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ABSTRACT*

Opening, shearing and combined mode fracture tests were conducted
with long rectangular strips of plexiglas clamped on the long edges and
containing centered and off-centered cracks. The critical stress inten-
sity factors, crack initiation angles, and crack paths were evaluated.
Fractured surfaces were then examined as to crack behavior. The maximum
energy release rate criterion was extended to problems with a large
degree of shearing mode present. This criterion was then used to predict
successfully the initial and subsequent crack propagation behavior pre-
sented in the experimental work. Crack arrest was examined for this
rigid grip configuration. Using in part information obtained from these
studies, a flexible fiber model was investigated to determine the effect
of fiber bending on crack behavior. Certain aspects of crack growth and

arrest in these idealized fiber models were explored.

*
This report 1s based on a dissertation submitted to the Graduate College

of Texas A&M University in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Interdisciplinary Engineering. The
author is now at Haliburton Services, Duncan, Oklahoma.
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INTRODUCTION

In recent years, there has been an increased interest in the use
of composite materials, though the idea of a composite or multi-
phase material is centuries old [1]. There are two general groups
of composite materials, particulate and fibrous, depending on the
form of the added material [2]. This discussion will be limited to
fibrous composites, consisting of stiff, approximately parallel fibers
in a softer matrix material, as in Figure 1. The result is an efficient
structural material. Current research is leading to the use of
unusually strong, high modulus fibers of various materials with
polymeric, ceramic, or metallic matrices, with resultant high strength-

to-weight characteristics [3,4]. The most commonly used structural com-

posite, however, consists of graphite or glass fibers in an epoxy matrix.
These constituent materials are usually considered to exhibit

linear elastic behavior; however, the matrix and composite may

exhibit a significant amount of time and temperature dependent

mechanical behavior in many applications. To insure safe structural

use of these materials, the elastic behavior must be examined, then
extenglons to viscoelasticity made. Much research on polymeric
composites has been done in this manner [4,5].

Researchers have also found that polymeric composites are
nonlinearly viscoelastic. Tsai et al. [4], Lou and Schapery [6],
Ashton [7], and Schapery et al. [8] have shown these composites are not
linear except at very small stress levels, which may be below struc-

tural design limits. Studies with fibrous composites indicate that




Figure 1.

Fibrous composite, HT-S/ERLA 2256 (300X) .
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a sizable portion of this nonlinearity is due to internal crack growth
within the matrix or fiber/matrix interface [6,8,9]. This nonlinearity
due to crack growth is significant, particularly during the first one
or two cycles of loading and unloading of the structure, where a
significant amount of irreversible damage occurs. However, except at
high stresses or temperature, after these initial cycles the response
does not change, probably indicating some sort of crack arrest [6,10,11].

The majority of the cracks originate as microscopic flaws in the
matrix material resulting from the manufacturing of the composite
structure [12-15]. Upon loading these defects cause stress concentra-
tions, inducing crack initiation and growth. These cracks then pro-
pagate under load (even below catastrophic levels) in the matrix
through various mechanisms [16-18].

The nature of crack propagation in the matrix is very complex.
Geometrically, the microcrack in the matrix is at some angle to the
surrounding fibers which are also at some other angle to the applied
loading. The problem of a crack in a low modulus material surrounded
by a much stiffer material (microcrack in the matrix of an advanced
composite) has been investigated theoretically [18-21]. This research
has shown that either the arbitrary crack propagates toward the
stiffer material, causing the stress intensity factor to drop, forcing
the crack to slow or arrest, or the crack may actually propagate

toward the center of the matrix and then parallel to the fibers.
The direction of the fibers relative to an aoplied tensile load
may have a significant affect on the tendency for microcrack arrest

whether or not the crack is parallel to the fibers: indeed, as we will
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show a crack which is initially aligned with the fibers could turn into
the fibers with subsequent arrest if the shear stress along the fiber
direction falls within a certain range.

Resea.chers have presented another possiblé mechanism of crack
arrest, prevalent even with cracks parallel to the fibers. Fiber
bending may cause cracks to then '"skip'" across the fiber and continue
propagation in the same plane as the original crack [8,22,23] forming
a crack arrest-growth mechanism.

The engineering theories of fracture mechanics can be used to
investigate the nature of the crack arrest mechanisms on a micro-
structural scale in composite materials. The work presented here
starts with a review of the classical theory of fracture for a crack
at an arbitrary orientation relative to the applied loads. Experi-
mental data are then presented for a geometry similar to a cracked
macrix surrounded by perfectly rigid fibers. Fracture mechanics,
experimental data, and fractography data are compared. A cracked-
composite model is then examined through a fracture mechanics approach
to investigate some of the effects of fiber deformation in fibrous

composite materials.




REVIEW OF SOME ASPECTS OF FRACTURE MECHANICS

General Development

The study of cracks, whether large or small, and their affect on
structural or material behavior is generally entitled fracture mechanics.
Fracture mechanics is often studied assuming linear elastic behavior,
neglecting, for example, the nonlinear effects occurring in a small region
about the crack tip. However, there are many investigations which treat
plasticity and viscoelastic effects [e.g. 24, 25].

The formal study of fracture mechanics started with Griffith [26].
He used a linear, elastic stress solution provided by Inglis [27]
for a flat plate under uniform tension with an elliptical hole, which
was then degenerated into a crack. Without using the near tip stress
field directly, Griffith devised an energy-rate analysis for the pre-
diction of initiation of crack growth in brittle materials. Not until
Sneddon were the stress-field expansions for the crack tips analyzed
[28]. The general applicability of these field equations were recog-
nized later by Irwin [29,30] and Williams [31], and expanded to a
general form for the isotropic elastic body.

Using the methods of Westergaard [32], Irwin [33] derived three
sets of equations describing three basic types of displacement fields
as shown in Figure 2. The opening mode is associated with a local
displacement in which the crack surfaces move directly apart, normal
to the x-z plane. The anti-symmetric or sliding mode is characterized
by displacements in which the crack surfaces slide over one another
perpendicular to the leading edge of the crack. The third mode, skew

symmetric or tearing, 1s described by the crack surfaces moving past one

|
1
i
|




Figure 2. Three modes of crack surface displacements,
(a) crack in stress free body, (b) crack in the
opening mode, (c) crack in the anti-symmetric mode,

(d) crack in the skew-symmetric mode [13].
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another parallel to the leading edge of the crack. Irwin's equations
for the local stresses and displacements (with r,0 the local polar

coordinates in the x-y plane) are:

Mode I
K
T 0 0 36
G cos = (1 -sinzwsin=—) +. . . . .
XX (zﬂr)l/Z 2 2 2
K
o =——Il—/2cos%(1+sin%sing—e)+-
yy (2.".1.)
K
ox =————-Il—/2-sin-2—cos—g-cosg—e+
Y (27r)
o = V(o + 0 e =0 =0
zz XX vy Xz vz
K 1/
S (2") cos 3 (1 2v + sin 2) +
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oxx————msinz (2+coszcosz)+- v e
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Each of these equations contains only the first term of an expansion
about the crack tip and is exact as r approaches zero. Since it has
been generally believed and shown by others [34] that the region about
the crack tip is in a state of plane strain, the first two sets of
equations are written for this case,

The K's in the above equations are parameters called stress
intensity factors. As these factors are not dependent on the local
coordinates (r,0), they control the intensity of the stress field,
not the shape of it. These factors depend on the magnitude of the
applied forces and the geometry of the body containing the crack, or
cracks, including crack size [35,36]. Their values can be calculated
from analyses that are either three-dimensional, plane stress or plane
strain, depending on the problem being considered. This leads to confu-
sion since the crack tip region is considered to be in plane strain
[34, 37]. This paradox is due to the attempt to investigate a
locally three-dimensional problem using two-dimensional concepts. Since
these parameters are functions of the applied loads, their values at
failure are considered as "critical' stress intensity factors. These
values then can be determined by experiments. Since the inception of
the stress-intensity factor approach, many geometries have been
analyzed [e.g., see 37,38]. Due to limitations of analytical tech-

niques, only relatively simple geometries have been analyzed.

Numerical Analysis in Fracture Mechanics
Cracked structures rarely have simple crack geometries. This
has lead to an increased amount of research in the area of numerical

techniques needed to analyze cracked bodies. Boundary collocation
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schemes and finite element methods have been the major approaches.

The boundary collocation technique will be discussed first.

This technique starts with a stress function which is used to describe
the stresses throughout a cracked body and satifies the boundary

condi tions at discrete points. This procedure offers some advantages
over other methods such as little data preparation, great accuracy,
and a smaller number of equations to be solved [39,40]. The colloca-
tion technique does not have the flexibility of other methods in that
of allowing curved cracks, complex external boundaries and complicated
loading conditions.

