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SUMMARY

Rain falling on a heavy snow load can cause roof failures by adding temporary
weight to a roof. This additional weight can be calculated as a function of time
for any given depth, porosity, temperature and permeability of snow; size, slope,
and shape of roof; and duration and intensity of rainstorm. When the 25-year
rainstorm for Hanover, New Hampshire, is used as an example, it is found that a
two-dimensional, flat roof could retain enough rainwater to reach about 50% of
most design live loads. This weight could be partially reduced by giving the roof
a slight inclination; however, the weight would be increased if the water moved
radially to internal drains rather than to large gutters.

It is shown that the roof load due to rain-on-snow is very sensitive to spacing
between drains, snow depth and roof inclination. The load on a flat roof is less
sensitive to the duration of the 25-year rainstorm and the permeability of the
snow. Roofs with radial flow to a single, central drain tend to drain more slowly
than roofs with parallel flow to large gutters. The advantages of enlarged, re-
cessed drains are shown.

In the Appendix, a computer program is given for calculating the total weight
of wet snow as a function of duration for any design basis rainstorm. In addition
to choosing the design basis rainstorm, the snow depth, porosity, temperature,
and permeability, as well as the roof size, slope, and shape must be specified by
the user.




NOMENCLATURE
d depth of saturated layer
dy  depth of saturated layer at drain
dg maximum depth of saturated layer
D grain size
F  slope correction factor
g gravitational constant
h  thickness of snow
i rainfall intensity
/ infiltration into the saturated layer
s intrinsic permeability of saturated layer
o intrinsic permeability of unsaturated layer
L roof length
| L. culvert length
n ak /I
g discharge through the saturated layer
Qp  drain discharge
r radial coordinate
! rp drain radius
i r, roof radius
! R rJr,
Rp rplre
R, x/L
w  water saturation as percent of pore volume
Swi irreducible water saturation
| $* (Sw - Swil(1-Sy)
-‘ time
T snow temperature ("C)
b u  volume flux, water volume per unit area per unit time
vV water volume of saturated layer
w  culvert width
i W total weight per unit area
W, liquid weight per unit area in the saturated layer
| x coordinate direction along roof
‘ %‘ " speed of a value of $*
i a 547x10°m-!' 57!
t 0 roof slope
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density of ice

ice density of snow (excluding the liquid weight)
density of water

rainfall duration

snow porosity, 1 - p /p;
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ROOF LOADS RESULTING FROM RAIN-ON-SNOW

Samuel C. Colbeck

INTRODUCTION

The cost of constructing a modern building is so
great that much time and effort must be devoted to
saving material and labor. Unfortunately the efficiency
of the design is often limited by the many variables
which must be considered. These variables — including
winds, soil conditions, and snow loads — are often dif-
ficult to quantify and therefore difficult to accommo-
date in the design. One important aspect of many
designs - roof load due to rain falling on a snow-
covered roof — is described here.

Much consideration has been given to regional snow
accumulations, including both depths and densities
(e.g. Tobiasson and Redfield 1973). Thorburn and
Schriever (1959) discussed roof failures resulting from
rain-on-snow, emphasizing the significance of rain
falling on an already heavy snow load. Rain has two
special properties in this regard. First, rain is much
more dense than snow but can be added to the snow
without increasing its bulk. In fact, an observer may
believe incorrectly that the roof load decreases as the
snow densifies following the introduction of rain water.
Second, rain falling on snow percolates downward until
it reaches the roof and then spreads laterally or flows
downslope. If the snow is at subfreezing temperatures,
some of the percolating water will be refrozen in place,
but ii the snow is alrecady wetted, all the water will pass
through the snow and drain off the roof. In the former
case some of the water will remain on the roof as an
integral part of the snow load, whereas in the latter case
all the water passes through the snow, adding only
transient weight to the roof. Our purpose here is to
establish techniques for calculating this weight as a
function of time for any given set of conditions. The
basic question is how much of the transient rainwater
can be retained by the snow on the roof at any time.
For a “design basis rainstorm,” the roof load is con-
sidered to be at a maximum and it is this load which
the roof must be designed to support.

WATER MOVEMENT THROUGH SNOW

Rainwater falling on a snow-covered roof percolates
downward until it reaches the impermeable roof surface.
The water then flows along the roof surface to an inter-
nal drain or the roof edge. The two modes of flow
unsaturated vertical percolation and saturated lateral
flow over the roof — are quite distinctive and require
separate descriptions (see Fig. 1).

Rain

Saturated

Drain

Figure 1. Snow-covered flat roof
with an internal drain where h is
thickness of snow, L roof length,
dy maximum depth of saturated
layer, and x coordinate direction
along the roof. The saturated
layer of water flowing over the
roof is elliptical in shape.

Vertical percolation

The condition of snow prior to the rainfall is very
important because of the wide variety of responses that
can happen in any given situation. !f the snow is at a
subfreezing temperature, some of the rainwater will be
frozen in place in crder to raise the snow to the melting
point. This volume per unit area is equal to - p, ThH/160
where p, 7, and A are the density, temperature and
depth of the snow, respectively. As shown on Figure 2
for a typical snow density of 0.5 Mg/m?, the thermal
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Figure 2. Roof load due to refrozen rainwater
shown as a function of snow depth for various

snow temperatures. The snow density is assumed
to be 0.5 Mg/m*.

effect adds only 3.125 kg/m? of load (0.64 Ib/ft?)
per meter of depth and degree Celsius of subfreezing
temperature. It seems unlikely that this effect could
be more than a small percentage of the total roof
load because heavy rains of sufficient duration are
very unlikely when a thick, cold snowload occurs.

