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We.—ab.ow)that it is possible to design an in te rf ace , known as IMS I between 1M5
users and the DBC . The IMSI can fa i thfu l ly execute the DL/l-ca ll s  (the data
manipulation language of IMS) issued by IMS users . The desi gn of the IMSI is
considered in two phases . In the first phase, we show how to represent an IMS
database utilizing the built—in (hardware) data structure of the DBC . This
representation makes use of the concept of embedding symbolic identifiers into
all dependent segments of an IMS database. The use of symbolic identifiers in-
creases the degree of data independence of the stored database. Furthermore,
the storage requirement fo r the symbolic identifiers is substantially offset by
the removal of the conventional address pointers currently used in an INS data-
base. .

In the second phase of the desi gn , a t ranslation process is desi gned to emu-
late every INS operation (as specified in terms of DL/ l calls) on the trans-
fo rmed database. The two phases are therefore closel y related. The translation
algo rithms are presented to show , first , that any DL/l call can automatically be
suppo r ted by the IMSI and , second , that the algori thms can be wri tten in a
fai rly straightforward manner. The latter demonstrates that the degree of the
so ftware complexity and the amount of software support required by the IMSI is
rather minimal.

The data management functions performed by the IMSI , although comp lete ,
require little software. In par ticular , the INST is f r eed f r om pe r fo rming any
kind of content—searching, thus eliminating the software required to search the
system buffer. The content—addressable capability of the DBC makes possible the
elimination of software buffer search . The use of the DBC can therefore result
in a reduction of the role of data management software.

Finally, a comparative study of IMS and DBC performance is given. In the
conclusion, we try to point out that not only IMSI can outperform IMS , but the
DBC can provide additional services such as advanced security and clustering
which are found neither in IMS software nor in IBM 370/360 hardware .
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1. INTRODUCTION

We intend to issue a series of reports which demonstrate the capability

of the database computer (DBC) for supporting known data models (such as

the hierarchical, network and relational models) and their related data manage-

ment systems. This is the first of these reports which shows the capability

of the DBC for supporting the hierarchical model.

IBM’s Information Management System (IMS), which implements a hier-

archical model of data, is chosen for the following reasons. IMS is the

most widely used data management oystem which supporti~ d hierarchical view

of data. The extensive IMS documentation also makes it possible for us to

compare the anticipated performance of an IMS database on the DBC with the

present performance of INS on IBM 360/370 computer systems. Finally, the fact

that IMS is available on IBM 360/370 computers provides us with a case for

comparing the merits and demerits of using a conventional general—purpose

computer versus a special—purpose database computer (i.e., the DBC) for data

management.

Background descriptions of the DBC and of INS are given in Sections 2 and

3, respectively. However, for a more detailed and authorative description

on the DBC, one should refer to [1,2,3]. For reference to IMS, one should

look into (4,5,6,7] .
In this report, we show that it is possible to design an inter f ace , known

• as IMSI between IMS users and the DBC . The IMSI can f a i t h f ully execute the

- DL/ l calls ( the data manipulation language of IMS) issued by IMS users. The

design of the IMSI is considered in two phases . In the f i r s t  phase , ye show

how to represent an IMS database utilizing the built—in (hardware) data struc—

ture of the DBC so that the information stored in the IMS database is preserved.

By preservation of information, we mean that any information that can be derived

from an IMS database by DL/l calls can also be derived by the same calls from

the DBC database without any change of information content (i.e., semantics). The

DBC representation makes use of the concept of embedding symbolic identifiers

into all dependent segments of an IMS database. The use of symbolic identifiers

increases the degree of data independence of the stored database. Furthermore ,

the storage requirement for the symbolic identifiers is substantially offset by

the removal o. the conventional address pointers  c u r r i n  lv used in an IMS data-

base. The DBC representation and the resulting storage requirements are discussed

in Section 4.

L J  . ~~~ -. 
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In the second phase of the design, a translation process is designed to

emulate every IMS operation (as specified in terms of DL/l calls) on the trans—

formed database. The two phases are therefore closely related . These are

discussed in Section 5.

The overall organization of the IMSI is depicted in Figure 1. The data—

base description library (DDL) contains coded information about the INS data-

base as defined by the user. The interface system buffer (ISB) contains seg—

ments that have been retrieved from the DBC. The status information table (SIT)

gives the current status of the interface system buffer (ISB) . When the IMSI

receives a DL/l call, the DL/l interface module (IM) decodes and executes the

= call using Information stored in the aforementioned library, buffer and table .

If the status information table (SIT) indicates that the interface system buffer

(TSB) does not contain the needed information, the interface module (IM) will

issue the necessary DBC commands needed to fetch DBC records and will insert

them into the interface system buffer (ISB). The system buffer rnanager (SBM)

maintains the ISB. - -

In Section 5, the translation algorithms are presented to show, first ,

that any Di/l call can automatically be supported by the IMSI and , second , that

the algorithms can be written in a fairly straightforward manner. The latter

demonstrates that the degree of the software complexity and the amount of soft— j .
ware support required by the IMSI is rather minimal.

In Section 6, we discuss the storage organization of the interface system

buffer (ISB) and the functions of the system buffer memory (SBM). The discussion
shows that the data management functions performed by the IMSI, although complete ,

are simple. In particular , the IMSI Is freed from performing any kind of content— -

searching, thus eliminating the software required to search the system buffer.

The content—addressable capability of the DBC makes possible the elimination of

software buffer search . The use of the DBC can therefore result in a reduction

¶ 
of the role of data management software.

A performance evaluation of ~~~ I~~SI desicn in given in Section 7. A

comparative performance study is made between T~~ and I~~~1. f h i e  stt ~ H
centrated on several typ ical cases of search and update . The reaul t of ~hc

study is gratifying, indicating th a t  I M S I  u t t h  the  DBC support is indeed a

favorable alternative to hierarchic.-il database manaper~ent. Tue efficienc y of

us ing the DBC to support an 1~ S database is , nevertheless , l im i t ed  hr tie us’=

of DL/l. Since the t rans for m ed database is s tored in the i~ u~ in a rore d a t a —

Independent manner , more efficient processing of the database can he achieved

if new calls , in addition to the !)L/l ca l l s , are in t r oduced .  j i lts we also

show the addi t ion al capabi l i t i es  of us in g  t , e  P J C  to sunp or t  a l i ~~r ar c h i c a l

databaa. when the data manipulat ion language employed is not restr icted to DL/ l .
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2. THE DATABASE COMPUTER (DEC)

The database computer (DBC) is a specialized back—end computer which is

capable of managing a database of ~~ — 1010 bytes. In addition to its intended

purpose of handling large databases, the DEC has a built-in protection mechanism

for access control and a clustering mechanism for performance enhancement .

Basically, it is composed of two main components, a mass memory (MM ) for storing

data and a structure memory (SM) for storing directory information about the data.

The mass memory is made up of fixed—length content—addressable partitions called

minimal access units (MAUs).

2.1 The DBC Data Model

In order to discuss the DBC representation and the translation process

given in Sections 4 and 5. respectively, we need to present the data model of

the DBC. The data model represents a user’s view of the data stored in the DEC

and the way that the user is permitted to manipulate the data according to that

view. There are four aspects associated with the data model of the DBC: the

data structure, the query , the clustering and the security. The data structure

is the way that the user information is represented in the hardware . The query

specifies the way that the data ptructure can be manipulated . The clustering

effects the way the data structure is physically stored and the security con-

trols the way that the data structure is protected from unauthorized use.

We will discuss each of the four aspects in a separate subsection .

2.1.1 Built—In Data Structures

The definition of a database starts with two terms: a set AT of “attributes”

and a set VA of “values”. These terms are left undefined to allow the broadest

possible interpretation. A DEC record Is a subset of the Cartesian product

AT X VA. We will assume that in a record all attributes are distinct. Thus ,

R is a set of ordered pairs of the form:

(an attribute , a value)

The se~ of all DBC records which are physically stored in the DBC is called

the DBC database. The DEC database may be partitioned into subsets called files.

To distinguish among several files, each file is given a unique name called its

file name.

The keywords of a DBC record are those attribute—value pairs which charac—

terize the DBC record. Other attribute—value pairs of the record , If any, are

collectively called the record body. A DEC record , therefore, consists of a

set of keywords and a (possibly empty) string of characters referred to as the

record body. The DBC recognizes two types of keywords : those stored in the -~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~ 
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structure memory (SM), called directory type (Type D),and those not stored in

the SM, called non—directory type (Type N). The selection of keywords for

storage in the SM will be discussed in a later section .

DEC records having the same attributes are often singled out for discussion .

In such cases, we show only the attributes without their corresponding values .

The set of attributes is called the attribute template (or, for short, template)

of the records. Examples of records having identical attributes and the corres-

ponding template are shown in Figures 2 and 3.

2.1.2 Queries

Queries are used in access commands to retrieve and update DBC records . A

cp~ery is a Boolean expression of keyword predicates of the form :

<attribute , relational operator , comparative value>

where attribute is an attribute of a keyword , a relational operator is one of

the set {= ,�,<,~~,>,>} and comparative value is the value against which the

keyword value of the specified attribute is to be tested . The queries will be

expressed in disjunctive normal form.

A keyword predicate is true for a DBC record if some keyword in the record

satisfies the predicate . A conjunct of predicate is true for a record if each

predicate in the conjunct is true for the record . A query is true for a record

if one or more conjuncts in the query is true for the record; such a DBC

recL.d is said to satisfy the query. The set of all DBC records in a file of

the DBC database that satisf y a query will be called its response set or the

response data.

Some simple examples of queries follow . The query K1 A K2 is t rue  for  a

record R when Ki and K2 are both in R. The query K1 A (Salary < 10 ,000) is

true for  R when K1 is in R and there is a keyword in R whose a t t r i b u t e  is

Salary and whose value is less than 10,000. More elaborate queries can also

be formed .

2.1.3 Clustering

The DBC, instead of supporting a fixed record placement scheme for all

DBC records , has a record placement mechanism which carries out record place—

ment polices supplied by the DBC users and database administrator. m e  cl’iste rin~

mechanism allows a DBC user to have some control over the physical placement

of a DBC record when it is inserted into the mass memory (MM ) of the DEC .

Ph ysical placement means assigning a DBC record to a MAU (a unit of physical

closeness) in wh i ch it can he placed .



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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Type=offering

Course# C1S544

Date=9.2l .  Typ e=Offering

Location C Course# ClS4l2

Format WWW Date=3.20. Type O f f e r i n g

Location=S Course#=ClS3ll

Format TTT Date=6.lO . 
- 

Type=Offer ing

Location=L Course# C1S212

—- 
Format=YYY Date 3.20.77

Location Col unb us

Format XXXXX

(a DBC record)

Figure 2. A sat of DBC records with ‘-onir~on attributes.

Type

Course#=

Date

Location=

Format=

I
Figure 3. An attribute template of DBC records.
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For each DBC record , there are certain type—D keywords which are desiJ!nated

for record placement purposes and are called clustering keywords. In order

- 
l for the DBC to determine which MAU to be used for insertion , the DBC user

may give a query, called the mandatory clustering condition (11CC), and a set

of ordered pairs of the form (query, integer), called the optimal clustering

conditions (OCCs), whenever a record is to be inserted . The MCC is used to

determine which MALJs are eligible for record insertion . An eligible MAC is

a MAU which contains one or more records that satisfy the MCC of the record

to be inserted . The OCCs are used to choose one of the eligible MAUs deter-

mined by the MCC.

In order to make use of the clustering mechanism of the DBC , one has to

choose a record placement policy . For each DBC record to be inserted , one must

designate those keywords which are used as clustering keywords and specify the

clus ter ing  conditions according to the pol icy .

In u t i l iz ing the same que ry faci l i ty  to specify a clustering condition ,
any set of DBC records which can be retrieved by a single query can also be

placed physically close together by the DBC . This demonstrates the power of

the clustering mechanism.

2.1.4 The Security

A database access or simply an access is the name of a DBC operation

which transfers information to or extracts information from the database.

- - Examples of accesses are retrieve , insert and delete . Let ACC denote the

set of all name8 •f the accesses available in the DBC. Let a member of

ACC be represented by a and a subset of ACC by A,

A security specification is a relation

S: DB -+ 2ACC where 2ACC is the power set of ACC .

Thus , for  a DBC record R, the security specification , S (R) = A , indicates which

subset A of accesses is permitted on R.

