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~ ABSTRACT
The common assumption that the stress is infinite at the tip of an in-plane crack is incon-

sistent with the basic historical solutions for stress for cases from which crack formulae have
been evolved. The latter formulae do not satisfy boundary conditions. An appropriate definitii n
of a crack, as does one presented here, should make it obvious that such conditions are to be
fulfilled and when they are, the meaning of stress intensity factor as the coefficient of a I i~’r ~singularity is altered. It no longer represents an infinity of stress and its connection with actual
failure stress through a stress concentration factor leads to a fixed, rat her than experimental,
connection between Modes I and II stress intensity factors. Furthur discussion of appropriate
representations of cracks for shear and normal stress loading is warranted, as well as of tough-
ness definition consistent with failure mechanisms and with elastic-plastic solutions for stress.
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INTRODUCTION
This paper* is concerned with an apparent oversight in the usual current operational definitions

of stress inten sity factor for in-plane cracks, and in its resolution. This oversight leads to an incon-
sistency between the definitions of stress intensity factor for Modes I and lit as well as to a lack of
def inition for stress intensit y factor for combinations of these modes, assum ing the intent of the
defin it ions is to make fracture stress a unique common basis. The oversight stems from a lack of
satisfaction of crack boundary conditions. This, in turn , derives from setting the minor ax is of the
inglis solution equal to zero, in evolving the formulation of the current definitions of stress intensity
factor. The consequent aberration does not occur if, in reducing the Inglis solution, the tip radius is
retained along with the crack length, even though the radius may be assigned as small (but finite) a
value as one chooses. There is no infinity of stress.

Thus the radius becomes a part of our suggested definition of a crack and accordingly cracks
can be regarded as notches.

Before discussing the proper deduction of stresses near crack tips, we will briefly review the
current operational definitions of stress intensity factor and show that they are not inconsistent
with a crack tip radius concept and, in fact, can even be regarded as a stress, not the usua l stress
X~~~ ii~tii, so long as fracture stress failure of the cracked material is envisioned.

This paper is an elaboration of part of a former one [II in which the writer gave his own defi-
nition of a crack and indicated how he had been treating cracks as notches in the prediction of failure.

On Current Definitions of K

According to current complex variable analyses which assume rectilinear elasticity, the stress
intensity factors, K, for Modes I and I! are determined as the coefficient of a l/ .,~/~i singularity by
the formula

= 2..,,i2 urn z 112 
~‘ (Z) Z 0 (I)

in which 0 is a stress function whose expansion commences with ~~~ term. r is the radial distance
from the crack tip.

We now consider Mode I, i.e., crack axis is perpendicular to the direction of the resultant
loading.

The above definition really stems from taking K to be the coefficient of (2r)~ 
/2 f(Ø) in the

expressions for the rectangular components of stress as distance, r, from the tip of the crack ap-
proaches zero, i.e., typicaIly~

S f ( O)  (2)

Manu.crlpt receIved 3 June 1975.
tMode I: Loading stresses at Infinity perpendicular to and along the crack axis; Mode It: Loading stresses at infinity are shearing

streuea along and perpendicular to the crack axis.
The complete expressions may be found on pages 1 and 10.
I. BEEUWKES, R., J r .  Analysis of Failure,. Proceedings of the Third Sagamore Ordnance Materials Reaear~ h Conference.

December 1956 . co-sponsored by the O,dnancc Material, Research Office (now Army Materials and Mechanics Research Center)
and the Office of Ordnance Research of the U. S. Army, p. 99.
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which to be dimensionally correct , and because stress is proportional to load, may also be wr ittcn *

= ~~~~~~ (0)

i.e.,

K = (k/2) S~~/~i

where Sn is a nominal loading stressf, “a” is a length which directly or indirectly characterizes crack
size and k is a function of crack specimen geometry. Thus for the standard reference case, a crack in a
plate many crack lengths long and wide, and loaded cross-wise to the crack by a uniform end loading
stress Sn. k = 2 if “a” is half the crack length. If this plate were reduced symmetrically to width w,
keeping the crack in the center, k ~ 2 (cos lr a/ w)-l 12 . If the original plate had been sectioned along
the specin~en axis, cutting the crack in half, and the meaning of S~ and “a” were retained,
k (2X l.12 147). If instead of the center crack our original specimen had two very ( -  infinitely)
deep cracks symmetrically situated to each other on opposite sides of, and perpendicular to the
specimen axis with the nominal stress conveniently selected to be the axial load divided by the net
section area between the crack tips and “a” selected to be half the distance between the tips, then
k—4/ il’ .

This formula for stress purports to uniquely depict the stress field immediately about the crack
tip; k embodies the effect of specimen geometry and load distribution but not the distribution of
stress at the tip.

Clearly the formula may also be written, by dividing both numerator and denominator ~~~~~

K K
S = ~ f ( O) = —° f (O)  (3)

in which we see that distance is now measured in terms of a characteristic length , such as a crack tip
radius, i.e., distance is now measured by rip .

