
ENDUN~
ELMED

7—77

I

‘I
‘I

‘
lii

~
I~D~

8 ~2 5

~: Dill 22
I I

1 iDii~°
~ L8

1 .25 HOU~ lnu.o

~ cl 1 1 N

L
00 /

AN INTRODUCTION TO PRODUCTION SYSTEMS

~

‘ D. A.j Waterman

—..

/ ~ . Nov~áb~’! 76 J -
/

- D D C

JUN ‘~l 1977

1L~~ ~~~~• U L.jt -
.

C-,
uJ

w I
U...

/ /
_____ P—5751

DISTRIBUTION 3T~~
Approved for pu~-

D1~trthu1 jcn Un~~.

I_ ~
__ -~

~~~~~~ -~~



The Rand Paper Series

Papers are issued by The Rand Corporation as a service to its professional staff.
Their purpose is to facilitate the exchange of ideas among those who share the
author ’s research interests; Papers are not reports prepared in fulfillment of
Rand’s contracts or grants. Views expressed in a Paper are the author’s own , and
are not necessari ly shared by Rand or its research sponsors.

•*e Rand Corporation
Santa Monica, California 90406



-iii-

ABSTRACT

Production systems provide a simple, uniform way of handling

control flow and data mavagement in programs which exhibit intelli—

gent behavior. They are particularly useful for developing programs

which can learn from experience, i.e., which can demonstrate adaptive

behavior. In this brief introduction to the subject the concept of

the production system is defined, and simple examples of production

systems are presented. Current applications of production system

technology are also discussed.

AcCu~ eI w

IN o
IIAlNOUNC~p
JI~1IFICATIN...~~~~._

p 
BIsTR~Barj o K/A !Aft*, lt try cc~z

e~t. ~.~l [ c ~j-~

~ ISTRIBUT1ON ST~V~
Approved for p~±i1.~ r • .. .::

Distilbuij on UL: i1~



_ _  __ _ _ _ _

—i-

t. BASIC CONCEPTS

This paper is intended to serve as a brief introduction to production

systems, the name given to a class of programs which embody special simpli-

fying constraints with regard to control flow and data management. The

basic constraint is that all program statements are of the form “if C then

A,” i.e., if the conditions C are true then perform the actions A. The

constraints lead to system characteristics that facilitate writing pro—

grams which exhibit intelligent behavior. The term “production” stems

from its use by Post in his symbol manipulation systems (Minsky, 1967).

These were systems composed of grammar—like rules for specifying string

replacement operations. A typical rule iii such a system might have the

f orm AYB —> AZB, meaning that any occurrence of the string Y in the

context of A and B would be replaced by the string Z. A production

system is actually a generalization of Markov normal Algorithms (Galler

and Pen is, 1970) ,  which are collections of ordered string replacement

rules. The first applicable rule that is found is applied , and then

testing starts over, beginning with the highest priority rule. The

cycle continues un~i1 no rules are applicable. An example of a simple

Markov normal Algorithm which transforms any string composed of a’s,

and b’s into the string “AB” is shown below.

Alphabet : a,b,A ,B

Variables: x

Productions: 1. aa —> a
2. bb — > b
3. xa — > ax
4. a — > A
5. b — > B

h.11__ 
_________________________ - - • •  

• •• .



— 2 —

If the initial string is “bbaba,” rules 2,3,2,3,1,4,5 are applied in

that order to produce “AS.” Notice that the highest priority produc-

tions must be applied first to insure that the algorithm will terminate

and give the desired result.

A production system is a collection of rules of the form conditions

—> actions (Newell and Simon, 1972), where the conditions are statements

about the contents of a global data base, and the actions are procedures

which may modify the contents of that data base. The conditions and

actions are not restricted to string matching and replacement; a condition

can be any expression which has a truth value that can be determined

from the data base, and an action can include any operation which modi—

fies the data base. When the conditions of a production rule are true

the rule can “fire,” which means that the actions associated with the

true conditions are executed. The activity involved in firing a rule,

determining which rules have true conditions, selecting one of them,

and executing its actions, is considered one cycle through the system,

and can be characterized as a RECOGNIZE—ACT cycle. A production system

cycles continuously, halting when the conditions for all production

rules are false or a special halting action is executed. Thus produc—

tion rules fire in a data—dependent fashion, operating quite differently

from typical programs which have sequential control or explicit know—

ledge about where code will next be executed in the program.



— 3 —

II. CLASSIFICATION OF PRODUCTION SYSTEMS

Production systems can be divided into two main classes based on

the way the rules make contact with the data base. The conventional

production system is condition—driven, that is, the conditions of the

rules are compared to the data base and the rules whose conditions

match are selected and have their actions executed. This is the scheme

used in a number of current systems (Newell and Simon, 1972; Newell,

1973; Waterman, 1975). The other type of production system makes

contact with data base through the actions rather than the conditions

(Shortliffe et al, 1975; Davis, 1976). These action—driven systems

have rule 3 analogous to logical implication statements, i.e., A & B

& C —> D, means that if ~~~ B, and C are true then D is true. Here the

system would try to show (prove) that D is true by first looking for

D in the data base and if that fails by shoving that A , B, and C are

true.

The term production system is somewhat ambiguous. It has been used

to refer to both the general framework or language within which produc-

tion rules can be defined , and to specific sets of production rules

written within the framework. Here the term production system architec—

ture will refer to the system one can use to define programs, and

production system to a specific program or set of production rules for

accomplishing some task.

Condition—driven Production Systems

During the RECOGNIZE step in a condition—driven production system,

the conditions of all rules are compared to the data base and those

whose conditions are “true” are selected . The set of all rules which 

.~~~ _ —
-
--- -- •—.. 

-:~~~~~~~~~
—-—

