AD-A039 038 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC-=ETC F/6 5/2
DBC SOFTWARE REQUIREMENTS FOR SUPPORTING HIERARCHICAL DATABASES==ETC(U)
APR 77 D K HSIAO» D S KERRs F K NG uonou-'rs-c..osn
UNCLASSIFIED 0SU=CISRC=TR=77~1

oo ke Nz
2

= = & fj22

llze

1 £
-

122 s e

MICROCOPY RESOLUTION TEST CHART
ATIONAL SUREAL OF TA ARD 1G¢ A

TECHNICAL REPORT SERIES

DDC

(NFLRRIATILI
aCIENCE

RESEARCH CENTER

iGN STATEMENT

25
1 LU eIV

H
Rppeov

|

_THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

e 2 g <
t : 3 i 48

R
od for public relecse;

Unlimited

.. Distribution

. e o L

000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 000000 000000 ® O0O0OCCOGOO® OGOOGOGOT

eo0® o oo © oee o 000 o eee o e0e o oe® o ee
oo o0 o® oo (X e oo e oo o® oo

Ad0D 314 M0
— 0y ¥

- Ol EEEEE T e me
= b1

. R O : : ; -

i ki . ;

...

i
'

!

-

3 iy
: |

b '. ’ l

L, | (<
e |

| I:

» de

| R &

B | ¢ g8

L e

E | & e

3 ' L’.

T %

i i ¥ o |

E i

-

!" oo

By e

TR
S ——

Lte Rectian

g gaclied

w
0O

{ a7 COCES

¢ ieEiaL

DBC

—
pe—

SOFTWARE REQUIREMENTS
53 FOR
SUPPORTING HIERARCHICAL DATABASES e

by

v

David K. _siao,_pouglas_§.;Zerr

- L iR,
Gpe 17 (D1p5,
po 17 205

!

Wo rformed under
uﬁ“ - [Nkfmﬁ"s’—cvﬂs73 /

Office of Naval Research

- — - O —
% N sy 1
R .; N) ALNT R l

o) 1 1 ca: ;

Computer and Information Science Research Center L////
The Ohio State University
Columbus, OH 43210

April 77

5é -

SECURITY CLASSIFICATION OF THIS PAGE (ithen Data Entored)

AHLEMT READ INSTRUCTIONS
! REPORT DOCUKENTATION PAGE BEFORE COMPLETING FORM
! 1. REPORT NUMBER 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMEER -
i 0SU-CISRC~77-1
f 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERCOD
g "DBC Software Requirements for Supporting
| Hierarchical Databases" Technical Report

6. PERFORMING ORG. REFORT NUMBER

g 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

David K. Hsiao

Douglas S. Kerr]
Fred K. Ng N00014-75-C-0573 i

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMEERS

. 4115-A1

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
April 1977
13. NUMDER OF PAGES

98

14. MONITORING AGENCY NAME & ADDRESS(if ditferent from Controlling Office) 15. SECURIJY CLASS. (of this report)

15a. DECL ASSIFICATION/ DOWNGRADING 3
SCHEDULE g

16: BISTRIBUTION STATEMENT (of fils Repacd gpproved for public relesse; distribution unliAfEEi+

; Scientific Officer DDC New York Area
| ONR BRO ONR 437
ACO 5 ONR, Boston
NRL 2627 ONR, Chicago
ONR 102IP ONR, Pasadena

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY MNOTES

e
2 |

N | h
. |

g S -

4 | 19. KEY WORDS (Continue on reverse sidec if necessary and identify by block number) 1

P Database Computer; hierarchical database, DL/l calls, IMS; svmbolic identifiers.

SUDR—

- | g 1 20. AQSIRACT (Continue on reverse side If necessary and identify by block number)

7~ This report shows the capability of the database computer .DBC) for sup-
porting hierarchical data models and systems. Since IBM's Information Manage-
ment. System (IMS) is the most widely used data management system which supports
a hierarchical view of data, we intend to show that the DBC can support IMS
databases and IMS application programs. Furthermore, this study provides us
o with a case for comparing the merits of using a conventional general-purpose
¢ computer versus a special-purpose database computer (i.e., the DBC) for data

, = management. _

——

DD \FORM 1473 eoi \ %Q 1 NOV 65 1S OBSOLETE

JAN 73

AT ,- \\‘S\

SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Ent

(v 4 /(20 /) {7

¥ > P .
S — ;
e i

SECURITY CLASSIFICATION OF THIS PAGE(Whun Deta Entered)

4£w<u3We-shouﬁthat it is possible to design an interface, known as IMST between IMS

users and the DBC. The IMSI can faithfully execute the DL/1-calls (the data
manipulation language of IMS) issued by IMS users. The design of the IMSIT is
considered in two phases. In the first phase, we show how to represent an IMS
database utilizing the built-in (hardware) data structure of the DBC. This
representation makes use of the concept of embedding symbolic identifiers into
all dependent segments of an IMS database., The use of symbolic identifiers in~
creases the degree of data independence of the stored database. Furthermore,
the storage requirement for the symbolic identifiers is substantially offset by
the removal of the conventional address pointers currently used in an IMS data~-
base.

In the second phase of the design, a translation process is designed to emu-
late every IMS operation (as specified in terms of DL/1 calls) on the trans-
formed database. The two phases are therefore closely related. The translation
algorithms are presented to show, first, that any DL/1 call can automatically be
supported by the IMSI and, second, that the algorithms can be written in a
fairly straightforward manner. The latter demonstrates that the degree of the
software complexity and the amount of software support required by the IMSI is
rather minimal.

The data management functions performed by the IMSI, although complete,
require little software. 1In particular, the IMSI is freed from performing any
kind of content-searching, thus eliminating the software required to search the
system buffer. The content-addressable capability of the DBC makes possible the
elimination of software buffer search. The use of the DBC can therefore result
in a reduction of the role of data management software.

Finally, a comparative study of IMS and DBC performance is given. 1In the
conclusion, we try to point out that not only IMSI can outperform IMS, but the
DBC can provide additional services such as advanced security and clustering
which are found neither in IMS software nor in IBM 370/360 hardware.

Py

SECURITY CLASSIFICATION OF THIS PAGE(When Data Fntered)

e R T ; ; "
. it iy e

PREFACE AND ACKNOWLEDGEMENT

This work was supported by Contract N00014-75-C-0573 from the

Office of Naval Research to Dr. David K, Hsiao, Associate Professor of
Computer and Information Science, and conducted at the Computer and
Information Science Research Center of The Ohio State University. The
Computer and Information Science Research Center of The Ohio State
University is an interdisciplinary research organization which consists
of the staff, graduate students, and faculty of many University departments
and laboratories. This report is based on research accomplished in
cooperation with the Department of Computer and Information Science. The
research contract was administered and monitored by The Ohio State
University Research Foundation.

The autuors would like to thank lMr., Javanta Panerjee for lLiis careful
reading of the manuscript and his comments of the wvork. Thanks is also due

to Mr. Lorenzo Aquilar for helping out on examnles.

T T T W

SS9y

TABLE OF CONTENTS

ABSTRACT PAGE
1. INTRODUCTION L1
2. THE DATABASE COMPUTER (DBC) 4
2.1 The DBC Model 4
2.1.1 Built-in Data Structures 4
2.1.2 Queries 5
2.1.3 C(Clustering 5
2.1.4 The Security 7
2.2 The DBC Architecture 8
2.3 The DBC Commands 10
3. THE INFORMATION MANAGEMENT SYSTEM (IMS) 14
3.1 The IMS Data Structure 14
, 3.2 The IMS Data Language (DL/1) 17
P 3.2.1 The Search List 17
f 3,2.2 DL/1 Processing Functions 18
; I 4. THE DBC REPRESENTATION OF AN IMS DATABASE 20
; 4.1 The Representation Problem 20
i 4.2 The Choice of Type-D Keywords 22
4,2,1 The First Clustering Policy 26
; 4.2.2 The Second Clustering Policy 29
:{§ 4,2.3 The Third Clustering Policy 29
2
? 4,2,4 A Clustering Example 31
& |
i;i 4.3 The Storage Requirement of the Structure Memory (SM) and
|
Mass Memory (MM) 36
E _ 5. THE TRANSLATION PROCESS 41
E 5.1 The Status Information Table (SIT) 44
i 5.2 The Translation of the Get Calls 44
i i s-_— 5.2.1 An Observaticn 44
5.2.2 Examples 47

5.2.3 A Translation Strategy 51

SR e o

X i

8.

BUFFER MANAGEMENT

6.1 The Buffer Space Allocation Strategy
6.2 Data Structures

6.2.1 The ISB Bit Map

6.2.2 The ISB Page Map

6.2.3 The Segment Control Table

A COMPARATIVE STUDY OF IMS AND DBC PERFORMANCE

7.1 Case Studies
7.2 A Performance Analysis

7.3 Security Consideration

CONCLUDING REMARKS

REFERENCES

APPENDIX A - The Algorithms for the Translation Process

APPENDIX B ~ The Algorithms of the System Buffer Manager
APPENDIX C ~ A Discussion of HIDAM

PAGE
54

56
58
58
58
60

63

64
70
74

76
78

79

92
97

1. INTRODUCTION

We intend to issue a series of reports which demonstrate the capability

of the database computer (DBC) for supporting known data models (such as

the hierarchical, network and relational models) and their related data manage-
ment systems. This is the first of these reports which shows the capability
of the DBC for supporting the hierarchical model.

IBM's Information Management System (IMS), which implements a hier-

archical model of data, is chosen for the following reasons. IMS is the
most widely used data management system which supporte 2 hierarchical view

of data. The extensive IMS documentation also makes it possible for us to
compare the anticipated performance of an IMS database on the DBC with the

! present performance of IMS on IBM 360/370 computer systems. Finally, the fact
that IMS is available on IBM 360/370 computers provides us with a case for
comparing the merits and demerits of using a conventional general-purpose
computer versus a special-purpose database computer (i.e., the DBC) for data
management.

Background descriptions of the DBC and of IMS are given in Sections 2 and
3, respectively. However, for a more detailed and authorative description
on the DBC, one should refer to [1,2,3]. For reference to IMS, one should
look into [4,5,6,7].

In this report, we show that it is possible to design an interface, known
as IMSI between IMS users and the DBC. The IMSI can faithfully execute the
DL/1 calls (the data manipulation language of IMS) issued by IMS users. The
design of the IMSI is considered in two phases. In the first phase, we show
how to represent an IMS database utilizing the built-in (hardware) data struc-
ture of the DBC so that the information stored in the IMS database is preserved.

By preservation of information, we mean that any information that can be derived

from an IMS database by DL/1 calls can also be derived by the same calls from

the DBC database without any change of information content (i.e., semantics). The
DBC representation makes use of the concept of embedding symbolic identifiers

into all dependent segments of an IMS database. The use of symbolic identifiers

i increases the degree of data independence of the stored database. Furthermore,

! the storage requirement for the symbolic identifiers is substantially offset by
the removal of the conventional address pointers currently used in an IMS data-
base. The DBC representation and the resulting storage requirements are discussed

! in Section 4.

— _
In the second phase of the design, a translation process is designed to

{
§
{
£l emulate every IMS operation (as specified in terms of DL/1 calls) on the trans-
; formed database. The two phases are therefore closely related. These are
!

| discussed in Section 5.
|
} The overall organization of the IMSI is depicted in Figure 1. The data-

base description library (DDL) contains coded information about the IMS data-

! base as defined by the user. The interface system buffer (ISB) contains seg-

ments that have been retrieved from the DBC. The status information table (SIT)

gives the current status of the interface system buffer (ISB). When the IMSI

|

i

? receives a DL/1 call, the DL/1 interface module (IM) decodes and executes the
f

call using information stored in the aforementioned library, buffer and table.
If the status information table (SIT) indicates that the interface system buffer
(ISB) does not contain the needed information, the interface module (IM) will

F issue the necessary DBC commands needed to fetch DBC records and will insert

them into the interface system buffer (ISB). The system buffer manager (SBM)

maintains the ISB.
In Section 5, the translation algorithms are presented to show, first,

that any D1/1 call can automatically be supported by the IMSI and, second, that
i the algorithms can be writeéen in a fairly straightforward manner. The latter
demonstrates that the degree of the software complexity and the amount of soft-
ware support required by the IMSI is rather minimal.

In Section 6, we discuss the storage organization of the interface system
buffer (ISB) and the functions of the system buffer memory (SBM). The discussion
shows that the data management functions performed by the IMSI, although complete,
are simple. 1In particular, the IMSI is freed from performing any kind of content-
searching, thus eliminating the software required to search the system buffer.

The content-addressable capability of the DBC makes possible the elimination of

software buffer search. The use of the DBC can therefore result in a reduction

of the role of data management software.

A performance evaluation of the I'SI desien in given in Section 7. A

comparative performance study is made between T!S and INMSI. The studv is con=-

centrated on several typical cases of search and update. The result of the

study is pratifving, indicatinpg that INMST with the DBC support is indeed a
favorable alternative to hierarchical database managerment, The efficiency of

using the DBC to support an II'S database is, nevertheless, limited by the use
of DL/1. Since the transformed database is stored in the DBRC in a rore data-
independent manner, more efficient processing of the database can be achieved
if new calls, in addition to the DL/1 calls, are introduced. Thus we also

show the additional capabilities of using tle DiC to support a hierarchical

. ch when the data manipulation languape emploved is not restricted to DL/1.

e

i e i b SE

i
Program
Module
IMS users Table
r IBM 360/370 A Information
Path
User
Existing Programs
Software
—{{—w— = e s S DEFL. callol
IMSI
DBC
-} Commands
New
Software o
DBC
SBM\ . __ Records
_— (a back-end computer)
(a front-end computer)
DDL: The Database Description Library IM: The DL/1 Interface Module
SIT: The Status Information Table SBM: The System Buffer Manager
ISB: The Interface System Buffer DBC: The Database Computer

Figure 1. The IMS Interface (IMSI)

o s

R —

2. THE DATABASE COMPUTER (DBC)

The database computer (DBC) is a specialized back-end computer which is

capable of managing a database of 109 - 1010

bytes. In addition to its intended
purpose of handling large databases, the DBC has a built-in protection mechanism
for access control and a clustering mechanism for performance enhancement.

Basically, it is composed of two main components, a mass memory (MM) for storing

data and a structure memory (SM) for storing directory information about the data.

The mass memory is made up of fixed-length content-addressable partitioas called

minimal access units (MAUs).

2.1 The DBC Data Model

In order to discuss the DBC representation and the translation process
given in Sections 4 and 5, respectively, we need to present the data model of
the DBC. The data model represents a user's view of the data stored in the DBC
and the way that the user is permitted to manipulate the data according to that
view. There are four aspects associated with the data model of the DRC: the
data structure, the query, the clustering and the security. The data structure
is the way that the user information is represented in the hardware. The query
specifies the way that the data structure can be manipulated. The clustering
effects the way the data structure is physically stored and the security con-
trols the way that the data structure is protected from unautherized use.

We will discuss each of the four aspects in a separate subsection.

2.1.1 Built-in Data Structures

The definition of a database starts with two terms: a set AT of "attributes"
and a set VA of "values". These terms are left undefined to allow the broadest
possible interpretation. A DBC record is a subset of the Cartesian product
AT X VA. We will assume that in a record all attributes are distinct. Thus,

R is a set of ordered pairs of the form:
(an attribute, a value)

The set of all DBC records which are physically stored in the DBC is called
the DBC database. The DBC database may be partitioned into subsets called files.
To distinguish among several files, each file is given a unique name called its
file name.

The keywords of a DBC record are those attribute-value pairs which charac-
terize the DBC record. Other attribute-value pairs of the record, if any, are
collectively called the record body. A DBC record, therefore, consists of a
set of keywords and a (possibly empty) string of characters referred to as the

record body. The DBC recognizes two types of keywords: those stored in the

=55

structure memory (SM), called directory type (Type D),and those not stored in

the SM, called non-directory type (Type N). The selection of keywords for

storage in the SM will be discussed in a later section.
DBC records having the same attributes are often singled out for discussion.
In such cases, we show only the attributes without their corresponding values.

The set of attributes is called the attribute template (or, for short, template)

of the records. Examples of records having identical attributes and the corres-

ponding template are shown in Figures 2 and 3.

2.1.2 Queries
Queries are used in access commands to retrieve and update DBC records. A

query is a Boolean expression of keyword predicates of the form:
<attribute, relational operator, comparative value>

where attribute is an attribute of a keyword, a relational operator is one of
the set {=,#,<,<,>,>} and comparative value is the value against which the
keyword value of the specified attribute is to be tested. The queries will be
expressed in disjunctive normal form.

A keyword predicate is true for a DBC record if some keyword in the record
satisfies the predicate. A conjunct of predicate is true for a record if each
predicate in the conjunct is true for the record. A query is true for a record
if one or more conjuncts in the query is true for the record; such a DBC
reccerd is said to satisfy the query. The set of all DBC records in a file of
the DBC database that satisfy a query will be called its response set or the

response data.

Some simple examples of queries follow. The query Kj A K2 is true for a
record R when K] and Kj are both in R. The query K; A (Salary < 10,000) is
true for R when Kj is in R and there is a keyword in R whose attribute is
Salary and whose value is less than 10,000. More elaborate queries can also

be formed.

2,1.3 Clustering
The DBC, instead of supporting a fixed record placement scheme for all
DBC records, has a record placement mechanism which carries out record place~
ment polices supplied by the DBC users and database administrator. The clusterins
mechanism allows a DBC user to have some control over the physical placement
of a DBC record when it is inserted into the mass memory (MM) of the DBC.
Physical placement means assigning a DBC record to a MAU (a unit of physical

closeness) in which it can be placed.

Type=offering

Courseif=C1S544

Date=9.21.| Type=Offering

Location=C| Course#=C1S412

Format=WWW| Date=3.20. Type=Offering

Location=S Courseff=C1S311

Format=TTT| 5 ..-¢.10. Type=Offering

Location=L Courseff=C15212

Format=YYY Date=3.20.77

Location=Columbus

Forma t=XXXXX

(a DBC record)

Figure 2. A sat of DBC records with ~ommon attributes.

Type=

Courseft=
Date=
Location=

Format=

Figure 3. An attribute template of DBC records.

i
g -
=

s

=

For each DBC record, there are certain type-D keywords which are designated

for record placement purposes and are called clustering keywords. In order

for the DBC to determine which MAU to be used for insertion, the DBC user

may give a query, called the mandatory clustering condition (MCC), and a set

of ordered pairs of the form (query, integer), called the optimal clustering

conditions (0OCCs), whenever a record is to be inserted. The MCC is used to
determine which MAUs are eligible for record insertion. An eligible MAU is
a MAU which contains one or more records that satisfy the MCC of the record
to be inserted. The OCCs are used to choose one of the eligible MAUs deter-
mined by the MCC.

