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The benefits in Li/S0Cly cell performan&e obtained by special
precautions in cell preparation techniques were confirmed for storage
times of “200 hours. These benefits are reflected in both capacity
and rate capability improvements after storage. Such cells yielded
90% of their nominal capacity at "3.00V cell voltage (6 mA/cm2).
The precautions include storing the 1.5M LiAl1C14/S0Cl) electrolyte
with Li metal (2 cm?/ml) for greater than 150 hrs at 71°C. They also
include storing the separators and cathodes in SOClp with Li at 71°C,
and preparing the cells in a very clean argon atmosphere. The
improvements noted in these cells decline with storage times longer
than 200 hrs, and by 400 hrs the cells show severe passivation.

Examination of a number of Li alloys has shown that Ca-coated
Li anodes have major benefits. Li anodes were coated with Ca by
exchange in a Cat*t-containing solution. Cells stored 800 hrs at
71°C have shown no voltage delay.

Without optimization, cells stored between 300 and 500 hrs
have yielded between 807 and 957 of their nominal capacity at
acceptable voltages and currents. A cell stored 494 hrs averaged
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the course of this work, some of the electrochemical characteristics
of Ca in SOC12 solutions were investigated: Ca/S0Clp cells (Ca/l.5M
LiAlCly, saturated CaClp, SOCly/carbon) have an open circuit voltage
of 2.8-3.0V, and discharge at 2.4V at 5.0 mA/cm2. The Ca anodes
have proven resistant to passivation up to 350 hrs storage at 71°C.
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I. INTRODUCTION

In recent years there has been considerable research and develop-
ment on ambient-temperature, high energy density Li cells. A particularly
promising system is based on thionyl chloride, S0Cl12 (1,2). Here, SOCl2
serves both as solvent and depolarizer for the cell. D cells have
delivered 100 Whr/1lb and 40 W/1b at the 2.5 hr rate and, as usual, have
delivered higher energy densities at lower discharge rates (3).

The purpose of the present program is to study the feasibility of
an all-inorganic electrolyte Li primary battery operable and storable
over the temperature range of -40°F to +160°F. The desired energy density
is 150 watt-hours per pound of total battery weight and the desired power
density is 50 watts per pound.

This report contains the results of the twelfth quarter work on
this program and is also a summary of the work of the past year (September, i
1975 to September, 1976). During this quarter and during the past year,
the emphasis of the program has been on an investigation of the problem
of cell passivation during storage at 71°C (160°F). Our studies (4),
and others (3,5), show that the cause of the Li passivation is the forma-
tion of a nonconductive film on the Li anode during storage, especially
at elevated temperatures. Our research efforts have been directed at
studying film formation, and modifying the film to improve cell performance.
As a result of our investigation at least two promising leads have been
developed for the alleviation of the passivation problem.

A remarkable improvement was obtained with cell preparation
techniques designed to eliminate Li-reactive impurities (6). Cells were
prepared in a very clean argon atmosphere with electrolyte and separators
which had been previously stored with Li at 71°C. The second approach
for alleviating the voltage delay and depression is the substitution of
Li alloys for the pure Li anode. The electrochemical behavior of 12 Li
alloys was explored. Five alloys have shown some improvement relative
to Li. The Li/Ag(5 a/o), Li/Cd(5 a/o), and Li/Mg(l a/o) have displayed
slightly better recovery of rate capability during testing: the
Li/Si(4 a/o) alloy has given better anode utilization than pure Li. The
fifth alloying element, Ca, has shown considerable promise. Further
details of these results are contained in earlier quarterly reports (7).
The experimental data also suggest that surface modification of the Li
anode is an effective approach to solving the voltage delay problem.

Earlier work on this program also concerned itself with the reac-
tion stoichiometry of the cell discharge. This work, which included




qualitative and quantitative analyses, indicated that the most reasonable
discharge reaction at room temperature is

ali + 2S0CYy = 809 + 8§ + 4LiCl (1)

Details of this work are contained in previous reports (8).

A question associated with the reaction stoichiometry is the S0j
solubility. This is important because of the potential hazard of SO2 gas
pressure generated during discharge. Our experimental data show the
solubility of SO0 in 1.5M LiAlC14/SOCly electrolyte is substantial, e.g.,
at 25°C the S0 is "2.6M, the mole fraction being 0.19. These data, in
conjunction with a first-order theoretical analysis, suggest that high
concentrations of S0y in the solution can be accommodated with only
moderate pressure increases (6).