Due to its flexibility, the finite element method has been used
extensively in fracture analysis. The finite element method itself
is well documented and will not be discussed here [41]. However,

a brief review of the various approaches to fracture mechanics with
the use of finite elements will be presented.

One approach is called the displacement method. Displacements
are obtained from a model with a coarse outer grid and a very fine
grid near the crack tip. By using the calculated nodal displacements
along the crack face and the displacement equations about a crack tip,
described previously, a stress intensity factor can be estimated from
each nodal point. Since the displacements are not exact, a curve of
estimated K's versus the location of the nodal point with respect to
the crack tip 1s obtained, rather than a single value for K. Chan
et al. [42] have found that the curve appeared to be linear
some distance from the crack tip, the distance decreasiung with

increased grid refinement. A tangential extrapolation on the curve
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to the crack tip was used to estimate K. The answers obtained in
this manner can be reasonably accurate (<5% error) but only with
very refined meshes (elements on the order of element area/crack
length squared, (3.2 x 106) [42]. Obviously, this method is not
very precise in execution and very costly by requiring such fine

meshes.

Others [43,44] have added higher order terms to the local crack
tip displacement equations with some success. Using the logic that
as the calculated displacements increase in accuracy and the local
di splacement equations decrease in accuracy as one moves from the
crack tip, a suitable compromise might be achieved. Plotting as
before, a maximum K can be found and can also be fairly accurate
(<5% error). Mesh refinement is still a problem as is the preciseness
of execution.

A novel approach, also using displacements, has recently been
proposed [45]. This method is based on using the calculated nodal
displacements to plot the deformed shape of the crack and compare it
to the ellipse predicted by an elastic fracture mechanics analysis for
an elliptical crack. This method is also limited in requiring some
mesh refinement and is only applicable to opening mode cracks.

An approach similar to the di splacement method is based on using
calculated stresses. The stresses can be handled as were the displace-
ments, by comparing with the stress singularity equations [42]. Since
stresses are less accurate than displacements for codes using the
method of direct stiffness, this approach suffers an additional source

of error {46]. This method and the displacement method, however, are
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theoretically applicable to three dimensional problems.
Another approach using conventional finite element codes employs

line integrals such as Rices's J integral [47]. This line integral is

du,
1
4, ¢l X 4 (4)
J fV(Wdy T a= s)

where ' is an arbitrary contour surrounding the crack tip, W is the
strain energy density, Ti are the surface tractions, the u; are the
di splacements, and ds is an element of the arc length along Y. This
expression can also be related to the stress intensity factors for
plane strain problems by

2

II WiE o

2
Jo= G = vz)(KI + K

where E is Young's modulus. This approach does not require as fine
a mesh as the previous methods, but the contour must be adjusted to
minimize the error [46]. The integral is theoretically independent
of contour path but is path dependent in practice. The method also
suffers in that only one mode of fracture can be analyzed at one time,
and the crack surfaces can not be loaded [43,48,49].

Another contour integral has been developed which can solve

combined Mode I and II problems (where both KI and KI are calculated),

E
even for anisotropic solids [50]. Using a form of Betti's reciprocal
work relation and comparing contours, a path independent integral can
be derived that is fairly accurate.

A different approach to fracture problems using finite elements is

based on the strain energy release rate, G, where
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6= (6)

which is the change in strain energy dW for a change in crack surface

area dA. This quantity can be related to other common terms as

oty e g 2
G=J= (1-v )(KI + KII )/E (7)
for plane strain and more generally as [30]
K 2
" 2.2 2’ RrEr
G = (1-v )(KI + KII +-(I:GSQ/E (8)

By obtaining two finite element solutions of the same body with two
slightly different crack lengths, G can be calculated. This method
has been sucessfully developed and used by many researchers [51-54].
Good accuracy may be realized with course meshes. This is due to the
accuracy of the finite element method in calculating strain energy and
the cancelling of errors when taking the difference in strain energy
for two different lengths of colinear cracks. In order for the errors
to cancel, the local mesh must be identical for both problems. As with
the J-integral, this approach permits the determination of individual
stress intensity factors when only one mode exists.

Another strain energy approach is to relate it to the rate of
change of structural complia;ce, C, or the inverse spring constant,

with crack extension [55]:

2
o P de
) ok

where P 18 the applied load. Pook and Dixon [55] calculated the compli-

ance of a cracked body for a number of crack lengths by the use of finite
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element codes and then used (9) to calculate G. This approach is
comparable to the previous one, but the strain energy is now calcu-
lated as one-half the summation of the product of applied forces times
their respective change in displacements. The accuracy is good, but,
again, only one mode at a time can be analyzed for K.

Since the form of the elastic crack tip singularity is known
through equations (1-3), special crack tip elements may be constructed
which have the singularity condition built into the local displace-
ment pattern. Use of such an element eliminates a need for fine meshes
near the crack tip and avoids the questionable convergence of the
finite element method at the crack tip. There are many such methods
presented in the literature and they can be divided into special ele-
ments surrounding the crack tip, special elements connecting at the
crack tip, or modified conventional elemencs.

The elements of the first type were developed initially by Wilson
[56] and by Hilton [57], where displacements generated from William's
displacement equations [31] were used as boundary conditions for con-
ventional elements. These fracture elements which are circular,
contain a centered crack tip extending radially to the outer edge.
Wilson's element is for Mode III problems and Hilton's for Mode I.

The displacements in the elements are exact as r»0, thus a balance
must be achieved between the abilities of the special elements and
conventional elements to model the overall displacement field.

Wilson extended his work to plane problems [46,58] including higher
order terms in the displacement equations, with some improvement in

accuracy. Byskov [59] has a similar triangular element based on

P .
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displacements derived from the complex stress function of Muskhelishvili.
In all the above elements, there is no compatibility between the
singularity elements and conventional elements along their common

sides. Wilson's element can have an increasing number of conventional
elements, leading to a pseudo-convergence, but Byskov's element 1is
coupled with only tlree constant strain triangular elements [46].

Others have also developed similar approaches using multiple special
regions [60,61].

Tong et al. [62] have derived a crack tip element based on
the hybrid element concept that is compatible with conventional
elements [63]. Using assumed stress distributions based on the r—llz
type stress field, a stiffness matrix was derived for an octagonal
element (may be rectangular). Linear displacement is assumed at the
boundary so that the resulting displacements will then be compatible
with the displacements from conventional elements at their common sides.
Due to the nature of the derivation, the stress intensity factors are
an immediate result. This etement, for Mode I and II, is readily used
with coarse meshes and is easily implemented with other finite
element codes [64]. Others have also implemented similar procedures
to derive other elements [65,66].

Researchers have also developed triangular elements connecting
at the crack tip, notably Wilson [58] and Tracey [67]. These elements
have &« series of triangles centered at a crack tip much like a cut
up pie. In Wilson's formulation, the displacements vary linearly
with respect to the angle about the crack tip and are proportional

to the square root of the radius. Displacement is continuous at the
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interface of the crack elements but are continuous with the conventional
elements at only the nodes. This lack of compatibility occurs because
the displacements on the radial side of the crack tip element do not
vary in the same way as with conventional elements. As more elements
are used in the overall singular crack tip element, the displacement
over the radial edge of the element approaches a linear relation and
continuity with surrounding elements is approached. Tracey's element
allows the displacements to vary linearly at the radial edge assuring
continuity with the conventional elements. Neither formulation is
easily implemented.

The third approach to modeling stress singularities is to modify
existing finite elements close to the crack tip. A recent method
utilizes quadratic isoparametric elements. The modified element's
midside nodes on the sides near the crack tip are moved to the quarter
points uear the crack tip [68-70]. The moving of the node causes a
singularity in the form of r_l/2 at the crack tip node for strains,
thus a special element is formed. Either the strain energy release
method or the displacement technique can then be used to calculate
the stress intensity factors. This method seems to be easily used
and fairly accurate, but is not quite as good as hybrid elements [67].
Three dimensional possibilities are also being investigated [71].

There are also a large number of other modified finite element
techniques. Some are based on Buekner's weighting functions [72,73],
others use transition functions [74], substructuring techniques
[75,76], or elements with artificially low moduli [77]. Plasticity

effects have been considered [57,78] and anisotropic fracture is

[}
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4
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being investigated by finite element techniques [79-81].
The previous discussion covered the analysis of stationary cracks.
Also of great interest is the criterion for initiation of crack growth

and the direction of propagation.

Mixed Mode Fracture Mechanics

According to Griffith, '"the crack will grow in the direction along
which the elastic energy release per unit crack extension will be
maximum and the crack will start to grow when this energy reaches to
a critical value" [82]. At first, analytical complexities prevented
the analysis of non-colinear crack extension problems, so only simple
Mode T problems were investigated. Since real structural problems
often involve combinations of two or three modes, one must be able to
account for the situation in which the crack growth direction is not
in the original plane of the crack. A summary of the various mixed
mode criteria will be presented here.