In order to make use of the clustering mechanism of the DBC, one has to
choose a record placement policy. For each DBC record to be inserted, one must
designate those keywords which are used as clustering keywords and specify the
clustering conditions according to the policy.

In utilizing the same query facility to specify a clustering condition,
any set of DBC records which can be retrieved by a single query can also be
placed physically close together by the DBC. This demonstrates the power of

the clustering mechanism,

2.1.4 The Security

A database access or simply an access is the name of a DBC operation

which transfers information to or extracts information from the database.
Examples of accesses are retrieve, insert and delete. Let ACC denote the
set of all names ef the accesses available in the DBC. Let a member of
ACC be represented by a and a subset of ACC by A.

A security specification is a relation

S: DB —» ZACC where 2ACC is the power set of ACC.

Thus, for a DBC record R, the security specification, S(R) = A, indicates which
subset A of accesses is permitted on R.

A file sanction or simply a sanction is defined as the couple (Q,A) where

Q is a query, and A is a subset of ACC. A sanction (Q,A) induces a relation

S.FSQ A over DBC records R of the database such that
’

A if R satisfies Q.
S.FSQ’A(R) ={

ACC, otherwise.

Thus, a sanction induces a security specification which indicates that only
the accesses in A may be performed on the records satisfying Q. When R does

not satisfy Q, all accesses may be performed on it. 1In this case we say that

no sanctions of (Q,A) are applicable to R. The sanction is a very powerful

Stk A NSl

LR Y 1w s iy iS

B 2

type of security specification since it allows the full power of the query
language (i.e., Q) to be used to specify DBC records to be protected.

Consider a file named F and a set of sanctions where

S = {(QI’A]_)’ (QZSAZ)’OO"(Qm’Am)}'

A database capability (F,S) induces a security specification S.DCp, g over R

of F such that

S.DC, ~(R) = 161 S.FS (R)

"F,S Q54

In words, S.DC_, .(R) is the set of all access granted for R by one or more

F,S
file sanctions in S and not denied by any sanction of S. Security specifi-
cations are therefore stored in the DBC as database capabilities. The data-
base capabilities specify exactly what access operations are allowed on DBC

records. The DBC maintains database capabilities for each active user.

2.2 The DBC Architecture

The architecture of the DBC is depicted in Figure 4. The three components

that form the data loop are the database command and control processor (DBCCP), |

the mass memory (MM) and the security filter processor (SFP). When a query in

a command is sent to the DBCCP, the DBCCP decodes the query using the structure
loop (see below). The DBCCP then uses the structural information returned from
the structure loop to form localized mass memory commands. These commands are
then sent to the mass memory (MM). The MM is the repository of the database

of 109 or 10lO bytes. It is realized by modifying conventional moving head

disks with content-§ddressable capability. The concept of a partitioned content-
addressable memory (PCAM) is utilized to access large partitions and to perform
content-searching of the partitions in a cost-effective way. Only a part of

the database needs to be searched for a given query. This is due to the infor-

mation provided by the structure loop. The response set resulting from the

operations of the MM is sent to the SFP where it is checked for gsecurity clear-
ance and then forwarded to the user.

The four components which form the structure loop of the DBC are the

keyword transformation unit (KXU), the structure memory (SM), the structure

memory information processor (SMIP) and the index translation unit (IXU). The

KXU converts keywords sent by the DBCCP into their internal representation.

The primary function of the SM is to retrieve and update structural information
of the database. This information is likely to be large (107— 109) bytes. Fur-
thermore, the operations on this information must be performed at a rate com-

mensurate with that of database operations performed by the mass memory (MM). The

Information Path
———= Control! Path

‘\ z’
E |

T SM

'
; Structure /
E | {
/[
/i
IXU // KXU
e // - 7
i \ \ /
N / //
from PES DBCCP: Data Base
2 r— Command &
- DBCCP Control
: to PES Processor
; KXU: Keyword
! //\\ Transformation
2. MM: Mass y \ Unit
;! SFP Z'e:n or’: i Data ™ s até;cgure
. : Security i L ry
Filt CDCZ‘D N\ :
P'rocecressor V4 A o at;;c;::yre
PES: Program Information
Execution S FP M M Processor

Sysiem IXU: Index
Translation
Unit

Figure 4. Architecture of DBC

. N——— S—

T —

=10

concept of a partitioned content-addressable memory (PCAM) is again used to
implement the storage system of the SM with the above properties. Powerful
PCAM organizations are possible using emerging technologies. Three design
alternatives using three different technologies are considered. The three
technologies are magnetic bubble memories, charge-coupled devices (CCDs) and
electron beam addressed memories (EBAMs). The SMIP is responsible for per-
forming set intersections on structural information retrieved by the SM. The
concept of PCAMs is once again utilized to perform rapid intersection. The
IXU is used to decode the structural information output by the SMIP.

The four structure loop components are designed to operate concurrently.
Keywords are sent to the KXU at regular intervals by the DBCCP. The output
of the KXU is sent to the SM which retrieves index terms for the transformed
keywords and sends them to the SMIP, The SMIP output is interpreted by the
IXU and sent to the DBCCP., This pipeline of processors results in maximum
utilization of the hardware.

The front-end computer which interfaces with the DBC is likely to be one
or more general-purpose computers., The primary function of these general-
purpose computers is program execution. For this reason, we term all those

front-end computers the program execution system (PES). The IMSI, an interface

which allows IMS users to query hierarchical databases in the DBC and to
manipulate them via DL/1 calls, is intended for the PES. This report is devoted

to an exposition of the IMSI (See again Figure 1).

2.3 The DBC Commands
The PES communicates with the DBC by issuing DBC commands. The two types

of DBC commands are access commands and preparatory commands. Access commands
are used to retrieve, insert, delete, and update DBC records in a file.
Preparatory commands are issued to manage file information and security spec-
ifications so that the user can facilitate the access commands.

A repertoire of the DBC commands is listed in Table I. The commands that
will be used in the translation process are marked by an asterisk. Simplified
formats of these commands are presented. A detailed description of all the
command formats and their usage are given in [3].

(1) The Open-Database-File-for-Creation (ODFC) Command

The ODFC Command is required to be sent to the DBC before DBC records of
the file are loaded into the DBC. VWith respect to a file, this command nro-
vides information on the number of attributes of the file, the number of MAls
that need to be allocated initially, and the number of !'AUs that mav be allo=-

cated if the initial allocation is insufficient.

B

==

Retrieve MAU Addresses

Mnemonics Command Function Command Type
(A - access type
P - preparatory type)

ODFC *0Open Database File for Creation I
LAI *Load Attribute Information P
Load Security Descriptor P

LR *Load Record A
CDF *Close Database File P
ODFA *0Open Database File for Access P
Retrieve by Query A

Retrizve by Pointer A

RQP *Retrieve by Query with Pointer A
Retrieve Within Bounds A

IR *Insert Record A
DQ *Delete by Query A
Delete by Pointer A

Delete File P

RR *Replace Record A
P

P

Load Creation Capability List

Table I List of Commands Recognized by DBC

-12-

(2) The Load-Attribute-Information (LAI) Command

The LAI Command must be issued to the DBC after the ODFC or ODFA command
and before any access commands. It supplies the attributes of a file and
causes the attributes to be loaded into the structure memory (SM).

(3) The Load-Record (LR) Command

The LR command loads DBC records of a file into the (MM). The argument

SIS G ——

of this command is of the form:
record, MCC, OCCl’ OCCZ,..., OCCn

where record is a DBC record to be loaded. MCC is the mandatory clustering

condition and OCCs are the optional clustering conditions used to determine
the MAU for the DBC record. Execution of this command causes the DBC record f

to be loaded into the DBC database according to the clustering policy speci-

fied by the clustering conditions.
(4) The Close-Database~File (CDF) Command
The CDF command indicates to the DBC that the specified file mav be

deactivated. There will be no more access cormmands from the user on this file.

(5) The Open-Database-File-for-Access (ODFA) Command

The ODFA command opens a file which has been created in the DBC data-

g

base. The access commands (discussed in the following) may then be issued to
the DBC to process the file.
(6) The Retrieve-by-Query-with-Pointer (RQP) Command

The RQP command retrieves from a file DBC records that satisfy a query.

The argument for this command is of the form: -
; sort-attribute, query "
3 where sort-attribute is the attribute of the keyword used by the DBC to sort -

the response set on the basis of the values of the attribute. The query is

a Boolean expression of keyword predicates. Execution of this command yields

s

the response set containing all DBC records that satisfy the query in sorted

Ly

order with respect to the values of the sort-attribute. Each DBC record in

the response set is assigned by the DBC with a pointer which allows fast access

| to the DBC record for subsequent update and deletion operations without in- n

| volving the structure loop.

A (7) The Insert-Record (IR) Command)
The IR command adds a record to a file in the DBC database. The argument

of this command is identical to that of the LR command. .
(8) The Delete-by-Query (DQ) Command S
The DQ command deletes DBC records from a file that satisfy a query.

The argument of this command is of the form: o
1

query

~ B e RE it o aob S

=13

where query is a Bcolean expression of keyword predicates, Execution of
this command causes all reccrds that satisfy the query to be deleted.

(9) The Replace-Record (RR) Command

The RR command replaces a DBC record in a file of the DBC database, The
argument for this command is of the form:

<ptr, record> -

where ptr is a pointer for a DBC record and record is a DBC record. The execu-
tion of this command causes the DBC record located by the pointer to be re-

placed by the one given in the argument.

-

S ————————— o

e —

14—

il R

3. THE INFORMATION MANAGEMENT SYSTEM (IMS)

In this section, we inftroduce only those IMS facilities which will be
used for discussion in later sections. The introduction will be centered
around the data structure of an IMS database and the data language DL/1
used to manipulate the data structure. We will not, however, address the
actual application program structure and its relationship to IMS, both of
which are not relevant to the interface with the DBC. For simplicity, a

slightly different syntax of the DL/l language is employed herein.

3.1 The IMS Data Structure

The definition of an IS database begins withh the term secment tvpe which |

will be left undefined. A loeical data structure is a hierarchical structure ;

of segment types, an example of wvhich is shown in Figure 5. The segment type

A is called the root segment tvpe and the others are called dependent segment

types. Lacii dependent segment type has a parent segnent tvpe. For instance
e e

B is the parent segment type of E. Similarly, each parent segment type has

one or more child segment types. The successive parent~child relationships

define levels. A is at the first level, B and G are at the second level and .

SO on, a
A lopical data structure defines an IMS database in which there may be &

zero or more segment occurrences (or simply, sepments) for each sepment type

in the logical data structure and each segment occurrence mav contain one

or more fields, Associated with an occurrence of a parent segment tvpe are zero or

. . 1 : g |
nore occurrences of each of its child segment tvpes, collectivelv called the childr =
-
(or child segments) of the parent segment. Each child segment has a unique

parent segment. All occurrences of a particular child segment type which share
a common parent segment are said to be twins. The descendants of a segment

cccurrence are its children, their children, etc. A database record consists

of a root segment and all its dependent segments. Finally, an IMS database
consists of all the database records.*

A convention for representing an IMS database schematically is shown in
Figure 6. Each labeled square represents a segment. The relationship between a
parent segment and its children of a given type is represented by a line from
the parent segment to the first child segment. The twins of a particular seg-

ment type are illustrated by stacking them one after another.

*#The reader should note the difference between an IMS database record as defined

1
1
A
4

here and a DBC record as defined in Section 2.1.

Figure 5.

A Logical Data Structure for an
IMS Database

s AR

b=
A3
[a2 I
Al
Bl Gl
D3
cl D1
El H1 Il
| F3 12
E F1 F2 J1

Schematic Representation of an IMS Database

Figure 6.

{

~-17-

Thus the following relationships exist.

Al is the parent of Bl and Gl.
H1l, H2 and Il are children of Gl.
El and E2 as well as F2 and F3 are twins.
IMS application programs must traverse the segments of the database in

order to make retrievals. The convention of traversing is from top to bottom

(parent to child), front to back (among twins) and left to right (among children).

More specifically, at every segment seek the leftmost segment in the next lower

level (i.e., a child), if none exists, seek the next twin segment; if none exists,
seek the next right segment at the same level; if none exists, seek the next

right segment to the segment last traversed at the next higher level. The data-
base in Figure 6 would be traversed in the order Al, B1l, Cl, D1, D2, D3, El, F1,

E2, F2, F3, G1, Hl1, H2, I1, J1, J2, A2, A3. Notice that the traversal order de-
fines a next segment with respect to a given segment. This concept 1s used

extensively in the data language DL/1l. Finally, a hierarchical path is a

sequence of segment occurrences, one per level, reading directly from a seg-

ment at one level to a particular segment at a lower level. For example Al,
Gl, I1, J2 is a hierarchical path.

3.2 The IMS Data Language DL/1

An IMS user processes an IMS database with application programs using
Data Language/l (DL/1). The DL/l operations are invoked by means of subroutine
calls from an application program. For clarity, we will not present the original
DL/1 syntax in this discussion. Rather, a simplified form of the syntax is given
which excludes the specification of the program communication block (PCB) and
the I/0 area in the call arguments. The specification of PCR and I/? area are
mainly for the purpose of communication with the application program. A DL/1

call has the following format:
FUNCTION SEARCH-LIST

where FUNCTION is one of insert (ISRT), delete (DLET), replace (REPL) or a
form of get (GET) and where SEARCH-LIST is a sequence of segment search argu-

ments (SSA), possibly one per level which are used to select a hierarchical path.

3.2.1 The Search List
The basic function of the SEARCH-LIST is to narrow the field of search.
It has the form

SSA; SSA, seess SSAn

1 2

where each segment search argument (SSA) is of the form

-
3

~18-

<segment-type> <Boolean expression>
with Boolean expression relating values of fields of the given segment type.

The Boolean expression need not appear, in which case we say that the SSA is
unqualified; otherwise it is qualified.

3.2.2 DL/1 Processing Functions

A brief description of the DL/l processing functions of get, insert, delete,
and replace is given in this section. The purpose of this section is to give
the reader some idea of how each DL/1 function call can be interpreted. The
rules for each of the function calls are omitted in the discussion. The dis-
cussion is informative rather than exhaustive. (For more detailed treatment
of the subject, refer to [5]).

In the IMS context, the term "current position" in the database refers to

a segment in the traversal sequence described earlier. After each retrieval

or insertion operation, a position is established on the traversal sequence

of the IMS database. For a retrieval operation, this position refers to the
segment just retrieved; for an insertion operation, this position refers to the
segment just inserted. Positions may also be established on the hierarchical
path leading from the root segment to the "current position"” in the database
Each of these segments is called the “ggg@ent on which position is established

at that level.”

There are several forms of the get statement each of which returns a single
segment. A get-unique (GU) call retrieves a specific segment by starting at
tharoot segment type and finding the first segment at each level i satisfying
SSAi, retrieving the segment satisfying the last SSA. A get-next (GN) call
starts the search at the '"current position"in the database and proceeds along
the traversal sequence satisfying the SSA's and retrieving the segment satisfying
the last SSA. The basic difference between GN and GU calls is the starting
position used in traversing the database. The execution of a GN call without
SSAs returns the next segment (maybe of the some or different segment type) on
the traversal sequence relative to the '"current position’” in the database.

The execution of a GN call with an unqualified SSA returns the next segment on
the traversal sequence of the segment type specified in the SSA, relative
to the "current position" in the database.

It is also possible to restrict the number of segments to be searched

using a get-next-within-parent (GNP) call. A GNP call restricts the search

to descendants of a specific parent segment. Thus IMS alsc maintains a
"parent position" which is set at the last segment that was retrieved by a

GU or GN call. The parent position remains constant for successive GNP calls.

S s

=19~

In order to lock (hold) asegment for future update there is a similar set
of calls get-hold-unique (GHU), get-hold-next (GHN) and get-hold-next-within-
parent (GHNP).

The get-hold calls are similar to their respective get calls but are used
to obtain the segment before the contents of a segment can be changed through
a DLET or REPL call. In this report, we will treat the get-hold callsas seman-
tically equivalent to their respective get calls.

The ISRT call is used to initially load the segments for creation of a
database and to add new occurrences of an existing segment type into an estab-
lished database. The format of the ISRT call is identical for either use. When
a segment occurrence is to be inserted, the parent occurrence must already exist
in the database. The SSAs of the ISRT call specifies the complete hierarchical
path from the root to this parent and also the type of*-the segment to be in-
serted. IMS will enter the new occurrence at the correct position as defined
by the value of its sequence field.

The DLET call is used to delete the occurrence of a segment from a data-
base. It deletes the specified segment occurrence and also all its children.

The REPL call is used to modify the content of a segment occurrence through
program processing. The segment to be modified and replaced must first be ob-
tained by a get-hold call. A REPL call can then be issued after the segment
has been modified.

In order to simplify our discussion, we require that both GU and ISRT
functions must have SSA for each level from the top level down. The GN
and GNP functions may have either no SSA or have an SSA for each level
starting at the top level. The DLET and REPL functions do not involve SSAs
at all.

4. THE DBC REPRESENTATION OF AN IMS DATABASE

E i The first phase of the IMSI design is to propose a method to represent

f ! an IMS database in the DBC preserving the information from the IMS database.

M Recall that by preservation of information, we mean that any information in an
! IMS database that can be stored, retrieved, and manipulated by the DL/1 calls

i can also be stored, retrieved, and manipulated in the same manner by the same

calls on the DBC database.

! 4.1 The Representation Problem

b We intend to represent an IMS database by a file in the DBC in which an
IMS segment is represented by a DBC record. Since a DBC record consists of keywords
and attribute-value pairs, a natural way of representing a segment by a DBC
record is to represent each field in the segment by either a keyword or a
non-keyword attribute-value pair. We recall, at this point, that keywords
are used by the DBC to perform content-addressing of the DBC records, whereas
i non-keywords are nct. Normally the latter attribute-value pairs consist of
| the textual information of the record.

In order to determine whether a field should be represented by a keyword
or by a non-keyword attribute-value pair, we must know whether or not such a
field is to be used in a DL/l search argument. If the field is to be used in a
search argument, then it should be represented by a keyword. Otherwise, it
should be represented by a non-keyword attribute-value pair. Hence, when an IMS

database description is defined and stored in the databese description library

(DDL), it is necessary to define those fields which will be used as search

e —

arguments in a DL/1 call so that the IMSI can facilitate the representation.