Also

K0 = KkJ~ = (k/2) Sn tJ l1~ (4)

a quantity which has the dimension of a stress and an appearance like that of the concentrated stress
at the base of a notch. It could be computed if p were a known quantity.

k/2 Is written as In some literature (Y depends on the dimension chosen for “a”)..flse reason for choosing k/ 2 for the constant.
Instead of simply k, Is to Identify Ii with the stress concentration factor coefficient of~~ /p as will be seen later on. Also, our icvc
is often called K , as a result of an energy approach, but Is redundant and distractIng In the formulae for stresses.

f In determini ng K for a material, S~ and “a” are measured at $ failure load defined by so me Standard, especially the ASTM Standard
for toughness testing.

2 

- - . 
—- -

~~



Now (lie term “stress intensity factor ” when used to evaluate toughness of materials may be
taken to imply that a fracture stress, S = F, is attained at failure according to the formula for K in-
volving stress and crack length evaluated at failure . That is, since f ( O)  = I when S is a maximum,

S = F = K 0/V~~~ (5)

where, to have similarity at failure in different tests , r/p = constant. If, for example, r/p = 1/2,

F = K A J~~~= K 0

or, if F and K are known experimentally

p = (K/F) 2

Instead of K, G is sometimes used, where , in our first example referring to a central crack in a
tension member

S~ 
(6)

and G corresponds to the failure value of S~ when the crack length is 2a. Here, in analogy to the
Griffith formula,

Sn = V ~~~~~~~~~~~~~~~

for crack failure when surface energy is controlling, writers assume G represents the energy absorbed
at crack failure, per unit length of crack growth.

This assumption is unwarranted if G and K are computed from the same critical values of S~
and “a”. While an energy criterion must be met, it is not necessarily controlling. However , assum-
ing G is controlling, we have

•-- -- =  K2 ( 7)k ~(I-M2)
and

- IK\- EGP~-~ i — i  — 
~~~~~~~~~~~~~~~~~

~F, ir ( 1—p~- ) F —

3
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Definition of a Crack lii

In accordance with our prev ious remarks , we assume that for the mathematica l treatment of
macroscopic cracks , t he crack may be regarded as a symmetrical notch with a smoothly varying
curvature and a parabolic tip of sufficiently small curvature compared with its depth. “Sufficiently
smal l curvature ” means t hat an elasticity stress analysis would show that the peak stress in the re-
gion of the tip, is inversely proportional to the square root of t h e  tip radius of curvature to any
close approx imation desired. Since any curv e with continuous second derivatives is characterized
at a point by its curvature , it will be seen that this definition inc ludes more than obviously crack-
like ellipses and hyperbolae.

This definition clearly requires satisfaction of boundary conditions at the tip of the crack.
This is not true of the usual conception of a line crack (at least in the way it has been treated). In
the latter case any symmetrica l set f-equilibrating combination of concentratcd loads could be ap-
plied to the tip along the crack ax .~ , and satisfy the boundary condit ions as well as does the analysis
one has come to expect , which m; kes the stress in the crack axis direction equal to that perpendicu-
tar to the crack axis, instead of ze o~ as it should be and would be in the case of the parabolically
tipped crack. These loads would also cause stress to decrease with distance from the crack tip at a
different rate than the inverse square root of this distance, in contrast to the current treatments.

This definition excludes, or relegates to separate treatment , a cr~ick with parallel sides and
circular tip. It and other shapes should be studied separately not only for pedagogical reasons, but
because they may conceivably be encountered, or prove use ful experimentally. With them peak
stresses are reached at different loads and amount of yielding near the crack tips. However, the
definition adopted here derives historically, as do the conventional crack formulae for K. from the
well-known Inglis classical solution for stresses about ellii~ticaI holes and thus may be readily visual-
ized and the Inglis solution utilized by the reader in deriving the results to be presented below. The
definition is however , not only suitable for present purposes, but separate investigation [2 ] ,  not
presented here, indicates that its use is not limited to smooth contours but that the material to
which it is applied may be considered to have an effective radius when there is some plasticity about
t he crack tip, an effective radius which is a material property and is associated with failure below
the crac k tip with its irregular contour.

Stress Formulae with Parabolic Crack Tip

The general formulae for stress components, in the vicinity of the crack tip may. as previously
;ndicated , convenient ly be deduced from the Inglis solution for stresses abou t an elliptical c rack , if
this solution is expressed in terms of the semi-major axis “a” and the radius of curvature at its tip, p.
instead of” a” and the semi-minor axis “b”. That is, for “b” we first substitute b ~~/ii~ , then re-
place the coordinate system by a natural one that is near the tip and finally reduce the resulting
formulae to the limiting case where alp >> I and distance from the tip, measured in t ip radii, is
smal l.

The resulting formulae for the rectangular components are as follows. The corresponding
formulae for the polar and parabolic coordinate components are submitted in the Appendix . The
A iry stress function is

• Assuming no internal pressure in the crac k

2. B)- i UWKES, R., Jr. Characteristic, of Crack Failure. Surfaces and interfaces , Syracuse UnIversity Prcss, Syracuse , N.Y.,
v . II, 1 9611 , p. 277.
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F1 = (k 1 S 1/ 2 )  — 
(p / a )  cos (0/ 2 )  

+ 
cos3 0/ 2 (8)

(2 r/a )3/2 (2 r/ a ) 1/
~

Because of the p term , the stresses do not decrease with distance , r, from the tip as r ’12 .

The origin of rectangular coordinates (x ,y) and polar coordinates (r , 0)  is at a distance p12 be-
hind the nose of t he crack-like notch , on the x ax is. p is the radius of curvature of the tip of t he
nose. x is along the crack axis the negative direction lying completely within the crack. The posi-
tive y ax is is counter-clockwise from the positive x axis. The polar coordinate angle , 0 . is positive
in the direction from positive x to positive y. The coordinates (x/a ), (y f a)  and ( na)  are oriented and
centered in the same way as (x , y) and r.

The equation of the parabola is, in polar coordinates ,

(rIp) (2 cos2 8/ 2) = ( r / p )  ( 1+ cos 0)  I (9)

and in rectangular coordinates,

x/p = (1/2 ) l — (y/p~ - j

from which it is, indeed, evident that the tip is at a distance of x = p/2 in front of the origin. It is
also obvious that with distance measured in tip radii, all parabolae have the same size and appear
crack-like if x > > p.

“Normal Stress” - Crack Tip Stress S (nc w ith Re~p~ct to Crack Ax~
Only the loading stress perpendicular to the axis appears in the expressions for stress near the

crack tip if alp>> I, as assumed here.

= - + cos 0j~~j -sin 0J2 sifl 30 j 2 )  ( 10)k1S1 (2 r/a)3/2 (2r / a) 112

= + ~I~Lcos 3~ L~ + 
cos Oj2 ( l+s in O/2 sin 3O/2

k1 ~i (2 na)3!2 (2 n a ) ’! 2