One of the first studies in this area was conducted by Erdogan and
Sih [82] in the investigation of non-colinear crack growth in two-
dimensional geometries. The investigation supported a criterion stating
that:

1) Crack extension starts at its tip in a radial direction

2) Crack extension starts in a plane perpendicular to the direc-

tion of greatest local tension.

Using the singular portion of the equations described earlier for the

stresses at a crack tip, but in polar coordinates,
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the angle of propagation can be found by maximizing %0 with respect
to 8 as in
3 o
(27rr)l/2 age =0 (11)
where r is factored out of the equation. This results in
cos 2 [K, sin® + K;,(3cos9 -1)] =0 (12)
2 L 5707
which gives
6=+
and
K sin 6 + KII(3 cos 8 =-1) =0 (13)

as solutions. The first solution corresponds to the free surface condi-
tions of the crack and is discarded; (13) yields the maximum %0 Know-

ing the particular stress intensity factors of the problems, prior to

growth, the crack trajectory can be determined. Thie¢ criterion was
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compared to experiments conducted with plexiglas sheets with various
crack geometries and loading conditions. Most widely used was a large
sheet containing a centered crack inclined to the uniform tension at
the edge of the sheet. The results compared fairly well with the
trajectory criteria, allowing for the large amount of data scatter.
An important comment was made [81] in that the greatest energy release
occurs when the crack propagates approximately perpendicular to the
direction of maximum tension, indicating another possible criterion.
The same problem was reinvestigated by J.G. Williams and P.D.
Ewing [83] with a slightly improved criterion. Inclusion of the next

higher order term in the equation for o improved correlation with

66

the previous experimental evidence and also with new data gathered by
the investigators. Again a large amount of data scatter was present

1 and the same inclined crack geometry with plexiglas was tested. A

! correction was made by Finnie and Saith [84] to the equations Williams
and Ewing used which also improved correlation with data. The added
term approach has forced the necessity of evaluating the expressions

at a certain critical value of the radial distance from the tip, r,

while previously r had been factored out as in equation (11). The

value of r is then adjusted to fit experimental data. In further

e

comments, Williams and Ewing pointed out that even higher order terms

-

may be needed for bending experiments [85]. This was followed up with
tension and bending tests with inclined edge cracks and comparison with
! the higher order term approach met with some success [86]. For com-

+i pleteness, Sih and Kipp [87] conducted an analysis examining the stresses

found from the exact solution computed from a degenerate elliptical
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cavity. The use of these equations is also dependent on evaluation
with a certain value of r. This criterion compared with experimental
data with about the same success as the previous studies [87]. Some
of these maximum stress criteria are presented in Figure 3 for only
one value of r.

A minimum strain energy criterion has been proposed by Sih
[87-90]. The work is an extension of some ideas presented earlier
[82]. The change in strain energy density with polar angle at the
crack tip was derived as a homogeneous quadratic form of KI and KII'
This new criterion is specified as follows:

1) The crack will propagate in the direction of minimum strain
energy dcusity at the crack tip
2) The onset of growth will be controlled by a critical value
of the minimum strain energy density.
Using only the singular portion of the stress equations (1-3),
the strain energy density of a infinitesimal cube is calculated,

resulting in:

M1 2 2 2
—_ = +
av 7 (a) Ky v 28, KRy +ay, Ky +ag, Ky )

(14)

where the coefficients aij are functions of the polar angle about the
crack tip, Young's modulus and Poisson's ratio. This three dimensional

criterion is written as:

2 7 2

1
S G B R R T R T (15)

where S is proportional to the strain energy density. This equation

is examined to find its minimum with respect to the polar angle and the
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value of the angle producing the minimum is the direction of propagation.

This criterion has been compared with experimental evidence in

tension and compression [86,90-92] and has been found to have little
improvement over the previous maximum stress approach. The S criterion
has been questioned for its dependence on Poisson's ratio, v; it has
failed to predict accurately crack growth direction in cross-rolled
beryllium where the value of Poisson's ratio approached zero {91].

In this case, the maximum stress criterion was significantly better.

The minimum strain energy density criterion has also shown poor correla-

tion with cone fractures in fused silica where the material is nearly

incompressible (v=.5) [92]. It also has not been proven that the criti-
cal value of S is a material constant as it should be [90].

In order to improve the correlation with data, a more general
and physically realistic model has been proposed by Sih [87,89,93].
The crack is approximated by a narrow ellipse. The exact energy
density based on linear elastic theory is calculated with the
complete series expansion of the stresses about the ellipse crack tip

[87]). This modified criterion is then dependent upon the radius of

e

curvature of the ellipse, p, and the distance from the crack tip at which

the modified S is evaluated. Sih explains that this critical value of r

e

depends on the crack geometry and loading {89]. By adjusting 0 and r,

Sih has demonstrated improved correlation with data [87,92].

Francis and Ko [94] have examined the minimum strain ensrgy den-
| sity criterion in terms of the stresses about an elliptical crack.
They derived three forms based on the use of plane strain, plane stress,

! and deviatoric plane stress equations. As shown in Figure 4, for one

[ T
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value of Poisson's ratio, there is some difference between the various
forms of the S criterion.

Another approach to the combined mocde problem 1s to go back to
Griffith's quote given earlier and to analyze the energy release as a
crack grows a very small amount. Two investigations have been made
using the advanced analytical tools developed since Griffith to examine
the combined Mode T and II problem. Hussain et al. [95] started with
a line crack which has an angular extension at one end. Considering a
virtual growth of this extension and using the J-integral [47] and
equating the integral to strain energy release rate, a maximum of the
release was found with respect to the angle of the extension. The
authors use various analytical techniques, such as mapping functions,
complex potentials and limit procedures.

Due to some questionable assumptions and failure to conform with
the known stress and displacement fields in the limit of a straight
crack that were pointed out by Knauss and Palaniswamy [92], an improved
analysis was conducted in [92]. Using a complex potential for the stress
analysis of a crack, and a crack with various angled increments at one
end, the strain energies of various configurations were evaluated.

Then the release rate was calculated and a maximum found with respect
to the angle. The length and angle of the increments were varied to
find the maximum. This analysis was correlated with experimental
evidence with a good deal of agreement [92]; however, the length of the
increment had to be adjusted to fit the data. The physical basis for
using other than a vanishingly small amount of crack growth is not

clear. The analysis was not carried out for the total range of the
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problem, leaving undone the important case where shear predominates
in the combined problem; see Figure 19. These maximum energy release
criteria are compared in Figure 5.

Other researchers have used finite element codes to examine the
combined mode problem. These have followed the maximum strain energy
release rate and maximum stress criteria for plane fracture problems.
Coughlan and Barr analyzed the infinite sheet-inclined crack problem
using the energy release criterion {(96] and found results that fall
between the maximum stress criterion and the strain energy density
criterion. As seen in Figure 5 the results agree well with the
maximum energy release rate criterion in some portions of the plot.
Unfortunately, the finite element analysis was also not followed
through in problems where large amounts of shear are present. Marinshaw

and Lindsey [97] performed an investigation of the edge-notched biaxial

strip with experiments with solid rocket propellant and case liner

materials. Predictions were made of the crack angle using a finite

element code to calculate the maximum normal stresses about the crack
tip. Incorrect propagation angles were predicted by the classical
sharp tip solutions of linear theory and finite elements, due at least
in part to the blunt nature of the actual tip. Use of an artificially
; blunt crack tip in the finite element analysis produced a favorable
correlation. It may be conjectured that stress equations for ellipses
could provide equally good correlation. Helen and Blackburn [98] have
also conducted a finite element investigation using the energy release
rate method. Thelr results are very poor for cases where shear is more

signi ficant than tension [98].
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Other analyses are being proposed for mixed mode fracture mechanics.
Bilby and Cardew have [99] developed a theory comparing the stress
intensity factors at both the initial crack tip and the incremented
crack tip by means of quadratures [100]. This three-dimensional
formulation compares well in the two dimensional case with certain
experimental data [99]. Morozov and Fridman [101] have made a suggestion
that cracks generate and propagate along a geodesic line (shortest
distance between two points on a surface) passing through the point
of initiation. An approximate variational scheme was proposed based
on the minimization of the difference between the surface energy and
the strain energy of the body. Lindsay [102] has proposed a hybrid
criterion using the crack growth orientation as found from the maximum
stress criterion and a failure law based on the stress invariants near
the crack tip.

On the basis of the literature review, it is the belief of this
author that, for sufficiently small regions of nonlinearity at the
crack tip, the maximum energy release rate theory governs crack
growth at all stages of growth. The maximum stress criterion represents
an approximation which improves as the crack propagates and aligns
itself perpendicular to the greatest tension. An attempt was
made to prove that the two criteria are equivalent [103].