A f i l e  sanction or simp ly a sanction is def ined  as the couple (Q, A) where

- - Q is a query , and A is a subset of ACC. A sanction (Q, A) induces a re la t ion

S.FS Q A over DBC records R of the database such that

( A  if R sa t i s f ies  Q.
S.FSQ, A (R ) r~ j

- 
- 

~.ACC , otherwise.

Thus, a sanction induces a security specification which indicates that  only

the accesses in A may be performed on tile records sa t i s f y ing Q. Whe n R does
I’.’

not s a t i s fy  Q, al l accesses may be performed on I t .  In this case we say tha t

no sanctions of (Q,A) are applicable to R. The sanction is a very powerful

~
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type of security specification since it allows the full power of the query

language (i.e., Q) to be used to specify DBC records to be protected .

Consider a file named F and a set of sanctions where

s = { (Ql, Al) , (Q2 ,A2),.,.,(Qm ,~~ )}.

A database capability (F,S) induces a security specification S.DCF S over R

of F such that

S.DCF S
(R) = 

i~l S.FS Q A
(R)

In words, S.DCF S (R) is the set of all access granted for R by one or more
file sanctions in S and not denied by any sanction of S. Security specif i—
cations are therefore stored in the DBC as database capabilities. The data—

base capabilities specify exactly what access operations are allowed on DBC

records. The DBC maintains database capabilities for each active user.

2.2 The DBC Architecture

The architecture of the DBC is depicted in Figure 4. The three components

that form the data loop are the database command and control processor (DBCCP),

the mass memory (MM) and the security filter processor (Sn’). When a query in

a command is sent to the DBCCP, the DBCCP decodes the query using the structure

loop (see below). The DBCCP then uses the structural information returned from

the structure loop to form localized mass memory commands. These commands are

then sent to the mass memory (MM). The MM is the repository of the database

of l0~ or 10
10 

bytes. It is realized by modifying conventional moving head

disks with content—addressable capability. The concept of a partitioned content—

addressable memory (PCAN) is utilized to access large partitions and to perform

content—searching of the partitions in a cost—effective way . Only a part of

the database needs to be searched for a given query . This is due to the infor-

mation provided by the structure loop. The response set resulting from the

operations of the MN is sent to the SF1’ where it is checked for security clear—

ance and then forwarded to the user .

The four components which form the structure loop of the DBC are the

keyword transformation unit (KXU), the structure memory (SM), the structure

memory information processor (SMIP) and the index translation unit (IXIJ). The .
~

KXU converts keywords sent by the DBCCP into their internal representation . .1
The primary function of the SM is to retrieve and update structural information

of the database. This Information is likely to be large (lO~— lO
s
) bytes . Fur—

thermore, the operations on this information must be performed at a rate corn—

mensurate with that of database operations performed by the mass memory (MN). The

-

~

-

~
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~
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~
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concept of a partitioned content—addressable memory (PCAN) is again used to

implement the storage system of the SM with the above properties. Powerful

PCAM organizations are possible using emerging technologies. Three design

alternatives using three different technologies are considered . The three

technologies are magnetic bubble memories, charge—coupled devices (CCDs) and

electron beam addressed memories (EBANs). The SMIP Is responsible for per-

forming set intersections on structural information retrieved by the SM. The

concept of PCANs is once again utilized to perform rapid intersection. The

IXU is used to decode the structural information output by the SMIP.

The four structure loop components are designed to operate concurrently .

Keywords are sent to the KXU at regular intervals by the DBCCP . The output

of the KXU is sent to the SM which retrieves index terms for the transformed

keywords and sends them to the SMIP. The SMIP output is interpreted by the

IXU and sent to the DBCCP. This pipeline of processors results in maximum

utilization of the hardware.

The front—end computer which interfaces with the DBC is likely to be one

or more general—purpose computers. The primary function of these general—

purpose computers is program execution. For this reason, we term all those

front—end computers the program execution system (PES). The IMS I, an interface

which allows IMS users to query hierarchical databases in the DBC and to

manipulate them via DL/l calls, is intended for the PES. This report is devoted

to an exposition of the IMSI (See again Figure 1).

2.3 The DBC Commands

The PBS communicates with the DBC by issuing DBC commands . The two types

of DBC commands are access commands and preparatory commands . Access commands

are used to retrieve, insert, delete , and update DBC records in a file.

Preparatory commands are issued to manage file information and security spec—

ifications so that the user can facilitate the access commands.

A repertoire of the DBC commands is listed in Table I. The commands that

will be used in the translation process are marked by an asterisk. Simplified

formats of these commands are presented . A detailed description of all the

command formats and their usage are given in [3 J .
(1) The Open—Database—File—for—Creation (ODFC) Command

The ODFC Command is required to be sent to the DBC before DBC records of

th e file are loaded into the bC. Uitl, respect to a file , this co~nand -iro—

vides Information on the number of a t t r i b u t es  of the file , t h e  numbe r of ~Aj
that need to be allocated initially , and th~ nui~ber of ~AUs t h a t  may be i i  lo-

cated if the initial allocation is insufficient .
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- - Mnemonics Command Function Command Type
- 

- 
(A — access type
P — preparatory type)

ODFC *Open Database File for  Creation P

LAI *Load Attribute Information P

Load Security Descriptor P

LR *Load Reco rd A

CDF *Close Database File P

ODFA *Open Database File for Access P

Retrieve by Query A

Ret r i-~ve by Poin te r A

RQP *Retrieve by Query wi th  Pointer A

Retrieve Within Bounds A

IR *I nsert Record A

DQ *Delete by Que ry A

Delete by Pointer A

Delete File P

RR *Replace Record A

Retrieve MAU Addresses P

Load Creation Capability List P

Table I List of Commands Recognized by DBC

L

. --—

~

--- - - -  ~~~~~~-~~ -—- --~~--- --.—--- ---
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(2) The Load—Attribute—Information (LAI) Command

The LAI Command must be issued to the DBC af ter the ODFC or ODFA command

and before any access commands . It  supp lies the at t r ibut es of a file and

causes the attributes to be loaded into the structure memory (SM).

(3) The Load—Record (LR) Command
The LR command loads DBC records of a file into the (MM). The argument

of this command is of the f orm:
record , 11CC, 0CC

1, 
0CC2,..., OCCn

where record is a DBC record to be loaded . 11CC is the mandatory clustering

condition and OCCs are the optional clustering conditions used to determine

the MAD for the DBC record . Execution of this command causes the DBC record

to be loaded into the DBC database according to the clustering policy speci-

fied by the clustering conditions.

(4) The Close—Database—File (CDF) Command
The CDF command indicates to ti le DBC that  the s-iecif ied f i l e  may be

deactivated. There will be no more access cormi ands from the user on th is  f i l e.
(5) The Open—Database—File—for—Access (ODFA) Command

The ODFA command opens a f i le  which has been created in the DBC data-
base. The access commands (discussed in the fol lowing)  tiav then be issued to
the DBC to process the f i l e .

(6) The Retrieve—by—Query—with—Pointer (RQP) Command

The RQP command retrieves from a f i le DBC records that sa t i s fy  a query .

The argument for this command is of the form :

sort—attribute , query

where sor t—at t r ibute  is the a t t r ibu te  of the keyword used b y the DEC to sort

the response set on the basis of the values of the attribute . The query is

a i~oo lean expression of keyword predicates. Execution of this command yields

the response set containing all DBC records tha t sa t i s fy  the query in sorted
order with respect to the values of the sort—attribute. Each DEC record in

the response set is assigned by tt-~e DBC with a pointer which allows fast access

to the DBC record for  subsequen t up date and deletion operations without in— 
- j

volving the s t ructure  loop.

(7) The Insert—Record (IR) Command

The IR command adds a record to a f i le  in the DBC database . The argument

of t his command is identical to that  of the LR command .

(8) The Delete—by—Query (DQ ) Command

The DQ command deletes DEC records from a f i l e  that  s a t i s f y  a query .

The argument of this command is of the form :

query

—~ - .  — —_- — - -~~ —— -  - —- --- -- -- -— - ‘ S
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where query is a Bcolean expression of keyword predicates . Execution of
this command causes all records that satisfy the query to be deleted .

(9) The Replace—Record (RR) Command

The RR command replaces a DBC record in a file of the DBC database . The
argument for this command is of the form: —

< ptr, record>

where ptr is a pointer for a DBC record and record is a DBC record . The execu-
tion of this command causes the DBC record located by the pointer to be re—
placed by the one given in the argument .
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3. THE INFORMATION MANAGEMENT SYSTEM (IMS)

In this section , we introduce onl y those IMS faci l i t ies  which will  be

used for discussion in later sections. The introduction will be centered

around the data structure of an IMS database and the data language DL/l

used to mani pulate the data structure. We will not , however , address the

ac tual application program s t r u c t u r e  and its relat ionship to INS , both of

which are not relevant to the in ter face  with  the DBC . For simp l ic i ty , a
slightly d i f f e r e n t  syntax of the DL/1 language is emp loyed herein .

3.1 The INS Data S t r u c t u r e

The def in i t ion  of an IU: database begins wi th the term sec’r’ent t ’!~~~~ which

will  be l e f t  unde fined.  A looieai data  s t r u c tu r e  is a hierarchical structure

of segment types , an example of ~iIt ich is shown in Figure 5. The segr~ent  type

A is called the root se~nent type and the others are called denendent se~ r~cnt

types. Cach dependent segmcnt type laas a areut sec~nent type. For instance 
- 

-

B is t h e  parent  segment type of E . S i ri l ar ly , each pa rent  segment tyn e  has

one or nore child se ient typ es.  The successive paren t—chi ld  re lat ionships

def ine  levels. A is at the first level , ~ and C are at the second leve l and

so on.

A logical data s t ruc tu re  def ines  an UI S database in which there nay be

zero or more segment occurrences (or sirrnly, ~egnents) for each segment type

in the 1o~ica1 data structure and each segment occurrence nay contain one

or more f i e l d s .  Associated w i t h  an occurrence of a nar ent  secment type are zero or

more occurrences of each of i ts child segment typ es , col lec t ively  called the ch ild i r
(or child segments) of the parent segment . Each child segment has a unique
pa rent segment.  All occurrences of a par t i cu la r  child segment type which share

a common parent segment are said to be twins. The descendants of a segment

occurrence are its children , their children , etc. A database record consists

of a root segment and all its dependent segments. Finally , an i ’~ ; d ~~~~~~~e

cons is t s  of all the database records.*

A convent  ion f o r  r e p r e s e n t i n g  an IMS da t abase  schemat ica l l y is show n in

F igure 6. Each labeled square  represents  a segment.  The r e l a t i o n s h i p  between a

parent segment and its children of a given type is represented  by a l ine  f r o m

the parent  segment to the first child segment. The twins of a particul ar seg-

ment type are illustrated by stacking them one after another.

*The reader  should note the d i f f e r e n c e  between an IN S database record as d~~t i n e d

here and a DBC record as defined in Section 2.1.
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Figure 5. A Logical Data St ru ctu re fo r an
IMS Database
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Thus the following relationships exist.

Al is the parent of Bi and Cl.
Hi, H2 and Ii are children of Cl.
El and E2 as well as F2 and F3 are twins.

INS application programs must traverse the segments of the database in

order to make retrievals. The conv~ ntion of traversing is from top to bottom

(parent to child), front to back (among twins) and left to right (among children).

More specifically , at every segment seek the leftmost segment in the next lower

level (i.e., a child), if none exists , seek the next twin segment; if none exists , -

seek the next right segment at the same level; if none exists , seek the next

right segment to the segment last traversed at the next higher level. The data-

base in Figure 6 would be traversed in the order Al , Bl , Cl , Dl, D2 , D3 , El , Fl ,

E2 , F2, F3, Gl, Hl , H2 , Ii, Ji , J2 , A2 , A3. Notice that the traversal order de-

fines a next segment with respect to a given segment. This concept is used

extensively in the data language DL/l. Finally , a hierarchical path is a

sequence of segment occurrences , one per level, reading directly from a seg-

ment at one level to a particular segment at a lower level. For example Al ,
Gl, Ii, J2 is a hierarchical path.

