no affect on these convection velocities. Cross correlation
measurements between two probes positioned on opposite sides of the
shear layer at the same x and z locations are shown in Figure 5.
The negative correlation at T = 0 indicates antisymmetric oscilla-
tions in the potential flow which are consistent with the shadowgraph
pictures of Brown and Roshko (1974). Finally, we addressed ourselves
to the question of the two-dimensionality of these large eddies by
measuring two point correlations of space and time in the z direction
on the same side of the shear layer (Figure 6a, b). Since the
shadowgraph technique used by Brown and Roshko averages in the span-
wise direction a possibility of helical motion and local interaction
may exist, but the results in Figure 6 indicate an incredible per-
sistence of quasi two-dimensional structures in the z direction.
The correlation at a given z actually increased at larger distances
from the splitter plate.

4. CONCLUSIONS

The spreading rate of the mixing layer is affected by the ini-
tial conditions at the discontinuity in spite of the fact that the
velocity and intensity profiles appear to follow the similarity
scaling. A trip wire placed on the surface of a splitter plate
enhances the spread of the mixing layer into quiescent fluid but
inhibits the spread of the mixing layer between two parallel streams
oF different velocity.

Preliminary correlation and spectral data indicate that the
large structures consist of quasi two-dimensional row of vortices
which are convected at approximately the average velocity of the
two streams. The trip wire has some effect on the degree of order
existing in those large structures.
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DISCUSSION

GODLSCHMIDT: (Purdue University)

Just two curves which relate to your comments, although not
directly to the topic of this symposium. In an earlier publication
(Goldschmidt, V. W. & Bradshaw, P., "Flapping of a Plane Jet,"
Physics of Fluids 16, 354 (1973)) we documented what we called a
flapping motion in a two-dimensional Jet. Two probes on opposite
sides of the jet showed a large scale motion which could be inter-
preted as a sideways "flapping" like motion. The frequency of that
motion was easily measured from time correlation measurements. In
his doctoral thesis J. Cervantes ("An Experimental Study of the
Flapping Motion of a Turbulent Plane Jet," Purdue University, 1976)
shows a curve which we now present as Figure 1. The ordinate is
the Strouhal number of this sideways flapping motion in terms of
the exit slot width and velocity. The frequency decreases gradually,
and is independent of the lateral location of the probes. There may
be an interesting relationship between this and your results.

The second curve is a result of work done a few years ago but
not yet published. This relates to the effect of upstream disturb-
ances on the widening rate. By placing screens of different types
before the final contracting nozzle (near the exit of the jet exit)
we were able to vary the turbulence intensity at the mouth. The
widening rate was then measured and compared with the turbulence
intensity. Figure 2 summarizes the results, taken in collaboration
with Peter Bradshaw at Imperial College. Now I'm not sure how this
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applies to flows being tripped on the side but it does indicate that
maybe we can relate things through the turbulence intensity near the
mouth, and furthermore, that there may be an upper bound to the
widening rate.

WYGNANSKI:

The trip wire was located near the discontinuity and introduced
quasi-sinusoidal oscillations in the flow. It did not produce a
fully developed turbulent boundary layer. The amplitude of the os-
cillation was very small.

Introducing two trips on each side of the splitter plate did
not alter the resulting spread of the shear layer significantly. I
do not feel that the level of turbulent intensity is so important.
Patel showed that the intensity has to exceed 0.6% before any effect
became noticeable, so probably one can change the spreading rate by
introducing a small perturbation at the right place and the right
frequency.

LAUFER: (University of Southern California)

Just a short remark in connection with the last two presenta-
tons. Fred Browand at USC is looking into the question of the
effect of the initial conditions in the geometry of the two dimen-
sional mixing layer and came up with exactly the same conclusion
although his measurem.nts were not as extensive as those presented
by Dr. Wygnanski. Na-nely, with the two stream mixing condition the
trip actually decreases the mixing rate further d&wnstream. It
might .-so be interesting for Mr. Bradshaw to note that for the case
of no fluid velocity cn one side, the two dimensionality of these
structures is in fact still present. We find this to be the case in
the initial region of a circular jet also. In fact we made extensive
measurements of the type indicated by Dr. Goldschmidt. We found
strong correlation, provided one does the correlation conditionally,
past the potential core (in a circular jet) when one correlated
across the jet, again indicating the presence of large structures
that have certain azimuthal phase relations.

BRADSHAW: (Imperial College)

I will believe almost any ill of a circular jet because there
are slqch good opportunities for pressure disturbances to correlate
things around circumference at the mouth of the jet. I wonder if I
could ask John Laufer whether the frequency of the oscillations
which he observed decreased roughly as 1 over distance downstream?

LAUFER:

Yes, it did decrease approximately in that fashion.
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BRADSHAW:

So that was more or less genuine turbulence as opposed to just
an oscillation of the jet as a column.

LAUFER:

We measured it only to four diameters, and at that station it
was definitely turbulent.

COLES: (California Institute of Technology)

Tell me if I am correct in my impressions. You measured the
flow 120 centimeters downstream, at which station I would expect
your mixing layer to be 25 to 30 centimeters wide to the point of
zero intermittency. This is done in a channel 60 centimeters wide.
I have a reservation, and I hope that you will be able to remove it;
but this is not what most of us think of as a well-constructed two-
dimensional experiment. Are you absolutely certain that there is no
effect of the side walls on the whole problem of the variation of
spreading rate with tripping device?

WYGNANSKI:

In the two stream case (U1/U2  0.4, say), I could say with
very little reservation that I am certain, because in this case the
mixing layer is much more narrow. Typically, I meter downstream, it
is only 10 cms wide; yet the effect of the trip is noticeable. In
the one stream case (U1/U2 = 0) the size of the test section becomes
marginal, but if the flow is already self preserving 50 cms down-
stream, when the width of the mixing layer is still small (i.e.
comparable to the width of the two stream mixing layer 120 cms down-
stream), one may conclude that the effect of the side wall is not
important.

COLES:

But you made no measurements off the lateral plane of symmetry?

WYGNANSKI:

No, no surveys.



ON THE DEVELOPING REGION OF A PLANE MIXING LAYER
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ABSTRACT

Some preliminary results are presented from an experimental
study of the effects of initial conditions on the development of
a plane mixing layer. It is concluded that, for sufficiently high
Reynolds numbers, the spreading rate does become independent of
initial conditions. When the initial boundary layer is turbulent
this may require a Reynolds number of about 2 x 106. The spreading
rate and the turbulence structure in a helium/air mixing layer is
also briefly discussed.

1. INTRODUCTION

The plane turbulent mixing layer formed between two uniform
and initially parallel streams is a flow of considerable importance,
and it has been extensively studied. Most of the work reported in
the literature, however, concernz the fully developed, or what is
purported to be the fully developed region of the flow. There is
very limited detailed informaltion available on the initial develop-
ing region, or on how the extent of this region depends on the
properties of the flow at the separation point.

Much of the available information on the effects of initial
conditions is contained in a paper by Bradshaw (1966). Using the
near field of a 2.0 in. jet, Bradshaw showed that when the initial
boundary layer is laminar, the Reynolds number, based on the dis-
tance required for the flow to become fully developed, is approxi-
mately constant and equal to about 4 x 105. When the initial
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boundary layer was turbulent, however, the flow did not appear to
become fully developed within the quasi-plane region of the mixing
layer. Therefore, the conditions required to achieve a fully
developed mixing layer, in the practically important case of a
mixing layer developing from an initially turbulent wall boundary
layer, remained to be determined.

More recent work by Wygnanski and Fiedler (1970) and by Batt
(1975) shows that the spreading rate of a mixing layer appears to
increase by about 20% when the initial boundary layer is tripped.
In view of Bradshaw's earlier results one might suspect that these
flows were not fully developed. Yet, a detailed study of the turbu-
lence data is inconclusive. In any case, it is clear that the
spreading rate of a mixing layer is not independent of initial
conditions for the Reynolds numbers generally used in those studies.
Champagne, Pao and Wygnanski (1976) speculate that a truly universal
self-preserving flow may not be achievable in practice. They con-
clude, however, that based on the available experimental data no
definitive resolution of the problem is possible. This is similar
to the conclusion reached by Birch and Eggers (1973). Nevertheless,
the spreading rate obtained by Liepmann and Laufer (1947) in their
classic study is still widely regarded as being the most reliable
estimate for the spreading rate of a fully developed mixing layer.
This spreading rate, which corresponds to a spreading parameter a
of 11.0, is also in good agreement with the results obtained by
Bradshaw (1966).

In art effort to resolve some of the problems discussed above,
measurements were taken in a plane mixing layer developing from an
initially turbulent wall boundary layer. The work reported here is
a preliminary discussion of some of those results.

2. EXPERIMENTAL APPARATUS

To minimize spurious Reynolds number effects, which are be-
lieved to have plagued earlier work, the apparatus was designed to
run at as high a Reynolds number as possible. The apparatus is
shown diagrammatically in Figure 1. The test section was 2.0 ft
long and the primary stream at its entrance was 8.0 in. wide by
3.0 in. high. Air entrained by the mixing layer was supplied
through a porous wall at the bottom of the test section. To form
a heterogeneous mixing layer helium could be substituted for air
as the entrainment fluid. This flow was adjusted to give a con-
stant static pressure within the test section. For the experiments
to be discussed here there was no flow in the secondary stream.

At a freestream velocity of 300 ft/sec the Renolds number,
based on the test chamber length, was about 4 x 10. Air was
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Figure 1. Schematic diagram of apparatus.

supplied from a bank of high pressure storage bottles and the
available flow was sufficient to nearly double the Reynolds quoted
above.

3. EFFECTS OF INITIAL CONDITIONS

For the first series of experiments a trip wire, 0.020 in. in
diameter, was placed 3.0 in. upstream of the end of the splitter
plate (Figure 2A). The boundary layer at the separation point was
turbulent and was approximately 0.25 in. thick. A number of mean
velocity profiles were taken using a total pressure probe, a single
hot film probe, and a split film probe. The nominal freestream
velocity U1 was 300 ft/sec.

The results, shown in Figure 3, indicate an asymptotic spread-
ing rate, dL/dX of 0.119. The width of the mixing layer L is de-
fined here as the distance between the points at which the velocity
U is given by (U/UI) 2 = 0.9 and (U/U1)2 = 0.1.

When the velocity was reduced to 150 ft/sec, the spreading
rate, both in the developing region and in the fully developed
region, was essentially unchanged. Normalized mean velocity pro-
files, taken 18 in. downstream of the end of the splitter, for the
two freestream velocities, are shown in Figure 4. This suggests
that the flow under these conditions is largely Reynolds number
independent.

The asymptotic spreading rate quoted above corresponds to a
spreading parameter a of approximately 11.0. Although this
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Figure 2. Splitter Plate Configurations

spreading rate agrees well with that obtained by Liepmann and
Laufer (1947), it is about 20% lower than previous measurement for
mixing layers developing from initially turbulent boundary layers.
Note, however, that even at the lower velocity used here, the Rey-
nolds number is still substantially higher than that generally used
for mixing layer studies: approximately four times that used by
Batt (1975) and by Wygnanski and Fiedler (1970). If, in the present
experiments, data for only the first 10 in. were considered, the
width of the mixing layer would still appear to be increasin line-
arly. But the spreading rate would be about 20% higher. Thi.s
suggests that the high spreading rates, found previously for flows
developing from initially turbulent boundary layers, were probably
caused by the use of too low a Reynolds number; and that the mixing
layer does achieve an asymptotic spreading rate, independent of
initial conditions, if the Reynolds number is sufficiently high.

To investigate the effect of initial boundary layer thickness,
a boundary layer scoop was fitted to the end of the splitter plate
(Figure 2B). At a freestream velocity of 300 ft/sec, this reduced

I_
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Figure 3. Spreading rate for mean velocity profiles; initial
boundary layer thickness 0.25 in.
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the initial boundary layer thickness to approximately 0.10 in.
The boundary layer at the separation was still turbulent. Again,
the flow appeared to require 10 to 12 in. to become fully developed
(Figure 5). A similarity plot of the mean velocity profiles in the
fully developed region of the flow is shown in Figure 6. Similarity
plots of the turbulence components are shown in Figures 7 and 8.
Both sets of turbulence data collapse well to single curves and show
very little scatter. These data were taken with a split film probe
and were taken primarily to evaluate the probe for high intensity
turbulence measurements. As such, their reliability cannot be guar-
anteed at present, although they do appear to be within about 10%
of hot-wire data taken previously in similar flows.

In contrast to the results found by Bradshaw (1966) for flows
developing from laminar initial boundary layers, the present results
seem to indicate that the developing reglq:,, is independent of both
Reynolds number and of initial boundary layer thickness. Since
turbulent flows tend to become Reynolds number independent at high
Reynolds numbers, the former result is not too surprising. The
reason for the absence of a change in the length of the developing
region with a change in the initial boundary layer thickness is
less obvious. In a fully turbulent flow the developing region

3.0

dL!dx .124

2.0

0

1.0

32 4 6 8 10 12 14 16 18 T0

DISTANCE DOWNSTREAM FROM SPLITTER (in.)

Figure 5. Spreading rate for mean velocity profiles, initial
boundary layer thickness 0.10 in.
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Figure B. Similarity plot of turbulence component.

should scale locally with the width of the mixing region. There-
fore, close to the end of the splitter plate the flow must depend
on the initial boundary layer thickness. dowever, the total dis-
tance required for the flow to become fully developed will depend
on some average of the width of the mixing layer over the develop-
ing region. If the initial boundary layer is thin compared with
this average, the total distance required for the flow to become
fully developed does not appear to be sensitive to changes in the
initial boundary layer thickness. Obviously, this can only be
true if the initial boundary layer is relatively thin, probably
not more than 0.5 in. When the initial boundary layer is thick
we must expect that it will have a greater influence on the dis-
tance required for the flow to become fully developed.

4. HELIUM/AIR MIXING

Some shadowgraphs of a mixing layer in the same apparatus,
when helium was used as the entraln, mit fluid, are shown in
Figure 9. The objective here was to study the effect of large
density differences on the spreading rate of a plane mixing layer
at Reynolds numbers higher than those used in previous studies.
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A secondary objective was to obtain additional information on the
large eddy structure in such flows. Note that the two halves of
the photograph shown in Figure 9A were not taken at the same time.

The results obtained to date support the conclusion, reached
by Brown and Roshko (1974), that large density gradients do not
have a large effect on the spreading rate of a free mixing layer.
Certainly it seems clear that the large changes in spreading rate
noted at high Mach numbers (Morrisette, Birch and Wagner, 1973)
cannot be attributed simply to the associated density changes
across the mixing layer.

The developing region of the flow, the first 10 in. or so,
shows a well defined large eddy structure which appears to be
similar to that observed by Brown and Roshko (1976). There is,
however, significant variation between the shadowgraphs shown in
Figure 9, all taken under the same flow conditions, and this sug-

;ts that the structure is quite unsteady and intermittent. As
.he flow develops the structure appears to become weaker or more
three-dimensional. Remember that a shadowgraph integrates over
the width of the apparatus, in this case 8 in., so that a well
defined large eddy structure will not be visible unless it has
significant two-dimensionality. A superposition of two or three
of these shadowgraphs shows little evidence of a large eddy struc-
ture. Brown and Roshko (1974) illustrate a similar effect. But,
since the aspect ratios of these eddies decrease as we move down-
stream (the diameters of the eddies increase as the mixing layer
spreads while their lengths are constrained by width of the appa-
ratus), the shadowgraphs should show an increasingly stronger and
better deflned structure as the distance from the splitter increases,
if the relative strengths of the eddies and their degree of two-
dimensionality remained the same. Clearly this does not happen.
Yet, the shadowgraphs did occasionally show strongly two-dimensional
disturbance in the fully developed region of the flow.

A full discussion of the evidence for a well defined large eddy
structure in mixing layers is beyond the scope of the present paper.
This has, in any case, been tackled recently by Chandrsuda, Mehta,
Weir and Bradshaw (1976). Suffice it to say that the present results
suggest that a large eddy structure does persist in the fully devel-
oped region of the flow and that it can at times show considerable
two-dimensionality. But this structure occurs intermittently and,
in the present author's opinion, is not necessarily inconsistent
with the rather small lateral correlations generally obtained from
long time average measurements in such flows.

2
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5. CONCLUSIONS

The development of a free mixing layer from an initially
turbulent wall boundary layer appears to resemble a mixing layer
developin9 from a laminar boundary layer in that the spreading
race, and presumably also the shear stress, initially overshoot
their equilibrium values and then slowly relax to their asymptotic
state farther downstream. A more detailed discussion of the relax-
ation of a perturbed mixing layer is given by Castro and Bradshaw
(1976). When the boundary layer is turbulent, the initial increase
in spreading rate is fairly slow, so that the total distance re-
quired for the flow to become fully developed is greater than if
the boundary layer was initially laminar. Turbulent initial bound-
ary layers should, therefore, be avoided if the objective is to
generate a fully developed mixing layer.

Based on the results at present available, which are admittedly
limited, it appears that, for an initially thin turbulent boundary
layer and at a sufficiently high Reynolds number, the distance re-
quired for the flow to become fully developed is largely independent
of both the initial boundary layer thickness and of the flow Rey-
nolds number. As the initial boundary layer becomes thicker it is
expected that it will have a more pronounced effect on the develop-
ing region. The exact nature of this dependence is at present un-
clear.

Shadowgraphs of the mixing layer formed between air and helium
streams indicate that the effect of large density gradients is in-
sufficient to explain the reduced spreading rates observed in high
Mach number mixing layers. A large eddy structure similar to that
observed by Brown and Roshko (1974) is observed in the developing
region of the flow. A strongly intermittent and more three-
dimensional structure was also observed in the fully developed
region. This structure does not appear to lead to spreading rates
which differ from those expected for a fully developed mixing layer
(assuming that a similar structure exists in the homogeneous mixing
layer), nor does it seem to be inconsistent with available hot wire
data.
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THE EFFECTS OF AN EXTERNAL TURBULENT UNIFORM SHEAR FLOW ON A
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ABSTRACT

A summary is presented of experimental results on the effect
of an external uniform shear flow on a turbulent boundary layer.
Both positively and negatively sheared external streams are con-
sidered and their influence on the boundary layer is compared with
that of an external stream with zero shear but with a turbulence
level comparable to that for the sheared freestream.

1. INTRODUCTION

The effects of freestream turbulence on the structure and
development of turbulent shear flows (the turbt lent boundary layers
in particular) have been discussed in the literdture and in papers
that have been presented at this Workshop. In this paper, we in-
vestigate the effect of an external turbulent uniform shear flow on
the growth of a turbulent boundary layer. The main motivation for
adding the extra complication of a non-zero shear to that of a non-
zero external turbulence level stems mainly from a hope of gaining
further insight into the turbulence structure of a turbulent bound-
ary layer by applying yet another type of perturbation at its bound-
ary. The details of the present investigation have been presented
elsewhere (Ahmad et al., 1976). Here, we will summarize briefly
the main findings of our experimental work and present some new
results that are relevant to the region of interaction between the
external shear flow and the turbulent boundary layer.

101
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2. EXPERIMENTAL CONDITIONS

Only a brief description of experimental conditions is given
here as details of the wind tunnel and uniform shear flow generator
have been reported elsewhere (Mulhearn and Luxton, 1975 and Ahmad
et al., 1976). The shear flow generator consists of a grid of non-
uniformly spaced steel rods (3.2 mm square cross section) situated
at the entrance of the working section of the tunnel. At 76.2 cm
downstream of the grid a 6.4 mm hexagonal cell honeycomb, of 23 cm
depth, is inserted to impose a uniform length scale on the shear
flow. Two different grids are used to obtain reasonable approxima-
tions to constant velocity gradients X (= dU,/dy) of +6s-1 and
-6s-1 respectively,

The characteristics of the positively sheared flow have been
studied in detail (Mulhearn, 1971) and found to be in good agreement
with those obtained by Champagne et al. (1970) and those reported by
Corrsin (1976) at this Workshop. The boundary layer investigation
is made at a sufficiently large distance downstream of the honey-
comb* over a range of x for which the external uniform shear flow
may be considered to be quasi-homogeneous. Turbulent energy budget
measurements in the uniform shear flow indicate that the diffusion
term, inferred by difference, is negligible. For X = +6s1, the
advection is of the same sign but of smaller magnitude than the
dissipation term. For X = -6s-1, the advection is of the same sign
and of somewhat larger magnitude than the production term. When X
is equal to zero (i.e. when the grid is removed), the advection is
in close balance with the dissipation term.

For all three values of X considered here, the freestream

turbulence level Tu (E U1 /Uw, where i, is the rms level of free-
stream u fluctuations and Uw is the value of the linear velocity
profile extrapolated to the wall) is about 1.5%. For X = ±6s-1 ,

the freestream shear stress -(uv),, is equal to about one-tenth the
wall shear stress Tw, while the magnitude of X is of the same order

as rw/6, 6 being the nominal boundary layer thickness. For X = 0,

+6s"' and -6s-' , the measured turbulence integral length scale is
approximately equal to 20%, 60% and 80% respectively of S.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Mean velocity profiles for X = ±6s-1 are shown in schematic
form in Figure 1. A noticeable feature of the X = +6s-1 profile

* The flow immediately downstream of the honeycomb is largely
dominated by the decay of turbulence generated by the honeycomb.
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Figure 1. Schematic velocity profiles for X > 0 and X < 0.

is the appearance of a region of constant mean velocity U in the
outer part of the layer, prior to the merging of boundary layer and
external shear flow profiles. In the inner region of the layer,
the universal viscous sublayer and logarithmic profiles are unaf-
fected by the presence of non-zero Tu or X. Although the reason
for the constant U region in the outer layer when X = +6s-1 is not
well understood, the plateau in U is consistent with the observed
zero shear stress (Figure 2). In Figure 2, the difference between
the local and external Reynolds shear stress is normalized by Tw
and plotted against y/A, where A is the Clauser thickness parameter,

Co-defined as A = j (U1 - U) dy/T . For a given value of X, the Rey-

nolds shear stress defect in the layer may be considered to be self-
preserving in that profiles shown in Figure 2 do not depend on the
actual value of x, at least over the range of streamwise distances
considered in the experiments. For the positive shear flow, Figure
2 shows that uv first goes to zero in the outer part of the layer
and then increases to reach the constant -Iuv)- value of the ex-
ternal stream. In the "wake" part of the layer, the shear stress
is significantly larger than in the corresponding part of the layer
with no external shear flow. On the other hand, the Reynolds shear
stress distribution in the "wake" region of the negatively sheared
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layer is smaller than in the zero shear case. R.M.S. u and v
intensities (not shown here) are in qualitative agreement with the
trends exhibited by the Reynold- shear stress in the "wake" region
of the boundary layer for the three values of X. When X is zero,
the position at which the local shear stress goes to zero tends to
increase, proportionately to A as Tu increases. The trend of the
present results is consistent with that shown by distributions
measured by Kelbanoff (1954) and Charnay et al. (1972a). It should
also be noted that values of cf (= TW/U2, the skin friction coeffi-
cient) obtained for X = 0 are in good agreement with Bradshaw's
(1974) result that (cf - cf )/cf m Tu, cfo being the skin friction

coefficient appropriate to the case Tu = 0. Positive and negative
values of X lead to respective increases and decreases in
(Cf - cf )/cf in relation to the X = 0 case. This trend in cf

appears to be consistent with the results of Figure 2.

A useful study of the interaction between a turbulent but
shearless freestream and the boundary layer was made by Charnay
et al. (1972b, 1974) who slightly heated the plate on which the
layer developed and used the passive temperature contaminant to
distinguish between the rotational velocity fluctuations in the
boundary layer and those associated with freestream turbulence.
Charnay et al. observed that the standard deviation of the turbu-
lent/turbulent "interface" at the edge of the layer increased
significantly as the freestream turbulence level was increased.*
This result is consistent with Bradshaw's (1976) flow-visualization
photograph of a highly re-entrant interface of a mixing layer with
an effectively high freestream turbulence. It is also consistent
with measurements by Antonia et al. (1975) of an internal thermal
layer, completely immersed within a fully turbulent boundary layer,
that is subjected to a step change in surface heat flux. The
standard deviation of the thermal interface is as high as 50% of
the thermal layer thickness at small distances from the step, where
the external local turbulence intensity of the boundary layer is
quite high.

In the present investigation, the boundary layer fluid was
not tagged by heat but some information about the interaction be-
tween the boundary layer and the external shear flow has been
obtained with measurements of the skewness and flatness factors
of velocity2fluctuations. Figure 3 shows the flatness factor
Fu =_ (u7/u2 ) of u fluctuations at the same value of x but for the
the three values of X considered here. The distribution of Fu for
A = 0 shows that the maximum value of Fu is considerably reduced

* The boundary layer growth was correspondingly increased as Tu
increased. Wigeland and Nagib (1974) found that the growth of
a cylinder wake was also increased as Tu was increased.
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Figure 3. Flatness factor of u fluctuations.

by the presence of a relatively small freestream turbulence level.
For A 0 0, the maximum value of Fu is somewhat larger, especially
when X < 0. At large values of y/A, Fu and Fv (Figure 4) are close
to the Gaussian value of 3. In Figure 5, Su and Sv are found to
approach the Gaussian value of zero for y/A > 1. The maximum value
of Fv for X < 0 is significantly larger than the maximum value for
A > 0, which is itself larger than that corresponding to A = 0.
This trend is also supported by results of the skewness (- vT/2)
of v, shown in Figure 5. The results of Figures 3 to 5 appear to
suggest that differences between turbulence characteristics of the
external shear and boundary layer flows are more marked when X < 0
than for the other two cases. This is not unreasonable in that the
negative sign of the external shear should effectively inhibit if
not destroy any boundary layer "eddies" with opposite mean shear.
Differences between the maximum values of Fu and Fv for the cases
A > 0 and A = 0 seem in qualitative agreement with the maximum
values of Fu and Fv reported by Antonia and Luxton (1974) at the
edge of an internal layer that propagates inside a turbulent bound-
ary layer downstream of a step change in surface roughness.
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DISCUSSION

NAGIB: (Illinois Institute of Technology)

On the length scale graph, I couldn't see the left-hand side.
Was it normalized with some parameter or was it actually in physical
size?

ANTON IA:

It should have been normalized by 6. I should say also that I
think the external length scale of Charnay et al. (1972) was in the
range 1 to 4 boundary layer thicknesses. In fact, the external
length scale range for all available measurements in the literature
is about 0.256 to 46.

FA.CO: (Cambridge University)

I was -interested in your flatness factors which in normal shear
layers tend to get very large in the outer intermittent part of the
layers. Would you comment on the fact that yours did not seem to
increase at all as you got near the outer edge?

ANTONIA:

That is the effect of freestream turbulence.

FALCO:I

It certainly confuses the boundary of the shear layer, and sug-
gests that the flatness factor cannot be used to distinguish between
grid turbulence and shear flow turbulence, an unexpected result.

ANTONIA:

You can see this clearly in Charnay et al.'s (1974) results.
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BUSHNELL: (NASA Langley)

Do you have any feel for what the effect of a more narrow band
disturbance would be? This is fairly wide band stuff that you are
putting on, if I understand correctly.

ANTONIA:

We certainly have not done anything on that. I am not sure who
in fact has looked at this. Karlsson (J. Fluid Mech., Vol. 5, p.
622, 1959) looked at a boundary layer with a sinusoidal fluctuation
in freestream velocity. Does Luxton know?

LUXTON: (University of Adelaide)

I can't think of any off hand. I think that Star, Corrsin, or
was it Clauser, put a cylinder into a boundary layer so that it had
a periodic wake. Perhaps the work at Illinois Institute of Tech-
nology by Morkovin's group would be relevant? I am sorry that I
can't shed more light on this.

CORRSIN: (Johns Hopkins University)

I know of none. Professor P. T. Fink of the University of New
South Wales may know if anything was written up.

BRADSHAW: (Imperial College)

Some recent work was done under A. D. Young's supervision* on
the turbulent boundary layer below an oscillating freestream. This
was a traveling wave type of oscillation, as opposed to Karlsson's
standing-wave oscillation but again the effect on the turbulence
structure was pretty small. Wavelengths were many times the bound-
ary layer thickness which is why the effects were small.

ANTONIA:

I think that in Karlsson's case, the length scale was about 5

or 6 times the shear layer thickness.

FALCO: (University of Cambridge)

In one of the slides with laminar positive you showed us a time
averaged Reynolds stress which went negative for some region near
the outer part of the layer. Is that correct?

* Patel, M. H. Proc. Roy. Soc. A (in press, 1976)

A
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ANITONIA:

Yes, we subtracted -(uv),, the constant Reynolds shear stress
cf the external stream, from the local Reynolds shear stress.
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ABSTRACT

A volume flow visualization technique from which information
in selected planes can be obtained is used to study the difference
in the instantaneous turbulence structure of jets with and without
swirl. This technique exhibits large scale motions as well as
microscale motions. It was found that the large scale vorticity
of the swirl resulted in azimuthal asymmetries in the large scale
motions, whict. are associated with the formation of more Reynolds
number dependfnt microscale size eddies in which there is a high
concentration of vorticity. These eddies look like vortex rings.
A model of the structural differences is given in analogy with the
flow in the wdke region of turbulent boundary layers.

INTRODUCTION

This paper discusses the differences between the instantaneous
turbulent structure found in a swirled turbulent jet from that found
in an un-swirled turbulent jet. The observations are for low Rey-
nolds number jets. We are beginning to understand some aspects of
the instantaneous turbulent structure in unswirled jets, but prac-
tically nothing is known about instantaneous turbulent structure
changes that result when a jet is swirled. Since the Reynolds
stress for moderate swirl (i.e., swirl with no mean recirculation
region) can be three times the value found in unswirled jets, and
it can be ten times the unswirled jet values for strongly swirled
jets, it was expected that visual observations would reveal clearly
defined changes in jet structure. A model which emphasizes the
changes is presented. Swirl is usually used as an aid to mixing,
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and thus we will consider both large scale and microscale eddies.Since microscale eddies are Reynolds number dependent they will be

a larger fraction of the overall shear layer width in low Reynolds
number flows, and thus more easily examined. At the lower end of
the Reynolds number range covered in these experiments 5,000 < RD <
20,000 the microscale eddies were a large fraction of the swirled
shear layer width.

RESULTS

The basic result is that the large scale vorticity of the
swirl results in azimuthal asymmetries in the large scale motions,
which are associated with the formation of more Reynolds number
dependent microscale eddies which look like vortex rings. We call
these Typical Eddies.

Typical Eddies are a fundamental feature of low and moderate
Reynolds number turbulent boundary la ers, and have been extens-
ively studied by Falco (1974, 1976a,b). They form as a result of
a re-organization of vorticity which has been diffused or convected
away from the wall. In boundary layer flows they are responsible
for the intermittent peaks of instantaneous Reynolds stress observed
in the outer part of the layer, and in fact they are responsible for
a large fraction of the Reynolds stress in the outer part of low
Reynolds number boundary layers. Our observations of similar data
in swirled and unswirled jets suggest that a similar reorganization
takes place of the additional vorticity introduced by the swirl,
which results in more of the vortex ring like Typical Eddies.

-C

By using a fog of tiny oil droplets, and illuminating only a
slice of the visualized shear layer, we can see the internal struc-
ture of swirled and unswirled jets.

Figure 1 shows photographs of jets issuing into still air

taken with the slit light plane technique. Both jets have the same
reservoir pressure. The top photo is of an unswirled jet, and the
lower photo shows a swirled jet with swirl angle about 45 degrees
(i.e., S = 1). Swirl was generated by a "vortex whistle" with 4

tangential inlets similar to that used by Chanaud (1965). The
vertical lines in the top view are spurious optical effects due to
the use of a poor quality lens, and don't represent flow structure.
Reviewing the structure of the unswirled jet, it emerges laminar,
and undergoes the now well documented "transition" process to a
turbulent jet. The slit lighting technique would reveal smoke free
regions or regions of low smoke concentration that mark the bound-
aries of large scale motions if they extenled into the center of
the jet. We can see these gradients beginning to form by aboutfive diameters. Furthermore, examining one of the bulges we see
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b

Figure 1. Photographs of swirled and unswirled jet. Exit diameter
and tank pressure are the same.
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that it contains much finer scale structure. Thus the large scale
motions don't strongly influence the fluid near the center of this
jet until about 5 diameters (the end of the "potential core").
However, even after the end of the potential core, we see that the
flow still appears laminar like along the axis. Looking at the
swirled jet we are immediately impressed by the much larger spread,
and looking at the internal structure, we see that it has become
turbulent at the jet exit. By 5 diameters we see extensive smoke
free or low concentration regions in the smoke. Thus ambient fluid
has been entrained into the center of the swirled jet. If we look
closely at the regions of high smoke concentration we can see that
they look like cuts through laminar vortex rings, which are of
course highly distorted. These vortex ring like eddies, or Typical
Eddies, are seen to exist across the whole of the swirled jet, and
it is clear from the shapes of the regions of smoke free ambient
fluid which have penetrated deep into the jet that the entrainment
of this fluid is closely connected with the Typical Eddies. These
Typical Eddies are larger than those found in the unswirled jet.

We are going to concentrate on these Typical Eddies. The
reason for this is that it appears that the mixing phenomena may
be predictable for scales of motion equal to and smaller than
Typical Eddies, which have been identified with the Taylor micro-
scale in wakes and boundary layers (see Falco, 1974, 1976b). If
Typical Eddies are highly distorted vortex rings, then equations
for vortex ring growth, and understanding of their internal diffu-
sion processes combined with knowledge of their frequency of
occurrence, should establish the limiting rates of mixing. This
is true because the rate of molecular diffusion which occurs at
Typical Eddy/vortex ring boundaries is the highest in the flow
field, simply because the internal rotation of a vortex ring keeps
the gradients of vorticity at the ring boundaries sharp and there-
fore results in a high rate of diffusion. This model of a vortex
ring has been developed by Maxworthy (1972).

For the Typical Eddy, this enhanced diffusion rate occurs
only during and shortly after its formation. Once the Typical Eddy
has formed, and this may take one or two shear layer thicknesses,
we observed it to be highly stable, and in boundary layers for
example, it can be followed for five to ten shear layer thicknesses.
Thus the volume of fluid concerned, after the early stages of the
event, will essentially be isolated from further enhancement of
diffusion, until %he coherency of the Typical Eddy is destroyed.
The rate of mixing will be increased only by producing more Typical
Eddies/vortex rings (in this model), and preferably decreasing the
scale of these Typical Eddies. We will show the photo indicates
that the swirled jet develops more Typical Eddies more quickly,
which should enhance mixing rates, however, the scale of the Typi-
cal Eddies is larger than in an unswirled jet. Thus after a few
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diameters, we should find a decrease in the mixing rate with
respect to conditions in an unswirled jet at the same location.

There is evidence that a cross-over point in the magnitudes
of the turbulent energy and Reynolds stress occurs in swirled jets.
Figure 2 shows tiv measurements in a jet as the swirl is increased.
These are measurements of Allen (1970). We see that Uv is increased
by a factor of 3 near the jet exit as the swirl parameter S is in-
creased to .6. S = .6 corresponds to the magnitude of swirl neces-
sary to induce flow reversal near the jet exit. This increase in
uv for S = .6 (a moderate level of swirl), is much larger than the
increases obtainable by pulsing a jet or by perturbing a flow with
a turbulence producing grid. However, as indicated in the figure,
after about three diameters, the Reynolds stress of the swirled jets
is less than that of the unswirled jet, it being lowest for the most
stron~-y~g Trledjet. Allen (1970) found similar cross overs
occurred in u, v2 and w. Syred, Ber and Chiger (1971) have
measured the uw distribution for a strongly swirled jet, S = 2.2.
This showed very high values near the jet exit, which decreased by
a factor of ten after one diameter.
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Figure 2. Increases in Reynolds stress induced by swirl. From
Allen (1970).
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Flow, in turbulent boundary layers contributes the following
information on Typical Eddies and their relationship to large
scales:

1) The Typical Eddy scales are strongly Reynolds number
dependent, the streamwise scale varies as R .1 (Falco, 1974).

2) Typical Eddies are on average formed on the backs
(upstream side) of large scale bulges of the boundary layer.

3) They produce the intermittent bursts of Reynolds stress,
and account for almost all of the Reynolds stress in the outer part
of low Reynolds numbers layers.

It is clear that Typical Eddy formation involves a redistribu-
tion of vorticity by a large scale perturbation. If Typical Eddies
were vortex rings then a force is necessary for their formation.

Returning to the swirled jet, swirl introduces large scale
distributed vorticity in the streamwise direction. Our observations
of the cross-stream structure of a swirled jet show that an asym-
metry develops in the large scale motions, which resembles that
found in the streamwise slices of large scale motions. Figure 3,
again taken with the light plane technique, shows this asymmetry in
the large scale motions as seen in the y-z plane. This photograph
is of a higher Reynolds number swirled jet, which shows the large
scale motions more clearly (the Typical Eddies are a smaller frac-
tion of the shear layer thickness in this case). Asymmetries in
the smoke marked shape of large scale motions in turbulent boundary
layer flows is closely associated with the production of Typical
Eddies. We will now discuss a model of the relationship between
the large scale motions and the Typical Eddies, developed for the
turbulent boundary layer which helps to explain why we see more
Typical Eddies in swirled jets.

Figure 4 shows a model of the relationship between outer layer
bursts which are Typical Eddies and large scale motions in the
turbulent boundary layer. We see that Typical Eddies form on the
upstream side of large scale motions, which characteristically have
the asymmetry shown in the figure. The downstream side of large
scale motions is relatively uneventful in boundary layers, when we
are away from the wall region. An analogous picture in a non-
swirled jet is shown in Figure 5. This model is suggesting that
most of the rapid mixing is occurring at the downstream sides of
the large scale motions, i.e., in the Typical Eddy generation region,
and that the regions interior to the large scale motions are regions
of lower velocity gradients and relatively low mixing rates.

Our picture of a swirled jet looked different however. Remem-
ber that we saw Typical Eddies apparently much more uniformly dis-
tributed. A reason for the large number of Typical Eddies is
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Figure 3. Photographs of cross-stream flow of a swirled jet
through a plane at 6 diameters downstream. This jet is
at a higher Reynolds number than the swirled jet in
Figure 1, and emphasizes the large scale structure which
develops. Five skewed large lobes are apparent in this
photo. The jet is rotating clockwise.

suggested from observations of the cross-stream photos. These

show that the large scale motions have additional Typical Eddies
which are seen on the inclined portions of the large scale motions
in the y-z plane (see Figure 6). The picture of the position of
Typical Eddies on the azimuthally upstream side of the large scale
motions is remarkably similar to the picture found in streamwise
light planes. A sketch is shown in Figure 7. The Typical Eddies
which form in the y-z plane can be thought of as being a direct

re-distribution of the large scale vorticity introduced by swirling
the jet. Because of these additional Typical Eddies, effectively
on the sides of the large scale motions as seen in streamwise
planes, we see a larger number of them in streamwise planes.

We have performed an independent experiment to confirm the
observation that more Typical Eddies appear when additional vor-

ticity is present, and present in large scale distributed form.
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Figure 4. Model of the relationship between Typical Eddies and
large scale motions in the turbulent boundary layer at
low and moderate Reynolds numbers.
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Figure 5. Model of the large eddy and Typical Eddy relationship
in an unswirled jet of low Reynolds number.
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Figure 6. Cross-stream flow of a swirled jet through a plane at
6 diameters downstream. Conditions are the same as for
the jet in Figure 3, however this photo shows only two
large skewed lobes, with Typical Eddies clearly apparent
on one of them (jet is rotating clockwise).

Figure 8 shows a turbulent boundary layer developing in a large
scale laminar shear flow produced by a shear gauze. Observations
of several pictures such as this indicated that the formation of
more Typical Eddies at the edge of the boundary layer occurred
than found for a layer developing into a uniform stream.

Now the re-distribution of vorticity into more Typical Eddies,
as indicated previously, is a mixed blessing. This is due to the
relatively long life of Typical Eddies/vortex rings, which are
highly stable. Thus if we distribute the available vorticity into
a couple of large Typical Eddies, then, after the initial period of
development, mixing of the fluid contained in them will be un-
enhanced until the vortex ring has itself grown to a scale at which
it is unstable and its vorticity is again re-distributed by non-
viscous processes. We have seen that the large scale vorticity
introduced into the flow by swirl gets partially re-distributed
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Figure 7. Model of the cross-stream large eddy structure in a
swirled jet, showing the asymmetry and the production
of additional Typical Eddies as a result of the swirl
(clockwise rotation).

into Typical Eddies. However, it appears that the scale of the
Typical Eddies, both those formed in the cross-stream planes, and
the streawise planes is considerably larger than the scale found
in unswirled jets. Thus, although jet fluid may be convected con-
siderably further out into the ambient by these motions, after the
initial formation period, it appears that mixing may be slower.
As shown in Figure 2 after three diameters, the Reynolds stress of
the swirled jet is lower than that of the unswirled jet. The
reason for the larger scale of the Typical Eddies is only partly
understood. As indicated, Typical Eddies are strongly Reynolds
number dependent, and are larger in lower Reynolds number flows.
Now, it is certainly the case that the effective Reynolds number
in the cross-stream direction, the azimuthal Reynolds number,
rapidly increases as the jet spreads, and this is also true for
the streamwise Reynolds number. Thus, the Typical Eddies which
result will be larger than those found in an unswirled jet of
similar exit Reynolds number at a given distance downstream. How-
ever, Typical Eddy scales may also be strongly affected by the mean
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flow strain, which can produce vortex stretching and re-orientation.
The flow emerging from a swirled jet is straining rapidly.

In conclusion, it appears that although a strongly swirled jet
spreads more rapidly, the Typical Eddy dominated internal structure
suggests that after the first few diameters, the mixing process may
actually be hampered.
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DISCUSSION

BRADSHAW: (Imperial College)

Do you believe that the spreading rate of the jet (or there-
fore the Reynolds stresses) depends on Reynolds numbers?

FALCO:

The experiment certainly shows that it doesn't.

BRADSHAW:

Does it not follow that your Reynolds number dependent vortex-
ring structures are not part of the Reynolds-stress-producing
mechanism in the jet?

FALCO:

The answer to that question eludes me. I was saying to Stan
C. rrsin early today that in the turbulent boundary layer (and in
fact you may have made this point to me as well), at R0 of the order
of 5,000 or 6,000 the law of the wake holds. This is certainly not
directly Reynolds numbers dependent. However, if you take a hot
wire and measure the Reynolds stress characteristics in a boundary
layer at this Reynolds number, as Bill Willmarth* has done, you find
that a very large contribution to the Reynolds stress in the outer
part of that layer is at scales that scale very nicely with my typi-
cal eddy scales, which are Reynolds number dependent.

KOVASZNAY: (Johns Hopkins University)

The evidence is that there is Reynolds stress dependence on
that scale.

FALCO:

The evidence that I presented last week at the IUTAM Confer-
ence" is that if you take the uv signal and yon look at the scale
of the peaks (you have to choose some discriminating level), then

-!

* Lu, S. S. and Willmarth, W. W., 1973, J. Fluid Mech., 60, 481.

t IUTAM Symposium on Structure of Turbulence and Drag Reduction,

7-12 June 1976, Washington, D.C. To be published in Physics of
Fluids.
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you find that scale is the Typical Eddy scale.* That typical eddy
scale is very strongly Reynolds number dependent.

I don't have an answer to Mr. Bradshaw's question but that is
the evidence I have.

WYGNANSKI: (Tel Aviv University)

You presented uv as evidence to the effect of swirl in the
jet. Can you show the effect of uw and W so that we can see what
happens. Is there any transfer from one component to the other?

FALCO:

Those were not my measurements. They were measurements of
Allen (reference in text) at the University of Sheffield. Yes, I
think he has measured uw and so has Syred, et al.,t but I don't
know of any Uw measurements in non-swirled jets.

WALLACE: (The University of Maryland)

In both the jet and the boundary layer, how did you determine
that the smoke only marks the rotational flow and how do you demon-
strate that this is Reynolds number independent?

FALCO:

This question was essentially asked before. The way I look at
it is the following. The oil droplet air mixture has a very high
Schmidt number, it is about 38,000 in fact. On the whole you would
expect that a given isovorticity line will certainly be, if you pick
one of arbitrarily small value to mark the edge of the boundary layer
at any instant, further out than my isoconcentration "edge" and that
undoubtedly is true. However, the point that makes this technique
work, as far as I am concerned, is that the part of the turbulent
motion that coatributes most of the Reynolds stress has a great deal
of normal motion to it, and the convective time scale of this normal
motion is considerably shorter than rne diffusion time scale. Thus
the Schmidt number argument as far 3s the Reynolds stress producing
motion is concerned is not a liniting argument. It is important,
however, as far as the remaining part of the interface i-s concerned
and that needs further investigation.

t

* Falco, R. E., 1974, AIM Paper 74-99.

t Syred, N., Beer, J. M. and Chigier, N. A., 1971, Symposium on
Internal Flows, Univ. of Salford, Paper 13, B27-36.
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KERREBROCK: (M.I.T.)

Do I understand correctly that only the jet had swirl? That
is, is a swirling jet entering into a stagnant atmosphere?

FALCO:

Yes, that is right.

KERREBROCK:

Then I have a question. Perhaps I just do not understand. It
seems to me that the jet is unstable because of the fact that the
circulation decreases outward and what you are seeing is just a
large ordered motion due to that instability. If that is the case
I wonder why you characterize it as turbulence?

FALCO:

The way I look at the problem in general is that I am applying
a large scale vorticity field to an initially turbulent flow and
examining the resulting changes in turbulent structure. The addi-
tional steady vorticity vector is initially in the axial direction,
and I have shown that there appears in the flow field a skewing of
the large scale motions in the cross stream direction and additional
small scale regions of high vorticity concentration that would
result in a fluctuating vorticity signal if we placed a fixed vor-
ticity measuring probe in the flow. These additional features
appear similar to the turbulence structure found in shear layers
developing into a uniform flow when observations normal to the mean
vorticity vector are made.

BRADSHAW:

I think I agree with Kerrebrock that it is just the effect of
centrifugal instability on an existing turbulence field. It is an
extreme case of the usual effects of streamline curvature on turbu-
lence. I did some experiments on swirling jets myself more than 10
years ago* and again we got very large increases in spreading rate.
And again, we observed a notable tendency for the mean profiles in
the jet to become non-axisymmetric. At the time I attributed this
just to the effect of the nozzle we were using. But I am inclined
to think that there is a tendency even for mean nonuniformities in
the nozzle to get rather amplified as you go downstream.

Bradshaw, P. "Preliminary note on a mixing-nozzle ejector-shroud
combination for jet noise reduction," NPLACO Report 1116 (1964).
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NAGIB: (I1l1int;4s Institute of Technology)

Something bothers me, it goes back to the data from Allen and
I think that the swirl rate as you call it indicates tha: ju are
getting only a substantial effect as you reach about 0.2 or 0.3,
which is when the recirculation sets on. Does that mean most of
the extra spreading and extra Reynolds stress is governed by this
mean flow three-dimensionality? I mean that most of the effects
show only when your swirl rate is large enough to get recirculation,
right?

FALCO:

That is not true. Allen's curve (reference in text) shows that
there is a cross-over effect even for very low swirl levels. Even
for S (the ratio of angular to axial momentum times radius) of 0.2 S
equal to 0.6 is roughly the swirl level needed for onset of reverse
flow near the orifice.

GOLDSCHMIDT: (Purdue University)

I guess the answer you gave Jim Wallace bothered me a little
bit. What is your particle response time? Do you have a feeling
for that?

FALCO:

I have an indirect feeling from a paper of Jim Whitelaw's
group* where he was doing laser doppler anemometry with particles
and suggested that for roughly the same size particles one should
be able to pick up completely any frequency under 700 Hz with an
accuracy of K.. At the Reynolds number I am dealing with I don't
think that there is any problem at all.

MOREL: (General Motors Research Laboratory)

I noticed that several times you came back to Figure 2 showing
curves of shear stress and wonder if they are divided by the initial
jet velocity?

FALCO:

Yes, in that case.

* Baker, R. J., Bourke, P. J. and Whitelaw, J. H., 1973, Fourteenth
Symposium on Combustion, pp. 699-706.
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MOREL:

If you would divide the shear stress by the local jet velocity,
would there still be this rapid decrease in the dimensionless shear
stress?

FALCO:

Well, certainly the jet velocity goes down very quickly.

MOREL:

That might be the reason why uv divided by initial velocity
drops down so rapidly with x/D giving the impression that the shear
stress is being strongly suppressed by the swirl. However, should
one use a more appropriate scale, such as the local jet velocity,
then perhaps it would turn out that the suppression is much smaller
or that it does not occur at all.

FALCO:

That is possible, although the choice of a local velocity scale
would be complicated when reversed flow occurred.

UBEROI: (University of Colorado)

This business of swirl with axial velocity is rather compli-
cated. You can show by using the linear and nonlinear stability
theory that you get propagating waves as well as amplifying and
decaying waves and the point at which these waves appear depends
on the swirl ratio. In addition we find that just taking pictures
is not really enough, you have to make careful measurements. There
are many other points, but I would frankly say that these are merely
preliminary and somewhat speculative measurements.

FALCO:

Well, I am flattered. I think that is absolutely right. Yes,
they are preliminary and they are put up with the intention of
initiating discussion on the modification of instantaneous turbu-
lence structure by large scale vorticity.

KLINE: (Stanford University)

I just wanted to comment on Mr. Bradshaw's question. It
doesn't seem obvious to me that because one observes the defect
law, or Coles law, in the outer portion of the boundary layer, that
you can't have the kind of scaling that you are suggesting. You
are talking about the size of eddy that carries the Reynolds stress
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along, not the mean profile scales. Perhaps there is an incon-
sistency in the differences of scale, but there is also another
possibility, namely, that there is some scaling effect that makes
the two quantitatively consistent. A don't see that consistency
is ruled out. I don't know the answer at this moment, but there
does seem to be another possibility so that both scalings could be
correct without inconsistency.

COLES: (California Institute of Technology)

When you showed the slide with the three lobes and what you
called the Reynolds-stress producing elements on it, I thought,
as I have before, of a drop of milk in a glass of water. There is
an instability that as far as I know nobody really understands that
causes a cascading of vortices from the original large vortex to
smaller and smaller ones. I think that is what you are looking at.
I think you are describing the cascade process.

FALCO:

Undoubtedly I am describing a cascade process. However, it is
probably worth pointing out that tnere is quite a gap between large
scales and typical eddy scales particularly at high Reynolds numbers.
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ABSTRACT

The wall layer of a turbulent boundary layer, defined here as
the region between the wall and the log law region, has been exten-
sively investigated by experiment over the past fifteen years.
These experiments reveal a remarkably well ordered time-dependent
flow within the wall layer. In particular two features are known
to dominate the character of the flow, namely (a) the longitudinal
streak structure which is present and relatively stable during the
quiescent period (as defined by Kline et al., 1967) and (b) the
localized breakdown of the wall layer known as the bursting proc-
ess. Neither feature is well understood on a theoretical basis and
are the subject of the present paper. First, the governing equa-
tions during the quiescent period are investigated in the rational
mathematical context of the Reynolds number becoming large. No com-
plete solution for the wall layer flow is to be expected but repre-
sentative solutions may be obtained. The object is to obtain
realistic expressions for the mean profile and Reynolds stress terms
within the wall layer. Secondly, the laminar boundary layer created
by a rectilinear vortex in motion above an infinite plane wall is
considered. The goal here is to investigate what type of boundary
layer motion is to be expected when concentrated vorticity is near
a wall. The results show that a boundary-layer eruption is to be
expected and it is suggested that a possible physical mechanism for
the burst is a moving outflow stagnation point.
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1. INTRODUCTION

Experimental observations over the past fifteen years have
demonstrated that the wall region of a turbulent boundary layer,
which is two-dimensional and steady in the time-mean sense, posses-
ses a remarkable degree of coherent structure. The experiments of
Kline et al. (1967) were the first indication of this and a recent
review article by Willmarth (1975) details the numerous experimental
contributions that have been made since then. It is fair to con-
clude at this stage that there are many unanswered questions in
regard to the causes and effects of what is being observed and it
is clear that the dynamics of the turbulent boundary layer are not
well understood; on the other hand, what is gradually emerging from
experiments is an indication, that while the observed flow patterns
are complex, there may be very little that is truly random about
boundary-layer turbulence. This is an exciting prospect since, if
it is eventually borne out, a rational theory of turbulence can be
expected at some point in the future. In this connection, the two-
dimensional time-mean boundary layer represents the most fundamental
problem since it is the simplest type of boundary layer and a good
theoretical understanding of this case seems essential to provide a
firm basis for further research into the more complex types of tur-
bulent boundary layers encountered in engineering practice.

The two-dimensional time-mean boundary layer is known to be a
double structured layer consisting of an inner wall layer and a much
thicker outer inviscid layer. Little is known about the dynamics of
the outer layer except that it appears to be dominated by the pres-
ence of large scale vortex structures, usually referred to as eddies.
Insofar as the wall layer is concerned there are two features which
are known to characterize the time-dependent flow, namely the burst
and the streak structure. The burst is an event which is observed
to initiate deep within the wall layer and is characterized in its
latter stages by a rapid and violent ejection of fluid from the wall
layer. The bursting fluid appears to leave the wall layer as a dis-
crete entity suggestive of a three-dimensional vortex structure
(Offen & Kline, 1975) and as it leaves it is undercut by fluid rush-
ing in from the outer layer. This latter event has been referred
to as the sweep by Corino and Brodkey (1969) and it is during the
latter stages of the sweep that the second feature of the wall layer
flow appears; this is the streak structure which persists for a rela-
tively long period of time, known as the quiescent period. During
the quiescent period, the streaks are observed to be relatively
stable and the wall layer maintains its integrity. At a later stage
another burst occurs and with this the streaky patterns are oblit-
erated. The burst may be viewed as a localized breakdown of the
wall layer flow which results in an inviscid-viscous interaction
between the inner and outer layers. The bursting repeats cyclically
but not periodically at what appear to be random streanwise and
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spanwise locations; further because of the observed localized nature
of this breakdown, it would seem appropriate to characte'rize the
time T between bursts as a burst rate per unit area. This is essen-
tially what is measured with the visual counting method used by
Kline et al. (1967); it is not clear what is being measured in this
respect with instrumented burst detection schemes (Offen & Kline,
1973).

Despite a wealth of experimentation on the observed effects,
the causes of these phenomena are not known and these are fundamental
questions which must be answered if the dynamics of the turbulent
boundary layer are to be understood. Furthermore until the dynamics
are understood one cannot hope to do anything but make guesses for
the unknown terms which appear in the time-mean equations. At pres-
ent there is no adequate theory which remotely explains what causes
the streaks or the burst; what can be said with a degree of certainty
is that (1) the streaks are present during the quiescent period and
(2) the burst is very localized and seems to be connected in some way
with the passage of a large scale vortex structure in the outer layer
(Nychas et al., 1973). At the, current level of technology, experi-
ments alone cannot be expected to resolve all of the questions sur-
rounding turbulent boundary layers; a major limitation of present
experimental methods is that velocity measurements must be taken at
isolated points and inferences in regard to the complete flow field
are extrapolations. Further the meaning of current conditional
averaging procedures in a flow which is cyclic but not periodic is
unclear and assumptions which are sometimes invoked involving com-
plete reproducibility seem unsatisfactory. Flow visualization is a
useful technique but if it is indeed the motion of large scale vor-
tex structures within the outer layer which lead to the streaks and
bursting, visualization in the laboratory frame may be misleading
since what is relevant is the flow relative to the vortex itself.
As experimental techniques improve, an increase in understanding is
to be expected but at the same time, a theoretical approach to the
problem is essential if the observed phenomena are to be translated
into improved and realistic prediction methods.

The general problem of time-dependent flow in a turbulent bound-
ary layer is a complex problem and involves many aspects; the present
paper focuses on two of these. In §3, the governing equations during
the quiescent period are investigated in the asymptotic limit of the
Reynolds number, Re - - and it is demonstrated that the leading order
terms for all three velocity components in the wall layer satisfy
linear equations of the heat conduction type during the quiescent
period. In order to set the stage for the analysis in §3, it is
worthwhile to briefly sunarize some recent theoretical analyses
concerning the form of the leading order equations (as Re - ®) that
govern the time-mean flow and this is done in §2. No complete solu-
tion for the wall layer flow is to be expected but representative
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motions may be considered. From these solutions, an expression for
the mean profile may be obtained and direct comparison with experi-
mental data indicates that this profile represents a significant
improvement over the Van Driest (1956) profile and its various modi-
fications.

The second feature considered here (in §4) is the physical
mechanism for the burst itself and to this end and as a preliminary
step, the behavior of the unsteady laminar boundary layer due to
the motion of a rectilinear vortex above a wall is discussed. The
object is to understand how a boundary layer may be expected to
behave when concentrated vorticity in an inviscid flow is present
near a wall. It is emphasized at the outset that no attempt is
being made here to model the flow in the wake layer of a turbulent
boundary with a two-dimensional vortex. Heretofore it has been
assumed by a number of authors that the burst is a manifestation of
an instability of the wall layer; this view is purely conjectural
and here an, alternative mechanism is investigated. The results
indicate that shortly after the creation of a rectilinear line vor-
tex, separation occurs in the boundary layer and it is argued that
an explosive eruption of the boundary layer along with a major modi-
fication of the inviscid flow is to be expected. This eruption takes
place in a frame of reference which moves with the vortex and bears
a resemblance to the observed bursting phenomenon.

2. THE ASYMPTOTIC STRUCTURE OF THE TIME-MEAN FLOW

In considering the possible time-dependent motions within the
wall layer, there are a number of constraints in the form of a large
body of experimental data that establish certain well accepted
results about the time-mean quantities, such as the mean profile,
turbulence intensities and the U'v product. Clearly any theory
which is incompatible with these results is not acceptable; at the
same time, the measured quantities also serve to rule out various
types of motion within the wall layer. If one accepts the Reynolds
principle of similarity then all length and time scales for the tur-
bulent boundary layer must depend on the Reynolds number in some way
as Re - - and in a rational theory it is crucial to discern precisely
what this Reynolds number dependence is. There have been a number of
attempts in recent times to apply modern asymptotic analysis to tur-
bulent boundary layers and of particular interest here is the study
by Fendell (1972). The important assumptions in Fendell's (1972)
analysis are as follows: The turbulence may be modeled as an addi-
tive stress a, so that if (x,y) measure distance in the streamwise
direction and normal to the wall, respectively, with corresponding
mean velocity components (u,v), the momentum equation is
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Du + d u=U U Do + 315
dx y Re y2 ()

Here a may be related to the u'v' product and all lengths and veloc-
ities have been made dimensionless with respect to a representative
length L and velocity U0 , respectively; the Reynolds number is
defined as Re = UoL/v, where v is the kinematic viscosity. In addi-
tior. it is assumed that there are two layers only and that in the
outer layer the tangential velocity is to leading order independent
of y (the defect law). An important parameter which emerges from
the analysis is u* = u /UI(x), where u1 is the dimensionless fric-
tion velocity and U.(xf is the local dimensionless mainstream veloc-
ity; to leading order it may be shown that

U* as Re _P, (2)

where K is the von Kirmin constant and Re6 is the Reynolds number
based on the local boundary layer thickness. The outer region is
found to have a thickne,. O(u*) and to leading order

:Uo(x) {1 + u*2- a = u*"- I (nx) + -"- (3)

where n = y/u* is the scaled outer variable. The inner region has
a thickness O([Re u*]"1 ) and here to leading order

: u* aa- (y ,x) + ..., a = u*2a (y+,x) + ..- (4)

where y+ = Re u*y is the scaled inner variable. Matching takes
place in the limits n - 0, y+ - - and on the basis of an argument
due to Millikan (1932), it emerges that

3F _(x)logn + 0(x) af - (x)togy+ + ai(x )  (5)
aD ay+

in the region (fully turbulent zone) where the match takes place.
Experimental data appear to justify the assumption that a is con-
stant and equal to K " but there seems to be little justification
for also assuming Oi is constant.

A number of points deserve attention here. The first of these
is that an additional assumption appears to be involved in obtaining
equations (5) in that Millikan's argument is essentially an assump-
tion of the experimentally observed law of the wall. The main idea
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involved is to match the quantity y(Du/Dy); the rationale is that
this quantity is independent of the length scales of the inner and
outer layer and hence that a separation-of-variables argument may
be used. However this is true for any composite layer and if such
a matching principle was used in general, one would be led to incor-
rect results when the leading terms for u from either side are inde-
pendent of y. At the same time if the leading terms for u behaved
algebraically in the matching zone, matching y(au/ay) would be an
acceptable matching principle; however by assuming that the limit is
nonzero as the matching region is approached, the "law of the wall"
result is in reality assumed rather than derived. However, this in
no way obviates the results of the paper; it simply means that an
additional assumption appears to be required. Since the function o
in equation (1) is not known it is clearly unreasonable to expect
that the asymptotic structure may be deduced without recourse to any
assumptions. The assumptions in Fendell's (1972) paper all seem
reasonable and substantiated by experiment; the work is important
because it puts the equations in the framework of the rational mathe-
matical context of the limit as Re -.

The second point is that there are few new results in Fendell's
paper but that in the proper asymptotic context, the "classical"
results of turbulence which are overwhelmingly suggested by experi-
ment are confirmed in the limit Re +- -; indeed this is a stated pur-
pose of the paper. An important feature is that the Reynolds number
dependence of the inner and outer length scales and of uT is syste-
matically obtained. Equation (2) is compared directly with zero
pressure gradient data in Table I and the favorable comparison gives
confidence in the result. This information is important insofar as
the present analysis is concerned since it gives some guidance as to
which types of time-dependent flows are possible and which are not.

Finally it should be mentioned that in the Fendell (1972) analy-
sis and in other studies which have followed there is no attempt to
resolve the closure problem. Although the order of magnitude of o
is fixed in each layer, the functions cr and F, are unknown and to
make progress here one must either guess at the functional form or
attempt to understand the dynamics of the turbulent boundary layer.
It is the second alternative which we begin to explore in the
present paper.

3. THE QUIESCENT PERIOD

There have been a number of attempts to consider the time-
dependent motion in the wall layer, most notably those by Einstein
and Li (1956) and Black (1968). To some extent these have been
motivated by the relatively ordered flow observed within the wall
layer; there are a number of obvious criticisms that may be levelled
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at these studies and since this has occurred so many times in the
literature this will not be done here. Nevertheless, there are a
number of appealing features to these analyses which make them dif-
ficult t9 dismiss out of hand. Perhaps the most frequent objections
that are made concern, first, the neglect of the convective terms
and, second, failure to consider the three-dimensional motion that
is experimentally observed. A prime consideration in the present
paper, then, concerns the form of the equations governing the lead-
ing order flow.

An important first question is related to the Reynolds number
dependence of the mean streak spacing in the wall layer. Most
measurements of X have been taken in a limited Reynolds number range
and although there is a fair amount of scatter in the results, there
is some support for the view that X+ = Xut/V is a number on the order
of 100. The main difficulty is that the physical mechanism which
causes the streaks is not known. It is clear that while the wall
layer is in the quiescent state (when the streaks are observed), only
events which are occurring in the outer layer above can have an in-
fluence. Since the wake layer is dominated by large scale vortex
structures, it seems reasonable to assume that the streaks are in
some way connected with these eddies. Because the vertical dimension
of the eddies must be comparable to 6, and hence 0(u*), the spanwise
and streamwise dimensions must be of O(u*) as well; otherwise as
Re ®, the streamwise and spanwise dimensions of an eddy would
become either small or large with respect to the boundary layer
thickness and neither of these alternatives seems reasonable. In
Table I, zero pressure gradient data from Gupta et al. (1971) and

Table .. Zero Pressure Gradient Experimental Data

for Increasing Re6

Re6  uT/U, K1/logRe6  A+ X/6

Kline et al. 9,282 0.0424 0.0449 91 0.231
(1967)

11,936 0.0420 0.0437 106 0.211

Gupta et al. 21,129 0.0407 0.0412 97.5 0.112(1971)
31,725 0.0394 0.0396 85.0 0.071

43,750 0.0384 0.0384 109.7 0.065

57,604 0.0375 0.0374 151.2 0.070
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Kline et al. (1967) are summarized and arranged in order of increas-
ing Red. In the second and third columns the measured values of

u* = uU are compared with the asymptotic result (2) and agreement
is increasingly satisfactory vit' increasing Re6 . In addition,
there appears to be a trend for )' to increase but A/6 to decrease
to an approximately constant value. If X = O(u*), then X/6 should
approach a constant but A+  a rs Red - oo. Although this trend
appears to be supported in Table I, there is not enough data to be
conclusive and moreover there is as yet no independent verification
of the high Reynolds number results of Gupta et al. (1971). In any
case, the only other alternative compatible with experiment is that
A+ approaches a large positive constant as Re .

If attention is now focused on an area of the plate, it is
clear from observations of Kline et al. (1967) and Kim et al. (1971)
that there is a period of time, during which the streaks are in
place and no bursting occurs. This quiescent period of time is
referred to as Tq; the period of time during which an actual burst
and sweep takes place is referred to as TB and so the period between
bursts is T Tg + TB . During the quiescent period the integrity of
the wall layer is intact and the normal length scale is therefore
o[Re u*1]-); it follows from the momentum equations that Tq is
O([Re u* I-1), which is the time scale of the inner layer, The
Reynolds number dependence of TB is not known and this can only be
answered by discovery of the precise mechanism that causes the
burst. However, two possibilities exist; either TB/Tq approaches
zero or a small constant as Re -, -. Which limit is appropriate is
not known but the visual observations of Kline et al. (1967) do
reveal that TB << Tq.

Turbulence intensity measurements indicate that all three
intensities are of the same order of magnitude, and since the
quiescent period comprises a majority of the total time within the
wall layer, it would be incorrect to make an order of magnitude
distinction at least between u and w. Consequently if (x,y,z) are
cartesian coordinates measuring dimensionless distance in the
streamwise, normal and spanwise directions, respectively, with
corresponding dimensionless velocity components (u,v,w), then
scaled velocities and coordinates are defined according to

+ u + v + w (6)u =u v - w

+ x + + z
x-- y - Re u*y, z (7)

Here X* = AL is the dimensionless mean streak spacing. The scale
on the x-coordinate is motivated by substitution of (6) and (7) in
the continuity equation
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1 au + u'Re av + 0 (8)

_- @ +  + k z 8
ax D z

and is chosen so that the 3u/Dx term balances the last term in equa-
tion (8) so that in what follows v is dependent on both u and w.
The other possibility is that the length scale in the x-direction is
much larger than X* in which case it emerges that v is dependent on
w only. In either situation it will be found the dependence on x is
parametric and enters only from the boundary conditions. It now
follows from (8) that the three velocity components must be written
to leading order during the quiescent period as

S +  + + 1 .+ +++
U uo(x ,y ,z ,t ) + "-', v 9Reu, YvX ,y ,z ) +

w+ wo(x+,y+,z+,t) + (9)

Substitution of (6), (7), and (9) into the Navier-Stokes equa-
tions leads to

aua + 1 Uau +v o U + w0  U nap__
at+  eu*A ax+  0y+ az+ -Re u* 3X* ax+

+ aUL+ 1 ra2u + a!41+ Re2u*2*Z t + (10)Byax az+z)

_Vo + 1 { + Vo Vo +o w 3vL ReX* 3p
at+ Re u* uo x+ 0y+ 0z+J u* y

+ _V+ 1 I _-_ + a-v4 (11)
y+2 + Reu*2x*2  _x+ 2  z+2)

aw 1 aw +v w+W awo0o e 1 ap
at+ Re u* U x+ 0 ay+ i0 z+f - - Reu* 3 * Dz+

+ Pw + 1+ a (12)

+y+ 2  Rezu* 2X*2 ax+2 az+2(

Here t = u*2Re t is the scaled time whose form follows by insi-t-
ing that the unsteady terms in the momentum ecuations balance the
normal viscous stress (any other choice for t leads to a
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contradiction). Note that the quantity Re u*X* is the conventionally
defined local value of A+.