In addition, information about the segment type and its relationship with

D, TR

other segments (i.e., parent-chils =»n twir r-l-tiors“d &) must also be repre-

v
»

Lo

sented as attribute-value pairs in the DBC record. For example, if the segment
j type is OFFERING, then the DBC record is augmented by the attribute-value

pair (TYPE, OFFERING) where TYPE is the name of the attribute for segment type.
In order to discuss the representation of the relationship among the segments,

we first introduce some terminology. An identification field of a segment

is a field of the segment whose value is distinct from all other values of
the same field appearing in the twins of this segment (all root segments
are considered as twins). If each segment has an identification field, one
can simply "normalize' the hierarchical structure as follows. For each

segment, embed the identification fields of each of its ancestors (i.e.,

a9

parents, grandparents, and so on). In doing so, the parent-child ard twin
relationships are preserved even though the explicit hierarchical structure
is removed. The only ambiguity that may occur is when the identification
fields of different types of segments have the same field name. This can
easily be resolved by qualifying the field name with the segment type. For
simplicity, we assume distinct field names are used. The only complication
is that we must know a priori what is an identification field for a segment.
How then to select an identification field for each segment so that the
hierarchical structure can be normalized? There are three cases to be considered:

First, if the segment has a sequence field* gnd its values are distinct
among the twins, then the sequence field can be selected as the identification
field of the segment.

Second, if the segment has a sequence field but its value is not distinct
among the twins, then a new field is formed by augmenting the sequence
field value so as to identify the twins uniquely. The augmented values can be
generated, for instance, by the computer ciock. The augmented sequence field
is then designated as the identification field of the segment. It should
be noted that the ordering of the segments defined by the augmented field is the
same as that defined by the sequence field.

Finally, if the segment has no sequence field, then a completely new
field is formed. A problem with this solution is that since no sequence field
is explicitly defined, the ordering of the twins may be defined implicitly by
their position in the IMS database. This ordering information would be lost
if the new field is assigned an arbitrary value. Hence one must assign a
value in such a way so that the order can be preserved. There are three
positions where a segment with no sequence field can be inserted into the IMS
database - as the first twin, as the last twin or between two twins. The method
of assigning value to preserve the order of insertion is similar to the Dewey
decimal notation (e.g., to insert a segment between 12.34 and 12.35, number
i€ 12.34.1).

In the subsequent discussion, unless otherwise noted, we assume that each
segment has a sequence field and its value is distinct among the twins of the
segment type, It is evident that the identification field of a segment together
with the identification fields of each of its ancestors (if any) uniquely
identify the segment of a given type. In short, we will call this group of
fields the symbolic identifier of the segment.

We now summarize the representation of an IMS database in the DBC. For

* The sequence field is a designated field for defining an ordering among the
twins. This is an IMS terminology and convention.

=20

each segment in an IMS database, the keywords and non-keyword attribute-value
pairs of a DBC record are formed in one of the following four ways.
1. For each field in the segment which will be used in a DL/1 search
argument, form a keyword using the field name as the attribute and

the field value as the value.

2., Form a keyword of the form (TYPE, segtype) where TYPE is a literal and

segtype is the segment type of the segment in consideration.

3. For each identification field in the symbolic identifier of the segment,

form a keyword using the field name as the attribute and the field
value as the value. Since a symbolic identifier may have one or more
field name-value pairs, there will be one or more such keywords.

4, For each field which will not be used in a DL/1 search argument,

form a non-keyword attribute value pair using the field name as the
attribute and field value as the value.

In the above process, many fields are represented by keywords. However,
not all these keywords will be designated as Type-D keywords. In fact, as
will be shown in Section 4.2, the number of Type-D keywords can be chosen to
be relatively small without affecting DBC performance, if the appropriate
clustering policy is chosen.

For example, consider the IMS database in Figure 7. We show its vepre-
sentation by different DBC records in Figure 8. For simplicity, no values
are given; only the segment type and attribute templates are depicted. Even
though the attribute TYPE appears in each DBC template, its values are differ-

ent. Qualification is used in three occasions to resolve ambiguity because

some of the field names used to form symbolic identifiers are not distinct. Notice

that the COURSE# field in PREREQ and the EMP# fields in TEACHER and STUDENT need

qualification.

4.2 The Choice of Type-D Keywords

Type-D keywords are keywords that are stored in the structure memory (SM)
of the DBC. These keywords are update variant. By minimizing the number of
Type~D keywords, we can reduce the SM storage required and the amount of SM
update operations performed.

In certain cases, the reduction of the number of Type-D keywords will
increase the number of MAUs to be searched. This can be shown by a simple
example., Figure 9 shows 2 MAUs, MAUl containing a DBC record Rl with
keywords K1 and K2 and MAU2 containing a DBC record R2 with keywords Kl and
K3. If K2 and K3 are chosen as Type-D keywords, then the directory entry for

K2 will have the form <K2 : MAUl> weaning that all DBC records of the file

g R

containing K2 can be located in MAUl. Similarly, the directory entry for K3
st i e p SRR T———

| P

Lw

ba-ids

i

4
1

PSS ——

~230
COURSE
*+ +
COURSE# TITLE DESCRIPN
PREREQ OFFERING
*+ *
COURSE# +T ITLE +DATE +LOCATI ON FORMAT
TEACHER STUDENT
ot *+ +
EMP# | TNAME EMP# | TNAME GRADE
Sequence field is marked with *
Search field is marked with +
Figure 7. The Logical Data Structure of an IMS database.

e

e
&

i

| 5
|
|

Symbolic identifier is underlined
| Keyword is marked with @

' @ Type=Course
: @ Course#=
{4 @ Title=

NDescripn=

Sl et Sl ol M A0S e il

@ Type=Prereq. @ Type=Offering
@ Courseft= @ Courseft=
ﬁ @ Prereq. Coursef= @ Date=
@ Title= @ Location=
Format= 3
@ Type=Teacher @ Type=Student J
@ Courseit= @ Coursef= £ 1
@ Date= @ Date=
@ Teacher.Empff= @ Student.Empfi=
@ Name= @ Name=
@ Grade= ’

Figure 8. The attribute templates of DBC records for the transformed seg-

ments as shown in Figure 7.

-25- -

MAU1 MAU2

Rl R2

K1 K | Record K1 K3 Record

‘ Body ‘ Body

et

571 Figure 9. Two MAUs of the mass memory (MM).

-
e danibing

y i &
-
i
4l
1
S —
! 1 k=
2]
3 »n
i L
3 '
! 1
Al
L)

T T

e

-26-

is <K3 : MAU2>. To locate Rl, K2 can be used as the query. Using the infor-
mation provided by the SM, only MAUl must be searched. Similarly, to locate
R2, only MAU2 must be searched. However, if K1 is chosen (instead of K2 and
K3) as the only Type-D keyword, then the directory entry for Kl is

<K1 : MAU1l, MAU2> reducing the number of directory entries in the SM. How-
ever, in order to retrieve either Rl or R2 by way of K1 both MAUl and MAU2 must
be searched. Hence the reduction of the number of Type-D keywords in this

case will decrease the precision of the search and degrade the performance of
the DBC.

On the other hand, if MAUl contains both Rl and R2 as depicted in Fig-
ure 10, the choice of K1 as a Type-D keyword will still limit the search to
MAUl. Hence the precision of the search is unaffected by a reduction of
Type-D keywords. This example shows that if DBC records are clustered in an
appropriate way, the number of Type-D keywords used can be reduced without
affecting the DBC performance.

The way that the DBC records of a file are retrieved should determine the
clustering policy employed for the file. Once a clustering policy is chosen,
the choice of Type-D keywords for the file is rather straightforward. Since
each clustering policy is carried out by clustering conditions and each clus-
tering condition is a Boolean expression of keyword predicates in disjunctive
normal form, one must ensure that the clustering policy can be expressed in
terms of keyword predicates. The attributes of these keyword predicates
should, therefore, be the attributes of the keywords that have already been
defined for the file. We next propose three clustering policies each of which

can be expressed in a Boolean expression of keyword predicates.

4.,2.1. The First Clustering Policy.

The first policy (see Figure 11) clusters all DBC records which represent
segments belonging to the same TMS root segment. This clustering policy is a
natural one since segments are normally accessed by way of their root segments.
If the DBC records representing an IMS root segment and all its dependent seg-
ments can be contained in a single MAU, then access to dependent segments of
the root segment requires only one MAU access. A disadvantage of this policy
is that if several root segments must be accessed collectively, several MAU
accesses may be required since different root segments are not clustered in the
same MAU. This situation may happen quite frequently in a GU call if the qual-
ification statement given for the root segment type is satisfied by more than

one root segment. The second disadvantage is that if the DBC records represent-

=275
i
i
4
| MAU1
[
R1
J !
KL F . K2 Record
; Body
R2
‘ K1l T K3 Record
Body
El Figure 10, Two records clustered .into one MAU.
E
]
A

B
E
4
]
E
g

<08~

clusters
/ 4

Gl PRl
//\\/ Aoy it
/ [b5 el \

R L_—_I\ / \
/ / e l?\

/ s \
‘\ \\‘\ \\ l\ \\
\ = \\ b \
= = A\ e e
\ \ \\ \
\ \
\ \\ \
\%» iy =
£ Tne Y = |
__*_// “ / /

—

Figure 11. An Application of the First Clustering Policy

ST T

s]

-29~

ing all the dependent segments of a root segment cannot be entirely contained in
a single MAU, then access to dependent segments may require more than one MAU

access.

4.2.2. The Second Clustering Policy

The second policy (see Figure 12) first clusters the DBC records
wbich represent all the IMS root segments and then clusters the DBC records
which represent all dependent segments. This policy takes care of the first
disadvantage of the previous policy since all root segments now belong to the
same cluster. The fact that a root segment is not clustered with its dependent
segments does not affect the performance. This is because the root segment must
be accessed before any dependent segment is accessed and hence the same number
of DBC accesses are required to get to the dependent segments when either

policy is used.

4.2.3. The Third Clustering Policy

The third policy (Figure 13) clusters the DBC records by segment type and
is employed when the average size of the DBC records representing a root seg-
ment and all its dependent segments is larger than or comparable to the size

of a MAU. This policy produces smaller clusters which can fit into MAUs.

A proposed clustering algorithm for hierarchical databases [8] used the
known frequency of access pattern to produce an optimal clustering. However,
that algorithm is not applicable to IMSI due to the way the DBC handles its
records. In the system discussed in that paper, unit retrieved from the
database is a page. When a parent segment, for example, must be found, the page
containing that segment will be retrieved. If the child segment of the parent
were stored in the same page, then subsequent access to these child segments
will not require an additional access to the database if the page is still in
main memory. Therefore, it is advantageous to cluster both the parent and its
child segments in the same page.

The strategy of transferring data from the DBC database to the front-end
computer is different. The notion of paging is absent from the DBC. Although
it is possible to transfer the content of an entire MAU (the counterpart of a
page) to the front-end computer, it is undesirable for the following reasons.
First, a MAU is generally 2 orders of magnitude (i.e., 100 times) larger than

a page. If the entire MAU contents must be accommodated, large amounts of buffer

~30~

Figure 12. An Application of the Second Clustering Policy

Figure 13. An Application of the Third Clustering Policy

e SSES—

~-31-

storage must be provided. Second, the mass memory (MM) of the DBC is designed

to search data stored in a MAU efficiently with its hardware content-addressing
capability. If such capability is not utilized and the content is transferred

to the froncngnd computer, then the IMSI will have to search the data thereby
increasing the amount of IMSI software required. In addition, search performance
would be degraded since this would be software performance not hardware per- i

formance.

Since two MAU accesses are needed to first fetch the parent segment and
then its children, it is only necessary to cluster the children in one MAU.
Clustering both the parent and its childred in the same MAU will not improve
the performance. Therefore, an elaborate clustering algorithm such as that
proposed in [8] is not required.

In summary, the basic requirement of a clustering policy employed by the
IMSTI is that all the twin segments of a given type should be clustered. The
reader should see that the first clustering policy discussed above violates
this basic requirement, whereas it is satisfied by the second and third clus-
tering policies. In fact, the clusters formed by the second and the third
policies tend to be large, a desirable property which cuts down the number of
clustering keywords used to define the clusters. Smaller clusters require
more clustering keywords. However, one should not form clusters larger than
one MAU. Thus in choosing a clustering policy which meets the basic require-
ment, one should minimize the number of clustering keywords and assure that

the individual clusters are smaller than a MAU.

4.2.4 A Clustering Example

In this report, we choose the second clustering policy based on the assump-

tion that the average size of an IMS database record (i.e., a root segment and
all its dependent segments) is smaller than the size of an MAU (about 500K bytes).‘
Once the clustering policy is chosen, we can determine the Type-D keywords for '
the file which will be the clustering keywords.

The clustering keywords chosen are those keywords corresponding to the se-
quence fields of the root segments and those keywords representing the segment
types. In order to see that these are the only clustering keywords required,
we present the MCCs for those clusters shown in Figure 12. The first MCC defines
the cluster of root segments (Figure 14). There is then a separate MCC for each:
cluster of dependent segments of a given root segment. For example, Figure 15

shows the MCC for the dependent segments of the database record with root segment

"
& 3
§ -32-]
E
| | 4
[E
i
3
i MCC1 : Type=Course
3
4
-
4
F //—_\\
3 ok
y / ~
// i e , cluster a
/ Type=Course \\\~\<J
Coursef#f=C1S411
\ Title=L Type=Course \\\
e= ype=Cou
\ Descrip Course#=C15212 \\\
Title=S Type=Course B
[\\ Descrip Coursef#f=C15212 ™
; i \\ Title=Y Type=Course \\
E \\\ Descrip Course#=C1S211 \
' b T Title=XXX \
: \\\ Descript= - - ,
| o~
M ‘/
.
\\ /
~——— o

\/

Figure 14. The Mandatory Clustering Condition (MCC) for the Root Segments.

TS i.;’;!—:s;"“;-r-:m:—w-..,

.-,,,‘ ~—gRrT

)

|

| -33-

MCC2 = (Type=Prereq A Course#=CIS311) v (Type=Offering A Course#=CI2311) v
(Type=Teacher A Course#=CIS311) v (Type=Student A Courseff=C 1S311)

3 £ e — i In this case, MCC2 can also be expressed
| / \ <
| i, .as (COURSE#=CIS311 A - TYPE=COURSE).
i // = Type=Prereq *\\ a cluster
/ - Courseif=C 13311 \\‘\\\\\\ (/’
I Prereq.Coursef#=C15212 o0 \\‘r//
’ Title=Y - Type=Prereq o
a
: l - Coursef/=CIS311 - Type=Offering i
3 E Prereq.Course#=CI3211 - Courseif=CIS311 \\\
P ‘ Title=xxx Date=3.10.77 \\
‘ Location=Col
Format=XYZ \\
\ - Type=Teacher \
- Course#=CIS311
\ Date=3.10.77 - Type=Student
\ Teacher.Emp#=1475 - Course#=CIS311 \
Name=Delutis Date=3.10 - Type=Student
\ Student.E - Coursef#f=CIS311 \
\ : Name=Wash Date=3.10 ~ Type=Student ‘
N Grade= C+ Student .E ~ Course#=CIS311 |
~ Name=Jone Date=3.10.77 1
T Grade= B- Student.E=4987 |
L \ L . '
e 7 Name=Brown j
o g, Grade=A)
> i - :
\ 4
;; —~—— R b i L e /
fg:f Clustering keywords are also

marked with ~,

Figure 15. The Mandatory Clustering Condition for ttre Dependent Segments of a

Root Segment.

Bk

containing Course#=CIS311. In addition, Figure 16 shows the Type-D keywords
(clustering keywords), the symbolic identifiers and the other keywords.

In general the first MCC, defining the cluster of root segments, is just
K where K is the keyword representing the root segment type. Then the MCCs

corresponding to each cluster of dependent segments is of the form

-~

(KlA,i) v (K2 A ﬁ) W ocen M (Kt A K)

~

where K is the keyword representing the sequence field of the root segment and
Kl, Kz,..., Kt are the keywords representing the dependent segment types.

Next, we need to show that the Type-D keywords chosen above, though few in

ey

number, are sufficient. By sufficient, we mean that (1) the Type-D keywords
E can facilitate all DL/1 calls when applied to the transformed database, (2) any
! additional Type-D keywords will not improve the performance (i.e., reduce the
number of MAU accesses). Since DL/1 calls always retrieve segments by type and
the segment types are already made into Type-D keywords. Queries in terms
of Type~D keyword predicates can emulate the DL/1 calls.

To show that the searching performance cannot be improved by designating more
Type-D keywords is more involved. There are two cases. First, can performance

be improved in the retrieval of root segments? Since the root segments are

clustered, it takes one MAU access to retrieve the root segments. Thus nothing,
including the addition of more Type-D keywords, can improve the retrieval of

root segments.

R T U | ag AR

Second, can performance be improved in the retrieval of the dependent seg-
ments of a root segment? Since, according to the second clustering policy, all
dependent segments are clustered by the sequence field of the root segment, we
have to show that the sequence field of the root segment will always be used in 3
a query to retrieve the dependent segments. This result implies that only one -
MAU access is required to retrieve the dependent segments so that again no
improvement is possible. It remains to show that the sequeunce field of the
root segment will always be used in a query to retrieve the dependent segments.
Since the parent-child relationships are preserved by embedding the symbolic

identifier of the parent into its child segments, whenever the child segments

are to be retrieved, the symbolic identifier of the parent has to be used in
the query. However, the sequence field of the root segment appears in every

symbolic identifier of its dependent segment. Therefore, the sequence field

T

of the root segment will always be used in a query to retrieve the dependent }

segments.

—-325-

Symbolic identifier is underlined.
Keyword is marked with @.

Type-D keyword is marked with _ |

@ Type=Course
@ Coursefl=
@ Title=

Descripn=

@ Type=Prereq @ Type=Offering
@ Courseft= @ Courseit=
@ Prereq.coursef= @ Date=
@ Title= @ Location=
Format=
@ Type=Teacher @ Type=Student
@ Coursei= @ Coursef=
@ Date= @ Date=
@ Teacher.Empfit= @ Student.Emp#=
@ Name= @ Name=
@ Grade=
Figure 16, The attribute templates of DBC records showing Type-D Keywords.

|
|
e

———————— g - bl u

In summary, we have proposed a way of choosing a sufficient set of
Type~D keywords for a file. Even though the number of Type-D keywords chosen

is small, the performance has not been compromised.

4.3, The Storage Requirement of the Structure Memory(SM) and Mass Memory (221)

The amount of SM storage required depeunds on the number of Type-D
keywords. Using the second clustering policy, there is one Type-D keyword
for each root segment (i.e. for each IMS database record) and for each seg-
ment type. Since the number of segment types is much smaller than the number
of IMS database records, we estimate the number of Type-D keywords by the
number of IMS database records. Since an IMS database record is much larger
than a directory entry, the fraction of SM storage versus MM storage will
indeed be small.

The use of symbolic identifiers increases the storage required to
store a segment as a DBC record. At each level of a hierarchical data structure,
the number of additional keywords stored in a DBC record equals the number of
keywords in the symbolic identifier of the parent, i.e. zero at the root level,
one at the second level and (i-1l) at-the i-th level.

To estimate the storage saved by the elimination of IMS pointers, consider
an IMS hierarchical structure representation called the child/twin pointer
representation. The child/twin pointer representation gives the user the minimal
path to traverse and update an IMS database. Each segment has the following
pointers to its "relatives":

(1) A pointer to the first child segment of each type.

(2) A pointer to the last child segment of each type.