The unsaturated percolation of water through the
upper portion of the snow also adds to the roof load
because of the need to increase the liquid water con-
tent in order to allow water percolation. If the flow
through the snow is uniform and homogencous (i.c.
does not flow in distinct drainage channels), this in-
crease in weight due to the liquid saturation can be
calculated from known principles of the unsaturated
water flow in snow (e.g. Colbeck and Davidson 1973,
Colbeck 1976). The intensity of the rainfall and the
grain size, density and depth of the snow would have
to be known to make this calculation. Assuming a
constant source of rain of sufficient duration to
penetrate the entire snowcover, the weight of liquid
per unit area would be equal to

Wy =hoy® [(i/ak,)13 (1-S) +S) (1)

where p is density of water, ¢ snow porosity, / in-
tensity of the rain, a a constant (5.47 x 10 m™' s°!),
and S ; the irreducible water saturation (about 0.07
depending on the degree of snow metamorphism). &
is the intrinsic permeability given by Shimizu (1970) as

k, =0.077 D2 exp (-7.8 ) (2)

where D is the grain size. For a rainstorm of 10°°
m*/m? s (~0.14 in./h) with a snow depth of T m and

permeability of 107'% m?, the increase in roof load due
to the moving water would be 76 kg/m? (15.5 Ib/ft?)
per meter of depth. This weight alone approaches half
of most live load design limits if the rainstorm lasts long
enough to deposit this much rain and if the flow is uni-
form throughout the snow. In fact neither of these
conditions is likely. As shown later, the probability of

a rainstorm of this intensity and duration falling on snow
is small. Furthermore, the roof load would probably be
reduced somewhat below the value calculated here be-
cause of nonuniform flow through the snow. The de-
gree of nonuniformity would be highly variable, de-
pending on the nature of the snow on the roof prior to
the onset of the rain. Thus, while some correction could
be applied to account for the channeling often observed
in snow on the ground, there is no way of assessing what
this correction factor might be. Since it is conservative
to assume a uniform distribution of the flow, the cal-
culations are made accordingly.

The effects of the intensity of the rainfall and perme-
ability of the snow are reduced by their one-third power
dependence. An order-of-magnitude increase in rainfall
intensity only about doubles the weight due to the
unsaturated snow. As shown later the more intense
rainfalls are generally shorter in duration; thus, the less
intense but longer lasting rainfalls can add more weight
to the roof than the more spectacular (but shorter)
heavy rains. Furthermore, the less intense rainstorms
are more likely to cause a homogeneous soaking of the
snow; hence, rapid runoff due to the formation of flow
channels is less likely for rainstorms of lower intensity.

Grain growth, density increase, and a general homog-
enization of the snowcover occur when large quantities
of rain or meltwater first infiltrate the snowcover. The
properties of the snowcover change rapidly during this
period of “melt metamorphism’ and the permeability
can increase significantly. Again because of the one-
third power dependence of weight on permeability, the
roof load due to the unsaturated snow would decrease
very slowly with increasing permeability. Because of
the general lack of observations of the physical proper-
ties of snow on roofs, it is difficult to assign values to
the intrinsic permeability of the snow but the assumed
value of 107'° m? is in the correct range for the un-
saturated snow,

Lateral flow
Once the percolating water reaches the roof surface,

the water moves laterally in a saturated layer. The
permeability to the water in this saturated layer is
orders of magnitude greater than in the unsaturated
layer tor two reasons. First, the permeability to the
water increases as the cube of the liquid saturation
(Colbeck and Davidson 1973) and the unsaturated
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layer is typically 107 saturated while the saturated
layer is nearly 100% saturated. Thus the saturation
effect increases the permeability to the liguid in the
saturated layer by a factor of about 10*. Second,
the grain size in the saturated layer is likely to be
greater because of “temperature gradient meta-
morphism" in the warmer basal layer prior to the
introduction of liquid water and because of the rapid
grain growth in saturated snow after the introduction
of liquid water (Wakahama 1968). As shown by eq 2,
the intrinsic permeability increases as the square of
the grain size. Accordingly, an intrinsic permeability
of 107" m? might be typical for the saturated layer
ke.

At the roof surface the pressure gradient available
to drive the lateral flow is very small and the flow is
reduced accordingly. For a house-size gable roof
of 107 slope, the weight of the saturated layer could
reach about 19 kg/m? (2 Ib/ft?) assuming no blockage
at the roof edge. Since most gable roofs are steeper
than this, the weight of their saturated layers would
generally be negligible. At slopes of less than 10°, the
flow is reduced significantly and the thickness and
weight of the saturated layer are increased accordingly.
Lateral flow on both flat and low-slope roofs is de-
scribed below.

Flat roofs

for the idealized, two-dimensional roof shown in
Figure 1, the profile of the saturated layer is often
assumed to be elliptical. For steady flow where no
blockage occurs at the dran, the profile is given by

where d is the depth of the saturated layer.

The volume of water V stored in the saturated layer
per unit width of roof is

V=0.51L2 /T]ak o (4)

where / is the flow into the saturated layer from the
overlying unsaturated layer (m?/m? s), ¢ is snow
porosity (1 - p./p;), and &_ is intrinsic permeability of
the saturated layer. The maximum thickness of the
saturated layer (dy) for steady flow is

17 L I~
do =VI/ak, /A (5)
For nonsteady flow where / varies with time, the fol

lowing equation (Colbeck 1973) describes the depth
of the saturated layer as functions of x and /:

This equation is solved here by assuming that transient
wave effects are small and that the elliptical profile is
always maintained. Then the equation can be simplified
to

. (/(/()

¢ —- =Mt} -k L2 df . (7)

This equation can be immediately solved when /(¢) is
either a constant or zero, e.g. during the onset and then
abrupt cessation of rain. The solutions for these cases

are
Vak !
dy(0) +V1/ak L tanh 7’—- t ford>0
dy = (8)

¢L2dy(0)

e
L= + akdy (0)t

where d (0) is the value of d; when / changes. An ex-
ample of dy (t) is given on Figure 3. The thickness of
the saturated layer increases rapidly following the onset
of infiltration, although it is very unlikely that more
than 509 of the maximum possible thickness would
ever be realized because such heavy rains are not of
sufficient duration. Once the infiltration ceases, the
depth of the saturated fayer decreases rapidiy untif
more rain falls on the snow.

The total snow load per unit width carried by a flat
roof with an internal drain is equal to the weight of the
snow plus the liquid in the unsaturated layer plus
0.5719L2p,, (//a/es)"", the weight of the liquid in the
saturated layer from eq 4. The saturated layer is some-
what more sensitive to changes in infiltration or
permeability than the unsaturated layer although, be-
cause of the square root dependence, the weight of the
saturated layer is less responsive to &, than might have
been thought. At small values of time, the £ depend-
ence of the saturated layer nearly vanishes as shown
below. Note that flat roofs are very sensitive to the
spacing of the drains since the weight per unit width of
saturated layer increases as L2,

Sloping roofs

The complete equation describing flow along a
sloping roof (Colbeck 1974) is

oy sing 0 -k D (g 94) 4690 = 9)

= t’il ax ot

where 4 1s the roof slope.
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Figure 3. Thickness of the saturated layer at the roof margin shown as a func-
tion of time for the specified conditions. The thickness increases rapidly fol-
lowing the onset of rain but it is unlikely that such a heavy rain could last long
enough to generate more than 50% of the maximum possible value of d.
Once the infiltration due to the rainfall stops, the thickness of the saturated

layer decreases rapidly.
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Figure 4. Roof with a gradual slope. For a slightly dip-
ping roof the thickness of the saturated layer is inter-
mediate between a flat and a steeply dipping roof.