It now follows from (11) that the normal pressure gradient is

_p = O(u*/ReX*) = O(u*2/X+) (13)

and as Re - -, there is no variation in pressure across the wall
layer to leading order during the quiescent period. Consequently
the dimensionless pressure within the wall layer may be written as:

p + + u* po(x+,y+,z+,t+) +...
p p(x) + p'(x -=,z ,t+;Re) + Re- ,yAz*

Here p,, is the mainstream pressure, p' is the fluctuating pressure
due to unorganized or random motion at the edge of the wall layer,
and po is a lower order term due to the organized motion within the
wall layer. It is clear from (10) and (12) that the lower order
term Po will not enter the x or z momentum equations to leading
order as Re - -. Consideration of the fluctuating pressure term p'
in (10) and (12) is somewhat more difficult. The data of Emerling
(1973) provide conclusive evidence of intense localized centers of
pressure within the turbulent boundary layer and large fluctuating
pressure gradients may not be ruled out entirely. At the same time
if such a large pressure fluctuation is convected into the region
under consideration, above the wall layer, a breakdown or burst
might be expected. On the other hand, lower order pressure gradi-
ent fluctuations are possible if they are truly random with a zero
time-mean average. Furthermore, it may be concluded from the
observed well ordered motion in the wall layer during the quiescent
period that it is unreasonable to expect that small scale unorganized
pressure fluctuations to dominate the wall layer flow. Note, however,
that this view is contrary to the premise underlying the Van Driest
(1956) model, although it should be remembered that in the derivation
of this model a troublesome cosine term is neglected in an ad hoc
manner. It may be shown (Walker et al., 1976) that subsequent modi-
fications of the Van Driest model to include pressure gradient can
lead to erroneous formulations that are contrary to experimental
evidence.

To leading order, then, the form of the Navier-Stokes equations
becomes:
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3uo + + 2u , av +  av + +=

a+ty at+ y+ i t +  y+
atay ayt (14)

(14)

Duo + avo + _ = 0
ax +  ay + az+

Here, the mainstream pressure gradient term has been defined in the
usual way

I+ 1 d
p u,3Re

and the p' terms have been omitted for the reasons just discussed.
Note that in most situations p+ is negligibly small, becoming 0(1)only when dpjdx = O(u*3Re); with Re fixed and large, this can occur
as u* - 0 or specifically when u* = O(Re/3). This latter case is

only possible in an adverse pressure gradient and as a flow approaches
separation. Ip the following analysis, it is only important to recog-
nize that p+ is at most 0(1) and it may be retained without complica-
ti on.

With attention now focused on equations (14) the question that
immediately arises is, which possible solutions of these equations
are compatible with theory and experiment. Since the dominant term
in the time-mean profile behaves like toqy+ as y+ + all solutions
for uo and w0 which behave like y+a with a > 0 must be discounted;
the reason for this is associated with well verified measurements
for the turbulence intensities T2 and W'T which show these quanti-
ties approaching a constant at the edge of the wall layer. A time-
dependent solution for uo which has u,) - y+a as y+ ", for a > 0,
would result in a calculated time average of u'2 over the quiescent
period which would be algebraically increasing at the wall layer
edge and this is incompatible with experiment.

During the quiescent period, the streaks are observed to be in
place and relatively stable- the consequence of this is that there
are space curves in the x+z+ plane across which there is no signifi:
cant motion. Since the wall layer is .,.ssive during the quiescent
period, the streaks are a manifestation of lines of stagnation
imposed by events which occurred or are occurring in the outer flow.
The cause of the streaks is difficult to explain because the precise
nature of these events in the outer layer is not known. However, it
has been suggested by a number of authors that the wake layer is
dominated by the motion of large scale eddies which bear a resemblance
to the turbulent spots observed in transition. Since streaks have
been observed under transition spots this seems a reasonable point of

4
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view. Further, since such outer flow structures or eddies are
observed to move within the wake layer at essentially constant
speed, it would seem reasonable to expect that movement of the
streaks within the wall layer will be related to the large eddy
motion. With this hypothesis, consider the possible induced motion
of the streaks during the quiescent period. Suppose that the veloc-
ity of the eddy is AUoo where A is 0(1). Then on the time scale of
the wall layer, which is O(I/u*2 Re), the eddy will move a streamwise
distance Ds = O(U./u*2Re). Since the normal and spanwise components
of velocity are at most O(u*) within the wake layer, then on the
time scale of the wall layer, fluid particles in the wake layer will
move a lateral distance DL = O(I/Re u*). Thus Ds/X* and OL!X*
become small as Re and on the time scale of the wall layer the
streaks are frozen in place.

The simplest type of structure is that where the streaks are
straight lines over an area of the plate having spanwise and stream-
wise dimensions O(X*); this assumption about the streaks is not
completely compatible with experiment and is not really necessary.
However it is instructive to consider this case first and the dis-
cussion of curved streaks will be given elsewhere. Suppose that the
dimensionless spanwise distance between the i and i + I streak is Xi
and let _+ be measured from the left edge of the , streak. Then
during a quiescent period the solution in the X0 streak may be
written as a Fourier series

u= hn(x ,y ,t+) cosnrz+/Xo + ho(y t+)

I
vo = gn(X ,,t + ) cosnnz+/Xo (15)

WO = fn ( x+9y+ t+) sinnfz /X,

With corresponding expansions within adjacent streaks, such a formu-
lation ensures continuity of velocity components and their z+ deriva-
tives across each streak and allows a different flow development
within each pair of streaks as the quiescent period progresses. In
writing down equations (15), terms arising from small scale random
fluctuations have been omitted on the grounds that if such motion
really is present it cannot be a dominant feature because of the
relatively ordered flow observed within the wall layer; in any case
such motion will not produce any contribution to the meaT profile.
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Substitution of equations (15) into (14) leads to heat con-
duction type equations for all functional coefficients of the Fourierseries in (15) and we seek solutions of these which lead to an order-

ly flow development during the quiescent pericd. A complete discus-
sion of such solutions will appear elsewhere and only the results
will be summarized here. Briefly the solutions for fn and hn are of. the form

bn (x )F(n,t +) (16)

+ + +12where n : Y+/2(t + to) and t+ is a parameter corresponding to an
uncertainty in the time origin; because of the form of equations
(14) the variable x+ appears parametrically in (16). There are four
possible types of solutions which vanish at y+ = 0 and which have

.

(i) F - Zogy*, (ii) F = 0(1)

(iii) F exponentially small, (iv) F = O(y+-c), a > 0
+

as y + - . Of these possible solutions, for n > 1 turbulence intens-
ity measurements preclude a solution of type (i) for fn and hn. It
may be shown that for n L 1 solutions of type (ii) are of the form

bni(x+ )erf (17)

This type of three-dimensional motion is fixed by a knowledge of the
three-dimensional motion at the outer edge of the wall layer and, as
the measurements of Kline and Schraub (1965) show, can have an ampli-
tude up to 50% of the mean profile at any y+ station. The solutuions
indicated by types (iii) and (iv) represent eigenfunctions whose
strength decays with time and for which the bn(x+ ) in (16) may be
chosen to represent the initial profiles at t = 0, the beginning
of the quiescent period. The details of these solutions have beenI analyzed but because of their complexity will be reported elsewhere.

Turning now to the mean velocity profile, the contribution from
the instantaneous velocity during the quiescent period may be obtained
according to

Tq

) uq - u+dt (18)
u, Tq J0

However, the complete period between bursts in a given area of the
x+z+ plane is T = Tq + TB. Since experimental evidence suggests thatTB << Tq, then (18) represents an approximation to the mean streamwise
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profile in the wall layer. Also since the streaks are observed to
rearrange themselves after each burst in what appear to be random
locations over long periods of time, the z-dependent motion in (15)
will not contribute to the mean profile in (18) and the total con-
tribution must come from the term ho(y+,t+). Furthermore, there are
three conditions which the mean profile must satisfy:

+  1+~ ~ ogy + C(x+) as y .'. (19)
K

D = 1, DI -0 at y =0, (20)

arid to satisfy (19) motion of type (i) must be included. The com-
plete results will not be given here for either the time-dependent
motion or the mean profile, but they are very similar to those
reported by Walker et al. (1976). The time-dependent development
of the instantaneous streamwise velocity function ho(y+,t+) for a
zero pressure gradient flow is given in Figure 1; it should be
stressed that during a quiescent period, in addition to the motion

105

Il 0.2
0.04 1.0
0.01 , Tme-mn
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Figure 1. Instantaneous Streamwise Profiles During Quiescent Period

(Labels correspond to different values of t/T).
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in Figure 1, motion of type (ii) given in (17) as well as the eigen-
function solutions of types (iii) and (iv) will be superimposed and
this can represent excursions away from the instantaneous profiles
of Figure 1 which may be up to 50% of the mean. The type of relax-
ing flow illustrated in Figure 1 is the same type of relaxing flow
observed by Kim et al. (1968) and Blackwelder and Kaplan (1972)
between bursts. No attempt has been made here to compare instan-
taneous profiles with Blackwelder and Kaplan's (1972) data since it
has been conditionally averaged and the interpretation of such
results, in a flow which is cyclic but not periodic, is unclear.

The mean profile which is also given in Figure 1 is in general
a function of H and p+, where H = y+/2S and S = u /Tq/v. Note also
that as y+ . ,

U l _ogy+ + C(p+,S) (21)

where the log law "constant" is not, in general, a constant. Thus
if we set Tq = T as an approximation, the mean profile is a function
of the two parameters u% and T. The difficulty with comparing the
mean profile is that, while both parameters are physical features of
the flow, T is in general not known and there are no direct measure-
ments of u . Consequently, with the view of verifying whether the
present mean profile is capable of representing turbulent boundary
layer data, these parameters were optimized to obtain the best fit
in the least squares sense to experimental profile data. In Figure
2, the mean velocity profile is used in combination with the Coles'
law of the wake todefine a composite profile; this is a three param-
eter fit (ur, T, 6) to the zero pressure gradient data of Anderson
et al. (1972) and represents an extremely close fit having an average
root mean square error of 0.006.

A question which naturally arises is whether any profile which
has the asymptotic form given by (21) would be just as good. The
profile given by Van Driest (1956) falls into this latter class and
since the Andersen et al. (1972) data contain a considerable nuit"er
of wall layer points, it provides a convenient data set to answer the
question. Detailed comparisons of both the present and the Van
Driest inner region profiles are given in Scharnhorst et al. (1976)
and for all cases the present profile gives a better fit to the data;
in most cases the difference in the root mean square error is sub-
stantial, being typically twice as large with the Van Driest profile.
A number of other data sets with pressure gradients are considered by
Scharnhorst et al. (1976) and the conclusions there are the same.

There are certain objections to employing Coles' law of the wake,
namely that while it represents a useful device for curve fitting zero
and adverse pressure gradient data; (i) it contains the ill-defined



146 J. D. A. WALKER AND D. E. ABBOTT

30,

20 -_8105
IIA

0 ,~...-8104

10020. ° '810

0.

30

I O0 100 1000
y

201 J _ '  , 810

_.., ,.o," .,,-.8106

I0 1 0 100 1000

Figure 2. Comparison of Composite Profile Consisting of Present
Inner Region Profile and the Law of the Wake with Data of
Andersen et al. (1972), (data stations are labeled in
increasing order in the streanwise direction).

b1



STRUCTURE OF VISCOUS WALL LAYER 147

boundary layer thickness 6, (ii) it fails to represent data in
moderately accelerated flows, and (iii) the particular functional
form assumed appears to be incompatible with the time-mean equations
in the outer layer (see also the discussion by Fendell, 1972). An
alternative outer region profile may be obtained from the work of
Mellor and Gibson (1966); this is developed by assuming an eddy vis-
cosity in the outer layer proportional to the displacement thickness
6*. The constant of proportionality is denoted by K and taken equal
to 0.0168 as in the Cebeci-Smith (1974) model. Upon assuming simi-
larity, an ordinary differential equation may be obtained for the
outer region profile (see Fendell, 1972) and when this is used with
the present inner region profile, a one parameter (ut) profile
results. This is compared with the Andersen data in Figure 3, where
u has been varied to obtain the optimum fit and where the variations
from the experimentally quoted values of uT are slight. Such a pro-
cedure only makes sense in a truly similar flow, and since similarity
may only be achieved in an equilibrium boundary layer at large dis-
tances downstream, the trend in Figure 3 is encouraging. In Figure
4, the constant of proportionality K is varied to obtain the optimal
fit and this composite profile fits the data almost as well as the
law of the wake, but with one less parameter." Moreover, this type
of profile represents accelerated flow data much more closely than
the law of the wake, and in cases where the law of the wake fails
(Scharnhorst et al., 1976).

An independent check on the inner region profile is also pro-
vided in the following way. The Fendell (1972) analysis shows that
to leading order the convective terms are negligible in the time-mean
equations and consequently a knowledge of the mean profile implies a
knowledge of the u'v' term and vice versa, so that

0=-p+ + 2 y+ 5 7  (22)

aI ay u*.U

Equation (22) represents the leading order time averaged streanwise
momentum equation in the wall layer anid it is of interest to examine
where the contribution to the uv' product comes from. Since uv'
must be O(u*2 ), it is clear from equation (9) that during the quies-
cent period the v component of velocity is too small to contribute
to leading order. Thus the major contribution must come from the
bursting process, a result which is compatible with experiment
(Nychas et al., 1973). At the same time it has been argued that the
major contribution to the mean profile comes during the quiescent
period and consequently an approximation

T The displacement thickness 6* is taken from experiment.
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+ U

-rv - P+ + (23)
*2 p +(u @

to the i 1  product may be obtained by integrating equation (22).
Equation (23) is plotted in Figure 5 for p+ = 0; the right side of
(23) is a function only of S and included in Figure 5 are plots for
S = 8, 12 and 10.67. These values of S are the smallest and largest
values of S obtained in fitting zero pressure gradient data (Scharn-
horst et al., 1976) and the value which gives a log law constant of
5.1, respectively. The value of S = 10.67 is most typical of the
values obtained in the fitting. The data given in Figure 5 were
obtained by Schubauer (1954) and although there is some scatter in
the data, agreement with the theory is encouraging.

, S-12

Sa-I0.67

rU S-0
0.5-

0 .' I .i p p p p

20 40 * 60 s0 100

Figure 5. Comparison of Present Theory with Data of Schubauer (1954).
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4. A POSSIBLE MECHANISM FOR THE BURST

Although it was possible to make some progress in the latter
section for the wall layer flow, the theoretical ideas are highly
motivated by experimental observation and many questions remain.
In particular it is not possible to treat the burst itself without
knowing what physical mechanism is responsible and a major diffi-
culty is that very little is known about the dynamics of the outer
layer. Although the outer layer is inviscid in character, experi-
ments reveal that a substantial amount of vorticity is present
principally in the form of three-dimensional eddy structures. At
least part of the vorticity in the outer layer appears to have its
genesis in the bursting phenomenon but although the study by Nychas
et al. (1973) suggests that the eruptions of the wall layer are in
some way associated with the passage of a large scale structure in
the outer layer, the entire regenerative process is not understood.

It has been suggested by some authors that the bursting phenom-
enon is a hydrodynamic instability of the Kelvin-Helmholtz type
(see Bark, 1975); that is, if it is assumed that on either side of
a streak there are streamwise vortices which are counter-rotating
during the quiescent period, then on the upflow plane (streak) it
is hypothesized there is a shear layer which eventually develops an
instability. Although this is an interesting suggestion, there is
little evidence to support it and the view that this is the dominant
mechanism for the burst must be regarded as conjectural. Another
possibility has been recently suggested by Coles and Barker (1975).
Based upon speculation by a number of authors that the motion in the
wake layer is dominated by large U-shaped vortex structures similar
to turbulent transition spots, Coles and Barker (1975) created arti-
fic, al spots through the use of intermittent jets emanating from the
wall below a laminar boundary layer. Upon assuming complete repro-
ducibility, |aeasurements were taken at various points and the outline
of the artificial spot appears to be a U-shaped structure. Because
of limitations of the measuring apparatus, detailed instantaneous
streamline patterns within the spot cannot be obtained and the
internal motion is conjectured to be that of a simple U-shaped vortex.
There is some uncertainty as to the nature of the flow near the trail-
ing legs of the vortex. Certainly, if the vortex is imagined to be
made up of vortex tubes, these cannot close on the wall as is some-
times suggested (in view of the no-slip condition). The difficulty
here is that the motion of such vortex structures is not understood.
It is clear, however, that fluid will be forced up between the
observed trailing arms. Coles and Barker (1975) suggest that this
upwelling behind the leading edge of the vortex is the bursting.
This type of continuous process does not seem compatible with a
considerable body of experimental evidence which strongly suggests
that the burst is a highly localized breakdown of the wall layer
flow.
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The problem of concentrated vorticity and how it interacts with
a solid boundary is an important subject in its own right, about
which relatively little is known on a theoretical basis. As a first
step the problem investigated here represents the simplest situation,
namely a rectilinear line filament in motion above a plane wall. It
is emphasized at the outset that no attempt is being made here to
model the turbulent boundary layer with line vortices. The treat-
ment was motivated in part by a model discussed by Willmarth (1975),
which appeared to give a qualitative correspondence with wall pres-
sure fluctuations in a turbulent boundary layer, and also by the
view that, before the boundary layer motion created by complex three-
dimensional structures could be understood, it was important to under-
stand the simplest possible case.

Consider the situation illustrated in Figure 6 where a recti-
linear vortex of positive rotation K is located a distance, a, above an
infinite plane wall. The inviscid theory for this configuration is
discussed by Milne-Thomson (1962, p. 359) and predicts that the vor-
tex will move, under the influence of the image vortex below the
plate, to the right with constant speed V = K/2a. The inviscid
solution is not uniformly valid since as y* 0 0, the tangential
velocity is given by

, 4- 4a2 V(x*- Vt*)z+a 2

j 20

C--J

Figure 6. Geometrical Configuration for a Rectilinear Vortex in
Motion above a Plane Wall.
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where the vortex is located at x* = 0, y* a at time t w = 0. Con-
sequently a thin unsteady boundary layer near the plate is required
in order to reduce the flow to relative rest. In the laboratory
frame of reference the inviscid motion is unsteady but in a frame
of reference which moves uniformly with the vortex, the inviscid
motion is steady and the relative flow pattern is sketched in
Figure 7. Redefining (x*,y*) as cartesian coordinates relative to
the vortex, with corresponding velocity components (u*,v*), it may
be observed in Figure 7 that there are two stagnation points in the
relative inviscid flow. The first of these at (/I a,O) will be
referred to as the leading relative stagnation point and is charac-
terized by flow away from the wall; the trailing relative stagnation
point at (-/' a,O) is characterized by flow toward the wall.

Dimensionless boundary layer variables are now defined accord-
ing to

= X y*Rex -- Y t =Vt*

a a -a

u* v*ReU V -- , V V '

XZA - '0 a 8.0

Figure 7. Inviscid Flow Relative to the Vortex (in this moving

coordinate system the wall moves to the left with speed V).
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where Re is the Reynolds number defined as Re = Va/v and v is the
kinematic viscosity. The laminar bounaary-layer equations are

(24)[ Du + av=0

where

U (x) = -1 + 4

and the boundary conditions associated with (24) are

u=- , v= 0 at y=0 , u U (x) as y (25)

The solution of the boundary-layer problem is discussed in detail by
Walker (1976) and only a brief summary of the results will be given
here.

Because the inviscid motion in the moving reference frame is
steady, it is natural to seek a steady boundary-layer solution to
the system (24). Surprisingly, however, it has been demonstrated
by Walker (1976) that there is no steady solution to the problem.
Consequently the flow in the boundary layer is unsteady, even in the
moving reference frame. In order to understand the nature of this
resulting flow, the following problem is formulated: for t < 0 a
vortex pair moves to the right with speed V in an unbounded fluid
and at t = 0 an infinite plate-is suddenly inserted on the symmetry
plane of the two vortices. Although the inviscid flow is not
affected by the sudden insertion of the plate, the inviscid flow is
no longer uniformly valid for t > 0 and a thin unsteady bounda-y
layer will develop on the plate in order that the no-slip condition
be satisfied. An alternative physical situation, which may seem less
artificial in the experimental context and which leads to the same
boundary-layer development, is that where a rectilinear vortex is
imagined to be created abruptly at t* = 0 at a distance a above a
plane wall.

Rather than proceed with the coordinate x, it is convenient to
introduce a new streamwise coordinate E, defined by the Gbrtler type
transformation

1= r 4dx : 2 -1

d " +x 2 - tan"x (26)



STRUCTURE OF VISCOUS WALL LAYER 155

whereupon the mainstream velocity becomes

UM = -1 + Ue(0) Ue( ) = 2(1 - co8sn).

This transformation is one-to-one and compresses the doubly infinite
range of x to the finite range [0,2] for ; the effect of this trans-
formation is summarized in Table II for some of the critical x-
locations in the flow.

An unsteady stream function £ ( y,t) is now defined by

u=I+ Ue(M ay , v = 2-r U(o) [Ue(R.M

and Rayleigh variables are introduced according to

n = y/2/ , r= 2Al T(,,t).

The boundary layer equations become,

P T+ 2 n~ '2 4t '2aT = 4t i~ n~rU1 2cos wtF ) + 'T-il

+ U e a T - an a U2 U e U e a n T 1

The boundary conditions are

(t) ,Ot) = O, ( ,n,t) - 1 as n - (28)an

Table II. Effect of Transformation (26)

x Streamwise Location

+- 0 upstream infinity

1/3 leading relative stagnation point

0 1 vortex center

-r s73 trailing relative stagnation point

2 downstream infinity
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and since the right side of equation (27) vanishes as 0,2 the
boundary condition at { = 0,2 compatible with (28), is 3T/3ri = erfn.
The initial condition at t = 0 for all C and n follows by letting
t * 0 in (27) and is also Ba/an = erfn for all C. The object now
is to trace the boundary-layer development forward in time.

An exact solution, in the form of a power series in time, may
be found with a procedure similar to that used by Goldstein and
Rosenhead (1936) to calculate the initial flow past an impulsively
started circular cylinder; details are given by Walker (1976). This
time series solution is only valid for small time and to extend the
solution to higher times equation (27) was integrated numerically;
this is discussed by Walker (1976). In order to plot the instan-
taneous streamlines a stream function 7 is defined by u = a/ay
where £p is related to IV by

= 2,/ F(f,n,t); -n + U ( )(g,n,t)e

and consequently a plot of lines of constant F gives the instan-
taneous streamline patterns. It is worthwhile to point out that in
the following figures, the streamline patterns are relative to the
vortex. ThL. the vortex is towing the developing boundary-layer
patterns with it as it moves along the plate.

In Figure 8 the instantaneous streamline patterns are plotted
at t = 0.2 where the direction of flow is indicated by arrows. For
0 :j < 0.33, inflow from upstream infinity and upflow toward the
leading relative stagnation point may be observed, while for 1.67
< < 2, the motion is downward and toward downstream infinity.
Between the relative stagnation points the pattern is characterized
by an inflow-outflow behavior.

As the solution proceeds in time, an interesting feature
develops. Specifically, at ts = 0.278 and s = 0.592, ys = 0.655,
flow separation occurs, where separation is defined here to imply
the presence of a closed recirculating eddy in the flow field. At
a later stage the wall shear vanishes (tr = 0.324), and subsequently
becomes negative in the region under the developing eddy. The
development of the resulting eddy is typical of that observed in
the classical separation behind bluff bodies (see, for example,
Dennis & Walker, 1971, 1972); once the eddy first appears, it
develops rapidly in the direction tangential (parallel) to the wall.
During tJhe early period of time, there is some development in the
direction normal to the wall. However, once the rate of tangential
development begins to slow, there is a noticeable acceleration in
the rate of growth of the normal dimension of the eddy. The situa-
tion is illustrated in Figure 9 where the instantaneous streamlines
at t = 0.6 are plotted. The eddy lies beneath and to the left of
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the leading relative stagnation point. There are two stagnation
points associated with the eddy: one at the eddy center and one on
the limiting streamline which defines the eddy edge. At this stage
of its development, the rate of increase of the eddy's streamwise
dimension is decaying but the eddy is beginning to grow substan-
tially in the direction normal to the wall, and at the same time it
is lifting off the wall.

Finally, it was found that at approximately t = 0.675, the
numerical integration failed to converge despite varied attempts to
continue it further. A similar situation occurs with the numerical
solution of boundary-layer flow past impulsively started bluff bodies
(Dennis & Walker, 1972; Collins & Dennis, 1973) and this is discussed
in detail by Walker (1976). The underlying reasons for this behavior
in the bluff body case is thought to be associated with the form of
the large time solution in the boundary layer near the rear stagna-
tion point. The work of Proudman and Johnson (1962) and Robins and
Howarth (1972) shows that for large time, the structure of the
boundary-layer is such that to leading order there is (i) a thin
inner viscous layer near the wall and (ii) an outer layer which is
inviscid in character and which thickens exponentially with time.
In this connection, Riley (1975) argues that as t - w (t = O(logRe))
an eruption of the boundary-layer is to be expected in the vicinity
of the rear stagnation point, along with a major modification of the
external inviscid flow.

The Robins and Howarth (1972) analysis has been extended by
Walker (1976) to consider the case of a stagnation point in motion
with constant velocity above a plane wall. For a stagnation point
where the inviscid flow is away from the wall it is found that the
boundary-layer structure is very similar to that for a two-
dimensional bluff body; that is for large time and in a frame of
reference moving with the stagnation point, the boundary layer
assumes a double structure. In particular, there is an outer region
of the boundary-layer which to leading order is inviscid in character
and which thickens exponentially with time. Presumably this is the
reason for the difficulty experienced with the present numerical
solutions at about t = 0.675; the flow is entering a phase where the
exponential thickening of the boundary-layer is commencing and the
outer boundary (where the mainstream velocity is imposed in the
numerical scheme as an approximation) cannot be moved out quickly
enough to take into account the exponential growth.

Although the details of the present large time solution for the
vortex flow are not known, it can be said with a degree of confidence
that an eruption of the boundary layer in the moving frame of refer-
ence is to be expected for large time and it is tempting to speculate
on what should eventually transpire. Since the eddy is increasing
rapidly in its normal dimensions and moving away from the wall, it
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appears plausible that for large time the eddy will emerge intact
from the boundary-layer. Further, since the eddy is rotating in the
opposite direction to the vortex and since the eddy is not symmetri-
cal with respect to the vortex, it might be expected that one modi-
fication to the inviscid flow may be that the vortex itself will be
driven away from the wall.

The rapid occurrence of this phenomenon, and the explosive
nature of the boundary-layer flow discussed here, bear a btriking
resemblance to the bursting phenomenon observed in turbulent bound-
ary layers. At this stage it would be premature to claim anything
more than this; however there are a number of points worth consider-
ing. First, this example shows for the first time how concentrated
vorticity can result in a breakdown, and upward eruption, of boundary-
layer flow. In addition, it is important to properly visualize such
a flow such that the experimental observations should be done in a
frame of reference moving with the vortex structure. A plot of the
instantaneous streamlines in the laboratory reference frame at t =

0.6 is given in Walker (1976) and the streamline patterns appear
quite different and tend to mask the true physical features of what
is transpiring within the boundary-layer. In addition, it is sug-
gested that a problem which may be more relevant to the turbulent
boundary-layer than the example treated here is that where a vortex
of negative rotation is convected in a uniform flow; in a frame of
reference which moves with the vortex, the inviscid flow is similar
to that illustrated in Figure 7 except that the direction of flow is
reversed. Consequently the upflow stagnation point is now the trail-
ing relative stagnation point. The boundary-layer development that
follows the sudden insertion of the plate is not identical to the
present problem and will be reported elsewhere. However a dominant
feature of this flow is the upflow relative stagnation point which
ultimately leads to a boundary-layer eruption behind the vortex. Of
course the eddy motion in the outer region of turbulent boundary
layers is not two-dimensional but is highly three-dimensional; how-
ever it is conceivable that such vortex motion results in moving
three-dimensional stagnation points or in moving lines of stagnation
being imposed at the edge of the wall layer from time to time. A
stationary axi-symmetric outflow stagnation point is known to ulti-
mately lead to a boundary layer eruption (Howarth, 1973) giving rise
to an axi-symmetric separation of the type observed behind spheres.
It might be expected that if a three-dimensional stagnation point is
in motion above a wall, then a boundary-layer eruption will even-
tually occur. This question must await further work.

Finally an important point that requires clarification is the
following: In the present picture which is suggested by this study
(of breakdown of the wall layer occurring due to a moving stagnation

point), it is necessary to account for how the convective terms
become important in the leading order wall layer equations as the
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quiescent period draws to a close. This requires that u >> u*

there is evidence in Emmerling's (1973) data of intense localized
disturbances having dimensions of O(X*). Clearly a better theoreti-
cal understanding of the dynamics of the outer layer is required to
discern how the flow field solution in the outer layer can focus to
large values at very localized positions.
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DISCUSSION

COLES: (California Institute of Technology)

I would like to know if you have any idea as to the physical
mechanism which causes the streaks to appear under a turbulent spot
or a turbulent boundary layer.

WALKER:

The question of causation is a difficult one and at this stage
all one can say is the following. In a turbulent boundary layer,
during the quiescent period the integrity of the wall layer is intact
and the streaks are present. During a burst there is a breakdown of
the wall layer flow and the streak pattern breaks up but is quickly
re-established. Since the wake layer is inviscid to leading order,
it is reasonable to expect that the streaks are a response to events
taking place in the outer layer. It is the question of the precise
nature of these events which is difficult since the dynamics of the
outer layer are poorly understood. It has been suggested by a number
of authors that the large eddies which are observed to dominate the
wake layer are similar to transition spots. A major analytical dif-
ficulty is that we do not completely understand the nature of the
flow within a spot or even how a spot is created. Nevertheless, it
is the flow relative to the spot which is relevant and if a simple
U-shaped vortex moving with constant speed is assumed, then in a
frame of reference moving with the spot either a point or line of
stagnation should be expected underneath the spot and at the edge
of the wall layer. This should act to produce a single streak in
the wall layer which should be visible in the laboratory frame pro-
vided a continuous source of visualization is used (such as a hydro-
gen bubble wire). However this is counter to experimental evidence
which indicates a number of streaks per spot. Perhaps the eddies
are not simple U-shaped vortices or perhaps some instability mechan-
ism is involved; I don't know.
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COLES:

I think that maybe Steve Kline might like to be heard on this
subject also. My view of the matter is that a large structure
moving at some speed--there is a dispute still about what this speed
is, in the neighborhood of 0.7 to 0.9--will overrun some of the flow
near the surface. This overrun flow is deflected into a trajectory
such that a Gbrtler-Taylor instability occurs. I don't know whether
Kline would agree with this or not, but I think you have got to have
some mechanism of this type to account for the multitude of streaks
that appear in the vicinity of these active transport operators in
the boundary layer.

WALKER:

You may be right. This has been conjectured before and while
it certainly can't be ruled out it is as far from justification as
ever. Hopefully someone will at some stage attempt flow visualiza-
tion in a frame of reference moving with the spots so that we can
get a clearer physical picture of what is going on. Insofar as the
quiescent period within the wall layer I discussed today, it is
necessary to admit that the streaks are there and further that there
is a characteristic spacing which is Reynolds number dependent.

SAFFMAN: (California Institute of Technology)

I would like to ask for a little bit of caution in the free and
easy use of vortices in the turbulent boundary layer. We do have a
little more idea now that 50 years ago on how a vortex moves in
irrotational fluid. In some ways it does not move as intuition makes
you think it should. In fluid endowed with vorticity--and a boundary
layer does have a lot of vorticity--it moves in ways which we just do
not know and do not understand and by appealing to intuition we may
be laying ourselves open to serious error.

WALKER:

I agree with what you say though I'm not clear about what you
consider "free and easy." It has been assumed by many authors that
the wall layer bursting is a stability problem. There is no rational
theory to support this and I have difficulty in accepting that this
is the only mechanism involved. The problem involving the rectilinear
vortex in motion above a wall was considered as a search for another
possible mechanism namely a moving outflow stagnation point. The
experiments of Harvey and Perry* on the flowfield induced by aircraft

* Harvey, J. K. and Perry, F, J., "Flow Field Produced by Trailing

Vortices in the Vicinity of the Ground," AIAA J., Vol. 9, No. 8,
pp. 1659-1660, August 1971.
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trailing vortices in the vicinity of the ground substantiate the
theoretical findings for the rectilinear vortex. In these experi-
ments a secondary vortex was observed to form near the ground and
subsequently ejection and rapid outflow from the boundary layer
occurred. Of course whether this type of mechanism is relevant to
the turbulent boundary layer is conjectural and all that can be said
at present is that the explosive nature of the resulting boundary
layer flow bears a resemblance to the observed bursting in a turbu-
lent boundary layer.

WALLACE: (The University of Maryland)

In reply to Dr. Coles you said there are five to six of these
"things" that occur under this "thing." I'm wondering which "things"
you are talking about.

WALKER:

My understanding is that under a single spot, if you take a
single spot and follow it downstream, you are going to see five or
six streaks.

WALLACE:

Transition spots?

WALKER:

Yes, I think it was evident in Coles' movies that there was more
than one streak associated with his artificial spot. Because a con-
tinuous source of dye was not used it was difficult to get a defini-
tive picture and it was not clear to me to what extent the streaks,
observed substantially upstream of the spot, were associated with the
spot.

KLINE: (Stanford University)

It depends on what you mean and where you are as Jim Wallace's
question implied. If you look at Meyers' movies* or Coles movies or
some of the others in the transition region then as soon as you get
the Klebanoff-Tidstrom (K-T) instability you see large streaks in

* Meyer, K. A. and Kline, S. J., "Visual Study of the Flow Model in
the Later Stages of Laminar-Turbulent Transition on a Flat Plate."
Stanford ME Department, Report MD-7. Associated movie and its
scenario available from ASME-ESL Film Library, Engrg. Societies
Library, 345 E. 47th St., NYC, 10017; film M-3.
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that region. K-T streaks are at a scale which is clearly larger

than the lambda plus of 100 seen in sublayer streaks under a turbu-
lent spot or turbulent boundary layer. When the K-T streak moves
out and causes a "breakdown," which Kelbanoff and other people have
now documented rather carefully with hot wires, then underneath that
breakdown immediately you see a bunch of sublayer streaks. Not one
but a bunch of sublayer streaks that are at the smaller scale of
A+ - 100. That is what the data say. Also your conclusion that the
stuff is essentially "frozen-in" seems right to me because wheneverwe look at a flow using a dye-injector of a bubble-wire or anything

else, where the flow is full turbulent, we see sublayer streaks in
distances fr5m th-emarking station which are surprisingly short in
every case--many thousands of observdtions. In all those cases, as
far as I know, this is uniform; we have never seen anything else.
The question of what actually causes sublayer streaks, the causation
if you want, seems to me to be the most difficult part of the whole
thing. I don't even want to comment on that today. However, we do
observe all those things I have just been describing; that is, data.
Hence, if you consider your spot as one structure of some kind,
vortical or otherwise, then there are a lot of streaks underneath it.

There are a couple of other things that the data also say. One
of them is that when you get a spot, and you count the sublayer
streaks under the spot after the breakdown, in what I sometimes call
the fourth stage of transition (Meyer has done this and I think some
other people also) then to the uncertainty of those data, you repro-
duce the lambda plus of 100. With the usual statistical variations,
everything looks the same.

The flow in a "spot" does look like turbulence as K'lebanoff and
Tidstrom also concluded from the hot-wire data. The other thing is
that along the sides of the "spot" where new streaks are forming,
where there are new sublayer streaks, not K-T transition streaks,
then the streaks are multiplying by what looks like some kind of
wave action that I do not understand; this is what we call cross-
contamination. New streaks then appear one by one, not in groups;
this is quite clear in Meyers' movies. I think I see the same thing
in Don Coles' movies. So how many sublayer streaks you have under
the spot depends on how far downstream you go. However, in the
movies of Jim Johnston and his student Halleen* where they put stabil-
izing coriolis forces on the wall layers (in a rotating system) then,
in certain instances, instead of getting cross-contamination as I
just described, one sees streaks dying along the edges of a spot and

Halleen, R. M. and Johnston, J. P., J. Fluid Mech. 56, p. 533 ft
(1972); JFE 95 p. 229 (1973); Stanford ME Department Report MD-18,
1967.
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because the flow is in a "stable" or "superstable" environment, then
the streaks die one by one. So that is some of the things the pic-
tures say, but as far as the causation goes I think that this is the
point about which there is still the most uncertainty and the most
disagreement.



FURTHER INVESTIGATION OF THE LINEAR AND NONLINEAR THEORY FOR

CONSTANT-TEMPERATURE HOT-WIRE ANEMOMETERS
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ABSTRACT

The nonlinear theory for constant-temperature hot-wire anemome-
ters is outlined in more detail than before. It is shown that the
domain of nonlinear effects is restricted to velocity fluctuations
above at least 12% of the mean velocity in a frequency range larger
than 10% of the cut-off frequency of the anemometer. This domain
overlaps rarely, if ever, with the domain of actual turbulent in-
ternal flows.

1. INTRODUCTION

Large velocity fluctuations are encountered in internal flows.
Consequently, the question whether the constant temperature hot-wire
anemometer is suitable to measure large fluctuations should be exam-
ined closely by examining the nonlinear theory for constant tempera-
ture hot-wire anemometers.

Comte-Bellot (1976) in her recent survey identifies the non-
linear theory for constant-temperature anemometers as one of the
pending problems in hot-wire anemometry. Although a nonlinear theory
has been outlined by Freymuth (1969), it was felt that additional
details were needed in order to compare results with corresponding
ones for the constant current anemometer as obtained by Comte-Bellot
and Schon (1969).

In particular, the nonlinear influence of large sinusoidal
velocity fluctuations on power and skewness of the output signal and
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an estima:te of nonlinear influences on turbulent power spectra are
of interest. Furthermore, Comte-Bellot and Schon (1969) pointed out
that the effect of nonlinearities on the linearized output of the
anemometer should be investigated. A linearizer has not been in-
cluded in the theory by Freymuth (1969). Another item of concern
may be added to the list. Several different frequency adjustments
for a constant-temperature anemometer are of practical importance,
but only the optimum aperiodic case has been discussed in the con-
text of the linear and nonlinear theory by Freymuth (1967, 1969).
In particular, the maximally flat case which represents the flattest
frequency response possible at lower frequencies is of prime interest.
Furthermore, an adjustment in which the response of the anemometer to
a step in velocity or to an electronic step is optimized and where
the real parts of the characteristic roots of the system are equal
has some interest, and has been widely used by workers in the field.

It is the aim of this paper to fill in some of the remaining
gaps in the linear and nonlinear theory for constant-temperature hot-
wire anemometers, with emphasis on the nonlinear theory.

2. THE GOVERNING DYNAMIC EQUATIONS

Dynamic linearities and nonlinearities arise for fast velocity
fluctuations from the equations for the components of the feedback
system. As explained in detail by Freymuth (1967) for an equal arm
bridge, the equations for the hot-wire, the bridge and the amplifier
for the feedback system shown in Figure 1 read

u2  H(V) R- R. (R + R )2 = C(R + R,)2 dR

a R a R dt

U nR- R + nR C dU (1a)
u12=n + 1 R, + R (n+T dt

M" d2  +M +U = + Gu12  (ib)dt' dt b 1

where V is the effective velocity at the hot-wire, H(V) is a heat
transfer function of the wire which in reasonable approximation has
the form

H(V) = AV + B (2)

where A and B are empirical constants. U is the bridge output
voltage, R is the resistance of the hot wire, Ro is its cold resis-
tance, a is the temperature coefficient of the resistivity of the
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wire and c is its heat capacity. R, is a resistance in the bridge
in series with R and n is the ratio of the resistors R3 to R2 in the
other arm of the bridge. Time is t. The amplifier of the feedback
system has a gain G, an adjustable output offset volta e Ub and first
and second order time constants M' and M". Combining la) and (1b)
yields

GU nR - R + U U + M, dU M" d 2U
(3)n + I R, + R b d-t F 13)

where

M M' - G + 1)2 R2C (4)

is a time constant which is adjustable by means a trim condenser
(or trim coil) in the bridge. Adjustable parameters have been intro-
duced into the circuit in order to frequency optimize the feedback
system.

Equations (1) and (3) are nonlinear. If these equations are
combined by eliminating the resistance R, a nonlinear relation
between velocity V and the output U of the anemometer results as
follows. Defining a quantity c by

n 1 dU + + d2UM n + I Ub n + (5)GU IIdt dt2*J G U G 5

we obtain from equation (3)

1nRI c/n (6)

and

dR _-(n + 1) R d (7)

Since for a well adjusted anemometer with high gain G the quantity c
is much smaller than 1, we obtain in reasonable approximation

R ~ nR1  (8)

(n + 1) R 9d)
dt dt" 9
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(8) and (9) into (1) yield

U2  H(V) (n + 1) (nR- Ro) - c (n+ 1)R (10)a n ii n R(

The above equation implicitly relates the input V of the anemometer
to its output U. First order approximations--for instance R
nR1{1 - (1 + 1/n)e} from equation (6)--could be used instead of the
zeroth order approximations represented by equations (8) to (10),
however, the improvement in accuracy (of order 1% or smaller) hardly
justifies the increase in the amount of algebra, as far as the non-
linear theory is concerned.

3. RELATION BETWEEN VELOCITY AND LINEARIZED OUTPUT

Since the quantity e is small, equation (10) is algebraic in a
frequency range far below the cutoff frequency of the anemometer and
for this reason an algebraic "linearizer" is usually connected to
the anemometer which gives an output voltage Um which is proportional
to V, i.e. as far as

dt -

V = kUm = Vm (11)

where Vm represents the velocity as it would be indicated by the
algebraic linearizer. The connection between U and Vm is, according
to (10) with

LE- 0 and (11),

dt -

U2 = (Vm) (n + 1)2 R,(nR, - Ro) (12)a n

(12) into (10) yields

H(V) = H(Vm + c(n + 1) R- de (13)

Let us introduce a time constant

M (R 
(

-2 ~R H(V).
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where V is the average flow velocity. Substituting (14) into (13)
yields

H(V) H(Vm) H(V) M d (15)H() HVm  +n +- V)d-

To proceed further we have to be specific about the functional form
of H. Using the relation (3) transforms (15) after some rearrange-
ment into

V Vm+ 4 A/:-+ B d+ ( 2M AV +Bd dE2 (16)

n + 1 A M Fmdt n + 1 A d16)

Equation (16) relates the dctual velocity V at the wire to the
velocity Vm as it is measured at the output of the linearizer. For
fluctuations sufficiently slow to render dynamic terms inessential,
we have V = Vm as desired but for fast and large fluctuations,
linear and nonlinear dynamic effects appear as will be shown in
detail in the following sections.

4. THE DIMENSIONLESS SECOND-ORDER APPROXIMATION

Equation (16) can be handled best if it is recast into dimen-
sionless form. Introducing the dimensionless quantities

z 1 (17). Y - 1 (18), h- (19)

V V AV + B

into (16) yields

M(n M 1 + M'n + 1)2 2 (20)
z=y + 1)h HM TTI 2 yd

e has to be expressed in terms of y which is accomplished after some

elaboration as follows. According to (3) and (12)

UV AVm In+ B (n + 1)2
- R (nR, -R o ) (21)

or

1 U + h(,T+ - ) (22)
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where

_AV-+ B (n + 1)2 Rj(nR_ Ro)  (23)

To keep the theory within reasonable limits we restrict ourselves
to a second-order approximation such thaL

U : U 1 + Ly- - (1 + 0.5 h) yj (24)

Inserting (24) into (5) yields in second-order approximation after
an additional differentiation with respect to t

de n + 1 h [b M" d 3  Ub 1 + 1.5h d

d2 M"dfdv'-2

___2_ y -M.T-  Yd t -M1 T

2 dt
dt,,,

-M(5+ h)~(25)

and

[d,: ( 2 lh 2 r Ub + d 2  2 4(6
T G 6 LU1 d+ M + M dt (26)

Substituting (25) and (26) into (20) yields in second-order approxi-
ma ti on

Ub dy + MMI d My + M. d M Ub3h dyz Y GU dt G dt2  G G U4 dt

MM, h d2  MM"h d3  MM1+ [.y 2

-T Y G Z f G _ [+h

MM1 y d 2v,1 F Ub AK + MMI d 2v M"d3-
V. (7

G(1.5 +h) a- + UWd

(27)
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Introducing dimensionless quantities

1 /3

dt =  dx 
(28)

M Ub i(MMl /3 (29)

bM = 4/I)3 
(30)

into (27) yields as final equation

3h 3

z~y ~dx dx 2  dx 4 dx X

+ a2  2b-2bh [ + ab- 3 -2h t2 4  a id.
ldx Y 2 dx dxx+If x

+- j2 d4 41, + 
(31)

4 dx2) 2dx dX3  4 dxj

Equation (31) represents the governing equation of 
the anemometer in

second-order approximation which 
relates the input z to the linear-

ized output y. The linear part of the equation 
agrees with the one

obtained by Freymuth (1967) for the linearized theory.

If we compare the input-output relation 
(31) with the corre-

sponding relation for the anemometer 
without linearizer as obtained

by Freymuth (1969), a considerable 
increase in complexity is noticed.

Nevertheless, a solution for a sinusoidal 
input z is rather straight-

forward.

5. SOLUTION FOR A COSINUSOIDAL INPUT

Let us solve equation (31) for an input

z = cos S1 x 
(32)

where z is the dimensionless amplitude of the fluctuations and S1 is

a dimensionless circular frequ-ncy related 
to the dimensional circu-

lar frequency w by the relation

/,
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Qx = Wt (33)

To solve equation (31) we adopt the same iterative procedure already
used by Freymuth (1969) for the analysis of the anemometer without
linearizer. The result after the second iteration is

y = A0 + A, COS (Qx+0,) + A2 cos (2slx + 2 +2 + 3) (34)

where

A0 =m z22 a 2 -2b + (b2 - 2a( 2 3+5)
-V 8 1 + (a2 - 2b)iI2 + (b2 - 2a)S + (35)

represents the relative error in the measurement of the mean value
of velocity due to nonlinear effects.

A_. 1 I (36)

z [1 + (a2 - 2b) 2 + (b2 - 2a)Q4 + R6]2

represents the frequency response of the anemometer in case of small
fluctuations.

S14 4  2 _a' b 2 12.Q 54 2f2
Aah+{ab-3h-3}-bJ + [2bh+b-- +{a+2} -0. 5

: z [1+(a -2b) l+(b -2a)S2 4 1 ] [1+4(a -2b)S2 +16(b -2a) a+64a/6

(37)

represents the relative dmplitude of the second harmonic which
vanishes for small values of z.

The phase angles 0,, 0., and +3 are determined by the following
equations.

COS 01 = 1 - b12  (38)
[1 + (a2 - 2b)s + (b2 - 2a)Ra + Q]

sin 0, = -(a - S2)[1 + (a2 - 2b)sl + (b2 - 2a)S14 + 16J (

COS 0= 2 1I- 4b 42  (40)
BI [1 + 4(a- 2b)06 + 16(b2 - 2a)R + 64S]
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-2S(a 4i) . (41)

[i + 4(a2 - 2b)Q 2 + 16(b 2 - )S+ 14

.42bh+b .. ja 0~1~~.5 ,)

~~ + (2bh~b -7 + {a +--l2Oj

(42)

1.5ah+(ab-3h -3)h
+ b b

1.n 5a ab-L 2  z2 1

F 1. 5ah+{ab-3h.3}S 2bR,)2 + (2bh+b 2a

(43)

The fluctuating part y' of y reads

y' Al cos (sx + 1 ) + A. cos (2 sx + 2 1 + 
2 + 03) (44)

For the fluctuating intensity we therefore get

+7 -2~+ (45)

For the skewness S3 we get

3 A2 /2

(46)

For the skewness S, we get

S5 3 S3(47)

6. DISCUSSION OF RESULTS

A The frequency response of interesting 
quantities Ao, A/z,

A2 /z, y and S depend on parameters a, b, and h. Furthermore,

A0 and y are proportional to z2 whereas A. and S3 are proportional
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to z. To limit the discussion of results manifested in equations
(34)-(47) to a reasonable amount, we represent a few cases of high-
est interest in graphical form.

For z we choose z = 0.5 as a reference which corresponds to
velocity fluctuations of 50% around the mean velocity. Rarely, if
ever, are rapid velocity fluctuations of this severity encountered.
Accordingly, the influence of second harmonics will be less severe
in most or all practical applications.

For h we will consider the case of large mean velocity for
which h 1 1 and the case of small mean velocity for which h = 0. In
practice, results will be in between these two cases.

As far as the anemometric parameters a and b are concerned, we
select three adjustments of highest interest. Case I was previously
discussed in the framework of the linear theory by Freymuth (1967),
with a = b = 3. This is the optimum aperiodic case where any oscil-
latory behavior of the anemometer in response to a step in velocity
or in response to an electronic step is avoided.

Case II: a = 2.4581 b = 2.2494. In this case the response
of the anemometer to velocity or electronic steps is optimized.
This case gives flattest frequency response at low frequencies under
the constraint that the real parts of the characteristic roots of
the system are equal.

Case III: a = b = 2. This is the case of maximally flat fre-
quency response of the system toward lower frequencies; furthermore,
the cutoff frequency is enhanced compared to the other two cases
which represent an additional advantage. Case III has the highest
pr;-.tical potential.

Numerical computations for equations (37) to (47) can be handled
rather quickly by mini computer.

Cases I, II and III can be identified in practice by means of a
square wave test where an electrical step is injected into the bridge
and where according to Freymuth (1967), the resulting transient pulse
at the output of the anemometer is observed. Without detailing the
Laplace transform techniques, we show in Figure 2 the electrical
pulses obtained. Although case III seems inferior with its under-
shoot, it is the case of highest practical importance.

Let us discuss the relative amplitudes A /z and A /z of the
fundamental component and the second harmonic of the anemometer out-
put in case of a cosinusoidal input. The dependence of these quanti-
ties on dimensionless circular frequency Q is represented in Figure 3
for h = 1, 1 = 0.5 and for all three anemometric adjustments I, II,
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Figure 2. Response of the feedback system to an electronic stepfor Case I (a = b = 3), Case II (a =2.46, b =2.25),

and Case III (a = b = 2).
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Figure 3. Normalized fundamental component A1/i and second harmonic
A2/z of the anemometer in dependence on dimensionless fre-
quency iZ, for Cases I, II and Il1, z 0.5, h = 1.
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and III as previously explained. These quantities are represented
up to the respective cutoff frequency of the anemometer (-3dB point
for A1/2). The linear response is maximally flat in case III and a
high cutoff frequency is incurred. For cases I and II the relation
between cutoff frequency f and the duration time t of the transi-
ent pulse (down to 3% of i~s maximum value) reads iR good approxi-
mation

f = 1/1.5 t (48)

In case III we get

fg = 1/1.3 t (49)

The nonlinear response curves A2/z reach their maxima at about half
the cutoff frequency and these maxima seem quite substantial. If we
tolerate a value of A2/2 of 4% as insignificant which is a most con-
servative estimate--as the discussion of other quantities affecteed
by the second harmonic will show--then velocity fluctuations up to
50% of the mean velocity and up to at least 10% of the cutoff fre-
quency do not exhibit nonlinear behavior. For instance an anemometer
with a cutoff frequency of 100 kHz tolerates easily large fluctua-
tions (i = 0.5) up to at least 10 kHz without any significant non-
linear effects. For smaller fluctuations of 25% of the mean velocity,
this frequency range doubles and if fluctuations are kept below 12%
the linear ceiling of 4% is never reached, over the entire frequency
range. Even for velocity fluctuations up to 50%, it is possible to
extend the useful frequency range to 20% of the cutoff frequency if
a sharp, low pass filter with a cutoff at 20% of that of the anemom-
eter is connected to the output of the linearizer. This filter cuts
out disturbing second harmonics above 10% of the cutoff frequency of
the anemometer. This leaves us with a useful frequency range of 20
kHz in the above mentioned example. The above discussion shows that
nonlinearities in constant temperature anemometers have fortunately
very limited practical significance since they occur at rather high
frequencies only. Turbulent flows show their largest amplitudes at
lowest frequencies. In contrast, nonlinearities in constant current
anemometers start to become significant well below the natural cutoff
frequency of the hot wire, i.e., in practice well below 1 kHz accord-
ing to Comte-Bellot and Schon (1969).

From Figure 3 it may be noticed that the response in case III is
not only flattest toward low frequencies for the fundamental compon-
ent A /z but even for the second harmonic for all three cases dis-
cussea. This lends even more significance to this type of adjustment.

Figure 4 shows the relative second harmonic A2/i in case of
small mean velocity, i.e., for h 0. It can be seen that A2/z never
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Figure 4. Normalized second harmonic A2/2 with z 0.5, h 0.

reaches the linear ceiling of 4%. We conclude that for low mean
velocities, nonlinearities are even less important than for large
mean velocities. Further discussions therefore concentrate on the
most severe case, h = 1.

Figure 5 shows the flative influence A2/A2 of the second har-
monic on the intensity OT the output signal according to equation
(45). This influence remains below 2.9% and for fluctuations below
10% of the cutoff frequency, it is less than 0.2%.

Figure 6 shows the relative error A0 in the measurement of the
mean velocity which remains below 2% and which is less than 0.1% at
10% of the cutoff frequency of the anemometer.

Figure 7 shows the skewness S3 which reaches the quite signifi-cant value of 0.31 in the worst case but remains below 0.02 if the
frequency of large fluctuations does not exceed 10% of the cutoff
frequency. As far a-; maximum values of S3 are concerned, they are
quite comparable witn the ones obtained by Comte-Bellot and Scholl
(1969) for constant ,:urrent anemometers.
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Figure 5. Ratio A /Az, for ' = 0.5, h = 1.
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Figure 6. Relative error A. (Vm - V)/V in the measurement of the
mean velocity for z = 0.5, h = 1,
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Figure 7. Skewness S3 for 2 = 0.5, h 1.

Fortunately, these maxima occur at such high frequencies that
they will rarely, if ever, pose a practical problem.

To quantitatively assess the influence of nonlinearities on
turbulent spectra, the use of a complicated analog computer would
be unavoidable and such a computer is not available to this author.
The foregoing discussion makes it seem likely that errors would
reach the same order of magnitude as in constant current anemometers,
around a frequency half the cutoff frequency of the anemometer.
There are hardly any turbulent spectra imaginable which exhibit
large fluctuations at such high frequencies.

We may conclude this discussion of results with the remark that
the domain of nonlinear effects is restricted to velocity fluctuations
larger than 12% of the mean velocity in a frequency range larger than
10" (or in case of the use of an additional low pass filter larger
than 20%) of the cutoff frequency of the anemometer. Fortunately,
this domain overlaps rarely, if ever, with the domain of actual turbu-
lent flows.
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DISCUSSION

CORRSIN: (Johns Hopkins University)

I would like to remark that the last difference in error you
showed is very significant for isotropic turbulence where you
normally average triple correlation functions. Normally they reach
the maximum skewness at the cut off frequency.

FREYMUTH:

What I mean is that when you use a constant temperature anemom-
eter at a frequency below 10% of its cut off frequency then the
induced skewness is 0.02 or smaller, which compares to a value of
0.6 for isotropic turbulence.

CORRIN:

I am just saying that I am glad that you mentioned all of this
because there is some disagreemeit in the measurements. For
instance, if you are shown strong asymmetry from correlation meas-
urements, they are not as antisymmetric as they are in isotropic
turbulence. That could still be perhaps partly due to the measure-
ment error and it is still controversial.

FREVMUTH:

I believe that the constant temperature anemometer has an edge
over the constant current anemometer concerning this problem because
the safe region is connected to the cut off frequency of the anemom-
eter rather than to the cut off frequency of the hot wire. So I
think that skewness as measured with a constant current anemometer
lately are more likely to be in error than those with the constant

-' temperature anemometer.
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COLES: (California Institute of Technology)

I think there is a very similar analysis with very similar
conclusions to yours by Tony Perry of Melbourne University. His
manuscript* is floating around the offices of various editors. We
had the same problem with very large fluctuations in making hot-
wire measurements in a cylinder wake, and Perry told us how to do
it. It was necessary to offset the cable inductance, to find the
optimum square wave signal, and so on.

FREYMUTH:

I am very much interested in this paper.

KLINE: (Stanford University)

I want to comment on the errors in hot-film measurements
because we have an important project underway, that is not yet
published. The critical result is that the mean velocities are
probably all right, even though these were early hot-film data
taken before we had sorted out the several troubles of hot-films
in water in the work of Morrow.t The mean velocity we could and
did calibrate at that time. Fluctuations are a different matter.
There was no accepted calibration procedure; we have now devised
what we believe is a good procedure. I think this group will be
interested in an idea of what we are finding. We are using a tech-
nique which is not new. John Laufer used it in his work on channels
and pipes around twenty years ago. In Morrow's work we tried to do
the same thing other people had done--shake the probe. However,
since you need small probes, the fundamental critical frequency is
say 100 or 200 Hz, and you can't get too much higher frequencies
without reading probe vibrations rather than flow fluctuations. So
what we have done recently was to look for a flow in which we know
some honest statistics, and then use that flow as a calibration
standard. Once you ask the question that way, the obvious flow is
the two-dimensional, fully-established channel-flow. In this flow
we know tlzat ap/ay equals BT/ay. If you then get everything checked
out, which we have been able to do to one-percent statistically,
then you have a calibration standard. This is, we know tW, u', v',
and also the main components of the spectra for those three statis-

! tics.

S* Perry, A. E. "The Large and Small Signal Dynamics of the

Constant-Temperature Hot-Wire Anemometer," Manuscript, 1976.

t Morrow, T. B. and Kline, S. J. "The Evaluation and Use of Hot-
Wire and Hot-Film Anemometers in Liquids," M.E. Department,
Report MD-25, Stanford, May, 1971; also ISA Procs.
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When we calibrate hot-wires using this calibrating technique,
we get the correct results. The X-wires check to about 1%. Using
X-wires as a secondary standard, the U wires check to within about
1% or 1.25% on a 95% probability basis. When we use the same pro-
cedures on hot film probes, we find (for all the films we have
measured so far) r.m.s. errors of 25% to 60% for fluctuations at
normal overheat ratios. The hot-films are really off for fluctua-
tions. These results are in air; water will not be this bad. We
have not yet had time to test in water. The upshot of this is that
the films are going to need calibration. The work is not finished,
and we plan to recheck everything. However, I think the upshot of
this will be that "for reliable measurements we ought to set up such
a channel in each laboratory and calibrate wires and films for
fluctuations in-house so that we know that we are measuring what
we intend to measure. Somebody said this morning that a lot of the
scatter in the turbulence data was probably due to measurement
inaccuracies. What I am saying is yes, a lot of it certainly must
be, and we could eliminate much of these inaccuracies using calibra-
tion procedures that we will describe in a report shortly.

WYGNANSKI: (Tel Aviv University)

I have just a question. Those hot films you are mentioning,
are they split films?

KLINE:

We have done all the TSI films but not the DISA films yet.

Both companies have donated to us three sets of several kinds of
probes so that we can do replication tests. We have done the split
film, the cone and the wedge. We have not done the TSI solid film.
We will do it in the next set of tests. We have not yet done the
DISA measurements, but I don't expect to see big differences. We
expect there will be some quantitative differences because we are
pretty convinced that the problem is owing to the substrate, and
the substrate materials are different in the DISA probes.
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RESULTS OF A TWO EQUATION MODEL FOR TURBULENT FLOWS AND DEVELOPMENT

OF A RELAXATION STRESS MODEL FOR APPLICATION TO STRAINING AND

ROTATING FLOWS

P. G. Saffman

California Institute of Technology

ABSTRACT

Recent results of computations of turbulent flows using a two
equation model are presented. They are similarity solutions for the
two dimensional mixing layer, jet and wake. Profiles of passive
scalars are also given.

Construction of a more general relaxation stress model is
described, to be used for the study of complex flows. Application
is made here to the deformation of homogeneous turbulence by uniform
shear and strain, and the decay of homogeneous turbulence in a fluid
in solid body rotation.

1. INTRODUCTION

The development of simple phenomenological turbulence models is
of considerable importance for engineering applications. The advan-
tages of various models can he studied by testing their ability to
predict relatively simple turbulent flow configurations, for which
some experimental data are available.

This paper considers first three two-dimensional turbulent
flows, the mixing layer, jet and wake, using the two equation model
of Saffman (1970, 1974). In each case, steady similarity solutions
describing the flows are presented. Some results for the turbulent
mixing layer have been given earlier (Milinazzo and Saffman, 1976).
In §§ 3 and 4 results of further calculations for the inhomogeneous
incompressible mixing layer are shown and effects of compressibil-
ity are described. The equations for the jet and the wake were
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previously solved by Govindaraju (1970). The calculations of § 5
and § 6 verify these results and provide more details.

In § 7 the results of § 3, § 5 and § 6 are used to describe
the turbulent diffusion of a passive scalar in the mixing layer,
jet and wake. The experimental observation that the thermal width
is greater than the momentum width in each flow is explained in
terms of the difference in the slopes of the temperature and veloc-ity profiles at the turbulent-non-turbulent interfaces.

In § 8 we present a relaxation stress model to deal with flows
in which the assumption of an eddy diffusivity is inadequate. The
model is applied in § 9 to the deformation of homogeneous turbulence
by uniform straining fields, both rotational and irrotational.

2. THE TWO-EQUATION MODEL

For the incompressible, but not necessarily homogeneous, mixing
layer, jet and wake, the following equations were solved:

-- (U)+-3YV) =O, (2.1)

pU T + pV - - 1pu"u") + - ( ") (2.2)

PUx {+~ (2.3)

Here U = (U,I) =L- = (Ui) is the mass averaged velocity. Single
p

primes indicate departure of the velocity, V = (u,v), from the mean,
G, while double primes denote fluctuation from the mass average
value U.

Equation (2.1) describes mass transport and is obtained by
averaging

(pu) + a (pv) = 0.

Equation (2.2) is derived from the streamwise momentum equation.
Equation (2.3) expresses the fact that the fluid is incompressible,

and is obtained by substituting the relation g = + - _-- into
div U 0.

I
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Equations (2.1)-(2.3) are closed using the Saffman model equa-
tions, in which it is postulated that the Reynolds stresses and
density-velocity correlations satisfy the equations (see Saffman,J 1970, 1974)

e..,
PUi.Uj = +2Ap ja Si - 6ij ,

where A - .09, a = .5 (the turbulent Schmidt number), S.. is the

rate of strain tensor

Sij . @--j +x1 ,

and the variables e and w satisfy the rate equations:

U '+ e = p"eS + (2.4)

-- a(e + -a(-e) (2.5)a x ax ay ay W'

where S = (2Si.) , S = [n(aUi/axj)2 + 2(1 - n)$ .] ._ As in Saffman

13 133 ;2

(1974), Milinazzo and Saffman (1976), the constants o', a", 8', y
have been qiven the values a' = .18, a" = .3, n = 1, 8' = 5/3,
Y = 1. This corresponds to a value of 0.4 for the Karman constant
k, which is related to the other ianstants by 2.- = "-

The boundary conditions for the system of equations (2.1)-(2.5)
are

UU, e+O, w 0, p P as y +,, (2.6)

U U2 , e- O, 0 w O, P P2  as y. 9 . 1w,

together with conditions at x = constant and x = +-. For the two-
dimensional jet and wake only the case of uniform density is consid-
ered, and the constraints, valid in the boundary layer approximation,
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.U2dy: M (2 D jet), (2.7)

Udy =D/U , (2 - wake), (2.8)

are imposed in addition. The equations have solutions which are not
everywhere analytic and the boundary conditions (2.6) can be applied
on curves y = y1(x), y = y2(x), which are the positions of the
turbulent-non-turbulent interfaces.

Since e,w and the Reynolds stresses are required to be continu-
ous across these interfaces, e must vanish quadratically while w
vanishes linearly on yl(x), y,(x). An equivalent condition is that
e vanishes together with the Reynolds stresses.

In sections 3, 4, 5, 6 the partial differential equations (2.1)-
(2.5) are reduced to ordinary differential equations by considering
similarity solutions of the form

P q.G(y/x. (2.9)

For the mixing layer, equations (2.1)-(2.5) admit similarity
solutions of the form (2.9) and enable a partial estimate of the
error in the boundary layer approximation to be investigated since
these equations contain streamwise diffusion. (The full equations
also admit of a similarity solution, but were not investigated be-
cause it was thought that such a calculation should also include a
more complete turbulence model allowing for anisotropy of the Rey-
nolds stresses.) For the jet and wake, the streamwise diffusion
terms were dropped.

3. EFFECT OF STREAMWISE DIFFUSION ON THE INCOMPRESSIBLE,

INHOMOGENEOUS MIXING LAYER

To obtain similarity solutions it is assumed that the boundary
conditions (2.6) are satisfied on the straight lines y = 0, y = Ax.
Since div(-I) = 0, a streamfunction (x,y) can be introduced. Defin-
ing the similarity forms

(x,y) = pU 1AxF(n)

e(x,y) = U12 J(n)
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w(x,y) = -L K(n)x

= p1/R(n)

where n y/Ax and substituting into equations (2.1)-(2.5) the fol-
lowing set of ordinary differential equations results:

A[-R]( + XAn2 )R" + R' X2F + A{(1+ n2)( AR)

+ X2n Ki R 0 (3.1)

A](1 + x 2 n)J' + J[2F + {(l + X2n2)( + nAf KR

[AK - a"S] =0 (3.2)

A (1 + X2n 2)(K2) ' + (K2)' 2F + A(1 + A211 )(

+ 5x~r 'j 1'R AKzIAA{n(fR) +R R4'K-a
(1 L K + KR R)(

+ 2AF + Ay .(1+ A~n)()R' = 0 (3.3)

Ar 1 (1 + X2.12)(RF')" + (RF')'(X 2F + A{(1 + A'n2)() )

2 2,1 + X2A(2 J FR) (3.4)
3 + KR ') =0,

-vhere

S = [{(RF')'(1 + X2,,2) - nRF}2 + W (R'F)2J.

The boundary conditions are to be satisfied at n = 0 and n = I.
The position of the dividing streamline is given by F(ns) = 0.

The boundary conditions (2.6) become the following

I
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R(O) --P 1 , R(1) = 1
P2 s

F'(0) = Us rs, F'(1) = 1 (3.4a)

U'

J(O) = J(1) = K(O) = K(1) = 0

The parameters r = U2/U, and s = p2/p, characterize the mixing
layer. The requirement that the solution be well-behaved at the
interfaces gives the additional conditions

2X2FRK' + AJ" = 0, n = 0
(3.4b)

2X2FRK ' + A(1 + X2)J" =0, n= 1

The conditions (3.4b) are satisfied if J vanishes quadratically
while K vanishes linearly at n = 0, 1 (Saffman, 1970) or equivalent-
ly if the eddy diffusivity varies linearly with the distance from
the turbulent-non-turbulet interface.

The equations were solved using the 'Box' scheme of Keller
(1974), which provides a relatively simple but efficient method of
solving the systers of ordinary differential equations which arise.

Equations (3.1)-(3.4) without streamwise diffusion were solved
and the results have been presented elsewhere by Milinazzo and Saff-
man (1976). Here, we just comment on the effect of the streamwise
diffusion on those results. We examined and compared two sets of
data, s = 1, r = 0 to .8 and s = 7, r = 0 to .8. The computations
with and without streamwise diffusion are found to be in very close
agreement. Thie largest differences are found for s = 7, 0<r<.25,
in the value of the spreading width X. Those discrepancies are no
larger than 3%. All values of the other variables are virtually
unchanged. We therefore conclude that the neglect of streamwise
diffusion is a good approximation.

4. THE COMPRESSIBLE HOMOGENEOUS MIXING LAYER

To model the compressible mixing layer, equation (2.3) expres-
sing the incompressibility of the fluid is replaced by an energy
equation as follows
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u -L [H + ![U2 + V2] + 1.- p[(u,) 2 + (v")]1

+ 1 [H + [ U2 + V1] + -p[(U + (v")2]

TX Pu
=; {IH - . pu" [(u")2 + (v"I)21}

+ 3 -pHv pv [(u") 2 + (v') 2 1, (4.1)

Here H is the mass averaged enthalpy. Neglecting the mean kinetic
energy of the turbulence, relative to the kinetic energy of the mean
flow, and using the boundary layer approximation, (4.1) reduces to

Eli -L{H + .U2} + EV -L{H + 1 U2}

2 + 11)2]
y (-PH"v" - Pv[(u")2 + (v") (4.2)

Introducing the eddy viscosity approximation and using the momentum
equation, equation (4.2) becomes

Vu + v L= +Ap t 2( 4.

where a is now a turbulent Prandtl number.

An equation of state relating the enthalpy, h, to the density
and pressure gives the required equation for p. Since h equals
Y P/p, y =adiabatic exponent, it follows that

H _. YP "  (4.4)

If the Mach number of the turbulence is small, then the mean pres-
sure can be taken as a constant across the shear layer, and equation
(4.4) gives

y- 1

where a, is the speed of sound in the fast stream. Substituting the
equation of state (4.5) into equation (4.3) gives the following.
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U [.)+5 p 1))ax 3 vy (Ao -

+ Y-1 5eu U2 (4.6)
-p a, w [c.(.