3.2 The INS Data Lan~~~g~j)L/l

An IMS user processes an INS database with application programs using

Data Language/i (DL/l). The DL!]. operations are invoked by means of subroutine

calls from an application program . For clarity , we will not present the original

DL/l syntax in this discussion . Rather , a simplified form of the syntax is given

which excludes the specification of the program communication block (PCB) and

the I/O area in the call arguments. The specification of PCB and I/O area are

mainly for the purpose of communication with the application program . A DL/l

call has the following format:

FUNCTION SEARCH-LIST

where FUNCTION is one of insert (ISRT) , delete (DLET), rep lace (REPL) or a
form of get (GET) and where SEARCH-LIST is a sequence of segment search argu—
ments (SSA), possibly one per level which are used to select a hierarchical  p a t h .

3.2.1 The Search List

The basic function of the SEARCH—LIST is to narrow the field of search .

It has the form

SSA SSA SSA1 2 n

where each segment search argument (SSA) is of the form

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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<segment_type> <Boolean expression>

with Boolean expression relating values of fields of the given segment type.

The Boolean expression need not appear, in which case we say that the SSA is

• ~
, unqualified; otherwise it is qualified .

3.2.2 DL/l Processing Functions

A brief description of the DL!l processing functions of get , insert , delete ,

and replace is given in this section. The purpose of this section is to give

the reader some idea of how each DL/1 function call can be interpreted . The

rules for each of the function calls are omitted in the discussion . The dis—

-
‘ 

cussion is informative rather than exhaustive. (For more detailed treatment

of the subject, refer to [5]).

In the IMS context, the term “current position” in the database refers to

a segment in the traversal sequence described earlier . After each retrieval

or insertion operation , a position is established on the traversal sequence
of the INS database. For a retrieval operation , this position refers to the

segment just retrieved ; for an insertion operation , this position refers to the
segment just inserted . Positions may also be established on the hierarchical

path leading from tha root segment to the “current position” in the database
S 

Each of these segments is called the ‘segment on which position is established

at that level.”

There are several forms of the get statement each of which returns a single

segment. A ~~~—unigue (GU) call retrieves a specific segment by starting at - ‘

the root segment type and finding the first segment at each level i satisfy ing

SSA1, retrieving the segment satisfying the last SSA. A g_et—next (GN) call

starts the search at the “current position”in the database and proceeds along

the traversal sequence satisfying the SSA ’s and retrieving the segment satisfying

the last SSA. The basic difference between GN and CU calls is the starting

position used in traversing the database. The execution of a GN call without

SSAs returns the next segment (maybe of the some or different segment type) on

the traversal sequence relative to the “current position” in the database.

The execution of a GN call with an unqualified SSA returns the next segment on
the traversal sequence of the segment type specified in the SSA , relative

to the “current position” in the database.

It is also possible to restrict the number of segments to be searched

using a get—next-within—parent (CNP) call. A GNP call  restr icts  the search

to descendants of a specific paren t segment. Thus t”TS aisc- ~naintains a :~
“E~~~

n t pos1tIon” which  is set it the last segment that was retrieved by a

CU or GN caU. The parent position remains constant for successive GNP i~~11~~.

‘ ~~‘ -~ ~S 5 S5~~~S S~ • ‘ ~~~~~~~~~~~ ~~~~~~~~~~ L~ L~
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In order to lock (hold) asegment for future update there is a similar set

of calls get—hold—unique (GHU), get—hold—next (GHN) and get—hold—next—within—

parent (GHNP).

The get—hold calls are similar to their respective get calls but are used

to obtain the segment before the contents of a segment can be changed through

a DLET or REPL call. In this report, we will treat the get—hold cailses seman—

• tically equivalent to their respective get calls.

The ISRT call is used to initinlly load the segments for cr eation of a

database and to add new occurrences of an existing segment type into an estab—

lished database. The forma t of the ISRT call is identical for either use. When

a segment occu rrence is to be inserted , the parent occurrence must already exist
in the database. The SSAs of the ISRT call specifies the complete hierarchical

path from the root to this parent and also the type of the segment to be in-

serted . IMS will enter the new occurrence at the correct position as defined

by the value of its sequence field .

The DLET call is used to delete the occurrence of a segment from a data-

base. It deletes the specified segment occurrence and also all its children .

The REPL call is used to modify the content of a segment occurrence throug h
program processing. The segment to be modified and replaced must first be ob-

tained by a get—hold call. A REPL call can then be issued after the segment

has been modified .

In order to simplify our discussion , we require that both C.~ and ISRT

functions must have SSA for each level from the top level down . The GN

and GNP functions may have either no SSA or have an SSA frr each level

starting at the top level. The DLET and REPL functions do not involve SSAs

at all.
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4. THE DBC REPRESENTATION OF AN IMS DATABASE

The first phase of the IMSI design is to propose a method to represen t

an IMS database in the DBC preserving the information from the INS database.

Recall that by preservation of information , we mean that any information in an

IMS database that can be stored , retrieved , and manipulated by the DL/l calls

can also be stored , retrieved , and manipulated in the same manner by the same

calls on the DBC database.

4.1 The Representation Problem

We intend to represent an IMS database by a file in the DBC in which an

INS segment is represented by a DBC record . Since a DBC record consists of keywords

and a t t r ibute—value  pairs , a natural  way of representing a segment by a DBC

record is to represen t each field in the segment by either a keyword or a

non—ke yword a t t r ibu te—value  pair .  We recall , at this point , that  keywords

are used by the DBC to perform content—addressing of the DBC records , whereas
non—keywords are n c t .  Normally the l a t te r  a t t r i b u t e — v a l u e  pairs consist of

the textual information of the record.

In order to determine whether  a f ie ld  should be represented by a ke:’word

or by a non—keyword a t t r ibu te—value  pair , we must know whether or not such a

field is to be used in a DL/l search argument. If the field is to be used in a

sea rch argument , the n it should be represented by a keyword . Otherwise , it

should be represented by a non—keyword a t t r i b u t e — v a l u e  pa i r .  Hence , when an IMS

database description is defined and stored in the datab~’se descrip tion library

(DDL) , i t  is necessary to def ine  those f ie lds  which will be used as search

arguments in a DL/1 call so that the IMSI can facilitate the representation.

In addi t ion , i n f o r m a t i o n  about the segment type and i t s  re la t ionsh ip  w i t h

other segmen ts ( i . e . ,  p a r e nt — c h i l - - .’r ~ t - - ’~~r r .  i~~t -a: .s~,i r.~ must also be repre—

sented as attribute—value pairs in the DBC record. For example , if the segment

type is OFFERING , then the DBC record is augmented by the attribute—value

pair (TYPE , OFFERING) where TYPE is the name of the attribute fo r  segment type .

In oruer to discuss the representation of the relationship among the segments ,

we f i r s t  in t roduce some t e rmino logy . An id e n t i fi c a t i o n  f i e ld  of a segment

is a f i e ld  of the segment whose value  is d i s t i n c t  f rom a l l  other  va lues of

the  same f i e ld  appea r ing  in the twins of this segment (all root segments

are considered as twins), if each segment has an i d e n t i f i c a t i o n  f i e l d , one

can simply “normalize” the h i e ra r chical  st ruc ture as f o l l o w s . For each

segment , embed the ide n t i f i c a t i o n  f ie lds  of each of its ancestors (i.e.,

‘ , —
C 

5--- 5 ’-
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parents, grandparents, and so on). In doing so, the parent—child aid twin

relationships are preserved even though the explicit hierarchical structure

is removed . The only ambiguity that may occur is when the identification

fields of different types of segments have the same field name. This can
- 

- easily be resolved by qualifying the field name with the segment type . For

simplicity , we assume distinct field names are used . The only complication

is that we must know a priori what is an identification field for a segment.

How then to select an identification field for each segment so that the

hierarchical structure can be normalized? There are three cases to be considered :

P Fir st , if the segment has a sequence field * and its values are distinct

among the twins , then the sequence field can be selected as the identification

L field of the segment.

Second, if the segment has a sequence fieid but its value is not distinct

among the twins , then a new field is formed by augmenting the sequence
• f ield value so as to identify the twins uniquely. The augmented values can be

generated , for instance, by the computer clock. The augmented sequence field

is then designated as the identification field of the segment. It should

be noted that  the ordering of the segments defined b y the augmented f i e ld is the
same as that defined by the sequence field .

Finally, if the segment has no sequence field , then a completely new

f ield is formed . A problem with this solution is that since no sequence field

is exp licitly defined, the ordering of the twins may be defined implicitly by

their position in the IMS database. This ordering information would be lost

if the new field is assigned an arb~ trary value . Hence one must assign a

value in such a way so that the order can be preserved . There are three

positions where a segment with no sequence field can be inserted into the INS

database — as the f i r s t  twin , as the last twin or between two twins . The method

of assigning value to preserve the order of insertion is similar to the Dew ey

decimal notat ion (e .g . ,  to insert a segment between 12.34 and 12.35 , number

it 12.34.1) .

In the subsequent discussion , unless otherwise noted , we assume that each

segment has a sequence field and its value is distinct among the twins of the

segment typt, It is evident that the identification field of a segment together

with the identification fields of each of its ancestors (if any) uniquely

identify the segment of a given type. In short , we will call this group of

fields the symbolic identifier of the segment.

We now summarize the representation of an INS database in the DBC . For

* The sequence field is a designated field for defining an ordering among the

twins. This is an INS terminology and convention. 

~~..5. —~~ - •~~ • -—- -
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each segment in an INS database , the keywords and non—keyword a t t r i b u t e — v a l u e

pairs of a DBC record are formed in one of the following four ways.

1. For each field in the segment which wil l  be uscd in a DL/1 search

arg umen t, form a keyword us i ng the f i e ld  name as the attribute and

the f i e ld value as the value .

2. Form a keyword of the form (TYPE, segtype) where TYPE is a l i t e r a l  and

• 
- segtype is the segment type of the segment in consideration .

3. For each identification field in the symbolic identifier of the segment ,

- - 

S 

form a keyword using the field name as the attribute and Lhe field

value as the value. Since a symbolic i d e n t i f i e r  may have one or more

f ield name—value pairs , the re will be one or more such keywords.

• 
- 4. For each field which will not be used in a DL/1 search argument ,

form a non—keyword a t t r i b u t e  value pair using the field name as the

attribute and field value as the value .

In the above process , many f ields are represented ~y keyw ords .  However ,
not all these keywords will be designated as Type—D keywords . In fact, as

wil l be shown in Section 4 . 2 , the number of Type—D keywo rds can be chosen to

be rela tivel y small without affecting DBC performance , if the appropriate

clus ter ing policy is chosen.

For examp le , consider the  IMS database in Figure 7. We show its repre—

sen ta t ion by differen t DBC records in Figure 8. For simplicity , no values

are given ; onl y the segment type and a t t r i b u t e  t emp l a t e s  are depicted . Even •

thoug h the attribute TYPE appears in each DBC template , its values are differ-

en t .  Q u a l i i i c at i o n  is used in three occasions to resolve ambiguity because

some of the field names used to form symbolic identifiers are not distinct. Notice

that the COURSE’/ field in PREREQ and the EMP # fields in TEACHER and STUDENT need

qualification.

4.2 The Choice of Type—D Keywords

Type—D keywords are keywords that are stored in the structure memory (SN)

of the DBC. These keywords are upda te variant. By min im izing the num her  of

Type — D keywords , we can reduce t h e ~~ storage required and the amount of SM

update operations performed .