Section II of this report treats the question of cell purity and
its relation to passivation. Section ITI deals with the use of alloys,
particularly their performance as anodes in complete cells. Further
work is summarized in Section IV.




IT. ELECTROCHEMICAL EFFECTS OF IMPROVED SYSTEM PURITY

It has yet to be shown which are the major factors which influence
the formation of the passivating film on the Li anode. One of these,
however, must be the purity of the assembled cell. For instance, it has
been demonstrated that 200 ppm of dissolved Fe causes severe Li anode
passivation (9). In light of this, we have implemented cell preparation
procedures designed to remove Li-reactive species in the cell components
prior to cell assembly. These procedures have proven effective in
alleviating the voltage delay. In conjunction with this, we have obtained
some chemical characterization of the passivating film and the electrolytes.
The possibility of reactive gases (e.g., S02, HCl) enhancing passivating
film buildup has also been considered. The final cell assembly has been
done outside of the normal glove box enviromment, which may contain S0
and HC1l, in a glove bag under flowing argon in order to reduce this
possibility. In the following sections, characterization and preparation
procedures are detailed, and the effects of purification on storage of
Li/S0Cly cells are presented.

A. Spectroscopic Characterizations

A survey of the passivating film and some electrolytes for their
trace element constituents was obtained by emission spectroscopy. The
detailed procedures and results are contained in our ninth quarterly
report (10). Figure 1 presents in periodic table form the 50 elements
to which the method is sensitive. The asterisks indicate the element
was found in at least one of the samples. Fourteen elements were detected
in the surface film; of these, only two, Cu and Fe, show major increases
in concentration relative to the pure Li metal. Both of them are present
in the Li metal at the 10-100 ppm level, yet in the surface film they
appear to have concentrations as high as 17%. Spectroscopic examination
of electrolyte salts showed no major metallic impurities. The maximum
concentration for any of the metals was 10 ppm.

B. Electrolyte Purification and Characterization

Based on the information that significant quantities of Fe and Cu
were present in the passivating film, we have been studying methods of
removing them. We have started with a straightforward approach, storing
the electrolyte with Li metal at 71°C. This is done before the elec-
trolyte is used for cell preparation. We have also carried out both
chemical and electrochemical characterization of this pretreated material.
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1. Preparation

The electrolyte is prepared as has been described previously (6).

In most cases, the AlCl3 is added slowly to a cooled solution of SOC12
containing 5% excess LiCl. The solution temperature is maintained below
-10°C during preparation. This limits any possible thermal decomposition
of S0Cl2 due to the very exothermic dissolution of Al1Cl3. Electrolyte
prepared in this way maintains the original SO0Cly color, a pale yellow.
Electrolytes prepared without these precautions are typically a very deep
brown.

The electrolyte is purified by pretreatment with Li at 71°C. This
method suggested itself because, although Li is grossly stable in SOClp,
it is somewhat reactive at elevated temperature. Hence, storage with
excess Li at 71°C should remove any Li reactive impurities, without causing
substantial solution decomposition. This storage procedure is carried out
in a Pyrex container sealed with a Teflon O-ring. A coil of Li metal is
placed in the electrolyte. A Pyrex glass weight was added to the Li to
keep it submerged. The sealed container was placed in a 71°C oven.

2. Chemical Characterization

The chemical characterization of the electrolyte was begun in
order to establish the changes engendered by storage with Li. It is
clear that changes have occurred, as evidenced by the improved performance
of cells utilizing this electrolyte, by the discoloration of the Li metal
stored with the electrolyte, and by the change in the electrolyte color
from essentially colorless to bright yellow. Whether the improved cell
performance is due to the addition or the removal of substances from the
electrolyte is still not clear. The color change of the electrolyte to
bright yellow suggests something, as yet unidentified, is being added.

To this point there was no direct evidence that the Li was removing
impurities, except as suggested by the discolored Li surface. Previous
spectroscopic analyses (10) had shown that Cu and Fe had relatively high
concentrations in the passivating film. On this basis, these two are

likely candidates for removal by the Li during storage with the electrolyte.

We therefore chose to analyze the stored Li for Cu and Fe to determine
if these increase on the Li during storage.