The rate equation for e must be modified to account for the
increase in turbulent energy due to isotropic compression. As in
Saffman (1974), Wilcox and Alber (1972),the term

- e + ,(4.7)

with = 2.5, is added to the right-hand side of equation (2.4).
Using the model equation for the transport of momentum and equation
(4.6), the term (4.7) can also be expressed as

_ 2(y _ 1) (3u) 2  (4.8)

S pi a,813

Equations (2.1), (2.2), (2.4), (2.5), with streamwise diffusion
neglected, and the term (4.8) added to the resulting form of equa-
tion (2.4), together with (4.6), are reduced to ordinary differential
equations using the similarity hypothesis of § 2. This set of ordi-
nary differential equations is then solved using the 'Box' scheme.

Calculations were done for two cases: (1) r = 0, s = 1; (2)

r = 0, s = s(M1 ) = (1 + 2) M,2)" . The first case corresponds

to adjusting the stagnation temperatures so that at Mach number M,
both streams have the same density. Case two corresponds to both
streams having the same stagnation temperature. Equal stagnation
temperatures imply

CT U + Y P
p 0  2 y-lp 1  '

- Y P

where Cp specific heat at constant pressure and T. is the stagna-
tion temperature. Since yP = a,' p1 it follows that

M1 L 2 (4.9)
S p2/p1 21+M .
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The results of the calculations are summarized in Figures 1
and 2. Figure 1 compares the thinning of the shear layer, as meas-
ured by

6'= Uj/xla!a

for cases 1 and 2. It can be seen that the model predicts a much
sharper decrease in the width of the mixing layer when density
changes are due to compressibility effects than when the density
differences are due only to inhomogeneity of the fluids.

Figure 2 shows the variation of the minimum density P-min
across the layer. The dependence of the maximum Reynolds shear
stress, T, with Mach number, for cases 1 and 2, is also shown,
together with the dependence of Tmax on s for M, = 0. Although
it might be expected that the thinner the layer, the lower is the
value of Tmax, this is not the case. For corresponding values of
s or MI, the fluid density in the mixing region at the point of
maximum x is greater for case 1 than either that of case 2 or that
of heterogeneous, incompressible mixing layer. (For s : 7 or M,
6, the densities differ by as much as a factor of 4.) Since T =
pu'v" the values of Tmax for case 2 and the incompressible mixing

0.22-

0.20

0.18-

0.16 

0

0.14-

O.Q2-=+

0.10-

0.081 M1 2 3 4

/ 2 3456 8t1

Figure 1. Variation of vorticity thickness as a function of Mach
number or density ratio. Scales of s and M, are related
on the abscissa by equation (4.9).
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Figure 2. Variation of minimum density with Mach number for case 1,
s = 1, and variation of max/piUi2 with M, for cases 1 and
2. Relation between s and M, on abscissa again given by
equation (4.9).

layer are much lower in comparison to the value of Tmax for case 1
than would be indicated by Figure 1. As expected, the thinner the
layer, the lower is the value of (T/P)max.

5. TWO-DIMENSIONAL JET

For a two-dimensional free jet of total kinematic momentum flux
M the appropriate similarity forms are

(x,y) = (Mx) 2XF(n)

p(x,y) = . J(n) (5.1)

W(xy) I- K(n)

with n = y/Xx. Since the flow is symmetric it can be assumed that
the turbulent-non-tuibulent interfaces are at t = 1.
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Substituting the similarity forms (5.1) into (2.1), (2.3),(2.4), (2.5) gives (streamwise diffusion neglected)

A JT- J( -"I - \F') 0, (5.2)

A(JK')' + X2KK'F - X2K2( IXK - alIF"I + 3XF') = 0, (5.3)

A[F" + -(FF')' 0 0. (5.4)

Since the flow is symmetric about 0 = , equations (5.2)-(5.4)
need only be integrated on the interval 0 :j n 1. The symetry
conditions are

J'(O) : K'(O) = F(O) 0 0, (5.5)

while the boundary conditions at the free surface are

J(1) = J'(1) = K(1) = F'(1) = 0. (5.6)

In (5.5) F(O) = 0 since symmetry about n = 0 requires that the
transverse velocity, V, must vanish on n = 0. The additional con-
straint (2.7) leads to the requirement that

-[F'(n)]2dn 2X (5.7)

Since (5.7) cat, be thought of as a normalizing condition it can
be replaced by

F(1) = 1, (5.8)

and the solution F, J, K of (5.2)-(5.7) is obtained by scaling the
solution P, 3, R of (5.2)-(5.6), (5.8) according to B = J, BR = K,

BP = F, where B = 1.//2Xf'[V1(n)]2dn.

Solutions of (5.2)-(5.7) have been found and the results are
discussed in Govindaraju (1970), Saffman (1970).

The solutions obtained by Govindaraju were calculated using a
parallel shooting method. It is reported (Govindaraju, 1970) that
these solutions are difficult to obtain. In contrast, the 'Box'
scheme gave the solutions described here relatively easily.
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The results of the calculation are summarized in Table 1.
Results were obtained for various values of a' and a' to study the
dependence on the parameters. Experimental values of F'(O) are 2.4
(Schlichting, 1960). Davies, Keffer and Baines (1974) give values
of Y /X (y, is the distance from the center line where the mean

velocity is one-half the center line velocity) of 0.11 when velocity
profiles are measured in the usual way and 0.16 when velocities are
measured with conditional sampling. Since the similarity solutions
impose straight interfaces, it is more appropriate to compare the
theory with measurements conditioned on turbulent fluid. The experi-
ments of Davies et al. indicate that

~max - JO)I/(Jmax + J(O)) .12

while Table 1 gives approximately 0.07 for the preferred value of
5/3. In view of the difficulty in measuring this quantity,

the agreement is reasonable.

Figure 3 shows profiles for F', XF, J, JF"/,K for a' = .18,
BI = 1.67. These profiles are in good qualitative agreement with
those seen in experiments (e.g., Davies, Keffer and Baines, 1974).

Table 1. Results of the calculation for a 2-D jet.

yi, 'max

' ' ? Y1/x F'(O) J(O) Jmax K(O) Ua
max

1.67 .20 .30 .14 2.21 .50 .58 4.1 .031

1.67 .18 .31 .15 2.15 .51 .59 3.9 .032

2.00 .20 .38 .20 1.87 .63 .66 2.7 .043

2.00 .18 .42 .22 1.78 .66 .68 2.5 .047
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~e/(M/x) x I -

.lU/(M/x)iI

.i.2 .3

y/x

Figure 3. Profiles of 3/(M/x), U/(M/x) , p/(Mx) , T/(M/x) as func-
tions of y/x for the two-dimensional jet. Values of
parameters are 8' = 5/3, a' = .18.

6. TWO-DIMENSIONAL WAKE

For a two-dimensional wake of total kinematic momentum defect

D and free stream velocity U. the appropriate similarity forms are

° xJ

e J(n) (6.1)

U
W x K(n)x

where n -- y/\x2 and u is the streamwise defect in the velocity

caused by the cylinder.

Substituting the expressions (6.1) now gives the ordinary dif-
ferential equations
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A F1 + (X2nF)' 0, (6.2)

2 ' K 2 XJ(K - "F' I - X) 0 , (6.3)

(AJK')' + -2 n(K2)' - XK2(8'XK " -'IF'I - 2X) = 0. (6.4)

As in § 5 it is only necessary to integrate equations (6.2)-
(6.4) on 0 <. < 1. The symmetry conditions at r = 0 are now

J'(O) = K'(0) = F'(0) = 0. (6.5)

At n = 0 the boundary conditions are

J(1) = J'(1) = K(1) = 0. (6.6)

The conservation of momentum condition (2.8) becomes

F(n)dn = 1 (6.7)

Since equations (6.2)-(6.6) are invariant under the scaling
F - BF, J -- B 2J, X BX the normalizing condition (6.7) can be
replaced by

P(O) = 1. (6.8)

The constant B can then be determined from

B = i./V2Xf 'F(n)dn.

The results of the calculation are summarized in Table 2.
Values were again obtained with different vplues of the parameters
ot' and a'. Experimental values for y2/D(x)-i are about 0.35 and for

F(O) about 1.4. Figure 4 shows the profiles for F, J, JF/XK.

7. DIFFUSION OF A PASSIVE SCALAR

We now consider the diffusion of a passive scalar, for con-
venience called temperature, in the incompressible mixing layer,
jet and wake. By definition, a passive scalar is one which has no
effect on the flow field, which we take to be those described in9§ 3, 5, 6.
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Table 2. Results of the calculation for a 2-D wake.

2 A F(O) J(O) Jmax K(O) X

(Dx)D

1.67 .21 .54 .35 1.50 .66 .68 1.30 .21

1.67 .18 .57 .36 1.43 .70 .71 1.24 .20

1.67 .15 .59 .38 1.37 .74 .75 1.19 .19

2.00 .21 .67 .45 1.17 .95 .95 .99 .16

2.00 .18 .69 .46 1.13 1.00 1.00 .96 .15

2.00 .15 .72 .48 1.09 1.05 1.05 .94 .15

1.6

u/(D/x) 2

00 .3 .6
Uooy/Dx)' 1

Figure 4. Profiles of u/(D/x)2, e/(D/x), T/(D/x) as functions of
y/x for the two-dimensional wake with 0' = 5/3, a' .18.
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The Reynolds equation for 0 = pT/p, in the boundary layer
approximation, is

-+ pV 2- -L (-pvIT"). (7.1)

Using the gradient transport model of this work, it is postu-
lated that 0 satisfies the equation

u DO 0 v Le i (7.2)

where a is a turbulent Prandtl number.

To obtain the similarity equations for the three flows, each
is considered separately.

For the mixing layer 0 can be expressed as

0 = (T- T2)0(n) + T2  (7.3)

where n = y/Xx, T, = T(+ '), T2 = T(- al). Substituting (7.3) into
(7.2) gives

J®). + X2F,= 0, (7.4)

G(0) = 0, 00) 1.

Using the results of § 3, equation (7.4) is integrated numerically
for 0.

For the 2-D jet

S 0 (n) (7.5)
(Mx)

where n y/)x and Q is the total heat flux,

x uT dy = Q, (7.6)

which provides the constraint as follows.

fA
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o F(n)(D(n)dn = I (7.7)

The synetry of the flow about the dividing streamline n = 0 implies

01(0) 0 0. (7.8)

Substituting (7.5) into (7.2) then using (7.8) gives

' + -(FG) = 0. (7.9)

Using the momentum equation (5.4) and condition (7.7) it can be !:4en
that

O(r() = [F(rn)]a/2A e[F#(n)]+ dn. (7.30)

For the 2-D wake

S= (n) (7.11)(Dx)'2

where n = uy/Axx. The condition

f x T dy (7.12)

provides the constraint

I 0(q)dn = 1/2X. (7.13)

Symmetry about n = 0 gives

01(O) = 0. (7.14)

Substituting (7.11) into (7.3), using (7.14), then noting (6.2) and
(7.13) gives

0®(n) = [F(n)]r/2A J [F(n)]°dn~ (7.15)
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For a 1 it is clear from the construction of the model that
the temperature and velocity distributions coincide. For our calcu-
lations, we have taken in all cases the value of a to be .5. This
seems to be a representative value for the turbulent Prandtl number
in a free flow away from solid walls (see Jenkins and Goldschmidt,
1974, p. 89). Some calculations done with different values of a
indicated that the dependence on a was weak.

Figures 5, 6, 7 compare the velocity and temperature profiles
for the three flows. In each case, it can be seen that the tempera-
ture profile approaches the turbulent-non-turbulent interface with
a larger slope than does the velocity profile. It is easy to demon-
strate analytically that the variation is like (distance)0 . This
difference in slope can be used to explain the observation that the
temperature profile is wider themn the velocity profile. If it is
assumed that these steady theoritical profiles can be 'wobbled' to
recover the unsteady character of the experimental profiles associ-
ated with slow variations of the interface, ten this difference in
slope accounts for the difference in widths. This has been noted
by Davies, Keffer, Baines (1974), where it is suggested that the
thermal and momentum spread are better measured by quantities condi-
tioned on the turbulent fluid. Figures 5, 6, 7 also show the wob-
bled profiles, <U>, <0>, defined by

<R(y)>= R(y')W(y - y')dy',

U/U'(o'-T2)/(TI-

< (o-T2)/(T 1-T2)-

5

<U/Ui>
Top hat

width

-.15 0 72
Figure 5. Effect of wobbling on profiles of mean velocity and tem-

perature for the incompressible mixing layer s 1,
r 0 0. Turbulent Prandtl number a 0.5.
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K 18e/IGOIN0 It2)

Uf (/(Q/(Mx)"2)

Figure 6. Effect of wobbling on profiles of mean velocity and
temperature for the two-dimensional jet. a = 0.5.

Top hot width

0 .4
Uy/(Dx)1/ 2

Figure 7. Effect of wobbling on profiles of mean velocity and
temperature for the two-dimensional wake. a -0.5.

iV2
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where W(y) is a top-hat function whose integral is unity. The width
of the top hat was chosen to be 60%, 25% and 25% of the flow width,
respectively.

The calculated profiles are in good agreement with profiles
seen in experiments (see Davies, Keffer, Baines, 1974).

Table 3 compares the ratio of the calculated half-widths for
temperature and velocity, Ar = , T/A , U for the 2-D jet and wake.

Figures 8, 9, 10 show the Reynolds stress u'v' and the corre-
sponding velocity.-temperature correlation term O'v' for each of the
three flows.

8. RELAXATION STRESS MODEL

The two equation model described in the previous sections has
been reasonably successful in 'postdicting' the properties of turbu-
lent mixing layers, jets and wakes. The model was also used to make
an actual prediction (see Figures 1 and 2) about effects of compres-
sibility on the mixing layer between two streams of equal density
(but unequal stagnation temperatures), and it will be interesting to
see how the prediction compares with experiment when these are car-
ried out. The model also works adequately for boundary layers on
flat plates, Saffman and Wilcox (1974), Knight (1975).

Table 3. Values of Xr, theory and experiment.

Xr

Flow Calculated

Calculated with 25% Experiment
wobble

Jet 1.5 1.2 1.3 Jenkins-
Goldschmidt,
1974

1.2 Davies-Keffer-
Baines, 1974

Wake 1.3 1.2 1.2 Townsend, 1956
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!Vro'r/U I(T2-T 1)

1.0125

-.15 0 .15
y/x

Figure 8. Comparison of Reynolds stress and transport of passive
scalar for incompressible mixinj layer r =0, s l .
Shown plotted are uV,/U2 and e0v'/U,(T2  TI),

1 .06

.03-

0.175 .35

Figure 9. Comparison of Reynolds stress and scalar transport for
two-dimensional Jet. Uovs/Um, To'v/Umom. Urn = centerline

mean velocity, em centerline mean temperature.
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.07j

.035

Ct

0 .3 .6u /Dx) '/ 2

Figure 10. Comparison of Reynolds stress and scalar transport for
two-dimensional wake. tFv'/U 2, O-VT/Um m. Um = center-

line mean velocity defect. Om= centerline mean tempera-
ture.

However, these flows have in common the property that they are
essentially unidirectional and mean properties change slowly along
the streamlines. There is reason to believe that the model is in-
adequate to describe flows in which there is significant mean stream-
line curvature or mean flow acceleration. The reason lies in the
eddy viscosity hypothesis, according to which the principal axes of
the deviatoric Reynolds stress tensor, u - 1/3 qz6ij, are parallel
to the principal axes of the mean rate of strain tensor, Sij. The
tznsor Si can be changed instantaneously in incompressible fluid by
the appli ation of pressures exerted on boundaries, whereas the devi-
atoric Reynolds stress, being a property of the turbulent vorticity,
requires a finite time to change or relax to a new value set by the
new mean rate of the strain. There will also be diffusion of Rey-
nolds stress by turbulent transport. This ensures that the shear
stress doesn't automatically vanish with the mean velocity gradient.
In addition, we can expect that the eddy diffusion hypothesis is but
the first term in an expansion of a functional dependence of the
Reynolds stress on mean flow properties. Extra terms must be incor-
porated because of the known anisotropy of the principal Reynolds
stresses in non-axisymmetric flow, such as flow along a pipe of non-
circular cross section, which is not in accord with the eddy
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diffusion hypothesis. Thus although the two-equation model described

above has been reasonably successful in predicting the properties of

a class of turbulent flows, it cannot have sufficient generality or

complexity to describe flcws with non negligible mean streamline
curvature or acceleration (complex flows), and we shall now construct

a generalization to try to remedy these deficiencies. Reynolds
(1976) commented particularly on the inability of the two-equation
model to describe the unsteady distortion of homogeneous turbulence

by a uniform irrotational strain or uniform shear, and we shall con-
centrate here on the ability to predict this special class of flows

with the new, 'relaxation stress' model. Application to more real-

istic flows is currently under active study.

For simplicity and to bring out the essential features of the

approach, we shall ignore effects of compressibility and henceforth
take = 1. Direct effects of viscosity will also continue to be
neglected.

We retain equations (2.5) and (2.4) for the transport of pseudo-

vorticity and pseudo-energy, but generalize the eddy viscosity
hypotheses. We will also have some new values for the constants.

The first new hypothesis is that associated with a uniform mean
velocity gradient tensor is an equilibrium Reynolds stress (uiuj)E
given by

2Ae s.. S6i + Bes e

(uuj)E - e6ii - 2 k +iC _-T S.S jk

De Fe 7 Ge

+-T (Sjkik + Slkajk) + _7 "kt. i + 7" ikajk- (8.1)

Here

Q ik = Ui,k - Uk,i (8.2)

is the rotation tensor; its components are proportional to the mean
vorticity components. The numbers A, B, C, D, F, G are to be uni-
versal constants. A special case of (8.1) was proposed tentatively
by Saffman (1974), and rediscovered by Pope (1975). The second
hypothesis relates the actual Reynolds stress uiuj to the equilibrium
value (uiuj)E by a relaxation diffusion equation,

at ujuj -( ?E) + All' a [_ -LV .j , (8.3)
ax a

D'-k kx
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where 0 and A"' are further universal constants describing the rate
of approach to equilibrium and the turbulent diffusion of Reynolds
stresses. We suppose that 0 > 1, so that the turbulence tends to
equilibrium faster than it decays.

The new model is complete, and allows the turbulent flow to
have more structure than the two-equation model, but the price is
an extra number of constants which cannot all be determined by gen-
eral arguments or expressed in terms of wall layer properties as was
the case for the two-equation model.

To proceed, we consider special cases. First, the decay of
homogeneous turbulence. When there is no mean velocity and turbu-
lence quantities are spatially homogeneous, the solutions of the
equations are

2 K -- _ 2 KO t-/ 1 + K 2t0B/Ie

e= ~ .t/' 1 3 - /a: ~ TI I, e : t ---r + Ki etc.

(8.4)

where K, K, are arbitrary constants and time is measured from a
virtual origin. There are theoretical and experimental reasons
(Saffman, 1967) for b~lieving that the energy of homogeneous turbu-
lence decays like t- / , giving

: 5/3. (8.5)

We now appeal to the experimental observation that in.plain
strain, U1 = Ex1, U2 = -EX2, U3 = 0, measured values obey u3 =

i(u-7 + u D. This implies that C = 0. Next we consider the decay

of homogeneous turbulence in a fluid which is in rigid body rotation.
Ibbetson and Tritton (1975) have recently studied such flows experi-
mentally. The observations did not show any particular anisotropy
and this suggests G = 0. These experiments also show that the value
q = I employed previously is unacceptable, as it predicts an enhanced
dissipation due to rotation orders of magnitude larger than that
observed. Numerical experiments with various values and comparisons
with the observations suggest that

1 (8.6)

is an appropriate value, but this value should be regarded as tenta-
tive until an independent verification of the experiment is carried
out.
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Strained homogeneous turbulence returns to isotropy when the
distortion is removed. The experimental data are in conflict. For
example, Grant (1958) saw no return to isotropy, the energy com-
ponents all decaying at the same rate. This would imply 0 = 1. On
the other hand, Tucker and Reynolds (1968) saw a definite return to
isotropy, as do most other workers, and the rate is consistent with
the value

0 = 2 (8.7)

which we shall adopt.

We now consider the statistically steady situation of a turbu-
lent wall layer, with friction velocity u,. In this case u uj
(Ui j)E, and the appropriate asymptotic solution of (2.5) and (2.4),
combined with (8.1) for a pure shear and (8.3), is

a" 9 2 W a"U, 2 dU_ ue -AU,,r ky u,, dY ky '

2a" [ 3 ] ~t~U2. (8.8)q A 44 (B + 4F) u* .8

where

k 2 =ia"l oi (8.9
4A'/A (8.9)

and T = -uv denotes the Reynolds shear stress. The rate of produc-
tion of turbulent energy by the working of the Reynolds shear stress
against the mean velocity gradient is rdU/dy. Assuming that this is
also equal to q2/2e times the first term on the right-hand side of
equation (2.4), we have

u2 dU =all q2 dU
dy 2 dy

i.e.

o$ r, (8.10)

where we define r = u,/j q , and then from (8.8)

A r 2 +3 B + 3F.
4(8.11)
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The wall layer is a special case of simple shear, U,: Kx,
for which

-i 2e +eIB

(u')E = + B - D + 2F e K, (8.12)

2 2 + 1B + 2F e
3E 32

Let us now consider the flow in the vicinity of a turbulent-non-
turbulent interface, which we take to lie in the plane x. = Vt,
where V is the entrainment velocity or equivalently the velocity
with which the interface advances into non-turbulent fluid. An
analysis similar to that carried out by Saffman (1970) can b&-per-
formed. From the requirements that e and w vanish at the interface,

but e /w is finite, and that the velocity parallel to the interface
and shear stress vary linearly with distance, it follows that

A' = A" = 1 A' (8.13)2

In addition, it is desirable to allow (u )E to vanish at the inter-
face; hence

_ B - D + 2F= 0. (8.14)
2

In the wall layer, w = Ka", and hence the ratio of the components
of turbulent energy are, using (8.11) and (8.14),

;T. =  2A 1 : : . (8.15)

The ratio u : is a measured quantity, to be denoted by r, typicalvalues being in the range 2-3. Thus

A : 1 (r + 1)r' (8.16)

is determined in terms of measurable quantities.

i
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A further relation between the constants is obtained by con-
sidering the equilibrium stresses in a uniform irrotational distor-
tion

U =cx, V :fy, W= -(1 + f)z (8.17)

where e is the rate of extension and f is a distortion type param-
eter. For definiteness, we take - _ f < 1, so that the x and z
axes are respectively the directions of greatest extension and com-
pression. This convention will be used throughout. Then from
(8.1), remembering that C = 0,

2e €2

u7 e 2Ae_ + 2Be ' (1 + f + f 2 ),

E 3 W _w2e ecE= -2Af-j * 2Bej (1, f~f *(8.18)

;E 2 -2A(l+-f) ee+ 2Be (1 + f + f2).

We require that these quantities be non-negative, but there is no
need to exclude the possibility that 7, can be arbitrarily small.
Hence after a little arithmetic, we sei that

B = A2  (8.19)

ensures these requirements.

The anisotropy of homogeneous turbulence is measured by a dis-
tortion parameter K, defined by

K = ;7 - j . (8.20)W 2 + U 2

The dependence of K on c and f has been the subject of experimental
research, and there are many extant theories. According to the
present theory, the value of K in the equilibrium state, KE, is
given by

Al+ .1 f)c/w
KE = + 1 A 2(1 + f+" (8.21)

2+ w l f f)
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Note that KE attains a maximum (1 +1fV f + 2 (1 + f+ f2))

when e/w [3A2(1 + f + f2)]- If f = - the maximum value is I.2'
I, remains to relate A to A', A" and A"'. We shall assume that

the rc'lation, A = 2A', still obtains, although a general argument
has not been constructed.

To sunuarize the relaxation stress model, the Reynolds stresses,
uiuj , needed to calculate the mean velocity distribution, are
assumed given by solutions of equations (2.4), (2.5), (8.1), (8.3).
The constants in these equations are given the values, for reasons
discussed above,

1 0 , 2, e' = 5 " , r, A : (r + l)r,
4' 3' 2

B=A', C=O, D=-(r-1)r2, F l(r - 1W -1A (8.22)
3 6 (r4-iA, (.2

G 0, A' A, A"l - A A"' A, a' 0'a" - kA/A.
2' 2'

The calculations described in the following section were done with

k = 0.42, r = 2.5, r (8.23)3.

Boundary conditions for the equations are that e and w and tan-
gential Reynolds stress should vanish at the sharp interface between
turbulent fluid and irrotational non-turbulent fluid; the mean
velocity (but not necessarily gradients of mean velocity) is to be
continuous. At a solid wall, the variables should match asymptoti-
cally to the behavior described by equation (8.8) and the velocity
should match with the logarithmic law of the wall. Integration to
the wall would require the introduction of viscosity into the equa-
tions.

A word concerning the philosophy of our approach is perhaps in
order, as the vast majority of workers in the field of turbulence
modelling prefer to follow a different method in which there is term
by term modelling of the individual terms which arise when moments
of the Navier Stokes equations are taken. Currently, Launder and
Lumley are leading exponents of this approach. Our method follows
instead the spirit o.' Kolmogorov (1942), and attempts to model the
physical processes in the belief that if these are properly described,
the predictions should be qualitatively correct and quantitatively

.....---
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reasonable. Term by term modelling, although conceptually easier
to grasp, may be dangerous in that it may give universal local forms
for terms that are perhaps determined globally, such as pressure
velocity correlations. A rough analogy, drawn by Liepmann, is the
difference between solving the Boltzmann equation of kinetic theory
by replacing it with the Krook model or constructing a BBGKY hier-
archy. But the distinction may be academic as the actual equations
are often closely similar, and the practicing engineer with a real
problem will probably be better off at present with a simple mixing
length approximation.

9. THE DISTORTION OF HOMOGENEOUS TURBULENCE

The equations of the relaxation stress model are more compli-
cated than those of the two-equation model, and comparison with
experiment has so far been made only for a particular class of flows,
namely the distortion of homogeneous turbulence by a uniform irrota-
tional strain or uniform shear. It should be borne in mind that this
class of flow is somewhat artificial. It is also uncertain how well
the experiments designed to model the flow actually do so. The theo-
retical flow is spatially homogeneous and developing in time. The
experimental flow is steady and spatially inhomogeneous; the spatial
inhomogeneity of the Reynolds stresses drives secondary motions of
unknown effect.

The flow fields to be considered are those in which homogeneous
turbulence is subjected to a steady velocity field with uniform
velocity gradient tensor

E, K - S, 0

Ui j = , sf , 0 (9.1)

0, , -(1 + f)

Table 4 lists the experimental configurations with which the
theory will be compared.

The equations of the stress relaxation model reduce to

.dt - d e -e (9.2)

where

X l= K + 4C2 (1 + f + f2)] ,
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Table 4. Velocity gradients for experimental configurations.

Experiment c(sec - ) f K(sec ) Q(sec "') T(sec)

TR 4.45 0 0 0 0.4

T 9.41 0 0 0 0.15

M 19 0 0 0 0.135

U1 7.62 - 0 0 0.18

U2 18.2 - 0 0 0.12

U3 32.5 - 0 0 0.086

RTI 4.8 0 0 0 0.22

RT2 14 0 0 0 0.135

RT3 12 - 0 0 0.145

RT4 3.25 1 0 0 0.255

C 0 0 12.9 0 0.2

ML 0 0 5.45 0 0.47

I 0 0 0 0-6 100

T is time for which strain is applied or duration of measurement.

Key:

TR Tucker and Reynolds 1968

T Townsend 1954

M Marechal 1972

U Uberoi 1956

RT Reynolds and Tucker 1975

C Champagne, Harris and Corrsin 1970

ML Mulhearn and Luxton 1975

I Ibbetson and Tritton 1975

Numbers refer to different experiments.
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P l ' K 2 T- 2K1 + 2nf2 + 2(2 - n) 2(l + f + f2)]2

and

djij u -i~i~i - PEu ) (9.3)

where (uiuj-E are given by (8.1) in terms of e, w and the Ui -.
Numerical integration of the equations is trivial. (Analytical
solution is possible but more complicated.) The problem lies in
selection of initial values, eo and w., for the pseudo-energy and
pseudo-vorticity. Th2 initial values of 'uu are given in the
experimental data. When the distorting section follows a uniform
section, some information can be gained from the decay of the homo-
geneous turbulence, but a little trial and error was also employed.
Experiments using the same wind tunnel and grid, but different dis-
tortion sections, were always compared using the same values of eo
and wu.

The results are shown in Table 5. We also show calculated
values of

K W 2  1 (9.4)22
q

The agreement is not perfect but seems quite reasonable. It is
no worse than that obtained by other models or by the use of sub-
grid modelling (see Reynolds, 1976). The qualitative features are
reproduced well. The results for K and T are sensitive to the value
of A, and the constants of equation (8.23) were chosen accordingly,
but otherwise the dependence on the parameters seems to be weak.

Figure 11 shows the variation of K with distance along the
straining section for the experiment of Tucker and Reynolds (1968),
where the straining section was followed by a uniform duct in which
some return to isotropy occurred. Figure 12 shows the variation of
u2, v, w2 with distance for the same experiment.

Finally, we turn to the experiment of Ibbetson and Tritton
(1975) on the decay of homogeneous turbulence in a fluid undergoing
solid body rotation. The experiment presents great difficulties
which were overcome in exemplary fashion, but the Reynolds number
of the turbulence is of necessity relatively low and the present
considerations are essentially for high Reynolds number. Figure 13
shows a calculation of vq' against t. Comparison with Figure 3 of
Ibbetson and Tritton shows general qualitative agreement, although
there is disagreement in detail. In connection with the slower
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I I I I I I

4 1

OI , I. I i I i I

) 20 40 (30 80 100 120 140 IGO
X

Figure 11. Variation of K with distance x from entrance to
straining section for Tucker and Reynolds (1968).

theory. - ----, experiment.
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strain flow

:('40'O-

N0

4 0Y i j q
,22

0 20 40 60 80 100 120 140

Figure 12. Variation of mean square velocity components with
distance x from entrance to straining section for
Tucker and Reynolds (1968). , theory.
.....- , experiment.
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10:

(*) i -

to 1oo

Figure 13. Decay of turbulent intensity with time, t, for homo-
geneous turbulence in solid body rotation with angular
velocity R.

decay for S1 = 1 than for Q = 0, as contrasted with faster decay for
S1 = 3 and S = 6 after a brief initial rise, it is worth mentioning
that Ibbetson and Tritton felt that this trend reversal was a possi-
bility although they do argue against it. They attribute the extra
decay to the radiation of energy to the walls by inertial waves.

I
The results shown here indicate that the stress-relaxation

model reproduces the qualitative features of the distortion of homo-
geneous turbulence, and the quantitative agreement is sufficiently
promising for the study to be worth continuing with the model applied
to more realistic turbulent flows. Work on this is in progress and
it is hoped to report on the results in the not too distant future.
It should, of course, be borne in mind that the model is unlikely to
be in its final form and that further development may be needed. The
introduction of a tensor diffusivity in place of the scalar diffusiv-
ities proportional to e/w may be necessary to model flows displaying
substantial spatial anisotropy.
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DISCUSSION

KOVASZNAY: (Johns Hopkins University)

In your new set of equations it appears to me that you really
want to make a consistent second-order model using the correct second-
order quantities. I would like you to explain to us what is the
relationship of your model to a similar attempt by Lumley who some-
what earlier attempted a consistent second-order approximation with
only third-order guessed terms. One of the difficulties I am facing
when looking at model equations of different people is that everyone
presents it separately as unique, and very little attention is paid
te the relationship to other similar attempts, even though those
attempts are completely in published papers.*

SAFFMAN:

I can't answer your question and the reason is that there must
be at least 10 or 20 different models. If you spend time studying
all of them and comparing with your own then you will do nothing but
study the other models, so you have to be selective in deciding

* Lumley, T. L. & Knajeh-Nouri 13, 1974, "Advances in Geophysics,"

Vol. 18, p. 169-192, Academic Press, New York, (Int. Symp. of
Turbulent Diffusion, IUTAM-IUGG, Charlottesville, VA, 1973).
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which ones you will study and which ones you will not. Selections
are made entirely on the grounds of prejudice and I am afraid that
Lumley's model was not studip? 'y me.

CORRSIN: (Johns Hopkins University)

Since the Reynolds stress tensor and the mean strain rate ten-

sor are generally not oriented in the same direction, I wonder
whether you couldn't just simply generalize the first model by
putting in a tensor turbulent viscosity rather than going through
all that elaborate additional process. Have you tried such a tensor?

SAFFMAN:

The answer is that one could do that, but there are a large
number of ways that one could proceed. I went the way I've
described. I could have gone the way you are suggesting, but I
don't think it would be any easier. I think that my way is about
the simplest that I can do and, however complicated it is, I do
think it is simpler than the Reynolds stress modeling equations.

BEVILAQUIA: (Rockwell International)

At first sight it seems that you may have provided a connection
between the transport models and the eddy viscosity models. When
the rate of turbulence production equals its rate of dissipation,
the transport models reduce to a lag model for the eddy viscosity.
Since your work relates the eddy viscosity to a lag model, it sug-
gests to be a way to relate formally, or rigorously, the "constants"
of the eddy viscosity models to the "universal" constants of the
transport models.

SAFFMAN:

I object to the word "rigorous".

LAKSHi4INARAYANA: (Pennsylvania State University)

In your two equation model you wrote the decay rate for the
wake and the spreading rate of a jet. Was this part of the solution
that comes out of the equations?

SAFFMAN:

I assumed that there is a similarity solution and the solution
was then calculated numerically.

-1I



228 P. G. SAFFMAN
41

LAKSHM INARAYANA:

Similarity in the solution might exist but the decay rate
might be different.

SAFFMAN:

Once you assume there is a similarity solution then everything
else follows automatically. There was no more arbitrariness, and
no evidence of non-uniqueness, but this could not be proved rigor-
ously.

LAKSHM I NARAYANA:

The second question is related to the rotation. In the experi-
mental data (due to Ibbetson and Tritton) you showed the rotation
and velocity were in the same direction.

SAFFMAN:

There was no mean flow in their experiment. They just had the
cylinder rapidly rotating and moved the grid up and down to set the
fluid in turbulent motion, then let the turbulence decay.

LAKSHM I NARAYANA:

How do you exactly include the rotation into the model?

SAFFMAN:

When I had quadratic terms in expressing the Reynolds stresses
in terms of gradients of mean velocity, some of the quadratic terms
involved the angular velocity of fluid. It also enters into the
generation of pseudo-vorticity.

BRADSHAW: (Imperial College)

Just a quick comment on transport equations for eddy viscosity.
I don't think I have ever seen it in the literature, but you can
derive an exact transport equation for any given definition of eddy
viscosity because you get a "transport equation" for a velocity
gradient simply by differentiating the Navier-Stokes equations. If
you do this, for instance for the thin shear layer form of eddy
viscosity, you get an equation for D(eddy viscosity)/Dt, and that
equation is a right can of worms. It looks very different from the
eddy viscosity transport equations that one would deduce from a
model like yours or even a model like Kovasznay's.* It has, for

* V. W. Nee, L. S. Q. Kovasznay, In Proc. 1968 AFOSR-1FP-Stanford

Conference on Computation of Turbulent Boundary Layers (S. J.
Kline et al, Eds.) Thermosciences Div., Stanford Univ., 1969.

........... .. .. . .
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OHRENBERGER: (TRW Systems)

With regard to the compressibility terms you added to each of
the equations, are they really density-gradient terms rather than
Mach number terms or do they have some special Mach number effect?

SAFFMAN:

They have a Mach number dependence because the density is a
function of Mach number, but they are principally in terms of dens-
ity gradients.

OHRENBERGER:

If you had an incompressible flow with density gradients,
would you essentially have the same terms?

SAFFMAN:

Yes, the same terms are in there.

OHRENBERGER:

Isn't that somewhat contrary to Brown and Roshko results?

SA F FMAN:

No, I don't think so.

CORRSIN:

I just want to mention that there is an old NACA report on
rigid rotation grid turbulence done by Steve Traugott on a study
done about 20 years ago. You might be able to compare with that.

MELLOR: (Princeton University)

On your Ekman layer, I think it is worthwhile to point out
that if you write down the Reynolds stress equation, you can readily
show that the Coriolis term in the Reynolds stress equation is small
compared to dissipation.

GAVIGLIO: (I.M.S.T., Marseilles)

As for inadequacy of complete eddy diffusion model, I underline
that in the case of experiments performed in a separated flow at
Mach Number 2.3, we found a case in which the friction actually in-
creases although the velocity gradient decreases.
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instance, a D2p/MXiOX2 term in it, where p is the mean pressure,
and of course it also has uncomfortable quantities with zeros in
the denominator.

RESHOTKO: (Case Western Reserve University)

Why is the Ekman calculation regarded as a particular test of
the stress relaxation model?

SAFFMAN:

It is a simple boundary layer in a rotating fluid. I was
interested in trying to see how well the effecLs of solid body rota-
tion could be reproduced by this kind of turbulence model and it is
something for which there is some experimental evidence. I could,
I suppose, have tried a jet in a rotating fluid, but I was more
interested in the Ekman layer.

RESHOTKO:

There are some scalar effective-viscosity calculations for
related flows* and those turned out reasonably well. That is why
I wondered if this was a test over and above that.I
SAFFMAN:

On any of these flows one can construct a simpler model that
will work. The object of this type of modeling is to get what you
call a complete model where the form of the model is completely
independent of the flow to which it is going to be applied. I think
for instance, for boundary layers there is a very simple eddy vis-
cosity or mixing length model which will work much better than this
but they are limited or restricted to that kind of flow. If you go
to another flow you have to use a different type of equation or a
different assumption. The object here is to see if one has a pre-
dictive capacity in the form of a complete model which is independ-
ent of the type of flow under study. The object is not to predict
any one particular type of flow to a high degree of accuracy.

* Cooper, P.: Turbulent Boundary Layer on a Rotating Disk Calcu-

lated with an Effective Viscosity, AIAA Journal Vol. 9, Feb.
1971, pp. 251-261.

Cooper, P. and Reshotko, E.: Turbulent Flow Between a Rotating
Disk and a Parallel Wall, AIAA Journal, Vol. 13, May 1975, pp.
573-578.
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SAFFMAN:

I think that may be consistent with the solutions I have.

WYGNANSKI: (Tel Aviv University)

In the case of the mixing layer a discontinuity in the slope
of the instantaneous velocity profile has been observed at the
turbulent-non-turbulent interface.

SAFFMAN:

Yes, I was aware of that in constructing the model; the model
was designed specifically to have these discontinuities in velocity
gradient.

LUXTON: (University of Adelaide)

In one of your figures, Figure 1, where you compared your
calculations with our uniform shear flow results (Mulhearn, P. J.
and Luxton, R. E., Jnl. Fluid Mech. (1975), 68, 3 pp. 577-590)
there was a note about the initial conditions-you used. It is im-
portant to note that the conditions immediately downstream of the
honeycomb in our experiments were highly anisotropic.

SAFFMAN:

I should have said that I didn't start at the grid in comparing
with your experiments, I started some distance downstream, where in
fact you give the data.

I



APPLICATION OF THE TURBULENCE-MODEL TRANSITION-PREDICTION METHOD

TO FLIGHT-TEST VEHICLES*

T. L. Chambers & D. C. Wilcox
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ABSTRACT

Flight conditions for six reentry vehicles have been simulated
using the turbulence/transition model developed by Wilcox, et al.
Material composition varies from vehicle to vehicle. The various
frustum materials used are beryllium, carbon/carbon felt, carbon
phenolic and teflon; five of the vehicles have graphite nosetips
while one has a teflon nosetip. Twenty computations have been per-
formed and results have been compared with measured transition
points; close quantitative agreement has been obtained between com-
puted and measures transition location. Results of the computations
add to the growing list of successful applications of the method.

1. INTRODUCTION

An accurate tool for predicting boundary-layer transition onset
and progression as a vehicle reenters the atmosphere is critically
needed for the design of reentry vehicles. While some progress can
be made in devising such tools by studying ground-test experiments,

This research was jointly sponsored by the University of Dayton
Research Institute and the Air Force Flight Dynamics Laboratory
under Purchase Order RI-75901. The authors gratefully acknowledge
the assistance of Anthony Martellucci and Dr. Charles Kyriss of
the General Electric Company who supplied all pertinent input data
for the flight simulations; their timely assistance and guidance
were instrumental in making this a trouble-free and effective pro-
ject.
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validity of extrapolating ground-test data to flight-test conditions
is strongly controlled by the rigor with which the extrapolation is
made. Simply extending a log-log plot from the ground-test regime
into the flight-test regime provides the least believable extrapola-
tion. Nevertheless, many flight-test transition correlations arebased on such extrapolations.

Increasingly, research efforts aim at establishing a reliable
flight-test transition correlation by considering both ground- and
flight-test data. Such an approach has the obvious advantage of
including a wider data base. However, since a correlation is only
as good as its data base, and since flight-test transition data are
usually of questionable quality, these research efforts fail to
substantially increase confidence in such a correlation's applica-
bility beyond the established data base.

Numerical simulations of ground- and flight-test conditions
would provide a major step forward in developing an engineering
correlation, provided the simulations (a) faithfully reproduce care-
fully controlled ground-test experiments and (b) yield reasonable
agreement with flight-test data. Although exact numerical simula-
tions are ultimately needed to remove all uncertainty, such simula-
tions are currently unfeasible. Nevertheless, the current state of
affairs can be improved by use of numerical simulations based on an
approximate method, provided the method has been successful in
reproducing a broad data base.

Such a method, known as the turbulence-model transition-
prediction technique, has been devised by Wilcox (1975, 1976, 1977).
The technique is very accurate for a wide range of flows, including
well-documented compressible and incompressible boundary layers and
for the PANT [see Anderson (1975)] ground-test experiments on blunt
bodies. The objective of this study has been to use the turbulence-

* model transition-prediction method to predict transition onset and
progression on flight-test vehicles.

Because many aspects of the computations differ from any prior
applications of the theory, Section 2 reviews the transition pre-
diction method including the following: a description of the com-Iputer code used for solving the model equations; discussion of
important assumptions incorporated into the code which are pertinent
to this project; and the manner in which the transition point is
determined from results of the calculations. Next, Section 3 defines
the computational matrix and relevant input data. The transition
predictions for the six vehicles (20 cases) and a comparison with
experimental data are shown in Section 4, including effects of free-
stream turbulence intensity. The concluding section summarizes
results and conclusions.
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2. THE METHOD

The turbulence/transition model devised by Wilcox (1975, 1976,
1977) serves as the basis of this study. For brevity the model equa-
tions are omitted; complete details are given by Wilcox (1977). In
prior studies, the model equations have been used to accurately
predict transition for a wide range of compressible and incompres-
sible flows including effects of surface roughness, pressure gradi-
ent, mass injection, freestream unit Reynolds number, and surface
heat transfer. Most pertinent to the present study, the theory
accurately simulates ground-test data for reentry type vehicles.
Thus, the turbulence/transition model consistently has been an
accurate predictive method for well-documented ground-test experi-
ments.

2.1 THE EDDYBL COMPUTER CODE

The model equations require numerical solution methods in order
to predict transition. Their solution is accomplished with a
boundary-layer code known as EDDYBL. The code is based on the
second-order-accurate, implicit, parabolic marching method of Flugge-
Lotz and Blottner (1962).

In order to achieve realistic flight-test simulations, we must
account for properties of high temperature air. For the present
applicatiors, real gas effects have been assumed to be confined to
the nosetip region and hence to have a negligible effect on frustum
transition. Assuming this to be the case, the fluid is approximated
to be a perfect gas for the entire region covered by the calculation.
In addition the fluid is assumed to have a constant specific heat
ratio, y, given by

y = 1.4 (1)

while the gas constant, R = p/pT, is assumed to be

R = 1716 lb-ft/slug°R (2)

For the high temperatures prevailing for flight conditions, molecular
viscosity, i, is related to temperature, T, as follows [from Kyriss
(1976)]:

p = 2.518. 10- "  T + 4.193 . 10- lb-sec/ft2  (3)

with T given in degrees Rankine. Entropy swallowing is included in
the computations under the standard approximation that the entropy
in the boundary layer equals that generated by the portion of the
shock through which an equivalent amount of mass flows.
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Computations by Kyriss (1976) verify that ignoring real gas
effects and using Equations (1), (2) and (3) to define y, R and
have only a slight effect on flow properties on the frustum. Hence
the above assumptions, i.e., Equations (1)-(3), can be considered
valid for this study.

2.2 Manner in Which Transition Point is Determined

The computer code, EDDYBL, which embodies the turbulence/transi-
tion model, begins each calculation at the stagnation point on the
vehicle and marches along the vehicle surface in the s direction
(see Figure 1). At the outset, the flow is laminar. However, turbu-
lence is constantly being entrained from the freestream. Finally,
at some point along the body, the entrained turbulence no longer is
suppressed in the boundary layer. The turbulence then begins to be
amplified and causes boundary-layer instability; the flow goes through
transition and becomes turbulent. Throughout the laminar region, the
heat transfer and skin friction generally decrease monotonically.
However, as the flow becomes turbulent, abrupt increases in heat
transfer and skin friction occur. A convenient definition of

Shock Wav

oundary ue
Layer-y o..
Edge ia"

y S

Figure 1. Schematic of Vehicle with Boundary Layer.
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transition location is the point at which the heat transfer achieves
a minimum (usually the same location at which minimum skin friction
occurs). Figure 2 shows the variation of skin friction on a typical
reentry vehicle, thus illustrating the criterion for locating transi-
tion.

3. COMPUTATION MATRIX

A total of 20 transition predictions have been made for six
typical reentry vehicles. A summary of the altitudes, H, considered
and the nosetip and frustum materials for each vehicle is given in
Table 1; the same reference altitude, Href, has been used for all of
the vehicles. EDDYBL requires input data defining the following:

104
i0 f

20

16

ef Cj1rc f = min

12 S t = 13.6 ft

14

0
13.0 13.5 111.0 I1.5 15.0

S (ft)

Figure 2. Computed Skin Friction for a Typical Reentry Vehicle.
Transition Location Identified as Point of Cfmin.
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Table 1. Computation Matrix

No. Nosetip Frustum Altitudes,

Material Material H/Href

1 ATJ Beryllium 1.22, 1.18, .98

3 ATJ Beryllium 1.25, 1.18, 1.07, .94

8 ATJ Carbon Phenolic .99, .87, .83

9 ATJ Carbon/Carbon Felt .36, .33, .31

10 ATJ Teflon 1.145, 1.09, .92

12 Teflon Teflon 1.28, 1.23, 1.17, 1.09

1. Freestream Flow Conditions
* Mach number
* Total pressure
* Total temperature

2. Geometry
* Body shape
* Shock shape

3. Surface Conditions
• Temperature
* Mass-injection rate
* Surface roughness

4. Boundary-Layer Edge Conditionst
* Static pressure

Surface roughness effects have been neglected in the computations;
all other input data for the 20 cases have been provided by Kyriss
(1976).

4. TRANSITION CALCULATIONS

Transition predicticns have been made 'for the 20 cases listed
in Table 1. As mentioned in the Introduction, the calculations are
sensitive to the freestream turbulence level, T'. Hence, before the

t Total pressure at the boundary-layer edge is computed by EDDYBL
from the specified shock shape and local mass flux in the boundary
layer.
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computations could be performed, an appropriate turbulence intensity
level had to be established. In this section we first describe the
manner in which the values of T"' were establi.hed for each vehicle.
Then, we present results of the computations 6nd a correlation of
the numerical data.

4.1 Sensitivity to Freestream Turbulence Intensity

In order to find the appropriate freestream turbulence inten-
sity, T" was varied for each vehicle until close agreement between
computed and measured transition points at one altitude (usually the
highest altitude considered) was achieved. Vehicle No. I computa-
tions demonstrated that an intensity given by

T* 1OO/' 7T- ' U = .016% (4)

is needed to obtain close agreement with the measured transition
location. In the definition of T', Uo, is the mean streamwise
velocity, u,' is the fluctuating component of streamwise velocity
and < > denotes time average. The same procedure was repeated for
all six vehicles. Surprisingly, T, = .016% proved to be appropriate
for all of the vehicles except for Vehicle No. 8. A freestream
intensity of T"' = .005% was used for Vehicle No. 8.

Figure 3 shows the effect on transition location caused by
varying T',. Three different turbulence intensities have been used
at each altitude for Vehicle No. 12. As expected, increasing T"
decreases the distance from the nose to the transition point.

4.2 Results of the Calculations

Once the proper turbulence intensity had been established for
each vehicle, it was then possible to proceed with the transition
calculations. Figure 4 presents results of the 20 computations;
experimental data are included for comparison. As shown, the model-
predicted progression of the transition point is very similar to the
measured progression for all of the vehicles. Inspection of the
plots indicates that if we regard altitude as a function of transi-
tion location, almost all of the transition altitudes are predicted
within one mile of measured transition altitu:-.. Furthermore in
half of the cases, computed and measured transIlIon altitudes differ
by less than a half-mile. Figure 5 shows that most of the predic-
tions fall within one foot of corresponding measurements; all but
one calculation predicts transition location within two feet of the
measured transition location.
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Figure 3. Effect of TL on Transition Location for Vehicle No. 12.

5. SUMMARY AND CONCLUSIONS

Results presented in Section 4 indicate that the turbulence/
transition model's range of applicability includes reentry vehicles
under flight-test conditions. With a single adjustable input param-
eter, viz, freestream turbulence intensity, the model accurately
predicts transition sensitivity to surface mass injection, surface
cooling, and entropy gradient.
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Because numerical simulations can cover a much wider range of
conditions than is generally possible or feasible in experiments,
numerical simulation of flight-test conditions can fill a void left
by inconclusive or unreliable flight-test measurements. However,
before such simulations can be done a priori, we must devise a
method for specifying freestream turbulence intensity. Presumably
the freestream intensity depends upon *ltitude, geographical loca-
tions, time of day, etc.; further research is needed to determine
the dependence of freestream turbulenea intensity upon such factors.

In conclusion, the results obtained add to the growing list of
successful applications of the model to the problem of predicting
boundary-layer transition, thus lending further confidence to the
theory.
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DISCUSSION

RESHOTKO: (Case Western Reserve University)

In many experiments it has been observed that there is a spec-
tral effect, for example the-e are certain frequencies that are em-
phasized in triggering transition while others are not. How did
frequency spectra enter into your calculations?
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WILCOX:

That is one of the effects that we have thrown out. Spectral
effects are presumably buried in the constants. Interestingly, I
would have expected these flight-test calculations to exhibit strong
spectral effects. Because of this intuitive notion, I am a little
surprised that the same turbulence intensity does the trick for five
of the six vehicles. There is some transition that doesn't care
about that spectral effects. Transition that is spectrum dependent
I probably won't be able to predict well because that effect is
buried in the closure coefficients. We have lost spectral effects
a long time ago.

WHITELAW: (Imperial College)

I have one comment and one question. The comment relates to
your use, at the beginning of your talk, of the phrase "complete
turbulent model." I am not sure what "complete" means.

The question stems from your reference to "messing around with
the generation terms." Could you tell me what "messing around with
the generation terms" means?

WILCOX:

Well, it means that I notice that for these equations as origi-
nally formulated, the constants, of course, are all determined by
considering properties of fully turbulent flows. if you take the
equations and you predict transition, the transition Reynolds num-
bers are way too low. Through numerical experimentation, I even-
tually found that you can get much more accurate transition if you
cut down the generation terms and then I argued that you might
expect this to be the case anyway because your generation mechanism

That's too long winded?

WHITELAW:

No, it's too short. The phrase "messing around with the genera-
tion terms" is too crude. Perhaps you mean "Let's have less genera-
tion"; but that isn't cricket. Perhaps if you included some phys-
ically based arguments .... ?

WILCOX:

Oh, some physics went in, yes, for sure. I have this thing
that I call the neutral stability Reynolds number. I can determine
the neutral stability Reynolds in closed form. The original assump-
tion was demand that for a Blasius boundary layer the neutral
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stability Reynolds number match the minimum critical Reynolds num-
ber. When you do this you get most of the results that I presented.
So you wind up, among other things, having a fairly sound general
argument to fix one of the empirical constants that I introduce.

BIRCH: (The Boeing Company)

I would like to make a comment about the effect of freestream
turbulence. The available data* for two equation turbulence models
seem to suggest that the predictive effect of freestream turbulence
is more sensitive to the assumed length scale than to the turbulence
intensity. This means that if the length scale isn't available
experimentally you leave yourself with a free constant that can be
arbitrarily adjusted; you can in fact match the experimental data
irrespective of freestream turbulence intensity used.

WILCOX:

There is some flexibility to do that, yes. You have two turbu-
lence parameters and each one must have a boundary condition.
Transition is sensitive to the length scale but it is not as sensi-
tive to the length scale as it is to the intensity. It is much much
more sensitive to the intensity. All of the computations I have
done have been with the same value of the length scale. I haven't
messed around with it. I have used the value that is appropriate
for fully turbulent flows.

BIRCH:

Do the experiments you compare this with have the same length
scale?

WILCOX:

That is a little tough, because now you require me to define
exactly what the length scale is. Maybe the thing is the integral
length but maybe it is not, so I don't know. I don't know exactly
what that quantity is at this point.

KOVASZNAY: (Johns Hopkins University)

Just a little question. if you go to a simpler case, flat
plate, incompressible, very clean, let's suppose you get the turbu-
lence so low that transition is not longer functional. Such experi-
ments have been done at the Bureau of Standards and elsewhere.

*. What do you predict then?

* Oh, Youn H. and Bushnell, Dennis M., "Influence of External Dis-
turbances and Compressibility on Free Turbulent Mixing," NASA
SP-347 (1975).
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WILCOX:

I would predict that you would keep getting transition all the
way until it is zero. It just gets higher and higher and higher.

KOVASZNAY:

This means that you have a floating parameter that adjusts
according to taste? Let's suppose that the turbulence is so low
that you no longer affect the transition, that is the case I am
speaking about.

WILCOX:

I don't know that I believe that there is a finite transition
Reynolds number as the intensity goes to zero. If that is the case
then the theory is stuck. I don't believe that is true, however.

KLEBANOFF: (National Bureau of Standards)

I would like to take the other view in terms of the influence
of freestream turbulence, that is the effect with increasing level.
One then finds a very large disturbance in the laminar boundary
layer that is higher in intensity than the freestream level, and
which, for the most part, consists of frequencies that are not un-
stable according to stability theory. Their intensity is scale
dependent, that is scale dependent on the freestream scale, and on
the intensity of the freestream and yet the transition occurs, as
indicated by Reshotko, from a mechanism involving frequencies that
are unstable according to stability theory, and which have been
excited by the freestream turbulence. You will not predict that
at the critical position the overall disturbance energy in the
boundary layer which increases with increasing freestream turbulence
will be higher than that in the freestream and it does go up con-
siderably.

WILCOX:

All of these things of course are nice esoteric properties that
a theory this simple hasn't got a prayer of predicting. But I don't
think that we should lose sight of the fact that I have been able to
go over a wide range of applications all the way from incompressible
to Mach 20, with pressure gradients, and surface roughness. In all
these applications I have shown that I can predict many properties
of transition. There must be a message in that. While some of the
detailed nitty-gritty mechanisms of transition are complicated, there
are some properties of transition which you can predict very simply,
because I don't adjust parameters or anything.

I
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KLEBANOFF:

I just want to expand on the comment Kovasznay made about the
low turbulence experiments. The matching between freestream dis-
turbances and boundary layer disturbances is not a one to one match,
and the laminar boundary layer has a certain impedance to the free-
stream, even as the freestream turbulence is going to lower and
lower levels. As a result your model, I believe, would not take
into account other types of disturbances which may become dominant,
for example, sound at certain frequencies to which the boundary
layer still reacts and although the overall intensity of the free-
stream disturbances is decreasing, transition does not behave as
you expect. It would seem that any model that doesn't have the
impedance behavior characterized loses much of the physics of the
problem.

MELLOR: (Princeton University)

To reiterate Whitelaw's comment, any model has its limitations
and I think it is up to the modeler to try and frame out what those
limitations are.

But at one point, you said you messed around with the generation
terms and I think that a lot of us feel that that is the only term
that you don't need to worry about; that is, they are exact and need
not be altered.

WILCOX:

The generation terms in these equations are not T(au/3y). They
are very similar to the generation terms in one of Professor Brad-
shaw's formulations.

KLINE: (Stanford University)

I just want to say that I don't agree with your statement that
in the limit of infinite Reynolds number the flow can remain laminar.
We have to distinguish, I think, between essential instability and
metastability. Essential instability means mathematically that any
infinitely small disturbance will kick you over the cliff to turbu-
lent flow. In metastable situations, that is at lower Reynolds num-
ber, the flow requires a larger disturbance to get turbulence started,
but if you have essential instability then you have to visualize
absolutely no perturbation of any kind if the flow is to remain lami-
nar. It is very hard to visualize a situation that has no perturba-
tions whatsoever. At infinite Reynolds number, the flows we know
become essentially unstable. Hence if you are getting laminar flow
in that limit, then it seems to me that you have the wrong limit.



TRANSITION-PREDICTION METHOD 247

MOREL: (General M.otors Research Laboratories)

I believe that as you go to very low limits of disturbances
then you get into the linear regime where the disturbance amplifiesIi exponentially. Then you would expect that as you reduce the excita-

tion level the position of the transition point will become less and
less sensitive to what the excitation level is. In addition a reduc-
tion in the excitation level means that the linear regime extends
farther downstream where the disturbance growth rate is usually
higher. This increase in the exponential growth rate will further
reduce the influence of the excitation level on the transition point
location. That might explain the difference and if your model can
calculate the exponential growth of very small disturbances, then it
might actually have this in it.

WILCOX:

My guess is, however, that it is a nice continuous function that
goes to infinity as the intensity goes to zero.

I

I
=I



A SECOND MOMENT TURBULENCE MODEL APPLIED TO FULLY SEPARATED FLOWS*

M. Briggs, G. Mellor and T. Yamada

Princeton University

Princeton, New Jersey

ABSTRACT

A turbulence model which has previously been applied primarily
to boundary layer flows including geophysical flows is here applied
to a fully separated flow. The full elliptic problem is solved and
differential equations for all components of the Reynolds stress
tensor are involved. All constants in the model have been deter-
mined from other more simple flows so that we need not appeal to
computer optimization."

Calculations are compared to data obtained by Abbott and Kline.
It is our understanding that the turbulence data are not accurate.
Nevertheless, these data and the predictions compare reasonably well.
The predicted mean velocity profiles and the point of reattachmtnt
agree very well with the data.

1. INTRODUCTION

Our experience at Princeton University with second moment
turbulence modeling began at the time of the 1968 Stanford Confer-
ence on Turbulent Boundary Layer Computation (Kline et al., 1968)
with a Prandtl type model based on the solution of the turbulent
kinetic energy. At that time, this model, Bradshaw's model and
our older eddy viscosity model did very well in predicting all of

* This work was supported by the Air Force Office of Scientific
Research Grant No. 75-2756. Some computer time was supplied by
the NOAA/Geophysical Fluid Dynamics Laboratory.
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the data compiled for the conference. Thus it was not clear that
more complicated models based on hypotheses by Rotta (1951) and
Kolmogorov (1941) and requiring consideration of all components of
the Reynolds stress tensor could be justified on the basis of
improving predictions.

The first results from the second moment calculations of
Donaldson and Rosenbaum (1968) (using Rotta's energy redistribution
hypothesis but not the Kolmogorov isotropic dissipation hypothesis)
when applied to wakes and jets and subsequent studies by Hanjalic
and Launder (1972) were encouraging but the newer model involved
more empirical constants than did the older models which, on this
basis alone, would facilitate agreement with data.

Our interest in the Rotta-Kolmogorov model was greatly enhanced
by data obtained by So and Mellor (1973, 1975) which demonstrated
the effect of wall curvature on turbulent flow. On stable, concave
walls the Reynolds stress was virtually extinguished in the outer
half portion of a turbulent layer and reduced significantly in the
inner portion. With no empirical adjustment involving curvature,
the model quantitativel predicted this rather dramatic observation
(So, 1975; Mellor, 19751. The same model, when extended in--it now
seems--a rather straightforward manner, predicted the observed
stabilizing and destabilizing effect of density gradients in a
gravity field (Mellor, 1973). Again, no adjustment of the model to
specifically accommodate stratification was required. Yamada and
Mellor (1975) and Lewellen et al. (1976) have now made persuasive
predictions of stratified laboratory flows and atmospheric boundary
layers which are strongly influenced by diurnally varying density
stratification.

The empirical content of the models described above resides in
various turbulent length scales; a necessary assumption is that all
of the scales are proportional to a single master length scale. The
experience generated thus far indicates that this is a viable
assumption.

Surprisingly, although the length scale proportionality con-
stants are important, many results are either independent or not
very sensitive to willful variations in the master length scale.
Thus, we have tried to separate our study of the turbulence model
into considerations of the single point moment equations, their
various length scales and attendant constants of proportionality
and consideration of the master length scale itself.

We have been uncomfortable in dealing with a master length
scale equation and for some time were content with algebraic pre-
scriptions. However. following Rotta once again, a turbulence
scale equation can be approached via the equations for the turbulence
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spectra or the equations for the two-point correlation functions.
When the separation distance, r, approaches zero we obtain the
single point, moment equations discussed previously and lose all
length scale information. Thus the approach suggested by Rotta was
to consider the integral of the correlation functions over r-space.
Conceptually complicated assumptions are required to close the
resultant equations. Nevertheless, in the present paper we have
applied the full model with a differential, master length scale
equation to the classic fluid dynamic problem of flow in a channel
with a sudden expansion. The results compare well with data by
Abbott and Kline (1962) which includes mean velocity profiles and
turbulent energy profiles. The point of reattachment is predicted
well. Again, there were no empirical adjustments in the turbulence
model to accommodate this problem. The stabilizing or destabilizing
effects of curvature are automatically taken into account with no
additional empiricism.

The numerical algorithm applied to the sudden expansion flow is
an explicit, time marching scheme* and all components of the meanReynolds stress tensor are involved. By matching the calculated
velocity near a surface to the law of the wall it is apparent that
the problem can be handled with fairly crude resolution. Associated
with grid resolution is an uncertainty in the amount of vorticity
advected into the flow at the sudden expansion corner. What appears
to be a simple solution to this problem will be discussed.

Thus, it appears that the very wide range of fluid dynamic prob-
lems involving turbulent separating flows can be attacked with the
help of second moment turbulence models.

2. THE DIFFERENTIAL EQUATIONS OF MOTION

We denote mean dependent variables by capital letters and turbu-
lent variables by lower case letters. The mean equations of motion
for incompressible flow are then,

k

* Similar or alternate schemes applied to laminar flow or calcula-

tions using a simple eddy viscosity model have been presented by
a number of others, some of whom are Thoman and Szewczyk (1966),
Gosman et al. (1969), Kirkpatrick and Walker (1972), Fromn and
Harlow (1963), Roach, (1972).
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+ (Uuj  - (P2)-@

where an overbar represents the mean of products of turbulent vari-
ables. P, the kinematic pressure, is the pressure divided by dens-
ity.

The turbulent model equations are based on hypotheses by Rotta
(1951) and Kolmogorov (1941); other details are discussed by Mellor
and Herring (1973) and Mellor (1973). The equations are

X t i~)= "wi+...+ ( T 3 ~ au au ~ uu

u.~ [3. auqL(3

kL LU uLx ~ i

T Itu x qV; j +_x C q't:- + I

ki ax k 5kuj axk 3Bit ii

It should be noted that the stabilizing or destabilizing effect of
streamline curvature is automatically included in (3). Of course,
the equations would have to be written in streamline coordinates
(So, 1975; Mellor, 1975) for the "effect" to be easily identified.

It is useful to note that the trace of (3) is

_L q (Ukq 2) =qSq r + 2uuk]

-2 u- !- 2 Al (4)

=2tkui axk Bit.

such that q 2 F U7 is twice the turbulent kinetic energy. Variants
of the above model have been applied with good success in the afore-
mentioned papers. The terms in which the constants, Sq, A1 9, C, B 1,
appear are, of course, model terms for turbulent diffusion, Rotta's
energy redistribution model and a Kolmogorov isotropic dissipation
model. In the past, we have supplemented the above equations with
rather simple algebrtic master length equations which seem to work
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rather well. In the present work it is actually simpler to solve a
differential length scale equation which has a property that it is
invariant to coordinate orientation and should accommodate arbitrary
boundary conditions. The equation we use here is a variant of one
proposed by Rotta (1951) and is

__ (q2 p) + -L= -- 20 L ktf

-k Eii5 I2 h- [k-1i. at I.(5ax E j Xk " B1

All terms on the right side of (5) are model terms.

3. DISCUSSION OF THE MODEL EQUATIONS AND THEIR

ATTENDANT EMPIRICAL CONSTANTS

Readers who are not interested in detailed modeling considera-
tions may wish to skip this section.

Temporarily consider a surface normal to the y-axis. Near the
surface let W = 0 and V = 0. In this region .= ky, where k is the
von Kirmfn constant, and it may be shown that the tendency, advec-
tion and diffusion terms in (3) may be neglected. As a consequence,
it has also been shown (Mellor and Herring, 1973; Mellor, 1973) that
if we let

Y .1 2 A'(6a)

then

(I - 2y)q2  (6b)

Y=yq2 (6c)

= yq (6d)

2 -(6e)
u T - -V WB2
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= - 1 (6f)
3AIB/_

and

3U UT- T(7)
Dy ky(7

All turbulence quantities are evaluated near the wall just out-
side of the viscous sublayer (e.g. u y/v = 30). Based on law of the
wall data we decided that B 15.0 from (6e) and y = 0.23 from (6b).
The sum of (6c) and (6d), v2 + W2 = 2yq 2 , is correctly obtained but

the separate components are in error more or less dependent on which
data set is examined. To correct this error one can complicate the
modeling in ways suggested by Launder, Reece and Rodi (1975) or Monin
(1965), but thus far we have been inclined to keep the model simple
and accept the error.

With y and B, determined, A, = 0.78 is obtained from (6a) and
C1 = 0.056 from (6f).

By comparing constant pressure, boundary layer q2 profiles with
model computations we have obtained gq = 0.45, a relatively less
important constant compared to the others as discussed below.

The constants in equation (5) have also been determined from
simple considerations. First, a constant should appear as a coef-
ficient of the last term in (5). However, it has been set equal to
unity such that (4) and (5) when specialized to homogeneous decaying
turbulent yields the high Reynolds number, initial period decay law,
q2  x-., By considering the law of the wall again when Z = ky
and q2  constant, we obtain

1 (8). =k 2B

Decaying homogeneous turbulent highlights a limitation of any
model characterized by a single length scale. Turbulence theory
and data (Batchelor and Stewart, 1950) and some new unpublished
but corroborative Princeton data indicate that decaying turbulence
can become more anisotropic during the decay process since the
smaller more isotropic eddies decay faster than the larger, more
anisotropic eddies. The present model--since it describes the
turbulence through only one length scale--would predict that the
turbulence tends only to isotropy during decay.
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For k= 0.40 and B, = 15.0, we have S2 = 0.42. Note that it appears
that Sk = S . A consideration of length scale growth in the homo-
geneous sheer flow data of Champagne, Harris and Corssin (1970)
indicates very approximately that E = 1.3 - 1.5.

At this point we note that, whereas in many flows (e.g., fully
developed channel flow) the diffusion terms in (3) or (4) are quite
small, the diffusion term in (5) is a dominant term and near a wall
is balanced by the last term in (5). Rotta (1972) has expressed
some misgivings about length scale models wherein diffusion terms
are dominant. However, Thompson and Turner (1975) have performed
an experiment whereby a vibrating grid creates a plane source of
turbulence in a stationary field and where the diffusion and dissi-
pation terms in (4) and (5) are exactly in balance. They obtain the
result that q2 a y-1 -5 and ws. y where y is the distance from the
grid. It is noteworthy that the present model also predicts this
behavior. Thus, when the model reduces to 3[qRSqaq/ay]/y = 2q'/B t
and D[qtZ3(q2 X)/3y]/ay = q /B, one obtains as a solution q = y-n
and i = by where 2(n-1)(3n-2)/3n2 = g q/S and Sq = 4/(3n~bzBl).*
We can only roughly obtain an estimate of b 2 0.07 from the data;
this and the value, n = 1.5, yield 9q 8 and St , 22.