In cert ain cases , the  r educ t ion  of the  number o Type—D keywords will

incr ease the number o f MAUs to be searched . This can be shown b y a s imp le

ex amp le. Figure 9 shows 2 ~ \ts , MAU l containing a DBC record RI with

keywords Ki and K2 and ‘~•\U2 containing a DBC record R2 with k e ’w e r d s  Ki and

K 3. If K2 and K3 are chosen as Type—D keywords , then the directory entry for

• K2 wi l l  have th e  f o r m  <K2 : MAUl > weaning that all DEC records of the file

~~ K2 can be located in M A u l .  Similarly , the directory entry for K)
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COURSE

COURSE# TITLE DESCRIPN

PREREQ _________________ OFFERING
~~~~~~~~~~~~ +TITLE *+DATE +LOCATION FORMA T

TEACHER STUDENT
*+

# +N~~1E ~NAME ~CRADE

Sequence field is marked with *

Sear ch field is mar ked wit h +

$ 4

‘ 4

Figure 7. The Logical Data Structure of an IMS database .
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Symbolic identifier is underlined

Keyword is marked with @

@ Type=Course
@ Course#’
@ Title

T)escripn

@ Type=Prereq . ‘
~ Type=Offer ing

@ Courselfr @ Course#

• - @ Prereg. Course# @ 
~~~@ Title @ Location

— Format

@ Type Teacher @ Type=Student

@ Course# @ Course#

@ Date @ ‘

@ Teacher .Emp~fr 
‘
~ Student .E mp#

- 

S @ Name ‘
~ Name=

@ Grade=
———5-———------------ ~

Figure 8. The attribute templates of DBC records for the transformed seg—

• ments as shown in Figure 7.
4
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MAUl MAU2

Rl R2

I Ki K2 ~
- Record [~ . K3 Record

L Body Body

-7

Figure 9. Two MAU s of the mass memory (MN).
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is <K3 : W~U2> . To locate Rl , K2 can be used as the query . Using the infor—

mation provided by the SM, only MAUl must be searched . Similarly,  to locate
R2 , only MAU 2 must be searched. However , if Kl is chosen (in stead of K2 and
K3) as the only Type—D keyword , then the directory entry for Ki is

<Ki : MAUl , MA1J2> reducing the number of directory entries in the SM. How-

ever, in order to retrieve either Rl or R2 by way of Kl both MAUl and MAU2 must

be searched . Hence the reduction of the number of Type—D keywords in this

case will decrease the precision of the search and degrade the performance of

the DBC.

On the other hand , if MAU l contains both Rl and R2 as dep icted in Fig-

ure 10, the choice of Kl as a Type—D keyword will still limit the search to

MAUl. Hence the precision of the search is unaffected by a reduction of
S T ype—D keywords. This example shows that if DBC records are clustered in an

app ropriate way , the number of Type—D keywords used can be reduced without

affecting the DBC performance .

The way that the DBC records of a file are retrieved should determine the

clustering policy employed for the f i le .  Once a clustering policy is chosen,

the choice of Type—D keywords for the file is rather straightforward . Since

each clustering policy is carried out by clustering conditions and each clus-

tering condition is a Bolean expression of keyword predicates in dis junc t ive

norma l form , one must  ensure that  the clustering policy can be expressed in

terms of keyword predicates. The attributes of these keyword predicates

should, therefore , be the attributes of the keywords that have already been

defined fo r the f i l e .  We next propose three cluster ing policies each of which

can be expressed in a Boolean expression of keyword predicates .

4.2.1. The First Clustering Policy .

The first policy (see Figure 11) clusters all DBC records which represent

segments belonging to the same TMS root segment . This clustering policy is a

natural one since segments are normally accessed by way of their root segments.

If the DBC records representing an INS root segment and all its dependent seg-

ments can be contained in a sing le MAU, then access to dependent segments of

the root segment requires only one MAU access . A disadvantage of this policy

is that if several root segments must be accessed collectively, several MAU

accesses may be required since different root segments are not clustered in the

same MAU. This situation may happen quite frequently in a GU call if the qual—

ification statement given for the root segment type is satisfied by more than

one root segment. The second disadvantage is that if the DBC records represent—
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Figure 10. Two records clustered into one MAU.
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ing all the dependent segments of a root segment cannot be entirely contained in

a single MAU , then access to dependen t segments may require more than one NAU
access.

4.2.2. The Second Clustering Policy
The second policy (see Figure 12) first clusters the DBC records

which represent all the IMS root segments and then clusters the DBC records

which represent all dependent segments. This policy takes care of the first

disadvantage of the previous policy since all root segments now belong to the

sam e cluster. The fact that a root segment is not clustered with its dependent

segments does not affect the performance. This is because the root segment must

be accessed before any dependen t segment is accessed and hence the same number

of DBC accesses are required to get to the dependent segments when either

policy is used .

4.2.3. The Third Clustering Policy

The third policy (Figure 13) clusters the DBC records by segment type and

is employed when the average size of the DBC records representing a root seg—

ment and all its dependent segments is larger than or comparable to the size

of a MAU. This policy produces smaller clusters which can fit into ~1AUs.

A proposed clustering algorithm for hierarchical databases [8] used the

known frequency of access pattern to produce an optimal clustering. However ,

that algorithm is not applicable to IMSI due to the way the DBC handles its

records. In the system discussed in that paper , unit retrieved from the

database is a page. When a parent segment , for example, must be found , the page

containing that segment will be retrieved . If the child segment of the parent

were stored in the same page, then subsequent access to these child segments

will not require an additional access to the database if the page is st i l l  in

main memory . Therefore , it is advantageous to cluster both the parent and its

child segments in the same page .

The strategy of transferring data from the DBC database to the front—end

computer is different. The notion of paging is absent from the DBC . Although

it is possible to transfer the content of an entire MAU (the counterpart of a

S S page) to the front—end computer , it is undesirable for the following reasons.

S First , a MAli is generally 2 orders of magnitude (i.e., 100 times) larger than

a page. If the entire MAli contents must be accommodated , large amounts of buffer

_ _ _  5. S - - -—.--” - S -- S •---- - --~~ — - - - 5 - - - - - - -—- 5 . -  
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storage must be provided . Second , the mass memory (MM ) of the DBC is designed

to search data stored in a MAli efficiently with its hardware content—addressing

capability . If such capability is not utilized and the content is transferred

to the front--end computer , then the IMSI will have to search the data thereby

increasing the amount of IMSI software required . In addition , search performance

would be degraded since this would be software performance not hardware per— —

formance.

Since two MAli accesses are needed to first fetch the parent segment and

then its children, it is only necessary to cluster the children in one MAU.

Clustering both the parent and its children in the same MAli will not improve

the performance. Therefore, an elaborate clustering algorithm such as that

proposed in [8] is not required .

In summary,  the basic r equ iremen t of a cluster ing po licy emp loy ed by the

IMSI is that all the twin segments of a given type should be clustered . The
reader should see tha t  the f i rs t  clustering policy discussed above violates
this basic requirement , whereas it is satisfied by the second and third clus-

tering policies. In fact , the clusters formed by the second and the third

policies tend to be large, a desirable property which cuts down the number of

S 
clustering keywords used to define the clusters. Smaller clusters require

more clustering keywords. However, one should not form clusters larger than

one MAli. Thus in choosing a c luster ing policy which meets the basic require-

ment, one should minimize the number of clustering keywords and assure that

the individual clus ters are smaller than a MAli.

4.2.4 A Clustering Example
In this report , we choose the second clustering policy based on the assump— —

tion that the average size of an IMS database record (i.e., a root segment and -

all its dependent segments) is smaller than the size of an MAU (about 500K bytes).
L Once the clustering policy is chosen, we can determine the Type—D keywords for 

-

the file which will be the clustering keywords.

The clustering keywords chosen are those keywords correspond ing to the se— -

quence fields of the root segments and those keywords representing the segment

S types . In order to see that these are the only clustering keywords required ,

we present the MCCs for those clusters shown in Figure 12. The first NCC defines -

the cluster of roo t segments (Figure  14) . There is then a separate MCC for each

cluster of dependent segments of a given root segment . For example , Figure 15 -

shows the MCC for the dependent segments of the database record with root segment

——5.—-  —5- 5 5 .  
_ ___
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MCC1 
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Title=Y Type Cou rs e

Descrip Course# ClS2ll
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Title=XXX
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Figure 14. The Mandatory Clustering Condition (MCC) for the Root Segments.
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MCC
2 

= (Type=Prereq A Course#=CIS3ll) v (T ype =O ffer ing  A Course#=CIg3ll) v
(T ype=Teacher A Course#=C IS3ll) v (Type= Studen t A Course#=C 1S311)- 

- 
— In this case, MCC can also be expressed

- as (CO~~ SE#=CIs 3li A ~ ~~PE~COURsE).
5 / 

‘
~~~~~~~~~~re~~~~~~~~~~~~~ a cluster

— Course#=C I3311 ‘‘- ,.-.
~~~ 

(
~

_
Prereq .Course/fr=C 152l2 .

“..-,
~Title=Y — Type=Prereq

— Cou rse#=C IS3ll — Type=Offer ing 
N

S - Prereq .Course#=C I$2ll — Course#=CIS3 11
Title=xxx Date=3.lO.77

Location=Co].
— - 

• Format=XYZ \
— Type~Teacher

S 

— Course#=CIS311

T:a:her .Ernp#=l475 ~~~~~~:::~~~~~~ il 
_ _  

\
\Name’-Delutj s Date= 3.lO — Type=Student I\ Studen t.E  — Course/~=CIS3ll 1

Name=Wash Date=3 .lO — Type=Student

\ Grade= C+ Student .E — Course~~CIS31i

Natne=Jone Date=3.13.77

Grade= B— Stu-~ent .E=4987

Name~Brown

Grade ’A )
‘-H -______

—-5- 5— - —

Clustering keywords are also
marked with — .

Figure 15. The Mandatory Clus te r ing Condi tion for  t ire Dependent Segments of a

Root Segment.
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containing Course#=CIS311. In addition , Figure 16 shows the l’ype—D keywords

5 
(clustering keywords), the symbolic identifiers and the other keyw ’rds .

In general the first MCC , defining the cluster of root segi~ients , is just

K where K is the keyword representing the root segment type . Then the MCCs

corresponding to each cluster of dependent segment3 is of the form

(K 1A K) V (1(
2 

A K) V .. V (K A K)

where K is the keyword representing the sequence field of the root segment and

~~ K2 , . . . ,  K
~ 

are the keywords representing the dependent segment types.

Ne xt , we n eed to show that  the Type—D keywords chosen above , though few in
number , are sufficient. By sufficient , we mean that (1) the Type—D keywords

can facilitate all DL/1 calls when applied to the transformed database, (2) any

additional Type—D keywords will not improve the performance (i.e., reduce the

number of NAU accesses). Since DL/l calls always retrieve segments by type and
the segmen t types are al read y made into Type—f) keywords . Queries in terr~s

of Type—D keyword predicates can emulate the DL/l calls. - 
S

To show that the searching performance cannot be improved by designating more

Type—D keywords is more involved . There are two cases. First, can performance

be improved in the retrieval of root segments? Since the root segments are

clustered , it takes one MAU access to retrieve the root segments. Thus nothing,

including the addition of more Type—D keywords, can improve the retrieval of

root segments.

Second, can performance be improved in the retrieval of the dependent seg—

ments of a root segment? Since , acco rding to the second clustering policy, all

dependent segments are clustered by the sequence field of the root segment , we

have to show that the sequence field of the root segment will always be used in

a query to retrieve the dependent segments. This result implies that only one -
MAU access is r equi r ed to retrieve the dependent segments so that again no -

improvement is possible. It remains to show that the sequence field of the

root segment will alway s be used in a que r y to retrieve the dependent segments.
S Since the parent—chi ld  relat ionships are preserved by embedding the symbolic

identifier of the parent into i t s  child segmen ts, whenever the child segmen ts

are to be retrieved , the symbolic identifier of the parent has to be used in

the query . h owever , the sequen ce field of the root segment appears in every

symbolic identifier of its dependent segment . Therefore , the sequence field

S 
of the root segment will always be used in a query to retrieve the depe nden t -

segments.

1

5. 
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Symbolic identifier is underlined .

Keyword is marked with @.

Type—D keyword is marked with

@ Type Course

@ Course#

- @ Title=
Descripn=

@ Type=Prereq @ Type=Offering

@ Course#= @ Course/fr

@ Prereg.course#= @ Date=
@ TItle= @ Location=

Forma t

@ Type Teacher @ Type Student

@ Course#= @ Course/fr
@ Date= @ Date

@ Teacher.Emp#= @ Student .Emp #’~’

-; @ Name= @ Name

@ Grade=

Figure 16. The a t t r ibu te  templates of DBC records showing Type—D Keywords .
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In summary, we have proposed a way of choosing a su f f i c i en t  set of

Type—D keywords for  a f i le .  Even though the number  of Type-D keywords chosen

is small , the pe rformance has not been compromised . 
-

4.3.  The Storage Requirement of the S t r u c t u r e  Memory (SM) and Mass ct:urv(’-~~) ~

The amount of SM s torage required depends on the number of Type—f)

keywords.  Using the second c lus ter ing  pol icy,  there  is one Type—D keyword

for each root segment (i.e. for each IMS database record) and for each seg—
ment type. Since the number of segment types is much smaller than the number

of IMS database  records , we estimate the number of Type—f) keywords by the

number of INS database records .  S ince an INS da tabase  record  is much larger

than a directory entry , the fraction of SM storage versus ~ -1 storage will

indeed be small.