For a steeply dipping roof this equation can be simpli-
fied by neglecting the second order derivative, whereas
for a flat roof, the first term is zero. Roofs with
gradual slopes are also common, and it is very impor-
tant to analyze them as accurately as possible. Because
of the extreme sensitivity of flow to slopes at angles

of less than 10°, either of the simplifications mentioned
above could cause large errors. As for flat roofs, we
begin by establishing the upper limit of weight on a
roof of gradual siope (see Fig. 4) during a steady rain.
The flux v (volume per unit arca per unit time) along
the roof is given by

u:a/\-,(sin -%‘-‘/) (10)

Hence for steady flow,

" dd Y=
aky (smU-d—A)d-ﬂl.\ (1)

where ¢ is about equal to sin @ for shallow slopes. Al-
though eq 11 has no temporal dependence, it cannot
be readily solved because of its nonlinearity. Fortu-
nately we are not interested in solving for d per se but
rather we can solve for the volume of water V in the
saturated layer:

L
V=¢fdd.\. (12)
0
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Figure 5. Dimensionless volume of water in the saturated layer [ (2ak/
olL2?) V[ shown for given parameters as a function of root slope. The
solution for V given by eq 14 is only approximate and as the roof slope
decreases, the error increases. Accordingly an approximation to the

solution is given for small values of 0.

Fromeq 11 and 12 we get
V= %Qo-l (@} -d3 + 1o k71 L2) (13)

where d|_is the depth of the saturated layer at the
drain. Equation 13 is an exact expression for the
volume of water in the saturated layer, but the bounda-
ry values d| and d, cannot be specified a priori. This
cquation could be used with l,df -(/5') as a parameter,
but for the practical purposes of deciding how much
water can be impounded by the saturated layer, we
must make the assumption that

5 )

/a'l;’\;'l.l -:(/'L-c/,j[.

Accordingly, eq 13 can be approximated by

V=Lootrat kot g2 (14)

which is the same as the formula for the volume of

water on a steeply sloping roof, because the assump-

tion stated above is only valid for steeper slopes.,
I'he volume of water contained in the saturated

layer as given by eq 14 is shown as a function of roof

T

slope on Figure 5. There is a small error in the solution
for slightly sloping roofs because eq 14 tends to over-
estimate V at small slopes. This crror arises because we
have neglected (/-E - dr‘), a negative number. An approxi-
mate solution for the volume of water in the saturated
layer on a shallow roof is also shown on Figure 5. The
approximation is made by noting that for a value of
(ak/1)* equal to 10, V does not approach infinity as
U vanishes as suggested by eq 14, but rather V has an
upper limit given by eq 4 for flat roofs. Also, as the
slope increases, the actual solution must approach the
approximate solution of eq 14. The difference b2tween
eq 14 and the approximate solution is only significant
at angles below 10" where the roof load is most sensi-
tive to slope.

To include the effect of roof slope, we define a slope
correction factor £ as

W, (0)

Fol0) = (1s)
n W, (0)

where W, (0) is the weight of the saturated laver for

any slope 1 or parameter n, where

n = vk JI . (16)

|




>,

T

—

e

6
-1

F|0
a4t
2

L...__L,, TS es e T GITAC ) el e TSR SO T S |
o] 10 20 30 40
8 (deg)

Figure 6. Inverse of the correction factor  shown as a function of sfope
for n = 10.

70{—"‘7*'—1'—*7 PR P T R T Rl e e s e e T"T
|
|

o -
? Jak
s0- e 4’
[ 25
40~ 4
) 20
sl
5 |
20- ,
[ o
\O’{»
—on = e TEEN | NE S | SRR e 5, Bt ) RS TG N Y (G N
0 4 8 12 6 20 24 28 32 36 40
8 (deg)
Figure 7. Slope correction factor shown as a tunction of slope for various values
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Using the approximate solution on Figure 5, we find

or
F;L (0) as shown in Figure 6 and various values of
F o (0) as shown in Figure 7. From Figure 6, F 1o (0) F ) =00n (1 +0/2.2)"96- 1] +1.
can be represented by
Now
Fio = (1 +0/2.2).96 (17)
W, (0) = i L

and from Figure 7, we note that n 0.1n[(1+0/2.2)'96 _ 1] +1

[Fal0) =1] = [Fi9(0) = 1] (n/10) (18)

where W, (0) can be directly calculated from eq 4.

(19)

(20)
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Figure 8. Volume of water per unit width of satu-
rated layer shown as a function of time for two roof
sfopes. The difference between the two slopes increases
with time until 40 x 103 s when the percolating water
stops reaching the roof. The more gradual roof carries
about twice the weight of the steeper roof at 40x 107 s.

Figure 7 shows clearly that the effect of increasing
the roof slope in order to provide better drainage is
highly dependent on the values of (cx/\’s//)'/f. The weight
of the ponded layer of water decreases sharply for small
increases in slope at slopes of less than 10°, but the opti-
mum slope is dependent upon the values of rainfall
intensity and snow permeability chosen for the optimi-
zation calculation, For both gently sloping and flat
roofs, the weight of the saturated layer per unit width
increases as the value of the spacing between the drains
squared 4L2. This is a significant result which shows
the critical value of drain spacing on shallow roofs.

Figure 8 shows the volume of water per unit width
of the saturated layer as a function of time for two
slopes where infiltration stops after 40x103 5. The
more shallow slope carries a [arger volume of water
but it takes more time to reach its maximum value.
During the first hour of infiltration into the saturated
layer, the effect of slope is not as significant as sug-
gested by Figure 5. The effect of slope increases as
infiltration continues, until ultimately the more shallow
slope carries more than twice as much water in its
saturated layer as does the steeper slope. Also, the
more shallow slope responds more slowly once the infil-
tration ceases by taking longer to drain. However, be-
cause it is very unlikely that such an intense rainstorm
will last for this period of time, the difference due to
roof slope is reduced somewhat. The decreased response
time of a stoping roof is adjusted by multiplying the
argument of the hyperbolic function in eq 8 by the cor-
rection factor £. This correction is included in the
program in the Appendix.