Thus, considering flow fields where production is important and
the self diffusing flow field where production is zero, we find large
differences in Sq and S2,. However, this is not unexpected. As dis-
cussed by Mellor and Yamada (1974) our model may be simplified such
that the Reynolds stress is related to the mean velocity shear via
a conventional, flux-gradient, eddy viscosity coefficient which,
however, takes the form, qXSM. SM emerges primarily as a known
function of G - 9Z(aUi /axi) /q . Therefore, one should also expect
9q = S((G) and 91 = S (G). Although the experimental base is thus
far fragile, one might tentatively propose a simple linear relation
betweeg the values given above for G = 0 and the law of wall value,
G = B2/3 . However, in the calculations discussed below we have main-
tained Sq = Sz = 0.42.

Further discussion of equation (5) is included in §9.

* Since two boundary conditions may be imposed on I and q1, the
solution is not unique. However, away from boundaries, nunerical
experiments indicate that this algebraic decay behavior does pre-
vail for a wide variety of boundary conditions.
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4. THE EQUATIONS FOR TWO-DIMENSIONAL, MEAN, PLANAR FLOW

We now restrict attention to planar flows where the mean veloc-
ity, Ui = (U, V, 0), and all properties are invariant in the z-
direction. If we further define a mean vorticity and stream function,

V U (9)-ax Dy

U a DT (lOa,b)

then (1) is satisfied and (9) may be written

+ (11)

The curl of (2) for two-dimensional flow is

%c. ~2 2 _

Dt ' (vT " (-UV) (12)

The equations for the Reynolds stresses may be written

U1 33u u2/ay + 23uv/Dx

Dv2 a v 2-/Dx + 23uv/3y a3 3v2'/3yD I
=-K T'K

Ot -. ax W21a + -K I

5V au2/y + 23uv-/Dx 3v2/3x + 2auv/By

T2- q2/31 - 2U/ax
77- -q 2/3: 23V/3y

w2 -q /30
u I/ay + aVl

(continued)



SECOND MOMENT TURBULENCE MODEL 257

-2uy- 3U/Dx - 2uv aU/y 1 (13a)

-2uv DV/Bx - 2v2 3V/y 2 q 1 (13b)

0 3 B1  1 (13c)

-u aV/ax - a BU/3y 1 (13d)
L

where Df/Dt E 3f/at + D(Uf)/3x + 3(Vf)/'y and K 3kXSq/5.

Finally, the master length scale equation is

S([ 2_gt) + -L Fd (g2e)l

(qD ) = ax x 3y L 9, ay I

1. (14)

5. FINITE DIFFERENCE EQUATIONS

The differential equations are differenced in a conventional
way. The time differencing is forward explicit. Advective terms
are all "upwind" differenced* whereas the Laplacian operator in (11)
and the Reynolds stress terms or the mean vorticity diffusion terms
in (12) are centrally differenced as are the diffusion terms in (13)
and (14). Poisson's equation, equation (11), is solved by an
alternating-direction implicit (ADI) method. Further details are
provided in the Appendix.

6. BOUNDARY CONDITIONS

At some intermediate time in the course of a calculation, the
Reynolds stress from the previous time is known and is used to

* Which is a stable scheme but which introduces some numerical vis-
cosity which we believe not to be significant. Nevertheless, we

should but have not yet carried out a calculation where advective
terms are centrally differenced.
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evaluate new values of the vorticity according to (12). Except at
singular corners, which we shall later discuss in some detail,
surface values of vorticity are not required since, in the advection
terms, the surface values are multiplied by the surface normal com-
ponent of velocity which is zero. Inflow values of vorticity are
prescribed by data.

Once the vorticity is everywhere known, (11) is solved for the
stream function. On solid walls we impose constant boundary values
of T that differ on opposite walls by an amount determined by the
volume flow rate. On upstream flow surfaces, T is determined by
inflow velocity dat. On downstream surfaces we set 32T/3x 2 equal
to zero.

For the type of time marching, fully elliptic algorithm adopted
here, one cannot afford very fine grid resolution and one cannot
resolve the viscous sublayer or a large portion of the logarithmic
layer. We will, therefore, match our numerical solution to the law
of the wall which is the integral of (7)

U : u ln y+ + 4. (15)

where y = uTy/v. (In §9, we discuss possible error incurred by
using (15) near the reattachment point.)

Here we restrict discussion to the case where the wall is normal
to the y-coordinate and the flow is in the positive x-direction as
illustrated in Figure la. Now during the course of a calculation the
stream-function will be calculated and the role of (15) will be to
provide Reynolds stress wall boundary conditions for equations (13a,
b, c, d). The integral of (15) for a point at y,, where yo is on
the wall, is

l - Tol =  Ay[ ln u--+ 4.9 - (16)

where Ay = 1y, - y0 j. Thus, as the calculation proceeds, values of
j - 0 and (16) provide a value of u. (inside the log term, uT may

be reckoned at the__previous time step since ln x is a weak function
of x). Values of u2 , v2, w2 and uv are then obtained from (6a, b,c, d, e).

For the more general boundary illustrated in Figure lb we can
write

i'
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(b)
/ X

Figure 1. Illustration of the Geometry in the Discussion of Wall
Boundary Conditions. Numerically, the mean velocity
parallel to a wall is never defined at the wall whereas
the Reynolds stresses are evaluated as finite values at
the wall; the viscous sublayer is therefore considered
to be indefinitely thin.

rn 2  n 2  2nn (I- 2y)q2
s jy x x y s

= 2xy (17)
usvs ] -nxny nxn n, " ny u2 sgn( j " p. .. ' x 2 y _

where (nx, ny) 2 (-sinO, cosO) are the components of a unit vector
normal to the wall. An, the distance from the wall, replaces Ay in
(13) and as before q5 = u2 B /. For the simple rectangular geometry
discussed below, 0 only takes on the values 0', 900, 1800, and 270'.
It should be noted that the velocity is never defined numerically at
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the wall. On the other hand, the surface values of the Reynolds
stress are evaluated at the wall itself, the thickness of the viscous
sublayer thus considered to be negligibly small. The subscripts in
(17) denote the surface values.

7. FULLY DEVELOPED STEADY CHANNEL FLOW

A fully developed channel flow calculation was carried out and
compared with data by Laufer (1951) and Hanjalic (1970). Calcula-
tions for two values of E = 1.3 and 1.5 are shown in Figure 2. Hence-
forth, we have used the value E = 1.5. Laufer's data when plotted in
law of the wall coordinates yield the constant, 5.5, instead of 4.9
in (16) and this probably accounts for the discrepancy in Figure 2a.

8. SEPARATED FLOW BEHIND A STEP

The major effort in this paper has been the numerical solution
of flow from one channel into a larger channel caused by a step on
one wall. The particular geometry is identical to an experiment by
Abbott and Kline (1961). If h is the step height and uo is the small
channel centerline velocity, then the Reynolds number, uoh/v = 3 x I0'
for both the experiments and the numerical simulations.

The initial calculations shown in Figures 3 and 4 are trials
with crude resolution and are not intended to be an accurate simula-
tion of the experiment. Figure 3 illustrates the temporal evolution
of the flow after which a steady flow is established. At t = 0, the
flow field is irrotational whereas at tuo/h = 200 the flow is very
nearly steady. The calculation time step, Atuo/h = 0.10, is governed
by stability considerations.

At x = -2h, the upstream velocity profile is matched to the
data whereas the turbulence quantities are obtained from the fully
developed channel flow solution discussed previously. A mistake was
made in transcribing the upstream length scale profile such that at xO
the initial profile is about 40% smaller than the true profile. The
mistake was corrected for results shown after Figure 4.

At x = 1Oh, the length scale on the separating wall was quite
large and there was no region where Z = ky. The resolution was crude
but still we wanted to be certain that the model could produce a far
downstream, fully developed flow. The calculation was accomplished
by piecewise matching the steady profiles at x = 14h to the inflow
condition of a second channel and so on. The Ax spacing was allowed
to increase with each channel length. A composite result is shown
in Figure 4 so that at x/h = 200 it can be reasonably concluded that
a fully developed channel flow has been reestablished.
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Figure 2. Calculations of Fully Developed Channel Flow Compared

with Data.
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Figure 3. The Time Evolution of the Separated Flow. tug/h 0 (the
initial irrotational flow) (a); 40 (b); 80 (c); 120 (d);
160 (e); 200 (f). The resolution was crude.
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A problem was encountered which was resolved for the present
geometry but which may require other strategies for other geometries.
As previously mentioned the vorticity advection terms in (12) do not
require solid surface boundary conditions since the velocity normal
to the surface is zero. However, at a corner, as illustrated in
Figure 5, there is no unique normal velocity and, in terms of our
finite difference scheme the upwind contribution to vorticity advec-
tion at this point is

(01 "P5 )Co/(2Ay)

where

Eo :-U1/Ay -( p "o ) / Ay 2

'2

The above is, of course, a crude approximation to the vorticity at
the corner and in the viscous sublayer. With no further alteration,
calculated flows turned the corner in an unrealistic fashion. We
have therefore set

U
o - (18)

Figure 5. Illustration of the Flow at a Corner.
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and then have experimented with variations in 0. For crude resolu-
tion the calculations for 0 = 1.30, 1.59, 2.67 and 5.63 were per-
formed, the first three of which are shown in Figure 6 whereas for
the finer resolution calculations for a = 1.25, 1.56, and 2.45 pro-
duced the results shown in Figure 7. All of these calculations
produced different values of the reattachment length, XR, which are
plotted in Figure 8 as a function of a. Noteworthy features of
Figure 8 are as follows:

1) The sensitivity of xR (and the entire solutions) to 0
decreases as the resolution is increased, a comforting
result.

2) Solutions yielding the observed reattachment length corre-
spond closely to those cases where the separation stream-
line is parallel to the entrance wall at the corner.

Following up on the second point, we have therefore made a calcu-
lation where a is adjusted during the calculation so that the parallel
streamline condition is exactly satisfied. These are the solid sym-
bols shown in Figure 8 corresponding to 1 1.30 for the crude reso-
lution and to a = 1.25 for the fine resolution.

Y/ h,- 
---------

(b)

-2 02_4 6 8 0 12 14

3x _

Figure 6. Stationary Flow Streamlines for Crude Resolution, Ax/h:
2/3, Ay/h 1 /3 and 6 1.30 (a); 1.59 (b); 2.67 (c).

-c-- -~~
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Y/h 3-i(

0-,

(b)

3 1
2-L

-2 0 2 4 6 S 1'2 14

Figure 7. Stationary Flow Streamlines for the Finer Resolution
Ax/h = 2/3, Ay/h = 1/12 and 8 = 1.25 (a); 1.56 (b);
2.45 (c).

In Figure 9 some detailed profiles of mean velocity and turbu-
lence intensity are illustrated for the crude resolution whereas in
Figures 10 and 11 the fine resolution results are shown. Figure 11

is the result that should most nearly match the data. It does appear
from Figures 9 and 11 that some improvement in mean profile predic-
tion might be realized with still finer resolution.

The turbulent intensity comparison of prediction with data would
probably not improve. On the other hand, it is our understanding
(verbal communication, S. J. Kline) that hot film turbulence measure-

ment in 1960 was not accurate. In a separated flow region this would
be true for hot film or hot wire measurements even in 1976.

9. DISCUSSION

A turbulence closure model has been applied to a fully sepa-
rated flow. All of the constants had been established by previous
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12 '

10

X/BX

6z

2
0 - .

o 2 3 5 6

Figure 8. Summary Plot of the Reattachment Length, xR, versus 0.
The circles correspond to Ax/h 2/3, Ay/h = 1/3 and
the squares to Ax/h = 2/3, Ay/h = 1/12. The solid
symbols are cases where the value of 0 was adjusted
during the calculation so that the separating streamline
was parallel to the entrance channel wall.

reference to more simple experiments. A possible exception is the

constant E in equation (5), where some a priori uncertainty existed.
We have, therefore, tried two values yielding slightly different
solutions to fully developed channel flow. The value, E = 1.5, was
chosen for all of the separated flow cases.

The final comparison of predicted flow properties in Figure 11
is quite favorable although the accuracy of the turbulence intensity
data is questionable.

The problem of how much vorticity is shed from a sharp corner
appears to disappear as resolution is increased and, for finiteresolution, may be resolved by insisting on the parallel streamline
condition (a kind of Kutta condition?). The problem should, in

principle, not emerge in the case of flow separation from smooth
boundaries. However, difficulties may reappear in other flow cases
in which the experience generated here may be useful.
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It is known that close to a separation point or, in our case,
close to a reattachment point, equation (15) should not apply and it
is possible to apply a more general boundary condition along lines
suggested by Townsend (1961) and Iellor (1966). Our guess is that
the overall result will not be significantly altered. However, we
do plan to repeat the calculations with the improved boundary condi-
tion in the near future.

Finally, a comment on the master length scale equation (5). As

previously mentioned, Rotta (1951) interpreted the equation as an
equation for the integral of the two point, correlation function
over the separation distance. This is certainly a proper interpreta-
tion as the equation liable to produce a macro-length scale. Never-
theless, the "wall correction" term, the term in curly brackets in
(5), is completely ad hoc. Some such term is absolutely necessary,*
but the one chosen here is only one of several alternatives (Ng and
Spalding, 1972; Wolfstein, 1970; Mellor and Herring, 1973; Lewellen
et al., 1976; Rotta, 1972). All one can say is that it seems to
work well in the present case and in other cases we have tried.

It should be noted that terms like the term in question is aut.o-
matically included in the somewhat popular equation for the dissipa-
tion (Daly and Harlow, 1970; Hanjalic and Launder, 1972) which we
here model as q3/(Bit). However, the dissipation is the curvature
of the two point velocity correlation function as the separation
distance approaches zero. Conceptionally such an equation is inap-
propriate to the purpose of providing a macro-length; in the large
Reynolds limit where the correlation function asymptotes to the two-
thirds power law, its curvature limits to infinity as the separation
distance approaches zero. This singularity is, of course, corrected
by considering the small scale, viscosity dependent, turbulence; the
latter is not relevant to the modeling of high Reynolds number turbu-
lence, however.

APPENDIX: FINITE DIFFERENCE EQUATION

We here list the finite differences version of the differential
equations to be solved numerically.

* Consider the case of fully developed channel flow where dissipa-

tion very nearly balances production. Then, without the "wall
correction" term equation (5) may be written

(1qvS rs(q'Z)/. Xkl/.)xk = (E - l)q3/B1

If we integrate this equation from one wall at y = 0 to the other
at y =l, we obtain (E - 1) f6 q'dy/B1 0, an impossible result.
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Equation (ll)is represented as

1iI,71jJ + ' 13 (Al)Ax2  Ay2  ,

which is solved iteratively by an alterating direction implicit
(ADI) method.

The vorticity is then advanced in time according to (12) which
is represented as

a + 3(___ _q_

(a (2 -2- n -fa2U7jn ~ t(

Upwind advective differencing is used such that

[P-M C t(U~i+ij - (U) i U
Lx i ,i 2Ax - WJI

+ L ' 3 2X 1~1L'+ TiL~ji~i(A3a)

ij L 2;:U.

+ it Ay I - + l (A3b)

~wre
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S - (a4a)
Uij 2Ax

Ti+ ,. _ _ _ 1 -1 j
Vij - 2 (A4b)

2Ay

It should be noted that except for the above definitions for advec-
tion, velocities are otherwise evaluated more accurately at staggered
grid points such that U. :(i - Ti .)/Ay ' V.. =

1 IJ~ i ,- j+1 1 ,j i+2
-(TV 11 - TV .j)/Ax.-i+l,j - 1,j)/ x

The Reynolds stress gradient terms are evaluated like

;u-vi~l,_1 _j 2uvi.j + uji-l,_ (A5a)
ux2J .uv . +X

3X2 -V 2  -v~a

1 v2 _ 1i+1 +l vi+1,1- i - l ,j+1 + v ' j- 1 (A6b)laxay i j AxAy

The other terms are evaluated in a similar manner.

All of the terms in equation (13a, b, c, d) and (14) are dif-
ferenced in a manner analogous to those cited above.
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DISCUSSION

KLINE: (Stanford University)

I want to note that 6y has to do with the grid size, not the
physics of the problem.

OHRENBERGER: (TRW Systems)

Just out of curiosity, have you considered doing a round-tne-
shoulder to eliminate this spherical problem?

IMELLOR:

Yes, we really ought to do that and that is the next step. Of
course, we are exercising the turbulence model and we wanted the
simplest geometry we could find and this was it. But, sure, that is
right. In principle that takes away the corner problem.

OHRENBERGER:

Also, is it clear that separation occurs at the corner and not
down from the corner on the back face of the step?

MELLOR:

It is pretty clear from the data. Do you mean does it ever go
around the corner? I should say that in some of the calculations
with the wrong beta, the flow does go around the corner, but that
again it is a numerical thing; that is, if the beta is too big then
it goes around the corner. I have heard that debate with respect to
laminar flow but I can't imagine it being significant.
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COMTE-BELLOT: (University of Lyon)

It seems that you have used two length scales at the beginning
of your turbulence modeling, an integral length scale and a Taylor
length scale. Later on, however, you have only one equation. I
presume an assumption has been made. Would you conment on that
point? In particular, how does this assumption limit the types of
flow, which can be studied with your modeling?

MELLOR:

The dissipation term is labeled q'/.\, q' being twice the turbu-
lent energy and X is one of the length scales. The term is con-
sidered to be isotropic. Now I think, that is the one modeling term
that everybody sort of agrees on. So, that gives you one length
scale. Incidentally, q3/, can be defined by the way, by equating it
to the derivative of the triple correlation with respect to r for
small r. The other place where the significant modeling term comes
in is in the Rotta assumption* that says the pressure-velocity cor-
relations are proportional to some function of the Reynolds stress
tensor. Another inverse length scale is the proportionality coeffi-
cient. There are therefore two prominent length scales in this
whole problem and they are both assumed to be proportional to each
other. Obviously when people are thinking of spectra then it is a
simplification to say that one single length scale to which these
two are proportional governs the flow. You just simply have to see
how many flows this predicts and it predicts a lot of flows. But,
there is a limit somewhere!

CORRSIN: (Johns Hopkins University)

You say that the dissipation expression q' over X is generally
agreed upon. I have not followed the model business very closely,
of course. But, that tends to be proportional to the rate at which
the large structure feeds energy into tle shear turbulence. The
turbulence gets rid of it and adjusts the fine scale to get rid of
it. But, that is true only if the turbulence is dissipated where
it is produced. Any situation where there is appreciable transport
laterally, so that the energy is not dissipated where it is produced,
doesn't allow you to use that equality and I am wondering why that is
conuonly accepted.

MELLOR:

I don't understand. We have transport terms in the rest of the
equation, of course. So this is supposed to be the local dissipation
at a point.

* Rotta, J. C., 1951, J. Phys., 129, 547-572; 131, 51-71.



278 M. BRIGGS, G. MELLOR AND T. YAMADA

CORRSIN:
The rigorous expression is the one you get from the Navier-

Stokes equation. That can be represented by defining a "micro-

scale" in the manner of G. I. Taylor, if you have local isotrophy.*
If you don't, you can do some kind of directional averaging. The
expression you equate to dissipation is really an energy production.

MELLOR:

That is a dissipation term.

CORRSIN:

That is rationalized by the fact that it is the amount of energy
of the mean flow dumps into the turbulence, and then the turbulence
dissipates. But, it doesn't have to dissipate at the same place.
You wouldn't expect that to be equal to dissipation at the same
point, when there is appreciable transport.

MELLOR:

I would expect it. That is the production, is the correct
transfer from the mean flow into the turbulence?

CORRSIN:

That is approximately q3 over X.

MELLOR:

Sure, that is what the model says, if you neglect the transport
terms.

CORRSIN:

I am telling you where q over X came from. It came from that
expression you just wrote. It is really rationalized by turbulence
production. Now, as a local function it would be true only if it is
dissipated where it is produced.

MELLOR:

You are saying that, but I don't agree with it.

* See, for example, Batchelor's book on Homogeneous Turbulence.
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BRADSHAW: (Imperial College)

I think possibly the best way to keep one's brains unscrambled
is to regard the equation as a definition of X.

MELLOR:

Yes, and I say it can be defined according to the slope of the
triple correlation in r space.

BRADSHAW:

What this will mean is that if you have a transport equation
for this scale, A, that transport equation will have a turbulent
transport term in it. So in that sense, X is not determined by
local conditions although you then insert it into an expression that
is locally bound.

MELLOR:

For the moment that is all right. It is a definition of X.
Stan, if you were going to model dissipation how would you do it?

CORRSIN:

I use the viscous expression for the local dissipation:
- v(uui)/X, , where v is Kinerrahi viscosity and A is a directionally
averaged "Taylor microscale"; then use the Karman-Howarth (isotropic)
connection between A and integral scale L (Proc. Roy. Soc., 1938):
X/L - 1/RX = ,/(vruiui .X). Especially, this has been found to be
roughly valid in shear flows too.

MELLOR:

So in the large Reynolds member limit you come to something that
is independent of Reynolds numbers, obviously.

CORRSIN: (Modified after further discussion during coffee break)

I see your point. I had forgotten that the substitution
actually gives a local estimate for dissipation roughly equal to
production.

MELLOR:

I agree with that but in a large Reynolds number limit you have
to come to this kind of asynptotic result.

I-
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CORRSIN:

I think your expression is plausible. But I'm puzzled because,
although the integrated dissipation equals integrated production, in
principle they aren't locally equal unless transport is absent.

MELLOR:

Of course, we have the other terms in the equation that say
just what you are saying.

LAUFER: (University of Southern California)

I think actually this is more than a definition and while
Corrsin is perfectly correct there is no theoretical basis for that
kind of formulation. But this is again one of those little under-
stood features in turbulence. There are large numbers of turbulent
shear flows for which this formulation--Townsend is really the one
who pointed out this--seems to work very well and I don't think
really there is any theoretical basis for it.*

MELLOR:

Only dimensional analysis. If you say you have a dissipation
equation which is v 3ui/axj)z and then you say that cannot be
dependent on viscosity and it has to be isotropic, there is no other
choice.

LAUFER:

One can use hand-waving, of course.

MELLOR:

I don't think there is any other choice.

LUXTON: (University of Adelaide)

I feel that a very good piece of work on curvature effects on
boundary layers, which has recently been completed in Bangalore, may
be relevant to Professor Mellor's work.t It is for very mild

Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge

University Press, 1956.

t B. G. Shiva Prasad, "An experimental study of the effect of 'mild'
longitudinal curvature on the turbulent boundary layer," Indian
Institute of Science, Bangalore, Department of Aeronautical Engi-
neering, Ph.D. thesis, Feb., 1976.

A+ 1
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curvatures where the ratio of the boundary layer thickness to the
radius of curvature of the surface is of the order of 1/75. There
are quite marked effects on the structure due to that mild curvature,
as Peter Bradshaw had predicted there probably would be.* Bradshaw's
model is quite well justified for regions of the boundary layer right
up to y = 0.66, but it is less realistic near the outer edge of the
layer. The departures are more marked for concave curvature than for
convex curvature. Unfortunately I missed the first part of your talk
and I am not quite sure which beta you are referring to. If it was
the Bradshavian beta, which relates the Curvature Richardson number
to the length scale, then, where Bradshaw suggested a value of about
7, it would seem from the Bangalore work that a value more like 10
provides the best fit to the experimental data.

MELLOR:

I had a couple of slides (which I guess you missed) which had
the effect of a stratification Richardson number and also a curva-
ture which is derived from this model. You might enjoy seeing
whether or not those results fit your idea. From my point of view
there is certainly an overall analogy between curvature and stratifi-
cation but when you get into the details, it is quite a bit different.
I mean, the terms that are involved in stratification involve heat
flux and all kinds of interconnecting terms.

* Bradshaw, P. (1973), AGARDograph No. 169.



THE MODELLIiG OF A TURBULENT WEAR WAKE USIIiG THE INTERACTIVE

HYPOTHESIS

B. S. Ng & G. David luffman

Indidnapolis Center for Advanced Research & Purdue

University School of ScienL ndianapolis, Indiana

ABSTRACT

A semi-empirical mathematical model for a turbulent near wake
has been developed within the framework of an "interaction hypothe-
sis" suggested by Bradshaw. The near wake behind an airfoil has
been treated as a "complex" shear flow consisting of two neighbor-
ing simple shear layers with distinct but overlapping shear stress
profiles of opposite signs. The present model utilizes the mean
momentum and continuity equations together with two shear stress
transport equations derived from the turbulent kinetic energy equa-
tion. By relating the shear stresses to the local turbulence
quantities, closure for the governing systems is achieved without
the use of the eddy viscosity concept. The shear stress is there-
fore fo longer required to vanish at the velocity extremum. The
model has been compared to the experin-ental data of Chevray and
Kov., znay and it appears to be superior to other calculation schemes
in its ability to match the measure] results. Further comparison
with the asymmetric cascade wake data of Raj and Lakshminarayana is
presently underviay. Our preliminary calculations have validated
the basic philosophy of an interactive approach in the study of near
wakes. However, it also clearly dem.!n trates that the accuracy of
certain empirical functions used to define the turbulence structure
has a direct impact on the success of any calculation method.i

1. BASIC FORMULATION: INTERACTIVE APPROACH

Despite recent advances in nurerical methods dealing with turbu-
lent boundary layers,' little progress has been made in the modelling
of an asyimetric turbulent near wake. This is in part due to the

283
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fact that the state of the art in turbulent modelling is such that
a large amount of empiricism is often required to insure the success
of any prediction method. In the case of a near wake formed by the
coalescence of two turbulent boundary layers with opposite shear
stresses, very little is known about the mechanism of their inter-
action. Moreover, for an asymmetric wake, the point of zero Rey-
nolds stress does not necessarily coincide with the point of zero
velocity gradient. Any attempt to obtain closure for the govwrning
equations by using a simple eddy viscosity model for the shear
stress will therefore encounter difficulties. It is the purpose
of this work then to outline a method by which these problems can
be resolved.

An important element in our present analysis is the "interaction
hypothesis" first proposed by Bradshaw, et al. in conjunction with the
study of duct flow.2 Within the context of this hypothesis, a near
wake can be regarded as an interaction between two neighboring simple
shear layers with distinct but possibly overlapping shear stress pro-
files of opposite signs (cf. Figure 1). If the interaction is suffi-
ciently weak so that the turbulence structure in each layer is essern-
tially unaffected by the presence of the adjacent layer, a superposi-
tion of the two shear stress fields for the purpose of calculating
the net Reynolds stress is then possible. Moreover, by relating the
shear stresses to the local turbulent quantities, as it has been

=T T+ T-

TT + TE E

0 0

T E Velocity
eraction Profile

SRegion E

Shear Stress
Profiles

Figure 1. The "Interaction Hypothesis."
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suggested by Bradshaw, Ferriss and Atell, 3 two shear stress trans-
port equations can be derived from the turbulent kinetic energy equa-
tion. Closure for the governing system is therefore achieved with-
out making use of the eddy viscosity concept.

In order to explore the validity of the interaction approach
and to gain numerical experience, our preliminary investigation has
been confined to a prototype model which includes only the essential
physical details. The fluid is therefore assumed to be incompressi-
ble. Furthermore, due to the magnit,,de of the Reynolds number
usually encountered in turbomachine internal flow applications, the
flow is also expected to satisfy the boundary layer approximation
and the viscous stresses have been ignored when compared to the
Reynolds stresses. The momentum and continuity equations are then
given by

U +Va U .d __

ax+ a i dU ay_ (1)

and

U aV (2)

The Cartesian coordinate system for these equations is chosen such
that the x-axis is tangent to the mean camber line of an upstream
airfoil at the trailing edge; x is equal to 0 at the triiling edge
and positive in the downstream direction. The time-averaged veloc-
ity components along the x and y axes are then given by U and V,
respectively. The freestream velocity U, in the pressure gradient
term of equation (1) is to be replaced by U+. or U-._,, depending on
whether y > yc or y < yc, where Yc(x) is the locus of the velocity
minimum. Physically, our prototype problem can be envisioned as
that of a two-dimensional asymetric wake behind an airfoil or a
flat plate, formed by the coalescence of the upper and lower surface
boundary layers having possibly different characteristics. In our
present notation, the usual shear stress is replaced by t = (shear
stress)/(density) = -5, where u and v are velocity fluctuations and
the overbar denotes a time average.

According to the interaction hypothesis, we can further write

T = Ti+ + T_

such that -T+ is the dominant shear stress in the region of positive
shear--nominally where y > yc--and vice versa for T-. In order to
obtain a tractable system, certain assumptions must be made to
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secure closure for equations (1) and (2). Using the Bradshaw-
Ferriss-Atwell turbulence model' we define two sets of empirical
functions, (a+ , G+, L+) and a;, G-, L-), such that

4± r
a (3)

q2

G --  + " 
q. 2 ) (4)

and

L - IT -I . (5)
C

The relations (3)-(5) are equivalent to assuming that (i) the local
shear stress is proportional to the turbulent intensity -F; (ii) the
energy diffusion is directly proportional to the local shear stress
with a factor depending on the maximum of the shear stress, Tm, and
(iii) the dissipation rate e is determined by local shear stress and
a length scale L. With equations (3), (4) and (5), the structure of
turbulence is defined in terms of relations between turbulence quan-
tities and it is thus independent of the mean flow. It has been
observed that the above assumptions are quite valid over a wide
range of pressure gradients, Mach number, Reynolds number and appear
to be rather insensitive to rapia changes in the mean flow., 5  This
will, of course, enable the present method to b,e extended to a wide
variety of mean flow conditions, often without the need for extra
data. On substituting (3), (4) and (5) into the exact turbulent
energy equation, we can derive two transport equations for -r+ dnd T"

of the form

ax DYt T± 3 (6)

The system consisting of equations (1), (2) 'nd (6) is now closed
provided that the empirical functions car, be determined experi
mentally. A schematic representation of these functions is given
in Figure 2. Conceptually, the two sets of empirical functions are
to be regarded as distinct, but in fact they are qualitatively the
same except for changes in signs and their dependence on y as illus-
trated in Figures 2 and 3. It must be emphasized that the success
of the present approach, regardless of the method used in soivinq
the governing system, is then dependent on the accuracy of (a",G ,L').
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Figure 2. A Schematic Representation of the Empirical Functions.
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Figure 3. The Relation Between (a,, G, Li and (a;, G, L)
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The details of the empirical functions used in our calculations are
discussed in the Results and Discussion section. In addition to
equations (1), (2) and (6), certain initial and boundary conditions
must be specified.

On noting that the genesis of a near wake is effected by the
merging of two surface boundary layers at the trailing edge where
x = 0, the natural initial conditions for an airfoil with zero trail-
ing edge thickness are therefore given by

U = U(Oy) , (7)

V = V(O,y) , (8)

T+ Iz(O-y), y >O 09

0 , y }O

and

{ 0 , y>0
T t(O,y) , y .0 (10)

where the velocity profiles U(O,y) and V(O,y), and the shear stress
profiles '(O,y) and -(O,y) are ideally supplied by an upstream
boundary layer calculation or measured directly from experiments.
For x > 0, we shall also require that V(x,y c) = 0, when yc = 0 for
the symmetric case.

The boundary conditions for the present problem are

z+  O as y - 4 ,w(i

and

{ U 1 as y - (12)

A careful examination of the turbulent shear stress equations also
indicates that T+ should vanish almost immediately after crossing
into the region dominated by negative shear. In fact, on noting
that the governing system is hyperbolic, it is possible to determine
two characteristics, r and r-, emanating from the trailing edge
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such that T+ E 0 in a region bounded by r and the lower edge of the
wake, and vice versa for T. In differential form, these character-
istics are given by

r-dx tan y , and y(O) :0 , (13)

where

V _+

tan y+ = U

Hyperbolicity has indeed been fully exploited i~n the work of
Bradshaw, et al. (see, e.g., references 2, 3 and 4). In the present
analysis, however, the characteristics associated with the governing
system play a relatively minor role. Thcy are useful insofar as pro-
viding a conceptual framework within which the precise boundaries of
the interacting shear layers can be defined for the purpose of scal-
ing the empirical functions (cf. Figures 2 and 3). On the other hand,
the conditions that T+ and r- be respectively zero in most of the
regions of negative and positive shear will be automatically satis-
fied if we require that

+ T 0 as y - , (14)

and

T" 0 as y (15)

The explicit use of characteristics in specifying boundary conditions
is therefore unnecessary. It is useful to note here a few key points
of our present interactive analysis:

(i) Due to the inclusion of the boundary layer profiles at
the trailing edge as initial conditions, the observed
flow asymmetry is being dealt with directly.

(ii) Since the near wake is highly dependent upon the struc-
ture of the lower and upper surface boundary layers,
the interaction approach is expected to produce better
results than any similarity methods in which the loss
of initial conditions is implicit in the zero initial
wake-width assumption.

(iii) The (indirect) use of the turbulent energy equation
leads to the incorporation of advective and diffusive
effects in the energy budget, in addition to the usual
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balance between production and dissipation of turbulence.
The "past history" of the turbulence is therefore
explicitly taken into account. In a highly turbulent
and rapidly varying flow region, such as a near wake,
this consideration will have a direct bearing on the
accuracy of the present model.

(iv) The decomposition of the net shear stress profile into
T+ and r-, each of which satisfies a separate transport
equation, enables us to circumvent the usual difficulties
associated with any complex shear flow having an extremum
in its velocity profile.

(v) It is also of interest to point out that past experience
with boundary layers and duct flow indicates that the
empirical functions exhibit a remarkable measure of uni-
versality.s It is expected that the corresponding
functions for near wakes, once determined, will be canon-
ical, to some extent, to the present class of flow. In
any internal flow applications, a particular cascade
geometry and the angle of attack or incidence of the
airfoil will only influence the near wake solution
through the initial and boundary conditions.

2. SOLUTION ALGORITHM

A number of very effective algorithms have been developed in
recent years for solving quasi-linear hyperbolic systems of the form
given by equations (1), (2) and (6). In the work of Bradshaw, et al.
on turbulent boundary layers, 3 the method of characteristics was
adopted to solve a somewhat simpler system of three equations involv-
ing the dependent variables U, V and T. The advantages of such an
approach are that the resulting numerical scheme is essentially
explicit, and that the well-known Courant-Friedrichs-Lewy criterion
provides a clearcut limit to the x-step that can be taken to insure
nurierical stability. The uncoupling of the continuity equation from
the remaining system in that case also effectively reduces the prob-
lem to one of only two unknowns--namely, U and T--so that the charac-
teristic angles at each point in the flow can be conveniently deter-
mined by a second-order algebraic equation.

For our present purpose, a direct generalization of the method
of characteristics to deal with equations (1), (2) and (6) is, of
course, possible but has been found to be somewhat cumbersome.
Despite the fact that V can again be uncoupled, the determination
of the characteristic angles now requires the solution of essentially

a third-order algebraic equation. An attempt to circumvent this dif-
ficulty has since been discussed by Bradshaw, Dean and McEligot in
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conjunction with their work on duct flow.' Due to the rather weak
coupling of the governing system, it has been suggested that the
two turbulent shear stress equations can be solved separately using
the velocity profile at the previous x-step as a first approximation.
The resulting T+ and T- are then summed and a new velocity profile
is then calculated. Accuracy can presumably be improved through
iteration. For our purpose, however, we find it convenient to formu-
late a more direct numerical scheme based on the general finite dif-
ference approach similar to the one devised by Ferriss.6

In anticipation of the rapidly varying velocity profiles in the
inner wake region similar to those encountered in boundary layers, a
mesh of variable grid size in the normal directions has been adopted
for the present analysis. The y-steps are gradated outward from the
x-axis in the form of a geometric sequence such that

(y)j : c(Ay)j_ 1 aIl(AY) 0 ,

where

(Ay) = Yj+ Yj (16)

and

(AY) 0

yYl Yo- 2

The geometric ratio a is usually taken to be of the order of 1.05.
We shall also denote the boundary grid points for the lower and upper
wake edges respectively by Y-L and yM. The total number of interior
grid points at any given x-station is then given by

J=L+M-1.

The required numerical scheme for solving equations (1), (2)
and (6) can now be formulated in terms of difference quotients within
a typical computation cell consisting of two adjacent mesh rectangles
as shown in Figure 4. For any function f(x,y) which is at least
twice differentiable in y, the second-order-correct finite difference
approximation to the partial derivative of f with respect to y at
(xiyi) is then given by

fi - (1 - X2)f w 2f fi
_f = ,j+1 ,3 ,j- . (17)

Y i101 + Ay)o

-- --- -
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y -L<J< M

yj +

Y-1

I

Figure 4. A Typical Computation Cell for Difference Approximations
(17) and (18).

where

oi for j 1'

In the case of a logarithmic function of y, i~t can be shown that the
error associated with an approximation of the form given by (17)
remains constant throughout the entire grid despite the increase in
y-step size in the outer regions (e.g., reference 7). A "centered"
difference equation is used to approximate the partial derivative of
f with respect to x. Thus we have

- -- I (18)

t)i+ ,j

.. .
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where
x. + x

i+1 ixi+ - 2

and

( )i =  i+1 " i

Moreover, it is useful to note that

(3f all 3f) /2 (19)FYIi+ %,j i+l,i TY i ,jl

The finite difference analog to the governing system can now be
derived by replacing the partial derivatives in equations (1), (2)
and (6) with their corresponding approximations given by (18) and

(19). For this purpose, we now define

ei ,r ,j

E~r) i Vi  1 (20)i ,j ,3

11,3 0 -lj el~~

h ,/a' 0

= i L= 0 2h 0 (21)

0 0 hi ja

where

e,j,r 2a r = -1, 0, 1, (22)
e..~ 2a Gj+ij+rInllI

and

(Ay)o 0 {J, (' + I 1) U (23)
hi'j "wi 'J
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It can then be shown that around the point (xi +,yj), equations (1),
(2) and (6) are reducible to

4- 4- 4

Ai,j i+1,j-1 + Bi ji+1,j + Ci , +1,+1 1J , (24)

where

A -k E(- 1) (25)

B1, -(1- X)E (0  H (26)1 , "i

C 1) (27)Ci,j Ei ,

and

4.i,j = ij (28)

The inhomogeneous term di j is given by

- r ,2)E(o) H.di, j  -i,jsi'j. I +[I "i,j " i~j si~

C. . (29)
1 i,j+1 gi,j

where

+ +I /LT i,ji~i,ii Tj

gi,j= ( 4 0) (X+1) Ui+ ,(Ui+l, ® - U, A)/x (30)

j IT .I r lr' ' L
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In equation (30), the edge velocity U,, must be replaced by U,+4 or

U,-,,, deo;ending on whether Yj > Yc or Yj < Yc. In the course of

deriving equation (24), we have also linearized the corresponding
equations by approximating the coefficients involving U, V, T+ or r-
by their values at xi, which are taken to be known. The non-linear
versior; may be recovered, if needed, by replacing i + 1i for the
i-indices of those dependent variables appearing in equations (20)-
(23). At any given x-station, the J interior grid points then
generate 3J equations with the same number of unknowns. The result-
ing system can be written in the following compact form as indicated
in equation (31), where the i-indices have been omitted for clarity.
The boundary conditions at Y-L and YM are incorporated through the
inhomogeneous vector 8. Before the above linear system is actually
solved, however, a modification is desirable. On noting that the
downstream shear stress distributions of both the top and bottom
3hear layers should vanish in most of the regions of opposite shear
due to zero upstream conditions, it is possible to calculate T+ and
-r only at those grid points where they are non-zero. The. advantage
of this approach is that it results in a reduction of the lumber of
equations and therefore the size of the matrix M. A more ,nportant
consequence is that we are dispensed with the need to define and
justify the empirical functions too far beyond the boundaries within
which the top and lower shear layers are supposed t0 be confined.
On the other hand, care must be exercised to allow for the growth of
the shear layers. For this purpose, whenever a shear stress profile
is computed, the magnitude of the shear stress at an edge grid+point
is checked to determine whether certain limits (usually 0.01
have been exceeded. The boundary for the downstream profile will
then be moved outward by one grid point if the tolerance has not
been met.

The reduced form of the coefficient matrix M is of band type
with nine non-zero diagonals. The linear system can therefore be
solved efficiently by one of the many standard routines available
through various scientific subroutine packages. The values of U,
T+ and - at the interior grid points are then contained in thesolution vector s.

Our linearization of the numerical scheme also has the effect

of uncoupling the continiity equation, and therefore V, froim the
remaining system. Using equation (2) to eliminate (3Ux) from the
momentum equation, we obtain

-U2  o [ d +--- (32)

where all quantities, except V, are now known. Using the initial
condition V(yc) = 0, equation (32) can then be integrated outwards
from Yc to determine the vertical velocity profile V.
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The values of U, T, T and V now being known at xi , say; the

implicit finite difference scheme can be used to advance U, T and
T" to xi+,; V is then calculated by equation (32). This process
is repeated until a solution over the entire domain of interest is
obtained. Alternately, before an increment in the x-direction is
made, the current velocity and shear stress profiles can be used to
update the linearized coefficients and to improve the solution by
iteration.

The proposed numerical scheme is believed to be quite stable,
but caution must be exercised to insure the accuracy of the solution.
Although the effects of a Goldstein-type singularity at the trailing
edge is expected to vanish quickly, a recent study by Burggraf -

suggests that an extremely fine mesh must be used to insure accuracy
in the very near wake region. Typically an x-step size of the order
of R R being the Reynolds number based on chord length, must be
used for a mixing length model. Our numerical experiments indicate
a comparable x-step size must also be used (for the first 2 or 3%
chord length downstream) in the present calculation. Moreover, it
is useful to note that the rates of growth for the lower and upper
wake edges can be determined by the maximum characteristic angles
y_. and y+, at Y-L and YM" From equation (13) we derive

V i aG 1

tan y = TM (33)U±V

Thus, the x-step size must also in general be restricted such that
the wake width is allowed to expand by no more than one grid point
in either normal direction for each x-increment.

3. RESULTS AND DISCUSSIONS

As the first test case for our model, we have chosen the mea-
surements by Chevray and Kovasznay of a symmetric wake behind a thin
flat plate. The data available in this case are perhaps the most
extensive and best documented from both the experimental and the
theoretical points of view. The study by Burggraf' adapted the
Cebeci-Smith and Glushko models to compute the velocity and shear
stress profiles and it thus provides a basis of comparison between
the present model and other prediction methods now available. It
should be noted, however, that due to the ise of the eddy viscosity
concept, the Cebeci-Smith and Glushko models used by Burggraf are
restricted to synmetric flows. The present approach does not assume
symmetry in its formulation and it is currently being tested against
the asymmetric cascade wake data of Raj and Lakshminarayana.1 1 The

--- -- -~,,- - - - - - - - - - - - - - - -- =-=--- - - - - - ----- =~-~----
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results of this second test case are not yet complete but they will
be presented in the near future.

As repeatedly noted in our previous discussions, one of the
most crucial steps in the application of the present scheme--or, in
fact, any other calculation method--is the choice of empirical
functions which define the turbulence structure. In a recent inter-
active study of symetric jets and wakes by Morel,2 a set of empiri-
cal functions (see Figure 5) were suggested for wake calculations
starting at a point well downstream of the trailing edge. The pres-
ent solution algorithm has been used to reproduce Morel's results as
a check and good agreement was obtained; but the functions used
therein are not valid in the near wake region.

It can be argued that the evolution of two coalescing boundary
layers into a near wake is initially confined to a region bounded by
the two characteristics emanating from the trailing edge. 12  As a
first approximation, the boundary layer length scale L is expected
to be valid except near the wake centerline where it has been assumed
to be constant and proportional to the width of the "inner region"
(see Figure 6). We have tentatively used Morel's function G and the
point where G = 0 is correlated with the shear stress maximum. With
this normalization, the function G closely approximates its boundary
layer counterpart in the outer wake edges but assumes negative values
near the wake center. This allows the shear stresses to be diffused
away from their maxima. The value for a, is again taken to be 0.15.
The empirical functions used in our preliminary calculations are
therefore necessarily crude pending more thorough experimental inves-
tigations. In particular, the effects of the assumed "interaction"
between the two shear layers must be clarified and incorporated as
adjustments in the empirical functions. Nevertheless, the results
obtained so far are encouraging and they are presented in Figures
7-12 along with results obtained by Burggraff based on the Cebeci-
Smith and Glushko models. The present method produces good agree-
ments with the experimental velocity profiles at x/O. = 8.6, 34.4
and 86.2--corresponding to x/c = 0.0208, 0.083 and 0.208 respectively.
The predicted shear stress maxima also show improvements over those
of Cebeci-Smith and Glushko. Thus, our investigation so far has
validated the basic philosophy of the interactive approach for near
wake calculations, but it also clearly suggests that further refine-
ments in the empirical functions based on reliable experimental data
are needed before the present method can be used with confidence as
a design tool for asynmmetric flows.

, j . .. ,a' " " i ' - a * . . . - a ia m .. . .' - . o f . . ... . ... . . .. . ..
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DISCUSSION

WHITELAW: (Imperial College)

We have recently solved differential equations in elliptic form
for real wakes with and without separation using a couple different
stress models and also a two equation model.* My recollection is
that, for the near wakes without recirculation, the initial condi-
tions were rather important. Also, once separation occurs, it is a
new ball game and boundary-layer techniques won't work.

HUFFMAN:

Dr. Whitelaw's question is: How do you deal with boundary layer
separation in the vicinity of the trailing edge? I might point out
that this situation does occur in many turbine engines as a result of
the mechanical constraints which tend to dictate a relatively thick
trailing edge. The initial conditions for the wake calculations are
being generated by using the boundary layer calculations along the
pressure and suction surfaces of the airfoil in conjunction with an
inviscid program. In the cases analyzes to date we have been able
to reproduce the measured boundary layer thickness on the airfoil
surface. Depending upon the airfoil geometry and/or diffusion fac-
tor, the boundary layer can obviously separate. We have not dealt
with this situation in any detail and I am not prepared to comment
further aside from the fact that I don't totally eliminate the inter-
action model in this case provided the extent of the separated region
is small.

LAKSHMINARAYANA: (Pennsylvania State University)

I would like to congratulate you on a fine piece of work. One
thing we notice in cascades is that the wake which -is asymmetrical,
initially, shows a tendency to become symmetrical far downstream.
Does your calculation show that?

HUFFMAN:

We have never really carried the calculations that far down-
stream. We are currently in the development phase with the program
and have been trying to conserve computer costs. As a result, we
have limited calculations to about 20% of the chord downstream of
the trailing edge. We have been carrying out calculations on your
data and in general have reproduced the observable experimental
traces of streamline displacement. Since the coordinate system is

$4 * S. 8. Pope and J. H. Whitelaw, J. Fluid Mech. 73, 9, 1976.

.9
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not attached to the minimum velocity streamline when the interaction
hypothesis is used, this streamline is located by interpolation once
the velocity field is computed. The location of the minimum velocity
streamline and the magnitude of the velocities do seem to agree with
the data at this point.

LAKSHMINARAYANA:

The second question is about initial coditions. Do you go
through a boundary layer program to predict the growth of the bound-
ary layer and then go on to the wake?

H 'UFFMAN:

Conceptually we would analyze the cascade and/or blade flow
using a boundary layer program in conjunction with an inviscid core
calculation. In the series of comparisons shown in the presentation
we did not employ this technique to generate initial conditions but
rather used the experimental data which were available. In the case
of the asymmetric cascade flow we are using the Bradshaw boundary
layer calculation as presented in reference 1, in conjunction with
the inviscid calculation of Katsanis, reference 2. We are in essence
carrying out a first-order interaction between the boundary layer and
the inviscid core, i.e., calculating the boundary layer displacement
thickness with a known core velocity distribution and then rechecking
our calculation with a new airfoil shape corrected via the displace-
ment thickness. We have matched the trailing edge conditions reason-
ably well for the airfoils analyzed.

Reference 1. Bradshaw, P. and K. Unsworth. "An Improved FORTRAN
Program for the Bradshaw-Ferriss-Atwell Method of Calculating Turbu-
lent Shear Layers," Imperial College Aero Report 74-02, February 1974.

Reference 2. Katsanis, T. "FORTRAN Program for Calculating
Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbo-
machine," Lewis Research Center, Cleveland, Ohio, September 1969.

LAKSHMINARAYANA:

?, One last question: How do you check on the details of the turbu-
lence, the three functions you have in the equation?

.1
HUFFMAN4:

We have generated the empirical functions for the symmetric
case using the boundary layer model as a guide. We are currently
using the same functions for the asymmetric case. We think it is
very important to generate a data set for an asymmetric turbulent
wake that has sufficient spatial resolution to determine the
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empirical functions with accuracy. The suitability of the symmetric
function for asymmetric calculations remains to be shown and until a
sufficient data base is generated this uncertainty cannot be resolved.

WILCOX: (DCW Industries)

In view of the fact that the equations of motion are hyperbolic,
would you actually be able to get reverse flow solutions if you did
them as part of a characteristic solution?

HUFFMAN:

I would rather have Peter Bradshaw answer that.

BRADSHAW: (Imperial College)

The simplest way of looking at the inclined characteristics,
which are the ones that Dave Huffman mentioned, is that they would--
roughly speaking--outline a smoke plume put into the flow. So if
you have a reversed flow then the characteristics would, I guess,
be going upstream. I think it is possible in principle to do solu-
tions of this sort; it might turn out to be very messy in the com-
puter logic.

SAFFMAN: (California Institute of Technology)

I thiak it might be a bit worse than that. Since the equation,.
are nonlinear your characteristics are going to start running together
and you will get mathematical shocks in the system which are physi-
cal ly meaningless.

BRADSHAW:

Yes, I agree entirely. The hyperbolic model comes from a simple
assumption for turbulent diffusion which seems to work remarkably
well in boundary layers. There are occasions where it would be nice
to have a bit of parabolic gradient type diffusion in order to smear
out the "shock waves." This is very possibly one of those situations
in which the hyperbolic model is just a useful first approximation.

HUFFMAN:

The solution algorithm that we use now does not make specific
use of the method of characteristics. It is an implicit finite dif-
ference scheme.

BRADSHAW:

This is absolutely true but you will still run into the same
mathematical difficulties.
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SIMPSON: (Southern Methodist University)

We tried to do exactly what has been talked about here and the
firs, problem that you run into is that in the equation for the
direction of the characteristic you have U in the denominator, and
as U goes to zero things blow up and numerical instabilities occur.
What we ended up doing (Collins and Simpson (1976))* was using the
characteristics in the outer part of separated flow and then putting
a velocity profile model, a "law of the wall" so to speak, near the
wall.

I

Collins, M. A. and Simpson, R. L. (1976), "Flowfield Prediction
for Separating Turbulent Boundary Layers," Report WT-4, Dept. of
Civil and Mechanical Engrg., Southern Methodist University; to
appear in NTIS series; see the paper by Simpson in this volume.



SOME IMPORTANT PHYSICAL PHENOMENA IN FLOWS WITH SEPARATED

TURBULENT BOUNDARY LAYERS
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Dallas, Texas 75275

ABSTRACT

Using experimental results and the results from prediction and
simulation efforts, several important physical phenomena associated
with two-dimensional incompressible turbulent boundary layer separa-
tion from a body such as an airfoil are examined. The separated
zone, the attached boundary layers, and the near wake downstream of
a body interact with the inviscid freestream flow in determining the
final pressure distribution that produces the lift and drag forces.
Turbulent boundary layer separation begins at intermittent separa-
tion, or where backflow occurs near the wall on an intermittent
basis. Pressure gradient relief follows downstream of intermittent
separation. It appears that for separation that occurs well up-
stream of the trailing edge of the body, the separated flow diverges
from the body to minimize the streamwise pressure gradient; when
separation occurs near the trailing edge, the velocity and length
scales of both pressure and suction side turbulent boundary layers
are important in determining the pressure gradient relief. Down-
stream these shear layers interact with the freestream to determine
the near wake pressure relaxation.

In predicting the boundary layer in the vicinity of separation
it is observed that the turbulent normal stresses, Which are usually
neglected, are important. The traditional law of the wall velocity
profile appears to closely hold up to intermittent separation. The
low velocity backflow downstream appears only to serve the purpose
of satisfying the continuity equation after pressure gradient relief
determines the freestream flcw. The prediction procedures of Collins
and Simpson for the regions near and downstream of separation are
outlined and compare fairly well with available experimental data.
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I. INTRODUCTION

The general problem of flow separation from a body is an old,
but still important, topic in fluid mechanics. It is particularly
important for the aerodynamic design of aircraft and flow passages
of machines and devices. For an airfoil the maximum lift always
occurs with the onset of separation of the boundary layer. In a
positive pressure gradient flow passage, the maximum pressure recov-
ery also occurs near the boundary layer separation condition.

A great deal of current interest and effort on this type of
problem centers around the development of high lift wings for short-
take-off-and-landing (STOL) aircraft at low speeds. Several ways of
controlling the flow to postpone strong separation (breakdown of
lift) to higher angles of attack and to higher lift coefficients
have been suggested: multi-element airfoils with slots and differ-
ent kinds of flaps and boundary layer control by blowing and suction
(Lachmann, 1961; Schlichting and Truckenbrodt, 1969; AGARD 1972;
AGARD, 1974). In addition, because of dynamic or unsteady stall
(Crimi, 1975) on helicopter rotors and the blades of turbomachines,
there is interest in understanding "steady" turbulent boundary layer
separation phenomena to possibly provide some physical insight on
the behavior of tie unsteady turbulent motions.

In this paper the discussion is largely limited to the case of
a steady freestream, incompressible, two-dimensional mean flow over
a streamlined or gently curved body or surface with a developed
turbulent boundary layer upstream of the separation zone. Thus, in
essence, the separation of the boundary layer is due to an adverse
pressure gradient. The main purpose of this paper is to point out
important phenomena that influence the flowfield behavior. We will
present a physical picture of this class of flows which is supported
by experimental observations and by flow prediction and simulation
efforts. A sunmary of the results of some very recent prediction
efforts is given and recommendations of major areas for future
research are made.

2. OBSERVATIONS OF THE INVISCID FLOW BEHAVIOR

Figure 1 shows experimental chordwise distributions of the
suction side velocity just outside the boundary layer Ue for an
airfoil at several angles of attack a. This figure was taken from
Cebeci, Mosinskis, and Smith (1972) and shows the predicted separa-
tion locations of the four prediction methods considered by those
authors. The Head (1960), Stratford (1959) and Cebeci-Smith methods
are in closest agreement with one another for this airfoil and pre-
dict separation in the region where the streamwise pressure gradient
is rapidly decreasing. Downstream of this zone the velocity and
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Figure 1. Ue/U, experimental distribution for the NACA 66, 2-420
airfoil with predicted separation points; after Cebeci
et al. (1972).

pressure appear to remain nearly constant until the trailing edge
of the airfoil. In general, one will observe this same behavior
for a variety of bodies, including a circular cylinder and many
different airfoil designs, several examples of which are presented
by Cebeci et al. For these cases, one must conclude from these
observations that in the separated flow zone the velocity and pres-
sure just outside the shear layer approach the free-streamline
condition--constant pressure and velocity.

Downstream of the trailing edge, Ue must eventually return to
U in both magnitude and direction, since this irrotational flow
outside the shear layer obeys Bernoulli's equation. In cases where
separation occurs close to the trailing edge, no constant pressure
region is observed and the freestream velocity continues to decrease,
sometimes to below the U., value. In these cases the velocity down-
stream of the trailing edge must increase to Us. Figures 2 and 3
show schematically these two cases, which we will label free-
streamline separation and trailing edge separation. The data of
McDevitt et al. (1976) for transonic flow over an airfoil also show
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Figure 2. Conceptual schematic of free-streamline separation: top
figure - characteristic velocity distribution just outside
the shear layer on the suction side: pressure gradient
relief region between A and B, free-streamline region
between B and C, wake relaxation region between C and D;
lower figure - body (solid line) and the effective body
(dashed line) that consists of the real body plus the
displacement thickness, with comparable A, B, C, and D
suction side locations and pressure side wake relaxation
region between E and F. Suction side wake velocity and
length scales much larger than those for the pressure
side wake.

these two classes of separated flow behavior for shock-induced sepa-
ration at high Reynolds numbers.

In the case of trailing edge separation, there is apparent
strong interaction between the wakes of the suction and pressure
sides, since the thickness and velocity scales are not extremely
different. Thus the freestream velocity distribution in the region
between A and C on Figure 3 is controlled by both shear layers. We
might say that free-streamline separation occurs when the velocity
and length scales of the suction side shear layer are much larger

S'
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Figure 3. Conceptual schematic of trailing edge separation: top
figure - characteristic velocity distribution just outside
the shear layer on the suction side: small separated zone
between A' and B', wake relaxation region between B' and
C'; lower figure - body (solid line) and effective body
(dashed line) that consists of the real body plus the dis-
placement thickness, with comparable A', B' and C' loca-
tions and pressure side wake relaxation region between D'
and E'. Velocity and length scales comparable for thewakes from the two sides.

than those found on the pressure side, as shown in Figure 2. In
other words, when the suction side separation occurs sufficiently
far upstream of the trailing edge so that the pressure side shear
flow only very weakly interacts with the suction side shear flow,
then a free-streamline region between B and C is possible.

3. SOME EXPERIMENTAL OBSERVATIONS ON THE SEPARATED

SHEAR LAYER BEHAVIOR

Aside from all of this experimental evidence that free-
streamline separation occurs, one would at first glance only take
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the free-streamline condition between B and C as a tentative assump-
tion, assuming that the separated shear layer beneath the potential
flow at least partly controls the potential flow. This caution
would probably be guided by some laminar flow calculations, in which
the shear layer strongly interacts with the potential flow, and by a
few backward-facing pitot tube measurements that showed a rather
strong backflow. In general one cannot transfer conclusions for
laminar flows to turbulent flows since the transport mechanisms are
grossly different.

One cannot believe any results from a backward-facing pitot tube
or hot-wire anemometer when the flow is changing direction. For ex-
ample, Simpson, Strickland, and Barr (1973) presented backward-facing
pitot tube results that show backflow velocities up to 0.2 Ue but are
much too large when compared to the directionally sensitive laser
anemometer results of Simpson, Strickland, and Barr (1974, 1976) for
the same flow. It is well known that pitot tubes are sensitive to
flow direction, Reynolds number, and turbulence intensity so it is
only wishful thinking that backward-facing pitot tubes provide accu-
rate information when the flow direction is changing. Hot wires are
directionally insensitive to the cooling velocity, as discussed by
Simpson (1976a), so one cannot distinguish backflow from flow moving
downstream. The directionally sensitive laser anemometer results are
believed to be the most reliable. Simpson (1976b) presented a review
of experimental techniques for separated flows.

The directionally-sensitive laser anemometer results of Simpson
et al. (1974, 1976) for the mean velocity are shown in Figure 4 for
the freestream velocity and pressure gradient distributions shown in
Figure 5. Figure 6 is a side view schematic of the 16 foot long,
three foot wide test section of the blown wind tunnel used for this
experiment. The test boundary layer on the wind tunnel floor was an
airfoil type with first flow acceleration and then deceleration as
shown in Figure 5a. To eliminate preferential separation of the
curved top wall boundary layer, this layer was removed through a
scoop prior to the last eight feet of test section. To provide the
necessary backpressure to blow out this flow, a perforated metal
plate was located at the exit.

In analysis of these data, Simpson et al. (1974, 1976) observed
that the time-averaged mean pressure gradient dropped off rapidly
after the beginning of the backflow on an intermittent basis (Yp < 1)
or intermittent separation. Here Yp is the fraction of time that the
flow moves downstream. According to Sandborn and Kline (1961) this
first location where Yp < 1 is where turbulent boundary layer sepa-
ration begins. Downstream where the average wall shearing stress is
zero is the so-called fully-developed separation point or time-
averaged separation point. It is clear (Simpson, 1976a) that with
an observed Gaussian probability distribution for the streamwise
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Figure 4. Mean velocity profiles: + impact probe, o normal hot
film, A laser anemometer (Strickland and Simpson, 1973),
0 laser anemometer (Simpson et al., 1974). Solid lines
- upstream predictions by unmodified Bradshaw et al.
method. Broken lines - mcdel 1 predictions upstream of
separation; smoothed shear profile predictions for two
downstream separated flow profiles. J and C denote
locations of match point and separation characteristic
II', respectively. Note displaced ordinates.

velocity at a point, intermittent separation occurs at the first
streamwise location where /UU > 1/3. This would appear to be a
good criterion for the beginning of intermittent separation. The
location of fully-developed separation is where Yp = 1/2 at the
wall. These data are in good agreement with the separation criteria
of Sandborn as shown in Figure 7 and discussed by Simpson et al.
(1976). The data of Sandborn and Liu (1968), which agree with these
criteria, indicate that Yp t 0.7 near the wall at intermittent sepa-
ration, somewhat agreeing with the observation of Simpson et al.
that Yp - 0.8 on the wall at intermittent separation. The point
here is that the freestream pressure gradient relief appears to
begin close to where intermittent separation begins. This is
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Figure 5a. Freestream velocity distribution at boundary layer outer
edge: o from bottom wall static taps; 0 from bottom
boundary layer pitot probe; V from top boundary layer
pitot probe. Solid line denotes D = -0.005 ft- 2 results
from minimum pressure gradient model of the separated
flow freestream predictions of chapter 4; dashed line for
D = -0.004 ft"2. Arrow denotes intermittent separation
at 124.3 inches.

significant because we must know where the pressure gradient relief
begins in order to properly calculate the entire flowfield. It also
appears that the rapid pressure gradient relief occurs between the
intermittent separation point and the fully-developed separation
point. Further insight on the flow in this region is given below.

Figure 4 shows rather flat mean velocity profiles for y/6 < 0.15
downstream of the beginning of intermittent separation. As shown by
Simpson et al. (1976) the local turbulence intensity r-u/U is very
large but still the momentum and mean kinetic energy of this backflow
is still very small compared to the outer shear flow and the free-
stream. This low velocity region evidently just serves the function
of providing just the small amount of net backflow required to satisfy
the continuity requirement after the energetic flow near the
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Figure 5b. o pressure gradient along bottom wall; solid line denotes
results at boundary layer outer edge for D = -0.005 ft- 2

in the minimum pressure gradient model of the separated
flow freestream predictions of Collins and Simpson.
Dotted line for D = -0.006 ft- 2; dashed line for D =
-0.004 ft-2.

freestream has deflected away from the wall upon separation. After
separation the freestream flow seeks to reduce pressure gradients,
so the freestream flow deflects from the wall to reduce further
divergence of the streamlines. In the case of free-streamline sepa-
ration this pressure gradient is reduced to zero. The consistency
of this picture is presented in the calculations of Collins and
Simpson (1976) that are outlined below. In essence, the freestream
condition determines the behavior of the shear flow near the wall.

4. INSIGHTS FROM SOME PREVIOUS PREDICTION AND SIMULATION

-A RESULTS USING FREE-STREAMLINE SEPARATION

To further emphasize the applicability of free-streamline sepa-ration and to examine the important details, the airfoil flow

.-
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00 2

Figure 6. Distribution of streamlines for the minimum pressure
gradient computation with D = -0.005 ft-2 . Sideview
schematic of the test section for the Simpson et al.
flow. Major divisions on scales: 10 inches. Note
baffle plate upstream of blunt leading edge on bottom
test wall, upper wall boundary layer scoop, and perfo-
rated exit plate.

prediction efforts of Bhateley and Bradley (1972) and Jacob (1969,
1974, 1975) will be briefly reviewed.

Bhateley and Bradley used an equivalent airfoil system consist-
ing of a linearly varying vorticity distribution over the surface of
each airfoil element to simulate the separated wake. The computed
boundary-layer displacement thickness was superimposed on the airfoil
contour to form an equivalent airfoil surface for each element. This
procedure was iterated until convergence occurred. The flow down-
stream of a separation point was allowed to develop as a free-
streamline flow with no surface boundary conditions. There was tan-
gential flow on only that part of the equivalent airfoil having
attached flow. The pressure distribution downstream of the separa-
tion was assumed constant and equal to that value of pressure
obtained by linear extrapolation of the equivalent body boundary
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Figure 7. H vs. 6*/6.95. A Simpson et al. (1974): stations 88.2,
103.8, 124.3, 139.1 and 157.1, respectively, for increas-
ing H. Shaded areas - data for intermittent and fully-
developed separation (Sandborn and Kline, 1961). Path
predicted from Perry and Schofield velocity profiles
Solid line - intermittent separation; --- fully
developed separation (Sandborn); -.- data of Sandborn
and Liu (1968).

point pressures to the separation point. They used the experimentally
obtained separation point.

Very good predictions of lift and pressure coefficient were made
with this method as long as the free-streamline model satisfied the
data. For low angles of attack, trailing edge separation was present
for their test cases and pressure coefficient predictions in this
region were not good. When there was a long relaxation zone (AB on
Figure 2) their estimate of the free-streamline pressure was also in
error. They point out the deficiency of not having a wake model.
In summary, their method did not include any pressure gradient relief
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model (for AB on Figure 2), no wake model, and used experimental
data to locate separation. It still did a good job in many cases
of predicting the pressure coefficient, which basically supports
the free-streamline idea.

Jacob presented a similar type method for single airfoils (1969)
and for multiple-element airfoils with the capability of inclusion of
ground effects (Jacob and Steinbach, 1974). Vortex and source dis-
tributions on the contour were used and a boundary layer calculation
was made for the attached flow. The separation point was predicted
to be where H = 4, which, as observed from Figure 7, is in good agree-
ment with Sandborn's criterion for fully-developed separation for low
curvature bodies such as in the flow of Simpson et al. The displace-
ment thickness effect was described as an outflow from the airfoil.
The "dead air" or separated zone was simulated as shown in Figure 8a
with a separation streamline SU. This separating streamline was
required to be tangent to the surface at S, rather than tangential
to the superimposed displacement thickness distribution, as it should
be. The pressure was required to be equal at three special points of
the separating streamlines, at the beginning locations S and T and at
point U above the trailing edge. In addition, the pressure was
allowed to vary "very little" between points S and U. Thus, the

Separating U.

streamline .
peaIdair

-olilo I _ _ _ IZ ,

1 ~ZT 7Nver 56ii ved-" 4 p..

-- Realistic model
AJ

Figure 8a. Pressure distribution for flow with a separated wake
(Jacob and Steinbach, 1974).
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separation streamline SU is not exactly a free-streamline, but in
practice is close to being one. A source distribution along the
body in the dead air region provided the outflow in this region.
The circulation-contributing part of the potential flow and the
outflow were adjusted to obtain the equal pressures at the three
points. Geller's (1976) method for cascade flow is basically very
similar to Jacob's (1969) procedure. The boundary layer displace-
ment effect was assumed small and the simulated wake was assumed
to have an infinite length.

This model of Jacob gives good predictions for the lift Loeffi-
cient for free-streamline separation. Like Bhateley and Bradley,
this method did not include any pressure gradient relief model at
separation and any wake model. These authors pointed out that the
pressure drag calculation is very sensitive to the dead air pressure
value, much more so than the lift. They concluded that their dead
air pressure prediction needed improvement to improve pressure drag
calculations.

Jacob (1975) modified his method to simulate the effect of the
wake on the drag and lift, as shown in Figure 8b. From the symmetric
flow over various shaped ellipses, he determined that as v S* for
body thickness to length ratios less than 1/2, where as is the x-
coordinate location of a sink S downstream of the body and S* is the
length along the body surface between the two separation points. The
strength of the sink S equals the strength of the source along the
separated flow surface AU. Since Ys was zero for these symmetric
cases, he could only empirically determine the sink location that
produced the best drag result. The Ys for cases with non-zero angles
of attack was assumed to be given by

Von

s*= Conture length between A and U

Figure 8b. Sketch of the new Jacob dead air flow region model with
unsymmetric separation (Jacob, 1975).
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Ys = YM + (I- XM + as) tan (e)

where c = 0.5 and XM and YM are the coordinates of the midpoint of
a straight line connecting the separation points. This reduces to
zero for symmetric flow over a symmetric body.

There was considerable improvement over the low drag predic-
tions of the 1974 version. For the cases presented the lift-drag
polar plots were in very good agreement with measurements even though
in some cases the predicted lift coefficients were considerably dif-
ferent from the measurements. The effect of varying c from 0.3 to
0.7 was said to be small on the drag prediction while the selection
of laminar-turbulent transition "point" was found to be important.
A very important conclusion from this work is that the wake flow
behavior strongly influences the drag.