The use of symbolic identifiers increases the storage required to

store a segment as a DBC record . At each level of a hierarchical data structure ,

the number of additional keywords stored in a DBC record equals  the number of

keywords in the symbolic identifier of the parent , i.e. zero at the root level ,

one at the second level and (1—1) at-the i—tb level.
S 

To estimate the storage saved by the elimination of INS pointers , consider

an IMS hierarchical structure representation calleci the child/twin pointer
S 

- representation . The child/twin pointer representation gives the user the 7nini~ al

path to traverse and up date  an IMS database . Each segment has the following

pointers to its “relatives”:

(1) A pointer to the first child segment of each type.

(2) A pointer to the last child segment of each type.

-~ 
- (3) A forward pointer to the next twin .

(4) A backward pointer to the previous twin .

(5) A pointer to the p a r e n t  segment.

Hence, assuming there are in child segment types related to this segment , there

are 2m + 3 pointers.

To compare the storage r equ i r emen t  for  INS pointers and DBC symbolic

identifiers , the following terms need to be defined . The fanout of a segment

type is the number of i t s  ch i ld  segment t y p e s .  The depth of an INS database is

the maximum number of levels. For simp licity , we assume that the fanout of

each segment type is a constant in and similarly that the number of twin occur—
4 rences of a child segment type (including the root segment type) is a constant

‘s’. It follows that every segment occurrence , except at the lowest level ,

has m*y chi ld  segment occurrences . Thus level 1 has y segments , level 2 has

my
2 segments and in general level i has m

l_1
y
1 segments. The number of pointers
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and additional keywords usc~ at the i—th level will be m~
’1y~’(2m+3) and

respectively. Hence the total number of pointers N~ is given by:

S N~~~~Z m  y (2m+3)
1=1

and the total number of additional keywords Nk is given by:
n

i~l i .N k = Z m y ( i—l) .
i=l

We then define the storage ratio R as:

Nk
(1)

whe re k is the ratio of the av:rage length of a sequence field to the length of

S 

— a pointer. When R < 1, more space is required for the pointers than for the
additional keywords.

By using some algeb raic manipu lation and the following fo rmulas

p -, p+l
S~ (x)=z xr 

~~~~ 
l—x

p p+l
T~ (x) = ~ ixi ~~~~~~~~ 

+~~~~~~px )

i=l l—x
it can be shown tha t for x—my

R= ~~ 
1 

— 
my—i + n—l

(2m+3) 1—my (my) ’~—l 1—li (mn)tl

Assuming l/ (mn ) in 0, R can be app roximated by

k
R~ (2m+3) ~i—~;F + (n— l)} (2)

Further assuming my is suff ic ient ly large , then (2) can be simplified to

S 

. n—iR k - ~--~~3 (3)

According to (3) , the storage ratio R between symbolic ident i f ier and point er s

decreases when either the depth n decreases or the fanout tu increases.

In Tables II , III , IV , and V , we show different  values of R for various n , at , and
- - 

k. Since IMS uses 4 byte pointers and k may have values of 1, 2 , 4 , or 8, the

length of an average sequence field is 4, 8, 16, or 32 bytes, respectively . 

~~~ -- -~~~~~~~~~~~~~~~~~~~~~~~~~ --
~~~~~---- -— —— —--S—~~~-S— -~~~~~~~~ 
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1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.20 0.14 0.11 0.09 0.08 0.07 0.06 0.05 0.05 0.04

3 0.40 0.28 0.22 0.18 0.15 0.13 0.12 0.11 0.10 0.09

4 0.60 0.43 0.33 0.27 0.23 0.20 0.18 0.16 0.14 0.13

— 5 0.80 0.57 0.44 0.36 0.31 0.27 0.24 0.21 0.19 0.17

Table II. R as a function of n and m where k l

1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.40 0.28 u, 22 0.18 0.15 0.13 0.12 0.11 0.10 0.09 .-.

3 0.80 0.57 0.44 0.36 0.31 0.27 0.24 0.21 0.19 0.17 ~
- 

-

4 1.20 0.86 0.67 0.54 0.46 0.40 0.35 0.32 0.29 0.26 - - -j
5 1.60 1.14 0.89 0.73 0.62 0.53 0.47 0.42 0.38 0.35 1 -

Table III. R as a function of n and m where k=2.
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1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.79 0.57 0.44 0.36 0.31 0.27 0.23 0.21 0.19 0.17

3 1.59 1.14 0.89 0.73 0.61 0.53 0.47 0.42 0.38 0.35

4 2.39 1.71 1.33 1.09 0.92 0.80 (1 .71 U.~-3 0.57 O.~~2 
-

-

5 3.19 2.23 1.78 1.45 1.23 1.07 0.94 0.84 0.76 0.70

- 
i i

Table IV. R as a function of n and at where k=4

_ _

— ~~~~~~ 1 2 3 4 5 6 7 8 9 10

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 1.58 1.14 0.89 0.73 0.61 0.53 0.47 0.-’42 0.38 0.35

3 3.18 2.28 1.77 1.45 1.23 1.07 0.94 0.84 0.76 0.70

4 4.78 3.42 2.66 2.18 1.84 1.60 1.41 1.26 1.14 1.04

5 6.38 4.57 - 3.55 2.91 2.46 2.13 1.88 1.68 1.52 1.39

Table V. R as a function of n and m where k 8 .

I.— . 
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1
In summary , the storage requirement for the symbolic ident i f ie rs  is

compensated f or in many cases by the removal of the conventional add ress I
pointers , it also suggests that  the design of a hierarchical database with

smaller number of levels and larger fanout  will  resul t In storage conservation Iwhen it is stored in the DEC . Furthermore , the use of symbolic identifiers
5 eliminates the needs of creat ing secondary indexes when the user wishes to

enter the database through the dependent segmcnt s , con t r ibuting a further re— -

ducti on in storage .

I

I
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5. THE TRANSLATION PROCESS
The DL/l interface module (IM) is the component of the IMSI which interfaces

with an IMS user program by translating and executing DL/L calls. The IM is

designed to fully utilize the DBC capabilities so that the IMSI need not

perform any content-addressing ,resulting in a reduction of the software cost

for implementing and running the IMSI.

The information obtain-ed in the course of executing a DL/l  call is main-
tained in the interface system buffer (ISB) and consists of DBC records which are

retrieved from the DBC in the execution of the DL/l call. Since each DBC

record represents a segment in an INS database , we will use the terms DBC record

and segment interchangeably whenever there is no confusion. We shall call all

the meaningful information in the ISB at any given time the content of the ISB.

In the following example, we use the IMS database which was defined in

Figure 7. Suppose the DL/i call to be processed is:

GU COURSE (TITLE= ’MATH’)
OFFERING (LOCATION= ‘STOCKHOLM ’)
STUDENT (GRADE=’A ’)

This get—uni que (Gil) call has three segment search arguments (SSAs), COURSE

(TITLE= ’MATH’), OFFERING (LOCATION= ’STOCKHOLM ’) ,  and STUDENT (CRADE= ’A ’ ) .
It retrieves a specific segment by starting at the COURSE segment type and

finding the first segment satisfying the SSA at each level, and then retriev—

ing the segment satisfying the last (i.e., the third) SSA. The content of the

ISB after the execution of the above call is shown in Figure 17. For clarity,

we do not show how the information is managed in the ISB (see Section 6). At

this point we assume that the ISB has unlimited memory. It contains segments

of three types, ordered according to the values of their sequence fields .

The segments at different levels marked as ‘x ’, ‘y ’, or ‘z’ are the segments on

which position is established at that level (see Section 3.2) and are referred

to as the curren t segment of the given type. The STUDENT segment marked ‘z’

is also established as the current position in the database and is sent to the

user I/O area.

Now we shall proceed to illustrate how the content of the ISB is established

during the execution of the above Gil call.

(1) Starting with the first SSA in the call, i.e., COURSE (TITLE ’MATH’), the
S COURSE segments which satisfy the qualification TITLE ’MATH ’ are retrieved

from the DBC and put into the ISB. These segments are retrieved by the

DBC query (fYPE COURSE A TITLE ’MATH’) and are sorted by the DBC according
to the values of their sequence fields.

~~LJ L 
-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~— - —~~~ 
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Figure 17. The content of the ISB.
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(2) The first COURSE segment in the ISE is taken as4the current COURSE

segment.

(3) The OFFERING segmen ts , children of the current COURSE segment , are then
retrieved with the qualification (LOCATION= ’STOCKHOLM’) and stored in

S 

the ISB in the order defined by their sequence field . If the symbolic

identifier of the current COURSE segment were (COURSE#=M5) , then the

DBC query created for this retrieval would be (TYPE=OFFERING A COURSE#

MS A LOCATION= ’STOCKHOLM’) .
(4) If no segment can be retrieved in step 3, then the next COURSE segment

in the ISB is established as the current COURSE segment and step 3 is —

repeated .

(5) Suppose some OFFERING segments are retrieved and stored in the ISB , the

first OFFERING Segment in the ISH is taken as the current OFFERING

segment.

(6) A process similar to step 3 and step 4 is performed to retrieve the first

segment with qualification (GRADE= ’A ’).

(7) The first of the retrieved STUDENT segments is sent to the user I/O area.

Ic should be noted at this point that the content of the ISB established S

by the above Gil call could be used to process the next DL/l call, for example

to retrieve the next student who has an A grade in a MATH course offered in

Stockholm. In this case the next student segment (with respect to the current

STUDENT segment) in the ISB is transferred to the iiser I/O area without

accessing the DBC. In order to process the next DL/l call, it is essential

for the IM to know the content of the ISB. Thus a status information table is

established .

The example discussed above has only one hierarchical path at a given

S time. (i.e.~ a COURSE segment with TITLE= ’MATH’, its child OFFERING segment

with LOCATION= ’STOCKHOLM’ and its child STUDENT segment with GRADE= ’A ’) .
IMS also allows multiple hierarchical paths as long as all segment occurrences

at the same level have the same parent segment. Thus a second hierarchical

path to a TEACHER segment is allowed. These hierarchical paths define a

current segment for each segment type.
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5.1 The Status Information Table (SIT)

The IMSI maintains information about the content of the ISB in the status

information table . Making use of the SIT , the IM can determine what changes,

if any, have to be made to the content of the ISB in order to execute a

DL/1 call. The information stored in the SIT is not used in the execution of a

Gil call since each GU call executes independently of the previous contents of

the ISE . However , the SIT is a vital tool used to execute the GN or GNP call

since the result of such a call depends on the previous content of the ISB.

For each segment type the SIT contains a COUN T of the number of occurren ces of

that segment type in the ISB , a number between 1 and COUN T indicating the CURREN T
SEGMENT of that segment type and a Boolean expression (QUALIFICATION ) satis-

fied by all the segments of that type in the ISB.
The CURRENT SEGMENT field is used to faci l i tate sequential traversal

(i.e., the ret r ieval of the “next ” segment) .  The COUN T field is used to deter-

mine whether or not the current segment is the last segment in the ISB.
The QUALIEICATION field is used to tell whether or not the content of the ISB

can be used to satisfy the DL/l call.

5.2 The Translation of the Get Calls —
The various DL/l calls have been discussed in Section 3. Since the get

calls are the most sophisticated calls in DL/l, we first discuss how a get

call is executed by the IM. The execution of the delete, replace and insert

calls ~~ straightforward and will be discussed later in Appendix A.

5.2.lAn Observation

It can be shown that CU and GN can be viewed as cases of GNP. Therefore 
-

any GU, GN or GNP call can be treated as a GNP call. This observation allows us

to use basically the same algorithms to handle all the get calls. To i l lus t ra te

this point consider the IMS database shown in Figure 18 having three levels and

three root segments . we now introduce a fictitious level (called level zero),

as shown in Figure 19. Each root segment becomes a child segment of the seg-

ment (the zero segment) introduced at level zero. We will refer to the IMS

database given in Figure 18 and Fi gure 19 as DEl and DB2 respectively . Not ice

that DB2 has only one database record.

We now show that any GU, GN and GNP call given to DB1 can be treated as a

GNP call given to DB2 if the current position and parent position in DB2 are

initialized appropriately .

IA- -

~ 
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- 
First, to see that a GN call to DB1 is equivalent to a GNP call to DB2,

we set the parent position on the zero segment in DB2 and set the current

position in DB2 to that in DB1. The effect of executing a GN call on DB1 is

the same as executing a GNP call with the same search arguments on DB2.

Second, to see that a CU call to DB1 is equivalent to a GNP call to DB2 ,

we set the current position and pa rent position in DB2 to the zero segment and
execute the GNP call with the same segmen t search arguments as those in the Gil

call.

Finally,  a GNP call to DBI is equivalent to a GNP call to DB2 as long as

the current position and the parent position are the same.

5.2.2 Examples

These examp les are based on the IMS database defined in Figure 7.

Example 1: To process the call:

S Gil COURSE

OFFERING (LOCATION= ‘STOCKHOL M’)

A get—u nique call must find the firs t occurrence of a segment satisf y ing

the SSAs. Thus no information in the ISB is of use. Therefore, the SIT must

be initialized so that processing may beg in at level 1 (Figure 20) . The

DBC que ry for retrieval

(TYPE = COURSE)

is created to load the ISB with all COURSE segments. Assuming there were , for

examp le , a total of 15 such segments then the r SB should be changed to that shown

in Figure 21. The next step is to retrieve OFFERING segments which are child—

ren of the current  COURSE segment and which satisfy the qualification
S 

LOCATION= ’STOCKHOLM ’. Suppose the curreit t COURSE segment has the symbolic

identifier K. The DEC query created for retrieval is-:

S 
(TYPE=OFFERING)A K A (LOCATION ’STOCKHOLM ’)

I — Suppose that 4 OFFERING segments are retrieved from the DBC and stored in the 
-

ISB. The changes in the SIT are given in Figure 22. The processing is

completed and the first OFFERING segment is transferred to the user I/O area.

Example 2: To process the get—next call:

GN COURSE

OFFER ING (LOcATION = ’ STOCKH OLM’ )

STUD ENT (GRADE= ’A ’)

-------------5--- - SS--- - -- -— - - -S—- - - —S - -— --- - - — --S . -~~~~- - - -~~~~~- S- - - 
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CURRENT

SEGMENT COUNT QUALIFI CATIO~
— o 1 1 NULL
S (course) 1

(prereq) 2

(of~ering)3

(teacher) 4

(student) 5

Figure 20. Initialized SIT .

CURR ENT
S SEGMENT I COUNT - QUALIFICATION

O 1 1 NULL

(course) 1 
-- - 

1 15 NULL

(prereq) 2

(offer ing)  3

(teacher) 4

S 
(student) 5

Figure 21. SIT a f t e r  retrieval of COURSE segments.

CURRENT
SEGMENT COUNT QUALIFICATION

0 1 1 
- 

NULL

(course) 1 1 - 15 NULL

(prereq) 2

(offering)3 
~5 

4 LOCATION= STOCKHOLM ’

(teacher) 4