The analyses were obtained on Li by two different procedures.
The first was on Li foil recovered from our normal pretreatment method.
The second set of Li samples were designed to elucidate the time dependence
of the Cu and Fe removal. They were obtained by changing the Li in the
solution at intervals during the storage. The Li foils (%100 cm?) were
placed on glass frames, both to keep the Li submerged and also provide a
reproducible surface exposure.




The analyses for Cu and Fe were by standard spectrophotometric
methods. The Fe method, which we have used previously, uses o-phenanthro-
line as the sensitive reagent (11). The Cu method uses 2,2'-biquinoline
as the sensitive reagent (12,13). Samples of fresh Li foil were also
analyzed.

The analytical results are summarized in Table 1. The sample H62
was cut from the 24" piece used in our normal storage procedure. It was

about 8% of the total sample. It shows about three times the Cu and
twice the Fe found on fresh Li foil. These concentrations may not be the
same over the complete length of the foil. The Li foil helix in the

storage vessel was coiled such that some shading occurred. This caused
irregular distribution of the surface darkening, which is probably
indicative of the distribution of the materials removed from solution.
Nonetheless, it is clear that the Li is removing Cu and Fe from the
electrolyte, and probably other species which form reduced insoluble
products (e.g., other metal ions).

The H63 samples, which were stored in the same electrolyte con-
secutively for the number of days indicated, again show increases in Cu
and Fe content, at least for the first two samples. After 4 days the Fe
content of the Li is back at background, indicating the removal of Fe
from the electrolyte had ceased. The Cu content does not return to the
base line value of the fresh Li, although it is approximately the same
for the H63-3 and H63-4 samples. These measurements clearly show the
time dependence of the Cu and Fe removed from the system by the Li. The
reason for the failure of the Cu to return to base line concentrations
has not been determined. There are two immediately apparent possible
causes. Either the distribution of Cu in the Li metal itself is non-
uniform, which seems unlikely, or the removal rate of Cu is slower than
that of Fe. These alternatives can be tested experimentally.

The pretreatment of the electrolyte with Li at 71°C is removing
some substances and adding at least one other. Which of these is the
most beneficial is not yet clear. The removal of Cu and Fe should be
helpful: It should reduce the rate of Li corrosion, by mitigating the
depolarization caused by the plating of these relatively noble metals.
Furthermore, these metals, once plated, can depolarize S0Cl2 reduction,
perhaps preferentially to Li itself The benefit of additives has not
yet been proved, although some recently presented preliminary results
indicate that an improvement can be realized with added SO (14).

Further analytical studies on the pretreated electrolyte are
clearly indicated. The identification of removed or added components
will allow more certain determination of their potential benefit or
harm.




Table 1

Cu and Fe Concentrations on Li Foil Stored
with 1.5M LiAlC14/S0Cly at 71°C

Sample
H62

H63-1

H63-2

H63-3

H63-4

Li metal

Storage (days)

13

1st

2nd-4th

5th&6 th

7th=13th

79

35

ppm Fe?
41
66
42

> Same
28 Solution

I
28

23

a = error limits

57

|
|




3. Electrochemical Characterization

The electrochemical characterization has been done via changes in
the performance of complete Li/SO0Clp cells after storage at 71°C. Voltage
delay and depression data have been acquired on these cells. The cells
which we have designated T-cells are described in detail in our ninth
quarterly report. The T-cells are comprised of a flat anode and cathode
separated by glass fiber paper and compressed into a tight package by
Teflon discs (Figure 2). Our primary test procedure after storage is to
apply a constant load of 4800. Then the cell voltage and the anode
potential vs. a fresh Li reference are measured on a rapid time base. The
4800 load was chosen because fresh cells have a current density of 6.5-7.0
mA/cm2 with this load. For a practical D cell with a 400 cm2 electrode
area, this is equivalent to "3A rate. These cells were assembled with
other safeguards with respect to purity: As indicated, they were assembled
in a glove box under flowing argon. This reduces the probability of
contamination from, for example, S0 and HCl and other gases generated by
the decomposition of SOCly. A number of cells were assembled with glass
fiber separators and cathodes which had previously been heated to 71°C in
SO0C12 in the presence of Li metal. This, again, is to remove SO0Cly-soluble,
Li-reactive species.

The cell preparation procedures designed to remove Li-reactive
species produced cells which, after 71°C storage, showed a remarkable
improvement in discharge characteristics for storage times up to 209 hrs.
At the moment, the limit of this improvement lies between 200 and 400 hrs
storage at 71°C. Beyond 400 hrs storage, the performance, as evidenced
both by the voltage delay and depression measurements, and by the complete
discharge data, decays.