For solving engineering problems, a surface relating the stress

intensity factors (Kl' K can serve as an initiation cri-

11’ KIIT)
terion. Figure 6 shows such a criterion for two dimensional problems

(82, 88, 94, 95]. The energy release rate criterion fits experi-

mental data quite well as shown in a later section of this paper.
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However, it still remains to calculate the energy release rate for the

complex three dimensional problem.




30

FRACTURE TESTS

Motivation

An experimental program was designed to provide fracture data to
investigate the nature of crack growth between fibers in a composite
material. This data was also to be compared to predictions made by
the various crack trajectory theories to see which criterion fit the
experimental data best. Thus the experimental model should be indica-
tive of a cracked matrix restrained by relatively rigid fibers and
should be a new test of combined mode fracture theories. While micro-
cracks in composites are truly three dimensional, a biaxial strip
with initial cracks parallel to the long sides was considered to be a

suitable model to begin investigation of microcracking phenomena.

Material Selection

The microcracking behavior described earlier is found in most com-
mon fiber reinforced composites: graphite or glass fibers in a plastic
matrix. These plastics usually are epoxy systems that have been especi-
ally formulated for use in composites [1,2].

In the interests of being able to compare data with the litera-
ture and ease in use, plexiglas was employed instead of an epoxy.
Overall mechanical properties of the two materials are quite similar
[104,105]. The fracture behavior could also be expected to be
similar even in the matter of crazing [106-113] (crazing is the lessen-
ing in density due to microvoid growth, usually found around a crack
tip). After surveying the literature, it was concluded that
crazing or ductility might be a factor in determining the overall

fracture direction [114-115]. Therefore, in order to compare

o
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experimental evidence on a new geometry with the wealth of data
generated with plexiglas [82,83,85,86] the same material was chosen.
The ease in producing readily visible cracks was also an important

factor in choosing plexiglas.

Samples and Equipment
GM grade plexiglas sheets as specified by the Rohm and Haas
Company [117] were ordered in three nominal thicknesses (0.03, 0.06,
0.125 inches). All the sheets needed were ordered at one time to reduce
any batch variability. The material was stored in an area where the

temperature and humidity were the same as the testing area (75°F at

50% relative humidity).

The sheets, which arrived with protective masking tape, were pre-
pared for a cutting to the required dimensions, by drawing the sample's
dimensions directly on the tape. All sample dimensions were drawn
slightly oversize to allow for final trimming. To compensate for any
induced anisotropy caused by manufacturing, half of the samples of
one sheet were cut perpendicular to the other half. Using a tungsten
carbide band saw blade, with a slow feed rate and band saw speed, the
samples were rough cut from all the sheets. After removing the tape,
several coupons were mounted in a vertical mill at one time and machined
to the final dimensions using a fly cutter tool. Inspection of the
edges showed little damage if care was taken to prevent the samples
from vibrating. The thinnest sheets (0.03 inches) showed a tendency
to edge crack upon cutting; samples with edge cracks were rejected.

Constant crosshead rate tests were conducted using a few special

samples taken randomly from the three sized sheets. These samples
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(10 x 1.25 inches) were cut as the above. Micro-measurements' strain
gages, type EA-06-125BZ-350, were bonded to the sample's center both
along the axis and perpendicular to the axis of the sample. Mirror
image gages were applied to the opposite side of the coupon. Micro-
measurements' M-bond AE-15 adhesive was used and the gage-adhesive
was cured under slight pressure for four hours at 140°F, well below
any temperature that could cause permanent dimensional, physical or
chemical changes to this material. Strain gage measurements were
recorded using a B&F Instruments' Strain Gage Acquisition System and
a modified Hewlett-Packard 561 Digital Printer. This system operated
at the rate of two channels per second, with capability up to ten
channels of strain gage signal conditioning with wire length compen-
sation.

The samples were placed with their greatest length in the loading
direction and clamped in the standard wedge-action grips of the constant
crosshead rate Instron Testing Machine. Using a rate of 0.02 inches/
minute and at the temperature and humidity described previously (slight
variations in these conditions were recorded) the samples were pulled
apart until sudden failure occured at the center, under the strain
gages. During the test the applied crosshead displacement, resulting
load, the two axial strains (both sides) and the transverse strains
(both sides) were recorded.

In reducing this data, the opposing strains were averaged. The
transverse strains were adjusted for transverse wire effects in the

gages due to the applied displacement, by equations provided by Micro-

measurements [118]. Using the stress (the resultant load/original area)




33

and the strain (averaged axial) from these tests, a stress/strain
curve was plotted. This is shown in Figure 7. The stress/strain

curve is linear below the level of applied stresses used in the other

experimental work. The calculated Young's Modulus (o/¢ at a point)
was 433,000 psi, comparable to the manufacturer's value of 450,000
psi. The Poisson's ratio was found to agree with the manufacturer's
value of 0.35. The calculated values were used in the work in this
report.

With these preliminary tests completed, a review of the litera-
ture [119-122] led to the biaxial strip size of 8 x 1 inches; these 4
! dimensions would cause an intial crack to be in the biaxial stress
field (far enough from the ends of the strip). The samples were cﬁt
in the same manner as the previous discussion. Based on Mueller's

work [121] crack lengths of one and one-half inches were decided upon;

this would let the test configuration approach the geometry of a crack

in an infinite strip.

The cracks were cut parallel to the long sides of the strips,
as in Figure 8. An initial crack or slit was machined with the use

of a very fine circular saw blade mounted in a vertical mill. The

resulting slit was nominally 0.005 inches thick. This machining

7 ”«.-

produced a fine slit with a small curvature at each end, the curvature
being more pronounced with the thicker samples. (Due to the circular
nature of the blade and mounting of it, the slit could not have ends

perpendicular to the faces of the sheet). A natural crack tip was

NS

formed by first applying in-plane compression on the long sides of

| the strip ahead of the crack (with a vise) and second by wedging open
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Figure 8. Center crack and off-center crack bilaxial
strip geometry.




—————

36

the crack (with a razor blade) to produce controllable colinear crack
growth. This extension was for a distance greater than the sheet
thickness. This crack tip had to be perpendicular to both sheet
faces as examined by the naked eye, or the cample was rejected. The
process was repeated for the other end of the slit.

The test apparatus was designed so as to test the strips in ten-~
sion, simple shear, or in a combination of the two. As seen in Figure
9 two plastic strips were bonded perpendicular to stainless steel bars.
The steel bars were designed to be extremely rigid in respect to the
plexiglas. The outer two bars were wider than the inner bar to
facilitate the shear experiment. The perpendicular bonding was assured
by a special bonding fixture as seen in Figure 10. The bar was placed
in the bottom of the fixture, and the inner moveable plates supported
the plastic perpendicular to the bar. With the use of a micrometer,
the moveable plates were adjusted until the biaxial strip was centered
perpendicular to the bar. The moveable plates were locked into place,
the two sides of the fixture loosened, the biaxial strip removed, adhe-
sive applied, the system reassembled and left until bonding was complete.

Two strips of identical dimensions were bonded to two bars
and then the bars placed so as to have the strips parallel to the
table's surface. The smaller middle bar was placed at a measured
hei ght above the table so as to have the bonded strip's free edge
perpendicular to the middle bar's surfaces. Use of an angled square
aligned the three bars, adhesive was applied and the two free edges

of the strips were bonded to opposite sides of the middle bar. After

initial cure, the holding plate, as seen in Figure 9, was fixed to the
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system to prevent movement and the whole assembly was cured at 140°F
in a large walk-in environmental room located in Texas A&M University's
McNew Laboratory.
Loading fixtures were designed so as to hold the sample system

and be compatible with the Instron Machine. As in Figure 11, the
samples could be pulled in tension or shear. The tension was applied
through both the samples at one time. The samples were pulled in
simple shear in this so-called double lap shear test (i,e. the middle
bar stays fixed and the two outer bars move up). In order to perform

} - a combination of tension and shear, the sample system was pulled to
the desired tension level, the holding plates were lightly screwed into
the outer bars, C-clamps were applied to prevent rotation of the plates
upon tightening, and the plates were tightened with the use of wrenches.

Two holding plates were used, one for each side, and were designed to

hold the system rigidly in all shear tests, with or without pretension.

The tensioned sample system was removed from the Instron and the load-
ing fixture rotated 90°. With the holding plates, the outer two bars
remain parallel to each other whén the outer bars are pulled upwards.
Figure 11 shows the described apparatus without the plates to allow easy

ingpection for the reader.