~~~~~~~~~ 
5

Fi gure 22. SIT a f t e r  retrieval of OFFERING segments.

-J
- .--- - -- 
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assuming the p revious call is the one given in Example 1. Since the SSAs

-
- 

I for COURSE and OFFE R ING are identical , p rocessing begins at level 3 by
bringing into the ISB the STUDENT segments which are the children of the
current OFFERING segment satisfying the qualification GRADE= ’A ’ . Suppose the

symbolic identifier of the current OFFERING segment is composed of keywords
K1, Kz

, ... K , . The DBC query created for retrieval is:

(TYPE=STUDENT)A K
1 

A K2 A ... A K . A (GRADE= ’A’)

Suppose that 5 STUDENT segments satisfy the query . The changes in the SIT is

shown in Figure 23. The processing is completed and the first STUDENT seg-

ment is transferred to the user I/O area.

Now suppose that the OFFERING occurrence has no STUDENT child segments with

Grade= ’A’ . Then it is necessary to examine the next OFFERING occurrence , which

is known to be in the ISB since the OFFERING SSAs for  this and the previous

queries are the same. Thus the STUDENT segments which are children of the

next OFFERING mus t be retrieved.

Example 3: To process the get—next call:

GN COURSE

OFFERING

STUDENT (G IE= ’B ’)

assuming the previous ca ll as given in Examp le 2. Since the SSA for STUDENT

is GRADE= ’B’ whereas the previous was GRADE= ’A ’, the DBC must be asked to

retrieve new STUDENT segments which are children of the current OFFERING but

which follow the current STUDENT . Thus suppose that the symbolic identifier

of the cu rr ent OFFERING segment is composed of the keywor ds K1, K2 , . . . ,  K~ and -

the sequence field of the current STUDENT segment is SEQFLD x. Th’in the DBC

que ry created fo r ret r ieval is :

(FYPE=STUDENT) A K1 A K2 A • S •  A K A(SEQFL D ~ x)n(GRADE= ’B ’)

Suppos e that 8 STUDENT segments are retrieved and stored into the I SB . The

changes in the SIT is shown in Figure 24 . The processing is comp le t ed and

the first STUDENT segment is transferred to the user I/ O area.

S Fina lly suppose that  the current OFFERING occurrence has no ~ I II ) F ~ i child

segments wi th  GRADE= ’A ’ . As in the similar situation in Examp li ~. It is

then necessary to examine the next (in the t r av cr sa l  sequence ) O F F E R I N ) ;

occurrence . However the new SSA for OFFERING is NULL , whi le  th~ o~ d was

- - - -- —- - --— -- ~~~~~~~~~~~~~ - — —
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CUFJ~ENT

SEGMEN T COUNT QUALIFICATION

-— 

0 1 1 NULL

(course) 1 1 15 NUL L
S 

(prereq) 2
S 

(offering)3 1 j 4 LOCATION ’STOCK}IOLM ’

(teacher ) 4

(student) 5 1 5 GRAD E ’A ’

Figure 23. SIT a f te r  retrieval of 5 STUDENT segments .

CURRENT

~hGMENT 
COUNT QUALIFICATION

) 0 1 1 NULL

(course) 1 1 15 
- 

NULL

(prereq) 2

(offering)3 1 4 1 LOCATION ’STOCKHOLM’

(teacher) 4

(student) 5 1 8

Figure 24. SIT a f te r  retrieval of 8 STUDENT segments with
GRADE~’ ’B ’ .
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LOCATION=’STOCKHOLM’- Thus there is no guarantee that the next occurrence is in

the ISB so that the DBC must be asked to ret rieve all the OFFERING segments

that are children of the current COURSE segment and have sequence fields greater

than the current OFFERING.

5.2.3 A Translation Strategy

The processing of a get—call will now be described briefly. The complete

- 
algorithms are described in Appendix A.

The status information table (SIT) is used to process any get—calls . Before

any calls are p rocessed the SIT must be initialized to indicate that no segmen ts

- 
S 

of any type are in the interface system buffer  (ISB) except the zero segment

-
S (whose presence is fictitious). After a get—call has been processed the SIT

contains information about the segment occurrences in the ISB. Recall that IMS

identifies a current occurrence of one or more segment types. One of the

- properties of these occurrences is that all occurrences of different segment

types at the same level must be children of the same segment occurrence at the

next higher level.

Suppose that a get—call of the following form is received by the IM:

Get (S 1, Q1)

(S 2 ,  Q
2~

S 

(S ,

where S~ is the segment type and Q~ is the corresponding qualification at level i.
This call is first transformed by taking Q0

=NULL and adding the pair (S0,Q0
)

representing the zero segment to obtain

Get (S0, Q0)
(S 1, Q1)

S 

- (S , Q ) .

- 
r The problem is then to determine which of the current segment occurrences

1 L. satisfy the new SSAs at each level and th en whether the ISB con t ains all the

segment occurrences which might satisfy the new SSA by comparing the Q1 with

~

‘ E. the corresponding QUALIFICATION in the SIT.

- 
Assuming that the current occurrences of segment types S0, S1, . . . 

--- - - - - - - - - - - ------ ----— - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- 5 -
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satisfy the corresponding qualifications Qo. Qi~ Q2 ,. . .,Q 1, the n the fol1c~.’ing

table shows what can be determined about (S~+i, Qi+1) 
= CS , Q) by in f o r~,aLion

in the SIT. In that table the notation “Q implies QUALIFICATIO”~” means the

Boolean exp ression Q imp lies the Boolean expression QUALIFIC.\T1fl~ ~-:hich is an

- 

- entry in SIT, so that a segment occurrence satisfying Q must also satisf y
S - 

QUALIFICATION . Thus , since the ISB contains all the segments satisf ying Q.

However, if QUALIFICATION implies Q but they are not identical , there ;~~v be

segments sa t i s f y ing  Q which are not in the ISB and which may need to be retrieved

from the DBC.

S The previous discussion suggests the algorithm RETRIEVE (I, SUCCESS),

shown in Figure 25, which retrieves segments satisfying Q1, ~1+1~
that ar e descendents of segments satisfy ing Q0, Q1, ... , Q . ] . SUCCESS is

set to TRUE if the segments arc found , othe rw ise i t  is set to FALSE. Retrieval

of segments satisfying Qo’ Qi~ 
..

~~ Qn is accomp lished by calling RETRIEVE (0, SLC—

CESS). RETRIEVE uses two other procedures , BU FFER ( I , SUC) and NEXT (I , SUO .
BUFFER (I , SUC) retrieves segments of type S1 sa tisf ying Q1 from the DBC and
places them into the ISB. SUC is set to TRUE if a non—empty set is re t r i eved ;

otherwise, to FALSE. NEXT (I, SUC) advances the current segment of type S1
and sets SUC to FALSE if there are no more segments , and to TRUE, otherwise.

Unless Q1 = QUALIFICAT ION
1 

(i.e., the desired segment is in the ISB), the next

occurrence of the segment type S1 is ret r ieved f r om the DBC an d p laced in t h e

ISB. There is no attempt to determine if Q1 implies QUALIFICATION
1 

(i.e., the

desired segment may already be in the ISB).

Current occurrence All occurrences that
sat isf ies  Q sa t i s f y Q are in the I’SB

1. no current segment of type S no no

2. current segment of type S yes yes
and Q=QUALIFICATION

3. current segment of type S maybe yes
and Q~QUALIFICATI0N S -

and (QUALIFI CATI O~~NUlL
or Q implies QUALIFICATION)

4. current segment of type S yes not necessarily S

and Q~QUALIFI CATION
and (Q=NIJL L or
QUALIFICATION imp lies Q)

5. otherwise maybe not necessarily

~ 

~~~~~~~~~~~~~~~~ - 5 - - - - -  - - ~4J
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RETRIEVE (I , SUCCESS)
- - /*Retrieves segments satisfying 

~~ ~N that are descendents*/
/*
~
f segments satisfying Q

~ , 
Q , ... , Set SUCCESS—TRUE if seg— *1

S /*tnents ace found , otherwise FALSE. *1
if no current segment of type S1 or current segment of type S1 does notsatisfy Q1then do;

call BUFFER (I, SUC);
if ~ SUC then SUCCESS—FALSE, return;

end;
if l=N

S - 
then do;

call NEXT (I , SUC) ;
if - SUC then SUCCESS—FALSE , re turn ;

- —
— - else do;

RETRIEVE (1+1, SUCCESS);
- do while -~ SUCCESS ;

call NEXT (I, SUC)
- 

- — if —
‘ 

SUC then SUCCESS—FALSE , re turn ;
RETRIEVE (1+1, SUCCESS);

end;
end;

end RETRIEVE;

BUFFER (I , SUC)

/*Retrieve segments of type S
1 
satisfying Q1 

from DBC and place into ISB.*f
S if no current segment of type 

~I 
in ISB

then do;
retrieve from DBC segments of type S

1 which satisfy Q1into ISB;else do;
retrieve from DBC segments of type S1 which satisfy Q1 and theirsequence field values are greater that  that of the current segment
of type S1;if no segment can be ret r ieved

then SUC=FALSE;
-
~ else SUC=TRUE;

QUALrFIcATI0N
1=Q1;end BUFFER;

NEXT (I , SUC)
• if Q ~QUALIFICATION 1then do;

cal l BUFFER (I , SUC)
if -

~ SUC then return;
end ;

if the curren t segmen t of type S1 is the last segment in the ISB
then SUC=FALSE, return;
else do;

advance current segment of type S1;
SUC=TRUE

I 
~ - return;

end NEXT ;

Figure 25. The algorithms RETRIEVE BUFFER , AND NEXT .