~~~~~~~~~~~ = - + c s ~ L2~~ n0/ 2 cos 30/2
kj Sj (2 na)3!2 (2 r/a)1/2

The stre sses on the boundary, p/ a = (2 n a) cos 2 0/2 , are , keeping the contributions of each
term separate before adding them up,

5
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- (cos3 0 /2  COS 3 0 / 2 )  ~~a7p + cos 2 0/ 2  (I-siii 0/2 sin 30/ 2) ~ aTp (II)

= + (2 ~~~ 0/2 cos
2 0/ 2)  ~/aTh

S
•~_ 

= + (cos3 0/2 cos 30/2 ) .~fa7p + cos2 0/2 (1’+sin 0/2 sin 30/2)~/~7~

(2 cos4 0/2) .../ iiJ~

= — (cos3 0/2 sin 3 0/ 2 )y~ /p + cos2 0/2 (sin 0/2 cos 30/2 k~/~~/~

= (—2 sinO/2 cos3 O/2) ~~~~

However, the stresses* in the d irect ions u, v of parabolic coordinates.

= ( 2 n a )  cos2 0/ 2 , v2 = (2 n/a) sin2 0/2 , boundary p/a = (2 n a) cos2 0/2 (12)

are more useful in determining the relative contr ibutions to the boundary stress state.

These are

= -oj a cos 012,. + ~~~~~~~ (13)
kj Sj (2 n/a)3!2 (2 n/a) 1!2

so that on the boundary

= (— cos4 0/2) v’~Th + (cos4 0!2)~ ’~l~ = 0

2 S v — 
p/a cos 0/2 + 

cos 0/2 (2 —cos 2 0/ 2)
kj~i 

- 

J ~~1~ ~~~~~~~~~~~~~~~

* The following formulae are conveniently derived using parabolic coordinates. h owever , they may
be found from the rectangular components of stress by faking account of the fact that in an ele-
mcntary right triangle with hypotenuse ds along the parabolic boundary the angle between dy
and ds is 0/ 2.

()
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so that on t he boundary

k1S1 
= (cos4 0/2) ~~ /p + ( 2 c o s  ( 1 / 2  - co~

4 0/ 2 ) ~~~~

= (2 cos 2 0 / 2 )  ~~~

2 ~~~ = 
- p/ a  sin 0/2 

+ 
cos 2 0,2 sin 0/2

k1 S1 ( 2 r/ a) 3/2 ( 2 n a ) 1!2

so that on the boundary

= (-cos3 0/2 sin 0/2) ~~aTp + (cos3 0/2 sin 0/2) \/ a /p  = 0

Here again, the contributions of the two types of terms have been kept separate before adding
them up.

In expressions for S~, and Sv for 0 0, we :ecognize the usual formula for stress concentration
of a very sharp elliptical notch, 2,~/~7p, where kj = 2 as it is for that case whe n Sj is the loading
stress far from the notch.

As stated previously, the first term was unfortunately omitted in the definition c~f stress inten-
sity factor so that the formulae for stresses were written

- 
K1 cos 0/2 (I-sin 0/ 2 sin 3 0/2) ( 14 )Sx - - 

( 2 r ~~/2

— 
K1 cos 0/2 (1+ sin 0/2 sin 3 0/2)

Sy - 

7~~ Tf2~~~ 
—

— 
K1 cos 0/2 (sin 0/2 cos 3 0/ 2 )

Sxy -

-. l 1 Thus if these latter formulae were evaluated on the b’ undary, at 0 = 0 where the s t r e s s  is maxi-
mum , the term retained in them contributes but half the true stress which is given by the prior for-
mulae. However, comparing these sets of formulae, it is evident that

kj S1

1~ . 
2 ~/a = K j ( 15 )

7
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,iiid hence ti le expression for K j computed mathematically t~ (he coe f t i c i c u  t oft 2 rr 112 can hi’
used to compute the c o e f f i c i en t  of St res.s concentration . k1 . by t his relation , wit lion t error, even
though an improper eXp rcssit ) I1 for stress h a s  been used in defining K.