(3) A forward pointer to the next twin.

4) A backward pointer to the previous twin.

(5) A pointer to the parent segment.

Hence, assuming there are m child segment types related to this segment, there
are 2m + 3 pointers.

To compare the storage requirement for IMS pointers and DBC symbolic
identifiers, the following terms need to be defined. The fanout of a segment
type is the number of its child segment types. The depth of an IMS database is
the maximum number of levels. For simplicity, we assume that the fanout of
each segment type is a constant m and similarly that the number of twin occur-
rences of a child segment type (including the root segment type) is a constant
v. It follows that every segment occurrence, except at the lowest level,
has m*v child segment occurrences. Thus level 1 has y segments, level 2 has

my2 segments and in general level i has mi-ly1 segments. The number of pointers

|

|

é
1

- N—

-37-

and additional keywords usecl at the i-th level will be mi_lyi(2m+3) and

* Sl T L e e
e e e A et 20— e el

mi-lyi(i—l), respectively. Hence the total number of pointers Np is given by:
n —
Np =2 mi 1yi(2m+3)
i=1

and the total number of additional keywords Nk is given by:
n

=2Zm
i=]

i-1 i,
Nk ¥ (1-1).

We then define the storage ratio R as:

a>$ Ny
: =_—x k (1)
3 Np

where k is the ratio of the average length of a sequence field to the length of

a pointer. When R < 1, more space is required for the pointers than for the
additional keywords.

By using some algebraic manipulation and the following formulas *

k P p+l
Sp(x) = 2 e %f?i_._
=0 i
P at p+l
Tp(x) = 2 sol o SplE) L EcUNEX)
i=1 1-x
it can be shown that for x=my
R= k r 1 my-1 i n-1 }
(2m+3) '1-my (my)?-1 " 1-1/(mn)®
%,: Assuming 1/(mn)" 2 0, R can be approximated by 5
b | ‘
2 K L
ko D e { c— -
:;i R= 2n9) {l-my + (n-1)} (2)

't
}

Further assuming my is sufficiently large, then (2) can be simplified to

o n-l
RS kv (3)

According to (3), the storage ratio R between symbolic identifier and pointers
decreases when either the depth n decreases or the fanout m increases.

In Tables II, III, IV, and V, we show different values of R for various n, m, and
k. Since IMS uses 4 byte pointers and k may have values of 1, 2, 4, or 8, the

length of an average sequence field is 4, 8, 16, or 32 bytes, respectively.

10
0.00
0.04
0.09
0.13
0.17

A

Table II. R as a function of n and m where k=1

m

n 1 2 J 4 5 6 7 8 9 10
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
. 0.40 0,28 9,22 0.18 015 0.13 @.12 0.1l1 ©¢.10 0,09
3 0.80 0,57 0,44 0.36 0.31 0.27 0.24 0.21 0.19 0.17
4 1.20 0,86 0,67 0.54 0.46 0.40 0.35 0.32 0.29 0.26
5 1,60 1.14 0.89 0.73 0,62 053 0.47 0.42 0.38 0.35

R as a function of n and m where k=2.

Table III.

?
S
.
i
;.
X
»
L .
¥
r
£

74

=30

{
m

n 1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 6.79 0,57 0.44 @.36 0.31 0,27 0.23 0.2} ©.19 0.17
3 1.59 1.14 0.89 0.73 0.61 0.53 0.47 0.42 0.38 0.35
4 2.39 ¥.71 133 1,090 9.92 . 0.80 0.7F 0463 0.57 0.52
5 3.¥9 2.28 1.78 1,45 1,23 1,07 0.94 0.8 0.76 0.70

Table IV, R as a function of n and m where k=4,

1 ps 3 4 5 6 7 8 9 10
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.58 1,14 0.89 0.73 0.61 0,53 0.47 042 0.38 0.3
3.18 2.28 1,77 1.45 @ 1.23 1.07 0.9¢ 0.8 @.76 0.70
.78 3.42 2,66 2,18 1.8 1.60 1.41 1.26 1.14 1.04
6,38 4,57 . 3,55 2,91 2:,46 2313 1.88 168 108 139

~
-}
[T N I 8

e Ao F e b i e
TLT e I L

Table V. R as a function of n and m where k=8.

D=

In summary, the storage requirement for the symbolic identifiers is
compensated for in many cases by the removal of the conventional address
pointers. It also suggests that the design of a hierarchical database with
smaller number of levels and larger fanout will result in storage conservation
when it is stored in the DBC. Furthermore, the use of symbolic identifiers
eliminates the needs of creating secondary indexes when the user wishes to

enter the database through the dependent segments, contributing a further re-

duction in storage.

o

5. THE TRANSLATION PROCESS

The DL/1 interface module (IM) is the component of the IMSI which interfaces
with an IMS user program by translating and executing DL/l calls. The IM is
designed to fully utilize the DBC capabilities so that the IMSI need not
perform any content-addressing ,resulting in a reduction of the software cost
for implementing and running the IMSI.

The information obtained in the course of executing a DL/l call is main-
tained in the interface system buffer (ISB) and consists of DBC records which are
retrieved from the DBC in the execution of the DL/l call. Since each DBC
record represents a segment in an IMS database, we will use the terms DBC record
and segment interchangeably whenever there is no confusion. We shall call all

the meaningful information in the ISB at any given time the content of the ISB.

In the following example, we use the IMS database which was defined in
Figure 7. Suppose the DL/1 call to be processed is:
GU COURSE (TITLE="MATR')

OFFERING (LOCATION='STOCKHOLM')

STUDENT (GRADE='A")
This get-unique (GU) call has three segment search arguments (SSAs), COURSE
(TITLE="MATH'), OFFERING (LOCATION='STOCKHOLM'), and STUDENT (GRADE='A').
It retrieves a specific segment by starting at the COURSE segment type and
finding the first segment satisfying the SSA at each level, and then retriev-
ing the segment satisfying the last (i.e., the third) SSA. The content of the
ISB after the execution of the above call is shown in Figure 17. For clarity,
we do not show how the information is managed in the ISB (see Section 6). At
this point we assume that the ISB has unlimited memory. It contains segments
of three types, ordered according to the values of their sequence fields.

are the segments on

which position is established at that level (see Section 3.2) and are referred

The segments at different levels marked as 'x', 'y', or 'z'

to as the current segment of the given type. The STUDENT segment marked 'z'

is also established as the current position in the database and is sent to the

user 1/0 area.
Now we shall proceed to illustrate how the content of the ISB is established
during the execution of the above GU caill.
(1) Starting with the first SSA in the call, i.e., COURSE (TITLE='MATH'), the
COURSE segments which satisfy the qualification TITLE='MATH' are retrieved
from the DBC and put into the ISB. These segments are retrieved by the

DBC query (I'YPE=COURSE A TITLE="MATH') and are sorted by the DBC according

to the values of their sequence fields.

b2

b’ 7
Fii a3 e} Bl
/ \

/ &
/i \\
/ \
/Y N
0= .. =
£
/ 5
/
/ N
y \
N
/ N

Figure 17. The content

r/

e s

(The set of COURSE segments

\

. which satisfy the qualifi-
(cation TITLE='MATH',

et
e e

, The set of OFFERING seg-

{ ments which satisfy the

\ qualification LOCATION=
\ 'STOCKHOLM' and are the

by children of x

The set of STUDENT segments
i which satisfy the qualifi-
\. cation GRADE='A' and are
~~._ children of y_

of the ISB,

b3

(2) The first COURSE segment in the ISB is taken as®the current COURSE
segment. ;

(3) The OFFERING segments, children of the current COURSE segment, are then
retrieved with the qualification (LOCATION='STOCKHOLM') and stored in
the ISB in the order defined by their sequence field. If the symbolic
identifier of the current COURSE segment were (COURSE#=M5), then the
DBC query created for this retrieval would be(TYPE=OFFERING A COURSE#=
M5 A LOCATION='STOCKHOLM'),

(4) If no segment can be retrieved in step 3, then the next COURSE segment
in the ISB is established as the current COURSE segment and step 3 is
repeated.

(5) Suppose some OFFERING segments are retrieved and stored in the ISB, the
first OFFERING segment in the ISB is taken as the current OFFERING
segment,

(6) A process similar to step 3 and step 4 is performed to retrieve the first
segment with qualification (GRADE='A').

(7) The first of the retrieved STUDENT segments is sent to the user I/0 area.

It should be noted at this point that the content of the ISB established
by the above GU call could be used to process the next DL/1 call, for example
to retrieve the next student who has an A grade in a MATH course offered in

Stockholm. 1In this case the next student segment (with respect to the current

STUDENT segment) in the ISB is transferred to the user I/0 area without

accessing the DBC. 1In order to process the next DL/1 call, it is essential

for the IM to know the content of the ISB. Thus a status information table is

established.

The example discussed above has only one hierarchical path at a given
time. (i.e.,a COURSE segment with TITLE='MATH', its child OFFERING segment
with LOCATION='STOCKHOLM' and its child STUDENT segment with GRADE='A').

IMS also allows multiple hierarchical paths as long as all segment occurrences
at the same level have the same parent segment. Thus a second hierarchical

path to a TEACHER segment is allowed. These hierarchical paths define a
current segment for each segment type.

Ak

5.1 The Status Information Table (SIT)
The IMSI maintains information about the content of the ISB in the status

information table. Making use of the SIT, the IMcan determine what changes,

if any, have to be made to the content of the ISB in order to execute a

DL/1 call. The information stored in the SIT is not used in the execution of a
GU call since each GU call executes independently of the previous contents of
the ISB. However, the SIT is a vital tool used to execute the GN or GNP call
since the result of such a call depends on the previous content of the ISB.

For each segment type the SIT contains a COUNT of the number of occurrences of
that segment type in the ISB, a number between 1 and COUNT indicating the CURRENT
SEGMENT of that segment type and a Boolean expression (QUALIFICATION) satis-
fied by all the segments of that type in the ISB.

The CURRENT SEGMENT field is used to facilitate sequential traversal
(i.e.,the retrieval of the "next" segment). The COUNT field is used to deter-
mine whether or not the current segment is the last segment in the ISB.

The QUALIFICATION field is used to tell whether or not the content of the ISB
can be used to satisfy the DL/1 call.

5.2 The Translation of the Get Calls

The various DL/1 calls have been discussed in Section 3. Since the get
calls are the most sophisticated calls in DL/1, we first discuss how a get
call is executed by the IM. The execution of the delete, replace and insert

calls i, straightforward and will be discussed later in Appendix A.

5.2.1 An Observation

It can be shown that GU and GN can be viewed as cases of GNP. Therefore
any GU, GN or GNP call can be treated as a GNP call. This observation allows us
to use basically the same algorithms to handle all the get calls. To illustrate
this point consider the IMS database shown in Figure 18 having three levels and
three root segments. we now introduce a fictitious level (called level zero),
as shown in Figure 19, Each root segment becomes a child segment of the seg-
ment (the zero segment) introduced at level zero. We will refer to the IMS
database given in Figure 18 and Figure 19 as DBl and DB2 respectively. Notice
that DB2 has only one database record.

We now show that any GU, GN and GNP call given to DBl can be treated as a
GNP call given to DB2 if the current position and parent position in DB2 are

initialized appropriately.

[}

n

<
|

¢ T=a91

Z T@Aa97]

T T=4A971

*spi0d21 9SBqEIBP ¢ Y3ITM 9SBqEIBP SWI UV

*gT 2an314

wo okwad

-jueied [esidATun B JO UOFIONPOIIUT Y3l £q pawroFsueil aseqe3ep SWI 2Ul

‘6T @an33d

€ T°A91

~4i6=

7 T°4a91

T 12491

0 T=a97]

e ———

A s

PRI TS X L P

AVt D
-
SESE T

e

b=

First, to see that a GN call to DBl is equivalent to a GNP call to DB2,
we set the parent position on the zero segment in DB2 and set the current
position in DB2 to that in DBl. The effect of executing a GN call on DBl is
the same as executing a GNP call with the same search arguments on DB2.

Second, to see that a GU call to DBl is equivalent to a GNP call to DB2,
we set the current position and parent position in DB2 to the zero segment and
execute the GNP call with the same segment search arguments as those in the GU
call.

Finally, a GNP call to DBl is equivalent to a GNP call to DB2 as long as

the current position and the parent position are the same.

5.2.2 Examples
These examples are based on the IMS database defined in Figure 7.

Example 1: To process the call:

GU COURSE
OFFERING (LOCATION='STOCKHOLM')
A get-unique call must find the first occurrence of a segment satisfying
the SSAs. Thus no information in the ISB is of use. Therefore, the SIT must
be initialized so that processing may begin at level 1 (Figure 20). The

DBC query for retrieval
(TYPE = COURSE)

is created to load the ISB with all COURSE segments. Assuming there were, for
example, a total of 15 such segments then the ISB should be changed to that shown
in Figure 21. The next step is to retrieve OFFERING segments which are child-
ren of the current COURSE segment and wﬁicb satisfy the qualification
LOCATION='STOCKHOLM'., Suppose the curreﬁﬁlCOURSE segment has the symbolic

identifier K. The DBC query created for retrieval is:
(TYPE=OFFERING)A K A(LOCATION='STOCKHOLM')

Suppose that 4 OFFERING segments are retrieved from the DBC and stored in the
ISB. The changes in the SIT are given in Figure 22. The processing is
completed and the first OFFERING segment is transferred to the user I/0 area.

Example 2: To process the get-next call:

GN COURSE
OFFERING (LOCATION="'STOCKHOLM")
STUDENT (GRADE="A")

s

e T g 41%'% sy

g §e 0, AT
TIRET SN

b

Zééacher) 4
(student) 5

CURRENT |
SEGMENT ‘ COUNT QUALIFICAIION
0 1 1 NULL
(course) _i— R R
foereq) 2
(gg%ering)3 T X
Eééacher).4 i
(student) 5 | e
Figure 20. 1Initialized SIT.
CURRENT l
SEGMENT | COUNT , QUALIFICATION
0 1 ?7 1 NULL
(course) T |15 NULL
fgrgreq) 2 i
(offering)3 i
|
;

Figure 21. SIT after retrieval of COURSE segments.
CURRENT |
BEGMENT i COUNT i QUALIFICATION
0 i 1 NULL
Eééﬁ;se) 1 ? 15 NULL
(prereq) 2 t
(offering)3 g = K LOCATION="*STOCKHOLM"
(teacher) 4 z . =1 o
ifstudent) 5 g
Figure 22. SIT after retrieval of OFFERING segments.

kO

assuming the previous call is the one given in Example 1. Since the SSAs

for COURSE and OFFERING are identical, processing begins at level 3 by
bringing into the ISB the STUDENT segments which are the children of the
current OFFERING segment satisfying the qualification GRADE='A', Suppose the
symbolic identifier of the current OFFERING segment is composed of keywords
Kl’ KZ’ ee Kj' The DBC query created for retrieval is:

(TYPE=STUDENT)A Kl A K2 K e N Kj A (GRADE='A"')

Suppose that 5 STUDENT segments satisfy the query. The changes in the SIT is
shown in Figure 23. The processing is completed and the first STUDENT seg-
ment is transferred to the user I/0 area.

Now suppose that the QFFERING occurrence has no STUDENT child segments with
Grade="A'. Then it is necessary to examine the next OFFERING occurrence, which
is known to be in the ISB since the OFFERING SSAs for this and the previous
queries are the same. Thus the STUDENT segments which are children of the
next OFFERING must be retrieved.

Example 3: To process the get-next call:

GN COURSE
OFFERING
STUDENT (GRADE="B")

assuming the previous call as given in Example 2. Since the SSA for STUDENT
is GRADE='B' whereas the previous was GRADE='A', the DBC must be asked to
retrieve new STUDENT segments which are children of the current OFFERING but
which follow the current STUDENT. Thus suppose that the symbolic identifier
of the current OFFERING segment is composed of the keywords Kl’ Kz,..., Kj and
the sequence field of the current STUDENT segment is SEQFLD= X. Then the DBC
query created for retrieval is:

(TYPE=STUDENT) A Kj AKy A Law AK A (SEQFLD = x)A(GRADE='B")

2 3
Suppose that 8 STUDENT segments are retrieved and stored into the ISB. The
changes in the SIT is shown in Figure 24, The processing is completed and
the first STUDENT segment is transferred to the user I/0 area.

Finally suppose that the current OFFERING occurrence has no STUDENT child
segments with GRADE='A', As in the similar situation in Example 2, it is
then necessary to examine the next (in the traversal sequence) OFFERING

occurrence. However the new SSA for OFFERING is NULL, while the old was

e

’ ! -50-
|
4
CURRENT
SEGMENT | COUNT | QUALIFICATION
0 1 1 NULL
z;ourse) 1 1 E 15 NULL A
iﬁféfeq) 2 |
(offering)3 1 4 | LOCATION="'STOCKHOLM'
(teacher) 4
-(gﬁudent) 5 1 Lo 5 GRADE="A"

Figure 23. SIT after retrieval of 5 STUDENT segments.

CURRENT f |

SEGMENT | COUNT = QUALIFICATION %

0 1 ¥ NULL 1

‘(course) 1 1 5550) NULL é

. _zg;;;eq) 2 % g

: (offering)3 1 4 i LOCATION="STOCKHOLM' J

(Ee?cher) 4 ! i

3 (student) 5 1 : GRADE='B' ;

~i‘; '
'%iz Figure 24. SIT after retrieval of 8 STUDENT segments with

GRADE='B'.

Bt |
Rha |

|
|
|
|
|
|
|

LOCATION="'STOCKHOLM'. Thus there is no guarantee that the next occurrence is in
the ISB so that the DBC must be asked to retrieve all the OFFERING segments :
that are children of the current COURSE segment and have sequence fields greater
than the current OFFERING.

5.2.3 A Translation Strategy

The processing of a get-call will now be described briefly. The complete
algorithms are described in Appendix A.

The status information table (SIT) is used to process any get-calls. Before I
any calls are processed the SIT must be initialized to indicate that no segments
of any type are in the interface system buffer (ISB) except the zero segment]
(whose presence is fictitious). After a get-call has been processed the SIT §
contains information about the segment occurrences in the ISB. Recall that IMS *

identifies a current occurrence of one or more segment types. One of the

properties of these occurrences is that all occurrences of different segment

types at the same level must be children of the same segment occurrence at the
next higher level.
Suppose that a get-call of the following form is received by the IM:

Get (sl, Ql)
(Sz, Qz)

5,0 Q)

where Si is the segment type and Qi is the corresponding qualification at level 1i.
This call is first transformed by taking QO=NULL and adding the pair (SO,QO)

representing the zero segment to obtain

Get (Sy, Q)
(8,5 Qp)
5.5 Q)
The problem is then to determine which of the current segment occurrences
satisfy the new SSAs at each level and then whether the ISB contains all the
segment occurrences which might satisfy the new SSA by comparing the Qi with
the corresponding QUALIFICATION in the SIT.