B i caredbing. RS AR,

Experimental Considerations

In any experimental effort care must be exercised to insure that

T p————

f the intended experimental model and the actual experimental model are

the same. Sometimes, due to physical difficulties, modifications to

the model must be made and then corrected for.
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The bonding of plexiglas to stainless steel was no easy matter.
The two dissimilar materials could be bonded together with various
adhesive systems, but the high stress concentrations at the corners
of the strip caused premature failure. This problem was eliminated
by bonding 0.06 inch thick plexiglas plates to the surfaces of the
stainless steel bars with an epoxy system. This epoxy consisted of
40% Versamid 125 hardener and 60% R-815 resin (by volume) as supplied
by the King Chemical Company. This system was cured for 24 hours at
room temperature. The plexiglas surfaces and edges were roughened
for bonding using grade 200 silicon paper and cleaned with acetone,
M-Prep Conditioner A and B were used, then Freon TF was sprayed on
and wiped clean with tissue. These materials were obtained from Micro-
measurements. With these clean surfaces and edges, the biaxial strips
were then bonded perpendicular to the plexiglas plates with the use
of Daybond Thickened Cement manufactured by Dayton Plastics Inc.

This allowed the bonding to be essentially cohesive due to the nature
of the cement and to have no excess that would mar the orthogonal
arrangement of plate and strip. Then elevated temperature was used
for curing, as described earlier, for at least three hours.

The elevated temperature (at approximately 140°F) was low enough
to prevent any permanent damage to the samples such as the dimensional
changes at high temperature predicted by the manufacturer of the GM
plexiglas used. The material at 140°F was well below the glass trans-
ition temperature of plexiglas, nominally 220°F. This temperature is
def ined as the temperature above which the physical mechanisms of

deformation within the polymer start to change due to a significant
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change in free volume [123]. Since the tests were conducted at 75°F

at 50% relative humidity (the samples were at these conditions for at
least twelve hours, prior to testing) viscoelastic behavior was
negligible. Strain gage heating was neglected since others have found
this to be negligible [10]. Temperature and humidity were recorded
in all tests to check any affects, and none were found. 1In order to
check for rate dependence, some tests were made at three displacement
rates (0.002, 0.02, 0.2 in/min). Little rate depen&énce could be
found at these test conditions.

Due to the change in the stress field and boundary conditions
of the biaxial strip because of the addition of the plexiglas plates,
an analysis was undertaken. Viewing the strip and plates as an I-beam,
(seen from the end of the strip) a plane strain finite element analysis
was made. (The program used will be described in a later section).
Checking all conditions where the different strips were greater,
equal to, and smaller in thickness than the pre-bonded plates, we found
by adding approximately one half of each plate thickness to the
strip's height, the correct biaxial stress field was achieved. Thus
the strips' heights were considered to be 1.06 inches.

When conducting any multi-axial loading experiment, proper
alignment is critical. Alignment was kept as correct as possible in
the bonding precedure described earlier. This and the loading align-
ment were checked by a series of tests with strain-gaged sample
systems. The gages described earlier were fixed on both ends of the
strip, one and one-half inches away from the edge (to avoid end

effects) on opposite sides of the strip. The system had four gages,




f
|
|
|

43

two to a strip. This can be seen in Figure 11, The gages were moni-
tored with the use of Vishay/Ellis - 10 Portable Strain Indicators.
Very small amounts of bending occurred in loading in tension, which
was eliminated during the placing of holding plates. After taking
the tensioned sample system from the Instron Machine, strains were
still recorded. Less than 5% decay in tensile strain was achieved
if the holding plates were properly fixed. Upon shear loading,
negligible slipping was recorded by the strain indicators.

Tests were made to check how close the man-made cracks resembled
natural flaws. By scribing a plexiglas strip on one side with a tool
and gently tapping the other side with a chisel and hammer, a very

natural crack can be made. Due to the difficulty in producing a number

of these cracks, only a few strips were tested with these flaws.
Little difference could be detected between test results with these

more natural cracks and the machined crack's test results.

Testing

Much of the test procedure has been described already, but a
short unified presentation will be presented here. The strips were
measured with the use of calipers and, as nearly as possible, matched
strips were used together. After bonding to the steel bars, a test
ratio of tension to shear load was decided upon, and the test conducted.
Tension, tension/simple shear and simple shear tests were conducted
with the center crack samples. With the off-center crack samples,
only tenslion and simple shear tests were made. Table 1 is a summary
of this test program. All the previously described experimental

considerat ions were taken into account.
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The samples were pulled to failure and the failure loads (tension,
shear, tension and shear) were recorded. Since not all four crack
tips initiated at once, four sets of loads resulted. The cracks
started quite suddenly, propagated quickly in a defined directior,, and
stopped at the interface between sheet and strip. Further increases
in the applied displacements caused slow propagation down the inter-
face. Little out of plane bending resulted as the crack tips initially
propagated; but after much propagation down the interface, bending
occured so the tests were halted. Examples of the typical load his-

tories of the tests are shown in Figure 12.

Data Reduction

In order to calculate the correct initial stress intensity
factors (at failure), a plane stress finite element analysis was conducted
of the biaxial strip. Modeling the strip (3 x 1.06 x 1 inches)
was accomplished with cracks of lengths 0.25, 0.50, 0.75, 1.25, 1.50,
2.00, and 4.00 inches in length. (The computer programs used will be
described in a later section), The tension test was modeled by displac-
ing rigidly the long edge boundaries perpendicular to the crack (holding
displacement parallel to the crack fixed). The simple shear test was
modeled by displacing rigidly the long edge boundaries parallel to
the crack (holding displacement perpendicular to the crack fixed).
These two tests were modeled over the range of crack lengths used.
The load for a unit displacement was found in all the cases by inte-
grating the stresses over the boundary. The analysis also confirmed
that the strain gages used for checking alignment were correctly

placed to avoid end effects. The stress intensity factors were plotted
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versus crack length/strip height as in Figures 13 and 14. The

solid and dashed curves represent equations for a crack in an all-
around infinite sheet (solid line) [36], and a crack in an infinitely
long strip [121]. The finite element results show the close agreement
with theory. The slightly lower values for the stress intensity
factors are believed due to the strip not being infinitely long. The
finite element computed load versus crack length/strip height is
plotted as in Figures 15 and 16. Then the ratio of stress intensity 1
factor to load was plotted versus crack length/strip height as in
Figures 17 and 18. Using these last figures, knowing the crack length

of the sample, and the loads causing crack growth, the correct stress

intensity factor could be calculated for any amount of grip displacement.
The angles of crack propagation for combined loadings were

initially measured directly from the samples. As this was difficult,
later samples were removed from the bars by a chisel, laid upon paper
t?nd crack’path traced. The initial angle of propagation was used for
'comparisonﬂwith theory. It was found that the crack propagated along

a straight line for a significant distance, then curved to meet the
boundary as shown in the section on fractography. This distance decreased
for increased levels of tension in combined mode testing. The angle

between this initially straight line and the crack was used as the

initial propagation angle

Results
The results were plotted in such a way that they could be compared

easily with the current theories describing crack trajectories.

Figure 19 shows the ratio of critical stress intensity factors versus
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crack propagation angle, These points were compared to the various
theories. The theoretical energy release rate results of Knauss and
Palaniswamy [92] compared quite well in certain portions of the data

and proved to bYe best overall. (Referring to Figure 3, it is found that
the maximum stress criterion based on the singular solution predicts
values which fall along the lower edge of the scatter band in Figure 19.)
The dashed line shows the area left incomplete by the theoretical
analysis, except for the pure mode II problem.

A plot of the relationship between the stress intensity factors is
shown in Figure 20. These points show the problem inherent in most
fracture data; viz., a fair amount of scatter. The curve was generated
from predictions made by the energy release rate criterion. The criterion
fits the data reasonably well and the plot serves as a failure curve for
plane problems. However, the maximum stress critericn is slightly better
at small angles (cf. Figure 6).

Referring to Figure 19, it is seen that the angle of propagation
should be predicted in problems with low KI/KII in order to complete the
solid curve; this will be investigated by the use cof energy release tech-
niques with finite element codes in a later section. The reason why a
greater load is needed to cause propagation down the interface will also

be examined. Also, the ability to predict the angle change as the crack

approaches the interface will be studied.
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FRACTOGRAPHY

Various interesting observations can be made concerning the
crack's path. The tests with the center cracks in either tension or
shear without tension provided little new information. The cracks
either propagated fairly straight down the center or straight to the
boundary. The off-center cracks in tension and shear acted similarly.
The off-center cracks in tension propagated along a slight curve to
the center of the strip and then down the middle to the ends of the
strip as predicted by Erdogan [18]. As described earlier, the center
cracks under combined tension (KI) and shear (KII) propagated on a
straight line at a well-defined angle until approaching the interface.
Depending on the percentage of tension, the crack would curve to meet
the interface. Pictures taken with a bellows-camera system shows this
phenomenon in Figure 21.

Using an optical microscope, a Leitz instrument with magnification
up to 220X, the angle of propagation next to the intitial tip was
examined. The surfaces of the cracks were also examined. The shallow
depth of field of this equipment made examination difficult.