IfS is assumed to be F, where F is the “nil—d ucti l i t y tensile f racture st ress and K = K IL

F k 1S1 VIa/p 2 K lc /~~
p (16)

by t h e above relation, i.e. ,

P = (2 K tc/F)
2

This p could be a machined in radius and the stress distribution might be rectilinearly elastic
up to S F. so that this case would be one of classic brittle failure. On the other hand , this p might
be a unique characteristic length obtained by this formula from any crack KIc test, a length which
is in some cases unequivocally a crack tip radius.

Mode II: “Shear” — Crack Tip Stress Anti-Symmetric With Re~pect to Crack A -~ i~

The resultant component of the shear loading which is parallel to the crack axis, is here re-
garded as a clockwise couple whose forces lie symmetrically above and below the crack axis, so that
the force above points away from the tip in the + x direction.

The Airy stress function is

Fj j  = (k lI SlI) ~~~~~~ + ~~~ 0/ 2  cos2 0/21  (17)
L (2 n/a)3!2 (2n/a)h /_ J

The stresses are

S~ = ~(p/a) sin 30/2) sin O/ 2 (2 + cos 0/2 cos 30~’2) (1 8)
k11 S11 (2 n/a (3/2 (2 n/a) 1/2

I-
. Sy — 

( p / a )  sin 30/2 sin 0/2 (cos 0/2 cos 3 0/2)
k11 S11 

- - 
(2 n a) 3!2 

+ -

- 

S~y = - 
(p/a) ens 3 0/2 

+ 
cos O/ 2 l - sin 0/2 sin 3 0 / 2 )

k11 S11 (2 n/aj 3/ 2  (2 n/a)1!2

A s was the case with Mode I , the stresses in the directions u, v of parabolic coordinates are
more usefu l in determining (lie relative contributions to the boundary stress state.

8
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These are

— 

S1J 
= (p/a) sin 0/2 

— 
sin 0/ 2  cos 2 0/2

k11 S11 (2 r/a ) 3 ( 2  r/ a ) ’/ 2  ( 19)

so that i~a the boundary

Su = 
cos3 0/2 sin ~~~~ . ! v’a ’~ 

— ~in 0/ 2  cos3 0/ 2 ~/a7~ = 0
k11 Sj j

= ~ J s in~~L2 
— 

sin 0/ 2 (1+sin 2 0/ 2)
S1j (2n/a)3/2 (2r/a) 1/2

so that on the boundary

k11s 11 
= - cos3 0/2 sin 0/2 ~~~~~~~~~~~~~~ (2co s 0/2 sin 0/2 - cos3 0/2 sin 0/2)~~~~

= ,,,,
sin O/2 cos 2&/2

,1
—7-_. ~~~~~~~~~~~~~~~~~~~~~

= - sin ~~~~~

Suv 
= — 

(p/a) cos 0/ 2  
+ 

cos3 ( 12
• k1j Sj 1 (2 n/a)3/2 (2r/a)’/2

so tha t on the boundary

‘
I . _ _

~~~~! _ =  - cos4 0/2 v’~Th + cos4 0/2~~/af~ =0

As before, the contributions of the two types of terms have been kept separate before adding
them up.

In the expression for S,~, we recognize the formula for stress concentration of a very sharp
elliptical notch 

~~~~~~ 
corresponding to extremes of sin 0 , 0 = ± ir/2 , where k11 = I as it is for

the case when S11 is the loading stress far from the notch.

Again, as we observed previously, t he first term was unfortunately omitted in the definit:on of
stress intensity factor so that the formulae for stresses were written