5. INSIGHTS FROM SOME RECENT SEPARATING TURBULENT

BOUNDARY LAYER PREDICTION EFFORTS

Figure 9 shows the several regions of a separating turbulent
boundary layer: the upstream attached turbulent flow, the freestream
flow, and the separated turbulent flow. Collins and Simpson (1976)
modified the Bradshaw, Ferris and Atwell (1974) turbulent boundary
layer prediction method to predict the turbulent flow regions. The
outer freestream condition on the separated shear flow was predicted
using the condition of a minimum pressure gradient after the beginning
of intermittent separation. The Bradshaw et al. method was selected
and used for two reasons: (1) this method is regarded as one of the
more general and better two-dimensional methods (Kline et al., 1968)
and (2) a hyperbolic set of equations with real characteristics with
some important physical significance for separation is used.

The observations of Simpson et al. (1974, 1976) were used in the
program modifications. Simpson et al. observed that the normal stress
terms of the momentum and turbulence energy equations were significant
near separation, as Rotta (1962) had already pointed out. However, no
prediction method has previously accounted for these important terms.

Consider the time-averaged momentum equations for the streamwise
or x direction and the y direction or direction normal to the wall
(Rotta, 1962):

U U + 3U, +u-_ -1 DP + V 2U  ()
(x momentum) U a ax ay p 3x 3y2
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Figure 9. Schematic of the several mean velocity flow regions of
the separated flow model.
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(y momentum) +- 2a7- : T (2)

Since auiv-/ax is at least one order of ,lignitude smaller than avJ/ay,
equation (2) can be integrated t(., produce

Pe Pe
- v (3)

since the pressure outside the boundary layer is Pe. Equation (3)
can then be used in equation (1) to produce an equation with only
the pressure gradient just outside the boundary layer

a y p dx ay (4) ,

III III

ATAHDFO
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The last three terms are the Reynolds (I) and viscous (II) shearing
stress gradients and the normal stresses gradient (III). In most
boundary layer cases term III is negligible, but near separation
Simpson et al. found it to be about 1/4 of term I in magnitude and
therefore not negligible. From the data of Sandborn and Slogar
(1955), Rotta (1962) also noted the need to retain that term near
separation. The unmodified Bradshaw et al. method does not contain
that term in its momentum equation.

Rotta (1962) also presented the turbulence energy equation with
all terms retained that were of the same order as those retained in
equation (4)

A B C D

) ax (5)

E F'

, ,-puv ,j

where the terms are advection (A), turbulent diffusion (B), viscous
diffusion (C), dissipation (D), shear stress production (E), and
normal stresses production (F'). Figure 10 shows estimates of the
ratio of normal stress to shear stress turbulence energy production
for the several stations of the Simpson et al. flow on a flat wall,
along with the results of Schubauer and Klebanoff (1951) near separa-
tion. It is clear that near separation, normal stresses production
can contribute up to 1/3 of the turbulence energy production and
therefore is not negligible. The unmodified Bradshaw et al. method
does not contain this term either. The curvature turbulence produc-
tion term -uv DV/Dx (Bradshaw, 1973) has been neglected from the
right side of the equation (5), since in the Simpson et al. flow the
largest value of {aV/3x)/({U/Dy) was crudely estimated to be less
than 0.03. Thus in that case, the effect of curvature attributable
p.-oduction was negligibly small as compared to shear production.

In addition to the normal stresses effect explicitly contained
in equations (4) and (5), the turbulence structure represented by
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Figure 10. Ratio of normal stress production to shear stress pro-
duction for the Simpson et al. flow at the several
streamwise locations: o 103.8, A 124.3, 0 139.1,
x 157.1. Solid line shows results of Schubauer and
Klebanoff flow near separation, 24.5 feet.

Bradshaw's empirical functions is also influenced by this effect
near separation. Simpson (1975a) and Collins and Simpson (1976)
accounted for this effect on the structure by the factor

F = I (- T. V2) LU/ax. (6)
-v aU/y

which is the ratio of total turbulence energy production to the
shear production.

With the recent publication by Bradshaw (1973) on the effects
of streamline curvature, it has become popular to seek to explain
coiplex turbulent flows by any possible extra rates of strain.
Bradshaw suggested that the Reynolds stress changed by a factor
1 ± 10 e/(DU/ay), where e is the small extra rate of strain, which

I
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would be DU/Dx in our case near separation. As long as aU/y >> e,
the mean flow equations were suggested to be adequate without the
normal stress terms. It has been informally suggested by several
people that that approach is the more correct one since the mean
streamlines deflect from the surface upon separation. However, the
normal stresses effect arises naturally in the governing equations
and the turbulence structure and thus has a more physically sound
basis.

Simpson (1975b) illustrated the current approach in discussion
of the three-dimensional separating turbulent boundary flow of
Elsenaar et al. Elsenaar et al. had used the extra rate of strain
approach (e = DU/Dx) to account for reduced turbulence structure
function values near separation. Simpson obtained almost the same
reduction in these quantities using the above turbulence energy
approach. Since application of both the present turbulence kinetic
energy approach and the extra rate of strain approach could be
redundant, the present physically based method is preferred. To
avoid confusing normal stress effects with wall curvature effects,
only separating turbulent boundary layers on zero or small curvature
surfaces were considered by Collins and Simpson in their test cases.

For the unseparated flow upstream of intermittent separation
several different alternative models were tested for the wall region
since there are several different formulations on the influence of
strong adverse pressure gradients on the law-of-the-wall velocity
profile. One model is that contained in the unmodified Bradshaw
et al. (1974) version with the McDonald (1969) type wall law

U r Uy C, U w
U n, TJn +K i (7)

where

p(z) In [ (4 1(1 + z) 1i + 2((z + 1) -1) (8)

n[(1+ Z)1' + 1

and z = T'/Tw . Y1 , T,, and U1 are the distance from the wall, the
shearing stress, and velocityat the first mesh location from the
wall, respectively. UT = Tw7/p; K is the von Karman constant.
These equations, the equation on the incoming characteristic, and
the shear stress equation

1 Tw y- U + 0.3 y (9)
e.
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are used to compute w, TI, and U1 at the first mesh point at the
next downstream mesh location. This latter equation comes from
using a one-fifth power law velocity profile in the momentum equa-
tion without the normal stresses term and integrating between the
wall and the first mesh point.

A second model is simpler and is based on equation (9) and the
traditional law of the wall, i.e., *( z/Tw) = 0 in equation (7)

U - n + (10)

While equations (7) and (8) supposedly account for pressure gradient
effects, there is a great deal of experimental evidence for equation
(10). The reanalysis of a large number of adverse pressure gradient
velocity profiles by Perry and Schofield (1973), the experimental
results of Simpson et al. (1974, 1976), and the results of Samuel
and Joubert (1974) all support equation (10), at least up to inter-
mittent separation.

While DT/Dy = dPe/dx on the wall, the experimental results of
Newman (1951) and Simpson et al. support the evidence of a very low
shear stress gradient near the wall for near intermittent separation
conditions. As pointed out by Simpson et al. (1974, 1976) the normal
stresses term in equation (4) is still significant near the wall near
intermittent separation-and can cause the near wall shearing stress
gradient to be lower than that implied by equation (9). Spangenberg
et al. (1967) and Stratford, in discussion of their work, also sup-
port this view. Thus with a lower stress gradient, TI/Tw would
approach unity and equations (7) and (8) would degenerate to equa-
tion (10).

These latter observations lead to third and fourth wall region
models used by Collins and Simpson: equation (9) modified to account
for the normal stresses term downstream of intermittent separation
and either equations (7) and (8) or the traditional law, equation
(10). In this modification the pressure gradient term of the shear
stress equation (9) was heuristically reduced to model the effect of
the normal stresses by the following reasoning.

The experimental results of Spangenberg et al. show significant
normal stresses effects near intermittent separation. In those
experiments the normal stresses term did not immediately rise to
totally balance the pressure gradient but increased somewhat gradu-
ally along the flow. Eventually 3(uT - v)/ax almost balanced
-dPe/dx, in effect almost eliminating the last two terms of equation
(9). These observations suggest a heuristic damping factor on the
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pressure gradient term in equation (9) when /u2/U 1 > 1/3, namely

ep(1 - 9 u'T/U2) (11)

Simpson et al. showed that u/uvs. yyM profiles for their flow

were similar downstream of intermittent separation, where the sub-
script M denotes the y location where uT is a maximum for a given
profile. The Spangenberg et al. data in the intermittently separat-
ing region indicate that the near wall u2 is about the same as TM/p,
so that these data indicate that the large eddies which produce TM
must also contribute to the near wall U2 . Thus the factor (11)
can be written as

exp - (12)pU2

Equation (9) remains unchanged when TM/PU2 < 1/B but becomes

dU I B M +2
T, = Tw- yi Uexexp1-'l 0.3 y, d (13)

when TM/PU1 > 1/B. Several values of B _ 9 were tested with several
test cases. In all of these models, as in the unmodified Bradshaw
et al. program, fully-developed separation is predicted when the
incoming characteristic cannot intersect the wall. In other words,
the differential equation along the incoming characteristic cannot
be solved with the wall model to produce a non-zero skin friction
value.

Predictions were made for five attached adverse pressure gradi-
ent boundary layer flows on flat walls with available experimental
data: Simpson et al., Spangenberg et al., Schubauer and Spangenberg
flow E (1960), Perry (1966), and Newman (1951). Each test flow was
computed with the unmodified Bradshaw program as well as with each
of the four modified prediction models. The degree of prediction
improvement, if any, was primarily judged by comparisons with the

experimental skin friction coefficient, Cf/2, shape factor, H, dis-
placement thickness, 6*, and F values, and the location of separation,
quantities that are of primary significance in predicting flow over
a body with separation. The location of intermittent separation was
predicted when rM/pU, = I/B. Mean velocity and shearing stress pro-
files were compared with experimental results near separation.

For brevity, the detailed results from only one test flow are
presented here. Figure 11 shows the results from the several models
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Figure 11a. Spangenberg et al. (1967) flow: Cf/2, H, F, and 6*
experimental (flow B) and predicted distributions.
Results from hot-wire data: o; from pitot data: x.
Experimental Cf/2 by originators from Clauser plot of
average between pitot and hot-wire velocity profile
results: 0. Estimates of F from experimental data:
x . Predicted curves legend: -- Unmodified BradshawIet al .,; - --Model 1; -- Model 2; -- Model 3;
---- -Model 4.

for the Spangenberg et al. flow. The approximate curve fit free-
stream velocity given by those authurs was used for x > 35 inches
while the experimental velocities were used upstream. Figure 12
shows the experimental pressure gradients obtained for their A and
B flows and the distribution implied by their curve fit distribution.
Since in general the flow B experimental pressure gradient distribu-
tion was close to the curve fit result, the predictions were com-
pared to the experimental quantities deduced for that flow. Both
flows A and B indicated that 4521-U, was first greater than one-third11 at about x = 80 inches, indicating Yp < 1 and intermittent separation.
The flow A boundary layer was highly perturbed downstream but appar-
ently recovered somewhere downstream of 130 inches. Flow B had

t--.
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small-scaled intermittent transitory stall between 110 and 165 inches,
as revealed by a chemical smoke. It was estimated that this stall was
present about half of the time at 130 inches, decreasing to about 15%
at 165 inches as the boundary layer recovered somewhat.

The pressure gradient is overwhelmingly the most important param-
eter that influences the predictions. For 35 inches < ;, < 60 inches,
the tabulated data dP/dx is less than the curve fit pressure. Hence,
d(Cf/2)/dx is more negative for the curve fitted dP/dx case. For
60 inches < x < 80 inches, the tabulateu dP/dx result is greater than
the curve fitted result so d(Cf/2)/dx becomes more negative and
separation is predicted at about 70 inches for both A and B flows.
H is better predicted by the experimental dP/dx distribution for
x < 60 inches, while there is no appreciable difference in the pre-
dictions of F.

Using the pressure gradient implied by the curve-fitted free-
stream velocity distribution, Model 1 shows a significant improvement
over the unmodified Bradshaw program as observed in comparisons of
Cf/2, H, and 6*. Model 2 is an improvement, but not as good as Model
1, especially for x < 80 inches. Both models always predict lower
Cf/2 and higher H as compared to the unmodified Bradshaw case. Since
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Figure 12. Experimental pressure gradient distributions for the
Spangenberg et al. (1967) flows: o flow A; A flow B.
Pressu-e gradient implied by their curve-fitted free-
stream velocity distribution

4 Ue _=1.13 x + 0.83)0.3

shown by the dashed line; Ueinitial = 84 fps, x in inches.

all of the modified methods predict premature fully-developed separa-
tion as compared to the flow B experimental results, the unmodified

4 Bradshaw method predicts the general shape of Cf/2 and H distribu-
tions better.

Model 4 with B = 36 properly predicts intermittent separatiut,
at about 80 inches, where experimentally observed, and does not pre-I dict fully-developed separation until x = 165 inches, where the4 velocity profile near the wall quickly developed much scatter and
the prediction became unstable. Predictions of 6* and F are not
extremely far from the flow B experimental results. Smoothing of
the near wall velocity profile was tried, but did not greatly improve
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the results. The source of this difficulty was traced to the fact
that as U1, the velocity value at the first point off the wall,

drops below 0.1 Ue, the equation for the direction of the incoming
characteribtic greatly amplifies numerical errors. Similar behavior
was observed for Model 3 and B = 36. In Models 1 and 2 fully-
developed separation soon followed after U1 < 0.1 Ue, so when dP/dx
is a little large, as shown on Figure 12 for the experimental dP/dx
at 60 inches < x < 80 inches, separation was predicted. The major
effect of the damping model is believed to be prevention of U1 fall-
ing below 0.1 Ue. The experimental velocity profiles agreed well
within 3% of the predictions for x < 40 inches, with %he predictions
near the wall becoming progressively poorer downstream.

On the whole, the Collins and Simpson model of the normal
stresses effect in the outer region shows improved predictions of
Cf/2, H, 6*, and F at least up to the beginning of intermittent
separation for the test cases. Upstream of the predicted location
of intermittent separation for these test cases, the Model 1 and
Model 2 predictions were within about 10% of one another. This
indicates that p(z) contributes less than about 8% to equation (7).
In other words, ao = (v/pU2)dP/dx < 0.02, according to McDonald
(1969), and there is only a so-called weak pressure gradient effect
on the law of the wall. Since the normal stresses appear to be
important downstream of intermittent separetion, there is some ques-
tion as to whether McDonald's law is a good model downstream of
intermittent separation. Hot-wire and pitot tube results obtained
downstream of intermittent separation are suspect, so equation (7)
cannot really be verified by these types of data. More data in the
intermittent separation zone using a directional laser anemometer
would be useful in eliminating this uncertainty.

The wall damping model for the normal stress effect on the net
pressure gradient near the wall was only partially successful. With
B = 36, the location of the beginning of intermittent separation for
each test flow was in good agreement with available experimental
results. Improved predictions using Model 3 or 4 were achieved in
several flows but produced poorer results for the Simpson et al. flow.
More work is needed on modeling the normal stress relief of the pres-
sure gradient after the beginning of intermittent separation. Clearly
more experimental data in this region are needed.

For the separated shear flow, Collins and Simpson began computa-
tions at the intermittent separation (I in Figure 9) since this is
where the pressure gradient begins to be relieved. The outgoing

characteristic II' of the Bradshaw et al. model which originates at
the wall at intermittent separation has the physical significance of
dividing the downstream outer separated flow from the intermediate
flow. As pointed out by Bradshaw et al. 967) and by Lister (1960),
only information upstream of a hyperbolic characteristic can influence
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the computed quantities along that characteristic. Since there is
some intermittent backflow that influences the time-averaged flow
structure downstream of intermittent separation, the outgoing
characteristic of intermittent separation is the last one that is
directly independent of the downstream turbulence structure. Thus
given Ue and Ve at the outer edge of the shear flow and the flow
structure at intermittent separation, the downstream outer separated
flow can be calculated.

The incoming characteristics from the downstream outer separated
flow cross the outgoing characteristic II to bring outer region
information into the intermediate region. Because the directions of
the characteristics become increasingly uncertain as U - 0 in the
finite difference form, the Bradshaw et al. method is matched at
U 0.3 Ue(y YJ) with the separated flow wall model described below.
The same modified Bradshaw et al. model as used in the outer region
unseparated flow is used when U > 0.3 Ue. However, V is calculated
from the outer and intermediate regions inward to the match location
Yj since Ve is known. Vj at the match location is then used to
determine how much backflow is required in the separated wall region.

The separated flow wall model basically consists of a parabolic
mean velocity profile with the option that it can degenerate to a
straight line just after intermittent separation. Since V is calcu-
lated inward to the wall, the backflow can be calculated by the
velocity at Yj, the no slip condition at the wall, and the continuity
condition. The continuity condition satisfies the only strong
requirement of any backflow since a negligibly small amount of momen-
tum and kinetic energy were experimentally observed by Simpson et al.
(1974) in this region.

For free-streamline separation, Collins and Simpson demonstrated
that Ue and Ve could be calculated using the minimum freestream pres-
sure gradient principle for the Simpson et al. flow. While the idea
of minimizing the pressure gradient downstream of separation is not
new, the new observation is that the minimum pressure gradient
requirement must begin at the beginning of intermittent separation.
Upstream the attached boundary layer controls the growth of the dis-
placement thickness. Downstream the minimum pressure gradient condi-
tion determines the required displacement thickness distribution of
the separated shear flow when conditions on unseparated boundaries
of the potential flow are known.

In determining the location of the separated flow displacement
thickness distribution for the Simpson et al. flow, Collins and
Simpson used a rather crude cubic polynomial model

+ 6 L L) +DL 3 2 (14)
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where = x.-x! and L xE - xI. At xI (intermittent separation
point I), 6, and (d6*/dx)I are known from the upstream attached
boundary layer flow while 6 is determined from exit flow continuity
requirements at XE and D is selected so that the pressure gradient
for xI < x < xE is minimized.

Figures 5 show that the results for D = -0.005 ft 2 appear to
minimize the pressure gradient slightly better than either D = -0.004
ft-2 or -0.006 ft- . Figure 6 shows the streamlines for the poten-
tial flow and the separated flow displacement thickness. Figure 13
shows that the predicted Ve distribution upstream of 140 inches is
in agreement with the experimental results within 10%. Downstream
the disagreement is considerable although the shape of the curve is
proper. Naturally the shape of this curve is dependent on the
assumed form of the 6* distribution, equation (14). The shape of
the predicted Ve distribution is very sensitive to the value of D.
For D = -0.004 ft-2 , Ve is up to a 1/2 fps lower upstream of 150
inches and up to a 1/2 fps higher downstream as compared with the
-0.005 ft-2 results. The D = -0.006 ft-2 results show about the
opposite effect, Ve being up to 1/2 fps higher till 150 inches and
1/2 fps lower downstream.

Figures 4 and 14 show the separated shear flow prediction
results using the experimental Un and Ve data. Several of these
predicted auantities are in very good agreement with the available
experimental data of Simpson et al. (1974): (1) the mean velocity
profiles, although the high prediction of 6o.9 at 157.1 inches
makes the non-dimensional profile appear to be in slightly poorer
agreement; %2) S0.9; (3) the location of the point where the
velocity is half the local freestream velocity Ue, Yv/2; (4) the
shape factor H; (5) the location Yb where the mean backflow is
divided from the forward flow; and (6) the magnitude level of the
backflow. The shearing stress profiles are not in good agreement,
although it may be possible that the experimental hot-film values
shown nearest that wall may be uncertain due to the presence of a
very small amount of the intermittent backflow (Simpson et al.,
1974). Without some smoothing of the shear profile, oscillations
in T values occurred in the intermediate separated flow zone. Since
the effect of the intermittent backflow in the shearing stress
deduced from hot-film signals has not been investigated, this uncer-
tainty cannot be resolved here. However, the locus of the maximum

fluctuation locations as uetermined by the reliable directionally-
sensitive laser anemometer is in fair agreement with the predicted
maximum shear locations ir Figure 14a. Since u and -uv maxima are
almost at the same location in a profile for a mixing layer, the
predicted maximum shear locations may be good for x < 12 feet. With-
out some smoothing of the shear profile, oscillations in T values
occurred in the intermediate separated flow zone between Yj and the
outgoing characteristic II'. Predictions without smoothing are in
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Figure 13. V at outer boundary layer edge for the Simpson et al.
flow. Values from experimental results: x, from U
similarity; +, from integral continuity equation with
linear Ue6* vs. x curve fit; 0from integral continuity
equation with nlfUe6I vs. x curve fit. Solid line is
faired curve used in downstream separated flow predic-
tions. Attached flow prediction: -...- Model 1;
- -- Model 2. Dashed line is distribution predicted
from the minimum pressure gradient separated freestream
calculations with D = -0.005 ft-2 .

slightly better magnitude agreement with the experimental results
although streamwise oscillations in YM and the maximum shear are
produced.

This flow was also calculated using the Ue and Ve distribution
computed using the minimum freestream pressure gradient principle
with the parameter D = -0.005 ft-2 and shown in Figures 5 and 13.
Figures 14 show these calculation results using shear stress profile
smoothing. Significantly, 6 and y,, are predicted to be about the
same as for the other shown predictions up to 13.5 feet and with a
smoother distribution for 6 downstream. In particular this Ve dis-
tribution has the correct magnitude at intermittent separation and
approximately the correct distribution shape. Thus if one were
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Figure 14a. Comparison of predicted and experimental results for
the Simpson et al. flow downstream of intermittent
separation: × - experimental data; 0 - experimental
values for location of maximum streamwise fluctuation
as determined by the directional laser anemometer,
points connected by - --. Predictions using faired
solid curve in Figure 13 for Ve: solid lines - smoothed
shearing stress profile predictions; dashed lines -

unsmoothed shearing stress profile predictions. Pre-
dictions using dashed curve in Figure 13 for Ve -
dotted broken line.

computing 6 from this separated shear flow analysis with Uie and Ve
as input information, the initial estimate of 6(x) used to pick Uje
and Ve from the potential flow for the first trial calculation would
not be critical. The locations of Yb and Yc are predicted to be
closely the same as for the other shown predictions. H is also
crudely predicted, but not quite as well as by other shown predic-
tions when compared to the available experimental results.

The maximum shearing stress is predicted to be about the same
i! up to 13 feet, but undergoes a dip downstream due to smoothing of

the shear stress profile. For the same reason the location of the

-. 8
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maximum shearing stress YM increases after 13 feet to be in closer
agreement with the locus of the maximum streamwise fluctuation, In
fairness une cannot say that these latter predictions using the Ue
and 1/e distributions predicted with a minimum freestream pressure
gradient are any worse than the predictions using experimental Ue
and Ve.

6. SUMMARY OF OBSERVATIONS AND RECOMIENDATIONS FOR FURTHER WORK

At this point, we wish to summarize the important effects that
must be accounted for in order to closely predict the two-dimensional
flow over an airfoil or body with turbulent boundary layer separation.
Since our limitations on understanding this type flow are largely due
to the lack of sufficient reliable experimental data, several areas
are recommended for future research.
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A. Attached Boundary Layer

To accurately predict the important quantities of laminar-
turbulent transition location, the displacement thickness, and the
intermittent and fully-developed separation locations, one must have
a flexible model that incorporates all of the important physical
phenomena. It is well known (Schlichting, 1968) that the transition
location is influenced by pressure gradient, surface roughness, and
freestream turbulence, although exact prediction of this location
for a real case is not easy as pointed out by Jacob (1975). We did
not address this problem here, but considerable research has and is
being done on this important subject.

Predictions for favorable pressure gradient turbulent boundary
layers, such as found on the pressure side and on the front part of
the suction side of an airfoil, are already very good (Kline et al.,
1968), and are not treated here. For adverse pressure gradient
boundary layers, the work of Collins and Simpson (1976) shows the
importance of accounting for the normal stresses effect just upstream
of intermittent separation. Predictions of the important parameters
Cf/2, V*, and the beginning of intermittent separation were improved
by accounting for this effect for the several experimental cases
tested.

It is clear that experimental velocity profile data available
downstream of intermittent separation are suspect if obtained by hot
wires or pitot tubes. Thus, any law of the wall modified to account
for streanwise pressure gradients using these data is also suspect.
One other thing is clear: experimentalists should stop attempting to
use directionally insensitive pitot-static tubes or hot-wire anemome-
ters in the region with intermittent backflow that is downstream of
intermittent separation. Directionally sensitive laser anemometers
should be used to provide further data on this intermittent region.
Extreme care should be taken to measure the pressure gradients as
accurately as possible since these parameters influence predictions
the most.

B. Separated Shear Flow

It is clear that the pressure gradient relief region (AB on
Figure 2) must be predicted in order to predict the freestream veloc-
ity for free-streamline separation (BC on Figure 2). The Collins and
Simpson model for the prediction of the intermittent separation loca-
tion was in good agreement with available experimental data. Inter-
mittent separation is the proper separation location for mean steady
turbulent boundary lay rs since this is where the boundary layer is
first detached on an intermittent basis. The pressure gradient
relief between intermittent separation and fully-developed separation
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needs further experimental research to relate the behavior of the
freestream and shear flows in this vicinity. Wooley and Kline (1973)
in their diffuser prediction procedure also support these views,
although in their procedure they use the Sandborn and Kline inter-
mittent separation model shown in Figure 7, which also is in agree-
ment with experimental data.

In fact the lack of a clear understanding of the interaction
between the shear and freestream flows after intermittent separation
prevents accurate modeling of flows that maintain long regions
between intermittent and fully-developed separation. For example
in the Spangenberg et al. flow, intermittent separation occurs rather
quickly in the presence of a strong adverse pressure gradient, but
fully-developed separation is prevented by steadily reducing the
freestream pressure gradient downstream. As noted by Spangenberg
et al., it is rather difficult to maintain this type of flow experi-
mentally since if the pressure gradient is slightly too large fully-
developed separation will occur, resulting in a fully-stalled flow
downstream. The normal stress modified program with wall region
normal stress damping of the effective pressure gradient (Model 4)
predicted this flow for some distance after intermittent separation,
but that same model produced poorer results for the Simpson et al.
flow. It appears that a more fundamental model of the turbulence
structure in this region is in order. It will most likely follow
after more detailed laser anemometer measurements.

For fully-stalled flows, such as the Simpson et al. flow, which
have relatively short distances between intermittent and fully-
developed separation, one can effectively use the flow conditions at
intermittent separation to predict the downstream flow. Given d6*/dx
and 6* at intermittent separation and an assumed form for 6*(x) down-
stream, the downstream location of 6*(x) can be computed subject to
the minimum freestream pressure gradient condition, if all other
boundary conditions on the elliptic freestream flow domain are known.
Naturally the displacement effects on all surfaces with attached
boundary layers must be accounted for. This procedure could be
improved without a preselected assumed form for 6*(x) if the pressure
gradient relief after intermittent separation were properly modeled.
The procedure used by Collins and Simpson in effect accounts for
pressure gradient decay.

The internal consistency of allowing the freestream and upstream
conditions to solely determine the downstream shear layer and backflow
was demonstrated by Collins and Simpson. Having computed the free-
stream flow, Ue and Ve at the outer edge of the separated shear would
be known, so the procedure can be used to predict the separated flow.
While there are difficulties in predicting the shearing stress profile
that need to be eliminated, the important parameters of 6 and the mean
velocity profile are well predicted. This means that an initial trial
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distribution of 6(x) could be used in an iterative procedure to
evaluate Ue and Ve from the freestream potential flow. Then 6(x)
would be predicted from the separated shear flow and new estimates
of Ue and Ve would be obtained from the freestream flow and the
procedure repeated until sufficient computational convergence is
achieved.

These computational procedures appear useful for prediction of
airfoil flows with free-streamline separation. The procedure of
Bhateley and Bradley (1972) could be used for the potential flow in
an iterative procedure that accounts for displacement effects. The
procedures of Collins and Simpson are directly applicable in their
current form for low curvature surfaces. Trailing edge separation
with its associated strong interaction of the shear flows from both
sides of the body was not treated here because of the lack of experi-
mental data on the turbulence phenomena. Clearly, considerable
experimental work is needed on trailing edge separation to determine
its structure.

C. Wake Flow

The near wake region (CD on Figure 2, BC on Figure 3) is the
critical part since it is characterized by strong interaction of
both separated shear layers with the potential flow and controls
the downstream distance to where the pressure is uniform. It is
clear from the work of Jacob (1975) that the prediction of this
region is important to the overall drag prediction. Unfortunately,
we do not know of any detailed experimental flow structure data for
the near wake shear flow of a lifting airfoil with turbulent separa-
tion. These data are needed in order to examine the turbulent trans-
port processes, if any fundamental improvements are to be made over
Jacob's (1975) procedure. For this reason, this problem was not
treated here. The far wake does not play any important role in the
lift or drag prediction since the pressure is uniform.
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ABSTRACT

The energy redistribution terms in the Reynolds-stress equa-
tions for swirling flows are modeled by the simple return to iso-
tropy terms proposed by Rotta. Simplifications of the equations
are then obtained by assuming local equilibrium to exist, neglecting
the diffusion and advection terms and by invoking the boundary-layer
approximations. The resulting equations are algebraic in the shear
stresses and can be solved in terms of a gradient Richardson number
and the mean flow quantities. Results show that for moderate
Richardson number, the eddy viscosity is not isotropic and the flow
is characterized by two velocity scales. However, for small Richard-
son number, the eddy viscosity is isotropic and a Monin-Oboukhov
formula for the velocity scale is again obtained. The free parameter
in the formulae can be determined from non-swirling plane flow data.
Consequently, the only empiricism that enters into the present
analysis is that required in two-dimensional plane flows.

1. INTRODUCTION

The prediction of three-dimensional turbulent flows has been
the subject of continued interest for many fluid mechanics research-
ers. Among the various different three-dimensional flows, the rotat-
ing turbulent flows with or without axisymmetry are of particular
interest because of their inherent importance in many areas of engi-
neering applications. Early attempts to predict rotation turbulent
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flows usually followed the integral approach, that is, velocity pro-
files were assumed for the flow and the integral equations of motion
were solved. Such an approach was restricted to flows with simple
boundary conditions, simple boundary geometries and constant fluidproperties (Dorfman, 1963; Krieth, 1968). In order to develop a

more general prediction method, later -ttempts have been concentrated
on the solution of the differential equations of motion rather than
the integral equations. As such, they involve modelling the Reynolds
stresses which appear in the mean momentum equations. Among the many
different closure models for the Reynolds stresses, the least sophis-
ticated is the mixing-length or eddy viscosity model. This simple
model for three-dimensional, rotating turbulent flows forms the sub-
ject of the present investigation, while the interested reader can
refer to a recent book by Launder and Spalding (1972) for a discus-
sion of other turbulence models.

In order to extend the mixing-length concept of Prandtl to
three-dimensional rotating flows, some assumptions concerning the
length scales in the flow have to be made. The general approach is
to assume an isotropic length scale and that rotation exerts its
influence on the length scale through a characteristic dimensionless
parameter of the flow in question. Bradshaw (1968) drew an analogy
between the effects of buoyancy and streamline curvature and argued
heuristically that the characteristic dimensionless parameter is the
gradient Richardson number and that the effects of rotation can be
best described by the use of a rotating flow analogue of the Monin-
Oboukhov (1954) formula for the mixing-length. Since then, the
Monin-Oboukhov formula has been used by Cham and Head (1970),
Koosinlin and Lockwood (1971) and Koosinlin et al. (1974) in their
study of rotating turbulent flows. Although they found good agree-
ment between calculations and measurements, they also discovered
that the empirical constant in the Monin-Oboukhov formula has to be
varied to accommodate changing experimental conditions. Other modi-
fications to the mixing-length have been investigated by Koosinlin
and Lockwood (1971), but here again, they found that the empirical
constants in the mixing-length formulatior have to be varied for
different experimental conditions considered. They attributed this
difficulty to the assumption of an isotropic length scale which is
not consistent with the fact that swirling flows usually exhibit a
significant anisotropy of the eddy viscosity (Lilly & Chigier, 1971;
Lilly, 1973). Because of tnis, Koosinlin and Lockwood (1971) con-
cluded that the mixing-length approach is inadequate and closure of
the mean momentum equations should be effected by properly modelling
the various terms in the Reynolds-stress equations and then solving
the equations simultaneously with the mean momentum equations.

The present study investigates the assumption of an isotropic
length scale for three-dimensional, rotating turbulent flows and
hopes to establish the validity and extent of such an assumption.
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In addition, it also addresses the question concerning the proper
choice of dimensionless parameter for the Monin-Oboukhov formula
and the value of the constant in the formula. The approach taken is
similar to that used by So (1975) in his analysis of two-dimensional
curved shear flows. Closure of the Reynolds-stress equations is
again effected by suitably modelling the energy redistribution and
dissipation terms, by assuming the advection and diffusion terms to
be small and by limiting the consideration to thin shear layers.
The resultant Reynolds-stress equations are algebraic in the shear
stresses and can be solved in terms of the mean flow quantities.

Rotating turbulent flows can be divided into two classes; those
whose axes of rotation are normal to and those whose axes lie in the
same plane as the plane that contains the direction of the stream-
wise flow. Since flows belonging to the first category have been
investigated by So (1975), therefore, the following analysis will
concentrate on the effects of rotation on the turbulence field in
flows belonging to the second class. Such flows are generally known
as swirling flows.

2. THE REYNOLDS-STRESS EQUATIONS

For turbulent swirling flows, the Reynolds-stress equations in
generalized tensor form are

7 + (Uk uT , + FkU + uku. Ul
t iI j k L1uu j k j k

Advection ProductionI
i+ , L i , k j ui k]

Energy Redistribution Dissipation

S uu + 6. pu. + 6j pui - uj' i - u ()

Li us i 31

Diffusion
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where xi is the ith component of the generalized coordinates, ui
and Ui are the ith components of the fluctuating and mean velocities
respectively, p = p'/p is the fluctuating pressure, p is the fl:iid
density, = vgk (u i + ui, ) is the viscous stress tensor, v is

the fluid kinematic viscosity and g is the metric tensor. The set
of equations (1) has more unknowns than equations; however, (1) can
be closed by writing it in terms of single-point double velocity

correlations ukui. This requires modelling the terms on the right-
hand side of (1).

If local equilibrium in the turbulence field is assumed, that
is, production of turbulent energy balances viscous dissipation
except in a very thin layer next to the surface and the advection
and diffusion terms are assumed to be small, then it is only neces-
sary to model the energy redistribution and dissipation terms (So,
1975). Recently, Peskin and So (1976) have examined the importance
of including additional terms for rapid distortion and return to
isotropy in the modelling of the energy redistribution terms in
turbulent shear flows under the influence of external body forces.
They found that for small external body forces, a Monin-Oboukhov
(1954) formula for the mixing-length is again obtained; however, the
effects of the additional rapid distortion and return to isotropy
terms on the formula are regligible when compared with the use of
the simple return to isotropy terms proposed by Rotta (1951). In
view of this, the model terms proposed by Rotta (1951) for energy
redistribution are adopted here and they can be written as

_ + .(iu gijq) (2)
Pi + j 3 Z ( 3

where q = (uiui) and Z is a turbulent length scale which is as yet
undefined. The dissipation terms can be written in terms of a dis-
sipation length scale A if Kolmogorov's (1941) hypothesis of local
small-scale isotropy is assumed. Therefore,

Tk + Tk u 2 q, (3)
i Uj,k i,k 3 ijA

When (2) and (3) are substituted into (1), the Reynolds-stress equa-
tion in generalized tensor form becomes

+ Lk 1 Yjuj k + ukuj Ui1

U [uiuj..ii- + [Diffusion Terms] (4)
1 3 J A
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If an orthogonal coordinate system that is symmetric with
respect to the axis of rotation (which i$ parallel to the mean flow
direction) is chosen (Figure 1), then {x1 1 = (x, r, 0), {ui}
(u, v, w) and {Ui} = (U, V, W). The rotational velocity, W, creates
a "centrifugal" lorce which is balanced by the normal pressure gradi-
ent and gives rise to two significant shear stress components, -uv
and -vw, in the turbulence field. This makes the flow akin to three-
dimensional shear flows, hence complicates the analysis. However,
the set of equations (4) can be further simplified by assuming the
flow to be statistically steady, the advection and diffusion terms
to be small and by invoking the boundary-layer approximations and
local equilibrium assumption. The resultant component equations
written with respect to the coordinate system shown in Figure 1 are

3q "r A " L = 0 (5)

3ki 3) A uv 3r0(

( 21

U - A rr(7)

2 11

Vw r, v, (7

too Vg

Figure 1. Definition sketch for coordinate system.
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-- _-ui 2-U + 2  W 0 (8)3Y r (

3zV K- + 2(w2 - ) r (9)

o - ;W7 w

39 -vw -_ - OW K - 0 (10)

3. THE TURBULENCE VELOCITY SCALES

The simplified Reynolds-stress equations (5)-(10) are algebraic
in the shear stresses and can be solved in terms of the mean flow
quantities. This set of equations was first analyzed by Bissonnette
and Mellor (1974) but they concluded that for W/r 0 and if W/r <<
OW/ar cannot be assumed, then the algebra becomes extraordinarily
complicated. Because of this, they expressed the resultant shear
_r = [(-uv) 2 + (--)1 in terms of e = (W/r)(OW/r)"1 and

= (3z,/q)(DW/ar) which is not independent of the turbulence quanti-
ties. In the following, it will be shown that the algebraic complex-
ity can be overcome and the shear stresses can indeed be solved in
terms of the mean flow quantities alone.

To solve for -uv and -T, an equation between q, -V and -vw

is first obtained by summing (5)-(7) and the result is

q3 = arx + b-e (11)

where

Tx = -TV (12a)

To= "vw (12b)

a = A U  (12c)Or

b a - ) (12d)

Two other expressions relating q, T x and T0 are then obtained from
(6)-0) and the result is

dq = (q' + c) (13)



VELOCITY SCALES FOR SWIRLING FLOWS 353

gq3 = rxq2 + + T f (14)

where

2 W (nW
c = 72 1 rr+ (15a)

d I _4 - j~ (a ) (15b)

2 W aU
54 z1 - (15c)

-ii Tr (15d)

By eliminating rx and To from (11), (13) and (14), a quadratic equa-
tion for q2 is obtained. This can then be solved to give

q ~ jag + bd -) 241+[(ag + bd + +a(3cg -4dfj (6

Equation (16) can be written in a more familiar form if the following
definitions are adopted, namely

2 W +
Ri = r3r r (17)(aUJ2 + r )2

at
-- w(18)

r r

-72 Z /A (19)
(19

The meaning of Ri and the significance of a will be discussed later.
For the present, (16) can be rewritten with the help of (12), (15)
and (17)-(19). Omitting all the algebra, the result is

q2 6". - 1} Z-,",) 2 +Et)]2
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where

2Z Ri t 1 O Ri] + 3 OR i~oa (21)

The correct sign to take in (21) can be determined by examining (20)
for the case of a two-dimensional non--rotating plane shear flow.
For this flow, the expression for q2 deduced by So (1975) is

qo 1 - f2 (22)

Therefore, it can be seen that only the positive sign in (21) will
give a q2 that approaches (22) when W = 0.

Finally, expressions for Tx and Te can be obtained by solving
(11), (13) and (14) simultaneously with the help of (12), (15) and
(20). The result is

x ;o Z+1/2 2Ri Law I

LZ+~~~Ri + 2a~R - (23

ON Zi+ r) ~i 11 (23)

where

2 2

1 OFr r 
(25b)

au

r

The total shear stress T can be written as

o Z + 1/2 RiL Da r- [(z + 1 Ri

2 I + RU 21 (! + y2 Z + 1 0Ri - 1 + [-3- (26)
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In the absence of swirl, T = 0 and T T x becomes

227
(') = ' (27)

where the subscripts zero denote properties of a corresponding two-
dimensional non-rotating plane shear flow. So (1975) interpreted
Z as the familiar Prandtl mixing-length and defined the eddy vis-cosity vo in terms of the turbulence velocity scale v and £o so

that

, 2 U(. _
Vo = Vt Lo = 0 r (28)

Since (23) and (24) are derived from the Reynolds-stress equations,
it is reasonable %o assume that rotation only affects the turbulence
velocity scale., and not the length scales of the flow. Therefore,
analogous to (28) the eddy viscosities vex and ve8 can be defined as

vex = vx to and vea Vo v 0 where vx and v0 are the turbulence

velocity scales.

Equations (23) and (24) suggest that Tx and T be related to~the mean velocity gradients as

e (29)= ex al

To- (An _ W]~ (30)e 6eIr rJ

The relation (30) for T is consistent with the definition proposed
by Keyes (1960), Ragsdale (1960) and Reynolds (1961) in their inves-
tigation of vortex flows. Also, with Tx and T0 defined by (29) and
(30), the denominator in (17) equals the square of the resultant
mean shear. Since the numerator of (17) represents the square of
the Brunt-VaisMli frequency evaluated from the rotational motion
only, (17) can be interpreted as the definition for the gradient
Richardson number, Ri for turbulent swirling flows [given in equa-
tion (39)]. Thus, the meaning of (17) is clear and the dependence
of the shear stresses on the gradient Richardson number is estab-
lished.

The expressions for v' and v' can now be obtained from (23) and
(24) with the help of (28)-(30). 0They are
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3/2

O Z + 1/2 Ri [UiJ __

x[Z + 1 Ri + yr2tZ + 1 Ri 1 j (31)

Iv o

2/ I 2~J 2

TV___ aLr 3r r - (32
To' Z +1/2 sRi u

Once again, the turbulence velocity scales for swirling flows are
shown to be functions of Ri alone. However, contrary to the beliefs
of other investigators (Cham & Head, 1970; Bradshaw, 1973; Koosinlin
et al., 1974), the turbulence velocity scales are not isotropic even
when the assumption of local equilibrium is made. The eddy viscosity
ratio vex/yee vx/v can be written as

ex= Z + alRi + y2 Z + 1 Rli - 1J (33)V°e

which is also a function of Ri alone. By expanding Z as an ascending
series in Ri, it can be easily shown that to the first order of Ri

ve W
_ +r W Ri (34)

V e rr]+ Ri
eo {r r.

which is similar to the expression obtained by Koosinlin and Lockwood
(1974). On the basis of this expression for the eddy viscosity ratio,
they have concluded that if the external body force is due to swirl,
the modification is more properly applied to the ratio vex/veo. How-

ever, the present analysis shows that the modification should be
applied to the eddy viscosities themselves and (34) follows naturally.

Evidence in support of (33) can be obtained from the rotating
cylinder measurements of Bissonnette and Mellor (1974). From their
measured mean velocities and shear stresses data obtained for two
different cylinder rotational speeds, they evaluated veo/ex for

y/6a = .1 to = .9, where 60 is the circumferential displacement
thickness. They found that although the scatter in the data is
large, no trend of veo/vex with respect to x or r can be detected.
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Consequently, the mean ratio of veo/vex is calculated to be .7 with

a standard deviation of -20%. Using the measured mean velocity pro-
files obtained by Bissonnette and Mellor (1974), the ratio vee/vex

is calculated from (33). In the range, y/60 = .1 to .6, where local
equilibrium assumption is approximately valid, it is found that the
mean ratio of ve/Vex is .8 with a standard deviation of -2%. Again,

no definite trend of veo/vex with respect to x or r can be evidenced.

The slight difference between the mean value reported by Bissonnette
and Mellor (1924) and that calculated from (33) is probably due to
the error involved in their measurement of the shear stresses. In
view of this, the general agreement can be considered very good.

4. THE VALUE OF 0

Although two length scales, 2, and A, are introduced in the
closure model for (1), they only appear as a ratio in the final
expressions for v' and v6. Therefore, (31) and (32) will be com-
pletely defined if the value of ' is known. Empirical information
is extracted from non-rotating, constant-pressure plane flows, and
on this basis alone, a value for 0 will be determined. As a result,
no empiricism saved that required in non-rotating, two-dimensional
plane flows is introduced into the present formulation for the shear
stresses.

The Reynolds-stress equations for a non-rotating, two-dimensional
plane flow can be obtained from (5) to (10) by setting W = 0 and -ii4
= -vw = 0. After rearrangement, they can be written as

uUV- 0 4a (a- 6a2)) 0

"q2- - -- 0 (a -6ct) -2(1 0 (35)

0 0 - 0 0 -2(%

where a = ZI/A. The flat plate boundary layer measurements of
KIebanoff (1955) and So and Mellor (1973) give

.24 .16 0 .20 .17 0

.16 -.18 0 and .17 -.13 0

-'0 0 -.06 0 0 -.06
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respectively for the stress tensor, while the homogeneous turbulence
data of Rose (1966) and Champagne et al. (1970) give

.16 .17 0

.17 -.09 0

0 0 -.05

If a is chosen to be .055, then (35) will take on a value of

.22 .19 0

.19 -.11 0

0 -.11

which closely represents the average of the above data. Although
other values of a are also possible, the resultant stress tensors
calculated from them differ considerably from the reported data.
Also a = .055 compares favorably with the values of .053 and .052
obtained by So (1975) and Mellor (1973) respectively. Since these
values have been demonstrated by So (1975) and Mellor (1973) to give
good agreement with a wide range of curved shear flow and atmospheric
boundary layer data, it will be adopted for swirling flows too.

From (19), the value of 0 is then determined to be 6.

5. THE MONIN-OBOUKHOV FORMULA

The mixing-length correction formula for a stratified atmosphere
was first deduced by Monin and Oboukhov (1954) assuming a constant
stress layer to exist in the atmospheric surface layer. This is the
equivalent of the local equilibrium assumption, therefore, it is
little wonder that a curved flow analogue of the Monin-Oboukhov form-
ula can be derived if the production of turbulent energy is assumed
to balance dissipation and the external body force effects are small
(So, 1975). In the case of swirling flows, Bradshaw (1973) postu-
lated that Vw /T = (3W/ar)/(3U/3r) when local equilibrium is assumed
and he again argued that the Monin-Oboukhov formula can be applied
to account for the effects of swirl if W/r << (W/Dr). The purpose
of this Section is to show that Bradshaw's (1973) hypothesis is
derivable from the present analysis and that for small swirl, the
assumption of an isotropic eddy viscosity is valid.

If W/r << (W/3r), Ri will be much smaller than one. Therefore,
to first order of Ri, Z can be written as
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Z 1 P Ri
2

When this result is substituted into (31) and (32) they become'2
x' . . = 1- ar r (36)
7r ~T 4RDi

0 0 Frj0

which gives the isotropic behavior of the turbulence velocity scales.
Defining the mixing-length, Z, for swirling flows as

vx  v; kr (37)

it follows from (28) and (36) that

,=1- Ri (38)
90 4

which is the swirling flow analogue of the Monin-Oboukhov formula.
With 3 = 6, the coefficient for Ri takes on a value of 4.5 and this
is in excellent agreement with a value of 5 used by Koosinlin et al.
(1974) in their prediction of swirling flows. This result, together
with that obtained earlier by So (1974) for curved shear flows,
demonstrates that if the external body force effects are small, then
the Monin-Oboukhov formula for the mixing-length is valid for differ-
ent kinds of flows.

6. DISCUSSION

6.1 Description of the Effects of Swirl

In stratified flows, two dimensionless parameters can be defined
to describe the effects of buoyancy. If the oscillation of a fluid
element displaced in the direction of the buoyancy force is con-

sidered, a dimensionless parameter known as the gradient Richardson
number is obtained. It can be defined as follows.
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Ri -Brunt V~isalS frequency 12
Typical turbulence frequency

Typical body force
Typical inertia force

-(glp-) (alz) (39)

(aulnz)2

where p is the mean density, g the gravitational force and z is the
vertical coordinate. Ri is positive for stable stratification, zero
for neutral flow and negative for unstable stratification. On the
other hand, if consideration is directed to the production terms in
the turbulent energy equation, a flux Richardson number Rif, can be
defined. This is given by

Rif -v-component energy production due to buoyancy
f u-component energy production

gp'v/p" (40)
(UV(aUlaz)

where p' is the fluctuating density. In general, Ri and Rif are
different. However, under the assumption of local equilibrium and
small buoyancy effect, the same mixing-length can be used to describe
p'v and uv, then Ri = Rif.

The similarity in effects between buoyancy and streamline-
curvature in two-dimensional flows was recognized by Prandtl (1929)

and Bradshaw (1969) and the curved flow analogue of Ri and Rif was
defined by Bradshaw (1969). Although uncertainty exists in the
choice of velocity gradient for the denominator in the definition
of Ri, there is no ambiguity in the meaning of Ri. This is because
in two-dimensional curved shear flows, the plane of surface curva-
ture, the plane of rotation and the plane of the mean shear all
coincide and a typical inertial force can be defined without ambig-
uity.

This is not the case in three-dimensional and axisymmetric
swirling flows. For such flows, the plane of rotation, the plane
of curvature of the mean streamline and the plane of the mean shear
do not all coincide. Therefore, it is not clear whether Ri should
be defined with respect to the velocity and curvature in the plane
of curvature of the mean streamline or whether it should be defined
with respect to the resultant mean shear. This difficulty led
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Bradshaw (1973) to abandon Ri in favor of Rif. However, in his
analysis of an axisymmetric swirling flow, Bradshaw (1973) has to
assume that Tw/Uv = (3W/3r)/(DU/3r) and W/r << DW/Dr, then he
obtained

2 _

r rarRi =Rif yDU)2 (DW12 (41)S + I rI

Farj arJ

and concluded that the effects of swirl can again be equally
described by either Ri or Rif. For small swirl, (41) is indeed
consistent with the present result because it is the first approxi-
mation to (17) and the eddy viscosity is indeed isotropic.

For larger Ri, the eddy viscosity is no longer isotropic and
the present analysis shows that the gradient Richardson number as
defined in (17) is the proper dimensionless parameter to use to
describe the effects of swirl, and Ri is an ill-defined parameter.
From (5)-(7) and (40), the swirling fl ow analogue of Rif can be
defined. This is given by

2vw WRifi
Ri =r (42)f , U + -SW + W

3r Par r,

With the results given in (23) and (24), (42) can be written as

r r(43Rif~ [ + sU2i + y2 (Z + aRi- 1I + ILBW 2@ j "T'(3
Far j 2+ ~ Dr +2

which gives the relation between Ri and Rif in swirling flows rather
than a definition of Rif in terms of the mean flow quantities. This
is because there is no simple way to partition the effects of swirl
between U-v and W. Also, there is no a priori reason to suggest
that the shear stress vector should be skewed in the direction of
the velocity gradient. Instead, the swirling flow data of Bisson-
nette and Mellor (1974) and the three-dimensional data of Johnston
(1970) showed that the shear stress vector is actually skewed in the
direction of the resultant velocity. Therefore. it can be concluded
that Ri as defined in (17) is the proper dimensionless parameter to
use to describe the effects of swirl.
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6.2 Stability of Swirling Flows

Just as in the case of stratified flows and curved shear flows,
some upper limit on the critical Richardson number beyond which
turbulence cannot exist can be obtained by considering the simpli-
fied turbulent energy equation. For swirling flows, this equation
is given by

(uW + w production) (1 - Rif) = Dissipation (44)

where Rif is defined by (43). Since the critical flux Richardson
number Rifcr can be interpreted as corresponding to the total pro-
duction of turbulent energy in the flow becoming very small while
viscous dissipation continues with the result that the whole level
of turbulence decreases, it follows from (44) that Rifcr has an
absolute upper limit of one. This conditiot implies the vanishing
of the resultant mean velocity gradient and this leads to a corre-
sponding limit of infinity for the critical gradient Richardson
number, Ricr. Since production of turbulent energy also ceases
when Tx and T0 vanish, therefore, it can be seen from (23) and (24)
that the shear stresses also vanish when Z 0 0. This gives

Ri L (( _rj (45)Rcr W +- W.) 2 3

r r)crj

However, lack of data prevents (45) from being verified and the
determination of a critical flux or gradient Richardson number for
swirling flows.

6.3 Solution of the Mean Momentum Equations

The results given in (23) and (24) for -x and T9 respectively
can be used to close the equations of mean motion for an axisymmetric
turbulent swirling thin shear layer. If the fluid properties are
assumed uniform, then the mean momentum equations become

a- + I.a (rV) = 0 (46)
x r 5r

U - + V .. = -Lx +1 - (rTx) (47)
ax 3r ax rr 3 m
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(48)r 3r

-- + a : r) r(49)
3x r r ) r Dr )

where P = P'/p is the mean static pressure. The only unknown in
(23) and (24) is to which is the mixing-length of a corresponding
non-rotating plane flow. Although to is defined by (25a) and t is
determined to be .055, the individual variation of k, and A across
the shear layer is not known. Hence, ko cannot be evaluated.

There are many ways to evaluate to, but none employs as little
empiricism as the equilibrium layer technique of Mellor and Gibson
(1966). In their analysis, an eddy viscosity is hypothesized and
the mean momentum equations are solved for non-rotating plane flows
where the pressure gradient parameter 6*(dP/dx)/Tw, with 6* denoting
the displacement thickness and Tw the wall shear stress, is held
constant. They found that their calculations agree very well with
other measured equilibrium profiles (Clauser, 1954, 1956; Stratford,
1959). Later, Mellor (1967) applied the same eddy viscosity hypothe-
sis to calculate flows with arbitrary streamwise pressure gradient
and again he found good agreement with measured data. Therefore,
once the pressure gradient of the flow in question is known, the
method of Mellor and Gibson (1966) can be used to calculate the
variation of to across the layer. Unlike other empirical formulae
for to, this method employs the least empiricism saved that of con-
stant pressure flat plate flows and it accounts for the pressure
gradient effects automatically. Hence, for the present calculation,
this technique is used to obtain to for any given dP/dx.

With Z,(r) known, (46)-(49) together with (23) and (24) can be
solved by a number of finite difference techniques. For convenience,
the integration technique employed by Mellor (1967) is adopted here.
The calculated velocity profiles and momentum thicknesses are com-
pared with the rotating cylinder data of Furuya et al. (1966). Good
agreement is obtained (Figures 2-4). Further calculations were made
assuming the eddy viscosity to be isotropic and hence the use of
(36) to evaluate Tx and T . The results are essentially the same as
those shown in Figures 2- , and are no different from those presented
by Koosinlin et al. (1974). Therefore, the present results provide
direct evidence in support of the use of a Monin-Oboukhov formula for
swirling flows when Ri is small.

Although (36) is derived assuming the axis of rotation to be
parallel to the direction of the streamwise flow, the investigation
of Koosinlin et al. (1974) shows that it is just as applicable to
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Figure 2. A comparison of calculated and measured velocity profiles
in flow past rotating cylinder. e, data of Furuya et al.
(1966), Re, = U.R/v = 6 x 104 and Sa = R/U. = 2; ,
present calculation. 6 is the boundary layer thickness
in the axial direction.
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Figure 3. A comparison of calculated and measured axial momentum
thickness in flow past rotating cylinder. e, Ss, = 1
and A, SR = 2 (Re. = 6 x 1O) are data of Furuya et al.
(1966); - , present calculation

?x = JR x (U/U.) (1 - U/U.)dr is the axial momentum

thickness. Definitions for Re,. and Sp are the same as
those given in Figure 2.
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Figure 4. A comparison of calculated and measured circumferential
momentum thickness in flow past rotating cylinder.
Symbols as in Figure 3.

620 R+ x (U/U.) (W/QR)dr is the circumferential momentum
r

thickness.
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flows whose axis of rotation makes an angle with the direction of
the mean flow. The present calculations for rotating cylinders do
not differ from those of Koosinlin et al. (1974), therefore, it is
expected that the calculations for spinning cones would also be the
same. This is not surprising because the coefficient of Ri in the
Monin-Oboukhov formula used by Koosinlin et al. and the present
calculation are essentially the same. In view of this, a comparison
with spinning cone data was not made.

Finally, it should be pointed out that the mixing-length formula
used by Cham and Head (1970) is different from (38) and that used by
Koosinlin et al. (1974). The difference is in the definition of Ri.
Koosiniin et al. (1974) defined Ri just as it is given in (17), how-
ever, Cham and Head (1970) defined Ri with respect to U, SIR and
DU/ar, where Um is the free stream velocity and QR is tie circumferen-
tial velocity of the cylinder. On this basis, Cham and Head (1970)
concluded that a is not a constant and its value changes from .25 to
60 across the thin shear layer. From the calculations of Koosinlin
et al. (1974) and the present analysis, it is obvious why the 8 used
by Cham and Head (1970) varies across the thin shear layer. This is
because the variation of the circumferential velocity W across the
shear layer was not properly taken into account in the definition of
Ri.

7. CONCLUSIONS

Formulae for the variation of the turbulent velocity scales
with Richardson number in a swirling flow have been derived from the
Reynolds-stress equations by assuming production of turbulent energy
balances viscous dissipation. The resultant formulae show that the
eddy viscosity is not isotropic. Also, the formulae only contain
one free parameter, but it can be determined from data for non-
rotating plane flows. Consequently, there is no free constant in
the formulae. For small Richardson number, the eddy viscosity is
isotropic and a Monin-Oboukhov formula for the velocity scale is
again obtained. Therefore, this provides direct evidence supporting
the application of the Monin-Oboukhov formula to swirling flows as
suggested by Bradshaw (1973).

The result also indicates that the proper dimensionless param-
eter to use for the description of swirl effects on the turbulence
field is the gradient Richardson number as defined in (17).
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DISCUSSION

CORRSIN: (Johns Hopkins University)

Since you take into account the nonisotropy of the eddy vis-
cosity have you considered also including it even with the Richard-
son number? It doesn't matter that in general in shear flows it
would have to be a fourth rank tensor. You could probably get a
lot of the components from existing data.

SO:

Yes, I have been working on that and I don't have the answer
yet. It turns out to be a lot more complicated than I expected.



EFFECTS OF FREESTREAM TURBULENCE AND INITIAL BOUNDARY LAYERS ON

THE DEVELOPMENT OF TURBULENT MIXING LAYERS

Otto Leuchter

Office National d'Etudes et de Recherches Agrospatiales

92320 Chatillon (France)

ABSTRACT

Confluence configurations of practical interest in turbo-
machinery and external aerodynamics are discussed in this paper,
the main interest being focused on the effects of initial boundary
layers and freestream turbulence on the development of the turbu-
lent mixing layer. The prediction of those effects is provided by
a numerical method using a two-parameter turbulence model. This
is based on the eddy viscosity concept and the transport of the
kinetic energy and Rotta's integral length scale. The empirical
constants of the model are determined from the behavior of the
asymptotic free shear layer. Satisfactory agreement between numeri-
cal predictions and experimental results are achieved for the mean
flow and for some typical turbulence parameters, especially in the
configurations of plane wakes and coaxial jets.

1. INTRODUCTION

The behavior of turbulent mixing layers initiated by the con-
fluence of two parallel streams is discussed in this paper in the
general configuration of unequal velocities on each side and with
initial bo,,ndary layers and/or freestream turbulence present in
both flows. Typical features of this basic flow configuration
(Figure 1) are the presence of a region of rapidly varying flow
properties immediately downstream of the confluence and the possi-
bility of a strong interaction effect resulting in an enhancement
of the turbulent activity in the shear layer and in a consecutive
increase of the overall spreading rate.

371
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BL, BLBL.

- I Tu1 1 TUe

Figure 1. The Basic Flow Configuration: Confluence of Two
Dissimilar Flows.

The configuration of Figure 1 may be considered as representa-
tive for various flow situations encountered frequently in external
and internal aerodynamics, especially in turbomachinery. There it
applies to wakes downstream of turbine or compressor blades, to
internal mixing layers and to the outer jet mixing layer between
the exhaust jet and the ambient air, where the effects of initial
boundary layers and freestream turbulence on the aeroacoustic charac-
teristics of the mixing layer are of primary importance.

Little information is available on these effects and, consider-
ing their importance for a wide range of practical applications, it
became necessary to develop at ONERA a fundamental research program
comprising detailed experimental investigations of subsonic two-
stream mixing layers under various initial conditions as well as
the development of numerical prediction methods. Theses include
appropriate turbulence modelling able to take into account initial
boundary layer and freestream turbulence effects.

The purpose of the present paper is to discuss some typical
results obtained recently for this type of flow, especially for the
configurations of plane wakes and coaxial jets. Emphasis is placed
on the presentation of a workable calculation method capable to pre-
dict correctly the dominant features of these flows. The turbulence
model retained for this purpose is based on the eddy viscosity con-
cept and includes the transport of two characteristic turbulence
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parameters, namely a turbulent velocity scale and a turbulent length
scale. This model was found to yield a reasonable compromise between
the complexity of the present flow situations to be described and the
simplicity of the prediction method required for practical engineer-
ing applications. Simpler models have also been used in the context
of the present research, but they are restricted to the particular
case of simple free shear layers with one of the flows at rest, for
which the velocity profiles are monotonic throughout the flow. The
mixing length concept, which have been extended to supersonic speeds
and the concept of eddy viscosity transport have been successfully
applied to this case (Leuchter, 1973).

The first part of this paper is devoted to the description of
the predictive method and to the determination of the empirical
constants involved in the turbulence model. Some experimental data
are presented in the second part and compared there with the numeri-
cal results.

2. NUMERICAL DESCRIPTION OF THE FLOW FIELD

2.1 Basic Equations

The mean flow field is governed by the continuity and the
streamwise momentum equations, which are used here within the
approximations of two-dimensional incompressible boundary layer
flows:

au+I 1L (yn V) =o (1)
ax yn ay
-a + - (yn -T)

ax Vay e ax y n ayy ~T (2)

with n = 0 for plane flows
and n = 1 for axisymmetrical flows.

High Reynolds numbers are assumed allowing the viscous term in
the momentum equation to be neglected.

The eddy viscosity concept is used throughout the present work,
relating the Reynolds stress to the transverse gradient of the mean
velocity

u'v -- VT (3)
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so that the eddy viscosity VT remains the only turbulent quantity to
be specified in order to achieve closure for the mean field. The
mixing length model

VT 9 au (4)

relating vT to only mean flow quantities had been successfully used
for the description of free shear layers, even in the presence of
initial boundary layers (Leuchter, 1973), provided that the mean
velocity profiles are monotonic. Only the mixing length £ needs
then to be specified as a function of space. If the velocity pro-
files are not monotonic throughout the flow, as is the case in the
present configurations, and if in addition interactions between
turbulent flows of different structures occur, a more versatile vis-
cosity model has to be adopted. Therefore the Prandtl-Kolmogorov
mode 1

V T = rE L (5)

relating the eddy viscosity to only turbulent parameters has been
retained for this study. These parameters are the turbulent kinetic
energy E and a typical turbulent length scale L representative for
the large scale motions of the turbulence. Closure is achieved then
by means of empirical balance equations for both quantities. In
practice composite quantities containing both, the energy E and the
length scale L are considered as the dependent variables for the
second equation instead of the variable L itself, so that L results
from the simultaneous solutions of both balance equations. Typical
examples are the dissipation rate of the kinetic energy of turbulence
(Davidov, 1961; Harlow & Nakayama, 1968) which stands for E312/L, the
Kolmogorov frequency /E/L (Kolmogorov, 1942) or its square E3/L'
(Spalding, 1969; Saffman, 1970) and the EL product of Rotta (1951)
which may be defined from the trace of the two point correlation
tensor

EL(-X) R Ri(x,r) r-T  (6)

i r2

with Rii(x,r) = u!.(i) u!(k + 7)
or alternatively in the wave number space from the spectral density
F(k) (Rotta, 1951)

EL(O) - L- FC'k- dk (7)
0 k
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with E = F(k)dk.
0

More recently Rotta (1971, 1975) had proposed an alternative
version of Equ. (6), more appropriate for the treatment of two-
dimensional shear flows, in which EL is defined from the lateral
(y-direction) two-point correlations

o 3
EL ~ J Z Ri (xy)dy (6')

i=1

but the physical meaning is basically the same as that expressed in
Equ.'s (6) and (7). Rotta's concept of the transport of the EL-
product which has been successfully applied to wall-boundary layers
(Ng & Spalding, 1972), to free shear layers (Rodi & Spalding, 1970)
and to the description of initial boundary layer effects on mixing
layers and jets (Leuchter, 1973, 1975) has also been retained in the
present investigation.

The semi-empirical balance equations for the two dependent vari-
ables E and EL are:

aE + E = CL _ n 3E --r-- 3_9U
-T V _y n ay V)T - u ay (8)

EL + - EL (v yn EL CL y (9)

Both equations, which are similar in structure, state that
advection is balanced by the sum of (diffusion + production - dissi-
pation). The dissipation rate c can be expressed in terms of the
energy and the length scale alone, as is the case for the eddy vis-
cosity, Equ. (4):

C C E- (10)

where C is an empirical constant for high turbulent Reynolds numbers
(Rotta, 1951). The diffusion terms (first terms on the right-hand
sides) represent only rough approximations for the actual diffusion
of E and EL arising from the triple velocity and the pressure-
velocity correlations. The number of the empirical constants con-
tained in the model is thus reduced to five.
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2.2 Determination of the Constants

The set of empirical constants to be specified comprises the
dissipation constant c of Equ. (10), the two diffusion constants C1
and C2, the production constant Cp and the dissipation constant CD
appearing in the transport equation for EL. The latter constant
results immediately from the empirical decay data of homogeneous
turbulence if the model is applied to this particular case. Thcr
the production and diffusion terms cancel out and CD is directly
related to the decay rates of the turbulent energy and the length
scale:

C 1 + d In L (11)
CD d In E

which is of the order of 0.6 as can be deduced from experimental
decay data.

The four remaining constants of the model can be determined
entirely from the behavior of the asymptotic state of the plane free
mixing layer (Leuchter, 1973). In this particular case the assump-
tion of Prandtl (1945) applies, namely that the turbulence length
scale L is proportional to the mixing length 1:

L = at (12)

where a is an empirical constant which may depend on the configura-
tion of the flow. Relation (12) can be shown to be equivalent to the
assumption that the module of the shear stress is proportional to the
turbulence energy:

Iu I = B2E (13)

which is the experimentally well supported Bradshaw (1967) hypothesis.
If Equ. (13) is introduced into the balance equations (8) and (9),
the two source terms (production and dissipation) collapse and the
auxiliary constants A and A' appear:

E 1 1 (vT yn E (14)

u x V -- C 2 ny (15)

I II Ill
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c

with A 1- (16)

with A' = pCD - (17)

A and A' are determined from Equ's. (14) and (15) by integrating
both equations over the shear layer and by taking into account the
similarity properties of the mean velocity field expressed by

u(x,y) = ((18)
Uo

with
Y- Yo.sn - 5  (19)

YO. 5 is the half-velocity ordinate and b is the thickness of the
mixing layer. Both quantities are linear functions of x. The inte-
gration of Equ. (14) yields then:

J u u'v' dr
b'f

A = - (20)
f P. u'v dn

where b' is the growth rate of the mixing layer and where the inte-
grals are taken over the width of the shear layer. The shear stress
distribution is determined prior to the integration from Equ's. (1)
ane (2) by taking into account for the similarity properties of the
mean velocity profiles. If the relative variation of the turbulent
length scale in the transverse direction is supposed to be small for
the asymptotic st,!te of the mixing layer, then the integration of
Equ. (9) yields:

A' = 2A .,. (21)

The unknown constants c and Cp can thus be evaluated from
Equ's. (16), (17), (20) and (21), with the appropriate empirical
inputs for a and b' (or for the mixing parameter, o : 1.79/b').*
Values for o and fV' of respectively 10.5 and 0.38 as suggested by
various experimental results on plane or axisyiimetrical jet mixing
layers result in values for c and Cp of approximately 0.1 and 1.0

* The analytical profile of Tollmien (1926) has been retained here
as the reference profile.
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respectively, as can be seen from Table I, where different similarity
profiles have been considered for the evaluation of A from Equ. (20).
They comprise two experimental profiles, namely that of Wygnanski and
Fiedler (1970) and that of Patel (1973) together with the analytical
profile of Tollmien (1926). The dissipation constant CD has been
fixed for these evaluations at 0.58.

The second step in the determination of the constants concerns
the two diffusion constants D, and D2. These can be evaluated either
locally or ;lobally from Equ's. (14) and (15) together with Equ. (18)
and the previously determined constants A and A'. The local deter-
mination is made on the dividing streamline since the turbulent shear
stress reaches there its maximum and the contributions of the diffu-
sion terms in Equ's. (14) and (15) are there most significant. C1
and C2 result then directly from the ratios

I - Ill
II

relative to Equ's. (14) and (15) respectively and evaluated at the
position of the dividing streamline. The comparison of the values
of C1 and C2 thus determined (summarized in Table I) shows that they
are almost independent on the form of the profiles and that the dif-
fusion constant of the energy-length product equation is slightly
higher than that of the energy equation. The same trend was observed
from the evaluation of C1 and C2 made globally over the whole mixing
layer yielding slightly higher levels for C, and C2 that those deter-
mined locally of approximately 1.2 and 1.4 respectively (Leuchter,
1973).

The vdIues of the constants finally retained for the calculations
are also given in Table I.