The voltage delay and depression characteristics of the normal Li/
S0C1lp cells become inferior after “100 hrs storage. After 136 hrs storage, .
the cell performance has degraded to unacceptable levels. This is illus-
trated in Figure 3. The voltage delay measurements on cells at 200 hrs
and up to 400 hrs are comparable to this.

The Li/S0Cly cells prepared with purity precautions contrast
sharply. Figure 4 presents the voltage vs. time response of 6 such cells.
Two of them stored at 184 hrs and 4 at 208 hrs at 71°C. Only two of
the cells show any voltage delay. The delays were about 2-4 sec. The
performance of the clean cells degrade seriously for storage times of

400 hrs or greater, however, Figure 5 presents the voltage vs. time

curves for 3 cells stored 400 hrs at 71°C., All 3 cells show voltage
delays in excess of 72 sec, making them comparable to cells prepared
without these precautions of cleanliness. The degradation of performance
continues with increased storage time. Cells stored up to 740 hrs show
unacceptable voltage delay and depression characteristics.
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The cause of the performance degradation between 200 hrs and 400
hrs storage time is unclear at the moment. It appears, however, it may
be due to atmospheric contamination. Some critical tests have indicated
that after approximately 300 hrs at 71°C, the H-cell allows measurable
exchange with the atmosphere. Until this problem is resolved, the
intrinsic passivation rate cannot be measured. Improved sealing tech-
niques are currently being developed to resolve the problem.

Despite this problem it is apparent that pretreatment and assembly
procedures designed to improve the purity of the final stored cell do
improve its storage capability. These positive results suggest this area
be explored more fully. Part of the work will be directed to analysis
of the pretreated electrolyte, to determine the nature of the substances
removed from solution and added to it. Naturally, any materials found
to be significant, will be deliberately added to the solution to assess
them. If appropriate, we will also look at other methods of preparing
"pure'" electrolytes.

k3




ITI. LITHIUM ALLOY ANODES

The feasibility of modifying Li anode performance by alloying has
been explored during the past year. The work has aimed at establishing
the effects of Li alloy anodes on the performance of complete S0Clp cells
after 71°C storage. Twelve alloys were tested. The twelve were:
Li/Ag(5 a/o), 11/A1(5 a/o), Li/Au(2 afo), Li/Bi(5 afo), Li/Cd(5 al/o),
Li/Cu(4 a/o), Li/Mg(1 a/o), Li/Mg(5 a/o), Li/Pb(3 a/o), Li/Si(4 a/o),
Li/Sn(3 a/o) and Li/Zn(10 a/o). They were manufactured by the Foote
Mineral Company. Based on the published phase data (15), they can be
subdivided into three groups. The members of one group are mixtures of
Li and a Li-alloying element compound. The majority of the alloys fall
into this group. These are: Li/Al, Li/Au, Li/Bi, Li/Pb, Li/Si, Li/Sn
and Li/Zn. The second group comprises four of the allovs, Li/Ag, Li/Cd,
and both Li/Mg alloys. These are solid solutions or mixtures of solid
solutions. The third group contains one member, Li/Cu. It is a mixture
of the two metals. Cu and Li have little mutual solubility.

The primary evaluation procedure for the fresh alloys was through
comparison with Li in complete cells. The bases of the comparison were
the cell voltage and capacity during complete discharge. Ten of the
twelve were generally comparable with pure Li. These were: Li/Ag,
Li/Al, Li/Aw, Li/Bi, Li/Cu, Li/Mgll alo), Li/Pb, Li/Si, Li/Sn and Li/Zn.
Cell voltages at 6-7 mA/cm2 were with 0.2V of the pure Li cells. Anode
utilization efficiencies were calculated from the cell capacity data.
Except for the Li/Si alloy, the efficiencies ranged from 60-100% of the
pure Li value. The utilization efficiency of Li/Si was high, exceeding
100% of the Li content, which suggests Si is also being oxidized. The
Li/Cd and Li/Mg(5 a/o) alloys performed poorly. The Li/Mg(5 a/o) polarized
very strongly at 6 mA/cm2. Even at 0.6 mA/cmZ the cell voltage was only
1.5V.