— -
~~~~~~~ -



K 11 sin 0/ 2  ( 2 + c o s 0/2 cos 30/2)
= - - 

(2 r)’ !2

K1 1 sin 0/2 (ens 0/2 cos 30/2)
s~ = + - - -
/

— + 
K11 cos 0/2 (I — sin 0/2 sin 3 0/2)

xy (2 n)1!2

Thus if the latter formula were evaluated for stress along the boundary p = 2 r cos2 0/2 , we
would have

= Sy C0s2 0/2 + 5x sin2 0/ 2  — 2 5xy sin 0/ 2  cos 0/2 (21)

i.e.,

S~\/~ ’ s o  {_cos3 0/2 C05 30/2 ) + 2 Sin2 0/2

+ sin2 0/2 cos 0/ 2  cos 3 0/2 )

+ 2 ens 0/2  — 2 sin 0/2 cos2 0/2 sin 3 0 / 2 ) }

= - 
SW 

~ 
{ 2 - 2 cos3 0/2 cos 3 0/2 + cos 0/2 cos 3 0/2)

— 2 sin 0/2 sin 3 0/2 cos2 0/2 }
= — 

sin O 
{2 ÷ cos 0/ 2 cos 3 0/ 2 — 2 cos2 8/ 2 cos o}

si nO 
+ cos 0/2 [4 cos3 0/2— 3cos 0/2— 4 cos3 0/2 +2 cos 0/2j}

sin 0 
(2  - cos~ 0/2 } = 

sin 0 { 3 - cos o}

10
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Here we have the same expression that appeared above as the coefl’ic ienf of~~af~ in thesecond term of S~, in parabolic coordinates. This expression has a maximum at 0 ir/2 + cos 1
((3 —~,/1 7) J 4 I but this is misleading. The true extremes are at 0 = ir/2 as was seen in the totalexpression for S.~, Thus the above expression is ~ 3/4 at 0 = ± 7n/2 , instead of ~ I, t he value of thecomplete expression.

Unfortunately for consistency of K in representing stress , this differs from the ratio of 1 to 2found for Mode I.

For Mode II, it appears, in comparing the above set of formulae expressed in terms of K11 withthat sat isfying the boundary conditions, that

k j j  ~11 “/~~ 
K11 (22)

and hence the expression for Kjj computed mathematically as the coefficient o f (2  ri~
/2 can beused to compute the coefficient of stress concentration , k11, by this relation, without error, eventhough an improper expression for stress has been used in defining K, an expression w hich does noteven specify the angle 0 at which maximum stress occurs.

Again, if S is assumed to be F, where F is the nil ductility tensile fracture stress and K11 = K11c ’

F = k11 S11 ~~~~ = kllc /~~~ (23 )

by the above relat ionship of k11 S j j  ~../i to K11

Therefore

p = (K 1l~/F)2

As stated wit h reference to Mode 1, t hus pcould be a machined-in radius and the stress distribu-tion might be rectilinearly elastic up to S = F so that this case would be one of classic brittle failure.On the other hand this p might be a unique characteristic length computed by this formula from
• - any crack KIlc test , a length which is in some cases unequivocally a crack tip radius.

Combination of Modes land IL M~~~~~~!~~nda~y S~ness

We take axes and loading stresses, S1 and S11 as discussed under Modes I and II. Assumesl~~0, sII >0.

Then, from the results already found for the boundary stress , Su = 5uv = 0 and

k j S j
S~ +cos0 ) ., ~JaT~ — (sin 0) k 11 S~j y ’a7p ( 24)

Ii 

— - ____ -



which is clearly an extreme when

sin 0/cos 0 = —k 11 S11/(k 1 S1/2 ) ,  t hus —,n/2 ~ 0 ~ 0

Thus, substituting for sin 0 ,

k 1 S 1 (k 11 S11 2 
-

S~.ext ~ (I 4-~~~~~ f2) -, - 

~ k1 S1/2 ~OS 0} ~~
’.
~J~ 

(25)

and noting from the extremum condition tha t

sin2 0 ( I — cos2 0) 1k 11 S11/ (k 1 S1/2)J2 cos2 0

so that

k1 S1/2c o s 0 = -  - _ _ _  _ _ _ _ _

\,1Ri~jS 1/2)2 + (k11 S11)2

we have

Sv ,ext = { (k1 s112) + ~~~~~~ (kj j  S11)2 } ~ji7~~~

This clearly reduces to k1 S~ ~~~~~~~~~~~ 
0 if S11 is zero and + k11 S11 ~~~ ifS1 is zero, as it should.

Since

K 1 = 
~~

-
~
- 

~~ K 11 = k11 S11 ~~
j  (26)

it may also be written

5v,ext v’~ 
= K 1 + \/K ~ + IC

We would certainly expect a sharply notched, alp>> I, isotropically brittle elastic material
to fail at the notch surface when either of these expressions reach a fracture stress S~ = F.

Since p 2 r cos2Of 2 = r (I + cosO), the radial distance to the point on the parabola where
this extreme occurs is

r — _ _ _ _ _

p 

— l +c o s T  (27)

= [I + 

~~~~~~~~~~~~~~~~~~~~~
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measured in tip radii. From the above expressions for K1, and K 11, this may also be written

= + Kj/~~~ K~ + K~] 

-l 
(2~ )

or, if k1 = 2 k11. the normal case,

= 
[I + SI!~ ~fS~~~+ S ~~ 

-l 
(2 9)

Unfortunately, in general, we cannot define or specify a mixed mode stress intensity factor
from the preceding. This is because the formulas for K in terms of S.,, and p are inconsistent forModes I and 11. That is, for given S~., and p, K 1 and K11 should be the same since both refer to a
stress, S.,~, acting at , and tangentially to the boundary of the notch, a stress which would cause fail-
ure if it reached a unique fracture value, F, whether or not it was caused by Mode I or Mode 11 load-
ing even though these cause the maximum stress (i.e., Sv = F) to be reached in different locations.

Thus

= k1 S1 ‘~/~1~ = 2 K1/y’~~ 
/

= k11 S11 ~/~i7~ = K j 1I~Jj T

so that for the same Sv and p,

K1 =

K11 = S~ y’~~

which K are not equal.

The notch stress factors kS, i.e., k1 S1 and k11 S11, do not suffer from this defect. For a fixed
value of S.,, and a fixed value of ~~~~~~~~~~~

k1 S1 = k11 ~11 (30)

Thus

kS = { k 1 S1/2) +~~
r
~~~Sl/2) 2 + (k11 SII)2 }  (31

ts the stress factor representing the combined loading S1 S11

~~~~~H1 —.
~~~



r
One may wel l wonder why K instead of k was introduced, or at least why the proportionality

factor of K to S was not made the same for Modes land II.

Normally, with stresses S1 and S11 specified as discussed previously,

k1 = 2 k 11 (32)

so that in this case

Sv,max = .
~~~~~ (S1 +v1 s~ + s~ )‘ ~~~ (33)

= k11 {s 1 +\/S~ + s~ } %/~7~
and we can define a mixed-mode stress intensity factor, K1, 11 in terms of an effective nominal
stress, S1 II’ i.e.,

S111  = S1 +-.,/
~ 

+ S~ (34)

k1 —

— S.,, max = 
—i

- S1,11 ..J a/p = k11 S111~/~7~’

and

K 1,11 — —
~~

.— S1,11 ~~ 
— k11 S1,11 y’a

— 
K 1, 11S~/, max —

Mixed Mode Example: Tension Member with Central Elliptical Crack at an Angl~~~jii~Axis

Here , if I is the nominal tensile stress,

S1 = T cos2 O (35)

S11 = T sin 0 cos O

where 0 is measured counterclo ckwise from the lateral axis perpendicular to the tensile axis.