~~~~_•.L._~ ~~
-

~~~~~
- - -  — —-—-- . — ——--



1have true conditions during recognition is called the conflict set,

and the problem of choosing a single rule from the conflict set (for

subsequent execution) is called conflict resolution. During the ACT

step of the control cycle all actions associated with the chosen rule

are executed. Conflict resolution typically provides a single rule

for execution (selection and execution of multiple rules is possible

but more complex). Although many different conflict resolution tech-

niques exist, the most common, rule order, involves assigning a priority

ordering to the rules when they are first created . Conflict resolution

then consists of selecting the highest priority rule from the conflict

set. We will call production systems which use the rule order technique

for conflict resolution, rule ordered, or just “ordered” production

systems.

The operation of this type of production system will be ~dlustrated

by showing one which can add two integers. The algorithm , shown below,

adds M and N using the intermediate variable COUNT .

1. add(M,N) = COUNT <— 0; read(M,N);
2. Li if COUNT = M then return(N);
3. COUNT <— successor(COUNT);
4. N <— successor(N);
5. goto(Ll).

The ordered production system corresponding to the above algorithm is

given below. Here conjunction is indicated by & and variables by x’s,

thus rule 3 says, in effect , “if the string (COUNT [any item]) is in

the data base, and the string (N [any item]) is also in the data base,

then change the data base by replacing the item associated with COU NT

with the successor of that item, and by replacing the item associated

with N with the successor of that item. Thus applying rule 3 to the

data base elements (COUNT 0) and (N 1) would change these elements to



.-—- • —-----—--—----—— .- ..- - -. • -—~~~~-- ----• - -.-—— -—- .- -.-- —- . • ,-• .—-.. -— • - —.- -  .

— 5 —

(COUNT 1) and (N 2).

DATA BASE: (ADD)

RULES: 1. (ADD) —> del(l)
put((COIJNT 0))
read 0

2. (COUNT xl) & (M xl) & (N x2) —> say (x2)
stop()

3. (COUNT xl) & (N x2) —> rep(l, xi, succ(xl))
rep(2, x2 , succ (x2))

The actions used in this production system are defined below.

del(n) : deletes the data element that
matched the nth condition element.

put (b) : puts b into the data base.
read C) : reads data into the data base.
say(b) : prints b.
stop() : stops production system execution.

rep(n,b,c) : replaces b with c in data element
that matched the nth condition element.

succ(n) : returns n+l, the successor of n.

A trace of the execution of the production system is given below. It

is assumed here that read() brings (N 1) (M 2) into the data base.

Note that line I of the algorithm corresponds to prodjiction rule 1,

line 2 to rule 2, and lines 3 and 4 to rule 3. There is nothing in the

production system that corresponds directly to the GOTO statement in

line 5, since the branching function in production systems is handled

by control cycle repetition, which permits unlimited looping, and

appropriate data base modification, which in this case makes rule 1

inoperative after it is fired once.

DATA BASE: (ADD)
rule 1 fires

DATA BASE : (N 1) (M 2) (COUNT 0)
rule 3 f ires

DATA BASE: (N 2) (M 2) (COUNT 1)
rule 3 f ires

DATA BASE : (N 3) (M 2) (COUNT 2)
rule 2 f ires
3 [is printed and execution stops]



— 6 —

Action—driven Production Systems

An action—driven production system is given a premise to “prove,”

or in effect a question to answer through deductive inference. The

actions of rules are examined to find one which could make the premise

true. When such a rule is found it is examined to see if all its con-

ditions are true. If they are, the rule is fired ; if not , the process

continues recursively in an attempt to show that each condition of

the rule is true.

An abstract example of this type of production system is shown

below. Here data base elements are letters and are considered true

if they are in the data base.

DATA BASE : A F

RULES: 1. A & B & C — > D
2. D & F — > G
3. A & J — > G
4. B— > C
5. F — > B
6. L-> J
7. G-> H

If the goal is to show that H is true, the system first checks the

data base to see if H is there. In this case it is not, so the

system tries to deduce that H is true using the rules that have H

on the right—hand side. The only one applicable is rule 7. The

system now attempts to show that G is true, since if C is true then

H is also true. Again it checks the data base; C is not there, so

it looks for rules that have G on the right—hand side. Conflict

resolution for this example is considered to be rule ordered , thus

the first (highest priority) rule that is applicable is used . This

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . -  -.•--- - • -~~~.-- ~~~~ - • ~~~~~~~ 
- •