3

The two-dimensional analysis given above was simpli-
tied in that the drain was assumed to be a longitudinal
gutter capable of being an infinite sink. Other important
factors like radial flow, drain size, basal layer permeability,
and gutter slope are considered below.

RAINFALL INTENSITY-DURATION EFFECTS

The weight added 1o a roof by transient water in both
the unsaturated and saturated layers increases with both
the intensity and duration of the rainfall. Snow-covered
roofs frequently experience rainfalls which would cer-
tainly cause collapse if the rainstorms were of sufficient
duration to allow complete soaking of the unsaturated
layer and full development of the saturated layer.
Fortunately, the duration of a rainstorm generally de-
creases with increasing intensity (Wisler and Brater 1965);
hence some storm of intermediate intensity but longer
duration may actually be the “‘design basis storm.” The
fact that the weight of the unsaturated layer only in-
creases as /'3 and the weight of the saturated layer only
increases as /12 suggests that both duration and intensity
are important parameters. Accordingly, we might sus-
pect that long storms of less intensity may add more
weight to some roofs whereas others may be loaded
more by short, intense rainstorms.

The 25-year rainstorm for Hanover, New Hampshire,
is used here as a design basis because we are concerned
only with the coincidence of a heavy rainfall on an al-
ready heavy snow load. The probability of a 25-year
rainstorm falling on a heavy snowload is not known
but this example does provide an illustration. If it is
decided that a larger safety margin is needed, a larger
return period can be used, but because the roof weight
is not too sensitive to the storm intensity, a large in-
crease in return period would give a small increasc in
roof weight. For example, increasing the return period
to 100 years in Hanover would only increase the weight
of the saturated layer by 10%. However, if the maxi-
mum probable precipitation were used, the weight of
the saturated layer would increase by about 80% abaove
that calculated for the 25-year return period.

From Niedringhaus (1973), a 2.09x10-5-m/s (3.0-
in./h) rainfall lasting 1800s can be expected once every
25 years in Hanover, N.H. From the exponential
formula suggested by Wisler and Brater (1965), the
intensity 7 and frequency 7 of 25-year rainfalls in
Hanover are found to be

i =5.465 (7 +360)0-725 (mm/s) (21)

R "1
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Figure 9. Total live load W, fraction of rainfall retained, and depth of water impounded
on a flat, two-dimensional roof for the 25-year rainfall at Hanover, N.H. The maximum
weight occurs for a rainfall of about 75,000 s duration but is not very sensitive to dura-

tion.

where the duration 7 is expressed in seconds. The total
precipitation / 7 increases with duration so that lower
intensity rainstorms always deposit more water on the
roof than the higher intensity storms. Clearly some
storm of intermediate intensity will prove to be the
design basis rainstorm, since more of the water can
drain from the roof during the lower intensity storms
but lower intensity storms produce more total precipi-
tation.

We make the assumption that the intensity of the
rain is constant during the storm, although the worst
case could arise if the intensity were unevenly dis-
tributed during the storm. Unfortunately, statistics
on the intensity distribution are not available and no
definitive statements about the effects of an uneven
distribution can be made from the equations presented
here. If there is a serious concern about distribution,
it could best be accommodated by increasing the de-
sign basis to 50 or 100 years.

The intensity-duration effect is illustrated by
calculating the maximum liquid retention of the satu-
rated and unsaturated layers as separate systems and
then the retention of the entire snow load. To evalu-
ate the maximum weight of the saturated layer alone
due to a 25-year rainfall, we set d4(0) equal to zero
and the infiltration / in ¢q 8 equal to the rainfall /.
Then the maximum depth of water impounded on a
flat roof is

\/a/egl

dg 12 112 /\-;lj.’ L tanh = T (22)

For typical parameters for a snow with a highly perme-
able basal layer, Figure 9 shows that the depth of water
ponded on the roof is at a maximum for an intermedi-
ate value of rainfall duration. When the rainfall in this
example lasts 100,000 s (27.8 h) at an intensity of
0.00129 mm/s (0.183 in./h), the depth of the ponded
layer reaches 126 mm (5 in.). Only 51% of the water
reaching the saturated layer in this example is retained
at the end of the period of infiltration. This liquid
would add 53.4 kg/m*® (11.1 1b/ft?) of weight or about
30% of a normal design load. The depth of water
would be significantly increased if 1) the roof were
covered by fresh snow, 2) the culvert or drains were
incapable of handling the water flowing to them, or as
shown below, 3) the flow to the drains occurred as
radial rather than parallel flow.

The maximum weight of the liquid in the unsaturated
layer alone can be determined for the 25-year rainfall
by combining eq 21 with the weight of the liquid in the
unsaturated layer which is given by

wu = hpwfﬁ[(i,'afx’u)”j(l -Swi) % S\\II ® (23)

The design basis storm which gives the maximum in-
crease in the weight of the unsaturated layer is calcu-
lated for snow which is wet but has no antecedent
flow from

hoe = 0.149 (ak )3 70777 (24)
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The critical duration would be tonger if the snow were
dry prior to the onset of rain (this option is included
in the computer program) or shorter it antecedent
flow existed in the snow. However, the weight of the
unsaturated fayer in this example would not be greatly
atfected. Equation 24 clearly shows that the critical
duration ot the rainstorm (and the weight of the un-
saturated layer) increases rapidly with the depth of
the snow but is much less sensitive to the permeabil-
ity of the snow. For the case of Hanover with a snow
of 0.5-m depth, 0.5 effective porosity and 10710.m2
permeability, the 25-yedr rainstorm that increases the
weight of the unsaturated layer to a maximum has a
duration of 8000 s (2.2 h) and an intensity of 7.83x 1073
mm/s (0.23 in./h). This storm adds 62.6 kg/m? (12.8
Ib/f12) of transient liquid weight to the unsaturated
layer or about 35% of the usual design live load. It is
very important to note that about 18.9 kg/m? (3.87
Ib/ft2) of additional liquid is retained as the capillary
liquid. The weight of the ice would be about 211
kg/m? (43.21b/f1?). Clearly, the additional weight of
the liquid must be considered.