Table I. Empirical Constants of the Model.

experir ntoil anolyticol retainedIWYGNANSKI PATEL TOLLMIEN value
FIEDLER

oa3'A 1.17 1.11 1.16

A 0.29 0.28 0.30

¢ 0.10 0.10 0.10 0.10

Cp 1.00 0.96 1.00 0.94

-C 1.06 . ' 0 1.06 1.

LmIMi _ .20 11.2 - 20O
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2.3 Application to Simple Shear Layers

In Figure 2 it is shown how the model predicts the growth rate
of equilibrium two-stream mixing layers as a function of the velocity
ratio. The growth rate is represented here by the (non-normalized)
mixing parameter a. The calculated evolution of 1/a shows reasonable
agreement with the experimental data collected in the literature
(Brown & Roshko, 1971; Liepmann & Laufer, 1947; Miles & Shih, 1968;
Patel, 1973; Spencer & Jones, 1971; Wygnanski & Fiedler, 1970; Yule,
1971). Some results obtained at ONERA on coaxial jet mixing layers
are also included. It may be noted that the relation proposed by
Sabin (1963):

_ e (22)
Oo U. - Ue

fits almost exactly the calculated curve.

The transverse variation of the length scale L in the one-stream
(Ue = 0) mixing layer as resulting from the numerical solution of

Equ's. (1), (2), (8) and (9) is shown in Figure 3. There it is com-
pared to the length scale deduced from Equ. (5) by using the experi-
mental profiles of the mean velocity (from which the eddy viscosity
was deduced)'and of the turbulent energy measured by Wygnanski and
.Fiedler (1970). The experimental length scales deduced from the
streamwise two-point correlation functions measured by the same
authors are also reported on this figure. For this purpose a scaling

o SPENCER-JONES
1 + YULE

A MILES - SHIH
o PATEL
* LIEPMANN -LAUFER

BROWN - ROSHKO

0.1 A WYGNANSKI - FIEDLER

* 0 NE.R.A.

-predicted

0.05 o " • .. U,*U,

0.05

0 0 A

0 0.5 1 Ui

Figure 2. Evolution of the Mixing Parameter a for the Two-Stream
Mixing Layer.
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L
b

0.2 ... .

-1 0 1

numerical, present two-equation model
deduced from experimental E and v, WYGNANSKI and

I (L-0.621)
oL ( L .016LEDLER (1970)

Figure 3. The Length Scale in the Asymptotic Free Shear Layer.

factor of 0.16 was applied to the measured integral scales Lx, which
results from the comparison between Lx and L = vT/VE in the central
part of the mixing layer. An alternative evaluation of the length
scale can also be obtained from the mixing length profile by using
Equ. (12). The mixing length is deduced from the mean velocity pro-
files by applying Equ's. (1) to (4). The corresponding L-profile
is also shown on Figure 3, where the value of a was the same as that
used above for the determination of the constants. The dominant
features of these comparisons illustrated on Figure 3 are the satis-
factory degree of consistency between the calculated length scale
level and that of the various empirically determined scales over the
major part of the mixing layer and the common trend of only moderate
transverse variations in its central part.

2.4 Extension to the Reynolds Stresses

Experimental surveys of the fluctuating velocity field are
usually performed with the aid of hot wire or laser doppler anemome-
try and the most commonly measured turbulent quantity is then the
r.m.s. value of the fluctuating streanwise component of the velocity
(or the corresponding normal stress u'2). On account of the highly
anisotropic nature of the shear flow turbulence we are dealing with,
this quantity cannot be related directly to the turbulent energy E



TURBULENT MIXING LAYERS 381

implied in the turbulence model. In order to achieve more signifi-
cant comparisons between experimental and numerical results concern-
ing the turbulent field, the present two-equation model has therefore
been extended to include the non-vanishing components of the Reynolds
stress tensor. This extension was primarily intended for getting
complementary informations about the anisotropy of the stress tensor
rather than for achieving an improved closure for the shear stress.

The modeled terms of the corresponding balance equations, sum-
marized in Table II, are similar in structure to those of Equ's. (8)
and (9), except for two additional terms arising from the interaction
between the fluctuating pressure and the fluctuating strain rate:
the first term is due to the interaction of only fluctuating veloci-
ties, whereas term II simulates the interaction between mean velocity
gradients and the fluctuating velocity field. Following the early
proposal of Rotta (1951) the first contribution is taken to be pro-
portional to the anisotropy level of the Reynolds stresses, whereas
the second part is supposed to be proportional to the anisotropie of
the corresponding production tensor, following current practice of
modelling (Launder, 1975; Launder et al., 1975). For this simplified
version of the simulation of the pressure-strain correlation only two
new constants appear, namely w and y. Typical values proposed in the
literature range from 1.5 to 2.8 for w (Launder et al., 1975; Rodi,
1972, Hanjalic & Launder, 1972), with subsequent variations of y from
approximately 0.6 to 0.3. It can be observed that an approximate
relation between y and w may be derived again from the asymptotic
behavior of the free shear layer yielding:

y = 0.86 - 0.2 w (23)

Table II. Modeled Transport of the Reynolds Stress Tensor.
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so that only one of the two constants, say w, must be specified.
Computer experiments run with this model have shown however that in
the case of simple shear layers the calculated stress levels are
only weakly affected by the choice of w, if w varies between the
before mentioned limits and if Equ. (23) is applied to adust the
values of y. More elaborate expressions have been proposed by
Launder et al. (1975) for the simulation of the second part of the
pressure-strain correlation; in the context of the present work
however further sophistication of the stress equations has not
appeared to be necessary.

The turbulent diffusion of the Reynolds stresses is approximated
here again, as in Equ's. (8) and (9), by a gradient type form. The
corresponding constants are determined from a more elaborate expres-
sion for the triple correlation tensor (Hanjalic & Launder, 1972):

I ka je axe 4kue axe

by comparison with the diffusion constant of the energy equation and
by taking into account the anisotropy properties of the Reynolds
stress tensor in the asymptotic free mixing layer. The corresponding
diffusion constants C3 through C6 are then:

C3 = 0.98

C4 = 1.86

Cs = 0.62

CG = 1.86

it can be observed from Table II that with the presently adopted
closure assumptions the equations for the normal stresses are com-
pletely uncoupled allowing each of them to be integrated independently.
Thus in most of the following examples only the equation for the
normal stress in the longitudinal direction (ul2 ) has been integrated,
since in most of the experimental investigations only this turbulent
field quantity has been measured.

Figure 4 illustrates the degree of agreement which may be
achieved with this simple version of the Reynolds stress model in
the case of an equilibrium two-stream mixing layer of velocity ratio
0.3. The experimental data are from Spencer and Jones (1971). As
can be seen from this figure, the level of the nonzero components of
the Reynolds stress zensor as well as the shdpes of their profiles
are reasonably well predicted here, with the pressure-strain constants
of w = 2.8 and y = 0.3.
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1Figure 4. Distribution of the Reynolds Stresses for the Plane Two-Stream Mixing Layer, Ue/U i = 0.3.

3. COMPARISON WITH EXPERIMENTS ON RELAXING SHEAR LAYERS

J3.1 Plane Wake Flows

i This flow configuration has been studied in detail at ONERA
(Solignac, 1973) and in other research laboratories as e.g. at the

CEAT in Poitiers (Tsen & Fayet, 1972) and at the Johns Hopkins Uni-
versity (Chevray & Kovasznay, 1969).

The experimental apparatus used at ONERA is sketched in Figure
5. It consists of a subsonic wind-tunnel of rectangular test section
of 156 x 290 no (aspect ratio z 1.9). The freestream velocity is
about 50 m/s. ,he flat rilate on which the boundary layer develops
is located in the horizontal symmetry plane of the tunnel. It is
500 mm long and provides at the trailing edge fully turbulent bound-
ary layers of roughly 10 mm thickness. The Reynolds number based
on the boundary layer thickness is about 4-104. The shapes of the
upper and lower walls can be modified (Figure 5b,c) in order to
create moderate adverse pressure gradients. These correspond to a
streamwise variation of the pressure coefficient Kp = (p(x) -p 0 )/,.eUo'
of 1 to 2 percent per boundary layer thickness at the trailing edge.
Both a symmetrical (Figure 5b) and an asymmetrical (Figure 5c)
arrangement have been used, the latter providing initial boundary
layers which are different in shape and in thickness.
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Figure 5. Plane Wake Configujrationt.

Figure 6 shows the streamwise variation of the minimum velocity
in the wake for the symmetrical configuration without pressure gradi-
ent. The measurements of ONERA which are confined to the near region,
are compared here to the data of Tsen and Fayet (1972) and Chevray
and Vvasznay (1969). The experimental results viewed as a whole can
be seen here to be correctly predicted by the two-equation turbulence
model. The initial conditions from which the calculation starts are
provided by the corresponding experimental mean velocity profiles at
the trailing edge and partly extracted from the turbulence data of
Klebanoff (1955), insofar as the turbulent kinetic energy profile in
the boundary layer is concerned. The initial profile of the length
scale is generated by using Equ. (12) and a standard expression for
the mixing length profile

It tan h

Lt
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Figure 6. Minimum Velocity in the Symmetrical Plane Wake.

with Z , 0.084 6, k = 0.41 (the von Kaman constant). 6 is the
boundary layer thickness and y is the distance from the wall. The
constant 0 appearing in Equ. (12) was fixed at 0.5.

Details of the transverse profiles of the normalized streamwise
velocity component are given in Figures 7 and 8 for the test series
of ONERA and of Chevray and Kovasznay respectively. Reasonable agree-
ment between the predicted and measured profiles is evidenced there.

y

0 3.5 6.9 10.4 13.9I

o *xperimental (Od.ftA.)

predicted __

0.5 1 1
U

Figure 7. Mean Velocity Profiles in the Symmetrical Plane Wake(ONERA).
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Figure 8. Mean Velocity Profiles in the Symmetrical Plane Wake
(Chevray and Kovasznay).

Chevray and Kovasznay also measured the corresponding shear stress
profiles by hot wire anemometry. These are compared with the calcu-
lated profiles in Figure 9. Satisfactory agreement is achieved,
consistent with that of Figure 8, in spite of some minor divergence
in the initial section due to the particular choice of the initial
conditions for the turbulent energy and the length scale, from which
the initial profile of the shear stress results.
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T - predicted
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Figure 9. Turbulent Shear Stress Profiles in the Symmetrical Plane
Wake.
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The second example of wake flows concerns the asynetrical con-
figuration in the presence of an adverse pressure gradient, studied
at ONERA (Figure 5c). Figure 10 shows the streamwise variation of
the measured and calculated minimum velocity in the wake togehter
with the corresponding pressure coefficient imposed on the outer flow.
The corresponding velocity profiles are given on Figure 11. The mean
velocity is normalized here by the external velocity in the initial
section (U), so that the variation of the velocity at the boundary
of the proflles reflects the action of the adverse pressure gradient
imposed on the flow. The adopted model can be seen to predict cor-
rectly this asymmetric flow configuration. It can further be observed
from this figure that it takes a streamwise distance of more than ten
outer boundary layer thicknesses before the signature of the asymmetri-
cal conditions at the confluence begins to dim noticeably.
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Figure 10. Minimum Velocity in the Asymmetrical Plane Wake withap/ax > 0.
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3.2 Coaxial Jet Flows

The jet flows have been studied in a coaxial arrangement sketched
on Figure 12. This can be operated either in a short nozzle version,
Figure 12a, supplying the standard jet mixing configuration without
initial boundary layers or in a long nozzle version, Figure 12b, pro-
viding large turbulent boundary layers at the confluence, the thick-
ness of which can be adjusted by the length of the prolonging pipe
(Leuchter, 1975). The flow velocities were 100 m/s in the primary
flow and vary from 0 to 50 m/s in the secondary flow. The principal
dimensions are 30 n for the diameter of the inner pipe and 100 m
for that of the outer pipe providing conditions of an unlimited outer
flow for the investigation of the near field. Typical Reynolds num-
bers are of the order 2.105 with respect to the flow conditions of
the inner pipe. Conventional measuring techniques were employed com-
prising pitot and temperature probing as well as hot wire and laser
doppler anemometry.

A set of typical initial conditions is given on Figure 13. It
corresponds to a test case where the thickness of the inner and outer
boundary layers were approximately half the inner pipe radius. Two
different velocity ratios have been explored under these conditions,
namely 0.25 and 0.46. The measured turbulence intensity levels in
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a) Short nozzle

a -

b) Long nozzle

Figure 12. Jet Mixing Configurations.

the boundary layers can be seen to be of the same order as those
observed in flat plate boundary layers, whereas in the regions of
uniform flow outside of the boundary layers the turbulence intensity
is negligibly small.

The measured and calculated mean velocity profiles developing
from these initial conditions are shown on Figures 14 and 15 for the
velocity ratios of 0.25 and 0.46 respectively. Again a satisfactory
agreement between the prediction and the measurement is achieved.
It can be noticed further that the downstream distance needed for
smoothing out the initial velocity defect in the profiles is a grow-
ing function of the velocity ratio since the level of the shear
stress then decreases. For the higher velocity ratio it takes more
than two diameters (i.e. eight boundary layer thicknesses) before
this occurs. After this distance the profiles become more and more
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Figure 13. Initial Conditions for Coaxial Jets.
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Figure 14. Mean Velocity Profiles in the Transition Region of
Coaxial Jets, Ue/Ui = G.25.
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Figure 15. Mean Velocity Profiles in the Transition Region of
Coaxial Jets, Ue/Ui = 0.46.

similar and the growth rate of the mixing layer approaches then that
of the standard configuration without initial boundary layers. The
only remanent effects of the boundary layers on the geometry of the
mixing layer are then the upstream displacement of its virtual origin
and an apparent contraction of the transverse dimensions of the jet
due to the momentum defect in the initial section (Leuchter, 1975).

Figure 16 shows some measured and predicted turbulence intensity
profiles for this flow configuration at the velocity ratio of 0.46.
The experimental data are obtained by laser doppler anemometry. The
intensity is here slightly overpredicted in the central part of the
mixing layer, but both the predicted as well as the weasured profiles,
indicate. clearly the progressive change of their shapes towards thrse
corresponding to the asymptotical mixing layer.

As the length of the inner pipe is increased, the internal
boundary layers end by joining on the center and the flow structure
then develops towards that of a fully developed pipe flow. This
particular jet configuration provides a strong relaxation effect
for the mean and the fluctuating velocity fields and was therefore
also included in the present investigation. Typical initial condi-
tions are given in Figure 17 for this particular case, and for a
stagnant outer medium. These conditions are similar to those
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Figure 16. Turbulence intensity Profiles in Coaxial Jets,Ue/U i = 0.46.

measured by Laufer (1954) in the developed pipe flow. Experimental
and calculated profiles of the turbulent intensity and the norma lized
mean velocity at two diameters downstream of the nozzle exit section
are shown in Figure 18. In spite of a distinct overprediction of th2
turbulence intensity in the outer egion of the mixing lalyer the main
features of this jet flow are correctly depicted. From the shapes of
the profiles it can be recognized in particular that the effects of
the initial conditions are noticeably attenuated at this downstream
section, so that the profiles develop further downstream in a similar
way as for the mixing layers with standard initial conditions.

In this test case also streamwise space correlations of t'he
longitudinal velocity fluctuations have been measured. It was tlius

[777i]
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possible to compare the corresponding integral length scales to the
calculated length scale resulting from the prediction model. These
are compared in Figure 19, where the streamwise variation of the
length scales is shown for two different transverse positions in the
flow, namely on the axis (Figure 19a) and half a diameter away, in
the prolongation of the nozzle lip (Figure 19b). A scaling factor
of 0.15 was used in order to achieve agreement between the calculated
and measured length scales (instead of 0.16 in Figure 3). The main
features concerning the evolution of the length scale can be seen to
be correctly predicted, namely the almost linear growth in the central
part of the mixing layer and the very slow variation on the axis fol-
lowed by an abrupt change of the slope as the turbulence of the mixing
layer reaches the axis.
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3.3 Coaxial Jet Flows with External Freestream Turbulence

This short review on our activity in the field of mixing layers
and jet flows will be closed by a brief description of some recent
results obtained on the effects of freestream turbulence on the mix-
ing process. The activity dealing with these effects is still in a
very early stage of development at ONERA so that the results presented
here are preliminary and incomplete.

The freestream turbulence was generated by a grid which was
placed into the outer stream of the coaxial jet arrangement of Figure
12a and the geometry of which is defined in Figure 20. The grid has
a lOn mesh size and was fixed in the exit plane of the nozzles, pro-
viding thus a high turbulence intensity of the order of 10% in the
initial region and an integral length scale Lx of half the mesh size
at two diameters downstream of the grid. Lx was there of the same

U.

0.1 *A - 0.25• 0.5

0 2 4 D

Figure 20. Turbulence Grid Configuration for Coaxial Jet.
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order as the corresponding length scale in the mixing layer. Two
typical values of the velocity ratio had been examined: Ue/Ui = 0.25
and 0.5.

Figure 21 shows that a strong interaction takes place for these
particular initial conditions as can be inferred from the large
increase of the mixing layer thickness in the presence of the grid
turbulence. This increase appears to be much more important for the
higher velocity ratio of 0.5, since in this case the freestream turbu-
lence intensity has a higher absolute level and the turbulence intens-
ity of the undisturbed mixing layer is at a lower level than for the
velocity ratio of 0.25. It is clearly evidenced in Figure 21 that
the turbulence intensity of the freestream is one of the dominant
interaction parameters for this type of flow. The action of other
parameters of freestream turbulence, as e.g. its length scale, could
not be investigated up to now and will be examined in a later stage
of this study. Figure 22 shows for the higher velocity ratio of 0.5
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Figure 21. Effect of External Turbulence in Coaxial Jets.
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Figure 22. Effect of External Turbulence in Coaxial Jets,
Ue/Ui 0.5.

the modification of the mean velocity and the turbulence intensity
profiles at two diameters downstream of the exit plane. It can be
observed that the thickening of the mixing layer occurs simultaneously
with a large increase of the turbulence intensity level in the mixing
l ayer.

Qualitatively similar results have been obtained with the above
described turbulence model, as illustrated in Figure 23. The same
order of magnitude for the increase of the mixing layer thickness and
of the turbulence intensity is evidenced. The numerical solution is
obtained by starting from the appropriate initial conditions and by
taking into account the boundary conditions deduced from the measure-
ments. This ultimate example of relaxing shear flows demonstrates
the capability of the adopted model for the qualitative prediction
of turbulent flows in which strong interactions of different turbu-
lence structures occur. Further refinements are however needed in
order to achieve better quantitative agreement with the experimental
data.



398 0. LEUCHTER

0D

0.5 without turbulence

e with turbulence

Y
o Q5

0.1.

0 0.5

Figure 23. Effect of External Turbulence (Calculated) in Coaxial
Jets, Ue/Ui = 0.5.

4. CONCLUSIONS

Various configurations of non-equilibrium shear flows of prac-
tical interest in turbomachinery or external aerodynamics have been
examined in this paper. Comparisons between experimental and numeri-
cal results have demonstrated the capability of a simple two-
parameter turbulence model for describing correctly the effects of
initial boundary layers and external turbulence on the behavior of
the shear layers.

The turbulence model, based on the Prandtl-Kolmogorov eddy vis-
cosity concept, uses only two fundamental turbulence scales, namely
a velocity and a length scale. The former is represented by the
square root of the turbulent kinetic energy and the latter by Rotta's
integral length scale. Both quantities are deduced from the numeri-
cal solution of the corresponding transport equations. It appeared
to be essential for the success of the description of relaxing
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turbulent shear flows, like those examined in this study, that the
turbulence model contains at least one balance equation for the length
scale (or for any other turbulent parameter from which a length scale
may be extracted) since this quantity is subjected to rapid variations
in the near field of the confluence which would be too hazardous to
prescribe algebraically.

Transport equations for the Reynolds stress tensor had been added
to the basic two-equation model in order to get a more detailed
description of the turbulent velocity field and to proceed to a more
direct comparison between measured and calculated turbulence param-
eters (mainly u'). The modelling of the diffusion and the pressure-
strain terms of these equations need further refinements.

The turbulence model adopted in this paper appears to be a valu-
able tool for the engineer faced with the problem of economical pre-
dictions of realistic confluence configurations, including the effects
of freestream turbulence.
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DISCUSSION

WILCOX: (DCW Industries)

Can you say something about how the values of the constants you
fixed compare to corresponding values other researchers use for sini-
lar equations in boundary layer applications? Are they the same or
do they differ much.
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L LEUCHTER:

I think they are essentially the same or very close. To my
knowledge there is some work done by Spalding on turbulent boundary
layers with this two equation model and I guess they use essentially
the same constants.

BIRCH: (The Boeing Company)

I would like to repeat a remark I made yesterday. In using a
two equation turbulence model to predict the effect of freestream
turbulence you will find that the calculation is more sensitive to
the length scale specification in the outer flow than to the turbu-
lent intensity. Do you know what this was experimentally and what
did you use?

LEUCHTER:

In the case where the external turbulence is sensitive to the
development of the mixing layer we only used one length scale. This
work is still going on, so we will use different mesh sizes to gen-
erate turbulence of different scales. Wedidn't actually vary the
turbulent length scale.

MELLOR: (Princeton University)

This is the two equation model that you are talking about. Then
you referred to the Reynolds stress equation. I don't understand how
that all fits together with your original model.

LEUCHTER:

Yes, I introduce the Reynolds equation only to get more details
on the turbulent field.

MELLOR:

After the fact of making the calculations?

LEUCHTER:

No, we didn't use the Reynolds stress actually to describe the
Reynolds stress. That is we always had a viscosity model with addi-
tional transport of the Reynolds stress but passive transport. They
are not coupled with mean equation.
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WYGNANSKI: (Tel Aviv University)

Did you make any comparison of your coaxial jet data with
previous data that was measured by Champagne and myself? I refer
to this because in a coaxial jet you have the following.effect: If
the outer velocity is slower like the data you presented you get one
type of growth but if it is the inverse case, namely, that the outer
velocity is much faster then you get significantly different growth.
This is so because the entrained streamliner curve in a different
direction.

LEUCHTER:

No, we didn't. We only examined the case of lower outer
velocity. In fact, we didn't compare the results directly with
yours. I think you have a limited outer flow, so there is some
interaction between the outer mixing layer and the inner mixing
layer.

WYGNANSKI:

Yes, and therefore two nozzles of different diameters were
used. Of course the interaction between the mixing layers occurs
further downstream but in the initial four or six nozzle diameters
one configuration was similar to the other.

LEUCHTER:

I didn't compare.

I

21
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MEASURE.ENTS IN CURVED FLOWS

J. A. C. HIunphrey and J. H. Whitelaw
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ABSTRACT

The application of three experimental techniques, namely, hot-
wire anemometry, laser-Doppler anemometry and tracer gas analysis,
to three flow configurations is described and results reported.
The co-axial, swirling free jet was investigated with hot-wire
anemometry, the flow in a curved duct of rectangular cross section
with laser-Doppler anemometry; and the wall jets over curved sur-
faces with the tracer gas method.

The results obtained in the rectangular, curved duct are new
and quantify the magnitude of the secondary flows. They demonstrate
the upstream influence of the flow and show that the magnitude of
the axial normal stresses do not exceed 15% over a substantial re-
gion. Measurements were also obtained in the same duct with the
Reynolds nunber corresponding to laminar flow and the results com-
pared with values obtained from a solution of the Navier-Stokes
equations. The two sets of results are in general agreement. The
computing time required to obtain grid-independent solutions, in
the laminar flow, suggests that similar calculations in turbulent
flows will not be trivial. In the particular laminar flow inves-
tigated, recirculation in the main flow direction was observed and
emphasizes the need to solve the complete set of equations.

1. INTRODUCTION

This paper is intended to fulfill two purposes. The first is
to demonstrate and discuss the relative advantages of three experi-
mental techniques for the investigation of turbulent flows and the
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second is to present and discuss measurements of mean and fluctuat-
ing properties determined with these techniques in three flows with
different forms of curvature of relevance to turbomachinery.

The experimental techniques under consideration include hot-
wire and laser-Doppler anemometry. Both can lead to information of
the mean and fluctuating properties of turbulent flows and each has
relative advantages which e.re demonstrated here in the context of
the swirling, coaxial jet flow of Ribeiro (1976) and the curved
duct flow referred to by Humphrey, Melling and Whitelaw (1975): in
the latter case, new measurements and some calculations are pre-
sented. Major advantages of laser-Doppler anemometry are its suc-
cessful use in flows with recirculation and in hostile environments,
see for example Durst, Melling and Whitelaw (1976), but the present
comparison is made with relatively friendly flows where the turbu-
lence intensities in the range of measurements do not give rise to
the possibility of negative velocities. Secondary flows did, how-
ever, exist in the curved-duct flow and could give rise to probe-
interference effects if investigated with hot-wire anemometry. The
third experimental technique relates to the measurement of wali con-
centration of a foreign gas diffusing and convecting in wall jet
flows over concave and convex surfaces. It provides practically
useful information of the adiabatic-wall effectiveness at compara-
tively low cost: the results discussed here are due to Folayan and
Whitelaw (1976).

The curved duct flow is of some relevance to turbine blade
passages although the aspect ratio of the rectangular duct is unity
and the initial conditions are those of a fully-developed rectangu-
lar duct flow of water. The results allow the testing of turbulence
models in a flow which has strong secondary velocities arising from
the pressure field and from the normal stresses. The swirling co-
axial jet was also investigated to assist the development of calcu-
lation methods where a Reynolds stress closure appeared necessary.
In contrast, the wall-jet flows investigated by Folayan and Whitelaw
(1976) were required for film-cooling purposes and a simple eddy-
viscosity hypothesis was sufficient for this engineering purpose.

The following section describes the flow configurations and
instrumentation used. The description is presented in sufficient
detail for present purposes and the reader should consult cited
references for further information. The third section presents
results, their physical interpretation and implications for calcu-
lation methods: it also provides a basis for the brief comparison
of experimental techniques which is included in the discussion of
the fourth section.
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2. FLOW CONFIGURATIONS AND EXPERIMENTAL TECHNIQUES

2.1 Curved, Rectangular Duct

A 90 degree bend, of mean radius 92 mm, was attached to the
end of the 1.8 m straight rectangular duct previously investigated
by Melling (1975) and Melling and Whitelaw (1973, 1976). The cross
section of the duct was 40 mm square and the bend was located in
the vertical plane, with a 1.4 m length of straight duct attached
to the end of the bend. Water flowed through the duct with a bulk
velocity of 0.9 m/s corresponding to a Reynolds number, UbDh/v, of
3.6 x 1O4. The dimensions of the duct suggested that there would
be no flow recirculation in the forward direction for this Reynolds
number.

The duct and bend were manufactured from plexiglass and, to-
gether with the choice of working fluid, allowed the transmission
of light. The lack of forward flow recirculation allowed the use
of an integrated optical arrangement, as described by Durst and
Whitelaw (1971), which did not incorporate light-frequency and which
provided a fringe spacing of 1.86 pm. The light-collecting arrange-
ment limited the number of fringes observed by the photomuItiplier
(EMI 9558B) and, together with the 5nm He-Ne laser, resulted in an
almost continuous Doppler signal which could be conveniently proc-
essed by a frequency-tracking demodulator (DISA 55L20). The demodu-
lated output from the tracker was presented to a digital voltmeter
(SOLARTRON LM14202), after true integration (DISA 55B20), and rms
meter (DISA 55D35) which resulted in values of mean velocity and
normal stress, respectively.

The use of laser-Doppler anemometry is particularly appropriate
to this flow configuration. The duct dimensions allow the use of an
optical arrangement which results in negligible corrections for
transit-time and gradient broadening effects over almost the entire
duct. The forward-scattered signals, with a 50W laser, are of high
signal-to-noise ratio, and the resulting Doppler signal has a drop-
out of less than 10% which allows the use of electronic instrumenta-
tion, i.e. a tracker, which is convenient to use. Since the maximum
turbulence frequencies present in the water flow are less than 500
Hz the dynamic capabilities of trackers are not strained and the
near continuous signal ensures that the statistically required num-
ber of signal samples is rapidly achieved and without the uncertain-
ties associated with sample biasing.

2.2 Coaxial Free Jet

In contrast, a coaxial free jet of air allows the use of
frequency-tracking demodulation in the upstream region where
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particle concentration can be arranged to be large and where the
turbulence intensity is low. The signal dropout and turbulence
inter:sity increase with downstream distance and make the use of

v tracking increasingly more difficult. In such circumstances a
counting arrangement Tay be preferred but, in any event, the pre-
cision of measurement decreases with downstream distance.

Provided the jet of air is clean, hot-wire anemometry can be
used throughout the region of the flow where the turbulence intens-
ity is less than around 25% with good precision. Indeed, particu-
larly in the region downstream of the potential core, the precision
can be better with the hot-wire than with the laser-Doppler anemome-
ter. Certainly, in the upper region of the energy spectrum the hot
wire is to be preferred and, even in terms of rms measurements, the
possible error sources of laser-Doppler anemometry can render its
results subject to greater uncertainty.

Ribeiro and Whitelaw (1976) described a hot-wire anemometer
arrangement in which the analogue signal was digitized and processed
by mini-computer. This arrangement, although expensive of equipment
and of user training, is convenient and flexible and was used subse-
quently by Ribeiro for his examination of swirling coaxial jets.
The flow emerged from two coaxial stainless steel pipes: the inner
pipe was 2.83 m long, 16.13 nu inner diameter and 21.59 mm outer
diameter; the outer pipe was 2.00 mm long, 44.50 mm inner diameter
and 50.44 outer diameter. The two pipes were carefully aligned to
ensure fully developed turbulent pipe and annular flow in the exit
plane. A tangential jet swirler was incorporated in the annular
flow where required.

The signal processing arrangement comprises two constant tem-
perature anemometers (DISA 44001) which were connected to different
types of probes according to the requirements of the quantities to
be measured. The signals at the output of the anemometers were
linearized using function generators of the exponential type (DISA
55D10) and passed to a multiplexer via sample and hold units. A
selected signal was then amplified in a programmable gain buffer
amplifier and passed to an A/D converter through another sample and
hold unit. Mean velocity and Reynolds stresses were determined
from loops of up to 768 samples which were repeated between 200 and
400 times according to the low frequency behaviour of the signals.
At the end of each loop, mean values and standard deviations for
the loop were calculated in the PDP8E computer and used to update
the corresponding total means. Signals proportional to u, v and w
were input to the A/D interface and histograms of each quantity
built up from a statistically required number of samples. The same
approach was used for joint probability density distributions
although here the two signals proportional to u, v and w were firstAI held at the same instant, followed by the A/D conversion and storage.
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Straight, slanting and cross-wire probes were used to obtain
the measurements. The direction of mean flow was first determined
and subsequent measurements obtained with the probe holder lying
in the direction of the mean flow. Signals were processed with the
aid of the equation

E0  S U cos(% 1+2+ tan2I

tU U
hC02_a 2 + k t-tan tan(% + ]

1i + !-+ I tan) 2

which represents the instantaneous signal in terms of the instan-
taneous velocity components u, v and w, the mean velocity U, the
angle between the normal to the wire and the mean flow direction a,
the calibration constant S and the pitch and yaw factors h and k.
Equations of this type, with a truncated binomial expansion to
facilitate the derivation of explicit relationships between the
mean velocity and higher order moments of the velocity field, have
been used extensively--see for example Champagne and Sleicher
(1967)--and introduce errors of increasing magnitude as the turbu-
lence intensity increases above around 15%. An alternative pro-
cedure is to square the eq,.tion and apply the relationship between
E2 and the mean velocity and the correlations of the velocity com-
ponents. In the present case, the former approach was preferred
but the range of applicability of the method extended by least-
square fitting the non-linear terms to fifth order polynomials.

2.3 Film-Cooling of Curved Surfaces

The two-dimensional film-cooling slots of Folayan and Whitelaw
(1976) were arranged immediately upstream of convex surfaces of
radii 76 mm and 152 mm and a concave surface of radius 152 mm. The
freestream velocity, in the plane of the slot exit, was 18.5 m/s
and the secondary velocity was varied. A trace of helium gas was
added to the secondary flow and the wall concentration of helium
measured at downstream locations by sucking samples through 0.5 mm
holes in the wall and passing these through a thermal conductivity
cell which had previously been calibrated. Situations with non-
uniform density were readily simulated by replacing the secondary
flow of air by mixtures of arcton and air in proportions designed
to simulate the required density ratio.
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3. RESULTS

3.1 Curved, Rectangular Duct

Measurements of the component of mean velocity in the direc-
tion of the bend axis are bhown on Figure 1. Results of this type,
and in similar detail, were obtained for the axial velocity com-
ponents at locations upstream of the plane of the bend entrance and
at locations corresponding to 0 degrees, 45 degrees, 71 degrees,
90 degrees; measurements of the radial velocity and corresponding
stress components were obtained at 0 degrees and 90 degrees as well
as the shear stress component ueuR. In all cases, the results were
converted into contour plots using a least-squares surface fitting
computer program which yielded velocity contours such as those of
Figures I to 4.

The results of Figure 1 are very similar to those obtained by
eling and Whitelaw (1976) in the absence of the bend and were

obtained 2.5D upstream of the plane of the entrance to the bend.
In the plane of the entrance, Figure 2, it is clear that the flow
has been distorted by the downstream geometry, and the prevailing
axial pressure gradient; the greater proportion of the mass flow
is in the half of the duct nearer to the inner radius of the bend.
The location of the maximum velocity is even closer to the inner
radius at 45 degrees, Figure 3, but returned towards the center of
the duct at 71 degrees, and moved towards the outer radius in the
exit plane of the duct, Figure 4. From 0 degrees to 90 degrees
the secondary motions deform the axial velocity profiles by forcing
high speed flow in the axial direction towards the outer radius of
curvature along the symmetry plane of the bend and returning it
towards the inner radius along the sidewalls. This complicated
flow pattern results directly from the centrifugal forces and the
consequent radial pressure gradients.

It is interesting to note that, in the entrance plane of the
bend, the values of normal stress are similar to those obtained in
the absence of the bend, Figure 5. The asymmetry about the mid-
plane is slight, by comparison with the corresponding mean-velocity
contours of Figure 2; they exhibit the expected bulging towards the
corners associated with secondary flows and have not been influenced
significantly by the pressure gradients. In the exit plane of the
bend, the normal stress contours are very asymmetric as indicated
on Figure 6 but in a manner consistent with the mean-velocity con-
tours of Figure 4.

In fully-developed square-duct flow without a bend, the maximum
secondary-flow velocity is of order 1% of the maximum axial velocity.
In the exit plane of the present bend, the maximum radial velocity
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Figure 3. 710 position in bend. Figure 4. 9Q0 position (exit
plane) in bend.

Contour plots of normalized axial velocity component U/UB
at 00, 450, 710 and 900 positions in a square cross-section
bend; Re =36,000, K/b =2.3 and UB -9 rn/s.
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Figure 5. 00 position in bend. Figure 6. 900 position in bend.

Contour plots of axial component of normalized turbulence
intensity -//UB x 100 at 0° and 900 positions in a square
cross-section bend; Re = 36,000, k/b = 2.3 and UB = .9 m/s.

was measured to be 22% of the maximum axial velocity and is undoubt-
edly associated with the centrifugal forces rather than the normal
stresses. Calculations of a laminar flow in a duct of similar
geometry, indicate secondary flow velocities up to around 13% of
the bulk velocity in the exit plane: a maximum value of 47' was
calculated in a plane corresponding to 27 degrees. Larger values
of radial velocity can also be expected in the region immediately
upstream of the exit plane of the present turbulent flow.

The measurements presented in the previous paragraph were
readily obtained by a simple form of laser-Doppler anemometry. The
precision and reproducibility of measurement are high and the accu-
racy better than could be obtained by any alternative technique.
The results are relevant to the blade passages of gas turbines and
suggest that flows of this type may be represented by a three-
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dimensional, time averaged form of the Navier-Stokes equations with
a turbulence model which is rather simpler than that necessary to
characterize the mean-flow properties of square-duct flow without
a bend. This deduction stems from the smaller influences of the
normal stresses, on the secondary flows, in the bend flow.

Nevertheless, the calculation of flows of this type can present
a formidable task. The appropriate forms for the equation of con-
tinuity and momentum conservation may be written in the form:

DU U U r 2--a
ar r-- -"T _-FT

(DU+ UrU 01 i aP + v2U + 2 aUr U)

[_ _rj rG TO I e FT IF

DU z - a

p - - - + - i -

where

a2  1 a 1 2  a2

5r r +a FT2 +ZI a3OT

and
1 B 1 aU0  BUz
1 (r Ur) + 1 Due + !- = 0

and can be solved numerically together with appropriate boundary
conditions. Humphrey has solved these equations for a Reynolds num-
ber of 790 and for a geometry identical to the present bend. The
calculations revealed a small region of recirculation, in the main
flow direction, and this was confirmed by flow visualization with a
neutrally buoyant dye. Thus for this situation, the details of the
flow required the solution of the elliptic forms of the equations
even though, with 8 x13 x17 internal grid nodes in each of the entry
duct, bend and exit duct, a solution required approximately 80 min
of CP time on a CDC6600 computer with a convergence criterion cor-
responding to maximum residuals of not more than 10-3 in each vari-
able.

The use of the numerical mesh referred to in the previous para-
graph allowed calculations which agreed with laser-Doppler anemome-
ter measurements to within 5% upstream of the 60 degree plane.
Further downstream, the discrepancies increased to a maximum of
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around 15% although the trends were faithfully represented. Figure
7 compares measurements and calculations in the exit plane of the
bend and indicates the extent of the agreement in the worst loca-
tion. The agreement could be improved significantly by the use of
a finer numerical mesh but at increased cost; the run time is given,
approximately, by 0.14 xNxE where N is the number of grid nodes and
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rigure 7. Comparison between experimental and calculated axial
velocity components at 90° position in a 90° square
cross-section bend; Re = 790, If/b = 2.3, UB = .02 m/s,
grid is 10,15)19.
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E the number of equations. This also indicates the difficulties
involved in obtaining solutions of equations appropriate to turbu-
lent flow. If a two-equation turbulence model is used to represent
the turbulence structure of the present turbulent flow, the com-
puter run time would be of the order of 150 min for the numerical
mesh used to obtain the results of Figure 7; and this presumes con-
vergence in a similar number of iterations.

The previous discussion demonstrates that the calculation of
the present flow is unlikely to be achieved cheaply. Of course,
the numerical procedures can be improved but the cost of calcula-
tions with any three-dimensional, fully elliptic scheme will remain
expensive. And yet, the use of such a scheme is necessary to cor-
rectly identify regions of forward recirculation and their conse-
quences. The solution of partially elliptic equations (three-
dimensional storage for the pressure field and two-dimensional for
velocity) and three-dimensional parabolic equations can be achieved
at considerably reduced cost but will not represent forward recircu-
lation.

3.2 Co-axial Jet Flow with Swirl

The variation of the mean velocity and normal stresses along
the center line are presented in Figures 8 and 9. The inverse of
the center-line mean velocity is shown to be linear with distance
from the origin for distances greater than around four diameters;
the virtual origin appears to be located at a negative value of x,
corresponding to -3.5 diameters from the inlet. The form of the
distribution is similar to that obtained without swirl except that
the swirling flow is accompanied by a higher spreading rate and a
very much faster velocity decay for x/D < 0.3. This last differ-
ence is a direct result of the pressure sink in the transport equa-
tion for the axial momentum: the sudden renewal of the confinement
imposed a high rate of change on the angular velocity field and the
center-line pressure follows this change. The growth of the normal
stresses is similar in form to that in the absence of swirl but the
present values increase rather more steeply.

Figure 10 presents mean-velocity profiles at downstream dis-
tances corresponding to x/D of 1.5, 3, 5 and 6 and, together with
the Reynolds stress results presented by Ribeiro (1976), allow de-
tailed comparison with calculation methods. Comparison with
measurements obtained in the absence of swirl demonstrates the
considerable increase in mixing which stems from the swirl, even
with the present relatively weak swirl. This is achieved by the
centrifugal forces which impose a pressure gradient in the radial
direction, whose effect is to increase the ratio of spread. This
sets up strong gradients in the velocity field which, in turn,
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Figure 8. Center-line behaviour of the mean velocity coaxial jet
with swirl. 0 Experiments, -- Predictions.

generates turbulence. As the turbulence levels increase, so do the
mixing and the rate of spread. Thus, the process is dictated ini-
tially by the centrifugal forces and gradually taken over by the
increased turbulence.

Ribeiro used the calculation method of Morse (1976) in an
effort to reproduce the measurements presented above. Differential
equations were solved numerically with dependent variables U, rvo,
k, J ,  - v6v, uv0, Vrv0 and e.

These conservation equations were parabolic in form. The Rey-
nolds stress turbulence model is similar to that of Launder, Reece
and Rodi (1975). The axial pressure gradient rate, immedlately
downstream of the pipe exit, caused a very high spreading rate over
a short distance; the resulting strong deviation from orthogonality
between the independent variables could not be represented by the
calculation procedure and initial values had to be specified from
measurements of the mean velocity and the components of the stress
tensor at x/D = 1. This also obviated the need to consider the
region of vortex shedding immediately downstream of the pipe wall.
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Figure 9. Center-line distribution of normal stress.

The calculated center-line variation of mean velocity is shown
on Figure 8 and measured and calculated profiles of U, u 2 and uvr
on Figures 10, 11 and 12 for downstream values of x/D of 1.5, 3, 5
and 6. The results show that the turbulence model has a tendency,
which also prevailed in non-swirling flows, to result in high values
of the shear stress; as a result, it can be anticipated that the
spreading rate will be overestimated further downstream. Neverthe-
less, the calculations are adequate for most engineering purposes.

The region between x/D of zero and unity deserves further com-
ment. In the region immediately downstream of the wall of the inner
pipe, vortex shedding occurred with consequent increase in mixing.
In the turbulence model, the production of turbulent kinetic energy
was calculated in its exact form and dissipation was modelled;
neither of these terms take account of periodic fluctuations. In-
deed, the use of a time-averaged set of equations to predict the
occurrence of a non-random oscillating velocity field will result
in the underprediction of the mixing.

The region of flow close to the free boundary is also not well
represented by the turbulence model since, as shown by the
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Figure 10. Radial distributions of U/Ur in a swirling coaxial jet.

probability measurements of Ribeiro, the diffusive mechanism is
associated with large scale motion. In this region, the turbulent
field is very asymmetric and, as a consequence, the third-order
correlations influence the transport of the Reynolds stresses. In
the turbulence model, and in contrast, the third-order correlations
are supposed to be determined by the second-order correlations and
their gradients.

3.3 Film Cooling of Curved Surfaces

The wall pressure measurements of Figure 13 suggest that the
flow separates from the convex wall at longitudinal distances which
depend on the radius of curvature, the slot gap and the velocity
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Figure 11. Radial distributions of axial normal stress in a swirl-
ing coaxial Jet.

ratio. Thus, with the 76 mm radius, the film was destroyed at
downstream distances less than 47 slot gaps; and this distance
shortened, almost exponentially, as the velocity ratio decreases.
The larger slot gap resulted in a slight increase in the length of
the film and the larger radius in a larger increase. These results
are in general agreement with the findings of Kind (1968) and are
reflected in the effectiveness results.

Figure 14 presents measurements of the impervious-wall effect-
iveness obtained on flat, concave and cenvex surfaces and indicates
that a convex surface results in improved effectiveness and a con-
cave surface in reduced effectiveness. As suggested by the static-
pressure distributions, however, the convex surface results in
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separation of the flow an, immedilately downstream of the reion

where this occurs, the effectiveness 
falls rapidly. The effect of

the flow separation is much more important than the differences in

effectiveness observed in regions of attached 
flow. The figure

shows that separation occurs at lower 
values of X/Yc for lower

velocity ratios and for smaller radii. 
The influences of density

ratio, for exanmple, may be deduced by 
comparing Figures 14 and 15:

in general, the larger density ratio results in 
improved effective-

ness and delays the onset of separation 
on the convex surface.

In attempting to calculate the results 
of Figures 13 to 15,

and thereby to provide confidence in 
calculations outside the range
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Figure 14. Imp~ervious wall effectiveness on flat, convex and
concave surfaces; pC.G a 1.0.
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of measurements, no attempt was made to represent the details of
the turbulent flow. Time-averaged equations ,propriate to flows
with boundary-layer thickness of similar mac,..itude to the radius
of curvature, were solved with an effective viscosity hypothesis
of the form:

* eff -3 AU)-- / AfR

and

o (1 - sRi )

0.41y , 0 < 0.41y < o.ogy G

= O09yG  , 0.41y > O.09y G.

1=1

A=1

U
i R(Fa Uy)

An effective Prandtl number of unity was also assumed and the near-
wall pressure gradient was represented in the wall functions.

Calculations and measured values of effectiveness can be com-
pared on Figure 16. The agreement is acceptable, for engineering
purposes, where calculations could be obtained. The numerical pro-
cedure failed to operate upstream of the experimentally observed
region of separation and yielded increasing incorrect results as it
was approached.

4. DISCUSSION

The purpose of this section is to indicate briefly the relative
advantages of the experimental techniques discussed in relation to
the particular investigations of the previous chapter. In general,
constant temperature, hot-wire anemometry is best suited to clean
flows with turbulence intensities less than around 30'. The tech-
nique is subject to the problems of probe interference ond cannot
resolve the direction of flow. This last difficulty has been over-
come, at least in part, by the pulse-wire method of Bradbury (1969)
but the method Is still unsuited to flows with recirculation and to
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flows which have scalar gradients or contain particles. It is
often difficult to resolve three orthogonal components of velocity
due to the sensitivity of the hot wire to three components of
velocity at the same time. Within these limitations, however, the
hot-wire anemometry is the most accurate method available for the
measurement of turbulent flow properties and is likely to be the
most widely used for research into boundary-layer type flows acces-
sible to probes.

Laser-Doppler anemometry, in contrast, can resolve the direc-
tion of velocity; is not limited in its ability to measure in highly
turbulent or recirculating flows; does not interfere with the flow;
can be used in dirty and hostile environments; and can resolve
velocity components. It requires optical access, however, and is
usually unable to provide a continuous signal. It is less accurate,
in many simple boundary-layer type flows, than is hot-wire anemome-
try.

The previous statements suggest that hot-wire and laser-Doppler
anemometry are complementary. Either technique can readily be used
for the investigation of diffuser-type flows and, providing there is
no recirculation, hot-wire anemometry may be preferable. In flow
passages where recirculation is present or where a severe pressure
gradient exists in the direction normal to the flow, laser-Doppler
anemometry mAy be preferable. In rotating machinery, laser-Doppler
anemometry has been used successfully although difficulties have
been experienced in obtaining measurements close to solid surfaces.
The optical technique is certainly preferable in hot and combusting
flows where hot wires are unlikely to result in useful information.

The two techniques are capable of measuring the probability
density distribution of velocity components and, as a result, the
mean velocity and single point correlations. In this respect, the
laser-Doppler anemometer has the advantage of being able to resolve
the flow direction and can, therefore, result more readily in the
separation of the velocity components. Correlations of two velocity
components can also be obtained with both techniques as can energy
spectra. In the latter case, however, the high wave numbers are
likely to be better represented by hot-wire measurements than laser-
Doppler measurements. In addition, since the laser anemometer sel-
dom results in the continuous signal representing velocity informd-
tion, spectrum analysis and correlation with continuous signals can
cause difficulties.

In contrast to the techniques discussed in the present para-
graphs, the concentration method used to obtain the results of
section 3.3 is simple and provides information of engineering
importance at low cost and with comparative ease.
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DISCUSSION

LAUFER: (University of Southern California)

I was rather intrigued by your results in connection with the
curved channel experiment in which you showed that just ahead of
the entrance to the curved region, apparently the upstream influ-
ence of the pressure field manifests itself more in the mean veloc-
ity distribution than in the Reynolds stress distribution. In the
past our ideas rested on the notion that it was the other way
around. Usually the Reynolds distribution is more sensitive to any
kind of external influence that one imposes on the flow. I wonder
if you would like to comment on that.

WH ITELAW:

The measurements I showed are only an example. We have measured
from soi;ething like 12 hydraulic diameters upstream and we see this
trend from around 3. The influence is more on the mean than on the
normal stresses. I think that perhaps the reason is that the pres-
sure in the mean flow equations is balanced by the centrifugal
effects and it operates on the mean flow equations before it comes
to the correlation equations.

LUXTON: (University of Adelaide)

I wonder whether from your results on the curved bend you could
say anything about the situation where the flow is not fully devel-
oped in the straight pipe and only a thin boundary layer exists on
the walls before entry to the curved section?

WHITELAW:

No. Our flow was not fully developed at entry to the bend but
it was nearly so. The reason I hedged on turbomachinery is that.,
in blade passage, the initial boundary layers are then unlike the
present flow and some of the conclusions which we draw from the
present result may not apply in turbomachinery. If you consider
the turbomachinery situation and imagine the present geometry to be
a blade passage, even though the flow is an incompressible low Mach
number and low Reynolds number, the flow in the blade passage will
be different because of the accelerations. First the initial bound-
ary layer is thin and secondly the accelerations will stop any ten-
dency towards separation in the initial region which I discussed.
Having said that, on the pressure side of the blade, at least in my
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experience, there can be regions of recirculation in the upstream
region; so to calculate the blade performance satisfactorily, there
may be problems but for a different reason.

BRADSHAW: (Imperial College)

The main question is about the use of the semi-elliptic pro-
cedure for calculating this type of flow. By "semi-elliptic" I
understand that you mean continued sweeps of a parabolic calculation
combined with an iteration solution for the pressure field. Would
you expect that if you apply such a semi-elliptic procedure to a
flow in which recirculation really appeared, that (1) you would get
an incorrect converged solution with no recirculation or (2) would
you expect that the calculation would try to tell you something, by
blowing up?

WHITELAW:

I think you could get both effects but the former is perhaps
more likely.

BRADSHAW:

I wonder if I could add a second question covering something
of what John Laufer said. Probably the reason that you get the same
turbulence intensity on a given streamline rather than a given point
in space is, as you say, a sort of "frozen stress" phenomenon; this
idea has been used quite extensively for calculations of rapidly
changing flows. Provided you are only interested in the bit that
is rapidly changing in terms of mean flow distribution you can cer-
tainly assume a frozen stress model. But what about calculations
for downstream of the bend? You have really got a model which cor-
responds perhaps to the flow around the front of a blade sitting on
a hub. One would very much like to know what happens down towards
the trailing edge. Do you have any message for us there?

WHITELAW:

First of all, I don't think that our flow is close enough to a
real blade flow to be directly relevant. But I believe that we can
make useful calculations, in a blade passage and near its trailing
edge. I suspect that one will be able to get away with a simple
type of turbulence model--a Reynolds stress model isn't necessary--
with precision acceptable for engineering purposes.

NAGIB: (Illinois Institute of Technology)

You clearly stated that in the case of the swirling jet you
preferred to use the hot wire instead of the laser. If the jet
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utilized water as the working fluid would you still prefer the
former over the latter?

WHITELAW:

No, I would not.

NAGIB:

Why do you prefer to use the hot wire?

WHITELAW:

The duct with the water in it has relatively small dimensions.
If I were to make the coaxial swirling free jet system with water
then I would have a lot more water; it is, therefore, a lot easier
to operate in air.

NAGIB:

Then I still don't quite understand why you prefer the hot
wire to a laser in a flow as complex as a swirling jet with its
three dimensionality, which may include recirculating flow zones.

WHITELAW:

I believe that in regions where the turbulence intensities are
not too high, the hot wire is perfectly adequate for the coaxial jet
flow. I don't particularly want to have to set up a very bulky
water flow, just so that I can use a laser, when I can get satis-
factory measurements with a hot wire system.

WYGNANSKI: (Tel Aviv University)

You have shown a pattern of large eddies moving into the corner
in your rectangular channel flow. I wonder if you can coninent how
steady this pattern is? Did you iiieasure these also in the curved
channel flow and what is the effect of curvature on the steadiness
of the pattern?

WHITELAW:

I think they are very steady. We are very cautious with this
kind of flow. We use full visualization methods, with dye traces,
to supplement the laser results. I believe that the secondary flows
are very steady in both sets of observations.

One comment I did not make was that, in the bend, the maximum
secondary flow velocities are up to 30% of the maximum axial veloc'ity
in contrast to the 7% in the straight duct.
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FALCO: (Cambridge University)

I wanted to ask two questions. The first is you do not seem
to have the capability in your laser system to measure reversed
flow, which your calculations seem to predict. Did you have that
capability?

WHITELAW:

The arrangement I showed in the slide was a straightforward
two-beam system. When we have recirculation, light-frequency shift-
ing devices may be necessary and we have them available. In laminar
separated flows, however, frequency shifting is usually not neces-
sary.

FALCO:

But the measurements you showed us and interpreted in the turbu-
lent flow, did they have it?

WHITELAW:

No and they did not need it in the range of the present inves-
tigation.

FALCO:

My second question is the following. In your calculation of
swirling jet flow, can you get the trend that is observed in single
swirling jets, an overshoot in the Reynolds stress and then an under-
shoot, that is, the Reynolds stress is initially higher at the exit
of the jet (over the first few diameters) than in the unswirled jet
case, but it then decreases to lower values than found in the jet
without swirl?

WH.j TELAW:

Figure 13, taken from the thesis of M. M. Ribeiro,* may answer
your question. Further information is provided in the thesis.

EVANS: (University of Toronto)

I just want to ask, again with respect to the curved duct,
whether you have compared your predictions with a simple Inviscid
secondary flow approach. I wonder if you might get better or, at
least good engineering approximation at much less expense?

* M. M. Ribeiro (1976), "The Turbulence Structure of Coaxial Jet
Flows with and without Swirl." Ph.D. Thesis, University of London.
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WHITELAW:

We haven't. I don't think I expect to get s~tisfactory
results, however.

EVANS:

Nowhere near the kind of accuracy you get with this system?

WHITELAW:

I think that the accuracy will be much worse.

IRADSHAW:

I think that the inviscid secondary-flow model is just one
step down from the frozen-stress model; it is a neglected-stress
model. You can do a little bit better if you keep the stress on
a given streamline the same as it was at the start of the distor-
tion and that, I think you will agree, will probably give reason-
ably good results, except possibly close to the wall where you can
use the dear old log law.

SAFFMAN: (California Institute of Technology)

In the calculations which you reported did you use what is
euphemistically called computer optimization or did you take the
constants as given to you by the person who developed the model and
then see what was calculated?

WHITELAW:

In the swirling flow we used "constants" which have been used
by several authors including, for example, Pope and Whitelaw.* Per-
haps I can say one more thing, these constants change from time to
time but I don't believe that they change to a degree that makes me
unnecessarily worried. I would like to go back to a comment that I
tried to make earlier, that when you time average equations you
throw away information, so we shouldn't expect perfection and we
can't expect perfect universality either.

MELLOR: (Princeton University)

You said you thought the two equations wouldn't work on this
particular problem, the curved flow. It seems to me that the full
Reynolds stress equation, as simplified by neglecting some advective
and diffusive terms, would work well.

Pope, S. B. and Whitelaw, J. N., J. Fluid Mech. 73, 9, 1976.
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WHITELAW:

My hunch says that we will get a long way with a straight-
forward K-c model.

MELLOR:

Curvature effects--and I think Bradshaw will support me her'e--
are strong effects. They can turn off turbulence close to the walls.
The Reynolds stress equations do seem to account for this.

WHITELAW:

The proof of the pudding is in the eating and, for this flow,
we haven't yet gotten indigestion.

WILCOX: (DCW Industries)

Following up on what Professor Mellor said, it is possible with
the two equation turbulence model approach to accouht for curvature
effects. However, if you just take the two equations and apply them
cold they won't do a very good job. If you can make a distinction
between what people usually call the turbulent kinetic energy and
view the quantity more like a mixing velocity (which in the case of
a boundary layer would be the fluctuations normal for the surface
and not the total kinetic energy), it is possible to modify the two
equations and obtain very good results.

WHITELAW:

I would like to go back to my starting point. If we try to
solve or if we get into a position where we have to solve the full
elliptic equations it is an expensive procedure, so we have to try
with the simple assumptions and then work up from there.

BARBER: (Pratt & Whitney)

One question first. What was the ratio of the radius of pipe
to the radius of curvature on the bent pipe?

WHITELAW:

The bend had a mean radius of 92mm and a 40m x 40,mu cross-
section.

BARBER:

Another comment about the analogue of the bent pipe relative
to the turbomachinery flow: there was a paper presented by Lee
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Langston* at the Gas Turbine Meeting in New Orleans this year which
made comment showing that the flow in the turbomachinery passage is
dominated by the passage vortex and that this really makes the real
flow situation in turbomachinery passages non-analyzable by these
present secondary flow techniques, that any sort of analysis which
tries to compute it as a straight secondary flow is not realistic.

WHI TELAW:

I do not think I understand the point you made.

:3ARBER:

When you look at a turbomachinery passage or a turbine passage
there is a stagnation point or a saddle point and a passage vortex
which sweeps across the passage and that dominates the entire flow
field. Any attempts to analyze the flow field by secondary Flow
analyses that do not incorporate this into the flow field will not
correspond to realistic situations.

WHITELAW:

I will take your word for it.

MELLOR:

I think you are not talking aboti t classical secondary flow
calculations.

KLEBANOFF: (National Bureau of Standards)

Can you comment on how low a turbulence intensity field would
be measured by a laser system?

WHITELAW:

If I lump all the spurious specimen effects and call them noise,
then the noise effects with the laser system will be less than one
percent, probably about 0.6%. This noise is slightly worse tha.
that found with a hot wire.

Langston, L. S., Nice, M. L., & Hooper. R. M.: "Three Diiensional
Flow within a Turbine Cascade Passage," ASME paper 76-GT-50. 1976.
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ABSTRACT

A detailed time resolved study of the flow field upstream and
cownstream of a high work transonic compressor rotor shows that the
flow field is dominated by the downstream evolution of the viscous
flow shed from the rotor blades under the influence of the strong
mean swirl. The dominant periodicity in the flow changes from blade
passing to 1.4 times blade passing within one chord from the blade
row. A possible explanation is that the wakes evolve to a shear
eigenmode of the swirling flow, as suggested by perturbation theory.
Another possibility is a "propagating stall" of 16 cells, but the
rotor operated near its design point. Treatments of "turbulenice"
in turbomachines should account for such phenomena, which originate
in the strong mean swirl.

1. INTRODUCTION

The interpretation given here to "turbulence in internal flows"
is rather broad; what will in fact be discussed is the structure of
tne unsteady flow near a high-pressure-ratio transonic rotor whicn
is more or less typical of those near the front of high perfor:m|ance
axial compressors. It is hoped that the discussion will serve to
establish a framework for Interpretation in the turbomachine con-
text of the discussions of turbulence and turbulent mixing which
constitute the body of the Workshop. To anticipate the main point,
behavior of wakes behind a rotor is very different from that of
turbulent wakes behind a body or wing in uniform flow, the differ-
ence being due to the strong mean swirl in the compressor annulus.

439
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This paper will comprise mainly a report of experimental
observations of the unsteady flow, but some tentative explanations
for the unusual features will be given, based on a perturbation
analysis of the strongly swirling flow. Both the experimental data
and the theoretical ideas have been presented elsewhere in more
detail. The reason for repeating them here is to relate both
directly to the subject of "turbulence in internal flows."

2. UNSTEADY FLOW IN A TRANSONIC ROTOR

The observations to be reported here have been made in the
transonic rotor shown in the cross section in Figure 1. It has a
hub/tip radius ratio of 0.5 at the inlet and produces a pressure
ratio of 1.6 at a tip tangential Mach number of 1.2. In the MIT
Blowdown Compressor Facility measurements of the local static and
stagnation pressures and of the three components of Mach number can
be obtained with a time resolution of about one tenth of the blade
passing period. This is done with a multi-sensor probe using small
semiconducting diaphragms, which is traversed across the annulus
during the test time of about 40 milliseconds. Since the details
of both the facility and instrumentation have been fully described
elsewhere (Kerrebrock et al., 1974) only the results will be dis-
cussed here.

_ _ _ INSTRUMENTATION PORTS

1 2/ 3 4 5 6 7

* 2.5 'ju-2.5-.,2. 5 -4'~-2,5 4- 2--
I 20.4 TEST SECTION

0. 5 SHELL

BOUNDARY LAYER STATOR HUB FAIRING

BLEED
2 IN.

MAGNETIC
PICKUP

Figure 1. Scale Drawing of Transonic Rotor Installed In Blowdown
Compressor.
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2.1 Flow Downstream of Rotor

An example of the time-resolved output of the probe is shown

in Figure 2 (Thompkins and Kerrebrock, 1975), which shows pitchwise
flow angle and radial flow angle, both measured in stationary
coordinates at station 5 of Figure 1 for some 5 ulade passing
periods, the radial probe location being at 0.87 of tip -adius.
The dashed vertical lines are the estimated locations of the blade
trailing edges. Two points in particular should be noted: the
flow is not periodic from blade to blade, and there are large
radial flows on 'he pressure side of the passage near the blade
:.railing edge.

To establish that the rotor was operating at a condition of
interest a stator was installed and a stage map constructed from a
series of tests (Farokhi, 1976). This is shown in Figure 3. The
rotor data described were taken at a back-pressure close to that
for the dark pcint, labeled "operating point," which is approxi-
mately that for maximuh efficiency at design speed and just below
rotating stall. The efficiency of 0.89 is respectable if not
remarkable for such a stage. Hence it is felt that the rotor flow
should not be pathological. Indeed, there is evidence that rotor
wakes oftEn are not repeatable in stages near design.

By taking short time samples of t.ie sort in Figure 2 at differ-
ent radial positions of the probe the ;aps of entropy, pitchwise
Mach number, and radial Mach number shown in Figures 4, 5 and 6 have
been constructed (Thompkins and Kerreorock, 1975). Note that all
data on these figures came fron, one 40 millisecond test.

The entropy, shown as (S - So)/C V , was computed from the local
static pressure and temperature. The pressure is measured directly
hy the probe, while the temperature is inferred from the local Mach
:umber and the stagnation temperature as computed from the Euler
turbine equation with the measured tangential Mach ndmber. It is
near zero between wakes in the inner part of the flow, but ,hows
regions of large dissipation in the wakes near the sonic ra,. is an,
in general in the outer portion of tne annulus. What periodicity
exists is clearly at the blade passing frequency.

The radial and tangential Mach number maps similarly show
periodicity at blade passing with strong radial outflow and excess
tangential velocity in the wakes near the sonic radius. The radial
Mach num'er at these points is as large as 0.6. i.e., the flow is
,utward aL a 45 degree angle from axial.

A problem of "turbulence in internal flows" of interest to this
;Jorkshop would be to describe the evolution of this flow field as it
;)dsses downstream from the rotor. In the classical pictur,- t;e
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Figure 3. Performance Map for Transonic Rotor with Stator as
Determined in Blowdown Compressor Facility.

distinct wakes seen in Figures 2, 4, 5 and 6 would spread and
gradually merge. In fact this is not at all what happens, as can
be seen from Figures 7, 8 and 9 which show the entropy, tangential
Mach number and radial Mach number at station 6, about one chord
downstream of the rotor. There are still large concentrations of
excess entropy, and high radial and tangential Mach numbers. But
the most striking feature is that the period is now 1.4 blade pass-
ing periods. Close examination of Figures 8 and 9 shows that in
the outer half of the annulus, the radial and tangential Mach num-
bers are about w/2 out of phase in rO. This is consistent with a
cellular vortex structure such as that formed in the annulus between
rotating coaxial cylinders, when the circulation decreases outward.

It must be emphasized at this point that the data in the above
r versus r6 maps are temporarily, not spatially, resolved. The
abscissa is time, not rO. Thus the period at station 6 is consist-
ent with either (1) a disturbance with 16 spatial nodes in rO,
rotating at the same tangential velocity which the fluid has at
station 5, or (2) a disturbance with 23 nodes propagating against
the rotor motion so 3s to give the lower frequency.
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2.2 Upstream Acoustic Data

Acoustic measurements carried out upstream of the rotor
(Kerrebrock et al., 1974) clearly established the existence of a
strong duct acoustic mode at a frequency of 16 per revolution. The
harmonic analyses at the rotor face (port 4), at port 2 and at port
I (see Figure 1) are shown in Figure 10. A typical "combination
tone" structure can be seen at the two upstream stations, but the
m = 16 and m = 7 harmonics dominate. It seems very likely that the
m = 16 duct tone is excited by the downstream viscous disturbance
with a period of 23/1.4 = 16 times blade passing.

This prompts the conjecture that the combination tone or "buzz
saw" noise of high bypass turbofans may be excited at least in part
by the viscous flow field downstream of the rotor.

Unfortunately, these upstream data do not help in choosing
between the two alternative explanations for the change in periodic-
ity which were advanced above. A visualization of the downstream
flow field would resolve the question. The flow in the rotor pas-
sages has been quantitatively visualized by Epstein (1975) using the
technique of gas fluorescence. This technique is presently being
used to visualize the rotor outflow.

2.3 Downstream acoustic data

Acoustic measurements were also carried out downstream of the
rotor (Stephens, 1974), both with a static pressure probe in the
flow just inside the casing, and with a transducer flush with the
casing wall. Harmonic analyses of each at stations 5, 6 and 7 are
shown in Figure 11. The remarkagle point here is that the dominant
tone shifts gradually from m - 23 (blade passing) to higher values
at stations 6 and 7 in the flow, but it remains at m - 23 and decays
much more rapidly at-thewaTT-. The latter behavior is what would be
expected for a tone below cutoff. The former behavior is unexplained
at present, but is most likely connected with the evolution of the
viscous disturbances. (Practical difficulties with quantitative
measurement of the static pressure within the flow are readily
acknowledged, but what causes the frequency shift?)

3. THEORETICAL CONSIDERATIONS

A systematic perturbation theory has been developed (Kerrebrock,
1975; Thompkins & Kerrebrock, 1975) to describe the behavior of small
disturbances in the strongly swirling flows characteristic of turbo-
machines. Only a very brief summary of the analysis and the results
relevant to the above experimental observations will be given here.
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U Figure 11. Harmonic Analyses of Pressure Field Downstream of Rotor
at Stations 5, 6 and 7: (a) in Flow near Casing (Top),
(b) from Flush Mounted Transducer (Bottom).
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Assuming the geometry shown in Figure 12, where the mean tan-
gential and axial velocities, V and W, are functions of r alone,
the governing equations to first order are

L(u) - 2Vv/r -1 1d 1Ria5r ATdr 0

L(Y) + (V + V/r)u aP (2)Rr 30

L(w) + (W')u - j(3)R Rz

L(p) + R Lu + (RI + R/r)u v - + R 2- 0 (4)

L(s) + (S')u 0 (5)

where

a v

and

pT Y P)P R T

GUIDE VANES' ROTOR STATOR

W r0

V tj v V ir + r/r V roa

A Figure 12. Schematic of Flow Geometry Used in Analysis of Behavior
of Small Disturbances in Swirling Flow.
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To zeroth order the mean quantities must satisfy radial equilibrium,

1 dP V2
Rdr r

In a nonswirling uniform flow, (1) through 5 can be reduced to
(Kovasznay, 1953) L(-) = 0, L(s) 0 and a V p - L2(p) 0, so that
the vorticity ' and entropy are convected, while p satisfies a con-
vected wave equation, and the three modes are uncoupled.

In the swirling flow, this separation is no longer valid.
Taking a typical variable as

q(r,O,Z,T) = J q(rmk,)ei(kZ+mewT) dk dm dw
it can be shown that the radial velocity perturbation is governed
by a single, second order, ordinary differential equation with very
complicated coefficients.

For the present purposes it will be sufficient to deal with a
special case, where V = Qr and S = s = 0. Then the density perturba-
tion is governed by

r2 d~d - + r -d -
4  I " 2 * m2}1 =0 (7)

dr2  dr

and the condition that u = 0 at r = ro,r i becomes

p dr ,r = r0 ,r i  (8)

where

X = kW + n -

The solution is

R: Zm(=ar) = A J (or) + B Nm(pr)
R m

and (8) becomes

P Zm' (or) =-2m[ 1 (9)
w Zm

~where



SMALL DISTURBANCES IN COMPRESSOR 455

= ( r )2 [ 3 2 [4 2] 1 [( MR 4. (10

1= W/a is the axial Mach number and p/Q = m(2R/1 -

The eigenvalue problem posed by (9) and (10) has two distinct
sets of solutions:

a) Shear waves 0 < I/P.1 < 2

b) Pressure waves " + < ")/Q < -- M

These are shown in diagrammatic form in Figure 13 for a case of
in = 1, Qro/W = 1. The dotted lines are applicable to disturbances
generated by a rotor, for which w mQR and QR/fl = 3. The dot-dash
lines are for a stator, for which = mZR O

When X/2i is real for the pressure modes, they propagate; i.e.,
they are above cutoff in the acousticdl sense. The rotation modi-
fies these waves only slightly.