Assessment of the effects of Li alloy anodes on voltage delay after
71°C storage was made on complete cells identical to those used in testing
the fresh alloys. The test procedure involved monitoring the cell voltage
on a rapid time base during discharge at 6-7 mA/cm2. Cells were also
tested by complete discharge. These tests were primarily to assess
capacity loss during storage. None of the alloys provided relief from
severe voltage delay. The results did indicate that three alloys - Ag,

Cd and 1 a/o Mg recover more rapidly to useable potentials during extended
discharge. The complete discharge tests show little capacity loss during
storage. The complete details of the experiments with both the fresh and
stored alloy anode cells are contained in previous quarterly reports (7).
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A. Lithium/Calcium Anodes

During the past year we have also initiated studies on the effects
of Ca as an alloying element for Li anodes. These studies have become
a major thrust of our work in the past quarter. Ca suggested itself as
a potentially beneficial 21loying metal because it discharges at a
reasonable potential in 1.1A1C14/SOCly electrolyte. Further, Ca metal
was found to be more resistant than Li to passivation during storage
at 71°C. Characterization of Ca-coated Li anodes after 71°C storage was
made. Contrary to the alloys used previously, the Ca was deposited on the
surface of pure Li metal foil by exchange with a solution of Catt in
SO0C12. Previously we have reported that cells with anodes prepared in
this manner have much improved discharge characteristics after 500 hrs
at 71°C. These measurements have been extended to 800 hrs storage with
similar results. This work is discussed in more detail below. First,
we review the Ca/S0Cl2 studies.

B. Characterization of Ca/S0C12 Cells

Our measurements have shown that Ca discharges effectively in
S0C1) electrolyte. The tests were made with complete Ca/l.5M LiAlCl,,
S0C12/C cells in our T-cell configuration. The Ca (20 mil) was obtained
from ROC/RIC. The foil as-received has a black surface. The surface
was polished to the bright metal before use with fine sandpaper. An
exploratory E-i scan indicated that the Ca can be oxidized at ~20 mA/cm2
at a polarization of +0.8V relative to open circuit. The voltage delay
and depression testing, and the complete discharges were with the same
procedures as for the Li/S0Cly cells. The open circuit potential of the
Ca/S0C1y cells ranged between 2.8V and 3.0V. The discharge curves of
4 fresh cells are shown in Figure 6. Two cells were discharged through
4800 and two through 1000Q. The curves are qualitatively similar. After
an initial increase, the cell voltage remains relatively constant for
about 407 of the discharge, then declines to the 1.0V cutoff. The decline
in the cell voltage of the cells tested at 480Q is more rapid than the cells
discharged at 1000Q2. The plateau for the cells discharged with 4800 was
V2.6V and for the 10000 load was "2.7V. The increased cell polarization
in the latter 60% of discharge is probably due to the buildup of insoluble,
anode-discharge products.

After discharge, we noted a white crystalline deposit on the anode.
The anode had approximately the same shape as the original piece of Ca,
although it is somewhat thicker. Further inspection revealed a dark
center, which was Ca metal. The white crystalline material has not been
analyzed, but it is probably either CaClp or Ca(AlCl4)2. Both are rather
insoluble in 80Cl2. The probable anode reaction is either

15
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Ca + 2¢1~ + CaCly + 2e” (2)
or Ca + 2A1C1l; - Ca(AlCly)p + 2e~ (3).-

The accumulation of either at the Ca surface would then increase the
anode polarization during the progress of discharge. Despite this, it

is clear that Ca discharges at acceptable potential and with reasonable
capacity. Table 2 summarizes voltage, current and capacity data from
these cells. The capacity was less than 507 of the nominal capacity,
based on the mass of Ca and a 2-electron oxidation. When a free-standing
Ca electrode was discharged at approximately 1 mA/cmZ, the capacity was
65% of ncminal. We believe the relatively inefficient use of the Ca is
due to two sources: Firstly, the discharge product buildup discussed
above and, secondly, an experimental difficulty. Because of the
relatively hard and brittle nature of the Ca, there is some problem in
ensuring good electrical contact with the Ni Exmet screen current collector.

Storage of Ca/S0Cly cells at 71°C for up to 350 hrs does not
seriously passivate the Ca anode. Figures 7 and 8 show the initial
voltage-time curves for 8 Ca/S0Cly cells, 4 stored for 136 hrs and 4 for
351 hrs at 71°C. Only one of the cells, H50-4, has any significant
polarization compared to fresh Ca anodes tested in the same manner, and
this cell recovered within 180 sec to the same voltage as the other cells.
The current and voltage data contained in Table 2 for the complete dis-
charge of these cells, demonstrates that even after 351 hrs storage the
voltage and current are comparable to fresh Ca. The capacity of the cell
stored 135 hrs is comparable on a percentage basis with the fresh cells,
while the 351 hr cell has lost some capacity. It has not been determined
whether this is a real loss, due to Ca corrosion, or an apparent loss,
due to anode polarization. Nevertheless, Ca metal appears suitable for
testing as a protective film for Li electrodes.