A more sophisticated instrument, the JEOL JSM-U3 scanning electron
microscope (SEM) was also used, This SEM has a 100 X resolution with
magni fication from 22X to 100,000X. Observations could be made of the
samples' surfaces and recorded by the use of photography. The SEM
was operated in the secondary electron image mode, with various control
settings and magnifications. This mode, where the electrons detected

are emitted from the sample or its conductive gold-palladium coating,

possesses a great ability for detection of details with a great depth
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of field [124]. This instrument was used to investigate the cracks'
angles and surfaces as had others in investigating composite'svsurfaces
[125,126].

In examining the initial angle up to magnifications up to 10,000X
it was found that there was a very small region where the crack tip
was not perpendicular to the surface of the strip. This was roughly
proportional to the amount of curvature in the initial crack front,
prior to loading. If the initial crack front was curved, the propa-
gating front grew so as to align itself perpendicular to the sheet
surface; the more initial curvature, the greater the distance for
alignment. This region of alignment was very small, usually less
than the sheet thickness. This is shown in Figure 22. The angle of
propagation used was the angle between the initial crack and the crack
path after alignment. After examining a number of crack tips, no correla-
tion could be made between the very small curvature at the initial
crack tip shown in Figure 22 and the craze zone size reported for
plexiglas [121]. No evidence of ductility or crazing marring the crack
surface could be detected.

Investigating the crack surfaces revealed the same appearance
reported as others [127,128]. At slow crack speeds, a large number
of parabolic curves roughen the surface, as speed increases the surface
is smooth, and at speeds approaching the limiting elastic wave velocity
only lines parallel to crack direction can be seen. At the initial
crack tip after the crack front is aligned the surfaces showed the
slow crack velocity markings. The markings then decreased until only

the grooves remained, showing increased speed as the crack propagated
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(a)

(b)
Figure 21. Photographs (6X) of cracked samples showing crack path
with (a) large K./K I and (b) low K /'r\‘[] at failure

(top left is initial crack surface).
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to the interface. This can be seen in Figure 23. Near the poin
where the crack trajectory curved, the markings again appeared indicat-
ing a slowing process. More and more markings appeared, indicating
crack arrest as the crack approached an interface, as shown in Figure
24.

This examination of the crack's surface showed that a properly
made crack is essential in fracture tests. Investigation of surface

features also provided evidence of crack arrest as the crack tip

approached a bonded edge.
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Figure 23. Micrographs of
and fast (b) crack velocity (1000X).

(a)

(b)

fractured surfaces showing slow (a)
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FINITE ELEMENT ANALYSIS

General

Certain numerical analyses were undertaken to supplement existing
analytical results and investigate problems encountered in the experi-
mental effort. Due to its flexibility in solving complicated problems,
the finite element method was employed. Two different programs vere
used. After reviewing the finite element-fracture techniques and using
some of them, it was determined that codes containing special creck
elements would be the best for the mixed mode plane problem. It was
further decided that the hybrid elements based on Pian's work [62]
would be the best for our purposes due to the reasons described in a
previous section.

The first program used was a modified version of the code listed
in Desai and Abel's book [129]. This is a plane strain/stress computer
code which is limited to linear, elastic isotropic bodies. The elements
used are quadrilaterals composed of four linear displacement triangles
(with condensation of the internal node) and linear displacement
triangles. Modifications were two-fold. First, the capacity of the
program was extended by the use of larger arrays and more scratch
fi les, to allow larger problems to be solved with more elements.
Secondly, the fracture analysis capability was enhanced by calculating
and printing the strain energies of the elements and body, and by
the addition of a crack element to the element library. This ele-
ment is the hybrid crack element presented in the literature [62-

64, 130]. Tt is compatible with the other elements of the code.

Extensive check problems were investigated to learn the capabilities
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and limits to this modified program called CRACK.

In order to solve larger problems more accurately, the Texas
Grain Analysis Program, TEXGAP {131], was used, which is a finite
elenent program used for analyzing solid rocket propellant. The ver-
sion of the code employed here is for linearly elastic plane or axisym-
metric bodies. The elements used were reformulated isotropic quad-
rilaterals composed of four quadratic displacement, linear H triangles
(allowing Poisson's ratio to be 0.5 for plane problems), non-reformu-
lated quadratic displacement subparametric quadrilaterals, reformulated
isotropic quadratic displacement, linear H triangles, and hybrid crack
elements.

In support of the experimental effort, TEXGAP was used to analyze
the affect of the bonding geometry on the biaxial stress field. CRACK
was used for the determination of the stress intensity factors with
some checks made with TEXGAP. Both programs were well-suited for the

analysis of fractured bodies.

Biaxial Strip Ar. lysis

A study was made to determine if the experimental crack growth
behavior could be predicted. This behavior was divided into three
phases. The original configuration of a centered crack was used to deter-
mine the initial crack propagation angle. This analysis was then used
to predict the change in the angle of propagation as the crack grew.
The next phase was to investigate why, after the crack arrested at
the interface, increased applied displacement was necessary to cause
further propagation along the interface. These three phases were

analyzed with the use of the finite element codes mentioned previously.

o
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Due to the limitations pointed out earlier in the crack propaga-
tion theories, an examination of the maximum energy release criterion
with the use of finite elements was also undertaken. The experimental
biaxial strip was modeled with the CRACK program. Two types of analysis
were made, one with the use of crack elements and one with only conven-
tional elements.

With the use of two crack elements (one for each crack tip) for

a bilaxial strip configuration, much experience had been gained in the

analyses conducted in support of the experimental work. Additional

test problems were conducted to check on the degree of mesh refinement

] ! needed to calculate total strain energy. For a uniaxial bar problem,
increasing the number of elements from five to forty brought the cal-
culation of strain energy from 99.47 to 99.97 of the exact value of
strain energy. Since a comparison of strain energies for a constant
mesh was to be made, this error was felt to be negligible. To check

t the affect of the crack elements on the strain energy, two mesh

geometries were used. The refined model used crack elements of one-

half the size of the other mesh. Twice as many conventional elements

were used about the crack elements in the refined mesh, as compared
to the other mesh. Negligible difference was obtained in the angle

of the greatest energy release.

.
-

Using finite element models of strips of the same proportions as
the experimental ones, the strain energies of center cracked and incre-
mently cracked biaxial strips were analyzed. Varying ratios of applied
normal and shearing displacements (corresponding to different ratios |

of stress intensity factors) along the top and bottom of the two strip
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models were applied through a rigid boundary. In the second geometry,
the crack increment's length (0.01 < AA < 0.1) and angle were varied to

search for the maximum energy release as calculated by:

G = W ;nitial - W incremented (16)
2 Ra

When G was maximized for a particular angle, this was assumed to be
the angle of propagation.

In using this procedure, it was found that only a certain small
range of increment lengths would produce a maximum for a particular

displacement ratio. The angle of propagation was constant for this

range. As the crack propagation angle increased (corresponding to lower
KI/KII ratios) the maximum was harder to determine. It was felt that
this was due to the crack element's inability to handle crack tips
that were too far from the element's center. Off-setting the element
as in Figure 25, helped correct this a little.

Due to these problems, another mesh configuration using only
conventional elements was used as in Figure 25. This mesh was used
to check and correct some of the previous answers, especially for cases
involving low KT/K[] ratios. In this geometry, the crack tip's nodal
point was changed for various angles and increment lengths to determine
the maximum value of G. This method was less sensitive to changes in
increment lengths and allowed a more reliable method of determining
the maximum energy release, G, and the angle of propagation, 0.

The question of using a finite increment for calculating G must

be faced. Due to the finite element representation, some finite value

has to be used. The ratios of maximum G for combined mode to the G
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Finite element crack models: initial crack (a),
incremented crack (b), off-set crack tip element

(¢), and crack tip modeled with conventional
elements (d).
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for opening mode for this analysis were calculated. Comparison to the
values from Hussian's et al. [95] theoretical analysis for a virtual
(approaching zero) increment, the ratios were in close agreement. The
finite element results were therefore below those given in [92] (cf.
Figure 6).

The results of examining this first phase of crack propagation are
presented in Figure 26. The initial angle of propagation is plotted
against the ratio of stress intensity factors for the original crack.
This curve, while calculated from data for a specifie geometry,
can be used for any two-dimensional crack problem. It can also be
compared to the experimental results of this report as in Figure 19,
as well as the results of other theories. The results for this finite

element analysis are slightly lower than that of Knauss and Palaniswamy's

analytical results [92], but agree well with Coughlan and Barr's [96]
finite element results. The results also provide 8 over the range of
values of K]/K) not fully covered in other researcher's analyses. The high

range of values of K /K, were not investigated due to the agreement

L2

already found in the literature.