14
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Here also k1 = 2; k11 =

so that

K1,11 = ~~ { s~,1~} (36)

= 

~‘r { s1 ÷~~~
/‘

~~~~~~ s~ }
= I~ ’~ { cos2 0 +.~~/~os4o + s i n 2 o

Thus 

= I cos2 0 + cos0}

KI,11,max = 2 1 
~~
‘ (37)

= K 1

Similarly,

= [si ± \I’~ ÷ ~~~~~~ (38)

= I ~~~ [cos 0 (cos 0 ± 1)]

This is maximum at 0 0, (+ sign) where

S, 2 T .,/~~~ (39)

4 
~~

- and at 0 w/4 (— sign) where

= 
(~

_z~~~~) T~~~~ (40)

~~~~~~~ DISCUSSION
It may be observed, as a partial justification of current definitions of K, that they are propor-tional to stress concentration factors in the usual case that k11 = k 1/2 , sic,

i t  15 j
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(k 1, 2)  S 1 ~/a = K j (41)

k 11 S11~ fa = (k j 2) S11 ~/a K 11

so that the stress concentration factors for these two cases would be the same if p were (lie same.
i.e.. we would have

(k 1/ 2) ~/~i7ë. k11 /a7~ (4 2)

However , the standpoint of this paper is that this is an improper approach, that the proper one
requires that K1 = K 11 if the fracture stress is fixed.

Or it might be objected that though the p term has the same dimensions as the (2 rY’~
i2 term,

i.e., p/ ( 2 r)3/2 vs. (2 r) 1/2 , that it nonetheless does dim inish at a much greater rate than does the
( 2 r) 11— term , and therefore might be regarded as not very significant, especially in the non-
homogeneous crystalline state of a crack front of metallic material. From this standpoint one
might also question the (2 ~)_ 1/ 2 term also, and thus this whole elasticity approach to the problem.
Where does one decide what to retain? Such an argument, if rigorously adhered to , would ultimate-
ly question the usefulness of the macroscopic theory of elasticity, as applied to metallic materials,
even in regions away from serious stress concentration. Thus in this connection we point out that
even a crack front ordinarily passes many grains and hence a theory assuming homogeneity may be
expected to have some practical use. The irregular front may even contribute to the concept rather
than negating it; for example, there may be an effective radius due, among other possibilities, to the
differences in crack length and therefore openings from point to point along the front . In fact , as
indicated previously, invest igation 121 [31 indicates that crack failure is generally sub-surface and
that an effective radius, such as a radius consistent with the crack opening contour near the tip, is
suitable and sufficient for a radius term in the calculation of the fracture stress causing failure.

However, the objection of the preceding paragraph is not germane to the main purpose of this
paper , though it is to whether the elasticity treatments of K are useful or not. More on this below.
The point here is the validity and self-consistency of the elasticity treatment itself, whether useful
or not. That is, elastic ity theory, only, is used in the formula for K which is used in Kc determina-
tions. That theory should be cast into a form which satisfies boundary conditions. And it should
embrace artificial, machined in cracks of indefinitely small, but assignable, tip radius. These factors
are accounted for in the treatment in this paper, but it is well to remember also that Neuber 141 in
his treatment of sharp notches, using a texture particle zone below the notch root characteristic of
the material employed, took care to satisfy boundary conditions. His result was that a material
constant , one half the zone depth, i.e., € 12 = p ,  took the place of the tip radius p in the usual
theory .

For self consistency the viewpoints expressed above and in the text for crack-like notches
must hold for V-shaped notches, or notches whose tips are V-shaped. The crack-like notches should

3. TAG GART , R ., and WAIII , K., University of Washington , Seattle. Crack Opening Displacement D ’arlng the Tensile Loading ofTh4ctile and Firiule Notched fl at es. Private CommunIcation, April 1971.
4. NEUBIR, H. Theory of Notch Str.’~ses. Principles for Exact Stress Calculation. The David W. Taylo r Model Basin, Tran~1stion 74 .November 1945 , p. 160, and reference to “El ne ncue clast iche Materialkonstante ” by L. Foppi, lng.-Archiv., v. 7 , no- 4 , 1936 ,

p. 229-236.
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be considered as a particular case of the V-shaped notches. In fact , the sides of the V should be con-
sidered to be t he asymptotes of the actual notch shape, not t he notch itself. Just as in the crack
case, in order to satisfy boundary conditions one would incorporate a tip radius into the notch and
would then find that no matter how small the radius is taken to be, that the boundary stress term
in wh ich it is incorporated , contains a fixed proportion of the total boundary stress . One should
not therefore, take the pure V limit as the V notch anymore t han the particular case of V-notch , the
straight line, as the crack. From this point of view , certain well known solutions 151 16 1 for open
notches are incomplete , and require an additional term incorporating a radius , to com plete them.