C. Electrochemical Characterization of Li(Ca)/SOCl) Cells
after 71°C Storage

The electrochemical activity and the relatively good resistance
to passivation of Ca in the LiAlC14/S0Cl) electrolyte system led to an
exploration of the effects of Ca-coated Li anodes. We have prepared
these anodes by exchange. The characterization of the anodes has been
to test for voltage delay and for complete discharge behavior of cells
prepared with these anodes after 71°C storage. In the exchange tech-
nique, the Ca film is produced by storing the cells in electrolyte
saturated with CaCl2. Methods are still being evolved, but the basic
procedure is as follows: the assembled, liquid-free T-cells are vacuum
impregnated with 1.5M LiAl1C14/S0Cl2 electrolyte which is presaturated
at 71°C with CaCly and LiCl. The estimated maximum solubility of CaClj

1
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Table 2

Discharge Characteristics of Ca/S0C1ly Cells Tested at 25°C

Discharge to 1.0V Cutoff

Cell Storage 71°C Load Avg. Voltage Avg. Current Capacity@
(hrs) () (V) (mA/cm2) (mAh)
Fresh
1 - 480 2. 01 4.18 584
2 - 480 2.02 4. 21 44.9
3 - 1000 2.32 2.32 55505
4 - 1000 2.26 2.26 47.1
Stored
H50~4 135 480 2.04 4.25 56.0b
H59-4 350 480 2.06 4.29 28.6

aNominal capacity 120 mAh.

bThe nominal capacity of the H50-4 anode was 80 mAh and yielded 37.3 mAh.
We have converted it proportionally to the 120 mAh basis for ease of
comparison with the other electrodes.
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is v5 mM. The active cells are also stored in this electrolyte. We have
used electrolyte pretreated with Li and electrolyte not pretreated.

The initial testing of these cells for voltage delay and depression
has demonstrated improvements over the standard Li/SOCl) cells, but there
is some ambiguity in the measurements which will be discussed below.

Cell H58, prepared with electrolyte not pretreated with Li, shows that
after 284 hrs at 71°C the two Ca-treated cells are vastly superior to the
pure Li metal cells (Figure 9). The Li(Ca) cells show no voltage delay,
while the Li cells show severe voltage delay. The data for cells H69
(206 hrs) and H70 (494 hrs) are not as clear (Figures 10 and 11). These
cells were prepared with electrolyte pretreated with Li. Although the
Li(Ca) T-cells tend to show a little better response than the Li metal,
they do not do so convincingly. The Li/SOCly cell, H70-1, is atypical
for Li cells stored this length of time at 71°C. The H70-2 cell is much
more typical. The data for cells H78 and H79 prepared with Li-pretreated
electrolyte, again show the improvement of the Li(Ca) cells over the Li
metal (Figures 12 and 13). All 3 Li(Ca) in H78 cells have recovered
above 2.0V within 48 sec, while the pure Li cells have not recovered to
1.5V within 80 sec.

The cells stored 798 hrs (H79) show excellent voltage delay
characteristics. The difference between the H69 and H70 cells and H78 and
H79 was that the H69 and H70 were originally impregnated with electrolyte
not containing any cat?, while the H78 and H79 were originally impregnated
with Cat? containing electrolyte. Thus, the Ca deposited on the H69 and
H70 anodes was limited by diffusion into the glass fiber separators.

This cannot only modify the rate of Ca deposition, but may also affect

the distribution of the Ca on the surface: Since the Cat? diffuses from
the perimeter, it is probable that Ca will deposit preferentially at the
edges of the Li anode. This, in turn, could allow the center of the anode
to be passivated before effective amounts of Ca could reach it. Impregnat-
ing the H78 and H79 cells with cat? containing electrolyte should reduce
the problem, and the data seem to indicate this.