In these examples, the unsaturated layer can carry
about the same load as the saturated layer; this has
important implications tor roofs of all slopes. If these
weights were simply added, the total effect would re-
quire an increase of the design load of more than two-
thirds to account for the total weight of liquid water
on the roof. However, a more complete calculation of
the combined effects of these two layers is necessary.
I'his is illustrated here for a flat roof in Hanover.

For a flat roof the total weight of the liquid per
unit area is given by

W=hp olli/ak )13 (1 =S,)+S,:
+0.51dy op,, (25)
where S is the irreducible water saturation and
U ferr<it,

dy (26)

ok |

) / .
(1/ak )12 [ tanh | s (r~¢,) tOr > 1.,
S L¢ u u

t,, the time delay before the infiltrating water reaches
the roof, is given by

t, = ho, (ak, i2)13 (27)
For 0.5-m depth, 0.54 porosity, 10-m drain spacing,

10 19-m? permeability for unsaturated snow, 109-m?2
permeability for saturated snow, and the 25-year

rainstorm for Hanover, we find using the computer pro-
gram in the Appendix that the maximum weight of liquid
carried by the flat roof increases with rainfall duration
until about 75,0005 (20.3 h). Asshownon Figure 9, the
total weight due to the liquid is not sensitive to the
duration of the rainstorm as long as the duration 7 is
well in excess of the time £, necessary to penetrate the
unsaturated layer. In fact, the weight of the transient
liquid increases to about 79 kg/m?2 (16.4 Ib/ft?) before
the action of drainage becomes more important than the
increase of total precipitation with duration. For a rain-
storm of 75,000-s duration, about 66% of the rainfall

is retained on a flat roof by the end of the rainstorm.

For this situation the total liquid adds 98 kg/m?
(20.4 1b/ft2) of liquid to the snow on the roof of which
the capillary liquid (held by capillary forces) is 19 kg,
m< and the transient liquid is 79 kg/m2. The design
live foads on most roofs would have to be increased by
about-50% to account for the total liquid weight. The
total live load in this example reaches 304.3 kg/m?
(62.4 Ib/ftz ); thus it is easily seen why Thorburn and
Schriever (1959) were concerned about roof failures
resulting from rain falling on a heavy snowload.

Because of the large number of parameters affecting
the retention of rainwater on a roof, a wide range of
calcuiated loads might be possible. However, it has
been shown that the effects of snow permeability and
rainfall intensity are reduced by the square or cube root
dependency, and as suggested by Figure 9, the weight
of transient liguid on a flat roof is not very sensitive to
duration of the 25-year rainstorm. Accordingly, a wide
variety of snow conditions and rainstorms can produce
about the same amount of transient roof weight.

The drain spacing will affect the saturated layer, and
for this particular example, the saturated layer is very
sensitive to the slope of the roof. Other important
effects, especially the radial movement of water to
drains and gutter overflow, are introduced in the next
section,

MISCELLANEOUS EFFECTS

Radial flow to drains

On roofs with internal drains, radial rather than
parallel flow can occur as water moves over the roof
to the drains. Accordingly, the previous analysis for
flow along a two-dimensional roof must be extended
to allow calculation of the larger weight due to im-
pounded water associated with radial flow to a drain.

Steady flow g through the saturated laver on a
flat roof (0 = 0) is given by
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Figure 10. Saturated layer of snow on a tlat roof shown for the
cases where the saturated layer does (1) and does not (11) cover the
drain. Note that the effective radius of the drain (r,) has been in-
creased by providing a collector space between the drain pipe and
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the grate.

q=-ak 2mrd % (28)

The infiltrating water reaching the saturated layer in-
creases the flux toward the drain according to

_aﬁ —" 4, a-d
2nrl 3 2mrg 5 - (29)

Upon combining eq 28 and 29 to eliminate g and
integrating from the drain ryy to any position r for
steady flow:

I e dd el r2-rg)+ ir_ez_ In(r/ry) (30)
Jf, ok,

where d| is the thickness of the saturated fayer at the
perimeter of the drain, r(; is the drain radius, and r,,
is the roof radius (see Fig. 10). The size and spacing
of the drains are critical, since the drains must be
capable of removing all the water without it ponding
over them. As shown on Figure 10, the weight of the
saturated layer is much greater when the drain is in-
capable of accepting all the water moving through the
saturated layer. The vertical percolation through the
saturated layer directly over the drain is independent
of the thickness of that layer because the water pres-
sures on both the upper and lower surfaces are equal.
Therefore the flow through the drain Qy, is given by
the inequality:

|Qp| < akgnr, . (31)

The total flow reaching the saturated layer is mr2 /.
Thus

(re/rp)? I < ok, (32)

and there is no ponding over the drain as long as
(relrpy)? Lis less than ade . 1t is conceivable that

(rt_/ru)2 { can be more than an order of magnitude
greater than ak; however, as noted before, the time
required for the saturated layer to develop is very much
greater than the duration of intense rainfalls. Neverthe-
less there are several important conclusions to be drawn
at this point.

1. The rate of flow to the drain is very sensitive to
the ratio of drain spacing to drain size as shown on the
left hand side of eq 32. This ratio can be reduced by
increasing the size of drains and/or decreasing the
spacing between the drains. Since internal drains are
expensive and tend to be troublesome, it is important
to note that the effective diameter of a drain can be in-
creased by simply increasing the size of the grating over
the drain. The area available for flow to the drain in-
creases as r% for Case | (see Fig. 10) and as ry for
Case Il. By increasing r, the increased weignt duc to
ponding over the drain can be greatly reduced.