But the "shear waves" also propagate, are infinite in number,
and are the analogue in rotating flows of vorticity or turbulence.
We conclude that in strongly rotating flows all shear disturbances
propagate and have associated pressure disturbances.

To illustrate this behavior, the lines of constant phase of
the shear waves have been drawn for a stator and a rotor in Figure
14. We note that the shear waves come in pairs, one propagating
upstream and one down, so a wake will tend to "split" or disperse
as indicated, the wake crossing occurring in about one blade spacing
for the example shown. This differential propagation becomes weaker
as in increases.

The analysis becomes much more complex for V $ fir, a more gei-
erdl treatment is given by Kerrebrock (1975). No really satisfactory
comparison of the theory with the above experimental results has as
yet been realized. But a tentative calculation (Thompkins and
Kerrebrock, 1975) shows that the first shear mode which fits in the
outer half of the annulus, where V = sr, has m = 16, and the struc-
ture of this mode agrees qualitatively with the observed axial,
radial and tangential Mach number perturbations.

Thus, one possible explanation for the observed phenomena is
that the flow evolves from the blade-periodic rotor outflow to a

& duct eigenmode having m = 16 in an axial distance of about one blade
chord.
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4. CONCLUDING REMARKS

It is the author's view, based on such evidence as that given
above, that the flow field near a high work transonic rotor is
strongly influenced by the inviscid evolution of the disturbances
created by the rotor. The disturbances originate partially in
irrotational effects (McCune, 1976) but primarily in the regions
of high shear on the blades and casings. A classical treatment of
the viscous flow may be adequate in these regions of shear dominance,
but it appears the effects of mean rotation are controlling in the
interblade region. Studies of "turbulence in turbomachines" should
recognize this.

j m :I
2 q (35q352(.g

ro
-2 p

-4

emodes

n --i26V

Figure 13. Diagram of Eigenvalue Problem Showing Solution for
a) Stator Shear Waves, Dash-Dot Line Intersections
b) Rotor Shear Waves, Dotted Line Intersections
c) Acoustic Rotor Modes.
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RegionI, V= SIr Region II, V:,52r

I- ------

p/a1:-l p/S2:3 p/1 :3

x/S2: -1.4 pressure wove
downstream shear wove

/ upstreorn shear wove
/woke crossing l/Q-2

' // convective /g"
/ direction W

/ i X/: woke crossing
W :
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SX/ 7:
Inlet Guide Vane
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Figure 14. Wave Directions for the First Rotor and Stator Modes of
Figure 13, in Regions I and II of Figure 12.
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DISCUSSION

KOVASZNAY: (Johns Hopkins University)

I was listening with fascination to your presentation and
really I would like to ask a question and also make a comment. Do
you have experimental means to establish with certainty that the
phenomenon you observed was strictly periodic, namely phase locked
with respect to the shaft?

KERREBROCK:

The answer is, yes, we do; but we have not done it yet.

KOVASZNAY:

Now the comment: When a phenomenon is strictly periodic and
I think this must be the case for a single rotor with no guide wanes,
no stators, there can be a conversion between frequencies (all are
harmonics of the shaft frequency) only if there is a strong non-
linear mechanism available. I can think of two: One of them is the
merging of the wakes and the other is the merging of the shock waves.
In fact both of those were observed. For the shock wave merger the
relative velocities in the rotor must be supersonic. If there are

4small irregularities in the blades e.g., nose radii, some shocks are
slightly stronger than others and will "catch up" the result if fewer
shocks than blades but irregular, though it is still a strictly
periodic pattern. This way it can be imagined how 23 blades can
produce a 16 lobe pattern.
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KERREBROCK:

Let me respond to that one before we go on. We have looked
at the upstrea. flow field and in this compressor anyway there is
no merging of shock waves. In other words the shocks from the
blades are distinct as far upstream as we can trace them.

KOVASZNAY:

Again this is the same question. If you have a phase locked
detection compared locked to the position of the shaft you can see
the shock wave pattern clearly.

KERREBROCK:

Yes we do; the shocks are repeatable from turn to turn, from
revolution to revolution, and there are 23 of them.

KOVASZNAY:

The other nonlinear phenomenon is merging of vortices. Both
of these mechanisms are available and they can "demultiply" the
number of periods from 23 to something else. In that way the small
perturbation theory really doesn't account for these details,
because a massive energy transfer is required from one given number
of periods to another number of periods.

KERREBROCK:

I agree with what you say and I thank you for the comment. I
think that the explanation of a propagating disturbance is most
plausible at this point and having said that I want to say for the
people who are not turbomachine experts, that does not allow us to
say "OK this compressor is in propagating stall" becaus6 in fact
it is not. If you look upstream of the rotor you find no evidence
of a propagating stall and the machine is operating at its maximum
efficiency point just about where you would expect a compressor to
operate.

COLES: (California Institute of Technology)

Is what you see downstream of the rotor blades consistent
with a multi-start thread type Taylor instability in the outer part
of the compressor annulus? I don't know how many starts.

KERREBROCK:

Yes, 16.
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COLES:

Not necessarily, depending on the rotational ......

KERREBROCK:

Right, it could be 16 or 23 depending on whether it is propa-
gating relative to the rotor.

COLES:

It could be two if it is going fast enough. Does your flow
visualization shed any light on this?

KERREBROCK:

It will but it hasn't. So far it has not included that part
of the flow field. We are going to do flow visualization downstream
of the rotor soon.

LAKSHMINARAYANA: (Pennsylvania State University)

One possible explanation of your observation is this. The
profile and defect of blade wakes are all different and each blade
passage seems to have differing flow. Therefore each one of those
wakes propagates at different velocities. This is one of the things
that we showed in the AGARD paper (AGARD CP 177, p4-1 4-1-14) where
the wake centerline velocity has a different direction than the
freestream even in relative flow. What might be happening is the
merging of some of the wakes.

KERREBROCK:

I agree with that but I think the question then is what drives
that merging and the suggestion that I am making is that in fact the
flow is evolving somehow from the forced periodicity to an Eigen
mode of the duct.

LAKSHM I NARAYANA:

The wakes coining out of the blades are so different from one
another in your pictures.

KERREBROCK:

But the question is why.
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LAKSHMINARAYANA:

We measured the wakes in a subsonic rotor. We don't see this
phenomena. At every station the periodicity is maintained. This
is because the rotor inflow is very uniform.

KERREBROCK:

It has been true in general of compressor rotors, that wakes
from successive blades are not the same and in my mind at least
there has always been the question "why?" Now the answer that I
am tendering is that the viscous structure of the downstream flow
field in fact generates a pressure field that feeds back upstream
and forces a non-blade-passing periodicity on the wake structure
and on the growth of the boundary layers.

WILLMARTH: (University of Michigan)

You say "wake-splitting." I can't visualize what it means.
You mean along the trailing edge of the blade the wake was going
one way at one place and another way at another place?

KERREBROCK:

No. I would say, if you regard the wake as it comes off the
blade as an initial condition, which the Eigen modes of the duct
have to match to, then a superposition of two classes of waves is
required, one propagating upstream, the other propagating downstream
so that the disturbance would split as it comes off.

WILLMARTH:

So all along the radius, radially outward, the wake looks
wider.

KERREBROCK:

Yes, it would break into two pieces. One propagating one way,
the other one propagating the other way. And in fact in the example
that I showed, those propagations are fast enough so that the one
wake essentially crosses the other one in one blade chord.

WILLMARTH:

Another coronent concerns your pressure nasurements away from
the wall, downstream of the blade. In our work using pressure
measurements, we find it is really difficult to put a probe in the
flow and measure fluctuating Lomponents. When you have shock waves
coMiing over the probe, you have the strong possibility of the body
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of the pressure sensing device interacting with the flow field
which has rapidly changing flow inclination and shocks.

KERREBROCK:

Yes, I agree with you, it is hard to measure the pressure
quantitatively, but it is hard to think of things that change the
frequency content of the flow field.

WILLMARTH:

Yes, but if the flow field that is hitting this probe has fre-
quency components of 16 per revolution for example you will get
pressures from it at that frequency.

KERREBROCK:

I agree, but the point that I was trying to make was that the
fundamental frequency component, the dominate one, shifts from 23
to something like 27 monotonically downstream. I have not been able
to come up with an explanation for that so far.
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ABSTRACT

The interaction between a turbulent wake and a moving blade
(airfoil) is in many ways central to the understanding of both the
unsteady forces on the blade and the resulting acoustic emission.
In order to obtain the details of a single wake cutting "event" a
special experimental facility was constructed. Two-dimensional
turbulent wakes were produced and, one-by-one they swept in front
of a stationary (usually two-dimensional and symmetrical) airfoil.
The time interval between passages was chosen long enough so that
each passage could be regarded as a statistically independent
experiment. The key feature of the experiment was that all flow
variables (instantaneous pressure distribution on the airfoil,
fluctuating velocity components in the interaction zone, acoustic
far field, etc.) were measured by using time dependent ensemble
averaging over a large number (500-2,000) of wake passages. The
results gave instantaneous lift, drag and equivalent dipole sound
source, each as a function of time. Additional experiments were
performed for the "skewed" case (the plane of the airfoil and wake
are not parallel, but they form a small angle), and finally some
data were obtained on a cambered airfoil and on a small cascade
of cambered airfoils.
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1. INTRODUCTION

In fluid mechanics there is a group of problems that involves
the interaction of an unsteady vortex flow with a solid body. Due
to the boundary conditions at the solid surface, viscosity cannot
be neglected in general and the prublem becomes less amenable to
theoretical treatment than either an unsteady inviscid irrotational
flow or alternately a viscous flow with vorticity but steady in
time. The approaching vortical flow may be either a wake (two-
dimensional or axisymmetric) or it may be a trailing vortex; the
solid body may be either a blunt body or it may be a lifting
surface. From all of the combinations of such variables, a par-
ticular case was singled out for study where a two-dimensional wake
was sweeping over a two-dimensional airfoil. Experiments were
carried out and the results were reported in Refs. 1, 2 and 3.
Theoretical treatment of the problem based on linearized thin
airfoil theory is available in the literature (e.g. Refs. 4 and 5)
and it was used as a rough guide. The primary purpose of the
research was to establish experimentally the details of such an
interaction, consequently no effort was made to put the "stamp of
approval" on any particular theory. The problem chosen is timely
on two accounts. First: in multistage rotating machinery,
especially in axial compressors, the interaction between a set of
wakes created by the blades of one stage are being "cut" by the
blades of the subsequent stage, so the basic interaction between
one wake and one blade moving relative to each other appears to be
the basic phenomenon that controls both the unsteady flow around
the blade as well as the sound emission. Second: from an experi-
mental point of view the problem has become "ripe" as mcdern signal
processing techniques have become available and they permit recovery
of the relevant "deterministic" portion of the signal that describes
the interaction without being obscured by large random noise con-
tributed by turbulence in the flow.

2. STATEMENT OF THE PROBLEM

A two-dimensional airfoil is placed in a uniform parallel flow
having a velocity U,,. At a given time a two-dimensional wake having
a given velocity defect distribution is carried downstream by U.,.

3 The wake axis is at an angle $ to the undisturbed flow direction.
Figure 1 shows the configuration. During the encounter of the
wake and the airfoil the instantaneous flow field around the air-
foil changes rapidly so both the circulation around it and the
surface pressure distribution over it shows rapid transients.

Some time after the wake has left the airfoil all of the
transients decay and conditions return to the original steady flow.
This transient phenomenon is called wake cutting. The objective of



WAKE CUTTING EXPERIMENTS 465
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Figure 1. Wake Cutting. Wake Sweeps Upward, Instantaneous
Streamlines Shown.

the research is to determine the transient behavior in terms of the
given wake and airfoil parameters.

3. THEORETICAL CONSIDERATIONS

Unsteady airfoil theory has a long history. The usual assump-
tions are the following: linearized thin airfoil theory with the
Kutta condition satisfied at all times; the approaching disturbance
is specified as a "gust" namely only the velocity component, perpen-
dicular to the undisturbed flow is specified and only within the
plane parallel to the undisturbed flow and containing the stagna-
tion line of the airfoil. The gust pattern is assumed to be a
"frozen" pattern carried downstream unchanged, with the convection
velocity U,,. At this point it is customary to introduce Fourier
analysis and to decompose the gust pattern into different wave numi;-
ber (frequency) components. One obtains similarly the transient
response of the airfoil, also in terms of frequency components (see

e.g. Ref. 4). In thuse calculations the so-called Sears function
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plays a rather central role. Such an approach appears to be quite

adequate for obtaining the response of an airfoil to gusts.

In the case of wake cutting the wakes are relatively narrow,
usually less than the airfoil half chord, c; consequently, another
simplification is possible (Ref. 5). The wake width is neglected
entirely and the velocity defect distribution of the wake is
assumed to be a Dirac 6 function weighted with the total momentum
defect of the wake. On that basis the transient response of the
flow around the airfoil was calculated and rather simple results
were obtained. First, non-dimensional coordinates were introduced

2x t' 2U t
c c

The chordwise pressure gradient becomes rather simple, namely

ax .+ W T(t') X(x'

Here the upper sign applies to the upper (suction) surface and the
lower sign to the lower (pressure) side. The constant W is essen-
tially the total integrated momentum loss of the wake. The two
universal functions T(t') and X(x') are independent of the shape
of the wake distribution (as long as it is narrow compared to the
chord) and also independent of the airfoil shape or angle of attack
a. The significant result of Ref. 5 is that the transient response
can be expressed as the product of two factors, one depending on
the time alone and the other on the chordwise position alone. In
other words the chordwise pressure distribution always has the same
shape, only it grows and decays proportionally in time. Similarly
the time dependence is the same at every point except that it
varies in magnitude according to chordwise position. The function
T(t') is the Fourier transform of the "Sears function" and the
function X(x') is given as

X(x') -1
(1 + x') /1 -

'

or

xf X(x")dx"

The pair of universal functions is given in Fig. 2. Both functions
are singular at t' = -1 and x' -1 respectively, but the singular-
ity is integrable. It is a consequence of using linearized thin
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(Ref. 5) was found especially attractive to serve as a simple guide
to organize the experimental results.

It must be mentioned that all of the theoretical calculations
of transient response in wake cutting are critically dependent on
the assumption that at the trailing edge the Kutta condition
remains valid even for rapid transients. In order to test this
assumption experiments were carried out (Ref. 6) and the results
confirmed the validity of the Kutta condition even for relatively
rapid transients. Naturally it may still fail for transients so
rapid that large changes occur during a time unit formed from the
boundary layer thickness near the trailing edge and the freestrea n
velocity.

UP
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4. EXPERIMENTAL FACILITY

A small wind tunnel was built especially for wake-cutting
experiments (Ref. 1). It consisted of an axial fan followed by
a diffuser. A settling chamber with turbulence screens was pro-
vided to reduce the freestream turbulence level, followed by a
square nozzle discharging an open jet with a 30 cm x 30 cm cross
section and having a nominal velocity of 38 m/sec (Fig. 3). The
passing wakes were produced by a rotating "pin-wheel" consisting
of two approximately I cm diameter cylindrical spokes cutting
across the jet with a velocity typically one third of the nominal
mean velocity resulting in a typical wake angle of a = 22° (for
definition see Fig. 4). The airfoils or blades fully spanned the
jet and they were mounted on a steel plate that also provided
safety by protecting the observer from the rotating pin-wheel.
For the acoustic measurements it served as an acoustic mirror
providing well defined boundary conditions.

The airfoil under test was provided with two sets of pressure
taps, one set for mean pressure measurements that were connected
to liquid manometers and another set that was connected to a rapid
response pressure transducer. In the early phase of the experi-
ments an F.M. operated condenser microphone was used in conjunction
with a pressure switch, in the later phase a newly developed experi-
mental electric transducer was used. It was obtained from ONERA,
Paris. The far field sound pressure was measured by two calibrated

;-AfJ ,t?Nlacoustic
'- microphonel. Ii baV.ffle

!- - blade

mLricrophone

jet I steel plate 51'\ 7/ /VNA
orifice .

motor, ( - "

Figure 3. Experimental Facility
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Figure 4. Definition of a and 3.

condenser microphones located symnetrically along a line perpendicu-
lar to the axis of the jet and to the span of the airfoil. In
order to eliminate the reflections from the laboratory walls, acous-
tic baffles were installed on four sides outside the jet. These
consisted of wedges of rubberized hair and have proven satisfactory.

5. INSTRUMENTATION AND DATA PROCESSING

The novel feature of these experiments was the extensive
utilization of conditional sampling and ensemble averaging. The
wake passages were separated by long time intervals so that the
transients decayed and each passage could be regarded as an inde-
pendent experiment. All transient signals, such as those obtained
from surface pressure transducers, hot-wire anemometer probes and
far field microphones, were processed by periodic averaging. A
magnetic pick-up on the shaft of the pin-wheel provided a "master
pulse" giving the exact instant when the wake center passed the
leading edge of the airfoil. These instants ti , with i =
1, 2, ..., N, give the time origin for each event. The periodi-
cally sampled ensemble average of a signal e(t) is defined as

4
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N
t)= Ie(t : e(t -t i)

i=1

For-N the periodic average e(t) becomes a periodic function
even if e(t) contained random noise. For an additive random noise
that becomes statistically independent for time separations larger
than-one period, the r.m.s. noise level will decrease in i(t) as

N-2. For periodic averaging an analogue device (PAR Signal
Eductor) was used whose output was digitized and transferred to
perforated tape and further processed by computer. The choice of
N is limited by two opposite considerations: with increasing N
the siqnal-to-noise ratio improves but the effect of slow drift in
the experimental conditions reduces the accuracy. Typically
500 < N < 2000 was used and the experiments have shown good repro-
ducibility.

6. SAMPLE EXPERIMENTAL RESULTS

First the unsteady flow field due to the wake passage was
measured without the presence of the airfoil. Here the periodi-
cally averaged records have another advantage. These time records
are 'keyed" to the exact time origin of each wake passage (to the
position of the pin-wheel shaft), so data taken at different
points can be collated. Two components of the instantaneous
velocity were measured by a hot-wire X probe over a lattice of
points on the plane perpendicular to the wake. A total of
10 x 20 = 200 points were measured, so u and v gave a total of
400 records for the different x and y values. With the assumption
of two-dimensional incompressible flow (the assumption of poten-
tial flow is not necessary) the instantaneous stream function
Y(x,y,t) can be reconstructed by integration. For each instant,
u(x,y) is integrated with respect to y and -v(x,y) is integrated
with respect to x. The streamlines are then obtained as T = Const.
(For more details see Refs. 1 and 6.) Figure 5 shows one example
so obtained. The flow field shown in the perturbation flow field,
namely the flowpattern seen by an observer moving with the nominal
undisturbed flow or in other words it is seen in an Eulerian frame
translated with velocity U0,. In this frame the wake appears like
a jet directed toward the object that produced it (the German word
for wake is Nachlauf). The large vortex seen at the left edge of
the jet is the remnant of the interaction between the rod and the
shear layer at a time when the rod entered the jet. Whole time
sequences were so obtained and the technique is straightforward;
it can be applied in any two-dimensional unsteady flow at low Mach
numbers.
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Figure 5. Instantaneous Flow Pattern as Seen from Coordinate
System Moving with the fominal Velocity U,.

The instantaneous pressure distribution around the airfoil was
obtained at a number of chordwise stations. At each station both
the static (time average) pressure was measured and the pressure
fluctuation (zero time average by definition) w'as obtained as a
periodically averaged record. The instantaneous sum of the two
gave what is termed the "deterministic portion" of the pressure
distribution. Figure 6 shows a sample of the pressure distribution
around a synnmetrical airfoil at cc = 0 for a number of instants.
What is plotted here is not the pressure but [p+(x') - p_(x')], the
difference of pressure on the upper and lower surface at the same
chordwise position. This quantity represents the lift per unit
chord length. Let us recall here that non-dimensional time t' is
equal to -1 when the wake center reaches the leading edge and t' is
equal to 1 when it leaves the trailing edge. The dotted lines
represent the "theoretical" distribution given by Meyer (Ref. 5).
It is the function ..(x') given in Fig. 2 except its magnitude is
adjusted so that the integral (total lift) is the same as that of
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the experimental distribution. The experimental distribution is
in good qualitative agreement with Meyer's theory but'significant
departures are in evidence. The chordwise distribution is not
exactly similar for all times but a certain timewise development
is noticeable, namely disturbances seem to travel from leading
edge to trailing edge. Probably this is due to transient readjust-
ment of the boundary layer on the airfoil, a feature so far left
out in all theories. By integration the instantaneous lift is
obtained. A sample is shown in Figure 7 and it is compared with
the function T(t'). The experimental curve is smooth and gentle
while the theoretical curve is "spiky" at t' = -1. Nevertheless
one must remember that the theoretical curve was obtained as an
asymptotic case on the basis of negligible wake width. If one
performs an appropriate convolution of the wake distribution
function with the function T(t') a closer agreement may be
obtained. The two curves have also different values for t' > 2.
This is believed to be the effect of the finite size of the chord
compared to the jet width (typically 1:3). Corrections can be
made for this effect by including slowly variable components in
the wake function to account for the large scale disturbances
created in the shear layers of the jet.
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Figure 7. Transient Lift in Wake Cutting.
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7. ACOUSTIC EMISSION

Wake cutting produces a detectable sound pulse. According to
Lighthill's classical theory a flow without solid boundary can
produce only quadrupole radiation (no lower order) but where solid
boundaries are present, in general it can produce dipole radiation.
The variable lift on the airfoil represents a variable body force
on the surrounding fluid, correspondingly even at low Mach numbErs
there will be an affective acoustical dipole proportional to the
time derivative of the lift. For details one must refer to Curle's
paper (Ref. 7). Curle's equation can be transformed into a con-
venient form for the case of a plane wing and one obtains a rather
simple formula for the sound pressure far from the wing (Ref. 1).
Let us introduce the following quantities: A, the area of the
wing; p, the air density; M = U./a, the Mach number of the undis-
turbed flow; R, the distance of the observer from the center of
the wing; finally, the angle 6, the angle between the y axis (that
is perpendicular both to x the undisturbed flow direction and z the
spanwise coordinate) and the radius vector of the observer. The
observed sound pressure signal then becomes the following.

s(R,O,t) = PU  AMdCL2 2acR dt' cos'

The only property of the wing that appears in that expression is
dcL/dt' the non-dimensional time derivative of the lift coefficient.
The formula given is based on far field approximation. For
observers that are closer there is a correction term proportional
to cL itself (see Ref. 1).

In the experiments two microphones were placed at = 0 and
o = 7r and their sum and difference signals were both periodically
averaged. The difference signal was much larger thus verifying the
dominance of dipole radiation. The results were in rather good
agreement with Curle's theory as Fig. 8 shows. The measured sound
pressure is compared with the one calculated from the measured
transient lift for four different angles of attack. Especially
important is the fact that there is no adjustable constant and the
agreement is good even if plotted in linear scale (and not only in
decibels). It is surprising that the agreement is quite good even
at a = 200 when the airfoil was fully stalled. One must remember
however that the relationship supported by this experimental result
is between the experimentally obtained body force and the radiated
sound, so the validity of the linearized unsteady airfoil theory is
not involved at all.

The sound signatures for the four angles of attack are shown
together in Fig. 9. The curves do not differ too much. The most
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remarkable feature is the extra large magnitude of the first pulse
in case of i 100. When this case was reexamined it was concluded
that the airfoil was near stall and the instantaneous angle of
attack at the leading edge temporarily increased during the wake
passage* and caused a separation bubble lasting only for a short
time. When the flow reattached the lift suddenly increased but
somewhat faster than for the non-separated case (e.g. for r. = -100)
and the larger value of dcL/dt' caused the higher sound pulse.

8. FURTHER EXTENSIONS

After the initial success in carrying out wake cutting experi-
ments a number of variations of the basic configuration were
explored. First the "skew" case was studied. The new element wds
the misalignment between the plane of the wake and the plane of the
airfoil by an angle e as shown schematically in Fig. 10. The result
is a large drop in the maximum lift pulse during the wake passage
(Fig. 11) and an even larger drop in acoustic emission (Fig. 12).
For easy comparison the value of cos 0 is also plotted. For further
details see Ref. 8.

* See Fig. 1 for the instantaneous streamlines.
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Figure 10. View of the Test Section from Downstream.
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Next, wake cutting by cambered airfoils was explored. The
most interesting result then was the large difference observed in
the transient response between the cases when the wake sweeps from
the convex (back) side of the blade (0 > 0) and from the concave
(belly) side (0 < 0). They may differ by as much as a factor of
two and the larger response is for B > 0. For details see Ref. 2.

Finally there was a small exploratory attempt to see some
gross effects in the transient pressure distribution of a highly
cambered blade in a modest cascade (only three blades). The above-
mentioned difference between the cases 0 > 0 and B < 0 were further
accentuated at large angles of attack so that the ratio in the
maximum transient pulses became as large as 10:1 (always the case
B > 0 giving the larger pulses). In addition transient local
separation bubbles were observed travelling along the boundary
layer representing a large vortex perturbation. Such behavior is
quite in contrast with simple unsteady airfoil theory and the
unsteady perturbations and readjustment of the boundary layer seem
to be involved. Such phenomena cannot be incorporated yet into the
existing theoretical framework. On the other hand the relationship
between unsteady lift and radiated sound appears to obey Curle's
theory quite well, even in cases when the prediction of the fluc-
tuating lift from gust theory is poor. The extension of these
experiments to cascades of blades is greatly hampered by the fact
that the radiated sound is strongly modified by the presence of the
other blades, so only the transient surface pressure measurements
are reliable.

9. CONCLUSIONS

The most important conclusion that can be drawn from the above
series of experiments is the evidence of feasibility to perform
systematic measurements on highly unsteady flow phenomena when reli-
able fast response transducers are used in combination of phase-
locked periodic sampling and ensemble averaging.

As far as the transient response of an airfoil is concerned
the linearized gust theory can serve as a useful guide but experi-
ments are necessary to clarify the role of transient local separa-
tion not accounted for by perfect fluid theories. Furthermore
vortex disturbances travelling along the boundary layer of both
upper and lower surfaces cannot be fitted into any of the existing
theories.

The validity of the simple theory of Curle as restated In
Ref. 1 was well verified (Ref. 1) and it may be applied to many
cases.
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Quite clearly further experimentation is needed to 
establish

the finer details in many particular applications especially 
in

the case of thick and strongly cambered airfoils. 
Nevertheless

the author is quite confident that the technique 
introduced will

be utilized with profit in a large number of technologically

significant unsteady flow problems.
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DISCUSSION

KERREBROCK: (M.I.T.)

I don't see anything in that experiment that seems to intro-
duce a randomness. In other words it seems to me that the whole
phenomenon should be periodic.

KOVASZNAY:

The overall flow is periodic, but the turbulent wake is random.

KERREBROCK:

Is it random or is it shedding Karman vortices?

KOVASZNAY:

No, it doesn't shed Karman vortices. It is of too high a
Reynolds number flow for that, so It is tr.ily random. Actually
we checked out that aspect separately and it can be done very
easily with the rod. We studied that extensively. As a matter
of fact, we did observe some critical r.p.m. values where the
rod, every time it entered into the jet, that impact force on the
rod made it vibrate and the next time around it reinforced that
vibration, so there were some bad r.p.m.'s.

KERREBROK:

If t. ,re is not a Karman vortex street there then it seems to
me that the unsteadiness should be at a high frequency compared to
the base phenomenon.

KOVASZNAY:

No. it isn't.

KERREBROCK:

But, I see amplitudes that are very large, which you are
taking out by the signal processing.

KOVASZNAY:

Basically what you do is as follows. Looking at what I rather
like to call the deterministic part of the phenomenon, the deter-
ministic part is repeats. That is what you are extracting by
periodic sampling ensemble averaging. What you destroy is the
random part.

I -A
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KERREBROCK:

My question, Dr. Kovasznay, is, are we sure that the deter-
ministic result that you get from the signal processing is the same
as the deterministic result that would result from a nonrandom
input to such a nonlinear process?

KOVASZNAY:

Of course. By definition. The reaction is a nonlinear proc-
ess, but the turbulent part, the random part, in this experiment is
still confined to a rather narrow wake. Actually we determined
even the profile of the turbulence intensity of the wake by the
process which I just described. The point is here that you extract
the deterministic part which is perturbed by the superimposed
random. Now if you wish to modify even the random component and
see whether you will get the same answer even this is possible,
because by a second ensemble averaging one may determine statis-
tically what the random wake is.

SAFFMAN: (California Institute of Technology)

You have measurements of the pressure as the vortex ring
approaches the wall. It can be shown that for a vortex ring
approaching a plane wall the total impulse communicated to the
wall is zero. Did you have any way of integrating the pressure?

KOVASZNAY:

Honestly, no, because the pressure transducers used do not
record DC components. This means that the long time average is
unreliable and in principle you are right. In practice we know
the low frequency response of these transducers, they have a cut-
off at low frequency, therefore the average of the output would be
zero no matter what input is, therefore this result is nonsignifi-
cant.

WILLMARTH: (University of Michigan)

Could you tell us again how you measure that fluctuating lift
on the airfoil?

KOVASZNAY:

On the airfoil we had a total of 16 pressure taps to each we
had a condenser microphone type of transducer connected. At each
chordwise location we also measured the DC component, namely the
average static pressure. To superimpose on the average static
pressure the ensemble averaged fluctuatisig pressure (that has zero
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mean by value by definition) is easy so we were able to reconstruct
the detcrministic portion of the instantaneous pressure all around
the airfoil for the same instant. For each instant this was inte-
grated around the airfoil and the total lift was obtained.

In this case we used a doubly symmetrical airfoil which only
one quarter of it instrumented and it was put into the tunnel in
four ways. It had five pressure holes and these five huies were
switched to the condenser microphone with a pressure switch.

HENDERSON: (Pennsylvania State University)

You mentioned experiments in your abstract with a cascade.
Can you elaborate on these experiments?

KOVASZNAY:

We did a primitive cascade. We did a three airfoil cascade
and just instrumented the middle airfoil.

HENDERSON:

What differences did you see between the cascade and the iso-

lated airfoil?

KOVASZNAY:

Quite a bit. It was extremely sensitive from which direction
the wake swept, it is a completely different story. If we just
inserted the airfoil inverted it was a quite different response.
This was the main difference. Of course the mean properties all
changed when in the cascade and we had to take this into account
to see clearly the changes. In addition it was clearly visible
that a vortex bubble runs along the highly curved side of the air-
foil in cascade. I didn't wish to prolong my talk to include the
cascade case. We did the skew case too where the wake was mis-
aligned with the leading edge of the airfoil. Therefore there is
a spinwise propagating disturbance. See reference below.* We tried
to compare this with the Filotas linear theory. r We did a great deal
more than what I can show here. I just wanted to get the highlights
on what sort of things we did.

H. Fujita and L. S. G. Kovasznay. Sound Generation by Wake Cut-
ting, Progress in Aeronautics and Astronautics, AIM,
MIT Press, Cambridge 1973, orirloally Paper 73-1019, Aero-
Acoustics Conference, Seattle, Washington, Oct. 15-17, 1972.

t Filotas, L. T., "Theory of Airfoil Response in a Gusty Atmos-

phere I and II," Utias Rept. !39 and 141, Toronto, 1969.
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HENDERSON:

Is the cascade data published?

KOVASZNAY:

It is in effect yes. We talked about it in this Aero-Acoustic
neeting in Virginia, '75 Spring.* I also want to say a nice word
for the sponsor. A great deal of this was sponsored at Johns
Hopkins University by Pratt and Whitney.

* Ho, Chin-Ming and Leslie S. G. Kovasznay, "Wake Cutting by a

Cascade of Cambered Blades," AIAA Paper 74-445, AIAA 2nd Aero-
Acoustics Conference, Hampton, VA, March 24-26, 1975.

I ~
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ABSTRACT

The effects of high levels of turbulence and flow unsteadiness
on turbomachine performance is investigated in three parts. The
first part describes an experimental technique for separating the
contributions of random turbulence and ordered unsteadiness to
velocity fluctuation levels. The second part describes the effects
of freestream turbulence on turbulent cascade performance, and in
the final part some measurements of the unsteady boundary layer
developing on a turbomachine blade are presented. The results
indicate that caution should be exercised when applying steady
boundary layer data to turbomachine design.

1. INTRODUCTION

In order to accurately predict boundary layer development on
a turbomachine blade the freestream conditions must be known. It
appears that the boundary layer develops in a region of high levels
of freestream turbulence due to wakes being shed from upstream blade
rows and in an unsteady pressure field due to the relative motion of
the blade rows. It is likely that these two factors, high turbulence
levels and periodic unsteadiness, have a significant effect on the
blade boundary layer, but so far little information on the relative
magnitude of the two effects has appeared in the literature.

This paper is divided into three main parts in an attempt to
obtain a better understanding of the effects of turbulence and un-
steadiness on turbomachine performance. The three parts present
the results of:

485
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(i) Measurements of the relative magnitude of random turbu-
lence and periodic unsteadiness in a turbomachine.

(ii) An experimental investigation of the effects of free-
stream turbulence on turbulent boundary layer development.

(iii) Measurements of the unsteady boundary layer developing
on an axial flow compressor stator blade.

2. TURBULENCE AND UNSTEADINESS LEVELS IN AN

AXIAL FLOW COMPRESSOR

In the past there has been a considerable effort directed
toward the effects of flow unsteadiness on blade lift (see for
example, Horlock, 1968), but so far there has been little experi-
mental information on the random turbulence level and periodic
unsteadiness in a turbomachine. Kiock (1973) attempted to separate
periodic fluctuations in the mean flow from turbulent fluctuations
by traversing a probe downstream of a stationary cascade. Whitfield
et al. (1972) used a single probe rotated into each of the three
coordinate directions in turn, and a phase-locked averaging pro-
cedure to produce contour plots of the periodic flow field down-
stream of a rotor row. The signal processing procedure used,
however, lost all information of the random turbulence levels in
the flow. Evans (1974a) described an ensemble-averaging procedure
for separating the velocity fluctuations into ordered unsteadiness
and random turbulence, and it is the results of that investigation
which will be summarized in this section.

2.1 The Experimental Compressors and Coordinate System

Two low-speed single-stage compressors in the S.R.C. Turbo-
machinery Laboratory at Cambridge University were used for these
measurements. The compressors are designated as compressor A and
compressor B and are shown schematically in Figure 1. Both com-
pressors have identical 6 in chord, 18 in span rotor blading
designed for free-vortex operation at a flow coefficient Cx/Um of
0.7, and for minimum loss at a design coefficient of 0.6. Cx
denotes the axial flow velocity and Um the rotor mid-span blade
speed. Compressor A, shown in Figure la, consists of a single
rotor row, while compressor B has a rotor row followed by a row
of 1 ft chord stator blades.

The coordinate system used for the measurements is shown inFigure ic. Axial, radial and tangential coordinates are denoted

by x, r and e respectively. The coordinate direction aligned with
the mean flow velocity is the coordinate and the perpendicular
direction is the n coordinate. Air flow angle is given by s.
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Figure la. Compressor 'A'

Velocities in each of the coordinate directions are denoted by C
with the appropriate subscript.

2.2 Preliminary Disturbance Level Measurements

Before attempting to separate the velocity fluctuations due
to turbulence from those due to periodic unsteadiness, a hot-wire
X probe was used to determine the overall disturbance levels down-
stream of the rotor row in compressor A. The term "disturbance
level" is used to indicate that the fluctuating velocity recorded
by the anemometer is composed of both a random turbulent component
and an ordered unsteady component. It is the value read from an
rms meter connected directly to a hot-wire anemometer with no fur-
ther signal processing.

The X probe was first positioned at mid-span with the plane
of the probe in the x, 0 plane and then rotated about the r axis
into the , n plane so that fluctuations Cc parallel to the mean
flow and Cn perpendicular to the mean flow could be measured. The

-I mean flow direction g was determined by rotating the probe about
the r axis until the dc voltage from the two wires was equal. To
provide a check on the C measurements, and to measure the

V
g1
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Figure ic. Coordinate System.

fluctuations C' in the radial direction, the probe was then rotated
about the & axis into the r, 4 plane.

The results of the X probe measurements are shown in Figure 2
for a range of flow coefficient from 0.45 to 0.70. The disturbance
level in each of the coordinate directions approaches a minimum
value near the minimum loss design flow coefficient of 0.60, while
at the lower values of flow coefficient, as the rotor approaches
stall, the disturbance levels approximately double their minimum
value. With the X probe in the r, C plane the dc voltages from
the two wires were equal, indicating zero mean radial velocity,
although the fluctuations in the radial direction are of the same
magnitude as the streamwise and tangential components.

The X probe was then replaced by a single wire probe with the
wire axis aligned perpendicular to the mean flow and the anemometer
signal was processed with a Fenlov. spectrum analyzer. Figure 3
shows the spectra obtained at three different flow coefficients,
and since only qualitative information was required the power sp.-c-
tral density shown is uncalibrated and simply represents a conveni-
ent scale. All the spectral measurements show a peak at blade
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Figure 2. X probe disturbance levels downstream of rotor in
compressor 'A'

passing frequency and at several distinct harmonics. If plotted
on a linear s:ale the area under the peaks would represent the
fraction of the total fluctuation energy contained in the periodic
oscillations, while the area of the lower band would represent the
fraction of the energy contained in the turbulent fluctuations.
The area corresponding to the turbulence energy is highest at the
flow coefficient of 0.5 near stall, and lowest at the minimum loss
flow coefficient of 0.6, while the area corresponding to the
periodic fluctuations remains relatively constant.

2.3 Turbulence and Unsteaditm:s Measurements

The separate cont.- utions of random turbulence and periodic
unsteadiness to the velocity fluctuations were obtained using a
phase-locked ensemble-averaging procedure. For these measurements
a single hot-wire probe, with the wire axis perpendicular to the
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mean flow direction, was placed between the blade rows of compres-
sor B as indicated in Figure lb. The linearized anemometer signal
was fed directly to an rms meter and in parallel to a PDP-12 com-
puter which, after digitizing, ensemble-averaged the signal over
some 50O records. The sampling cycle of the A-D converter was
initiated once per revolution by a pulse obtained from a magnetic
pickup and a ma-ker located in the rotor hub.

The ensemble averaging technique is shown schentically in
Figure 4. A diagrammatic representation of many random velocity
records U(t) is indicated in Figure 4a, where a typical record is
the Kth record, K U(t). An ensemble average at time t, is the
average of the instantaneous velocity U(t ) over all records, and
can be given by:

N

lim I KU(t1 )
=N--o K=10(t1) N =

N

If this procedure is carried out for all points in time, the

ensemble-averaged record O(t) is obtained. A stationary random
function is one for which en~emble-averages at every point in time
are identical, i.e. U(t;) = U(t1 + t) for all t (see Bendat, 1958).
A time average of the Kth record is given by:

UM Kmu(t)dt

If a stationary random function is further restricted so that every
record has the same time average, U(t, then the function is said
to be ergodic and the ensemble-av.:rage is identical to the time
average of any record. This ergo , hypothesis holds for homogene-
ous, isotropic turbulence and in the,: case ensemble-averages may
be replaced by time averages.

The velocity-time record of a turbomachine wake passin5 a
fixed probe is shown diagrammatically in Figure 4b. The smooth
line marked U(t) is the result of ensemble-averaging over a number
of records. It can be seen immediately that thi condition for the
function to be stationary, namely 0(t 1 ) - R(t. + t), is not ful-
filled. Also shown on the figure is the time-mean velocity, U,
taken by averaging over a long time compared with the wake passing
period. The fact that the wake signal is periodic and non-stationary
means that a phase locked ensemble-averaging procedure must be used.
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Figure 4. Typical velocity records.
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The phase-locking is accomplished by means of a trigger pulse
obtained from a magnetic pickup on the rotor as noted previously.

Referring to Figure 4b, three different velocity fluctuations
can be defined. The velocity fluctuation from the ensemble-
averaged velocity, U(t), is called the freestream turbulent fluc-
tuation and is denoted by v'. The total fluctuation from the time-
mean velocity, U, is called the disturbance fluctuation and is
given by:

V; = v' + (U(t) - U)

An "unsteadiness fluctuation" is defined as the difference between
the ensemble-averaged velocity and the time-mean velocity. Using
the usual rms definitions of these values, three different intensi-
ties may be defined:

The disturbance level: TuD = D

The freestream turbulence level: Tu =
U

and the unsteadiness level: Tu 1(U(t) - U-)_U

Using these definitions and assuming that the turbulent fluctuations
are statistically independent from the periodic wake velocity-defect
fluctuations, Evans (1974a) has shown the following relation to hold:

TU2 = Tu2 + fu2 (1)

A similar expression to this was first obtained by Kiock (1973)
using a traversing probe downstream of a fixed cascade. In prac-
tice the disturbance level, TuD, is measured with an rms meter

connected directly to the hot-wire anemometer. The unsteadiness
level, Tu, is found by taking the rms value of the difference be-
tween the ensemble-averaged velocity Ond the time-mean velocity,
and the freestream turbulence level, Tu, is then found by differ-
ence from equation (1).
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Figure 5 shows the results of the measurements between the
blade rows of compressor B as a function of flow coefficient,
Cx/Um. The overall disturbance level, TUD, is seen to be a maxi-
mum at a flow coefficient of 0.50 near stall, and decreases as the
flow coefficient approaches the design value of 0.60. The unsteadi-
ness level, 1u, remains relatively constant over the compressor
operating range. As the rotor approaches stall the wakes become
much more spread out, but the amplitude of the velocity defect is
decreased, resulting in a nearly constant rms value. The free-
stream turbulence level, Tu, obtained by difference, is a maximum
near stall and decreases monotonically towards the design point.

The manner in which large changes in flow angle can occur as
a rotor wake passes is illustrated in Figure 6. For a compressor,
shown in Figure 6a, the relative velocity decreases from W2 to W'
within a rotor wake. After adding the constant blade speed U, the
absolute velocity changes from C2 to C!, with a resultant increase
in tangential velocity to Ce' and a decrease in axial velocity to
Cx2'. This causes a large c ange in absolute flow angle within a

4-5
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Figure 5. Turbulence and unsteadiness measurements in compressor ''
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wake from a 2 to a2. The situation for a turbine, illustrated in
Figure 6b, is similar except that both the tangential and axial
velocity may decrease.

After taking etisemble-averages of both the axial and tangen-
tial velocities between th? blade rows, the time resolved absolute
air angle was simply found by taking the tangent of Ce/Cx. These
results are given in Figure 7, shown plotted as a 3, the air inlet
angle referred to the downstream stator row, for three different
flow coefficients. The stator blade inlet angle, B, is shown in
each case to enable the stator incidence angle, a3 - 0, to be
determined. The incidence angle shows a large positive increase
of between 120 and 150 every time a rotor wake passes, which might
be expected to have a significant effect on the blade boundary
layer.

3. FREESTREAM TURBULENCE EFFECTS ON THE

TURBULENT BOUNDARY LAYER

3.1 Pipe-Wall Boundary Layer

In order to obtain an initial feeling for the effects of free-
stream turbulence on turbulent boundary layer development, a study
of the boundary layer on the wall of an8in. ID pipe was initiated.
The boundary layer was tripped at the pipe entrance and the free-
stream turbulence level adjusted with grids. Figure 8 shows dimen-
sionless velocity profiles 5 ft downstream of the entrance at three
levels of freestream turbulence. Increasing turbulence levels, Tu,
can be seen to cause a significant increase in the profile fullness.
There is also an increase in the profile 6,9 thickness with increas-
ing turbulence level, but this does not show up in the non-
dimensional plot.

The displacement and momentum thicknesses, 6" and 0, are shown
as a function of freestream turbulence in Figure 9. Also shown in
the figure are the data of Kline et al. (1960). Both sets of data
indicate an increase in the integral thicknesses with turbulence
level until about Tu = 2%, and then a subsequent decrease. This
type of behaviour can be explained by the two conflicting effects
of increased 69 thickness and increased profile fullness. At low
turbulence levels the increased 699 dominates, causing 6* and 0 to
increase, while at higher levels the increased fullness dominates
resulting in a decrease in the integral thicknesses. Further
details of these measurements are given by Evans (1974b).
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Figure 8. Dimensionless velocity profiles, X = 5 ft.

3.2 Cascade Blade Boundary Layer

A series of cascade tests was next undertaken to determine

the effect of freestream turbulence on cascade performance. The

cascade blades were of 1 ft chord C-4 section with the boundary
layer on all blades tripped at the 10% chord position. The cascade

end-walls were porous and provided with boundary layer suction to

ensure an axial velocity ratio of unity. Turbulence grids were

placed upstream of the cascade to vary the freestream turbulence

intensity. The cascade tunnel and instrumentation have been de-

scribed in greater detail by Evans (1972).
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Dimensional velocity profiles at the 70% chord position for
three freestream turbulence levels are shown in Figure 10. There
appears to be little increase in 6,, with increasing turbulence
level, but there is a considerable increase in profile fullness,
particularly at the highest turbulence level. The effect of the
increased fullness on the displacement and momentum thickness is
illustrated in Figure 11. A general decrease in both 6* and 0 is
seen to take place with increasing turbulence level. The maximum
effect occurs at about mid-chord, with little or no effect near
the leading edge where the boundary layer is thin and near theI trailing edge where separation is immninent.

Velocity profiles at the 80% chord position are plotted in
semi-logarithmic coordinates in Figure 12, again for three levels
of freestream turbulence. The main point of this figure is to
illustrate the manner in which the outer layer wake component of
the profile, and therefore the Coles wake parameter HI, decreases
with increasing turbulence level. The actual form of the Coles
wake Function is shown in Figure 13. At the two lower turbulence
levels the function is seen to be a goad fit to the simple relation
suggested by Coles (1956). At the highest turbulence level, how-
ever, triare is seen to be a significant departure from the simple
relation. This effect has already been suggested by Coles (1968)
when examining many data sets for the 1968 Stanford Conference.
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The effect of freestream turbulence on cascade performance is
summarized in Figure 14. Although only three values of the turbu-
lence level were used, the resulting trend can be explained by the
previous boundary layer results. The mass averaged total pressure
loss coefficient is seen to increase to a turbulence level of about
2%, and then decreases with further increases in turbulence level.
This behaviour is consistent with the momentum thickness of the
pipe wall boundary layer, which showed an increase to about a 2%
turbulence level, and then decreased for higher levels due to the
increased profile fullness. The cascade mean deviation angle shows
a monotonic decrease with increasing freestream turbulence. This
result is most likely due to the separation point being moved
closer to the trailing edge with increased turbulence level, because
of the greater energy content of the boundary layer.
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4. UNSTEADY BOUNDARY LAYER DEVELOPMENT ON A

COMPRESSOR STATOR BLADE

Both time-mean and instantaneous ensemble-averaged velocity
profiles were measured at mid-span on a stator blade in compressor
B, which has been described in section 2.1. The hot-wire anemometer
was again connected directly to the PDP-12 computer which was able
to digitize and ensemble-average the signal in real time. Instan-
taneous and ensemble-averaged velocity records as a function of time
were recorded at each station within the boundary layer. The signal
was again phase-locked by means of the trigger signal generated by
a pickup on one of the rotor blades. Details of the experimental
setup and probe used are giwvn by Evans (1973).
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Dimensional time-mean velocity profiles at several chordwise
positions are shown in Figure 15. These profiles were obtained
using a DC voltmeter with an integration time much longer than the
wake passing period, which was connected directly to the linearized
anemometer. Also shown on the figure are Coles profiles fitted to
the data. The Coles profiles appear to give quite a reasonable fit
to the data except at the 80%' chord position where the profile is
approaching separation. On the basis of these time-mean profiles
alone it would seem reasonable to assume that the boundary layer is
wholly turbulent, at least from the 30% chord position.

Figure 16 shows some velocity records taken at several differ-
ent positions within the boundary layer at the 30% chord position.
The value of 6 used to non-dimensionalize the vertical coordinate
is the 699 value from the time-mean profiles. In each case the top
trace is the result of taking an ensemble-average over some 500
records, while the bottom trace is a typical instantaneous record.
The first oscillogram is shown just outside the boundary layer at
Y/16 = 1.14. Rotor wakes appear as jagged peaks in the single trace
and as smoothed out velocity defects in the ensemble-averaged
record. Within the boundary layer the single traces indicate that
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the flow is laminar for approximately half the time and is turbulent

for the remaining half. At Y/6 = .715 the ensemble-averaged record
shows a small peak appearing approximately 1800 out of phase with
the freestream fluctuations. Deeper within the boundary layer the
phase-shifted fluctuations dominate and increase in amplitude to
about Y/6 = .25, after which the restraining influence of the wall
causes the oscillations to damp out. For the high frequencies in-
volved here (240 Hz), the unsteady measurements of Karllson (1959)
indicate that any phase shift in a turbulent boundary layer is small
( 350) and limited to a very thin region near the wall. The transi-
tional nature of the boundary layer here, as evidenced in the single
trace records, appears to be the explanation for the 1800 phase
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shift observed. This is better illustrated by the velocity pro-
files shown in the next figure.

Two instantaneous ensemble-averaged velocity profiles are
shown in Figure 17. These profiles are obtained by taking a "slice"
at a given instant in time through a series of ensemble-averaged
velocity records for the whole boundary layer. For the profile
labelled 0', the slice is taken through a maximum point in the
fluctuating freestream velocity record. The profile labelled 1800
is then taken at a point in the freestream which is 1300 out of
phase with the first profile. Looking first at the profile labelled
1800 , this appears to be a laminar profile with a thickness of only
about 40% of the profile labelled 0°. This profile evidently cor-
responds to the stretches of laminar flow throughout the boundary
layer which are seen in Figure 16. The profile marked 0' appears
to be a turbulent profile with a thickness 2 times that of the

Y/6 180 00
1.0 .=0.51, 1-3.5.

.9 7 180 PHASE SHIFT
IN FREE-STREAM

i\. AtU
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Figure 17. Instantaneous velocity profiles, X/C = 0.3
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laminar profile of the other half of the cycle. The boundary
layer is evidently oscillating between laminar and turbulent flow
during each cycle. The increased velocity in the outer part of
the turbulent profile, together with the very large increase in
thickness, causes the two profiles to cross resulting in the 1800
phase shift. Also shown in the figure is the ratio of fluctuation
amplitude to the freestream amplitude.

A similar cype of transitional boundary layer behaviour to
that illustrated in Figures 16 and 17 occurred at the 50% chord
position. Although the same 1800 phase shift occurred due to the
crossing of the profiles, there appeared to be little or no ampli-
fications of the freestream fluctuations, and the boundary layer
thickness during alternate halves of the cycle changes by about
50% rather than the 150% observed in Figure 17. Individual veloc-
ity record traces still displayed laminar regions in the outer
portion of the layer, but for Y/6 less than about 0.6 the signal
appeared fully turbulent. At the 50% chord position, then, there
appears to be a turbulent oscillating boundary layer with a transi-
tional shear layer superimposed on top of it.

The final two figures show the boundary layer behaviour at the
70% chord position. Examples of both ensemble-averaged and instan-
taneous velocity records throughout the layer are again illustrated
in Fig-ire 18. At Y/6 = 1.00 the rotor wakes are clearly seen to be
turbuient patches imbedded in a laminar flow. Within the boundary
layer the instantaneous records indicate that the flow is fully
turbulent at all times. The ensemble-averaged records show that
the freestream fluctuations are damped out with no perceptible
phase change. Two ensemble-averaged velocity profiles, 1800 out
of phase with one another, are shown in Figure 19. No crossing of
the profiles occurs, and therefore no phase shift as evidenced at
30' and 50% chord. The boundary layer at this position is fully
turbulent and oscillates in the manner described by Karllson (1959)
for the high-frequency unsteady case.

5. CONCLUSIONS

We have seen that boundary layers on turbomachine blades
develop under freestream conditions which are both highly turbulent
and highly unsteady. Both of these factors have been demonstrated
to have a significant effect on boundary layer development. The
boundary layer on an axial-flow compressor blade is transitional
over much of the blade chord, and growth is much greater than on a
turbulent cascade blade. I think the single most important message
which comes through here is that turbomachinery designers should
exercise extreme caution when applying steady cascade data to
turbomachine design.
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DISCUSSION

MELLOR: (Princeton University)

iome of the measurements you showed seem to go opposite to the
way in which we would conceive of a decreasing flow efficient caus-
ing an increase in stall flow which would feed into turbulence;
seems to me a rather major paradox.

EVANS:

My simple-minded explanation of that is I think the velocity
defect wakes, the ensemble average parts, spread out but the ampli-
tude is much decreased. It is not clear what the effect on the RMS
value is, since the wakes spread out but have a decreased amplitude
as the boundary layers become thicker and thicker.

MELLOR:

May I then conclude from your results, that if I was a designer
and had a higher blade chord Reynolds number, then I really wouldn't
need to worry about the unsteady turbulence since the major effectseems to be on transition.
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EVANS:

That is my reading of it, that the unsteady effects, the
effects of this massive change in incidence, every time a wake goes
by, is probably more important than the details of the freestream
turbulence.

KLINE: (Stanford University)

The results that you showed of ours are from Lisin and Waitman's
data.* The reason that we were a little queasy about the accuracy of
those data was because we got cut off by the Sputnik engendered
rebudgetings and never finished in the way we would normally have
done. We had hoped in fact to look at some other parameters besides
intensity, including integral scale; I am still not sure that intens-
ity is the best way to correlate freestream effects.

In regard to your 1800 phase shift, I am not quite sure I under-
stand what you are shifting. You showed two cases. One of them
showed 180 about the same as zero and both were turbulent. In the
other case one was laminar and one was turbulent. In the case where
you had the laminar and the turbulent, how do you visualize this
marching along? That is, if you draw a picture of the boundary
layer, are you visualizing the flow sweeping over the blade turbu-
lent and then at the next instant sweeping over it laminar, or are
you visualizing laminar flow followed by turbulent downstream in
space, or what is happening? I don't have a physical picture that
goes with that curve you presented, and I am not clear on the dis-
tinction between the two cases. When were both turbulent, and when
was one laminar and one turbulent? Are your results in any way
related to the data that Acharya and Reynoldst got in a turbulent
channel flow where they also see 1800 phase shift as a function of
frequency. In those data whether the oscillations are above or
below a critical frequency determines whether you see a 1800 phase
shift; the data are all turbulent.

EVANS:

If I can start with that final point first, I don't know of
that work. But if it is fully turbulent flow I don't think that
phase shift has any relationship to the kind of phase shift I was
talking about.

* See Ref. in Evans' paper.

t "Measurements and Predictions of a Fully Developed Turbulent
Channel Flow with Imposed Controlled Oscillations," Report TF-8,
M.E. Department, Stanford, May, 1975.
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Now if I can go back and try and explain the slides. Each
slide was at a given chordwise position on the blade. Something
labelled zero degrees simply referred to fluctuations in the free-
stream. So if my freestream ensemble average velocity looked like
Figure I, I just picked a point in the freestream and arbitrarily
called that zero degrees phase and then took a slice through all
records to get this kind of instantaneous velocity profile. Midway
in the freestream record, I took another slice and labeled that
1800. So those two profiles were 1800 out of phase with respect to
this freestream, if you like.

The way I visualize the boundary layer developing is that at a
given point you see a laminar profile and then all of a sudden you
get this switch to a turbulent profile, with the thickness increas-
ing. If you follow it along the blade chord I think you have a
laminar boundary layer with turbulence sweeping up to the front of
the blade as a wake goes by and then oscillating back and forth.

00 IS O

Free- Stream Record

Boundary Layer
Records

Slice"

Figure I

'5
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KLINE:

So what you are saying is that if you get far enough down the
blade it is turbulent all the time?

EVANS:

Yes, that is what the second slide showed.

KLINE:

So the difference is that station is farther down the blade.

EVANS:

That is down some 70% of the blade chord.

KLINE:

Somewhere in between you are seeing laminar flow, then turbu-
lent flow, then laminar flow intermittently if you stand at that
station?

EVANS:

Exactly, over quite a large chunk of the blade, at least up to
50% chord.

KERREBROCK: (M.I.T.)

I think that this is a very nice set of data. You should be
congratulated on it. Naturally I am trying to correlate it with
what I understand from our experiments and I must say that there
are some gaps. A specific question arises when I compare your time
resolved (lower) traces with the phase lock results. It seems to
me that the amplitude of what you call turbulence as inferred from
the real time resolved traces is really as large as, or perhaps
larger than, the unsteadiness which is a result of blade passage.
Is that really consistent with the picture of turbulence?

EVANS:

I guess I haven't really thought about that enough to rational-
ize it. I don't have information on the scale of the turbulence
other than just those pictures as you suggest.

My remarks concerning the relative importance of the unsteady
component of the flow were made on the basis of the ordered unsteady
signal with no relation to the scale of the turbulence at all. I

$
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think the turbulence scale effect is something else that should be

investigated.

KOVASZNAY: (Johns Hopkins University)

I have a modest suggestion at that point. I have tried these
techniques myself. If you go just one step further in your signal
processing, namely, if you take the ensemble averaged signal and
subtract it from the full signal then you obtain a fluctuation; now
you square it and then ensemble-average it for a second time. One
obtains the time dependent turbulence level. It is really spec-
tacular because when the probe is in the wake the level will shoot
up and outside the wake, essentially in the inviscid region, it is
low. Using this technique it will reveal a great deal. I suggest
you do this since you have the equipment to do it so it won't be
difficult.

EVANS:

I am no longer where the equipment is, unfortunately.

MILLER: (Naval Postgraduate School)

I was going to offer one more data point to your effects of
turbulence on performance. Some years ago in a quick experiment we
reported, in a conference I believe in Trenton Naval Air Test Sta-
tion,* on the results of the replacement of some inlet guide vanes
with cylinders and the effect on stage performance. As I recall
there was about a 25% improvement in stage performance even when the
pressure dropped across the 1i inch cylinder to replace the inlet
guide vanes was charged against the pressure rise. So the intensity
was out about 15% or so. So there is more to it if you go further.

LAKSHMINARAYANA: (Pennsylvania State University)

We have done exactly what Kovasznay has mentioned.t Using an
ensemble averaging technique, we can derive turbulence intensity as
well as correlation. I had one question: was the unsteady boundary
measurement taken with a single wire coming out of the blade surface?

* Ref.: Effect of High Intensity Inlet Turbulence on Compressor

Cascade Performance, Proc. of Environmental Effects Conference,
Naval Air Station, Trenton, N.J., 1964.

t Lakshminarayana & Poncet: A method of measuring three dimensional
rotating wakes behind Turbomachinery Rotors, J. Fluids Engineering,
June 1976, p. 87.
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EVANS:

Coming down toward the blade surface.

LAKSHMINARAYANA:

That is, you are seeing the wake that will induce three dimen-
sional flow on the stator blade? Are you measuring the three
dimensional flow?

EVANS:

This was only a single wire, so it was limited to that extent.
There was very little or no mean radial flow here. But as you say,
there are certainly going to be some radial fluctuations within the
wake.

I

)



VISUAL STUDY OF OSCILLATING FLOW OVER A STATIONARY AIRFOIL

A. A. Fejer

Illinois Institute of Technology

Chicago, Illinois

ABSTRACT

Using special visualization techniques involving hydrogen
bubbles the fundamental features of fluctuating flows over a
stationary airfoil have been determined including the onset and
nature of dynamic stall. It has been found that in periodically
changing flows dynamic stall can assume a variety of forms depend-
ing on the frequency and amplitude of the unsteadiness. Further-
more, it has become apparent that a strong interplay exists between
viscous and inviscid phenomena with the role of the latter being
predominant.

In~ forward flight the rotor blades of helicopters move through
the air with periodically changing relative velocities and angles
of attack. The increase in the amplitude of these changes with
flight speed may ultimately lead to abrupt changes in aerodynamic
forces and moments on the retreating blade, a phenomenon referred
to as dynamic stall. An experimental study seeking to identify
the flow processes producing it is currently in progress at I.I.T.
under U.S. Army support. As part of this study we have observed
for the first time the flow field around a stationary airfoil pro-
duced by a unidirectional stream with periodically changing velocity
with the aid of a hydrogen bubble visualization technique. The
airfoil, an NACA 0009 profile, was set at angles of attack extending
from -2° to +100, the flow was oscillated sinusoidally with ampli-
tudes NA up to 70% of the mean velocity and at reduced frequencies

517
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K* ranging from 0.15 to 3.00. The range of Reynolds numbers
extended from 3,000 to 27,000.

At low frequencies of oscillation a range of "quasi-steady"
flows was noted where the main features of the oscillating flow
appeared at a given instant as duplicates of those in steady flow
and the amplitude of oscillation was of no consequence. But when
the frequency of oscillation is made to increase to a certain
threshold frequency, the flow becomes amplitude dependent. At
angles of attack below the angle of static stall (a < 70) the flow
separates from the suction surface during the decelerating phase
of the cycle and reattaches during the accelerating phase provided
the amplitude is sufficiently large. The smallest amplitude which
produces this separation-reattachment sequence depends on the fre-
quency as shown in Figure 1, taken from Reference 1 (e.g., K = 0.6
at a : 60).

It can be seen that this amplitude decreases with an increase
in frequency or angle of attack. At angle settings above stall
(a > 70) there is again a "quasi-steady" range of frequencies where
the airfoil remains stalled during the entire cycle and at all
amplitudes. And, as seen in Figure 2, also from Reference 1, there
appears to be again a threshold frequency at which the flow becomes
reattached to the airfoil during the accelerating part of the cycle
and separates during the decelerating part (e.g., K = 0.48 at
: 80).

In the amplitude dependent range of oscillations, with the
airfoil set at angles below stall, the onset of separation was
marked by the development of an energetic reversed flow in the
boundary layer. The chordwise extent of the region of reversed
flow seemed to depend on amplitude and angle of attack; at lower
amplitudes it covered the rear half of the suction surface while
at higher amplitudes it engulfed the entire surface. At angles
above stall reversed flow was always present in the amplitude
dependent regime, at least during deceleration. It first appeared
near the leading edge and spread with increasing amplitudes over
the entire surface.

A second feature of the oscillating flow was the generation
of intense, large size vortices near the leading edge that appeared
to be caused by interaction of the freestream and the reversed flow
at the beginning of the accelerating phase of the cycle. Subse-
quently they become detached from the surface and are convected
downstream.

* The reduced frequency K is defined in terms of the frequency f,
chord c and mean velocity U as K = vfc/U,
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The features of the flow described above have been determined
from visual observations at various combinations of angles of
attack, mean velocities, amplitudes and frequencies from motion
pictures. Movies made during the tests are available.
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DISCUSSION

MILLER: (Naval Postgraduate School)

Several years ago in a thesis* we reported essentially the
same experiment in which we measured the pressure distribution and
then made ensemble averages. We went to quite large angles of
attack, about 150 as I recall, and then looked at both instantaneous
pressure distribution ensemble averages and the time average and the
ensemble average. The interesting thing was that we discovered two
things. What happens is that the leading edge vortex causes a
reattachment and at 150 angle of attack we regained on a time average
basis about 85% of the theoretical CL. Very surprising but it
explains why a helicopter flies. If it weren't for that the thing
would fall out of the sky. Then we looked at the instantaneous pres-
sure distribution from the ensemble averages and were able to detect
that this reattachment occurred at about 1/3 cord and my feeling is
that very sharp leading edges for example would lead to an even
smaller number and it would be worthwhile to begin to look at lead-
ing edge radius effect on helicopter performance.

* Banning, M. R., "The Unsteady Normal Force on an Airfoil in
Oscillating Flow," Engineers Thesis, Naval Postgraduate School,
Department of Aeronautics, Monterey, CA, Dec. 1969.



GENERATION, MEASUREMENT AND SUPPRESSION OF LARGE SCALE VORTICITY

IN INTERNAL FLOWS*

R. A. Wigeland, M. Ahmed & H. M. Nagib

Dept. of Mechanics & Mechanical & Aerospace Engineering

Illinois Institute of Technology, Chicago, Illinois 60616

ABSTRACT

The main objectives are not only to develop recommended pro-
-edures for control of large scale swirling and secondary flows,
but also to extract from empirical observations general concepts
which design and test engineers could adapt for "tailoring and
manipulating" their own special flows with different rotational
characteristics. Several typical rotational flows were generated
and superimposed on the flow through the test section. Careful
calibration was carried out using hot-wire anemometers, and minia-
ture vane-vorticity indicators. These flows represent the basic
target conditions to be controlled by inserting various flow
manipulators: honeycombs, screens and perforated plates. Compari-
son of the characteristics of the flow downstream of the manipula-
tors (e.g., distribution of streamwise vorticity) to the original
test flows provides a measure of the efficacy of the manipulators
in suppressing large scale vorticity as well as clues to dominant
mechanisms of the flow transformations.

For wind-tunnel experiments, a flow which has uniform mean
velocity and low turbulence levels along with low acoustic dis-
turbances is desired. Various research activities, a more recent

* Supported under ARO Grant No. DAHCO4-14-G-0160. The details of
the study are available in an ARO Technical Report which is based
on the Master's thesis of the second author and is included here
as the first reference.
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one being by Loehrke and Nagib (1972), have concentrated on attain-
ing desired levels of uniformity and turbulence intensity in the
freestream of ducts and wind tunnels. In one of the flow conditions
t.iey studied, Loehrke and Nagib (1972) reported anomalous behavior
which they attributed to some kind of secondary flow. Most wind
tunnels and ducts exhibit various degrees of swirl and some second-
ary flows whether these are due to the propulsive fan or to the duct
bends in presence of shear layers. As Carbonaro (1973) points out,
curing these undesirable characteristics "is frequently an empirical
cut-and-try study relying on ingenuity of the design engineer rather
than on well established methods." At lIT in the past, such flow
non-uniformities were taken care of by "overkilling" the condition,
that is, by inefficient use of flow manipulators, such as screens
and honeycombs, which results it. a loss in the top speed of the
wind tunnel and often in the gradual heating of the air in the tun-
nel, as discussed by Tan-atichat and Nagib (1974). Carbonaro (1973)
reports that no general treatment of the problem of such rotational
components has been found'in the literature. With all of these
statements in mind, the present systematic study on techniques for
control and suppression of the mean and unsteady characteristics of
swirling flows in confined streams was undertaken, with some of the
initial results being presented here.

Starting with a flow facility which has uniform mean velocity
and turb:ilence intensity levels of from 0.6% to 1.0% depending on
the freestream velocity, various rotational flows had to be developed
and documented so that controlled conditions exist for determining
the effect of different flow manipulators on these swirling flows.
Three different rotational flows have been developed so far, one
which has a strong rotational core with a nearly irrotational outer
part, another with angular momentum only near the walls, and the
third with a swirling jet in the center of the duct which entrains
the outer flow. Devices similar to those constructed for this
experiment have been used by other experimenters, and references
for these can be found in the report by Ahmed et al. (1976).

Construction of the first swirl condition consisted of placing
two airfoils next to each other and at equal but opposite angles of
attack so that a strong wing-tip trailing vortex is generated. The
size and strength of this vortex can be varied by changing the angle
of attack and varying the freestr,'an velocity. The airfoils span
one of the 6 inch diameter ducts identical to those formin9 the test
section of the wind tunnel. The separation distance and hinge point
for the airfoils were optimized to give the strongest and most syn-
metric swirl conditions, which persist throughout the length of the
test section without substantial changes in their characteristics.

The second swirl generator consists of eight slots equally
spaced around the periphery of one of the ducts. The slots are
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as tangential as possible to the inner wall of the test section.
Compressed air is supplied through these slots, so that the result
is a series of tangential jets providing angular momentum to the
flow near the wall and having little effect on the inner portions
of the axial flow. This facility has been developed to provide jets
which are as uniform as possible along each slot and among the eight
slots.

The third facility, called the swirling jet ejector, is a
separate facility supplied by compressed air. Air is forced through
an annular region containing 18 adjustable vanes which can impart
angular mor.entum to the air. This air exits through a 1-inch diame-
ter jet in the center of one of the circular test sections. The
remaining air flow through the test section is provided by the
entrainment action of the jet which draws air in from the room.