~~~~LL - - - -
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6. BUFFER MANAGEMENT

The inte rface system b u f f e r  (ISB) Is created and managed in the IMSI to
reduce the number of accesses to the DBC . It is desi gned to be imp lemented

in a virtual memory system environment as shown in Figure 26. Mo re s p e c i f i c a l l y
the ISB resides in the virtual memory space of the computer system which sup-

por ts the IMSI, whereas the buffer partition is the partition of main memory
allocated to the ISB for paging . Since virtual memory management is conventional ,

we will not address it here .

Before introducing our concep t of buffer management, we first discuss

what buf fe r management is like when a conven tional general—purpose computer

is used to suppo rt database management. The b u f f e r  manager is the set of 
S

modules that manages blocks (or physical records) of information . A block

contains records (logical records) which are seldom re loca ted .  Due to this sta-

tic nature and the fac t  that records in a block may have diverse characteristics ,
not every record tha t  is in a block wi l l  he relevan t for  a p ar t i c u l a r  app l i c a t i on .

Hence when a block is transferred from the database to the buffer , not all infor-

mation stored in the block will actually be utilized , thus effectivel y increasing

the amount of I/O activity since some irrelevan t data are transferred . Further—

more , the p resence of i r re levant  data  decreases the e f f e c t i v e  b u f f e r  s ize  and

consequent ly increases the f r equency  of data transfer from the database to the

bu f f e r .

Due to the di verse c h a r a c t e r i s t i c s  of records stored in a block , the b u f f e r

S manager has little or no s p e c i f i c  knowledge about the content  of a block . This 
-

results in some undesirab le effects . Firs t , when a particular record is retrieved J
by its contents , the entire buffer must he searched in order to determine if  the

record resides in the b u f f e r  so tha t  on the average , ha l f  of t he b u f f e r  needs to

be sea rched.  Since the b u f f e r  is imp lemen ted in a v i r t u a l  memory environment ,

the I/o activit y induced by pag ing is considerable. Second , the bu f f er manag er

has little knowledge to predict wi~ich block r e s id ing  in the b u f f e r  w i l l  he used

again in f u t u r e  r e f e r e n c e s .  -\ general pol i cy known is a bl ock rep lacem en t —

al g o r i t h m , mus t then be devised to repl ace  the blocks stored in the buffer.

Examp les of b lock r~-n l a cem en t a lgor i t hms  are least—recentl y used (LRU), first—

• i n — f i r s t — o u t  (FIFO)  and  r andom.  These a l g o r i t h m s  are in tended  to increase the

h i t  r a t i o  of the blocks stored in the buffer. S ince these algori thms ar e general
in n atu r e , t h -  h i t r a t i o  can seldom he close to the Ideal .

The b u f f e r  m .inagement concep t emp loyed in the IMSI is d i f f e r e n t  f rom the

S 
con v e n t i on a l  o n t p t .  When In f o r m a t i o n  is t r an sf e r r e d  to  the  ISB , i t  is r e t r i eved  ~

S --

~
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I

S Database The DBC Database moving head
Space 

____________________ I disk

DBC access
(Buffe r Management)

:: Virtual  Memory F IsB Drum/ fixe d head disk
Space

Pag ing
(Vi rtual  Memory Management)

Real Memory Bu f f e r  main memory

— 

Space Pa r t i t i o n

7 .  Figure 26. The vir tual  memory environmen t of the T SR .
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f rom the DBC according to content , i .e .  all the DBC records whi ch are tr ans fe r r ed
to the ISB at one time satisf y a DBC query . Therefo re , the system b u f f e r  ma nager
(SBM) has specif ic  knowledge on the content of the ISB. Furthermore , the process-

ing of these DBC records fol lows an order which is defined by a keyword repre—
S 

sent ing  a sequence f ie ld  of a segment. Using the content information and the
orde r ing in fo rmation avail able to it , the SBM can predict what will be the fu-

ture references if the user continues to process these DBC records . The SBM
also knows which DBC records have been referenced and will not be referenced

again because the order of processing is known . Therefore , it can always de ter—

mine which DBC records can be removed for replacemen t and a general replacement

algorithm like the LRU , FIFO , etc. need not be used . Furthermore , all DBC
records transferred to the buffer are relevant to the app lication because they

all sat isf y the same query . This minimizes the amoun t of I/O activities re-

quired to transfer information from the database to the buffer as no irrelevant

data takes part in the transfer.

To sum up , the function of the SBM becomes fairly simple for two reasons .

Firs t , the SB’I need not perform content searching since this is performed by the

DBC. Second , the process of loading and unloading the ISB is determined complete-

ly by the translation process. Hence , the SBN need no t have any gen er a l i zed

block replacemen t algorithm . The major function of the SSB’1 is then to ensure

that all virtua l space allocated to the ISB is well utilized.

The space alloca tion problem arises when all the DBC records that should

be p laced in the ISB exceed the size limit of the ISB. This situation is pos—

sible , for the number of DBC records which satisfies a query is not fixed. When

there is insufficient space in the ISB , the SBM must have a policy to ternporar—

il v unload some Di3C records from the T SR even tho ugh they have not been refer-

enced. Such a policy is described in the following section .

6.1. The Buffer Space Allo cation Strategy
S 

Virtual space is allocated to the TSB in terms of p~~ es. The size of the

ISB depends on the total virtual space availab le to the user and should he

chosen to he as large as possible for the following reason. If we deithe the

I/o cost as the sum of the cost of DBC access and the paging cost , and if we assume

that the paging cost is less than the cost of DBC access ,then a larger  b u f f er

size will decrease the I/O cost. This is because a larger ISB allows

more I)BC records to be contained in the virtu al memory , thus effect ivelv reduc—

ing the 1/0 cost when i n s u f f i c i e n t  space in the TSR results in additional DBC

ai -ccss.  The assump t ion tha t  pagi ng cost is less than  the cost of DRC 1 CI e S S  Is

reasonable as the pag ing mechanism usually employs storage devices which have

- - - -
~~~~~~~
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n o seek time , such as a drum , while the DBC emp loys moving head disks, which
have seek time delay .

how is ISB space al1~ cat ed internally? Segments of differen t tvpe could

be stored in the ISB (Note: when we say segment in the TSR , we ac tual ly mean
the DBC record representing thit segment). Hence it is necessary to allocate

a number of pages in the ISB to each segmen t type defined in a log ical da ta
structure of the IMS database . Such allocation should be based on a priori

knowledge about the average number of pages used by each segmen t type in the ISB.

If no such knowledge is ava ilable , the allocation could be proportional to the S

perce ntage of the database space occup ied by a segi~ent  type . The purpose of the

allocation is to provide a policy to decide at least  how much ISB space each
segment type can have . We call this amount of space allocated to a segment type

a piota.

At any given time , some segmer.t type may not utilize part or all of its 
S

quota. There are two such possibilities . First , the spa ce curren tly occupied by

this type that  is less than its quota will be referred to as the “ le f t—o ver ” space

ot this segment type. Second , the quo ta space not yet used at all wil l  be re—

ferred to as the “n o t — y e t — used ” space of the ~eginent type.  To f u l ly u t i l i ze

the ISB space , the “lef t—over ” space should always be consumed by other segmen t

typ es whose space requirement exceeds its own quota. The “not—yet—used ” space

of a segment tv)e can also be used by other segment types. Thus space wastage

can be avoided due to unde r utilization of space by some segment types. How— S

ever a buffer space reclamation problem is thus created. Steps must be taken
— 

to redistribute the buffer space if a segmen t type wrnts to reclaim the buffer

space allocated to its quota , but the space is be L :~~ used by other segment types .

There are two steps in the reclamation process. The first step is garbage

collection. Since the processing of the segments is in the order  def ined by
- f thei r sequence f ie ld , the segments  that  have already been processed can be re-

ga rded as garbage . The garbage collection step wi l l  f ree  all such garb age

space . If  th is  s tep resul ts  In s u f f i ci e n t  space for  the reclamat ion , then n o

fur the r action is taken . Oth erwise , the second s tep of rec lamation is carr ied

out to dea l loca te  the space ov er—w ;ed by some segment t Ypes .  Any segment

type that has over—used i t s  quota  is a can did a t e  for  dea l loca t ion . The quest ion

now is how to choose a segment type for deallocation? The segment types in

- 
- the hi ghest lev e l ( i .e .  level closest to the top level) should be d e a l l o c at e d  L

f i r s t  fo r  the f o l l o w i n g  r e - I s on .  In  the I~1S d a t a ba s e  t r 5~ve r s a l  pr ocess , s ’s;r-ents

at a h igher  leve l w i l l  not  he requi red  un t i l  a l l  ‘~I~ w v r— i e v e l s e gnt -n ts  have 1IOe~~~

- - -- ~~~~- -S - - - -- - - - -~~~~~- •--~~ -- -~~~~~~~~~~~~ — • -5 S - -~~~-
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t rai~ rsed . Thus the removal of some segments in the higher level has a less
immediate affect on the traversal process.

In the following subsection , we shall presen t the da ta structures necessary
to imp lement the above buffer space allocation strategy .

6.2. Data Struc tures

The SBM maintains 3 tables for the management of the ISB. They are the

ISB bi t m ap , the ISB page table , and the segment contro l Lable . The ISB bit

map shows which pages in the ISB are in use or not in use . It is used to locate

the unused pages for space allocation . The ISB page table shows wh ich pages ar e
allocated to each segment type. The pages allocated to a segment type will

have corresponding en tries in the ISB page table l inked by pointers. The list

of linked entries in ~he ISB page table also gives the order in which the pages

are alloca ted to a segmen t type , thus defining the order that these pages will

be referenced. The segment control table contains information for each segmen t 
S

type. It includes some pointers to the ISB page table . The relationshi p

be tween these three tables is shown in Figure 27.

6.2.1. The ISB Bit Map

Each bit in the ISB bit map corresponds to a page in the virtual space

allocated to the ISB. A bit is set to 1 if the corresponding page in the ISB is

allocated for use, otherwise it is set to zero. If the SBM wants to allocate a

cer tain numbe r of pages for a segment type , the ISB bit map will be searched

- sequentially for  unallo ca ted pages. Since there is one bit for each page in the —

ISB bit map , the size of the ISB bit map will he N/8 bytes where N is the total

number of pages in the ISB. For examp le if N is 1000 then N / B  would be 125.

6.2.2. The ISB Page Table

The fo rmat of an ISB page table ent ry shown in Fi gure 2 8.  Each en t ry

corresponds to a page in the ISB. The pointer fields FPTR and BPTR are pointers

to other entries in the ISB page table . They define a sequence of pages allocated

to a segment type and are used to traverse the sequence of pages in a forward

and backward d i rec t ion , respect ively .  They are also used for the deallocation

and garbage collection process discussed in Appendix B. Assuming that the ISB

has no more than 1000 pages, then it will allow a conveniently large 4000K byte.

add ress space I f  each page is 4K bytes .  Hence the FPTR and BPTR fields will both

need 10 b i t s  to address the ISB page t ab l e .  Therefore , the maximum size o f th is

table is 2 . 5K by tes  (= 1000 x 20/ 8) .

_  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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ISB Page Table

ISB Bit Map

Figure 27 .  Segme nt  control table , b i t  map , and ISB page table .
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6.2.3 The Segment Control Table

Each entry in the segment control table contains information about a

segment type. The format of a segment control table entry is shown in Figure

29. The deallocation field (D) indicates whether or not all the pages allocated

to the segment type have been returned to the common pool. The list head field

(LHE AD ) con tains a pointer  to the beg inning of the list of I-SB page table  en t r i e s

allocated to this segment type and the list tail field (LTAIL) contains a pointer

to the end of this list. The LHEAD and LTAIL fields allow traversal of the list

of ISB page table entries in either direction. The old CS field (OCS ) contains

the value of the CURRENT SEGMENT field in the status information table(SIT)

which was last accessed by the SBM. If the value of the CURRENT SEGMENT field

has never been advanced by the P1, then the value of the OCS field will equal

tha t of the CURRENT SEG~~NT field . Otherwise , the val ue of the OCS f ie ld
would be one less than that of the CURRENT SEGMENT field. The OCS field is

used to recall the segment that was last retrieved. The current page field

(CPAGE) contains the page number of the page containing the segment that was

last retrieved by the IM. The offset field (OFFSET) contains the offset within

the page of the segment last retrieved. The CPAGE and OFFSET fields togethe r

form the address of the segment that was last retrieved. The total field (TOTAL)

contains the total number of pages allocated to this segmen t type. The used

page field (UPAGE ) contains the number of pages which precede the pa~ e ind ica ted

by CPAGE. These pages contain segments which have been processed and could He

released by the garbage collection process. The length field (LENGTH) contains

the length of each DBC record stored.(Here we assume fixed length segments).

The sequence value field (SEQ) contains the value of the sequence field in a

segment. The SEQ field is used when the TSR does not have enough space to con—

tairi the entire set of segments transferred to the INST from the !)BC. A solu—

don to this problem is to discard some of the segments transferred to the P1ST.

Since the segments with highe r ~~~~~~~~ field vilue s will be referenced at a

S later time , such segments should he discarded. Suppose that all segments whose

sequence fields have values less than or equal to som~ V au lt , say x , can be

stored in the ISB , then the SEQ f i e l d  w i l l  have the value x .  When all the sec —

m~nts stored in the ISB have been referenced , then the SEQ field is used to re—

trieve the rest of the segments which have been discarded. This process can bet repeated any number of times. In order to tell whether the SEQ field con —

tains meaningful information , a field C is used to indicate its validI ty .

The maximum length of a segment contro l table entry is 44 bytes and the

- - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- - - FPTR BPTR

10 10

Figure 28. The format of an TSR page table en try

D LHEAD LTAIL ocs cPAGE OFFSET TOTAL UPAGE LENGTH SEQ C QUOTA
—
~~~ 