2. One severe problem with drains is the possibility
of icing because of freeze-thaw cycles and/or the
densification of the saturated snow overlying the drain.
When the snow overlying the grating is wet it will retain
by capillarity approximately 20 mm (0.8 in.) of liquid
water in a saturated layer at the very base of the snow.
If weather conditions change and this layer refreezes,
it becomes a nearly impermeable “ice fayer.” If a subse-
quent rainstorm occurs, discharge into the drain is
impeded by the reduced permeability of this layer and
more of the rainwater could be retained on the roof.
The “ice layer’ undergoes a thermodynamic meta-
morphism in the presence of liquid water which eventu-

ally restores the permeability of the snow over the
drain; however, it takes several days to cause a signifi-
cant increase in .. As a result the weight added 1o a
roof by a steady rainfall lasting several days could
approach the total weight of the rainwater falling on
the roof. One obvious approach to solving this problem
is to heat the grating in order to melt away the 20-mm
ice laver. This solution can be partly accomplished by
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Figure 11. [hree advantages of a recessed drain
over a tlush drain: 1) the layer of snow saturated
by capillary retention will be limited to the drain
itself, thus reducing the root weight, 2) this
saturated, capillary layer will be less likely to
freeze and block the drain, and 3) the lowered
drain creates a “tension gradient"’ in the snow
which slightly increases the rate of flow to the
drain.

recessing the grating as shown on Figure 11. A recess
of SO mm (1.97 in.) has several advantages over the
flush grating shown in Figure 10. First, the layer of
snow saturated by capillary retention is limited to
the drain, thus reducing the weight that this saturated
layer exerts on the entire roof. Second, internal
drains form a natural heat leak from the building
which should help to prevent the recessed snow from
freezing. The greater the heat leak, the less the chances
for ice layer formation to cause drain blockage.

3. The pressure in the water at the lowest point in
the snow is approximately atmospheric and decreases
with height above that point. This establishes a
“tension gradient’" which has been ignored in the
derivation of the flow equations given here but in fact
would increase the flow rate toward a recessed drain.

4. Assuming the drain is not blocked and is capable
of handling the infiltrating water without forming a
ponded layer directly over the drain, the profile of
water in the saturated layer is given by

( 20k,

; ) fztzxn/e/ku-/e2+/e,2,)¥‘: (33)

where 7 is the radius of the roof,
Rp = rplre (34)
and

R=rfr (35)

&
The dimensionless ratio (20(/"5//)"/-‘ djr, is shown as a
function of R tor various values of Ry in Figure 12.
The effect of drain size is shown by the large increase

in the thickness of the saturated layer for small values
of Ry,.

5. On a roof with radial flow, a larger volume of
water is retained as a saturated layer than on a roof with
parallel flow to a drain. To illustrate this point the pro-
file of the saturated layer on a two-dimensional roof is
given by

20"5 Ya o st
(55 2=vTa-#2 (36)
where

R =x]L. (37)

This is also shown in Figure 12 for a drain size of 0.1
of the roof length. The volume of ponded water on a
roof with radial flow is given by

r

= 2nof rd dr . (38)
0

Hence the ratio of the volume of ponded water for
radial flow to that for parallel flow can be calculated
as a function of Ry. This ratio is shown as a function
of Ry in Figure 13 for roofs of equal area. On the
radial roof in this figure, there is a single, centrally
located drain, and the two-dimensional roof has a fixed
drain size. For Ry equal 10 0.1, the drain is '/, the
size of the roof and the saturated layer for radial flow
has 78% more weight than for parallel flow. For R
equal to 0.01 which is probably a more common value,
the saturated layer for radial flow contains 1867 more
water than for parallel flow. The advantages of in-
creasing the relative size of the drain Ry, for radial
flow by using an enlarged grating over the drain as
suggested earlier have now been verified. Likewise,

the advantage of draining a roof by parallel flow to

a gutter rather than radial flow to drains has been es-
tablished on a quantitative basis.

As for parallel flow, the rate of increase of the
saturated layer in radial flow must be considered. The
thickness of the saturated layer at the perimeter of the
roof increases for a constant value of infiltration accord-
ing to

dy =dy(0) + A(l/ak)” tanh [(akl)" t/0A| (39)
where
A=vTlnrjrg - G S irg . (40)
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Figure 12. Profile of the saturated layer (d/r,) shown as a function of R for various drain
sizes (R,) for radial flow over a flat roof. The eftect of decreasing the drain size is a rapid
increase in the thickness of the saturated layer. For comparison, the corresponding profile
Is given for the two-dimensional roof considered previously (dashed line). The thickness
of the saturated layer is somewhat greater for radial than for parallel flow.

v‘h:»c‘ 20

0.2 0 oig: 08 1.0

Figure 13. Ratio of the volume of water in the saturated layers of radial and two-
dimensional roofs shown as a function of the drain size on a radial roof.
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a. Two-dimensional roof with a recessed qutter carries the minimum |
weight when the qutter depth exceeds the water depth. |
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b. When the gutter cannot move all of the water to the drain without
overflowing, the roof slope is effectively decreased and the weight due
to impounded water is greatly increased.

Figure 14. Flow on a flat roof for two conditions.

From eq 38 the maximum possible volume on the roof
is

V=v2 n¢ ok r}

RL‘
X f VInRTZRZ+RE -In R} RdR . (41)
RD

In the formuiation of the computer program it is
assumed that the volume of the saturated layer in-
creases directly as d (¢).

Flow along gutters on snow-covered roofs

We have shown that planar two-dimension il roofs
tend to carry less weight in the saturated layer than
radial roofs. The advantage of two-dimensional roofs
is greatly reduced when the longitudinal gutter, which
collects and moves the water to the drains, cannot
move the water to the drains without overflowing.
That is, when the thickness of the layer of water in a
recessed gutter exceeds the depth of the gutter, the
overflowing gutter effectively reduces the slope of the
roof in order to increase its own slope. As shown in
Figure 14, this phenomenon causes a large increase in
the weight on the roof because small decreases in roof
slope produce large increases in the volume of the
ponded water (see Fig. 5). For level gutters, the depth

of the saturated layer in the gutters assumes the elliptical
profile of

4\, (-2 3
(do) . L2 i Bl

Hence the overflow would most likely occur near the
roof edge and extend along most of the length of the
gutter. For a steeply dipping gutter, the depth of the
saturated layer increases linearly toward a drain and
reaches a maximum just short of the drain. In this
case the additional weight is concentrated near the
drain so that an overflow would not cover such a
large area of the roof. Gutters with gradual slopes,
like roofs with gradual slopes, lic somewhere between
the two extremes.