Assuming that the current occurrences of segment types SO’ Sl’ ...,Si

9 ! w52
i

satisfy the corresponding qualifications Qg, Q1, Q2,...,Qi, then the following
table shows what can be determined about (Sj4+7, Qi+1) = (S, Q) by information

in the SIT. 1In that table the notation "Q implies QUALIFICATION" means the
Boolean expression Q implies the Boolean expression QUALIFICATION which is an
entry in SIT, so that a segment occurrence satisfying Q must also satisfy

: QUALIFICATION. Thus, since the ISB contains all the segments satisfying Q.

F However, if QUALIFICATION implies Q but they are not identical, there pay be
segments satisfying Q which are not in the ISB and which may need to be retrieved

from the DBC.

The previous discussion suggests the algorithm RETRIEVE (I, SUCCESS),
shown in Figure 25, which retrieves segments satisfying Qi’ Qi+1’ et Qn
that are descendents of segments satisfying QO, Ql, Siorv s Qi—l' SUCCESS 1is
set to TRUE if the segments are found, otherwise it is set to FALSE. Retrieval
of segments satisfying Qg, Q1, ... » Q, is accomplished by calling RETRIEVE (0, SUC-
? CESS). RETRIEVE uses two other procedures, BUFFER (I, SUC) and NEXT (I, SUC).
¢ BUFFER (I, SUC) retrieves segments of type S

e AR LU AT o+ 554

T satisfying QI from the DBC and

places them into the ISB. SUC is set to TRUE if a non-empty set is retrieved; i

otherwise, to FALSE. NEXT (I, SUC) advances the current segment of type SI

and sets SUC to FALSE if there are no more segments, and to TRUE, otherwise.

prr

Unless QI = QUALIFICATIONI (i.e., the desired segment is in the ISB), the next :

occurrence of the segment type SI is retrieved from the DBC and placed in the ;3
ISB. There is no attempt to determine if QI implies QUALIFICATIONI (1845 the i
desired segment may already be in the ISB).
Current occurrence All occurrences that ?
satisfies Q satisfy Q are in the ISB
;7! 1. no current segment of type S no no
A
fﬁﬂ 2. current segment of type S yes yes
Tl and Q=QUALIFICATION
f; 3. current segment of type S maybe yes s
b and Q#QUALIFICATION
3 and (QUALIFICATION=NULL
E or Q implies QUALIFICATION)
4, current segment of type S yes not necessarily
and Q#QUALIFICATION
; and (Q=NULL or
‘ QUALIFICATION implies Q)
5. othervise maybe not necessarily

=53

RETRIEVE (I, SUCCESS)

/*Retrieves segments satisfying QI’ Q Ao QN that are descendents*/

/*of segments satisfying Qo, Q cee ¥+6I-1' Set SUCCESS=TRUE if seg- */

|
a ’
/*ments are found, otherwise FALSE. */
? if no current segment of type SI or current segment of type SI does not
| satisfy QI
then do;

call BUFFER (I, SUC);
if = SUC then SUCCESS=FALSE, return;
end;
if I=N
then do;
call NEXT (I, SUC);
if - SUC then SUCCESS=FALSE, return;
end;
else do;
RETRIEVE (I+1, SUCCESS);
do while - SUCCESS;
| call NEXT (I, SUC)
if - SUC then SUCCESS=FALSE, return;
RETRIEVE (I+1, SUCCESS);
end;
end;
end RETRIEVE;

BUFFER (I, SUC)

/*Retrieve segments of type S_ satisfying QI from DBC and place into ISB.*/
if no current segment of type S_ in ISB

I
then do;
retrieve from DBC segments of type SI which satisfy QIinto ISB;
else do;

retrieve from DBC segments of type S, which satisfy Q. and their
sequence field values are greater that that of the current segment
of type S_;
if no segment can be retrieved
then SUC=FALSE;
else SUC=TRUE;
QUALIFICATIONI=QI;

end BUFFER;

NEXT (I, SuUC)
if Q #QUALIFICATION,
then do;
call BUFFER (I, SUC)
] } if 5 SUC then return;
- end;
] o if the current segment of type S,
{ | then SUC=FALSE, return;
R else do;
: advance current segment of type S
SUC=TRUE
return;
end;
' end NEXT;

is the last segment in the ISB

1’

—y

! (g Figure 25, The algorithms RETRIEVE BUFFER, AND NEXT.

6. BUFFER MANAGEMENT

The interface system buffer (ISB) is created and managed in the IMSI to
reduce the number of accesses to the DBC. It is designed to be implemented
in a virtual memory system environment as shown in Figure 26. More specifically
the ISB resides in the virtual memory space of the computer system which sup-
ports the IMSI, whereas the buffer partition is the partition of main memory
allocated to the ISB for paging. Since virtual memory management is conventional,
we will not address it here.

Before introducing our concept of buffer management, we first discuss
what buffer management is like when a conventional general-purpose computer
is used to support database management. The buffer manager is the set of
modules that manages blocks (or physical records) of information. A block
contains records (logical records) which are seldom relocated. Due to this sta-
tic nature and the fact that records in a block may have diverse characteristics,
not every record that is in a block will be relevant for a particular application.
Hence when a block is transferred from the database to the buffer, not all infor-
mation stored in the block will actually be utilized, thus effectively increasing
the amount of I/0 activity since some irrelevant data are transferred. Further-
more, the presence of irrelevant data decreases the effective buffer size and
consequently increases the frequency of data transfer from the database to the
buffer.

Due to the diverse characteristics of records stored in a block, the buffer
manager has little or no specific knowledge about the content of a block. This
results in some undesirable effects, First, when a particular record is retrieved
by its contents, the entire buffer must be searched in order to determine if the
record resides in the buffer so that on the average, half of the buffer needs to
be searched. Since the buffer is implemented in a virtual memorvy environment,
the I/0 activity induced by paging is considerable. Second, the buffer manager
has little knowledge to predict which block residing in the buffer will be used
again in future references. A general policy known as a block replacement
algorithm, must then be devised to replace the blocks stored in the buffer.
Examples of block replacement algorithms are least-recently used (LRU), first-
in-first=out (FIFO) and random. These algorithms are intended to increase the
hit ratio of the blocks stored in the buffer. Since these algorithms are general
in nature, the hit ratio can seldom be close to the ideal.

The buffer management concept emploved in the IMSI is different from the

conventional concept. When information is transferred to the ISB, it is retrieved

-

|
E
f
3
|
|

Bt St ot s oo LY e e i

[

ey

Database
Space

The DBC Database svesesesssmoving head

Virtual Memory
Space

Real Memory
Space

Figure 26.

DBC access
(Buffer Management)

ISB eeeesesDrum/fixed

Paging
(Virtual Memory Management)

Partition

The virtual memory environment of the ISB,

disk

head disk

Buf fer vesssnsseeeessMain memory

o ————-

Zre

from the DBC according to content, i.e. all the DBC records which are transferred
to the ISB at one time satisfy a DBC query. Therefore, the system buffer manager
(SBM) has specific knowledge on the content of the ISB. Furthermore, the process-—
ing of these DBC records follows an order which is defined by a kevword repre-
senting a sequence field of a segment. Using the content information and the
ordering information available to it, the SBM can predict what will be the fu-
ture references if the user continues to process these DBC records. The SBM

also knows which DBC records have been referenced and will not be referenced

again because the order of processing is known., Therefore, it can always deter-~
mine which DBC records can be removed for replacement and a general replacement
algorithm like the LRU, FIFO, etc. need not be used. Furthermore, all DBC |
records transferred to the buffer are relevant to the application because they '
all satisfy the same query. This minimizes the amount of I/0 activities re-
quired to transfer information from the database to the buffer as no irrelevant
data takes part in the transfer. F

To sum up, the function of the SBM becomes fairlv simple for two reasons.

First, the SB!M need not perform content searching since this is performed by the
DBC. Second, the process of loading and unloading the ISB is determined complete-
ly by the translation process. Hence, the SBM need not have any generalized

block replacement algorithm. The major function of the SBM is then to ensure

that all virtual space allocated to the ISB is well utilized.

The space allocation problem arises when all the DBC records that should

be placed in the ISB exceed the size limit of the ISB. This situation is pos-
sible, for the number of DBC records which satisfies a query is not fixed. When
there is insufficient space in the ISB, the SBM must have a policy to temporar-
ily unload some DBC records from the ISB even though they have not been refer-

enced. Such a policy is described in the following section.

6.1. The Buffer Space Allocation Strategy

Virtual space is allocated to the ISB in terms of pages. The size of the
ISB depends on the total virtual space available to the user and should be
chosen to be as large as possible for the following reason. If we define the
1/0 cost as the sum of the cost of DBC access and the paging cost, and if we assume
that the paging cost is less than the cost of DBC access,then a larger buffer
size will decrease the I/0 cost., This is because a larger ISB allows
more DBC records to be contained in the virtual memory, thus effectively reduc-
ing the I1/0 cost when insufficient space in the ISB results in additional DBC

access. The assumption that paging cost is less than the cost of DBC access is

reasonable as the paging mechanism usually emplovs storage devices which have

B ——

-57~

no seek time, such as a drum, while the DBC employs moving head disks, which
have seek time delay.

tlow is ISB space allocated internally? Segments of different types could
be stored in the ISB (Note: when we say segment in the ISB, we actually mean
the DBC record representing that segment). Hence it is necessary to allocate
a number of pages in the ISB to each segment type defined in a logical data
structure of the IMS database. Such allocation should be based on a priori
knowledge about the average number of pages used by each segment type in the ISE.
If no such knowledge is available, the allocation could be proportional to the
percentage of the database space occupied by a segment type. The purpose of the
allocation is to provide a policy to decide at least how much ISB space each
segment type can have. We call this amount of space allocated to a segment type
a quota.

At any given time, some segment type may not utilize part or all of its
quota. There are two such possibilities. First, the space currently occupied by
this type that is less than its quota will be referred to as the "left-over" space
ot this segment type. Second, the quota space not yet used at all will be re-
ferred to as the '"not-yet-used" space of the segment type. To fully utilize
the ISB space, the "left-over" space should always be consumed by other segment
types whose space requirement exceeds its own quota. The "not-yet-used" space
of a segment tvpe can also be used by other segment types, Thus space wastage
can be avoided due to under utilization of space by some segment types. How-
ever a buffer space reclamation problem is thus created. Steps must be taken
to redistribute the buffer space if a segment type wants to reclaim the buffer
space allocated to its quota, but the space is being used by other segment types.
There are two steps in the reclamation process. The first step is garbage
collection. Since the processing of the segments is in the order defined by
their sequence field, the segments that have already been processed can be re-
garded as garbage. The garbage collection step will free all such garbage
space. If this step results in sufficient space for the reclamation, then no
further action is taken. Otherwise, the second step of reclamation is carried
out to deallocate the space over-~used by some segment types. Any segment
type that has over-used its quota is a candidate for deallocation. The question
now is how to choose a segment type for deallocation? The segment types in
the highest level(i.e. level closest to the top level) should be deallocated
first for the following reason. In the IMS database traversal process, segments

at a higher level will not be required until all Jower-level segments have been

-58-

| trawersed. Thus the removal of some segments in the higher level has a less

immediate affect on the traversal process.

In the following subsection, we shall present the data structures necessary

to implement the above buffer space allocation strategy.

6.2. Data Structures

The SBM maintains 3 tables for the management of the ISB. They are the
ISB bit map, the ISB page table, and the segment control cable. The ISB bit
map shows which pages in the ISB are in use or not in use. It is used to locate
the unused pages for space allocation. The ISB page table shows which pages are

allocated to each segment type. The pages allocated to a segment type will

have corresponding entries in the ISB page table linked by pointers. The list
| of linked entries in the ISB page table also gives the order in which the pages
are allocated to a segment type, thus defining the order that these pages will
be referenced. The segment control table contains information for each segment
type. It includes some pointers to the ISB page table. The relationship

between these three tables is shown in Figure 27,

6.2.1. The ISB Bit Map

| Each bit in the ISB bit map corresponds to a page in the virtual space
allocated to the ISB. A bit is set to 1 if the corresponding page in the ISB is
allocated for use, otherwise it is set to zero. If the SBM wants to allocate a
certain number of pages for a segment type, the ISB bit map will be searched
sequentially for unallocated pages. Since there is one bit for each page in the

ISB bit map, the size of the ISB bit map will be N/8 bvtes where N is the total

. number of pages in the ISB. For example if N is 1000 then N/8 would be 125.
g 6.2.2. The ISB Page Table
The format of an ISB page table entry shown in Figure 28, Each entry

corresponds to a page in the ISB. The pointer fields FPTR and BPTR are pointers
to other entries in the ISB page table, They define a sequence of pages allocated
] to a segment type and are used to traverse the sequence of pages in a forward

and backward direction, respectively. They are also used for the deallocation

and garbage collection process discussed in Appendix B. Assuming that the ISB
has no more than 1000 pages, then it will allow a conveniently large 4000K byte.
address space if each page is 4K bytes. Hence the FPTR and BPTR fields will both
need 10 bits to address the ISB page table. Therefore, the maximum size of this

table is 2.5K bytes (=1000 x 20/8).

ISB Page Table

Segment Control Table *
2
1 3
2
i .
| ol
' S]
r/ : :
s o
ra:
! lol
1 e o T e
5 ISB Bit Map '
g
1 ¥
b
8|

Figure 27, Segment control table, bit map, and ISB page table.

6.2.3 The Segment Control Table

Each entry in the segment control table contains information about a
segment type. The format of a segment control table entry is shown in Figure
29. The deallocation field (D) indicates whether or not all the pages allocated
to the segment type have been returned to the common pool. The list head field
(LHEAD) contains a pointer to the beginning of the list of ISB page table entries
allocated to this segment type and the list tail field (LTAIL) contains a pointer
to the end of this list. The LHEAD and LTAIL fields allow traversal of the list
of ISB page table entries in either direction. The o0ld CS field (OCS) contains
the value of the CURRENT SEGMENT field in the status information table(SIT)
which was last accessed by the SBM. If the value of the CURRENT SEGMENT field
has never been advanced by the IM, then the value of the 0CS field will equal
that of the CURRENT SEGMENT field. Otherwise, the value of the 0CcS field
would be one less than that of the CURRENT SEGMENT field. The 0CS field is
used to recall the segment that was last retrieved. The current page field
(CPAGE) contains the page number of the page containing the segment that was
last retrieved by the IM. The offset field (OFFSET) contains the offset within
the page of the segment last retrieved. The CPAGE and OFFSET fields together
form the address of the segment that was last retrieved. The total field (TOTAL)
contains the total number of pages allocated to this segment type. The used
page field (UPAGE) contains the number of pages which precede the page indicated
by CPAGE. These pages contain segments which have been processed and could be
released by the garbage collection process. The length field (LENGTH) contains
the length of each DBC record stored.(Here we assume fixed length segments).
The sequence value field (SEQ) contains the value of the sequence field in a
segment. The S8E() field is used when the ISB does not have enough space to con-
tain the entire set of segments transferred to the IMSI from the DBC. A solu-
tion to this problem is to discard some of the segments transferred to the IMSI.
Since the segments with higher seﬁuence field values will be referenced at a
later time, such segments should be discarded. Suppose that all segments whose
sequence fields have values less than or equal to some value, sav x, can be
stored in the ISB, then the SEQ field will have the value x. When all the seg-
ments stored in the ISB have been referenced, then the SEQ field is used to re-
trieve the rest of the segments which have been discarded. This process can be
repeated any number of times. In order to tell whether the SEQ field con-

tains meaningful information, a field C is used to indicate its validity.

The maximum length of a segment control table entry is 44 bytes and the

Figure 28, The format of an ISB page table entry

D LHEAD LTAIL ¢S CPAGE OFFSET TOTAL UPAGE LENGTH SEQ
Pl
L | |

10

Figure 29, The format of a gegment control table entrv.

L‘
|
|
!

60

maximum number of segment types is 255. Therefore, the maximum storage require-
ment of the segment control table is approximately 10K bytes. However, this
estimate is based on the worst case. In reality, a segment control table of
1K bytes should normally be quite sufficient.

In summary, the total storage requirement for maintaining these 3 tables
should normally be within a page of size 4K bytes. Hence the access of these
tables will not incur additional paging cost to the IMSI, The manipulation of

these tables is described in Appendix B.

[~

H

A
%
e
Y
»
L 2
-
.
e
8

3

-63-

7. A COMPARATIVE STUDY OF IMS AND DBC PERFORMANCE

An analysis of DBC performance relative to IMS is made. To support the
analysis, cases covering a variety of processing situations are constructed.
We then compare the relative performance between IMS and DBC via these
cases. Although these cases do not give a precise measure of performance
since DBC has not yet been constructed, they do provide us with a better in-
sight into the strengths of using the DBC in different processing environ-
ments.

A measure of performance used in these cases is considered in the double
paging environment as discussed in Section 6. In the double paging environ-
ment, data are transferred from the database space to the virtual memory space
in the (front-end) computer system, which is then subject to paging.

For simplicity, the measure of performance will only be based on the cost of
transferring data from the database space to the virtual memory space. This
cost is measured by the number of database disk accesses to retrieve or store
the required data. Thus, the measure does not take into account the soft-
ware overhead (i.e., paging, buffer searching) for managing data stored in the
virtual memory of the front-end computer. Such software requirements have
been shown (in Section 6) to be favorable to the interface because the paging
cost is greatly reduced by eliminating buffer searching.

Hierarchical data is represented in IMS by one of four organizations,
known as HSAM, HISAM, HDAM, and HIDAM.* The first two, HSAM and HISAM are
sequential representations while HDAM and HIDAM are direct. In our examples,
we assume that hierarchical data is represented in IMS by the HIDAM (Hier-
archical Indexed Direct Access Method) organization. The direct representation
is chosen instead of the sequential representation because it offers more rapid
access to segments within a database record than the sequential access methcds.
It also allows the DBC to be compared with the best possible IMS access method.
The only difference between HIDAM and HDAM lies in the fact that the root
segments are located by an index in HIDAM and by a hashing scheme in HDAM.

HIDAM allows root segments to be processed by an index and dependent
segments to be processed using pointers., A HIDAM database, therefore, actually
consists of two files--one contains the data and the other contains the index.
Indexing is done on the sequence fields of the root segments. To locate a
segment in the data file, the index file is used to provide an entry point to

the data file. Within the data file, child/twin pointers (see Section 4.3) are

* A description of HIDAM is given in Appendix C.

=64~

used to represent the hierarchical structure. The data file is divided into

blocks of equal length. A block is the unit of data that is transferred to and

from the buffer pool area in the virtual memory. Each block transfer re-

quires a disk access to the database. In the upcoming examples, we intend

to measure the number of block transfers required to process a user transaction.
The IilS database used in the cases is shown in Figure 30. Ve assume

that it has 1,000 root segments and the length of each segment is 200 bytes

(including pointers, etc.). Each root segment has 30 children (i.e., OFFERING

segment occurrences) of length 100 bytes each. Each OFFERING segment has

50 children (i.e., STUDENT segment occurrences) of length 100 bytes each.