That these comments about tip radii are not unimportant will be appreciated when it is con-
sidered t hat one could not solve for the stresses about a hole having V-shaped corners through the
use of a stress function (with undetermined coefficients) which , while assuming the corner is reached
as the zero limit of a radius, assumes that the corner stress will die out in a power given by the well-
known corner solutions referred to above.

A form of notch with V-shaped asymptotes , which contains t he parabolic notch treated in this
paper, is the following

r cos~
/(1f/ 2) = [I 

_ (ir/2)/ 13
] 

p (43)

in polar coordinates, where p is the radius of the tip and 0 = ±~~ defines the asymptotic opening of
the notch. Thus 2 (7r-j3) is the asymptotic angle of opening. The tip is at a distance

r = l_ [ O r / 2 ) / 1 3
J ~ 

(44 )

beyond the origin of coordinates on the symmetry axis 0 = 0. If 3 = ~r. 2 r cos2 0/2 = p. the
crack case.

Two other points should be mentioned lest unfortunate presumptions should be drawn from
the text of this paper by the reader.

One, the writer knows of no a priori reason to assume that p for Modes I and 11 are equal, as
assumed here in the treatment for combined loading stresse s, unless p is created to be so artificially,
as by machining.

And finally, the writer doubts that K calculated through use of the formulae advocated here.
will be found to describe the toughness of materials unless the materials are perfectly brittle (— or
some presently undefined meaning or expression is assigned to p). That is to say, for example , that
if a fracture stress were calculated by the Mode I formula from the failure load in a Mode I experi-
ment, the load corresponding to this same fracture stress , ca lculated by the Mode II formula would
not be the actual failure load in a Mode II experiment, unless the material was perfectly brittle.

5. WILLIAM S, M. L. Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension.
Journal of Applied Mechanics, v. 19, no. 4 , December 1952 . p. 526.

4 6. WEBER , C. Ailseftig geozogene Ebene mit Zweibogenloch. Zeits~ hrlft fü~ Angewandte Mathemat lk, und Mechanik , Band 31 .
Heft 7 , July 195 l , p. 193.
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Only actual experimental results are likely to be convincing on this point , but t h is writer ’s approxi-
mate thiet r~ 12 1 and calculations indicate that (lie failures would be sub-surface and that hydrostatic
stress ,j sstc j , i ted with plastic defo rmation , sufficient to bring the stress to the failure level , is not

readily attained in shear. Nonetheless . the complete theory of the elastic-p lastic j i l c r . t t i~~ii includes
(li e horni iilae of this paper as a limit.
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APPENDIX

The following equations are expressions for stresses at and near (1/2 ~ r/p <<a lp)  the tips
of crack like (alp >> I) notches in the directions of, and given in parabolic and polar coordinates.
p ~s the radius of the tip of the nose and “a” is a length usually characteristic of its depth , being the
semi-major axis in the standard case of an elliptically shaped crack , while r is a polar coordinate
such that the tip is at r = p12, as spec ified below .

The origin of the polar coordinates (r. 0) and focus of the parabolic coordinates as well as the
origin of the associated rectangular coordinates, is at a distance p/2 behind the tip of the nose of
the crack-like notch , on the cra ck axis. x is along the crack axis , the negative direction lying com-
pletely within the crack. The positive y axis is counterclockwise from the positive x axis. The
polar coordinate angle 0 , is positive in the direction from positive x to positive y. The coordinates
1(x/a), (y/a)~, ( na)  are oriented and centered in the same manner as (x ,y), (r,0) and (u,v) .

Polar Coordinates

Mode I

2 S r 
= 

(p/ a) cos OJ2 + 
— cos3 0/2 + 2 cos 0/2 (Al)

kj S1 
- 

(2 na ) 372 (2 n a) 1!2

2 S~ 
~~~~~~~~~~~ +

(2 n/a)3!2 (2 r/a) 112

—~~~~~ - =+~~~p! ~~~~~~~~~~~ +
k j S1 (2 na) 3!2 (2 r/a) 1/2

Mode II

= +~pi~±
_ 

- .~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (A1)k11S11 (2 n/ a) 312 2 ( 2 rl a) 172 —

S~~~~~(pfa)sin O/2 
+ 

cos0/2 (3 sin 0)

k11 S11 (2 r/a)~
i2 2 (2 r/a)U 2

SrO + ~pJa)~cos 0J2 
— 

cos 0/ 2  (3 cOS 0 - I )
k1 Sj; (2 n/a)312 2 (2 r/a) lP

the following for S~ Sg an I 

::°

~ 

th~. boundary (p/a) (2 r / a ) ~ os 2 0/2



Mode I

2 S
k1 S 1 

= - C054 0/ 2  ~~a7p + (-cos 4 0/ 2 + 2 cos 0/ 2 )  va/ p (A3)

= 2 ens 0/2 sin2 0/2 ‘a/p

= + cos4 0/2 
~~~~ + (cos4 0/ 2 )

= 2 cos4 0/2 ~/a7~

2S~ cos3 0/2 sin 0/2 ~~~ + cos3 0/2 sin 0/2 ~/ ~Tp~

= 2 cos3 0/ 2 sin 0/2 ~/~7:~
—

Mode II

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (A4 )