With the first phase of crack propagation completed, the analysis

of the crack that has propagated part-way to the clamped boundary was

made. Two cases were examined, based on the initial angle of propa-
gation. These angles were 75° and 55° corresponding to initial stress
intensity factor ratios, KI/KII' of 0. and 1.1. The program TEXGAP
was used in this analysis. The crack geometry used for the finite

length angled crack tip 18 shown in Figure 27. The other crack tip

was also incremented but not modeled with a crack element. The crack
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(a)

(b)

/
-~

Figure 27. Finite length angled crack and angles of propagation

for shearing (a) and combined mode (b) problems.




72

element size was varied as also the number of elements behind and ahead
of the crack element were increased. Little change in answers were
found. The displacements required to produce the initial stress inten-
sity factors were also applied to the biaxial strip with the angle
crack. The new stress intensity factors for this geometry were then
obtained.

These new stress intensity factors formed a KI/KII ratio which
could then be used to predict the direction of crack propagation. The
predicted initial angle of propagation (6=55°) produced a new ratio of
2.9 with a new propagation angle, ¢=32° to the angled crack line of
propagation; the angles shown in Figure 27b are 52° and 24°, respectively.
The mode II problem (6=75°) had a new ratio of 18.5 with a new propagation
angle of ¢=5°; from Figure 27a, these angles are 70° and 6°, respectively.
These new propagation paths did not align themselves perpendicular to the
direction of global maximum principal stress, indicating the need of a
local criterion to govern crack direction.

The next phase of the crack's behavior to be analyzed was the
matter of arrest and propagation at the interface. Two cases were
considered: cracks with propagation angles of 65° (combined mode)
and 75° (mode IT). The program TEXGAP was used with no crack elements.
The total energy release rates at the initial center crack were cal-
culated for a certain increment length. The total energy release
rates were in approximate agreement with Hussain's et al. [95] energy
release rate mentioned earlier. The crack was then allowed to

propagate to the interface by means of disconnecting elements. 1lhe
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energy of this configuration was determined for the same applied displace-
ments as the initial crack. The energy release rate along the interfaces
was then calculated for the same increment length as for the initial
crack to avoid any effect of numerical errors.

For specified applied displacements, the total energy release for
the center crack was 2.1 times the energy release for propagation along

the interface for the combined mode case. The sliding mode case had a

ratio of 3.4. Assuming the initial crack and interface crack propagates
at the same critical value of the total energy release rate, the crack

arrests at the interface.

In order to calculate the displacement required to propagate a crack

along the interface, it is helpful to draw upon the linearity of the
problem. Namely, in view of this linearity, the relation between the

total energy release rate and the applied displacements can be written:

- o
G =y ~ + v© 1
T11% T Tatele T Y220 S
3 where Y110 Y120 and Y,, are independent of u and W In the case of the

sliding mode, the ratio of displacement needed to propagate the crack

along the interface to that for the center crack is easily found to be

V3.4 = 1.84 since T 0 in this case. Table 2 shows the comparison of

the analytical and experimental values of increased displacement needed

to cause further propagation.
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Table 2. Percent of Initial Displacement Needed to Cause Interface
Crack Propagation.

Analytical Experimental
Mixed Mode 1887% 175-200%
Shearing Mode 184% 175-200%

The range of values for the experimental results is due to the varia-
bility of the cohesive bond between the plexiglas plates and sheets
as described in the experimental section of this study.

From the previous discussion, it is believed that the crack path
can be predicted in the biaxial strip model of a composite. For this
model with very stiff or rigid fibers, it has been demonstrated that

cracks will propagate toward the boundary provided some of the growth

is of the second mode (sliding mode). It also has been shown that this

propagation path can be predicted. The crack arrests at the boundary
and increases in applied displacements must be made to cause further
crack growth. With a crack arrest mechanism described for composites
with combined mode and shearing mode microcrack propagation, a crack
arrest mechanism for opening mode microcrack propagation must be

explored. This will be done by considering fiber flexibility.

Simulated Composite Analysis
A natural extension of the previous analysis is to go to a model
with flexible fibers. The motivation for this is to calculate the

energy release rate due to fiber bending and to show the affect on

crack growth, especially on cracks in an opening mode situation. In
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this simple model of a composite subject to loads at infinity, the fibers
just above and below the crack tend to respond as beams on an elastic
foundation. With no crack present, the fibers would just separate
slightly. With a crack, the crack is equivalent to an internal pressure
(equal and opposite to the stress in an uncracked body) acting between the
fibers of an externally unloaded specimen, thus causing local bending.
This approach was taken in a previous analysis using a simple
model of a beam on an elastic foundation [8]. For the case of a uni-
formly loaded fixed-ended beam on an elastic foundation [132], the
deflection and loading was used to calculate the strain energy release
rate due to beam bending. The relationships between energy release
due to beam bending, crack length, and fiber rigidity were explored.
A simple but more realistic model of a composite exhibiting fiber
bending was needed. A finite element representation of the geometry

in Figure 28 was examined using TEXGAP. The cases were examined either

as pure opening mode or as pure sliding mode where uniform displace-
ments were applied at the fixed boundary. Only the right half of the
problem was mcdeled with the use of the crack element, taking advantage

F of the symmetry of the problem. Test cases of different dimensions

were run to ensure the model was long enough to be infinitely long.

In this case, a size of 5. x 40. was needed for the total model.

The problem was analyzed as if it were in plane stress; for

B

plane strain (plates in bending) the results would be qualitatively
the same and plane strain results can be extracted from the plane stress
analysis by an appropriate change in the material constants. The

material constants used in this analysis are those typical of a graphite
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fiber-reinforced epoxy matrix. For equal fiber, hf, and matrix, hm,
heights in an idealized circular fiber composite [8], the fiber volume

fraction, Vf, is computed by

hf e
e (18)
hm l~,/Vf

which gives a value of 0.71, not unreasonable for advanced composites.
The deflection in the fiber's y-direction about the crack tip for

a uniform vertical grip displacement L are presented in Figure 29.

As can be expected, no fiber bending occurred in the shear case and

it will not be presented. For small cracks, the center line deflec-

tions of the fiber are not large, but their bending extends almost ten
times the crack length. With increases in the initial crack length, or as
the crack grows, the deflection gets much larger, but the length of the
fiber affected only slowly increases. As the crack approaches a length
of ten times the fiber height, the portion of the fiber above the crack
deflects nearly as much as the applied displacement. (This is due to

the use of a uniform grip displacement.) The effect along the

fiber is only over twice the crack length. As the crack gets larger,

the deflection does not get larger, but the length of the fiber affected

beings to slowly increase.

i Values of the total energy release rate CT' were calculated
from the stress intensity factors (from the finite element analysis)
2 by
2 2
| K K
! Gn= LN or G i (19)
! T B - UL R

&
|
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where Em is the matrix modulus; it is to be noted that since the
virtual increment of crack growth lies within the matrix material,

only the matrix modulus appears. The energy release rate due to fiber

bending, GB’ can then be defined as the difference between the total
energy release rate and that due to matrix stretching GI’
or shearing, GII’ with rigid fibers; viz

Ogy = 61y = Gp

or (20)

The total energy release rate's are plotted in Figures
30 and 31 . The two energy release rates (opening and sliding) are

normalized with respect to the strain energy release rates for the

rigid fiber case as [8]

2
hm 00 5
iy = E_ S
h T2 e
N
O E_ vt

These normalized values are plotted against a dimensionless quantity

derived in [8] reflecting the fiber rigidity and crack length:

4k 1/4
=8l 7
B (22)
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where k is the foundation stiffness and T is the fiber's area moment of
inertia. The value of k for this analysis and for an actual composite
could be treated as a free parameter used to correlate theory and experi-
ment. For the circular-fiber composite, an estimate was made for k

in [8],

E h E W
m fi

L = (23)

f
k = cE -
] Iy
(l+vm) hm (1+Jm) 1 ’Vf

A better estimate for k can be calculated with the use of an equation

#
derived in the previously referenced research [8],

2
P G % hf [2(cosh2y - c052 Y)

BI k (sinh y + siny)Z &l (24)

Figure 30 shows how the total energy release rate in Mode I is
strongly affected by fiber bending. For very small cracks, the results
are bounded by the release rate of a crack in an infinite sheet given

by

= (25)

As the crack length increases, total energy release rate follows the same

L

qualitative shape as for the energy release rate due to fiber bending

calculated in [8]. For sufficiently long cracks, the total energy

release rate becomes independent of crack length as does the bending
energy release rate. The magnitudes of the bending energy release
rates at these crack lengths could be predicted by the equations

*The factor of 2 in the brackets was inadvertently omitted in the final
typing of [8].
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derived in [8] with a reasonable value of k (490,000 psi, which is
coincidentally close to the value of the matrix modulus).