The structure of the IMS database is, in fact, a simplification of that given

in Figure 7. This simplified structure is sufficient for the illustration

since each DL/1 call involves only one hierarchical path. The entire IMS
database is linearized according to its traversal sequence and segments are
loaded in this order into the blocks of the data file. For instance, the
first m segments in the sequence are stored in the first block of the
data file. The next m segment will be stored in the second block, and so on.
An IMS database record is a course segment and all of its dependent
segments and is, therefore, 153,200 (=200 + 30 x 100 + 50 x 30 x 100) bytes.
Assuming the block size is 4K bytes, which is a favorable page size, the IMS
database record will spread across 39 (=153,200/4000) blocks.
The examples used in the comparison iavolve a variety of processing i
situations including retrieval of a specific segment, retrieval of a number of

segments, sequential traversal of the entire database, and addition of segments |

to and deletion of segments from the IMS database. The comparison is based on

;{ the number of disk accesses required by IMS and by the DBC. An analysis of the
¥
» results of the comparison will be given later.

i3 We also touch upon other performance issues such as the security.

if-? '

¢ 7.1 Case Studies

Case 1: To retrieve a specific STUDENT segment. A
GU COURSE (COURSEF=C 15211) '
OFFERING (DATE=730105)
STUDENT (EMP{#=1684)
In the IMS environment: We will consider the best case and the worst case.
If the STUDENT segment which satisfies the call is the first
STUDENT segment in the IMS database record, then the number

of disk accesses can be calculated as follows:

COURSE

COURSE{

DESCRIPN

OFFERING

DATE

LOCATION

STUDENT

EMP#

Figure 30,

Length (bytes) Occurrences

200 1000

30 (per course)

50(per offering)

The database structure used in the examples.

il

! (1) One disk access1 to the index database to locate the

block containing the root (i.e., COURSE) segment,
(2) One disk access to retrieve the block containing the
) root segment,

Since the required STUDENT segment is stored in the
same block as the root segment, no more database accesses
are required. Hence the total disk accesses are two.

If the STUDENT segment which satisfies the call is the
last STUDENT segment in the IMS database record, then the
number of disk accesses can be calculated as follows:

(1) One disk access to the index database to locate the

block containing the root segment.
(2) 30 more disk accesses to traverse from the first ¥

OFFERING segment to the last using the twin pointers

3’ {(Since there are 30 OFFERING segments and since we may as- %
sume that each of them is located in a different block, «
there will be 30 disk accesses. The justification of as- .
suming different blocks is as follows. On the average, ps

there are 50 students per offering, each STUDENT segment
requiring 100 bytes. Thus the average physical distance
(in bytes) between two adjacent OFFERING segments is 5K bvtes,
which is larger than a page. We may, therefore, expect at }
least one disk access per OFFERING segment).

(3) One disk access to traverse from the last OFFERING
segment to the last STUDENT segment (since the OFFERING

segment and its last STUDENT segment are located in

different blocks). I
Hence, the total is 32 disk accesses. A rough estimate -
7’ of the median can be calculated from the two extreme cases ,l
i as 17 (=(3242)/2). g
: In the DBC environment: The number of disk accesses is calculated as l
follows:
P i (1) One disk access to retrieve the root segment. :;1
E ‘ (2) One disk access to retrieve the OFFERING segment. 3
| (3) One disk access to retrieve the STUDENT scgment. 73;
i

1. For simplicity, it is assumed that only one disk access is required to retrieve®
E index information since the amount of index information for this example is small.

e i

=67 -

X The total is 3 disk accesses. These results are summarized
in the following table:

No. of Accesses IMS DBC
minimum 2

maximum 32 3
approximate median 17 3

Case 2: To retrieve a number of STUDENT segments.

GU COURSE (COURSE#=C15211)
OFFERING (LOCATION=LONDON)
STUDENT (GRADE="B")

LOOP: GN COURSE (COURSE#=C1IS211)

OFFERING (LOCATION=LONDON)
STUDENT (GRADE="B")

GO TO LOOP

In the IMS environment: We will again consider the best case and the worst

case, If there is no OFFERING segment in the database record

which satisfies the qualification (LOCATION=LONDON), then the

number of disk accesses required is calculated as follows:

(1) One disk access to the index database to locate the
block containing the root segment.

(2) 30 more disk accesses to traverse from the first
OFFERING segment to the last (see explanation in

) the previous example).

Hence the total disk accesses required to process the above

transaction is 31.

,;;i i On the other hand, if each OFFERING segment in the ?
?}f e . database record satisfies the qualification (LOCATION= :
; - LONDON), then the number of disk accesses required is
: - given by:
1 - (1) One disk access to the index database to locate the
b R o block containing the root segment.
E l l 5 (2) 39 more disk accesses to traverse the entire database
; X record (since a database record resides in 39 blocks).

The total is 50. Hence the approximate median is 36
(=(31+40)/2).

In the DBC environment: The number of disk accesses is calculated as

follows:

(1) One disk access to retrieve the root segment.

(2)- One disk access to retrieve all the OFFERING segments
which satisfies (LOCATION=LONDON). Let the rumber of
OFFERING segments retrieved be x (where 0 < x = 30).

N —— =

(3) x disk accesses to retrieve the STUDENT segments under
each OFFERING segment retrieved.

The total is x + 2, Hence the best case is 2 (when x=0)

and the worst case is 32 (when x=30). The approximate median

is 17.

These results are summarized in the following table:

No. of accesses IMS DBC
2 minimum 31 2
| maximum 40 32
approximate median 36 17

It should be noted that if the sequence field of the

COURSE segment is not used as a search assignment in the
DL/1 call, then, for IMS, each COURSE segment would have to
be examined to determine if it satisfies the qualification.
This would require 1000 more disk accesses since there are
1000 COURSE segments each of which is located in a different

block. However, for DBC, the number of disk accesses remain

the same since it only requires 1 disk access to retrieve

any COURSE segment(s).

~-; Case 3: To sequentially traverse the entire IMS database.

E GU COURSE i
o LOOP: GN . |
i GO TO LOOP .
In the IMS environment: As shown in Case 2, to traverse a database record o
§ 39 disk accesses are needed. Since there are 1000 database] B
A records, the total number of disk accesses would be 39000 J %
(39 x 1000). The access to the index database is negligible 13
since it may only take one or two disk accesses to transfer e
the entire index into the memory. d
In the DBC environment: The number of disk accesses is calculated as follows:
(1) One disk access to retrieve all the root segments. ;
P | ; (2) For each root segment, one disk access is required y

to retrieve its dependent OFFERING segment. Since there

}
.

T T T TR T

|
|

Frewe -

are 1000 root segments, the number of disk accesses re-

quired to retrieve the OFFERING segments is 1000.

(3) For each OFFERING segment, one disk access is required
to retrieve its dependent STUDENT segment. Since there
are a total of 30000 (=30 x 1000) OFFERING segments,

the number of disk accesses is 30000.
Hence the total is 31001.

Case 4: To insert a new STUDENT segment,

ISRT COURSE (COURSEf=C I8211)

OFFERING (DATE=730105)

STUDENT

In the IMS environment: The number of disk accesses required to locate the

(logical) position where the STUDENT segment can be inserted
is the same as that calculated in Case 1, to retrieve a
student segment, i,e,, the minimum is 2. The maximum is
32 and the median is 17. It will also be necessary to ?
store the segment in a new block since no space is assumed
to be available in the existing blocks. Therefore, one

more disk access is needed to actually insert the segment.

) The number of disk accesses for the insertion is: ’
3 (minimum) %

33 (maximum)

18 (median)

In the DBC environment: The segment can actually be inserted in one disk
access since the sequence fields of the ancestors are given
in the DL/1 call. The DBC record can simply be formed using
the sequence fields given in the DL/1 call and only one
disk access is required to actually place the DBC record in an
MAU. However, if the sequence fields of the ancestor are
not given in the DL/1 call, they must be retrieved first.
It takes one disk access to retrieve the root segment and

one disk access to retrieve the OFFERING segment. After

retrieving these two segments, the DBC record for the
STUDENT segment can be formed using the symbolic identifier
of its parent. It can then be inserted into the DBC in

approximately one disk access. Therefore, insertion re-

quires a minimum of 1 and a maximum of 3 accesses.

-0

Case 5: To delete a COURSE segment.
GHU COURSE (COURSE#=CTS211)
DLET

In the IMS environment: Since all the dependent segmentg of the COURSE
segment must also be deleted, the entire database re-
cord must be traversed in order to complete the database.
The number of disk accesses is 40 (one disk access
to the index database, 39 disk accesses to traverse thec
database record).

In the DBC environment: Only one DBC access is needed to delete the
root. Since, according to the second clustering policy,
the root and its dependent segments are clustered in two
different MAUs, the total number of disk accesses is

actually 2,

7.2. A Performance Analysis

A summary of the results of the preceding comparisons is given in Figure
31. Based on these observations, an analysis is made on the merits of using
the DBC to support hierarchical databases.

The DBC has superior performance in updating operations. First, it
simplifies the process of inserting a segment into an IMS database. In IMS,
inserting a segment requires searching of the TMS database for a (logical)
position in which the segment can be placed. Address pointers are then ad-
justed in the IMS database to support the actual insertion. This process
is tine-consuming since the IMS system must search the database to establish
the (logical) position for insertion. 1In DBC, the segment can be placed
anywhere in the DBC database and there is no need to search the DBC database
if the symbolic identifier of its parent can be determined from the insert
call. Furthermore, there is no need to fix pointers for an insertion opera-
tion.

Second, DBC also simplifies the process of deleting a segment. The
argument is similar to that of insertion. Furthermore, the dependent seg-
ments of the parent segment being deleted can be deleted at the same time
with little overhead, because the symbolic identifier of the parent appears
in each of its dependent segments. Hence, a DBC deletion command with a
symbolic identifier as the parameter will delete all segments having that

symbolic identifier, thereby automatically deleting the parent and all of its

dependent segments in one operation. On the other hand, for IMS to delete all

|
‘ ~71-
1
i
{
Environments
i Case study IMS . DBC
10 To retrieve a min 2 i 3
specific segment max 32 3
2. To retrieve a min 31 2
number of segments max 40 | 32
"med" % | D
3. To traverse {
the entire database 39000 i 31000
{
4, To insert a min 5 E 1l
segment max 33
"med" 18
e To delete a
segment 40 s

Note: '"med" = (min + max)/2

Figure 31, Summary of results

~72~

the dependent segments of the parent, each dependent segment must be located
individually and then deleted, a time-consuming process.

With regard to retrieval operations, as seen in Cases 1 and 2, the DBC
performs well in retrieving a specific segment or a small number of segments
requiring a search of a large portion of the database. 1In Case 1, a specific
segment is retrieved. For IMS, the number of disk accesses depends on the
length of the (pointer) path which is used to traverse from the entry point
of the database to the required segment. If this patﬁ spans many blocks,
the number of disk accesses required would be large. However, in DBC, the
notion of a (pointer) path does not exist. By embedding the symbolic identifier
of the parent into the child segments, each child segment can be searched
independently and, therefore, it is path independent. The number of disk
accesses is sensitive to the number of levels that are traversed in reaching
the segment,

In Case 2, a number of segments are retrieved. For IMS, the number of
disk accesses again depends on the length of the (pointer) path required for
traversal. For DBC, it depends (in this case) on the number of OFFERING
segments, X, which satisfies the qualification. If x is small, then the
number of disk accesses will be small,

The capability of the DBC for sequential processing is demonstrated
in Case 3. Even though the performance gap between IMS and DBC is narrowed in
comparison to Cases 1 and 2, the DBC, which is not designed for sequential
processing, can still out-perform IMS, which is designed for sequential pro-
cessing.

In addition tc the previously described benefits, the DBC allows more
flexibility in retrieval operations. In IMS, in order to retrieve a segment,
the system must enter the database through an entry point. Normally, the
entry points are limited to the root segments because an index
(called primary index) is created and maintained automatically only for the
root segments. Although the user has the option to define secondary indices
for the dependent segments for the purpose of entering the database in places
other than the root segments (see Figure 32), the use of secondary indices
requires extra amounts of storage and maintenance for the index files. 1In
DBC, however, every segment can be used as an entry point to the database
because segments stored in the DBC are not located by pointers or by
adjacency. Each segment, stored in the DBC, can be located individually by

its contents, without depending on its position in the database, thus providing

T

=4

~7%

e

T Ty

COURSE

TR

PREREQ

OFFERING

B i e . 4 gl

TEACHER STUDENT

P
] et
]

; i

'v]

4 {

' i

Data file Index files

Figure 32. Indexing a database with secondary indices.

T TPy R o vt oo

TS ety o o o s Sy

R Y

ST NNyt 0y

.,

retrieval flexibility even if secondary indices are not created.

7.3. Security Consideration

Besides the advantages in retrieval and updating operations, the DBC
offers security features which are more sophisticated than those provided in
IMS. 1IMS provides data security in several ways. We are concerned with the
kind of logical protection that IMS provides rather than physical protection,
like terminal and password security, or encryption. The first logical
protection concerns segment sensitivity., If a segment type is designated to
be not sensitive to a user (program), the user cannot have any kind of access
to the segments of that type. For example, referring to the IMS database
structure defined in Figure 7, if PREREQ is designated to be insensitive to
user A, then effectively, user A has access to the database structure as
shown in Figure 33, IMS also allows the database administrator to specify
processing options for each segment type. For example, the user may be
allowed to get a segment of a given type but may not be allowed to perform
delete, insert, or replace operations on that segment type. In other words,
segments are protected collectively within the same segment type. By over-
looking the content of the segments expeditiously, IMS determines whether
the user has the right to have access to a segment type. Protection is said,
therefore, to be on the segment type level, IMS does not provide protection
below the segment type level, i.e., individual segments cannot be protected
differently according to their contents. Protection below the segment type
level is more involved. However, the DBC can provide such protection by

hardware.

~75=
COURSE
COURSE# TITLE DESCRIPN
OFFERING
DATE LOCATION FORMAT
TEACHER STUDENT
EMP# NAME EMP# NAME GRADE

Figure 33.

A case of access control.

-

8. CONCLUDING REMARKS

As a multi-model database computer, the DBC is intended to support
various database models and associated systems. To this end, we have
endeavored in this report to show that the DBC is capable of support-
ing the hierarchical data model and IBM's IMS data management system. In
two forthcoming reports, we will show that the DBC can also support the
relational model and system as well as the (OpDASYL network model and
system.

To support a hierarchical database model, the original IMS data-
base must be converted to a DBC database. This one-time database con-
version is straightforward and cost-effective. By straightforward, we
mean that the algorithms provided for the conversion, known as the repre-
sentations methods are simple., The main purpose of these algorithms
is to remove address-—pointers embedded in the IMS database and to intro-
duce the symbolic identifiers. Address-pointers are no longer needed
in the DBC since the mass memory (MM) of the DBC is contert-addressable.
Symbolic identifiers preserve the parent-child and twin relationships.

By using symbolic identifiers, IMS segments can not only be accessed in
accordance with the traversal sequence but also can be retrieved directly.

In other words, both the sequential-oriented search for and the random access to
individual IMS segments are facilitated. Because the storage require-

ment for symbolic identifiers is compensated by the removal of address-

pointers and because the random access capability has made the need for
secondary indices unnecessary, the DBC database is cost-effective.

In addition to database conversion, the DBC requires a software
interface, known as IMSI, to support IMS application programs. IMSI
enables TMS users to run IMS (application) programs in the same computer
svstem environment on which they were developed (say, an IBM 360/370

or system) while utilizing DBC's storage and search capabilities
ition lines) for IMS database records without any modifica-
iser programs and without the presence of the IMS data

[t is interesting to note that the software require-

fa is minimal. Essentially, IMSI intercepts the
1118, converts the calls to equivelent DBC commands,
for evecution, keeps track of the IMS segments

er areas which accomodate the segments,

4 bk

o il A e s it

o i KB N

Fods sl < 0 Lbss 3 R v e AL ©FE 0 S
T oy A G

B
|
|

SRV AR e R TR e SR S

i T

and clears and resets buffers and tables. Because the DBC accepts queries

in the form of a Boolean expression of keyword predicates and because it has

commands in all storage, retrieval and update modes, the conversion of DL/1

calls to the DBC queries and commands is straightforward. Due to DBC's

content-addressability, segments retrieved from the mass memory and placed

in the buffer are all 'valid' segments. There is no need for the buffer manage-

ment

routine to have an elaborate segment searching algorithm. Furthermore,

the size of the buffer need not be large since it contains no invalid seg-

ments,

There are other advantages in utilizing the DBC which are not available

if the IMS database were running in a conventional computer system environ-

ment:

(1)

(2)

(3)

(4)

The DBC can concurrently host several types of data models and interface
with different data management systems, making it possible to communicate
among different models and systems.

The built-in security mechanisms are far more advanced than IMS can
offer, allowing users to enjoy more adequate access control and data
protection,

The built-in clustering mechanisms can improve performance. Since the
partitioned content-addressable memories {(PCAMs) utilize very large
partitions (in mass memory, the size of the partition is the size of

the cylinder), clustering is easy and effective. Furthermore, only the
relevant segments of a cluster in a partition are output. Therefore, one
is not concerned with the kind of problems associated with small page
size in a conventional computer system with virtual memory.

The DBC can provide overall throughput improvements over conventional
computer systems, ¢ince the DBC is destined to support very large
databases of 1010 bytes with good cost/performance. It is difficult

for a conventional computer system to support a growing database
application by adding more disks and software. Furthermore, the DBC
can relieve the general-purpose computer from using much needed CPU

cycles for data management tasks.

-78-

| REFERENCES

1. Baum, R.I., Hsiao, D.K., and Kannan, K., "The Architecture of a Database
Computer--Part I; Concepts and Capabilities'", The Ohio State University,
! Tech. Rep. No., OSU-C1SRC-TR-76-1, (September, 1976).
2. Hsiao, D.K. and Kannan, K., "The Architecture of a Database Computer--
Part II: The Design of Structure Memory and Its Related Processors',
The Ohio State University, Tech. Rep. No. OSU-C1SRC-TR-76-2, (October,1976).

13 3. Hsiao, D.K. and Kannan, K., "The Architecture of a Database Computer--

Part III: The Design of the Mass Memory and Its Related Components',
The Ohio State University, Tech. Rep. No. OSU~C1SRC-TR-76-3, (December,1976).

4., 1IBM, Information Management System/Virtual Storage (IMS/VS) Version 1,
General Information Manual, GH20-1260-4.