The most important significant improvements have been in the
complete discharge behavior of these Li(Ca) cells. Despite the fact that
the Ca-deposition procedures have not been optimized in any manner, we
have obtained quite acceptable complete discharges. Figure 14 presents
the cell voltage vs. capacity data for three cells discharged through
480%2. The three cells show points of behavior in common. The initial
cell voltage under load was between 2.75 and 2.80V. This dropped very
quickly to between 2.3 and 2.6V. Continued discharge improved the cell
voltage, so that it had reached between 2.9 and 3.0V at 10 mAh. Two of
the cells discharged smoothly to completion at the 2.0V cutoff, with
the majority of the capacity obtained at a plateau at about 3.0V. The
third cell had poorer voltage regulation. After the maximum at about 2.9V
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it had a minimum at 2.5V and another maximum at 2.7V, before discharging
smoothly to the 2.0V cutoff. Thus, even without optimization, we see

that cells stored between 300 and 500 hrs at 71°C have yielded between

80% and 95% of their nominal capacity at acceptable voltages and currents.
For example, cell H70-5 (494 hrs, 71°C) averaged 5.87 mA/cm2 at an average
cell voltage of 2.82V. Similarly, H78-4 discharged at an average current
of 5.98 mA/cm2 at an average of 2.87V. Even H78-5, with its poorer
voltage regulation, yields an average of 5.06 mA/cm? with an average
potential of 2.43V. The complete discharge of the H79 T-cells show
similar improvements. Figure 15 presents the complete discharge record

of H79-5. For comparison, similar data for a Li anode cell stored 664

hrs is presented also. Although the performance is still below acceptable
limits, there is a vast improvement over the cell with the pure Li anode.
The cell voltage averaged 2.32V during the discharge, averaged 4.83 mA/cm?
and yielded about 60% of the theoretical capacity above the 2V cutoff.

The cell potential of the Li znode cell never exceeded 1V.

Although the Li/Ca anodes prepared by exchange have shown remark-
able improvements in performance, the effect is not consistent. Further
tests have shown some cells with these improvements, while others have
shown behavior similar to pure Li. We can, at the moment, identify two
problem areas which may contribute to inconsistent results. The first
is that during 71°C storage the H-cell's atmosphere begins to exchange
significantly with the surrounding atmosphere somewhere around 350-400
hrs. While we have not identified this as a certain problem, it clearly
has the potential to be a severe problem. By exchange, H20 and 07 can
penetrate the cells and react with either the electrolyte and/or the
anode. Improved experimental apparatus are currently being tested to
eliminate this problem. The second potential problem area is more
fundamental and concerns the state of the Li anode before and after Catt
treatment. The state of the surface is essentially unknown. To date,
our major characterization technique has been the voltage delay measure-
ment. Thus, we have little information on how effectively the Ca is
coating the Li surface and what the final surface state is. It is not
unlikely that the state of the Li surface before treatment significantly
effects the quality of the Ca exchange. The reactive nature of Li
suggests that the state of the surface may differ from place to place.
This problem will be explored in the coming quarter. The aim is to
deposit coherent Ca plates. We anticipate that the inconsistencies in
LLi/Ca anode performance will be eliminated by these improvements in
procedure.
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IV. SUMMARY AND FUTURE WORK

During the past year our primary effort has centered on the problem
of uncontrolled film growth on Li during storage at elevated temperatures.
This results in severe voltage delay and depression in the Li/S0Clj cell.
Our investigations of this problem have included measurements of elec-
trolyte purity, studies of Li alloys, and measurements on cells stored
at elevated temperatures with variations in electrode surface treatment
and electrolyte composition. We have also measured the solubility of
S07 in electrolyte in order to address the question of pressure buildup
during cell discharge.

Efforts to establish the system purity have included a survey of
elemental contamination by emission spectroscopy. Analysis of LiAlCl4
salts and electrolyte have indicated no major metallic impurities. The
passivating film from a Li anode stored at 71°C showed major enrichment
in Cu and Fe, perhaps as much as 1%.

A substantial improvement in performance has been noted in cells
assembled with careful attention to the purity. The cells were prepared
with chemically pretreated components, and assembled in a specially
controlled atmosphere: The electrolyte was stored a minimum of 140 hrs
with Li metal at 71°C in sealed containers. The glass fiber separators
and carbon cathodes were stored a minimum of 140 hrs in SOClp with Li
metal. Cells prepared by these techniques show much improved performance
both in terms of reduced voltage delay and improved capacity in complete
discharge. This improvement is noted for at least to 200 hrs storage
at 71°C, but a marked decline is found between 200 and 300 hrs storage.
Clearly, the pretreatments are introducing and/or removing substances,
which strongly reduce the passivation in the early stages of the storage.
The most probable explanmation is that the Li pretreatment of the elec-
trolyte is removing substances reducible by Li. These substances either
form a passive film themselves or, more likely, depolarize the S0Cl2 reduc-
tion which enhances LiCl film formation.