The experiments using these swirl generators are performed as
shown schematically in Figure 1. With these facilities, it is
necessary to have a method for measuring the swirling component of
the flow. A device which is called the vane-vorticity indicator
has been developed for this purpose. Vane-type vorticity indicators
have been used with some success by Barlow (1972) and by Holdeman
and Foss (1975) for making measurements, and by Shapiro (1974), for
demonstration purposes in his movie on vorticity. Since the vane

SWIRL TURBULENCE
GENERATOR MANIPULATOR

" CLEAN TEST- OUTPUT

INDICATOR -
X80 OR PROBE

Figure 1. Schematic of Test Section Arrangement.
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has a more rapid and direct evaluation of the local fluid rotat-',n,
its use in this experiment seemed promising. The miniature v- .s
used here have four perpendicular blades and are made from a,uminum
for light weight and low moment of inertia. Teflon bushings and
washers were found necessary to reduce the friction and to provide
a consistent and repeatable measurement of the swirl component.
This vane is mounted directly upstream of a hot-wire which has a
very short sensor length. When the vane rotates, the wakes from
the blades pass by the sensor and can be detected in the hot-wire
output signal. Measurement of the time between passage of the
wakes using autocorrelation of the hot-wire signal provides a
measure of the average rotational speed of the vane.

Since the airfoil swirl facility provided the most variety of
clean flow conditions, it was used for the calibration of the differ-
ent vanes. The vane was positioned in the center of the airfoil's
trailing vortex and calibrated for vane rotational speed as a func-
tion of angle of attack of the airfoils at several freestream veloci-
ties. We found that the same calibration curve was obtained for
three vanes, each of a different size and weight, so that this curve
was used as the calibration standard. The independence of the curves
on geometrical parameters is encouraging. However, the rotational
speed of the vanes must be related to the local fluid rotational
velocity.

With the aid of an x-wire probe and using the same conditions
as for the calibration of the vanes, the local tangential velocity
can be determined. Typical profiles of the tangential velocity as
a function of the radial distance from the center of the vortex are
shown in Figure 2. Once the tangential velocity is known, the local
rotational speed can be calculated and used for comparison with the
vane-indicator data. Using any of the vanes there are two methods
which can be emnployed to obtain the "proper" rotational speed of
the fluid for this comparison. One method is to determine the rota-
tional speed of the solid body portion of the vortex. However, by
superimposing the width of the vane on the tangential velocity pro-
files, we find that the vanes extend slightly beyond the region of
solid body rotation. Hence, the second method uses the speed indi-
cated at the tip of the vane as being the characteristic velocity,
which is called the vane-width speed. The correct method is prob-
ably some average between the two. Taking the calibration curve for
one of the vanes and plotting twice the vane speed versus the fluid
rotational speed as calculated by these two methods (Figure 133 of
Ahmed et al. (1976)), the agreement is quite good for airfoil's angle
of attack over 50, since the rotational friction of the vane becomes
less important as the vane speed increases. Even in the lower re-
gion, a slightly different multiplication factor would render most

4 of the remaining vane data in agreement with the x-wire data. This
shows that the ratio of the vane rotationol speed to the fluid

L
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Figure 2. Tangential Velocity Profiles Across Vortex of Airfoil

Swirl Generator for Various Angles of Attack.

rotational speed, denoted by n, is somewhat independent of the fluid
rotational velocity. Comparin the x-wire data to the vane data for
various freestream velocities ?Figure 134 of Ahme et al. (1976)),
a similar independence of the ratio n is observed.

Another important test is for the effect of the vorticity
gradient, asix/ar. In Figure 3 the streamwise vorticity is plotted
as a function of radial distance from the center of the vortex. The
x-wire tangential velocity data were converted to vorticity by assum-
ing axial symmetry and using the relation

W aw

where W is the tangential velocity. The vane vorticity indicator
data were interpreted using the calibration curves. The corrected
vane data agree quite well with the calculated x-wire data until
the level of vorticity drops too low for the vane to rotate due to
friction. The interpretation of the vane data was carried out
using both methods for determining the fluid rotational speed, 's
was discussed for Figure 2. In summary, it appears that the ratio
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Figure 3. Comparison of Radial Distribution of Local Streamwise
Vorticity Obtained from X-Wire and Vane-Vorticity
Indicator Measurements in Test Flow Condition "V-2-1."

n is independent of the fluid rotational speed, the freestream
velocity, and the spatial gradient of vorticity for the range of
these parameters tested. The vane does then provide a good picture
of the streamwise vorticity of the flow.

This device is then used to determine the test flow conditions
generated by the swirl generators. In each case, changing of the
parameters involved was done until flow conditions with reasonable
swirls were obtained. These flow conditions are used to test the
effect of the different flow manipulators. One flow condition from
the tangential jet swirl generator, one from the swirling jet ejec-
tor, and seven from the airfoil swirl generator with different
strengths and different sizes were utilized.

The flow manipulators used were various screens, honeycombs,
and perforated plates. The screen has a mesh of 0.0357 inch with
a solidity of 0.35, i.e., made of wire 0.007 inch in diameter. The
honeycombs were #3 which is 1-inch long, with a 0.257 inch mesh and
0.014 solidity; #2 which is 2-inch long, with a mesh of 0.135 inch
and a solidity of 0.008; and #1, a 2-inch long honeycomb, 0.068



SUPPRESSION OF VORTICITY 527

inch mesh and 0.03 solidity. The perforated plates were both 0.063
inch thick, #2 with 0.14 inch holes, 0.188 inch mesh and 0.49 solid-
ity, and #3 with 0.25 inch holes, 0.313 inch mesh and 0.42 solidity.
Figure 4 displays the pressure drop coefficient of these manipula-
tors as a function of freestream velocity. The importance of the
pressure drop coefficients will be brought out in the following
discussion on manipulator performance.

,/
4
I |I I I li

3.2-

2A.8 HC. I

2. P..*

2.0-

I .I

0.8-

0.4

25 38 45 55 65 M5
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Figure 4. Pressure Drop Coefficient of Manipulators Versus Free-
stream Velocity.
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For each of the test flow conditions, manipulators were placed
a certain distance downstream of the swirl generators, and their
effect on the swirl flow condition was determined by the vane indi-
cator. Figure 5 is a sample of some typical data taken in two of
the test flow conditions. The top figure is in the airfoil swirl
flow condition "V-2-1," while the bottom one is in the swirling
jet ejector, i.e., flow condition "SJ-I." In the top figure, the
vane rotation defining the flow condition is the top curve, desig-
nated as no manipulator, and the other curves demonstrate the
effects of the different manipulators as indicated. It can be
seen that the screen has the least effect, then the perforated
plates, which have more effect and then the honeycomb, which elim-
inates the measurable vorticity completely at some small distance
downstream. The drop in vane rotation with downstream distance
immediately after the manipulator is viewed as a homogenization of
the pieces of the swirl condition that emerge from each cell of the
perforated plate or the honeycomb. Only in the manipulator itself
can the angular momentum be absorbed; afterwards the flow from each
cell must rejoin. Notice that even the screen can take some torque
from the flow, and does not show the decrease in the rotational
speed immediately downstream due to its small mesh, low solidity,
and short length. In the lower figure, the screen and perforated
plate have approximately the same effect while the honeycomb again
eliminates the swirl. We conjecture that a different mechanism is
working in this case. Further elaboration can be given based on
Figure 6. The peak for P.P. #3 in the top figure is much flatter
than it is in the lower figure, while the profiles downstream of
the screen do not exhibit much difference between them. The major
difference between these two conditions is the size of the swirling
part of flow; i.e., the swirl in the lower figure is about 3 times
larger. When the size of the swirl is compared to the characteris-
tic mesh size of the manipulator, there is not much change for the
screen between the two cases but there is for the perforated plate.
It becomes apparent that a scaling between the swirl size and the
manipulator characteristic length is important, and for the best
effect, the proper ratio must be chosen.

Another important result can be demonstrated by Figure 7. In
the top part of the figure the effect of a given manipulator on all
of the swirl conditions is sunnarized. The swirl reduction ratio
presented here is one minus the ratio of vane rot'tional speed in
the flow downstream of the manipulator to that in the flow at the
same position when there is no manipulator present. As outlined
in the figure, a range is defined which bounds the reduction in
swirl of the conditions employed. Using the dashed marks to indi-
cate this range, and taking similar results from the other manipu-
lators, a composite map of the effect of the different manipulators
can be drawn, as is shown in the lower part of the figure. An
important thing to notice in this composite plot is that the same
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reduction in swirl can be achieved using any one of several manipu-
lators, as indicated by the overlapping regions. This makes it
possible for the design engineer to select a certain manipulator
with a known level of performance which may have other desirable
characteristics for his case, where another manipulator with the
same swirl reduction ratio may not have them. Another, probably
more important result is that the selection can be optimized with
respect to the total pressure drop, an important parameter in wind
tunnel design. In particular, note that honeycomb #3, which elimi-
nates the swirl completely, also has the lowest pressure drop coef-
ficient, as presented in Figure 4. Given a certain swirl condition,
it should be possible to choose the best manipulator for the job
based on the other factors involved. It is perhaps better to work
on the swirl reduction first when modifying a given flow, and then
to operate on the turbulence, rather than the other way around.
It may also be possible to achieve better results with combinations
of manipulators as far as both of these items are concerned.

REFERENCES

1. Ahmed, M., Wigeland, R. A. and Nagib, H. M. 1976 Generation
and management of swirling flows in confined streams. I.I.T.
Fluids and Heat Transfer Report R76-2.

2. Barlow, J. B. 1972 Measurement of wing wake vorticity for
several spanwise load distributions. University of Maryland
Report.

3. Carbonaro, M. 1973 Review of some problems related to the
design and operation of low-speed wind tunnels for V/STOL
testing. AGARD .Report No. 601.

4. Holdeman, J. D. and Foss, J. F. 1975 The initiation,
development, and decay of the secondary flow in a bounded
jet. Journal of Fluids Engineering, Vol. 97, Series 1,
No. 3, p. 342-352.

5. Loehrke, R. I. and Nagib, H. M. 1972 Experiments on manage-
ment of free-stream turbulence. AGARD Report No. 598;
A0749891.

6. Shapiro, A. 1974 Illustrated Experiments in Fluid Mechanics.
MIT Press.

7. Tan-atichat, J. and Nagib, H. M. 1974 Measurements near bluff
bodies in turbulent boundary layers intended to simulate atnos-
pheric surface layers. I.I.T. Fluids and Heat Transfer Report
R74-2 or U.S. Air Force Office of Scientific Research 74-0964;
AD 782090.



SUPPRESSION OF VORTICITY 533

DISCUSSION

SAFFMAN: (California Institute of Technology)

Do you know if this vortex is laminar or turbulent. How can
you tell?

NAGIB:

The ones I presented here today are all laminar as can be seen
from hot wire measurements. In addition, by introducing a grid
upstream of the airfoil, for the same angles of attack, we have
looked at the same conditions with a different level of controlled
background turbulence.

SAFFMAN:

Because of the rigidity of rotating flows with high rotational
speeds, it is usually dangerous to believe that any measurement of
the trailing vortex which you get by sinking a probe into the flow
is reliable. The probe may disturb the flow a great deal more than
you think. How can you check up on this?

NAGIB:

We tried a number of things. One of them was through visualiza-
tion by adding some smoke. We were quite aware of the problem and
checked for anything like vortex breakdown or similar instabilities.
We looked at the flow conditions very carefully in order to generate
strong and stable vortices. I remember there was one curve that
showed some high RPM--in the range 6,000-8,000--and some lower ones.
We had no problems with the higher ones, but at the very low rotation
rates weak vortices were sensitive to the probe. There was one slide
where the vane was held in someone's fingers that showed you the
physical size of the vane and how small it is. The vortex was usually
much larger than the vane.

CORRSIN: (The Johns Hopkins University)

I would like to remark that H. B. Squire was doing things like
that a long time ago and there might be some experiences in Imperial
College related to your work.

Another thing that I wanted to remark on is the peculiar kind
of nonlinearity, to which these are subject. People who use vane
anemometers in meteorology have finally discovered that they get
large errors in the mean when fluctuations are present. Because of
the inertia things tend to slow down more gradually than they speed
up. In a gust they respond very quickly and when the wind dies down,
they reduce in speed very slowly and there are errors in the mean.
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NAGIB:

In regard to your first comment we are aware of many of the
references but we could not find any details. For example, there
is one report from the University of Maryland by Barlow, which we
included in our list of references. However, there were no details
of careful calibration of the instrument which include tests for
spatial resolution and so forth; but maybe all of the information is
buried in some report which we never found.

CORRSIN:

There was a Ph.D. thesis from the University of Bombay. (Pub-
lished reference: papers by Sundaram Ramachandran in the Quarterly
Journal of the Royal Meteorological Society, Volume 95, No. 403,
page 163, 1969 and Volume 96, No. 407, p. 115, 1970).

NAGIB:

In regard to your second comment, the swirling flows we used
were all steady state conditions. If you have low frequency turbu-
lence fluctuations or flow unsteadiness the nonlinearity you mentioned
becomes very important. We did not suffer from it because our devia-
tions from the nean were very small and because of the small moment
of inertia of the vanes. However, I agree with you that these non-
linearities are present in the vane-vorticity meters as in cup
anemometers.

BRADSHAW: (Imperial College)

I am afraid that Imperial College has no information as far as
the vorticity meter is concerned.

Denis Bryer of the National Physical Laboratory used a very
similar rotating-vane device in delta wing trailing vortices about
ten years ago, but did not write it up because the correspondence
between vorticity and r.p.m. did not seem to be consistent.
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PANELISTS

J. Laufer (University of Southern California, L.A.) - Chairman

D. Coles (California Institute of Technology)
S. J. Kline (Stanford University)
E. Reshotko (Case Western Reserve University)
W. W. Willmarth (University of Michigan)

S. N. B. MURTHY: (Purdue University)

Welcome to the Panel Discussion, an important part of this
Workshop.

The principal objectives here are to discuss the subject of the
Workshop in general terms but, of course, in depth and to point out
the basic advances and outstanding questions as far as we can see
them.

I suppose I could add here parts of my initial letter to Pro-
fessor John Laufer who has agreed to chair the Panel.

"I believe the speakers and participants at the Workshop will
discuss in various ways the following:

a) measurements in curved and rotating flows and in wakes;

b) modeling of curved and rotating flows and wake flows;

c) structure of turbulence as it is affected by various inter-
actions in confined flows; and

d) specific measurements in cascades and turbomachinery.

"In putting together the program, I had, in fact, in mind dis-
cussion of such topics from the point of view of establishing:

537
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i) What can we calculate with some rationale?

ii) What is the possibility of synthesizing the approach
based on examining the large scales of turbulence in
terms of coherent structures and the turbulent stress-
energy-statistical viewpoint?

iii) What kind of detailed measurements are being made and
are required in complex flows?

iv) Are there any lessons in the foregoing for people engaged
in the design of diffusers and turbomachinery?

"I also thought that some other questions of broader import may
also be raised during the panel discussion, for example:

a) What are some of the implications of advances in data proc-
essing?

b) Should we emphasize measurements of pressure-velocity space-
wise correlations in boundary free flows?

c) To what extent are scalar quantities useful in experiments
as indicators?

"Having said the foregoing, I would like to leave the entire

business of the panel discussion in your hands. Your contributions
to the field are universally respected and I am sure you are in a
unique position to extract the best out of the panel and the audi-
ence. From the point of view of those sponsoring the Workshop, I
hope, a program of research will evolve during the Workshop."

Now, Professor Laufer.

J. LAUFER: (University of Southern California, L.A.)

Incidentally, if anybody would like to take my position I would
be more than happy to let them have it. I did promise that I would
do my best to steer the discussion in a more or less unified direc-
tion. Since the interest of the people present here covers wide
areas, to keep this discussion in some sort of focus will be diffi-
cult indeed. I would like to remind everybody that the primary
purpose of our meeting here is to bring together the practitioners
of the turbulence problem with those individuals whose primary
interest is applications and in particular applications which happen
to have extremely difficult geometry.

Now I discussed with the members of the panel what would be the
best procedure here in conducting such a discussion and I think all
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of us agreed to try to keep the discussion as open as possible, to
keep it unstructured and put only the following boundary condition
on the discussion. We have approximately one hour and a half. Let's
divide it into two periods. In the first period, let us try and con-
centrate on problems having to do with the philosophy of experiments
as applied to the problems under discussion, and in the second half
let us concentrate then on the question of modeling: on the theo-
retical approach to this problem.

In order to start the discussion let me just present you with
the following observation as far as the experiments are concerned:
When I listened to the various presentations having to do with
experiments I noted that they could be divided into two distinct
groups. One set of experiments considered relatively simple geome-
tries such as mixing layers, turbulent boundary layers and super-
imposed on such simple flows were certain types of perturbations,
like freestream turbulence level and outer vorticity layer; thus it
considered a slightly more complicated situation than the simple
"basic turbulence problem" itself.

The second group of experiments tried to simulate in the labora-
tory the more complicated "real life" problems connected with turbo-
machinery; the most interesting example was Kerrebrock's experiment.

The two approaches are obviously different in nature and I would
like to present you with this question: What are the advantages and
disadvantages in following these two different philosophies in formu-
lating the experiments themselves?

So I invite the members of the panel or the audience in consider-
ing this question.

H. W. LIEPMANN: (California Institute of Technology)

With a complex and technical, important, problem like turbu-
lence, one has to distinguish clearly in one's mind whether one
attempts to contribute to the understanding of the physics or whether
one attempts to solve (or fix) urgent, important technical problems.
Both directions of work are important but they do differ of course in
the methods used. In the one, the problem is simplified as much as
possible without losing the essential ingredients and results of gen-
eral validity are wanted. In the other, a very complex set of condi-
tions has to be accepted but specific results are usually sufficient.

The main difficulty, in my opinion, with much of the work in
turbulence is the lack of distinction between these two avenues A
lack of understanding does not necessarily foreclose the porbility
of important contributions to industrial problems (e.g., the lack of
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a fundamental theory of phase transition has not affected the steam
turbine). Conversely, the successful application of a turbulence
model to complex technological problems may not contribute to an
understanding of turbulent shear flows.

Both approaches are necessary and much fruitless discussion
a,,d argument stems from a lack of keeping the distinction between
the two in mind. Indeed a meeting like the present one has, in my
opinion, succeeded if it exposes the fundamentalists to the modellers
and both of them to the industrial problems. For example, Prof.
Kerrebrock's talk dealing with the complexity of turbulent flow in
real, rotating machinery emphasized for me the need of more funda-
mental experiments with turbulence in rotating systems and in other
systems where the usual diffusive transport is wavelike, e.g., in
stratified flow and liquid Helium II. Maybe an even more "radical"
talk dealing with industrial problems would have been useful in a
further exposure of fundamentalists to technology and vice versa.

E. RESHOTKO: (Case Western Reserve University)

On this panel I seem to be low man on the totem pole experi-
mentally, so maybe that is why I am talking first. Now, I may wish
to object to the division of problem areas into experimental and
theoretical. I support what Prof. Liepniann has just said. The
problem classes that he defined are just as valid theoretically as
experimentally and that we really should consider these approaches
simultaneou -I,, first in discovering new phenomena and then once a
phenomenon . been defined, to refine our knowledge of it to the
point where it becomes of engineering utility. I don't know if I
can pressure the chairman to change the orientation of the discus-
sion but I feel it is really not easy to discuss experiment as
divorced from theory or vice versa.

The question in any r". ting of this kind is: What can we hope
to accomplish toward solving the general problems motivating our
work? The title of the symposium was "Turbulence in Internal Flows."
The presented work dealt both with steady turbulent phenomena in
boundary layers and other types of flow field elements as well as
with some attempts at the unsteady turbulent problem. What are the
applications in a propulsion sense? What kind of information do we
really want?

As far as turbomachinery goes we already have, and for many
years, have had, turbomachinery elements that have of the order of
90,, stage efficiency for compressors or certainly between 85% and
90A',. The likelihood of improving stage efficiency is not very great.
We may be able to improve the performance in the sense of pressure
ratio per stage, to have fewer stages for a given machine. This
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looks hopeful except that it will lead more toward transonic and
supersonic staging. -I believe that while transonic work was men-
tioned, most of the activity that we heard about today was nearly
incompressible. As staging becomes more transonic, and perhaps
even supersonic, we will require different kinds of capabilities
both in terms of our experiments as well as in our calculations.

The other point that was evident in the presentations, primarily
today and highlighted in Prof. Kerrebrock's talk, was the significant
influence of unsteady phenomena in turbomachinery. Professor Kerre-
brock described particularly the interactions between flow phenomena
on the blading and modes of oscillation within the configuration, in
his case the duct modes. I think we have to ask ourselves, in what
sense are these important? In terms of performance, perhaps, they
are not all that important because of only the very slight improve-
ments possible. But they are certainly important, for example, in
terms of acoustics. We have to start asking ourselves, to what
extent must we really consider these phenomena? How much effort are
they worth? It would seem that this is something that we might think
about as a result of this meeting. It certainly represents a depar-
ture from the general trend of the work displayed in the presenta-
tions.

J. LAUFER:

I think Eli Reshotko justly emphasized the importance of un-
steady flows and Fejer's very interesting movies certainly dramatized
the difficulties associated with, for instance, unsteady separation.
I would just like to mention that by now our experimental techniques
have advanced far enough that we could and should in fact re-examine
this problem that in the past we avoided because of experimental
difficulties. Today with the use of conditional sampling techniques,
phasing, etc., we should be seriously thinking of attacking these
problems.

S. J. KLINE: (Stanford University)

I guess in summarizing this meeting we have to say that the
state of the art is turbulent. What I mainly want to talk about
is based on the 1968 meeting, but before that I want to say something
about Prof. Reshotko's remarks as applied to diffusers. There are
some diffuser questions that still need work. In the first place,
no present method of calculation will predict some important design
optima. We are still optimizing rff-data correlations, which means,
when we get into extensions, we are still in trouble. One case
where large turbomachinery manufacturers are currently asking for
information is turbine after-diffusers that have struts. In
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particular, annular configurations in large machines are sometimes
troublesome because mechanical limitations squeeze the design; the
diffuser has to be short. This area looks like a one or two step
extension from some of the wake calculations we are now able to do.
More work is needed, and there are other such examples.

In terms of the 1968 conference, I am afraid that I will have
to violate your ground rules also and make it more turbulent. What
I want to talk about is the interaction between theory and experi-
ments. I don't see how to avoid that. I wanted to ask a question,
"What, if anything, did we learn from the 1968 conference that can
be applied?" (Professor Coles was also deeply involved in that con-
ference, but I assume, knowing Don Coles, that if he disagrees with
me he will say so.) I am talking about the results in the two
volumes entitled "Computation of Turbulent Boundary Layers--1968
AFOSR-IFP-Stanford Conference." What we tried to do in those vol-
umes was compare the existing theories on turbulent boundary layers
with good, standardized data. I think, however, that it is worth
reflecting that we scooped up something like 75 years worth of data.
We also need to remember the obvious fact that most of that data,
not all of it, but a very large share of it, was really motivated
by problems of aeronautical engineering. In order to do wing flows
people have done a lot of work on smooth surface incompressible
turbulent boundary layers. That was the class of flows to which we
restricted ourselves. We did so because that was the class of
flows for which we believed there were enough data to do a good job.
Hence one does not get into the difficulty--that Prof. Liepmann
very properly just pointed to--of basing a calculation method on
one set of data. This lesson certainly comes out of the results of
the conference very clearly. Up to the time that those volumes were
completed, papers in the published literature typically checked two
or three sets of data. However, if you look closely, you will find
that there are no two or three sets of data in those volumes that
can tell whether a given method is any good or not. So that, in
fact, the 16 mandatory date sets in those volumes represent some-
thing like a minimum rather than a maximum for verification of a
calculation method. I take "verification" here to denote the idea
that if you extrapolate to another flow, there is a high probability
of obtaining reasonable results.

Several people asked us about a year or two ago, "Should we
repeat such a conference in 1978--10 years after the first one?"
There are two difficulties. First, I am not sure I want to do that
much work again. Leaving that aside, there is a much more serious
difficulty. If you question what data sets would you put together,
what classes of flows would you try to treat, then the extensions
run off into at least four directions that haven't been adequately
Llassified.
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First, are other effects on the boundary layers; we saw evi-
dence on one of these in this conference, that is, the effects of
freestream turbulence. The last time I put this together with some
help from a number of leading researchers, many of whom are here,
we got up to, as I recall, 14 classes of effects that significantly
alter what goes on in a turbulent boundary layer including coriolis
forces, centrifugal forces, curvature, blowing or sucking, roughness,
and so on. Most of these had more effect than freestream turbulence,
not less. So that is one kind of extension, none of these 14 or so
effects were seriously taken into account in the 1968 conference.

A second class of extension which is wholly different is recir-
culating flows where you have in effect a branched flow field.

A third case is more complex geometries than airfoil--like
shapes that strain the flow field differently and alter turbulence
production and/or decay; we saw some in the results that Mr. Brad-
shaw showed us yesterday and two years ago.

Finally, people are mentioning unsteady flows and there may
still be some other classes. I have not yet even got to things like
compressibility which are obviously not trivial. Hence there is a
vast number of classes of flows, but we do not seem to have enough
data on any one of these classes to be sure that the data are reli-
able, to know how to parameterize well, to verify calculation schemes
in the sense I used a moment ago.

I have suggested this before in public, but I would like to
repeat myself. I would really like to see some of the funding agen-
cies encourage the formation of a committee to examine the types of
questions I am raising, systematically, not with one or two people
but by correspondence in this country and with our able colleagues
ab"oad, some of whom are here. Such a committee should concern
itself with which classes are more important in both senses that
P'of. Liepmann already raised, that is, both scientifically and
technologically. Which classes need more good data sets and how
many? How many data sets ought we to have before we do another con-
ference of the 1968 type in order to make sense out of the more
advanced models that now seem to be approaching the limits of what
people can do using current concepts? We don't seem to be getting
many new ideas. We are getting, rather, polishing of existing con-cepts of things and attempts to extend them a little. I think that

if we don't organize, cooperate and plan more effectively, that in
1988 we are still going to be in a position where we are not going
to be able to collect enough sets of data that are believable, that
are standardizable, to do the sort of thing that we did in the 1968
conference for further classes of problems. There are too many
kinds of problems and too few investigators for effective progress
of this sort to be likely through pure chance.
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Finally, I wanted to raise one other question about the nature
of recirculating flows. We have been doing quite a bit of work on
fully-separated flows which are a kind of branched flow field. In
such flow fields, the use of the parabolic equations on simple
extensions of what are basically parabolic methods worry me con-
siderably. I have serious doubts that they can succeed. This com-
ment goes to the theorist, and hence I will hold details for the
moment.

W. WILLMARTH: (University of Michigan)

I came here hoping to learn more about internal flows and what
the experimental problems are in internal flows, and when Hans
Liepmann said, why don't you have the people with the problems bring
the problem to us and we can look at it, well, this is just the way
I still feel. If someone in industry had a problem and brought it
to me, and I've had this happen, the first thing I would do would be
to suggest using visual methods (I thought Steve Kline was going to
say this) and to learn more about the problem. It appears to me
that flow visualization of a new phenomena would be the first cut at
the problem, so you would then know where to put your probes, what
kind of probes were needed and what you were measuring. I can
appreciate that experiments on rotating flow machinery with flow
visualization can be very difficult.

I really don't understand what all the significant problems
are. There seem to be so many. Is there any listing?

D. COLES: (California Institute of Technology)

I think that organizers of mixed meetings like this one run a
certain risk. It is very like the risk that is run by the zoo
keepers in the Washington z',o every spring, when they open the door
5etween the boy Panda and the girl Panda, and nothing happens. Well,
something happened with me. My education was considerably advanced
by the presentation of Prof. Kerrebrock.

We had a private discussion on a point which I want to raise.
Maybe it will die, but I will raise it anyway. This is our primitive
state of understanding of effects of rotation. There is one book on
this subject, by Harvey Greenspan, who is linearized. I personally
have had experience with two problems in this area. One, long ago,
was circular Couette flow. The other, more recently, was spinup and
spindown of fluid in a cylindrical container in the nonlinear and
turbulent regimes. I have never really understood effects of rota-
ions, although I know all the good things. On the one hand, the
inearized equations in rotating coordinates are hyperbolic. On the
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other hand, the motion during spinup and spindown is complicated by
the existence of inertial modes, which represent in some sense the
same kind of thing. On another hand, there are inviscid and viscous
instabilities, one of which I think is involved in Kerrebrock's
study. I have never really been able to sort this out. I keep tell-
ing myself, all right, it is just gyroscopic rigidity and gyroscope
and everything goes fine. It doesn't work out that way. I am still
trying to put together some kind of primitive understanding of gene-
ral and special effects of rotation in the case of internal flows.
I think there is some delinquency on the part of the academic com-
munity. You would expect new developments, and synthesis of ideas
that have been advanced in various forms in this area, to come from
the academic community. So far they have really not done so. I
simply point out what 1 Ztee as a blank spot in the picture. Maybe
I am mistaken about the degree of understanding that industrial
people have on this subject.

A. A. FEJER: (Illinois Institute of Technology)

I would like to comment on Professor Reshotko's statement that
everything is well understood as far as the axial compressor is con-
cerned. In the past we have designed engines for a narrow band of
operating conditions. In other words the system was arranged in
such a way that the engine was always operating close to its design
point. With increasing fuel prices the global efficiency of the
system is becoming increasingly important and more and more emphasis
must be placed on broadening the operating range of engines. In
order to do this without costly and time consuming trial-and-error
type development procedures that have been comonly used in the past
we must be able to understand what is going on in engines at off-
design conditions. In addition, in particular in the case of air-
plane engines, we will be raising operating temperatures to the
highest values that the metallurgists will permit us to use. This
will require higher pressure ratios and smaller frontal areas.
Other new areas may also be opening up that should be anticipated.
One must also consider the aspect of engine noise which is not yet
fully understood. So I think there are plenty of problem areas that
can benefit from the modern experimental techniques that Dr. Laufer
was referring to in his opening remarks and lead to a better under-
standing of the flow processes in gas turbines.

D. HUFFMAN: (Indianapolis Center for Advanced Research)

I would like to amplify Dr. Fejer's remarks by saying that the
major problem area with modern turbine engines which have compressors
operating at transonic blade speeds is aerodynamic vibrations either
induced by turbulence or self-excited flutter. There have been some
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very spectacular failures as a result of this mechanism, i.e., the
RB 211 and the JT9D, both of which required extensive redesign of
the compression system. Both of these failures involved unsteady
aerodynamics which to date are still not well understood. Experi-
mental techniques are still under development in this area and a
good deal of work remains to be done. Unsteady aerodynamics in con-
junction with high temperature environments are probably the most
important problem areas in modern aircraft turbine engines.

G. SOVRAN: (General Motors Research Laboratories)

As one of the few representatives of an industry in the audi-
ence, I would like to address some comments to Prof. Liepmann. His
separation of problems into scientific and technological is a separa-
tion that itself happens to be a crucial difficulty that industry
often faces. A typical definition of an industrial problem is, "It
doesn't work, fix it!" Professor Liepmann would like to think of a
situation where the industry would come to basic researchers and ask
for assistance, but without suggesting what needs to be done. The
question is, to who would you go? You have to know something reason-
ably detailed about the problem and have a fairly good idea of the
basic difficulty and what needs to be learned before you can even
consider who the proper individuals might be to do the required basic
research. In internal flows, one of the difficulties is that the
fluid mechanics are so complicated that it is extremely difficult to
identify the real problem that needs to be worked on. I will illus-
trate the difficulty with the procedure that Prof. Liepmann thinks
is desirable by using a current problem from my industry. The emis-
sions from engines are too high and the fuel economy is too low, fix
it! To whom do you go, and what specific research do you ask them
to do?

H. W. LIEPMANN:

I don't think you understood me correctly. Significant prob-
lems in industry usually involve a host of external constraints
including financial conditions and government regulations which are
foreign to, and not well understood in, universities. Furthermore,
very often a quick, specific solution is expected and needed. In
contrast, university. research tends toward slow progress in develop-
ing understanding and in finding general solutions in contrast to
very specific ones. The time constant in university research is,
after all, largely set up by the maturity of research students.
Direct help from a university team for an "industrial fix" is avail-
able if the team has already worked in the appropriate field for
some time to lay the groundwork. To this end, exposure of university
research to important industrial problems is very important indeed,
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because it frequently results in a change in research emphasis, and
certainly readies the university group for the next time a similar
industrial problem is posed. It is, therefore, crucial to keep a
continuous dialogue between industry and universities; but the panic
button approach is very rarely successful. Hence, industry must be
prepared to preach to the universities, often without immediate
response, and the university researchers have to be prepared to
listen, often with the frustrating feeling of helplessness. The
occasional clicking of a successful exchange makes this very
worthwhile.

G. SOVRAN:

Apparently I did not say the right things. I am agreeing with
you in principle, but we may not have the same interpretation of
what is involved in "just tell us the problem." In the example I
used about internal combustion engine emissions and efficiency, if
I just present it to this group in the manner that I did, it won't
define anything for you. None of you is going to rush off and do
research for me because you would have no idea of what is really
involved. The industry has first to have sufficient understanding
of its problem so that it can identify the expertise required, and
to at least point the people who have it in the right direction.
What is it that I really need to know about the fluid mechanics
inside an engine cylinder in order to improve either emissions or
fuel economy, and hopefully both? I don't know, and therefore I
have great difficulty posing relevant problems to any of you gentle-
men.

This is also a difficulty with most internal flows encountered
in the industrial situation. Their degree of complexity is so much
greater than for most of those we have been discussing at this meet-
ing. There is no such thing as a two-dimensional flow or low free-
stream turbulence. The flows are highly three-dimensional, and it
is often very difficult even to conceive the kind of information
that you want to know. I am treading on somewhat shaky ground here
with so many of you people having an aeronautical background but,
relatively speaking, the configurations and flows you have dealt
with outside of engines are very simple compared with the kind of
things you run into inside engines and the normal industrial flow
system.

W. WILMARTH:

And furthermore you have got to find a problem you can work
with that is simple enough, so that a student can help you and/or
do his thesis work.
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P. M. BEVILAQUA: (Rockwell International)

The organizers of a workshop like this one have a very diffi-
cult job, which really only begins when they open the door between
the boy Panda and the girl Panda. I would like to step into the
adjoining cage by providing Prof. Liepmann with a short list of
internal flow problems that will be of continuing interest to us.

(1) Extra strain rates have a significant, and in some cases,
even dominant effect on the -ate of confined jet mixing. The effect
of streamwise curavture is generally recognized, but there is also
a strong influence of lateral straining. We have observed that
changes in duct cross section, as in the transition from square to
rectangular sections, have a large influence on the entrainment of
a jet passed through the distortion. The lateral strain rates
change the structure of the turbulence in a way not predicted by
current turbulence models. We have tinkered with some of these
models, but in the spirit of Prof. Liepmann's request, I won't go
into that.

(2) In very long ducts the question of turbulent memory be-
comes important. How long does it take for the turbulence in a
ducted jet to forget that it originated in a jet and recognize that
it is now part of a pipe flow? As another example, how long does
it take the turbulence in the initial boundary layers to recognize
that they have merged and become part of a pipe flow? While this
information could be used to develop a sophisticated transport
model, I would like to make the observation that for reasons of
cost and complexity, such methods are slow to find engineering
application. A simple answer to this question in terms of eddy
scale, or mixing length, would be very useful.

(3) Lastly, we have a particular interest in predicting the
separation of turbulent boundary layers and turbulent wall jets in
adverse pressure gradient of an internal flow. As you may know,
the presence of the opposite wall seems to have a stabilizing effect
on internal separation. Something analogous to the Stratford cri-
terion for external flows would be useful to have.

These questions would seem to be sufficiently general to be of
interest for a long time to come.

E. RESHOTKO:

This remark is directed as well to the representatives of the
funding agencies here. The academic community cannot wait for indus-
try to confront it with its problems. Because the academic community
works at a rather slow rate, it is incumbent upon the academic
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community and the sponsors of its work to some extent. I do have a
list of some things along the lines considered at the workshop that
I think ought to be undertaken in the next several years.

For one thing I think we will be dealing more and more with
flows in which there are interactions. I am going to use the word
interaction rather broadly for a moment. In steady flows the inter-
actions are the ones just stated. In a confined flow there is no
inviscid freestream, so that the flow away from the boundary is very
much influenced by what is going on along the boundaries. We have
to have procedures that will allow for the interaction between the
flow away from the wall with the boundary layers such that there is
mutual interaction. While the development of such procedures is
ongoing for external flows on wings and bodies, they have to be
initiated in internal flows for a great combination of flow regimes.
We have to consider cases where the outer flow might be subsonic or
supersonic or transonic and within a boundary layer flow, of course,
we are dealing with the low speeds up to sonic, and maybe higher
depending on how the outer and inner flow fields are identified.
When it comes to transonic or supersonic outer flows we have to be
able to trace waves, particularly shock waves, toward the wall so
that we know where the impingements are and what their tendency is
toward separating the boundary layer, because again this is an
element of interaction that will have a great influence on the
overall flow field and on performance.

When it comes to subsonic external flows there is not the
economy of the hyperbolic calculation procedures that one has for
supersonic flows so we now have some massive elliptic interaction
schemes. We are going to have to learn how to simplify these pro-
cedures so that they enter into the realm of the possible. Jack
Kerrebrock mentioned a three-dimensional inviscid calculation. I
guess that is the one that Dave Oliver has been working on. That
is a very impressive calculation of the inviscid flow through a
three-dimensional flow passage. And yet, if the boundary layer
development on those passages is significant, then there has to be
a way to alter that inviscid flow in order to get a better view of
the entire flow field.

When it comes to unsteady interactions I think our eyes were
opened up today to the real unsteadiness of wakes and the nonrepro-
ducibility of wakes in turbomachinery, particularly behind rotor
rows. These nonreproducibilities may be due to vortices generated
from the hub-blade corners or from the scraping of the housing
boundary layers by the blades, or else, very simply, that the outer
portions of the boundary layers developing on the blades themselves
are intermittent and each wake is being caught at a different part
of its intermittency history. For whatever reason these nonrepro-
ducibilities exist the next row of blades has to accommodate the
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consequent variety of conditions and a design according to the
time-average of all of these wakes may be inadequate. Perhaps
there is some improvement possible by considering specifically the
unsteady elements of these blade flows.

We now come to the interaction between these wake structures
and the duct modes. Are these important? The evidence that we saw
today suggests that they are important at distances on the order of
one chord length downstream of a rotor. But in a piece of turbo-
machinery, as also mentioned, the spacing between stators and rotor,
is much less than one chord length. Is there really opportunity for
the duct modes to develop at each stage? Possibly not. Are the
duct modes important just behind the last stage? More generally,
what is the importance of the duct modes in turbomachinery? Are
they important because of their influence on noise problems in
turbomachinery or also because of their influence on the flow field?

The aforementioned are examples of interaction phenomena.
They will require more work on three-dimensional boundary layers
about which we heard very little today and yesterday. Professor
Saffman mentioned his interest in extending his techniques into
three-dimensional boundary layers. Peter Bradshaw, I understand,
has some three-dimensional procedures in his bag of tricks and I
also have been working on three-dimensional steady turbulent bound-
ary layers with the idea of incorporating them into interaction
procedures.

The development of flow calculation procedures takes many,
many years before one gets anything that is even semi-reliable. We
cannot wait for industry to identify every little problem. We have
to start out ahead of time because of the rate at which we work and
perhaps the standards to which we subject ourselves; since it will
take some time before we can obtain results that are useful to the
industry. These are the elements of anticipation.

J. LAUFER:

We have heard from a number of individuals who have in the past
been working in turbulence. They indicated that indeed they have
learned something at this meeting and have gotten some ideas for
future research. I think it would be very interesting to hear now
from those individuals who are actually worrying about the practical
aspects of the problems. I wonder if I could put Jack Kerrebrock on
the spot here and find out from him, has he really gained any useful
information from the turbulence practitioners and whether he has any
suggestions what other problems one should look into?
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J. KERREBROCK: (M.I.T.)

The answer to the question is, yes, of course, I have learned
a great deal!

I want to respond to two or three of the remarks here. First
the last one Eli Reshotko made, about the importance of the evolu-
tion of the flow behind one blade row before it comes to the next
one. I would just point out that the rotor-stator spacing in the
big new fan engines is many chords. Those fans are pushing an awful
lot of us across the country and 1% on fan efficiency is 1% on fuel
consumption and there are thousands of dollars lost because of the
inefficiency in the fan. So there is a motivation for you.

To Prof. Coles, welcome on board and I am sure that if you and
some people like you get interested in this question of rotating
flows in turbomachines we will make more progress than we have in
the last few years.

Lastly, I would like to come back to the comment that Eli
Reshotko made and differ with my good friend and colleague for the
:noment. I think that the position he took was that since we already
have a polytropic efficiency of 90% in good compressors, we were not
going to make big gains there. I don't think that is right, for two
reasons. One is that if you look at the evolution of modern com-
pressors, over the last 10 years, you will find that as we raised
the tip speed in order to get higher pressure ratio per stage, the
polytropic efficiency fell. We have lost about 5% or more in the
last 10 years so that the modern stage is less efficient than the
one built in 1955. I submit that there is no fundamental reason for
that. If you calculate the shock losses in that modern transonic
stage you will find that they are very small as limited by fundamen-
tal considerations like the pressure ratio across the shocks which
are necessary, given the Mach number at which the blading operates.
So there is something going on which we don't understand. Let me
just push that point a little bit further and say that if you calcu-
late the fundamental loss that a turbomachine has to sustain because
of the Reynolds number limited shear stresses on all of the internal
surfaces of it, you will come up with an efficiency that is closer
to 97% or 98% than to the less-than 90% levels that we find now. I
don't think that we really understand where that six to eight percent
has gone but it is there for the having if we understand it in the
same sense that I think some people in the air frame industry under-
stand the flow over a wing or a body. If we can gain a few points
of efficiency it is really worthwhile in terms of fuel consumption
and dollars.

$
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E. RESHOTKO:

I don't disagree with you at all. I don't know where or how
we are going to find that extra 7% for current compressors. I do
believe that because people have been looking for it now for more
than 20 years, and I assume will continue to look, that maybe we
will find a percent or two. But you are absolutely right that as
we push the pressure ratio per stage upward, we will have to fight
very hard to maintain even the current levels of polytropic effi-
ciency; and that is certainly worth doing because the drops are very
severe once you go into transonic and supersonic staging. Maybe I
am a skeptic here, but I don't know if we will ever really recover
that extra 7% that you are looking for.

J. LAUFER:

I would like to give the opportunity to the audience at this
stage to consider the problems connected with modeling, with theo-
retical approaches and I would therefore like to invite discussion
on this topic.

R. E. FALCO: (Cambridge University, England)

I was somewhat impressed that people who do modeling work
haven't brought to our attention any new modeling problems due to
the new input into turbulence, that is, rotation or other forcing
effects. In my talk I indicated that if you put rotation on a
turbulent flow that you might in fact see a very different picture.
After proceeding downstream to axial positions where the turbulent
intensities were lower than non-swirled jet values, the observed
microscales were larger, which means that dissipation is going down.
Stan Corrsin made a comment on the classical understanding that
dissipation is Reynolds number independent in turbulent flow and
reiterated that it is not a well understood phenomena. I think
that it is very possible that in the case of swirling flow, at
least, that it may not be true. Would anyone like to comment on
that, particularly people involved with the modeling problem? Maybe
we have to learn a little more about the physics of dissipation in
turbulence under a strong rotation before we will be able to properly
model it.

J. LAUFER:

I think that before we go into much specifics, could we rather
address the general problem of modeling, how we go about it, what
are future improvements and so on?

- -
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P. SAFFMAN: (California Institute of Technology)

I would like to say something very general about the philosophi-
cal attitude of the theoretician. I think that the theoreticians are
now far too conservative. The interaction between theory and experi-
ment is now one way and is one way by default. That is, the experi-
mentors are doing the experiment and then the theoreticians are
running along afterwards to see how successfully they can "postdict"
all the data and it has become clear that they can postdict anything
that you like.

Now that we have the models and we have the computers the theo-
reticians can be more positive. They can calculate flows now and
they can try and investigate phenomena theoretically which the
experimentor has not yet got around to measuring. That is, we can
actually make genuine predictions of flows that have not yet been
studied and I think that the theoreticians should now start doing
this. It is something that we intend to do as far as possible and
I hope that the experimentors will then cooperate in the way that
theoreticians have been cooperating in the past. That is, that when
the theoretician comes up with a prediction the experimentor will
seriously consider how he can do an experiment on the phenomenon
which the theoretician has been calculating. I hope also that the
experimentor will also take care to make sure that he doesn't post-
dict because I know of cases where incorrect theories have been
successfully checked experimental ly,

S. KLINE:

Yes, I agree strongly with Prof. Saffman. I would whole-
heartedly endorse that. It was one of the things that I was going
to say, but I wold like to go one step farther. If the predictions
can be made i, such a way that it makes possible the use of strong
inference rather than induction it would be extremely valuable.
What I mean by strong inference is the following. Set a hypothesis
pair that exclude each other, say, Al and A2. If you can _ds.pve
Al, then you are left with A2. Whereas if you merely do iiduction,
which is all we have been doing so far in the turbulence and turbu-
lent boundary layer problems, then the logic does not close. It
therefore lends itself to endless arguments, and we have some of
those going. Let me give a ridiculously simple example. If we
make the hypothesis: "Every animal that has two legs is human,"
we would shortly discover that there are two-legged duck in the
lake just outside the building, and that would get rid of this
ridiculous hypothesis. We would not have to go on arguing about
it endlessly; negative inference settles the question with finality.
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J. T. C. LIU: (Brown University)

In connection with Prof. Saffman's remarks, I should like to
say that ultimately the prediction schemes for turbulent shear flows
must include the mechanisms of the large-scale structure interacting
with the much smaller scale random turbulence (and with the mean
flow), such as those situations observed in turbulent free shear
flows by Brown and Roshko (1974) and in turbulent boundary layers
by Kim, Kline and Reynolds (1971). In certain turbulent shear flows
where such organized large-scale structures do occur, it might be
fruitful to sort out the large-scale structure from under the overall
average and look at the interactions rather than sweep everything
under the overall average. To this end, nonlinear hydrodynamic
stability theory can be of much service towards the understanding
of the large-scale structure problem. Of course, one ought not to
look at such problems as one in hydrodynamic stability to the exclu-
sion of the small-scale turbulence, nor from the present prediction
point of view ignoring entirely what now observationally appears to
be the omnipresence of the large-scale organized structure, but
rather from a healthy blend of the two viewpoints. Recently, Dr.
L. Merkine and I have made an attempt towards the understanding of
the interactions between the two different scales of fluctuating
motions in a turbulent shear flow (Liu and Merkine, 1976). It would
be extremely helpful if experimentalists and theoreticians were to
interact along the way rather than to compare notes after each had
done his own thing,
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0. COLES:

In response to Prof. Saffman and others, I submit that a modeler
mvo likes is welcooe to calculate the unsteady mean flow past a

flsmooth circular cylinder in a uniform stream at a Reynolds number of
0,000. When you are finished, I will show you the data.
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I. WYGNANSKI: (Tel Aviv University)

I would like to pick up on Prof. Saffman's suggestion. I would
like those people who do models and try to make predictions that
they will also make a parametric variation of the constants that
they put in their models so that we will be able to see and differ-
entiate, what's the effect of changing slightly some of those con-
stants on the general development of the flow. Very often we are
faced with something which fits one particular data set because the
manner in which the constants have been adjusted.

J. KERREBROCK:

I would like to speak in favor of people doing both theory and
experiment and therefore being internally honest.

D. E. ABBOTT: (Purdue University)

Jack Kerrebrock has a very important point and I couldn't agree
more. However, in addition to the turbulence modeling discussed up
to now, there is an additional area that needs to be emphasized and
no one has picked up on as yet. We have heard from something like
three to five predictors of wake-type flows and some tested full
elliptic equations while others have solved parabolic equations.
The intent of most of these investigators (I believe Dave Huffman
mentioned this) is to calculate a turbulent flow as it interacts
with some downstream condition. For example, Jim Whitelaw commented
on the first day that at a bend in a duct, he measured an upstream
influence of some 3 to 5 or 5 to 6 duct diameters. Certainly for
such cases of strong upstream interaction, parabolic equation models
are incorrect for any turbulence model. I would like to suggest
this as an additional area where good experiments are needed to
direct the proper formulation of the mathematical equation, a step
that may be almost as challenging as turbulence modeling in the long
run.

S. KLINE:

That is hardly new. The experimentors told us this in 1911.
If you look at the data* for subcritical flow over a circular cylin-
der normal to the stream, you see separation well before 900; the

* See for example, Schlichting, H. "Boundary Layer Theory," 6th
Ed., McGraw-Hill, 1968, p. 23.
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point of maximum thickness. You cannot get that result out of the
parabolic equations. You have to put in the actual pressure dis-
tribution to make the boundary layer (parabolic) calculation come
out right. If you read carefully what Schlichting says at various
places, you will see that is how he solves the problem. He does
put in data, but he does not comment that this is not a priori
predictive; it only postdicts as Prof. Saffman aptly put it. The
total problem is really elliptic--not parabolic. Most of my own
research right now is on separated flows, and we are now able to
predict several classes quite well, but we have to include elliptic
effects to do so. If there is a single general conclusion from our
work thus far, it is that if you get the interaction right between
the separated zone and the other flow in the sense of putting in the
displacement thickness (or the blockage or whatever you want to call
the separated zone), then everything will fall out well. Moreover,
what boundary layer method you use is not nearly as critical as some
of the early discussion suggests so long as it's a decent one. If
you get the interaction, the elliptic effects right, a simple method
will work well; if you don't then nothing works. I am referring
here to turbulent cases. It is different, of course, for the laminar
cases; you can put them into the computer and do them exactly. For
the turbulent cases we are using approximate models. This implies
that we are using some kind of intermediate modeling and there is
nothing to say that we can't use zonal models. Indeed, we get good
results with zonal models when elliptic effects are included. But
it does worry me to see people using parabolic methods for branched
flow fields, as I noted above. The problems do show up in the
numerical work. You saw this in George Mellor's presentation. He
had to do something about the flow off that corner in order to get
the reattachment right. If you had a flow where you didn't have
Doug Abbott's data, how would you close that problem in a numerical
scheme? Maybe there is a way to do this, but the problem concerns
me. Maybe George can comment on this. I do think that we need to
look more carefully at how to do those interactions. That is the
point I am really making.

G. MELLOR: (Princeton University)

Sure I would like to comment on that. The corner problem I
feel is strictly a resolution problem. It is not a physical problem.
The point of my discussion on that particular point was that, if you
get smaller grid scales the problem vanishes. It is not an inde-
pendent case at all.
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S. KLINE:

I don't understand. You said that you had to put some condi-
tion which would amount to a Kutta condition at that edge. How
would you have known which one to choose if you had not had Doug
Abbott's data? Resolution or no resolution, you are going to have
a grid size.

G. MELLOR:

I saw from the data that the flow did not go around the corner
at acute angles. I think probably you would guess at that without
seeing the data at all. There are only two things that it can do.
The flow can go straight off the surface or it can all of a sudden
have an acute angle. I think it is pretty reasonable to rule out
the second possibility.

S. KLINE:

It is quite clear when you get the sharp corner, that is the
easiest possible case. If you take a case where you have a separa-
tion off a gradual surface, in fact you don't know where that
streamline goes and then you really have a matching problem.

G. MELLOR:

The problem is not there any more. The singularity goes away
and that case ought to be calculated quite easily.

J. WHITELAW: (Imperial College, London)

I would like to make one and a half points. The half point is
to reinforce what Jack Kerrebrock said about interactions between
experiments and calculations. I believe that if you perform experi-
ments in conjunction with calculations you are more likely to improve
knowledge of turbulent flow and the ability to calculate flow than
by doing one without the other.

Now to come to my major point. I don't believe that models
a priori are applicable to all flows. I said this before in this
meeting and I say it again. We take equations that we believe to
be exact and time-average them. As a consequence, we have thrown
away information and need to build hierarchies of turbulence models
which come to some point of diminishing return. Who is going to
believe that we can find universal constants, or that we can find
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problems that will be exactly represented by this approximate set
of equations? No one. Given that we have equations that are
approximate, then a lot of the difficulties can be avoided by simple
experiments which guide the calculation; the calculations can then
be used as a means to interpolate and extrapolate, interpolate with
confidence and extrapolate with considerable care. So I am in favor
of an interaction between calculations and measurements. I have no
great faith in calculations without some checking: but considerable
checking has already been done and, in a fairly wide range of flow
configurations, we can calculate and reasonably expect the results
to be correct to a precision satisfaction for many purposes.

E. RESHOTKO:

Just one short remark. The cylinder problem that Steve Kline
mentioned is an example of an interaction problem, such as I was
referring to earlier, where you have to deal with the boundary layer
and the external flow together for the overall flow to be properly
predicted. I guess the use of the experimental pressure distribution
simply replaced the interactive calculation of the external flow.

J. LAUFER:

I go along with Dr. Whitelaw's comnments. There is no question
that there has to be an interaction. On the other hand if the so-
called modeiing calculations are indeed predictive in the true sense
of the word, they should give us somewhat more confidence than we
have in them at the present time. I am leaving this meeting with a
rather uncomfortable feeling that modeling techniques can predict
the experiments extremely well, a posteriori and I am sure that you
don't mean to imply that. What are the limitations? What are the
areas of application for a particular model? I don't think at the
present time this is clearly indicated.

J. WHITELAW:

I was trying to say that I don't believe in many cases, a priori,
that a calculation method based on turbulence models is going to give

me good results until some experimental testing has been done. I say
again that we operate with inexact equations and undoubtedly inexact
assumptions, many of which we have no means to check directly. We
can't check dissipation equations exactly and directly. So we have
to have an interaction between the experiment and the calculation.
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P. BRADSHAW: (Imperial College, London)

I would like to second what Jim Whitelaw has said, I am quite
sure that the constants are not constant. I also doubt, as Jim does,
whether experiments are going to answer all the questions which are
posed by calculation methods simply because a lot of the terms in
equations like the dissipation equation, or even the pressure strain
term in the Reynolds stress equation, are currently unmeasurable.
I think that even to get calculation methods of the current levels
to operate over a reasonably wide range of flows (excluding some of
the most awkward cases) we are going to have to rely on computer
simulations of the time-dependent turbulence to extract these
unmeasurable quantities. I really see this as the big hope of per-
haps the next 10 years. When you look at the results that the large
eddy simulators are getting they are starting to look like rather
crummy experiments. There is a lot of scatter, there aren't very
many points on the profiles, and so on, but they are improving. In
particular, when the subgrid scale modeling, which is the main dif-
ficulty at the moment, has been sorted out a little bit better, I
believe that we will be able to extract data for "unmeasurable"
quantities from these simulations, plug the quantitat *. data into
our turbulence models and both get a better physical - derstanding
of what our models represent and extend the range of validity of
those models. I think that in the foresseable future, which means
the working lifetime of more-or-less everybody here, we are not
going to have another set of equations with constant coefficients
which describe turbulence. Navier and Stokes have given us one
set of equations with constant coefficients and I don't believe that
there is another set.

P. SAFFMAN:

I hope that I have misunderstood what Mr. Bradshaw has said.
He wants to calculate random solutions of the Navier-Stokes equa-
tions so that he can calculate things like the pressure-strain
correlations which he will then feed into the model equations and
then solve them. But if you can solve the Navier-Stokes equations
then you don't need these models.

P. BRADSHAW:

I should explain myself a little bit better. What I am sug-
gesting is a small number of expensive Navier-Stokes simulations
(analogous to basic experiments) for some carefully chosen flows,
including some of the complex flows, which we have been playing
with over the past few years and which we take to be initially well
behaved turbulent flows and kick them around with extra strain rate
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interactions and so on. Given a few of those Navier-Stokes simula-
tions (a number equal in order of magnitude tn the number of good
data sets we've got), we can very much extend the validity and reli-
ability of our models. Clearly if computing ever becomes cheap
enough for us to do .avier-Stokes solutions for each and every
engineering configuration then the modellers are right out of
business for good and, in effect, experimental turbulence research
will have gone the way of experimental stress analysis at least for
a generation or so.

P. SAFFMAN:

Can I just answer that and say that in connection with the
pressure-strain correlation, which seems to play a fundamental role
for the people who model averages of the Navier-Stokes equations,
term by term, the pressure is not a local quantity. It is deter-
mined by nonlocal effects, by the whole flow field. As Dr. Liepmann
keeps saying, you should perhaps think of it as a Lagrangian multi-
plier for the constraint enforced by the requirement that the fluid
is incompressible. I think that to believe that you will find a
local modeling of terms involving pressure is to be very optimistic
indeed.

S. KLINE:

I just want to comment, there are a couple of cases that have
been run which are precisely what Mr. Bradshaw has been describing.
These are the recent work by Clark and Shaanan, who are students of
J. H. Ferziger and W. C. Reynolds at Stanford; they do tell us a
little bit. Most of these are subgrid calculations, but they also
include one "honest" calculation which is a complete numerical solu-
tion of the Navier-Stokes equation for a low Reynolds number flow.
What emerges when you look at the structure of those computations
is that you can only do the complete "honest" calculation for rela-
tively low Reynolds numbers and relatively simple cases. As every-
body known, when you go to higher Reynolds numbers, the ratio of
scales that you have to cover in your computer is proportional to
the Reynolds number. Therefore you get into monumental time and
cost problems at higher Re. If you stick with lower Reynolds numbers
and with simpler cases, you can run a complete calculation for simple
turbulent cases. Reynolds, Ferziger and their students are doing the
kind of sorting out that Peter Bradshaw is talking about, and that

will help us, though only for certain very specific cases, just as he
sdys.
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P. BRADSHAW:

I agree one cannot solve exactly all the way down to the small
eddies; you have got to have a subgrid scale model. When you have
got a subgrid scale model there shouldn't be any limit on Reynolds
number with the possible exception of dealing with near wall flows.

J. LAUFER:

I would like to proceed to cover one more area and address my
question to the modeling people. So far, at least, most of the
presentations here yesterday and today used the average Reynolds
equations as a starting point for their modeling. In view of some
of the experimental observations of the past few years, I wonder,
is it at all possible at the present time to exploit the "double
structure" nature of turbulence? That is to say, is it feasible to
formulate the problem in a fashion that takes into account the two
rather distinct length scales observed in turbulent flows?

E. RESHOTKO:

Let me, in that context, raise the question: How can we
incorporate our knowledge of the large-scale coherent structures
into flow field calculation?

It is evident that the large-scale structures have always been
there. I guess most of us are convinced of this now although for
many problems they did not appear explicitly in the modeling because
the modeling was either not sophisticated enough or detailed consid-
eration was not required.

We find that the large-scale structures show themselves most
prominently in free shear flows as well as in the outer portions of
boundary layers, where even our present day modeling techniques have
indicated that the mixing lengths or characteristic eddy lengths are
of the order of the thickness of the free shear layer or of the
boundary layer. So in a sense the large structures have in a time-
averaged manner already been modeled. We have to ask ourselves the
question in dealing with the large-scale structures, where do they
make a difference? In what problems must we really know something
specific that is readily identifiable with large-scale structures?
We have a few examples: One very clear example has to do with the
mixedness between two streams and the relationship to combustion.
It is important that we have some idea of the contact surface
between a fuel and an oxidant that are being mixed in a free shear
flow prior to reaction. A knowledge of the dynamics of large-scale
structures should be helpful here. I believe that in the experiments
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of Roshko and co-workers they have made especial attempts to measure
mixedness in order to help in the evaluation of such combustion
theories.

If we are interested in considering the unsteady aspects of
turbulent boundary layers and the wakes produced by such boundary
layers then we will have to do some more specific modeling of the
large scale structures. But I emphasize that we are interested in
the time dependent or unsteady aspects rather than the time averaged
evaluation of the large scale structures.

P. M. BEVILAQUA:

I would like to express an opinion, based on Prof. Wygnanski's
work presented at this meeting. I suspect that the contribution of
large structures to our modeling may be in what we call now the
Kgrmfin constants, the unknown constants, that is as the large struc-
tures were changed in Prof. Wygnanski's experiment we always saw the
same generally self-preserving structure but the spreading rates
were different. Perhaps that might be the approach to take to
include the large structures in the modeling.

W. WILLMARTH: (University of Michigan)

No one has said much about the small scale turbulent structure.
I don't think we know much about turbulence at high Reynolds numbers
especially near transonic speeds. In our laboratory we have made
very small X wires to use in an ordinary flat plate boundary layer.
We find that below y+ = 500 there are very small scale turbulent
structures which are intermittent and are not measured properly by
ordinary length hot wires. The hot wires that we used had a length
of L+ = 4 (i.e. four viscous lengths). From what I have seen in
the turbomachinery results, you must have a lot of small scale turbu-
lence structures in these internal flows that must be dissipating
energy but this I am sure has not yet been measured properly.

S. N. B. MURTHY:
.4

It remains for me to thank the members of the Panel and each
of you among the participants for a thoughtful discussion. I shall
try to produce a set of recommendations based on your statements,
no doubt realizing that some of them may indeed be tentative in a
subject as complex as turbulence in flows of rather complex geometry.
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For the purposes of this summary report including recommenda-
tions, the various topics discussed at the Workshop may be conveni-
ently grouped under the following.

1. Turbomachinery flows
2. Analysis and
3. Fundamental problems.

1. TURBOMACHINERY FLOWS

The sponsors of the present Workshop on internal flows have
been interested in general in jet propulsion engines. One aspect
of turbulence in jet propulsion engine flows is transport and chem-
ical reaction (Ref. 1). A second aspect is the influence of com-
plexities due to geometry, curvilinear motion and rotation. The
current workshop is concerned with the status, problems and prospects
for advances in the latter category of problems. The central feature
of these problems is, in the words of P. Bradshaw, the existence of
strong interaction and deformation in shear flows and the influence
of rotation. In jet propulsion technology, such flows arise in
several contexts in connecting ducts and elbows, diffusers, nozzles
and turbomachinery.

The engineering interest in such problems arises ultimately
because of (a) momentum loss, (b) heat transfer, (c) entrainment of
fluid from one flow into another, (d) dynamical coupling between
flow and mechanical structure, (e) passage of distortion through the
machine and (f) noise. While none of those processes was discussed
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specifically with respect to turbomachinery, the contributions made
at the workshop have important implications to the effects of turbu-
lence in those processes.

Among practical flows of interest in turbomachinery some
aspects of the following flows have been discussed in the current
workshop.

1. Duct flows
2. Flow manipulators
3. Coaxial jet with swirl
4. Injection of fluid into a stream
5. Flow at blade-hub junction
6. Cascade flows with freestream turbulence
7. Nonstationary rotor-generated flows in ducts
8. Unsteady boundary layers over blade surfaces
9. Interacting wakes.

They may be regrouped as follows from the point of view of the
nature of complexities.

a. Flow with deformation
i. Flow undergoing deformation in a curved duct
ii. Flow at the junction of an airfoil with a wing

b. Flow with interaction
i. Boundary layer flow with freestream turbulence
ii. Unsteadiness in ducted rotor-generated flows

iii. Interacting wakes
iv. Mixing of a jet with a freestream

c. Flow with rotation
i. Coaxial jet with swirl
ii. Flow manipulators for swirling flows

From the point of view of design of turbomachinery, the main
problems discussed in this workshop are the following.

1. Influence of freestream turbulence on the development of
blade boundary layers under steady and nonsteady state
conditions.

2. Influence of freestream turbulence and initial conditions
on the development of wakes downstream of stators and
rotors

3. Implications of the presence of organized unsteadiness
simultaneously with turbulence

4. Implications of the simultaneous existence of secondary
flows of the first and second kind

5. Modification of a given level of nonuniformity introduced
by turbulence.
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Each of those broad topics requires further investigation.

It was pointed out in the workshop that a general survey on
the problems of turbulence in turbomachinery does not eixst. It is
of course too early to attempt such a survey, principally for two
reasons: (1) it is not yet clear what the precise effects of turbu-
lence are in a flow as complex as that in a turbomachine and (2)
experimental data are only beginning to be acquired that can separate
the effects of turbulence from those of other features of the flow.
The contributions of Bradshaw, Evans, Fejer, Kerrebrock, Kovasznay
and Whitelaw illustrate the latter clearly.

2. ANALYSIS

A number of well-defined (and idealized, in the sense that they
emphasize one feature of a flow more than others in a given flow
situation) flows can now be calculated with varying degrees of em-
piricism. Measurements have also been undertaken on some of those
flows. The following flows were discussed in some detail at the
workshop.

I. Flow in a curved duct with a forward recirculation zone
under laminar flow conditions (Whitelaw)

2. Development of turbulent mixing layers including the
effects of initial boundary layers and freestream turbu-
lence (Saffman and Leuchter)

3. Turbulent flows subjected to deformation and rotation
(Saffman and So)

4. Fully separated flow (Mellor and Simpson)
5. Turbulent wake (Ng and Huffman)
6. Transitional flows (Wilcox).

The four basic turbulence models employed in the calculation
of those flows are (1) effective viscosity model, (2) nonisotropic
mixing length model, (3) Reynolds stress model and (4) phenomenologi-
cal model.

In the case of fully separated flow at a step, Mellor intro-
duces additional approximations for vorticity at the corner and in
the viscous sublayer. In the general problem of predicting sepa-
rated flow, Simpson shows that turbulent normal stresses are impor-
tant near and downstream of separation.

The calculation of turbulent wakes (Ng and Huffman) is based
on the "interaction hypothesis" of Bradshaw (1972) according to which
two shear stress fields can be superimposed so long as the turbulence
structure in each field can be assumed to be unaffected by the pres-
ence of the neighboring field. The applicability of weak interaction
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hypothesis depends upon the establishment of limits for such weak

interaction.

The phenomenological model of turbulence has been undergoing

steady development by Saffman since 1970. There is no term-by-term
modelling of Navier-Stokes equations in this. Without altering the
nature of the equations one has to deal with finally, Saffman
attempts to model certain physical processes associated with the
presence of turbulence. The resulting two-equation model (for e
and w) has been employed in predicting a number of flows. in the
paper presented at this workshop, Saffman applies this model (a) to
a flow including scalar diffusion with a new similarity variable
representing the scalar quantity and (b) to simple flows with de-
formation and rotation utilizing the concepts of an equilibrium
Reynolds stress and the approach of the actual Reynolds stress to
the equilibrium value through a relaxation diffusional process.

Predictive methods are necessary in engineering practice. It
is important not only to be logical and consistent but to have sound
physical bases for models. One can object to time-averaged equa-
tions and show their limitations. However, in the context of such
equations, one has to be selective about terms or processes or rela-
tions among them for each class of flows, if only to reduce emori-
cism. The question therefore is probably not "should we do further
research in this subject" but "who should investigate modelling
development." At the same time, it is clear that investigations
are required at various levels in understanding the implications of
superposability, similarity and relaxation with respect to certain
turbulent processes, the method of including (and eliminating) cer-
tain stresses in various situations and the method of accounting
for additional strains as in rotating flows.

3. FUNDAMENTAL PROBLEMS

Turbulence has remained a basic challenge in fluid mechanics
and therefore in any group concerned with turbulent flows fundamental
questions will arise. Some of the more interesting questions raised
pertain to the following.

1. Effect of initial conditions on the structure of turbulent
mixing layers (Wygnanski)

2. Effect of freestream turbulence on transitional processes
in free shear layers (Bradshaw)

3. Superposability of turbulence and acconimodation in struc-
ture in a developing flow (Bradshaw)

4. Eruption and streak formation as a consequence of ',ter-
action between concentrated vorticity and a vi-,cc, u layer
(Walker and Abbott)
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5. Possibility of investigating characteristics of local
(space and time) and instantaneous flow phenomena with
computer experiments (Corrsin).

Computer experiments on variously idealized flows will cer-
tainly be performed extensively in the future. The success of such
experiments will depend on the same factors that physical experi-
ments depend on: clear definition and sufficient analysis to eluci-
date the basic processes. Computer experiments are probably the
only practical means of establishing the anisotropy of pressure-
velocity correlations. Similarly, in many flows undergoing deforma-
tion, computer experiments will be valuable whether one is dealing
with moment (conservation) or process equations, for example in the
interaction of large scale vorticity with turbulence. However,
there is no complete substitute for physical observation in physics
of fluids.

Each of the five areas mentioned earlier involve various con-
troversies and important basic ideas that need further investigation.

All of the experimental results presented at this workshop per-
tain to laboratory flows. Some of the results were obtained with
flow visualization (Falco and Bradshaw). Quantitative measurements
had been obtained using either imbedded probes or nonobtrusive
measurement technique, for example laser-Doppler velocimetry. It
may be pointed out that these techniques are in general complemen-
tary although in special situations one or the other technique may
be entirely inapplicable.

The workshop occasionally discussed data processing techniques,
especially various types of conditional sampling. That technique
and image processing, although sometimes misunderstood and mis-
applied, do have important applications in experimental research in
turbulence.
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