5. 1IBM, Information Management System/Virtual Storage (IMS/VS) Version 1,

R

Application Programming Reference Manual, SH20-9026-4.
6. IBM, Information Management System/Virtual Storage (IMS/VS) Version 1,
System/Application Design Guide, GH 20-9025-4.
: 7. 1IBM, Information Management System/Virtual Storage (IMS/VS) Version 1,
E | System Programming Reference Manual, SH20-9027-4.
: 8. Schkolnick, M., "Clustering Algorithm for Hierarchical Structures",
1 ACM Trans. Database Systems 2, 1(March 1977), 27-44.

9. Sherman, S.W. and Brice, R.S., "Performance of a Database Manager in a

b | Virtual Memory System'", ACM Trans. Database Systems 1,4 (December 1976),
317-343.

10. Tuel, W.G., "An Analysis of Buffer Paging in Virtual Storage Systems",
Research Rep. RJ 1421, IBM Research Laboratory, San Jose, Calif., July 1974.

11. Rodriquez-Rosell, J and Hildebrand D., "A Framework for Evaluation of

Data Base Systems', Research Rep. RJ 1587, IBM Research Laboratory,
San Jose, Calif., May 1975.

=79,

APPENDIX A - THE ALGORITHMS FOR THE TRANSLATION PROCESS

This section provides details of how each DL/1 call is processed.
It should be noted that before any DL/1 call can be processed by the
IMSI, the (DBC) file containing the IMS database must be opened using
the preparatory DBC command given in Section 2.3.

Since the interface system buffer (ISB) is managed only by the
system buffer manager (SBM), the DL/l interface module (IM) communi-
cates with the SBM by subroutine calls which then perform the functions
requested by the IM on the ISB. These functions include retrieving
deleting, replacing and inserting a segment in the ISB, loading and un-
loading of the ISB.

For implementation purpose s, the status information tables (SIT)

discussed in Section 5 would require an additional field to each seg-

ment type. This field, the VALIDITY field, having value 1 or 0 is
used to indicate whether the information given in the entry is mean- 1
ingful or not. For abbreviation, V, CS and QUAL will be used to stand

for the VALIDITY, CURRENT-SEGMENT and QUALIFICATION fields, respectively.

We present a description of these functions in the following.

o

(1) Fetch-current.

M..*'

The parameters of the call are k (segment type), and addr (a
storage location in the IM). The execution of the call causes the
current segment of type k (i.e. the segment indicated by CP(k) in the
status information table) to be retrieved from the ISB and transferred
to the location addr.

(2) Replace-current,

This call is used to replace a segment stored in the ISB by the

segment supplied as an argument. The parameters of the call are k

(the segment type) and addr (the storage location of the segment used to

replace the one in the ISB), The segment replaced is the current seg-
ment of type k.
(3) Delete-current,
The parameter of the call is k (the segment type). The execution
of the call deletes the current segment of type k from the ISB.
(4) Insert-as-current.
The parameters of the call are k (the segment type) and addr (a stor-

age location in IM), The execution of the call inserts the segment

-80-]

{ i

L ; }
| addressed by addr into the ISB and establishes this segment in the ISB l'

as the current segment of type k.

(5) Release-buffer~space.

S
ke

The parameter is k (the segment type). The execution of the call
releases all buffer space allocated to segment type k.
(6) Load-buffer,

The parameters are k (the segment type) and command-ID (i.e., a

wh—-&w

DBC command identifier). This call causes the SBM to laad the response
set from the DBC identified by command-ID into the segment type k por-

e T

tion of the ISB, This call is issued to the SBM after the IM has is-

sued a DBC retrieve command to the DBC.

\
A.1 Processing the Get Calls }

The get-unique (GU), get-next (GN) and get-next-within-parent (GNP)
calls have been shown to be similar except for the initial setting of
the parent position and the current position in the IMS database. Hence
the processing of each of the three types of call is described by
basically che same set of algorithms except for the initialization part.
The get-hold calls will be treated as semantically equivalent to their
respective get calls.

In the algorithms, we assume the SSAs for the get call are (So, Qo),
(Sl, Ql),..., (Sn, Qn). Furthermore, the variable parent contains a
segment type indicating the parent position. Similarly, the variable

CPDB contains a segment type indicating the current position in the

database. Notice that parent and CPDB contain only segment types and

L do not directly address the actual segments. The actual segments can

ﬂf be located by the respective CS fields in the SIT.

[The subroutine structure of the get call is depicted in Figure 34.
k- The initialization process for three get calls is performed by algoritnms
f¥ - A (for GU), B (for GN) and C (for GNP). This initialization process
includes the setting of the appropriate parent position and current
position in the database. Algorithm D first determines at which level

processing should start by comparing the input qualifications with the

qualifications stored in the SIT. It then, calls Algorithms E, F or G
depending on the cases (to be discussed) to complete the processing. Essentially

they bring in a set of segments on each level starting from the level

]
3
’
ol
i
L]

determined by algorithm D down to the lowest level specified by the get

-81-

Get Call

S

Figure 34. The Subroutine Structure of the Get Call,

call., Algorithm H is the algorithm which actually retrieves a set of

segments at a given level.

Algorithms D-H are the same as the algorithm given in Section 5 although

specified differently,

A.2 Algorithms for Processing Get Calls with SSAs

ALGORITHM A:

Step
Step

Step
Step
Step
Step

Step

oUW

Tz

Notes:

ALGORITHM B:

Step 1:
Step 2:
Step 3:
Step 4:

Notes:

ALGORITHM C:

Step 1:
Step 2:
Step 3:

Note:

ALGORITHM D:

To process a GU call.

Parent « o.

(Let r be the total number of segment types) For i=1, 2,
.+«.. ryperform step 3 and 4.

Vi) < a.

Call Release-buffer-space (i).

Execute algorithm D.

If algorithm D terminates normally, then Parent « Sn;
CPDB + Sn,

Return.

Step 1 sets Parent to the zero level. Steps 2-4 set the
current position in the database to level zero by clearing
the validity field for each segment type greater than zero
and at the same time release all the spaces allocated

the ISB., Step 5 executes algorithm D. If algorithm D is
executed successfully,then step 5 resets the parent position
and current position to be used by subsecquent calls.

To process a GN call.

Parent « o.

Execute algorithm D. .

If algorithm D terminates normally, then Parent + CPDB + Sn.
Return.

These steps are similar to those in algorithm A. The cur-
rent position in the database need not be reset because
this was a GN call.

To process a GNP call.

Execute algorithm D.
If algorithm D terminates normally, then CPDB + Sn.
Return.

In step 2, the parent position is not reset due to the rule
of the GNP call.

This algorithm initializes the search of the IMS traversal
sequence by finding the first level, if it exists, where
QUAL(Si) is incompatible with Qi(i.e., Qi#QUAL(Si) and
Qi#NULL). It then distinguishes three cases and makes calls
to algorithms E, F, and G respectively. The cases are:
E. QUAL(Si) is incompatible with Qi for some 1i.
F. QUAL(Si) is not incompatible with Qi for 1=0, 1, ...,

m and m<n,
G. QUAL(Si) is not incompatible with Qi for i=0, 1, ...,

m and m=n,

|
I * -83-
P
!
E |
E | Step L: 1+ 1,
4 ! Step 2: If V(Si) = o, then go to Step 5.
E | Step 3: 1«41+ 1.
E Step 4: If i = n,then go to Step 2.
' Step 5: m<« i - 1,
Step 6: For i =1, 2, ..., m,perform Step 7.
Step 7: If Qual(Si) 1is incompatable with Qi then execute algo-
3 rithm E with argument i; return with condition from
3 algorithm E.
; Step 8: If m < n,then execute algorithm F;else, execute algorithm G.
&l Step 9: Return with condition.
§ Notes: Steps 1-5 locate the lovest level n sucii that the SIT contains
3 meanineful data on the segment tynes S0, Si, ... ,Sn. Steps (-7
? locate the smallest i such that Qual(Si) “is incompatable

with Qi. If such an i exists,then algorithm E is executed.
: Otherwise,either algorithm F or G is executed depending on
3 whether or not m is less than n.

=

F ALGORITHM E:

Riath 4

Input parameter: i, a segment type.

Step 1: 1Issue a Fetch-current call to the SBM to fetch the current
segment of segment type Si.

Step 2: Extract the value of the sequence field of the segment

{ into x (assume SEQ is the field name).

Step 3: let Ky, Ky, ..., K, be the keywords of the svmbolic identi-
fier of tﬁe parent of the segment obtairned in Step 1.

Step 4: Form the DBC query: (TYPE = Si)A(SEQ = x)A Ky A Ky A e
A Ke A QL.

Step 5: Issue a retrieve-by-query-with-~pointer command tc the DBC
using the query created in Step 3 and the sort attribute
SEQ.

Step 6: Issue a Load-buffer call to the SBM to load the response
set of the above command into the ISB.

4 Step 7: If the SBM indicates an empty response set,then perform

3 Steps 8-12;else go to step 13,

A Step 8: 1If S, ; = Parent,then return 'not-found'.

Step 9: CS (Si-l) * €8 (S4.q) + 1.

Step 10: Execute Algorithm H with input argument 1i.

Step 11: If a 'not-found' condition is returned from Step 10,then
return 'not-found'.

Step 12: Go to Step 15.

e Step 13: Qual(Si)y « Qi

Step 14: V(Si) * l.

(& Step 15: For all j such that Sj is a dependent of Si,perform Step
16-17.

Step 16¢ V(Si) * o.

.- Step 17: Call Release-buffer-space (S

b { Step 18: €S(Si) <« 1.]

2 Step 19: If i < n,then go to Step 23;else perform Steps 20-22.

).

PIREE O RTERTN LN

IO e Y

i .
=

Step

Step
Step
Step
Step
Step

20:

21
22:
23:
24
25

Notes:

ALGORITHM

Step
Step
Step
Step

Step
Step

Step
Step

k:

5
6:

Vit
8:

Notes:

ALGORITHM

Step
Step
Step
Step
Step
Step
Step
Step

Step

Step
Step

G
1
2
3
4
5
6
7
8

9:

10:
11:

S

Issue a Fetch-current call to the SBM to fetch the current
segment of segment type Sn.
Send the segment to the user.

Return,

1 4 4 1, 1
Execute algorithm H with input argument i. !
If '"not-found' is returned from Step 24 ,then return 'not-

found' ;else.go to Step 19,

This algorithm implements the first case discussed in
Algorithm D. Steps 1-6 retrieve a new set of segments un-
der the current parent with sequence fields having values
greater than or equal to that of the current segment at
level i, Steps 13-18 change the content of the status
information table to reflect the changes in the ISB from
by Steps 1-6. If Steps 1-6 retrieve an empty response set,
then Steps 7-12 are executed to retrieve a new set of seg-
ments at level i under the segment which is next to the
current parent at level i-1. Steps 19-25 retrieve a new
set of segment at level i+l under the current parent at
level i. These last steps are repeated zero or more times
until the level n is reached.

i+ m

st s

Execute algorithm H with input argument i.

If 'not-found'condition is returned from Step 3, then
return 'not-found'.

If i < n,then go to Step 2.

Issue a Fetch-current call to the SBM to fetch the current
segment of segment type Sn.

Send the segment to the user.

Return.

This algorithm implements the second case discussed in
Algorithm D. It retrieves a new set of segments from level
m + 1 to level n by calling algorithm H.

i+ m.

€S(Si) + CS(si) + 1.

If CS(Si) > COUNT(Si), then perform Steps 4-11;else.go to Step 9.
If i=1, then return 'not-found'.

If 8y l—Parent,then return 'not-found'.

CS(Sy_q) * Cs(S;_ 1) + 1.

Execute algoritﬁm H with input arguement i.

1f 'not-found' condition is returned from Step 7, then
return "not-found'.

Issue a Fetch-current call to the SBM to fetch the current
segment of segment type m.

Send the segment to the user.

Return.,

|
3
E
g

o

————— e ——ar e

|
E
|

Note:

ALGORITHM H:

-85-

This algorithm implements the third case as discussed in
Algorithm D.

Input argument: i, a level number. Retrieves the first sets of seg-

Step
Step

Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step

Step

Step

Step
Step
Step
Step
Step

Step
Step

3:

4

13

X6i
17:
18:
19

20:

21:

223
23¢
24
29%
26:

27
28:

ments of types S,, Sy, «.., Si which satisfy Qo’ Q15
«+es Qi starting from the current segment of segment
type Sj_1.

If CS(S3_7) > COUNT(Si_l), then go to Step 11.

Issue a Fetch-current call to the SBM to fetch the current
segment of segment type S;_j. If the segment is "deleted",
then CS(Si—l) “ CS(Si-l) + 1 and go to Step 1.

Let K;, Ky, ..., Ki be the keywords of the symbolic identi-
fier of the segment fetched in Step 2.

Form the DBC query: (TYPE = Si)A Ky A K, A ... A K, A Qi.
Issue a retrieve-by-query-with-pointer command to the DBC
using the query created in Step 4 and the sort attribute

is the sequence field name of Si.

Issue a Load-buffer call to the SBM to load the response
set of the above command into the ISB.

If the SBM indicates an empty response set,then go to Step
8;else go to Step 30.

If Qual(S;_j) = Qigl,then go to Step 9;else.go to Step 16.
Cs (s, + CS(S;_1) 7+ 1.

—1/
¢ LE Cé(% 32 26 UNT(S;_1) ,then go to Step 2.

If Sj_1 = o,then return 'not-found'.

: If S;_o = Parent,then return 'not-found'.

CS(Sj_p) + €S(Sy_p) + 1.

: Execute algorithm H with input argument (i-1).
: If "'not-found' condition is returned from Step 14 ,then

return 'not-found'jelse.go to Step 2.

Issue a Fetch-current call to the SBM to fetch the current
segment of Sji-1.

Extract the value of the sequence field, say SEQ, of the
retrieved segment into x.

Let K7, K3, «c0, Ky be the keywords of the symbolic identi-
fier of the parent of the retrieved segment.

Form the DBC query: (TYPE = Sj_1)A(SEQ = x)A Kl A Ky A

A Kt A Qi-l'

Issue a retrieve-by-query-with-pointer command to the DBC
using the query created in Step 19 and the sort attribute
SEQ. '
Isgue a Load-buffer call to the SBM to load the response
set of the above command into the ISB.

If the SBM indicates an empty response set ,then go to Step 12.

Qual(S,_1) + Q4.1

cs(si_i)l« s,

V(Si_l - 1,

For all j such that Sj is a dependent of Si perform Steps
27-28.

V(S3) « o.

Call Release-buffer-space (S8j).

oam sy PR

ey

T AT

— =y

86~

Step 29: Go to Step 2.
Step 30: Qual(Sy) « Q.
Step 31: V(Sy) + 1.
Step 32: CS(Si) « 1.
Step 33: For all j such that Sj is a dependent of Si’ perform Steps
34-35,
Step 34: V(S.) + o.
Step 35: Cali Release-buffer-space(S,).

Step 36: Return, i
Notes: This algorithm retrieves a set of segments of type Si (lets
call them child segments) which satisfy Qi. First, it

must fetch the parent so that its symbolic identifier can
be used to retrieve the child segments. There are two cases
(tested for in Step 1). First, the parent under considera-
tion does not reside in the ISB, then algorithm H calls it-
self to retrieve the set of parent segments (i.e.,of type
Si~1)- This is performed in Steps 11-15. In the second
case, the parent in consideration resides in the ISB. Then,
Step 2 is executed to fetch the parent from the ISB and
Steps 3-6 are performed to retrieve the child segments using
the parent's symbolic identifier. However the situation

is more complex if Steps 3~6 retrieve an empty set of child
segments. Then the '"next'" parent segment should be esta-
blished as the new parent. It is possible that the set of
parent segments residing in the ISB is not suitable to be
used to provide the '"next" parent. This is the case when
Qual(S;_q) is not equal to Qj_7. This case is tested in
Step 8, "If Qual(S;_j) is equal to Q4_j, then the "next"
parent segment can be established as the new segment

(Steps 9-10). Otherwise, Steps 16-22 are executed to re-
trieve the parent segments from the DBC.

Steps 23-28 change the SIT to reflect the retrieval of a
new set of parent segments. Steps 30-35 change the SIT to
reflect the retrieval of the child segments.

A.3 Algorithms for Processing Get Calls without SSAs

The algorithm§ given in the previous section apply to any get call
with SSAs. This section presents the algorithms for processing a GN or
GNP call without SSAs. 1In the former, the IM has to use only the seg-
ment types given in the SSAs to process the call, However,in the latter,
any segment type in the database is eligible. The IM simply follows the
traversal sequence and retrieves the ''mext" segment on the sequence.

The following definitions are used in the algorithms that follow.
Leftmost=child(S) denotes the leftmost child segment type under the seg-

ment type S. It has a NIL value if S has no child segment types. Next-
brother(S) denotes the segment type which is on the same level as S and

is next right to S. It has a NIL value if S has no segment type on its

. S e vt

right side.

ALGORITHM

Step
Step
Step
Step

ALGORITHM

Step
Step

ALGORITHM

Step
Step
Step
Step
Step
Step
Step
Step
Step
Step

Step
Step

Step
Step

Step
Step

Step
Step
Step
Step
Step
Step
Step
Step
Step

Step

Step
Step

SLWNDE=E >

N =W

HOYo~NouUupPpWLWNDE O

O oo o»

=
[

12

133
T4¢

15

16:

L7s
18:
19:
20:
21
AT
Fia L
24
25

40

Ziis
28:

=87~

Parent#(S) denotes the segment type of the parent segment of S.

To process a GN call with no SSA.

Parent « o.

Execute algorithm C.

If algorithm C terminates normally,then Parent <« CPDB.
Return.

To process a GNP call with no SSA.

Execute algorithm C.
Return.

S <« CPDB,

r + Leftmost-child(S)

If r = NIL,then go to Step 8.

Temp <« r.

TR S

S « Temp.

Go to Step 25,

If S = Parent,then return 'not-found'.
If Qual(S) = NULL,then go to Step 17.

: Issue a Fetch-current call to the SBM to fetch the current

segment of segment type S.

: Extract the value of the sequence field, say SEQ, of the

retrieved segment into x.

Let K1, Ky, +.., K_be the keywords of the symbolic identi-
fier of the parent of the retrieved segment.

Form the DBC query: (TYPE = S)A(SEQ > x)A Ki A Ky A ool A Ko
Issue a retrieve-by-query-with-pointer command to the DBC
using the query created in Step 13 and the sort attribute
SEQ.

lssue a Load-buffer call to the SBM to load the response
set of the above command into the ISB.

If the SBM indicates an empty response set,then go to Step
19;else,go to Step 31.

CS(S) « CS(S) + 1.

If CS(S) < COUNT(S),then go to Step 37.

r + Next-brother(S).

If r # NIL,then go to Step 23,

S + Parent#(r).

Go to Step 8.

S« T

S + Parent#(S).

Issue a Fetch-current call to the SBM to fetch the current
segment of segment type r.

Let K3, Ky, «s., K be the keywords of the symbolic identi-
fier of the retrieved segment.

Form the DBC query: TYPE = S A Ky A Ky A ..o A K.