= 2 sin3 0/ 2 cos 0/2 ~/i/~

so = — cos3 0/2 sin 0/2 ~/ii7~ + [co s2 0/2 (3 sin 0) 12 1 .%7ii7~

= 2 cos3 0/2 sin 0/2 ~/a7~

cos4 0/2 ~~~ - j cos2 0/2 (3cos 0-l)/2J~~/j~7~

2 sin2 0/ 2 cos 2 0/2 ~~~
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Parabolic Coordinates

The crack boundary is a parabola, designated by a parameter u = u0, opening t i  the left. It is

surrounded by other u parabolae. If u0 = 0, the sid es of the parabola are indistingui;hahle . t hough
separate. i.e., we have the straight line crac k (along the line (y/a = 0) . Position points are defined
by (U . v) where the values of v designate a set of parabola, orthogonal to the u parabolae . opening
to the right. Both u and v sets have one and the same common focus (origin) which is at u 0.
v = 0. and around which all the parabola pass. u2 is equal to the radius of curvature of the ti p of
the nose of any u parabola. as isv 2 of any v parabola. l f (p / a )  is such a radius , the t ip is u~ 2 =

(p a —  2 to the right of t h e focus if the radius is that of a u parabola. and is v / 2  (p ~i);2 t the
left of the focus if the radius is that of a v parabola.

The connection between (u. v) and [(x/a ), ( y i a ) J  is defined by the mapping functions (which
can be incorporated into a single complex variable form).

1 1(y/a) = u v ; (x/a) = (U— — v ’ - ) / 2  (A5)
Thus

u2 = x/a + r/a v 2 = — x/a + r/a (A6

where

1 1/1r/a E (x/a)— + ( y / a ) — J  / H.

the radial distance to the parabola, from the focus. From these formulae , geometrical (as opposed
to algebraical) construction of the parabolac is possible.

I.
Also.

(x/a) I 1 (y/ a 2

2 —
~~~~~~U L U

u parabolae
i.e.,

(x/ p) = ~ — (y / p ) 2]

and

~~~ (x / a )  — I 1(y/a) 2
~2 

— 

~~ ~~~~
i.e., v para bolae

(x/p) = -~~ [(Y/P) 2 — ~]
2 1

- __j  
- 

_Ji
___ - _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Evident ly, from these express ions ’ a’’ as a unit of length is not inconsi~ lcnt with taking p as
t he unit of lengt Ii .i t the nose.

In what follows we denote by p/a the dimensionless radius of the tip ot t he bouudar~ Lurve

ouR , i.e.. from here on p/a = ii

The Mode I Airy stress function, F1, is given by

2 F 1 1
4 

- - - -—- -- - u u~ + u3/3k1 S1 0

and the Mode H Airy stress function, F11, is given by

F11 1 1
= + (V u + vu - )  (A9 )

The stresses S~ , perpendicular to the u lines, Sv, in the direction of the u lines and the shearing
stress Suv are as follows.

Mode l

2 S~4 
= — ~~ /±! u 

+ U 
- A 10)k j S 1 u2 + v 2 )2 t u 2 + v 2 ) 2

5v 
= 

(p / a ) u  ~ u(u 2 + 2 v 2 )
1 1 1  1 1 1

(ii~~~ + v — f —  (u~ + v — ) —

1— uv 
— 

( p /a ) v  
+ v u —

1’l S j — — 

(U 2 + v 2 ) (u 2 + V 2 )2

S

‘A

____ _ 
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Mode II

= + ( p / a ) v  v u 2 
( A l l )k11 S11 

- 

(U 2 + v 2 ) 2 (U 2 + v 2 )2

~ 
(p/a) v ~ v (u 2 +2 v 2 )

k11 S11 (u2 +v 2)2 (u 2 ~~~~~~

~~~ ; +k11 S11 (u2 + v 2)2 
— 

(u 2 + V 2 )2

The top signs here refer to positive 0 angles and the lower ones to minus 0 angles.

Thus on the boundary of the parabola u = u0 = (p/a) ’ /2 1, the stresses are as follows.

Mode !

2 5u — 
— (p/a)3!2 

+ 
(p/a)3 

(A l 1)k1 S1 
- 

(p!a +v 2)2 (p/a + v2)2

= 0

~~~ = + J p L ~~~. + 1 ~~~~~)
k1 S1 (p/a + v 2 )2 (p/ a + v2)2

=

(p/ a+v2 )

= 2 ,/~i]~ maximum, when v = 0

2 S~~ 
- + _~pLaJ~~kj 

~l (p/a + v 2)2 (p/a + v2 )2

= 0

i~1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Mode II

- = + (p / a  V ~ (p/a) v 
(A 13)k j j  S1I 

- 

(p/a + V 2 ) (p/ a + V 2 ) 2

= 0

= ~ (p/ a )v  
~k 11 SI! (p/a + V 2 ) 2 (p / a  + V 2 )2

- 
— 2v= + 

(p /a+v 2 )

= + ~/a7~ , max imum, when v 2 = p/a

suv = (p / a ) 3/2 
+ 

(p / a ) 3!2
k1, Sll (p/ a + V 2 ) 2 (p/ a + v 2 ) 2

= 0
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