Since we have observed that the electrolyte becomes bright yellow
when stored with Li, it seems apparent that some unidentified material is
being introduced into the solution. We have confirmed that substances
are also removed from the electrolyte by Li, notably Cu and Fe. Since
these elements had been found previously in relatively high concentra-
tion in the film of a heavily passivated electrode, quantiative analyses
were obtained for them on the surface of Li stored with electrolyte.

The analyses clearly prove that Cu and Fe are removed from the electrolyte
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by Li. This in itself may be beneficial for the cell, but it also
suggests other potential Li-reactive species are being removed from solu-
tion by this pretreatment. Further characterization of the electrolyte
after storage is indicated.

Twelve Li alloys were used as anodes in Li/SOCl12 cells. Ten of
these alloys had voltage characteristics similar to Li discharged under
the same conditions. The discharge current was approximately 6.0 mA/cm2.
The ten alloys were: Li/Al(5 a/o), Li/Ag(5 a/o), Li/Au(2 a/c), Li/Bi(5 a/o),
Li/Cu(4 a/o), Li/Mg(1l a/o), Li/Pb(3 a/o), Li/Si(4 a/o), Li/Sn(3 a/o) and
Li/Zn(10 a/o).

The two alloys which displayed significantly different behavior
were Cd(5 a/o) and Mg(5 a/o). The Cd alloys anode showed increasing
polarization during the discharge. 1t was as much as 0.5V more positive
than a pure Li anode. The Li/Mg alloy showed even more severe polariza-
tion during discharge at one-tenth the current density.

The Li utilization efficiencies of the alloys similar to Li ranged
between 407% and 857 except for the Li/Si (4 a/o). The Li/Si had a Li
utilization efficiency of greater than 100% when based only on Li oxida-
tion. This is the first direct evidence of an alloying element oxidizing
during discharge. Anode utilization based on Li plus Si (4 equivalents/mole)
indicate 89-967. This value is 10-157% greater than we have observed for
pure Li.

The twelve Li alloys were tested after storage at 71°C. Storage
times ranged from 70 to 207 hrs. The alloys were: Li/Ag(5 a/o), Li/Al
(5 a/o), Li/Au(2 a/o), Li/Bi(5 a/o), Li/Cd(5 a/o), Li/Cu(4 a/o), Li/Mg
(1 a/o), Li/Mg(5 alo), Li/Pb(3 al/o), 1L1i/Si(4 a/o), Li/Sn(3 al/o) and
Li/Zn(10 a/o). None of the alloys completely alleviated the voltage
delay. The Li/Ag alloy displayed some improvement. Three of the alloys,
Li/Ag, Li/Cd, and Li/Mg(l a/o), showed less passivation after testing.
This indicates the possibility of anode surface modification for reduced
voltage delay and depression. The Li/Mg(5 a/o) alloy has been eliminated
from any future testing because of its inherently poor performance.

In further exploring the use of an alloving element with the Li
to improve its storage capability, we have initiated work with Ca. Since
the Ca was used in the form of a surface deposit, we have obtained some
electrochemical characterization of pure Ca metai in SOCl-. Ca dis-
charges at 20 mA/cm2 at +0.8V vs. a Ca reference in 1.5M LiAlCl,, SOCl).
In complete cells, Ca discharges with between 407 and 507 efficiency.
With a 4800 load, a typical discharge to a 1.0V cutoff yielded an
average current of 4.18 mA/cmZ2 with a mid-discharge voltage of 2.0V.
Ca cells were also stored at 71°C for up to 350 hrs and these cells
showed little or no passivation. Based on these results, Li-anode cells
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with Ca coatings (obtained by exchange with a Cat? solution in SO0C12)
were tested. These cells have shown excellent discharge characteristics
with storage times up to 800 hrs at 71°C. The Ca coating techniques
have not yet been optimized, and some inconsistencies have occurred.
Nonetheless, the improvement vs. pure Li anodes is dramatic.

The main emphasis in the next quarter will be in further explor-
ing the effects of improved system purity and in optimizing the effect
of Ca.
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