Obviously much can be gained by increasing the
slope of a gutter. Unfortunately it is d:fficult to solve
the governing equations, and unlike the case for a
shallow roof where the water volume was used as the
dependent variable instead of depth, we must deal
with depth explicitly since the depth of the water in
the gutters is the limiting criterion for design. The
volume of water in the gutters per sc contributes very
little to the roof weight. Ideally the gutters should be
able to handle all the rain intercepted by the roof
without overflowing but this is very unlikely for nor-
mal roof design. Sloping the gutters reduces the weight
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addition by overflow somewhat, but even so, the

gutters would have to be extremely large to handle
all the drainage. For a flat culvert, the maximum
depth of water ¢y in the gutter is given by

wer (@) ()

where £ is the length of the gutter, 2L is the width
of the roof and w is the width of the gutter. Equation
42 shows that the depth of water in the gutter in-
creases with the spacing between the drains £ and as
the square root of the ratio of roof to gutter widths
(24 /w)"*. For reasonable values of (2L /w)"* and
(/,’a/cs}’:, the depth of the gutter must be excessively
large unless the drain spacing is no more than 4 meter.
Accordingly a recessed gutter similar to the suggested
drain design (see Fig. 11) would be advantageous. The
main advantage ol this design is that the longitudinal
flow along the gutter occurs in the snow-free space

o ——

on roofs. The extent and nature of ice layers in the
snowcover on the ground change rapidly during the
warmer spring months when heavy snowloads associ-
ated with heavy rains are most likely to occur, In
general it seems safe to assume that the presence of ice
layers will not significantly increase the weight due to
the presence of transient water. However, it must be
emphasized that experimental observations of the de-
tailed structure of snowcovers on roofs are necessary
to test the validity of generalizing from snow on the
ground to snow on roofs.

Basal layer

There are two characteristics of the basal layer of
snow which are important — the basal layer permea-
bility and open channels. It was shown carlier that the
permeability of the basal layer is of reduced importance
because it enters the equations as a square root. Further-
more, at small values of time

Sre e it e g e 5 /ol ]
beneath the grating; ht,.l]CL, ﬂow.dlong thc..g.,.utlcr would tank aj\‘/ 3o Vak/ L. (43)
occur much more readily. For given conditions the Lo Lo

flow rate would be greatly increased at small values of
water depth. Accordingly overflow would not in-
crease the roof weight by inhibiting flow to the gutter.

Snow structure

In most areas of heavy snowfall, ice layers tend to
form in the snowcover because of the preferential re-
tention of liquid water at certain horizons. These ice
layers interrupt the downward movement of water in
the unsaturated zone causing ponded layers of water
to form above them. In extreme cases these ice layers
almost completely eliminate downward water move-
ment and it would be necessary to manually penetrate
such an ice layer in the event of heavy rains.

Generally ice layers are discontinuous and do not
provide a complete interruption of the vertical seepage.
In effect, discontinucus ice layers cause a stepwise flow
of water down to the roof. There are two important
effects of this mode of flow. First, more than one
saturated horizon will exist since each ice layer as well
as the roof tend to cause water ponding. Second,
some areas of the snowcover may be bypassed and re-
main relatively dry while the flow is concentrated in
zones of high water saturation and high flow rates.
Accordingly, we expect an uneven distribution of the
weight on the rool due to the liquid water.

It is difficult to generalize about the relative roof
loads for homogeneous snow vs snow containing ice
layers. This problem is compounded by the highly
variable nature of ice layers in time and space and by
the lack of studies of the particular properties of snow

Therefore, from eq 16 for small values of time
dy = dg(0) + It/¢ (44)

which shows that initially the thickness of the saturated
layer increases linearly with time and is relatively insensi-
tive to the permeability. This is illustrated on Figure 15
for two values of permeability. Note that the effect of
permeability increases with time.

The higher permeability used in this example (107!
mm?) could only represent a well-soaked snow with
some open channels formed by melting in this basal
layer. The maximum thickness of the saturated layer
is 10 times larger for the snow of lower permeability
and its time response is much stower. These are both
important considerations regarding the weight of the
basal layer. More observations of roof snow are needed
to test the permeability values assumed here.

CONCLUSION

Heavy rains falling on roofs carrying a heavy snow
load are an important aspect of roof failures. The
weight of the water, both capillary and transient liquid,
should be considered as an additional load which must
be supported by the roof. The maximum weight of
liquid depends on properties of the snow, on size, slope
and shape of the roof, on spacing and type of the
drains, and on intensity and duration of the rainstorms.
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Figure 15. Depth of the saturated layer (dy) shown as a function of time for an
intense rainstorm for two values of permeability of the basal layer. The maximum
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depth obtained differs by a factor of 10, although the permeabilities differ by a
factor of 100. The more permeable basal layer has a much more rapid time re-

sponse.

While the depth of the snow is very important, the
effect of permeability of the snow is reduced by its
square or cube root dependence. However, the
presence of open channels at the base of the snow
will have an effect on reducing the weight carried by
the roof. The roof size, especially for roofs with
internal drains, has a very large effect, since the pond-
ing of water over the rpof increases as the square of
the drain spacing. The effect of giving the roof even
a small inclination is very large and must be consid-
ered in order to reduce the depth of the ponded layer.
Enlarging and recessing the drains increase the rate of
drainage and reduce the chances of blockage by re-
freezing.

Even for steeply dipping roofs, much water can be
retained in the unsaturated snow. This water, both
capillary and transient, must be considered since one
example for a 25-year rainstorm in Hanover, New
Hampshire, shows that 61 kg/m? (12.5 Ib/ft2) of
weight could be added to the roof by the liquid in the
unsaturated snow alone. The 25-year rainstorm was
chosen for use as an example in order to illustrate
the effect of intensity vs duration. If intense rain-
storms lasted long enough they would certainly cause

many failures of flat or shallow roofs covered by snow.

Fortunately, more intense storms terminate before the
ponded layer can be fully developed and less intense

15

storms cause only a shallow ponded layer to develop
because of concurrent drainage.

For the example given for Hanover the 25-year rain-
storm falling on a heavy snow load could increase the
total roof load due 1o liquid water 10 98 kg/m? (20
Ib/ft2). The normal design load would have to be in-
creased by about 50% to account for this effect. If the
snow load is unevenly distributed (see cover photograph),
the local load due to rain falling on the snowdrift can be
as large as that produced by covering the entire roof with
the drift.
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APPENDIX A. COMPUTER PROGRAM CALCULATING
ROOF LOADS FROM RAIN-ON-SNOW

This computer program in Dartmouth Basic (see
Fig. A1) calculates total weight, fraction of rainfall re-
tained, weight of the saturated layer and weight of the
unsaturated layer as a function of duration for a design
basis rainstorm falling on a snow-covered roof. The
input required to run the program is as follows (in
MKS units):

1) Specify A, B, C

Ihese are the constants in a design basis rainstorm
described by

i=A(r+B)C (A1)

and must be obtained from climatological records for
each area.