~~~~~~~~- ,-. -~~~~~~~~~~~~~~~~



-;--. ..•— ---- - -

~~

-

~~~~

- —--
~~~
—---

— 7 —

is Rule 2 , so now the goal is to show (or deditce) that D and F are

true. This is accomplished by showing that A is true (from the data

base), B is true (from rule 5), and C is true (from rule 4). Since D

and F are true, G is true and thus H is true, and the goal has been

accomplished . As the applicable rules are fired the appropriate

elements are added to the data base. In this case the data base ends

up with the elements: H G D C B A F, inserted by rules 5, 4, 1, 2,

and 7, in that order.
F,

- •• ~~~~
•
~~~~~~~~~~


— 8 —

III. APPLICATIONS OF PRODUCTION SYSTEM TECHNOLOGY

Production system architectures have been used in a number of

different systems. An interesting example of a condition—dr iven

architecture is the Meta—DENDRAL system (Buchanan et al, 1972).

Meta—DENDRAL is a program designed to formulate rules of mass spec—

trometry which can be used by Heuristic DENDRAL , a performance program

developed for the analysis of molecular structures. The rules learned

by meta—DENDRAI. are represented as production rules of the form

situation —> process, where each situation is a description of a

subgraph which represents some class of molecular structures, and

each process is an action that will change those structures, such as

breaking a bond or moving an atom. Condition testing is based on

pattern matching, and all rules with true conditions are executed in

some arbitrary order.

MYCIN is an interesting example of an action—driven production

system architecture (Shortliffe et al, 1975) The MYCIN program is

a production system designed to interact with a physician and advise

him regarding antimicrobial therapy selection. The system uses over

200 decision rules to guide its action—directed search for a diagnosis.

It not only uses the data base and the rules to validate rule condi-

tions, but also queries the user of the system (the physician) when

the information is not in the data base and cannot be deduced from

the rules. Thus the user is able to provide the system with current

information about the particular case being diagnosed .

A system which uses both condition—driven and action—driven rules

is RITA (Anderson and Gillogly , 1976). The RITA system is designed

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.



— 9 —

for writing computer programs called agents which intelligently inter-

face the user to the outside computer world. RITA ’s production system

control structure provides the degree of simplicity and modularity

needed to make program organization straightforward and program modif i-

cation relatively easy. The system is human engineered , i.e., the programs

or RITA agents have an English—like syntax which makes them easy to write

and almost self—documenting. The language primitives in RITA permit the

user to interact with other computer systems, even to the extent of

initiating and monitering several jobs in parallel on external systems.

Within RITA, agents can be created which are entirely condition—

driven (also called pattern—driven), entirely action—driven (also called

goal—driven), or are some combination of both. The condition—driven

production rules are called RULES, the action—driven ones are called

GOALS, and they both operate on a data base composed of objects with

associated attributes and values. An example of a simple RITA agent

that deduces the prompt characters for all ARPAnet hosts in the data

base is shown below.

[DATA BASE]

OBJECT computer<l> :
name IS “rand—unix”,
type IS “PDP—ll” ,
operating—system IS “UNIX”,
access—link IS “ARPAnet”;

OBJECT computer<2>:
name IS “sri—ai ”,
type IS “PDP—lO”,
operating—system IS “TENEX”,
access—link IS “ARPAnet”,
prompt—character IS “@“ ;

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .



-

~
-. . --

~
-- 

- -