Figure 31 shows how the total energy release rate in the Mode II
problem increases without bound; there is little effect of fiber
bending. It too is bounded for very small cracks by the energy re-

lease rate for a crack in an infinite sheet given by

2
_ Tma To
GIL,f E (26)

The energy release rates for an orthotropic body were calculated
using the effective properties of the material used in the finite
element analysis and are shown in Figures 30 and 31. The details of
this analysis can be found in the Appendix. This was undertaken to
examine the relationship between the overall composite's and fiber
model's energy release rates. The equations for the plane stress

energy release rates [133] are

) s 311 39, 12 8y 172 2312 + age /2
ComEs ey

11 “11

(27)
.
6.. =k _° %1 Sy TR Mis Wl i
i 15 —“1'/~2~ [(l ) + - > a ~—]
(2) i 11

where the aij's are the material constants for an orthotropic body.
Using the stress intensity factors for the crack in an infinite sheet,
these release rates predicted much larger values than that of the fiber
bending model. This indicates the importance of fiber bending, and

that many fibers may be affected by even one crack.
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Further Results

Using the results from the rigid fiber models, some observations
can be made as to crack growth and arrest. Assuming that the energy
per unit area, V' required to produce new surfaces, is independent
of loading, crack growth will occur when GT > 2% and arrest when GT <
2V. Considering the entire crack front, the point of initiation of
crack growth will be where this criterion is met.

In order to determine how fiber bending affects crack extension

of an initially centered crack, K /K11 was plotted vs vy, in Figure 32,

I
for equal far-field tension and shear stresses. The rigid fiber model
results are also plotted for comparison. For very small cracks, the

crack behaves as if it were in an infinite sheet, with KI/K I,

II
corresponding to a crack propagation angle of approximately 55° (from
Figure 26). For somewhat larger initial cracks, their behavior becomes

affected by fiber bending, in that KI/KII=1.6, corresponding to a

crack angle of approximately 47°. The rigid grip solution with KI/KiI =

0.57, indicates a crack propagation angle of approximately 65°. This
variation in angle will not unduly affect crack propagation; the

crack will still propagate to the fibers at a fairly steep angle and
will then arrest at the fibers. These changes in stress intensity
factor ratios due to fiber bending will also have an affect on crack
initiation. The change in ratio changes the point of failure on the
KI/KII interaction curve as in Figure 6 \ higher ratio would involve
greater applied stresses to cause crack propagation,

0f great interest is arrest mechanisms for opening mode cracks.

One possible mechanism is the propagation of cracks in «djacent matrix
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areas. The shear stresses produced in this neighboring matrix, caused
by fiber bending, helps to cause cracks to grow from pre-existing flaws,
cracks of sufficient length to relieve the gtresses at the tip of the
initial crack. As seen in Figure 33, the shear stress directly above
the crack tip increases and then levels off as the crack length increases.
The relative magnitude of the shear stress to applied stress is small,
but a small amount of increase in a stress concentration can be signifi-
cant in determining crack initiation; three dimensional effects will
probably increase this stress concentration. Related crack skipping has
been observed experimentally [8,23]. The shear stress caused by fiber
bending within the matrix about the crack is of some significance.

The shear stresses above the crack tip and below the fiber are plotted
in Figure 33. For an off-centered crack, a shearing mode contribution
can be added to what had previously been only opening mode propagation.

This will then turn the crack toward the fibers, causing crack arrest.

As the crack continues to grow, either in the interface between
the fiber and matrix or in the matrix, the growth will continue to
be controlled by the neighboring fibers. Comparison of the energy
release rates of the fiber model and those for the homogeneous orthotropic
model, in Figures 30 and 31, shows that a cracked composite will re-~
quire much higher applied stresses for small cracks to propagate than
had been predicted by using the latter theory. This indicates that the
crack must be very large, compared to the t her spacing and diameter
discussed here, in order to treat the material as homogeneous.

Comparison of energy release rates and stress intensity factors

have lead to some conclusions on microcrack growth and arrest in
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fibrous composites. The simple models used here have neglected many

aspects of real composites such as fiber randomness, flaw size distri-

bution and interface inhomogeneity. The complex, real three-dimensional

problem was also approximated with two-dimensional models. Even with

these approximations, it is believed that these models portray some

of the features of microcracking found in the actual composite.
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CONCLUSIONS AND RECOMMENDATIONS

After examining the literature, it was concluded that of all
existing criteria, the maximum energy release rate criterion had the
strongest physical basis and best correlation with data, especially
for brittle materials. The usefulness of the finite element method
in fracture mechanics analysis has also been demonstrated in the
literature surveyed. The maximum energy release rate criterion was
extended to those combined mode fracture problems which are largely
composed of the shearing mode. This was accomplished with the use of
the finite element method and supported with experimental evidence
provided with a test geometry not previously used for combined mode
problems.

This completed criterion was then used to predict the crack paths
and stress intensity factors interaction in long rectangular strips
of plexiglas clamped on the long edges. The predictions compared
favorably with experimental evidence. By correlating energy release
rates of cracks initially in the center of the strip with cracks
already propagated to the long edges, it was calculated and experi-
mentally verified that significantly increased displacements were
necessary to continue crack growth.

Building upon the biaxial strip model (or rigid fiber model),
the affect of fiber flexibility on crack arrest was explored. Fiber
bending decreased the tendency of the crack to propagate toward the
fibers, but supplementary crack mechanisms resulted. These came about

due to the shear stresses induced by bending; shear stresses in adjacent

matrix regions possibly causing crack skipping and shear stresse
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3 in the matrix about the crack causing propagation toward the fibers,
both resulting in increasing the tendency for crack arrest. Drawing
»3 upon both the rigid fiber and flexible fiber models used, the nature
! of crack growth from a small defect to a crack whose dimensions are
comparable with fiber spacing was discussed.

Examination of fractured surfaces, obtained from the experimental
tests, showed that the direction of initial crack growth was contin-
uously changing, reaching a constant growth direction within a distance
which was less than sheet thickness but much larger than the estimated

o
craze zone size (approximately 6800 A). The crack surfaces showed

e

that the crack velocity increased as the crack initially propagated
and then crack velocity decreased as the crack approached the long edge
of the sheet.

While it is believed the study presented here provides a basis for

tracing certain aspects of microcrack growth in fibrous composites,

extensive work is still required to completely understand the problem. !
A wider range of fiber flexibility and geometry should be examined.

p: The nature of arrest for cracks propagating normal to the fibers

should also be studied. The flexible fiber model could also be ex-
tended by a more realistic three-dimensional model.

To predict crack growth direction in the three-dimensional case, |
the interaction of all three crack displacement modes will have to be
explored. The finite element method may prove to be promising in
this problem, in conjunction with the total eunergy release rate ?;

|

criterion. This criterion itself needs further experimental verifi-

cation, especially with materials other than rigid plastics.
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APPENDIX

Effective Properties

The effective properties of the orthotropic material can be de-

rived from the properties of the constituent materials by various means.

There are various theories proposed that are based on descrete element
models, variational principles, semi-empirical approaches and others.
These methods can be found in [3]. The method used here is the des-
crete element model. Here, each constituent, fiber and matrix, is
considered separately and the sum of their individual contributions is
assumed to be the same as that of the orthotropic material. The over-
all stress-strain relationship used here is for an orthotropic body

in plane stress as in [142].

6
(= = z = 1=
1L J=1 alJ Uj’ aij aji £ (i,J 1a256)
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First, an element of the material is considered to be in uniform

strain parallel to the fibers. One considers the forces in each fiber

and matrix section, and sets the sum of all the forces in the individual

fiber and matrix sections equal to the overall force. This gives the
stiffness in the fiber direction in terme of the volume fractions of

the constituents.

—_— = + -
E.V E L (A-2)

i A e A e e e bl el e G i



103

By considering the lateral contraction of the overall material, one can

determine that

Vg = % Vm + Ve Vf (A-3)

with (A-1) and (A-2) one finds

a (A~4)

12 P

By considering an elemeét of the material in simple shear parallel
to the fibers, the shear stresses in each constituent is the same.
The values of the shear displacement in each fiber and matrix section
is summed and set equal to the overall shear displacement. In terms

of the fiber and matrix shear modulus one finds

\
f
£ = =
66 G

(A-5)

O,B<

=}

For the compliance of the material perpendicular to the fibers,
one can consider an element of the material to be loaded by an overall
force perpendicular to the fibers and with no overall force parallel
to the fibers. By adding the displacements perpendicular to the
fibers, for each fiber and matrix section, and setting the sum equal to

the overall displacement of the element, one can derive

4 Vm Ve (vaf - vam) +
B F TRy ]
m f m m
Vf
(A-6)
Yﬂ 1 - vf (vam - vaf ]
E
¢ Em+EfY£
\Y
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These compliances were used as the effective Properties of the

continuum composite model in equation (27).

if
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