2) Specify H, L, P, S, K1, K2

H is the thickness of the snow. L is the distance be-
tween the parapet and drain for parallel flow to gutters
or the roof edge, or the shortest distance between the
parapet and drain for radial flow. P is the porosity of
the snow. S is the irreducible water saturation of the
snow. K1 and K2 are the intrinsic permeabilities of
the saturated basal layer and the unsaturated upper
layers, respectively.

3) Specify radial (R) or parallel (P) flow

Radial flow is flow to a central drain and parallel
flow is flow to a gutter which carries the water to
drains. It is assumed that a square area is drained in
radial flow and that the gutter extends the entire length
of the roof for parallel flow. Other configurations
would require some modification of the program if
they could not be represented by these assumptions.

4) Specify drain radius (meters)

The effective radius of the drain for radial flow.
No drain or gutter overflow is assumed.

5) Specify temperature (°C)

Ihe average snow temperature is required. If the
snow is already at 0°C, it is assumed that only the
capillary water is present in the snow such that no

antecedent flow occurs prior to the onset of the rain-
storm.

6) Specify roof slope (degrees)

The roof slope is input in degrees of slope.

7) Specify start time, stop time, time step

The program makes calculations for each value of
rainstorm duration chosen here.

8) Another time step?

The operator can optimize the time step to minimize
computer time by using a small time step at lower
values of duration and increasing the time step at
larger values of duration where the output changes more
slowly.

The output from the program is the average weight
per unit area, the maximum weight per unit area
occurring anywhere on the roof, the fraction of the
total rainfall retained, the average weight of the satu-
rated layer, and the average weight of the unsaturated
layer for each specified value of rainstorm duration.
Other outputs such as depth of the saturated layer,
weight of the capillary water, weight of refrozen water
or fraction of wetting front penetration could be made
with minor modifications. If the drains or gutters were
not capable of removing the water without overflowing,
some modifications would have to be made to the pro-
gram to account for the additional weight.
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EM ROOF WEIGHT DNIUE TO RAIN ON SNOWr MRS UNITS
FRINT "SFECIFY AsEsC"
INFUT AsRsC
FRINT “SFECIFY HsLsF»SyRK1sK2"
INFUT HsLsFsS»K1yK2
LET W1l=917XHX(1-F)
FRINT °"RADIAL(R) OR FARALLEL(F) FLOW"
INFUT W%
IF W$="F" THEN 500
IF W$="R" THEN 425
GO TO 40%
FRINT “DOKRAIN RADIUS(METERS) "
INFUT G
LET J=.887%G/L
LET M=J4/100
LET Jl=J+M
FOR R=J1 TO 1 STEF M
LET N1=(2%XLOG(R)-R™2+J72-2%XLOG(J))"(+5)%RX.J
LET N=N+N1
NEXT R
FRINT *"SFECIFY TEMF(DEG C)"
INFUT T9
LET W3=5,73XT9kHX(F-1)
FRINT *SFECIFY ROOF SLOFE(LEG)"
INFUT Q
LET F=(14Q/2.,2)7(1.06)
FRINT °*SFECIFY START TIMEy STOF TIME» TIME STEF®
INFUT T2yT3yT4
FRINT "DURATION®y "TOT W"y "RETENTION", "W(SAT)"sy "W(UNSAT)"
FOR T=T2 TO T3 STEF T4
LET I=A%(T+E)"C
IF T9<0 THEN 815
IF T9=0 THEN 800
GO TO %00
LET T1=(HXFX(1-5))/((35470000XK2%(I"2))"(1/3))
GO TO 900
LET T1=HXFX((I/(5470000%K2))37C(1/3)%(1-8)+S)>/1 + 0.001%WS/1I
LET U=((5470000%kK1XI)>"C1/2))%(T=T1)/(LXF)
LET U=UXF
LET D=0
IF T<T1 THEN1326
IF W$="F" THEN 1200
LET N2=15.959%KFPXLXNX(I/(3470000%kK1))"(.5)
LET Ul=((5470000KK1XI) " +SK(T~T1))/(FX(L"2XLOG(L/G)—=+SXL"2+.5%G"2)".5)
LET Ul=Fx%U1
LET W2=N2X(EXF(UL)-EXF(=U1))/(EXF(U1)+EXF(~-U1))
LET W2=W2/¢,1X(5470000%K1/1)7 (. S5)%(F-1)+1)
LET D=,00101%XW2/F
GO TO 1322
LET D=L/ (5470000%KL) )" (L/72)) XLXCCEXF (U =EXF(~U) ) Z(EXF(WHEXF(-U) )
LET W2=785KFAN/C(F=1)%,1X(5470000%K1/I)7C.5)+1)
LET E=1
IF TxT1 THEN 1340
LET W2=0

Figure A1. Computer program.
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LET E=T/T1

LET W3=1000XHXFX((,005676K(I/RK2)7.3333)%(1~-8))

00 LET Wa=1O000KHXFXS

o LR T9<0 THEN 1370

1380 LET W-WItW2+EXCL-T/ CHEF ) )X (W3 +Wa)

L1364 LET UsCl-D/CHEF ) JXEAW3IHW2) / (1000XIXT)

1366 GO T 1495

L3720 LET WoWL+W2HEXRCL-11/ CHRF ) ) XK (W3+W4) +EXWS

L3O LET Vs dW2HERCL -0/ CHEF D DX (W3+WA) +EXWS ) /CLO00KIXT) |
1495 LET Y=(1-0/(HXF))XEXW3 |
1429 IF T7=Q THEN 1750

1500 FRINT TeWoVoWyY

NEXT T

FRINT "aNOTHER TIME STEF?"

INFUT Z#%

IF Z2%="YES" THEN 970

[F Z%="NO" THEN 1700

60 TO 1650

IF Fs1 THEN 2000

FRINT "TURATION OF mMAXIMUM TOTAL WEIGHT?*"
INFUT T7

2 A R

GO TO 700

[AGOLET WE=WI+10C0XDXF+Y+W4

800 IF T9=0 THEN 19350

! 1500 LET Wé=Wé+EXWS
2 1950 FRINT "MAXIMUM TOTAL WEIGHT FER UNIT AREA =*»Wé
5 2000 END

FESTY
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