~~~~

—-

~~~

- .

—10 —

[RULE SET]

RULE 1:

IF: ThERE IS a computer WHOSE access—link IS “ARPAnet”
AND WHOSE prompt—character IS NOT KNOWN

THEN: DEDUCE the prompt—character OF the computer
& SEND concat (the name OF the computer, “uses a prompt of “,

the prompt—character OF the computer) TO user ;

GOAL 1:

IF: THERE IS a computer WHOSE type is “PDP—ll”
AND WHOSE operating—system IS “UNIX”
AND WHOSE access—link IS “ARPAnet”
AND WHOSE prompt—character IS NOT KNOWN

THEN : SET the prompt—character OF the computer TO “%“ ;

When this agent is executed Rule 1 fires, because both its premises are

true, initiating a deduction for the prompt—character of computer <1> .

Since GOAL 1 is applicable, it is used in the deduction and automatically

updates the data base. Then the second action of RULE 1 is executed

and the sentence “rand—unix uses a prompt of %“ is printed .

In conclusion, production systems are an interesting form of program

organization for a number of reasons. First , they provide a parsimonious

way of modeling human cognition , i . e . ,  the production system data base

can be compared to human short term memory, and the production rules to

human long term memory . Second , production rules tend to represent

independent components of behavior and thus the creation and addition

of new production rules can be incremental , a f e a tu r e  which fac i l i t a tes

modeling learning processes (Waterman , 1970, 1975). Third , when a large

body of knowledge is represented in rule form, as In MYCIN, it becomes

easier to explain , justify, and analyze the rationale used by the program

to reach its decisions. Finally, the simplicity of the RECOGNIZE—ACT



I -P 11 -

control structure (no branching or block structure) facilitates auto—

matic program creation, debugging, and verification.

I

L -

~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~ 
- -

~~~~~~ 

-

~~~~~

-

~~

--, ,--—~~~~~
,--. —-.—-.- ---- - — , -. .~---—-— - - -- - .-— - -— --- -

~~~~
-

—12 —

RE FERENCES

Anderson, R. H., and Gillogly, J. J., Rand intelligent terminal agent
(RITA): Design philosophy. Rand Report R—l809—ARPA, February,
1976.

Buchanan, B. C., Feigenbaum , E. A., and Sridharan, N. S., Heuristic
theory formation: data interpretation and rule formation. In
Machine Intelligence 7, Edinburgh University Press, 1972.

Davis, Randall, Applications of meta level knowledge to the construction,
maintenance and use of large knowledge bases, Report No. STAN—CS-
76—552, Computer Science Department, Stanford University, 1976.

Galier , B. ,  and Perils , A. ,  A View of Programming Languages, Addison-
Wesley, 1970.

Minsky , M . ,  Computation: Finite and Infinite Machines, Prentice—Hall ,
1967 .

Newell , A. ,  and Simon , H. A., Human Problem Solving, Prentice—Hall ,
1972.

Newell , A . ,  Production systems : Models of control structures. In
W. C. Chase (ed.) ,  Visual Info rmation Processing, 1973, pp. 463—526.

Short lif fe , E. H., Davis, R., Buchanan, B., Axline, S., Green, C . ,  and
Cohen, S., Computer—based consultations in clinical therapeutics:
exploration and rule acquisition capabilities of the MYCIN system.
Computers and Biomedical Research, Vol. 8, 1975, pp. 303—320.

Waterman, D. A., Generalization learning techniques for automating
the learning of heuristics. Artificial Intelligence, 1, 1970,
pp. 121—170.

Waterman , D. A . ,  Adaptive production systems . 4th IJCAI Conference
Proceedings, September , 1975, pp. 296—303.

-