Issue a retrieve-by-query-with-pointer command to the DBC
using the query created in Step 27 and the sort attribute
is the sequence field name of S.

~88~

Step 29: Issue a Load-buffer call to the SBM to load the response
set of the above DBC command into the ISB, .

Step 30: If the SBM indicates an empty response set then go to Step 19.

Step 31: Qual(S) +« null,

Step 32: V(S) « 1.

Step 33: CS(S) « 1.

Step 34: For each j such that Sj is a dependent of S perform Steps
35-36.

Step 35: V(S;3) + o.

Step 36: Call Release-buffer-space (Sj).

Step 37: CPDB < S.

Step 38: Issue a Fetch-current call to the SBM to fetch the current
segment of type S.

Step 39: Send the segment to the user.

Step 40: Return.

Notes: The algorithm first tries to get the 'next'" segment to satis- f
fy the call by seeking the leftmost child of the current |
position in the database. This is done in Steps 1-2. If |
there is a leftmost child, then Steps 4-7 and Steps 25-40 5
are executed to process the call. Otherwise, the algorithm
seeks the twins of the current position in the database
to satisfy the call. This is performed in Steps 8-18.
However, if there are no twins, then the brothers (segment
types under the same parent segment type) are sought to
satisfy the call. This is performed in Steps 19-20 and §
Steps 23-40, If there are no brothers, then the 'uncle"
of the current position is sought. This is performed in
Steps 21-22,

A.4 Processing a Delete Call

The delete call is issued to delete the occurrence of a segment from

the database. The segment to be deleted must first be obtained by is- 1
suing a get-hold call. Hence the segment to be deleted is always the cur-
rent position in the database. The deletion of a segment has a side-
effect 1f the segment is a parent. All segment occurrences beneath the
parent are deleted as well.

The delete call can be processed quite easily by a DBC command call.
Since the symbolic identifier of the parent appears in all of its depen-
dent segments, a single DBC delete command with the symbolic identifier

as the parameter will effectively delete the parent and all of its depen-

dent segments.

ALGORITHM A: To process a delete call.

Step 1: 1Issue a Fetch-current call to the SBM to fetch the current
segment of the segment number CPDB.

Step 2: Let Ky, K2, «.ey K¢ be the keywords of the symbolic identi-
fier extracted from the retrieved segment.

T T T TR

ST

Step 3: Form the DBC query: Ki A Ky A e A K.
Step 4: Issue a delete-by~query command to the DBC using the query

created in Step 3,

Step 5: Issue a Delete-current call to the SBM to mark the current
segment of segment type CPDB as ''deleted".

Step 6: For each j such that Sj is a dependent of CPDB ,perform Steps
7-8.

Step 73 V(S:) < o.

Step 8: Cali release-buffer—space(sj)-

Step 9: Return.

Notes: Steps 1-4 delete the segment and its dependent segments in
the DBC. Step 5 deletes the segment in the ISB. Steps
6-8 delete its dependent segments in the ISB.

A.5 Processing a Replace Call

The segment to be replaced must first be obtained by a get-hold call.
Hence the segment to be replaced is always the current position in the
database. 1In describing the algorithm, we assume that the segment used
in the replace call is stored in the storage location addressed by addr

in the IM.

ALGORITHM A: To process a replace call,

Step 1: Issue a replace-by-pointer command to the DBC using the seg-
ment addressed by addr and its (DBC record)pointer as the
parameters,

Step 2: 1Issue a replace-current call to the SBM to replace the cur-
rent segment of segment type CPDB in the ISB by the segment
addressed by addr in the IM,

Step 3: Return.

A.6 Processing an Insert Call

An insert call has the following format:

ISRT [Sy, Qg
Sps @

Sn-1s Qp~1]
Sn
where the last unquaiified SSA specifies the segment to be inserted into

the database. Hence in the above format, S, represents the segment to be
inserted. The specification of the SSAs above S, is to position the data
base for the insert call. Up to the level n-1, the SSA evaluation and
positioning for the insert call is exactly the same as that for a get -

unique call of the following format:

 AD=A039 038 OHIO STATE UNIV COLUMBUS COMPUTER AND IN"'ORHATION 5C°-£TC F/6 5/2
DBC SOFTWARE REQUIREMENTS FOR SUPPORTING HIERARCHICAL DATABASES--ETC(U)
APR 77 D K HSIAO» D S KERR» F K NG NODOI'-TS-C-OS?S

UNCLASSIFIED OSU=CISRC=TR=77-1

END ;
DATE

FILMEIL

Sem77

g 2
. 32
12 20

o B

I
||||| e
122 it s

I5
i

e

cm—
—
r

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARL A

o & s u
S P U———

-90-

GU Sl’ Ql
82’ Q2

Sn-1> Q-1
If the sequence Sq, SZ’ ety Sn—l is not specified at all, then the cur-
rent position in the database is used to determine the hierarchical path
for the insert call. Since the positioning of the database for an insert
call is the same as that for a get-unique call, the algorithms for posi-
tioning the database for an insert call will not be given in this section.
The reader is referred to Section A.l1 for the algorithms.

Once the positioning for an insert call has been set, the actual in-
sertion operation can be performed in a fairly simple manner. A DBC
record is created for the given segment using the rules given in Section
4.1. Then the mandatory clustering condition (MCC) for physical placement
of the DBC record is created (in our discussion, we use the second cluster-
ing policy given in Section 4.2). The DBC record is then inserted into
the MM by a load-record (LR) or an insert-record (IR) command, depending
on whether the current operation is creating or updating the file. Notice

that we use only the IR command in the algorithm for simplicity.

ALGORITHM A: To process an insert call,

Step 1: If the sequence S;, S2s e Sn_1 is not specified,then go
to Step 4.

Step 2: Execute the get unique algorithm using (S3, Q1), (S, Qp),
LGt | (Sn_1’ Qn-l).

Step 3: If a "not-found' condition is returned from the get-unique
algorithm then return 'mot-found'.

Step 4: If V(S _y) = o,then return 'not-found'.

Step 5: Create a DBC record by performing Steps 6-11.

Step 6: For each field in the segment which will be used as a search
argument in a DL/1 call, form a type-N keyword using the
field name as the attribute of the keyword and the field
value as the value of the keyword.

Step 7: For each field in the segment which will not be used as a
search argument in a DL/1 call, form a nonkeyword attribute-
value pair using the field name as the attribute and field
value as the value of the attribute-value pair.

Step 8: Form a type-D keyword of the form (TYPE, segtype) where seg-
type is the segment type of the segment to be inserted.
Designate this keyword as a clustering keyword.

Step 9: If S_ is the root segment, then change the keyword formed in
Step 6 for the sequence field of the root segment to a type-
D keyword and designate it as a clustering keyword. Skip
the next two steps.

|
i

Step 10:

Step 11:

Step 12:

=91~

Issue a Fetch-current call to the SBM to fetch the current
segment of the segment number S,

Let K1, K2, ..., K; be the keywor&s of the symbolic identi-
fier of the segment retrieved in Step 10. Use these key-
words as the keywords for the segment.

If S, is the root segment, then form the MCC: (TYPE = Snds
otherwise form the MCC: (KyAKL) v (KpAkD) VL. V(RAK)
where K1 is the keyword representing the sequence field of
the root segment and Kj, Ky, ..., K are the keywords repre-

" senting all the dependent segment types.

Step 13:
Step 1l4:

Step 15:
Step 16:
Step 17:
Step 18:
Step 19:

Notes:

Issue an insert-record command using the DBC record created
in Step 4 and the MCC created in Step 12.

Issue an insert-as—current call to the SBM to insert the
DBC record created in Step 5 into the ISB.

CP(Sn) S

COUNT + 1.

v(sy) +« 1.

QUAL(S) « sequence key of the inserted segment.

Return.

Step 2 positions the database for the insert call. Steps
5-11 create the DBC record by forming the appropriate key~
words. The keywords representing the sequence field of the
root segment and all the segment types are designated as
type-D and clustering keywords. The rest of the keywords
are designated as type-N keyword. Step 12 forms the appro-
priate MCC for physical placement. Steps 14-18 update the
ISB and the SIT.

g,

e

A

-92-~

APPENDIX B - THE ALGORITHMS OF THE SYSTEM BUFFER MANAGER (SBM)

The SBM executes the subroutine calls from the DL/1 interface module (IM).

These calls are executed according to the buffer management policy discussed in

Section 6.1 and using the data structures given in Section 6.2.

of the function of each of the calls was given in Appendix A.

are listed as follows.
Load-buffer.

Fetch~current.

(1)
(2)
(3)
(4)
(5)
(6)

Replace~current.

Delete-current,

Insert—-as-~current.

Release~-buffer-space,

B.1.

The Load-buffer Call.

ALGORITHM A:
Input arguments: 1. A segment type k.,
2. A DBC command identifier, C-ID.

Notations:

Step

Step
Step

To execute the Load-buffer call.

Let m be the number of DBC records retrieved.

¥

2
33

Step 4:
Step 5:

Note:

ALGORITI™M B:

Input argument:

Notations:

Step
Step
Step
Step
Step
Step

Step

1.
2l
3l

The description

The function names

Wait until the response set identified by C~-ID is ready for trans-~
mission from the DBC.

If response set is empty, then return "empty".

Call Loac (k). [see Algorithm B]

COUNT (k) «— m,

Return.

Step 4 sets the COUNT field of the status information table (SIT)
to the total number of DBC records retrieved.

The Load Algorithm,

Let m be
Let n be
Let N be

Calculate
ing m and

1f 8 TOTAL(L)

1=1

Call Load-record(k,t,0,).

Return.

A segment type k.
the number of DBC records retrieved.

the total number of segment types for the IMS database.
the size of the ISB (in pages).

the nunber of pages needed to store the DBRC records us-

LENGTH(K) .

Let this number be t,

+ t > N, then go to step 5.

Call Carbage~collection. [see algorithm D]

If 5 TOTAL(i)

i=1
i &« 1,

+ t < N, then go to step 3.

Ll e

[see algorithm C]

PR,

T e

T A

{ ¢
i
{1
{
'
5
i1
14
I
£
)
"
{
i
‘
N

Step
Step
Step

Step
Step
Step
Step
Step
Step
Step

Note:

ALGORITHM

8:
9:
10:
X1
12;
13
14
157
16:
17:

-93-

y < TOTAL(i) = QUOTA(i).

If Vo< 0, then go to step 14,

If 3 TOTAL(i) + t - N = y, then go to step 13.
i=1

Call Deallocation (i, ZTOTAL(i) + t - Y). [see algorithm E]

Go to step 3.

Call Deallocation(i,y).

T e i+ 1.

If i = n,then go to step 8,

Call Load-record (k,QUOTA(k),1).

Return,

Step 3 is executed if the ISB has enough space for the response set.
Otherwise, step 5 is executed for garbage collection. If the ISB
still has not enough space after garbage collection, then steps 7-15
are executed for deallocation of ISB space. The segment tvpes on
the higher levels will be deallocated first. Step 8 calculates how
much space occupied by the segment type should be returned to the
conmon pool. When step 16 is executed, it indicates the only space
available is the space allocated to its quota.

Cs:

The Load-record Algorithm.

Input argument: 1., A segment type k.

Step
Step

Step
Step

Step
Step
Step

Step
Step
Step
Step
Step
Step

160
2

3:
4;

5:
6:
7:

8:
9:
1
123
23
14:

Notes:

ALGORITHM D:

Notations:

Step
Step
Step

T

s
&t
3:

2, The number of pages x to be loaded,
3. An indicator d.

= 1.

Find a page y using the ISB page map and set the corresponding bit
to zero.

Transfer DBC records to the page y.

Make adjustment to the pointer fields in the TISB page table and
the segment control table to reflect the allocation of this page
to the segment tvpe k,

i e 1+ 1.

If i < x, then go to step 2,

If d=1,then enter the value of the sequence field of the last seg-
ment stored into SEO (k).

TOTAL (k) < x.

UPAGE (k) <« o,

CPAGE (k) <— LHEAD(k) .

OFFSET (k) < o,

¢ %= d.

Return,

This algorithm stores the DBC records into x pages of the ISB. DBC

records are stored in a specified order. If all DBC records cannot
Le stored in x pages, the LLC records vith largest scquence
field values will not be stored.

The Garbage~collection Algorithm.
et n be the total number of segment types.

1 <= 1.
1f UPAGE (1) = 0, then go to step 10.
4 w= 1.

Step
Step
Step
Step
Step
Step
Step
Step
Step

~Q4~

ot

4b: m < LHEA% i).

5: Set the m bit in ISB bit map to 1.

6: J< 3§+ 1.

7: If 3 < UPAGE(i), then LHEAD(i) «— FPTR(m) and go to step 10.
8: m < FPTR(m)

9: Go to step 5.

10: P = i + 1.

11: If 1 <= n, then go to step 2,

12: Return.

Notes: This algorithm returns the pages occupied by any segment type

ALGORITHM

which have been processed to the common pool. |

E: The Deallocation Algorithm.

Input arguments: 1, A segment type k.

Step
Step
Step
Step
Step
Step
Step

2. The number of pages x to be returned to the common pool. |

G & S 8 OF

2: m < LTATL(k). ,
3: Set the mt" bit in the ISB page table to 1. ’
b: 1« 1t + 1.

5: If i > x, then LTAIL (k) <« BPTR(m) and return.

6: m <— BPTR(m).

7: Go to step 3,

Notes: This algorithm returns the last x pages of the segment type k to

B.2,

ALGORITHM

the common pool.

The Fetch-current Call.

A: To execute the Fetch-current call.

Input arguments: 1. A segment type k.

Step
Step
Step

Step
Step
Step
Step

Step

Step
Step
Step
Step
Step
Step
Step

2. An address, addr, to which the retrieved DBC record is
transferred.

1: If OCS(k) # CS(k), then go to step 4.
2: Retrieve the DBC record in the TSB addressed by (CPAGE(k), OFFSET(k)).
3: 1If "deleted" is indicated on the NDBC record, then return "deleted"

else return the DBC record to addr. }
4: OCS(k) <« ¢s(k).
S5: OFFSET(k) <« OFFSET(k) + LENGTH(k). 2
6: If OFFSET(k) > page size, then go to step 9. l
7: Retrieve the DBC record in the ISB addressed by (CPAGE(k), -
OFFSET (k)).
8: If the retrieved record indicates the end-record, then return T
"error" else return the DBC record to addr. .]
9: CPAGE < FPTR(CPAGE).
10: If CPAGE = "Null", then go to step 14. -
11: OFFSET <« 0. i ;
12: UPAGE < UPAGE + 1.
13: Go to step 7.
14: 1f C(k) = 0, then return "error".

15: Form a DBC query: (TYPE = i) A(ATT > SEQ) A QUAL(k), where ATT is
the field name of the sequence field.

T

e ———————

TSy By AT

TR TR T
= <

g

g T

Step 16: Issue a DBC retrieve~by-query-with-pointer command using the query
created in step 15.

Step 17: If the response set i= empty, then return "error".

Step 18: Call Load—buffer(k’c_ln) [algorithm B in Section B.1] where C-ID
is the DBC command identifier used in step 16.

Step 19: OFFSET(k) <~ OFFSET(k) + LENGTH(k).

Step 20: Retrieve the DBC record in the ISB addressed by (CPAGE(k), OFF-
SET(k)).

Step 21: Return the DBC record to addr.

Notes: Steps 2-3 are executed if the segment last retrieved by the SBM is
the same as the current segment, Otherwise.steps 5-13 are executed
to retrieve the next DBC record with respect to the one addressed
by (CPAGE(k), OFFSET(k)). If the DBC record addressed by (CPAGE(k),
OFFSET (k)) is the last DBC record stored in the ISB, then steps
15-21 are executed to fetch more DBC records from the DBC.

B.3. The Replace-current Call.

ALGORITHM A: To execute the Replace-current call.

Input arguments: 1., A segment type k.
2, An address, addr, to a DBC record used to replace the one
stored in the ISB.

Step 1: Store the DBC record addressed by addr into the ISB addressed by
(CPAGE (k) , OFFSET(k)).
Step 2: Return.

B.4. The Delete-current Call.

ALGORITHM A: To execute the Delete-current call,
Input argument: A segment type k.

Step 1: Mark the DBC record in the ISB addressed by (CPAGE(k),OFFSET(k))
as "deleted".
Step 2: Return.

B.5. The Insert-as~current Call.

ALGORITHM A: To execute the Insert-as-current call,

Input arguments: 1. A segment type k.
2. An address, addr, to a DBC record to be inserted into the
ISB., :

Step Call Deallocation(k, TOTAL (k)).

Step 2: Find a page x using the ISB bit map and set the corresponding
bit to zero.

Step 3: Store the DBC record R addressed by addr into page x starting from
location O,

(=
.

Step 4: Store an "end-record" after R in page x.
Step 5: D(k) «- C(k) < UPAGE(k) < OFFSET(k) <« 0.
Step 6: LHEAD(k) < LTAIL(k) «— CPAGE(k) <= x .

R

T R TRy

B ™

-96-

Step 7: BPTR(x) <« FPTR(x) <« '"null".

Step 8: TOTAL(k) <« 1.

Step 9: Return,

Notes: This algorithm releases all pages allocated to the segment type
and allocates a new page for the DBC record to be inserted. The
page only contains this DBC record. All the fields in the segment
control table entry are set appropriately in steps 5-8.

B.6, The Release-buffer-space Call,.

ALGORITHM A: To execute the Release-buffer-space Call.

Input argument: A type code k.

Step 1: Call Deallocation(k, TOTAL (k)).

Step 2: D(k) =< 1.

Step 3: Retumrn.

This algorithm releases all pages allocated to the segment type k.
The D field is set to 1 to indicate the segment control table
entry is deactivated.

B

O

et A

Notes:

e i ke T i

-07~

APPENDIX C - A DISCUSSICN OF HIDAM

There are two database organizations in IMS: Hierarchical Sequen-

tial (HS) and Hierarchical Direct (D). Each of these two physical organi~

| zations is supported by two database access methods: HSAM and HISAM for

HS organization and HDAM and HIDAM for HD organization. We will restrict .
our attention to Hierarchical Indexed Direct Access Method (HIDAM).

HIDAM is used for indexed access to the root segments of a hierarchi-

cal database. The index is stored in an index area and no user data seg-
; ments exist within this area. The user data segments are stored in a

separate area., Fig. 35 illustrates a possible HIDAM physical storage of
the IMS database of Fig. G.

‘ When a HIDAM database is created, the user presents the segments of
each database record to IMS in proper sequence. The data area is then
used in a purely sequential crder to load all segments presented. As .
each root segment is presented, the system automatically creates an in-
dexing segment and places it in the index area. Notice that because of
the allocation of blocks in sequential order, the logical adjacency of

% segments is often reflected by physical adjacency as well (although pointers

have to be maintained, nevertheless).

—————

|
|

B
£

-98~

A3

Fig. 35 HIDAM physical storage of the database of Fig. 6.

ik it

Index area

Data Area