I I

~

1 10 10 16 10 16 10 10 10 31*8 1 10

F~igure 29. The f.’rmat of a sagment c on tro l table entry .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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maximum number of segment types is 255. Therefore , the maximum storage require—

men t of the segment con trol table is approximately 10K bytes.  Howeve r , this

estimate is based on the worst case . In real i ty ,  a segment control tab le of

1K bytes should normally be quite sufficient.

In summary, the total storage requirement for maintaining these 3 tables

should normally be within a page of size 4K bytes. Hence the access of these

table s wil l  not incur addit ional  paging cost to the IMSI . The man ipu la t i o n of

these tables is described in &ppendix B.

~
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7. A COMPARATIVE STUDY OF INS AND DBC PERF ORMANCE

An analysis of DBC performance relat ive to INS is made . To support  the
S analysis, cases covering a variety of processing situations are constructed.

We then compare the relat ive performance between IN S and DBC via these

cases . Although these cases ao not give a precise  measure of performance

since DBC has not yet  been constructed , they do provide us with a b e t t e r  in—

sigh t into the s t r e n g t h s  of us ing the DBC in d i f f e r e n t  processing environ—

ments. 5

A measure of performance used in these cases is considered in the double

paging environment as discussed in Section 6. In the double paging environ—

men t, data are transferred from the database space to the virtual memory space
in the (front—end) computer system, which is then subj ec t to pag ing .

For simplicity , the measure of per formance  will only be based on the cos t of
trans fe r r ing  data from the database space to the virtual memory space. This

cos t is measured by the number of database disk accesses to retrieve or store

the required data. Thus, the measure does not take into account the soft-

ware overhead (i.e., pag ing, buffer searching) for manag ing data stored in the
virtual memory of the front—end computer. Such software requirements have

S been shown (in Section 6) to be favorable to the interface because the paging

cost is greatly reduced by eliminating buffer searching.

Hierarchical data is represented in I~ S b y one of fo ur organiza tions ,

known as HSAN , FiTSAN , IIDAN , and HIDAN.* The first two, HSAM and FIISAN are
S sequential representations while HDAM and HIDAN are direct. In our examples ,

4 we assume that hierarchical data is represented in INS by the HIDAN (Hier—

archical Indexed Direct Access Method) organization. The direct representation

is chosen instead of the sequential representation because it offers more rap id

access to segments within a database record than the sequential access methods.

It  also a1!ows the DBC to be compared with the best possible INS access method .
The onl y difference between HIDAN and HDkM lies in the fact that the root

-; segments are located by an index in HIDAN and by a hashing scheme in IIDAM .

HIDAM allows root segments to be processed by an index and dependent

segmen ts to he processed using pointers. A HIDAN database , th e r e f o r e , actually

consists of two files——one contains the data and the other contains the index.

Index ing is done on the sequence f i e l d s  of the  root segments . To locate a

segmen t in the da ta f i l e , the index file is used to provide an entry point to

the data file . Within the data file , child/ twin pointers (see Section 4.3) are

S * A description of HIDAN is given in Appendix C.
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used to represent the hierarchical structure. The data file is divided into

S 
blocks of equal length. A block is the unit of data that is transferred to and

from the buffer pool area in the virtual memory . Each block transfer re-

quires a disk access to the database. In the upcoming examples, we intend

to measure the number of block transfers required to process a user transaction .

The INS database used in the cases is shown in Figure 1). ic aSSulie

that it has 1,000 root segments and the length of each segment is 200 bytes

(including pointers , etc.). Each root segment has 30 children (i.e., OFFERING

segment occurrences) of length 100 bytes each. Each OFFERING segmen t has

50 children (i.e., STUDENT segment occurrences) of length 100 bytes each .

The structure of the IMS database is, in fact, a simplification of that given

in Figure 7. This simplified structure is sufficient for the illustration

since each DL/l call involves only one hierarchical path . The entire IMS

database is linearized according to its traversal sequence and segments are

loaded in this order into the blocks of the data file. For instance , the

first m segments in the sequence are stored in the first block of the

data file . The next tn segment will be stored in the second block , and so on.

An IMS database record is a course segment and all of its dependent

segments and is , therefore , 153 ,200 ( 200 + 30 x 100 + 50 x 30 x 100) bytes .

Assuming the block size is 4K bytes , which is a favorable page size, the IMS

database record will spread across 39 (153,200/4000) blocks .

The examples used in the comparison involve a variety of processing

situations including retrieval of a specific segment , retrieval of a number of
S segments, sequential traversal of the entire database , and addition of segments

to and deletion of segments from the IMS database. The comparison is based on

the number of disk accesses required by IMS and by the DBC . An analysis of the

results of the comparison will be given later.

We also touch upon other performance issues such as the security .

7.1 Case Studies

Case 1: To retrieve a specific STUD EN T segment. 
5

4 
GU COURSE (COuRs~ /=CIS2ll)

OFFERING (DAT~~730105) 
5 5

STUDEN T ( EMP#= 1684)

In the IMS environment: We will consider the best case and the worst case.
- If the STUDENT segment which sa t i s f i es  the call is the f i r s t 

- —

STUDENT segment in the IMS database record , then the number

-
~ 

I of disk accesses can be calculated as follows:
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S COURSE 
___________ 

Length (bytes) Occurrences S

COURSE# TITLE DESCRIPN 200 1000

OFFERING_________ _________

- - 

DATE 
~ 

LOCATION FORMAT 100 30(per course)

STUD EN T ________________

L~4P# 
J

NAME GRADE 100 50(per of fe r ing)

Figure 30. The database structure used in the examples .

:~ ~

I

~~~~~~~~~~~~~~~~~~~ U -



(1) One disk access’ to the index database to locate the
block containing the root ( i . e . ,  COURSE) segment.

(2) One disk access to retrieve the block containing the
root segment.

Since the required STUDENT segment is stored in the

same block as the root segment, no more database accesses

are required. Hence the total disk accesses are two .

If the STUDENT segment which satisfies the call is the

last STUDENT segment in the IMS database record , then the

number of disk accesses can be calculated as follows :

(1) One disk access to the index database to locate the

block containing the root segment.

(2) 30 more disk accesses to traverse from the first

OFFERING segmen t to the last using the twin pointers

(Since there are 30 OFFERING segments and since we may as-

sume that each of them is located in a different block , v

there will be 30 disk accesses. The justification of as-

suming different blocks is as follows. On the average ,

there are 50 students per offering, each STUDENT segment

requiring 100 bytes. Thus the average physical  dis tance

(in bytes)  between two adj acent OFFERIN G segments  is 5K b ytes ,

which is larger than a page . We may ,  therefore , expec t a t

least one disk access per OFFERING segment).

(3) One disk access to traverse from the last OFFERING

segment to the last STUDENT segment (Since the OFFERING

segment and its last STUDENT segment are located ~n

di f ferent  b locks) .

Hence, the total is 32 disk accesses. A rough es t im ate

of the median can be calculated from the two extreme cases
- as 17 (=(32+2)/2). 

S

In the DBC environment: The number of disk accesses is calculated as

follows:

(1) One disk access to retrieve the root segment.

(2) One disk access to retrieve the OFFERING segment.

(3) One disk access to retrieve the STUDENT segment .

_ _ _ _ _ _ _ _ _ _ _  

~
-j

j

1. For simplicity, it is assumed that onJy one disk access is required to rctricve~~4
index information since the amount of index inform ation for this example is small. 

~~
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The total is 3 disk accesses . These results are summarized

in the following table:

No. of Accesses IMS DBC

minimum 2 3

maximum 32 3

approximate median 17 3

Case 2: To retrieve a number of STUDENT segments.

— • GU COURSE (cOuRsE#=cI32ll)

OFFERING (LOCATION=LONDON)

STUDENT (GRADE= ’B’)

LOOP: CN COURSE (C OURSE~=cIs2ll)
OFFERING (LOcATI0N=L0NDON)

STUDENT (GRADE= ’B’)

GO TO LOOP

In the IMS environment: We will again consider the best case and the worst

case. If there is no OFFERING segment in the database record

which satisfies the qualification (LOCATION=LONDON), then the
. . number of disk accesses required is calculated as follows :

(1) One disk access to the index database to locate the

-— block containing the root segment.

(2) 30 more disk accesses to traverse from the first

OFFERING segment to the last (see explanation in

the previous example).

Hence the total disk accesses required to process the above

transaction is 31.

On the other hand , if each OFFERING segment in the
• database record satisfies the qualification (LOCATION

— LONDON), then the number of disk accesses required is

given by:
d. .. (1) One disk access to the index database to locate the

block containing the root segment.

(2) 39 more disk accesses to traverse the entire database

record (since a database record resides in 39 blocks).

The total is 50. Hence the approximate median is 36

(=(31+40)/2).

In the DBC environment: The number of disk accesses is calculated as

follows : 

—~~ -- rn-~~~•” ~~~~~~~~ S - -- ~~~~~~~~ S S S S ~~~~~~~~~ S
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(1) One disk access to retrieve the root segment.

3 (2). One disk access to retrieve all the OFFERING segmen ts

which satisfies (LOCATION=LONDON). Let the number of

OFFERING segments retrieved be x (where 0 ~ x ~ 30).

(3) x disk accesses to retrieve the STUDENT se~m~ents under

each OFFERING segment retrieved.

The total is x + 2. Hence the best case is 2 (when x=O)

S 
and the worst case is 32 (when x=30). The approximate median

is 17.

These results are summarized in the following table :

S No. of accesses IMS DBC

minimum 31 2

maximum 40 32

approximate median 36 17

It should be noted that if the sequence field of the

COURSE segment is not used as a search assignment in the

DL/l call , then , for IMS , each COURSE segment would have to

be examined to determine if it satisfies the qualification .

This would require 1000 more disk accesses since there are

1000 COURSE segments each of which is located in a different

block . However , for DBC, the number of disk accesses remain

the same since it only requires 1 disk access to retrieve
S any COURSE segment(s).

Case 3: To sequentially traverse the entire INS database.

CU COURSE

LOOP: GN S

GO TO LOOP

In the IMS environment : As shown ia Case 2, to traverse a database record

39 disk accesses are needed. Since there are 1000 database

records , the total number of disk accesses would be 39000

(39 x 1000). The access to the index database is negligible

since it may only take one or two disk accesses to transfer

the entire index into the memory . 4
in the DBC environment: The number of disk accesses is calculated as fol1a~s: -

(1) One disk access to retrieve all the root segments.

(2) For each roo t segment , one disk access is required

L to retrieve its dependent OFFERING segment. Since there

______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~s _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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are 1000 root segments , the number of disk accesses re—

-

. 
. quired to retrieve the OFFERING segments is 1000.

(3) For each OFFERING segment, one disk access is required

to retrieve its dependent STUDENT segment . Since there

are a total of 30000 (=30 x 1000) OFFERING segments ,
4 

the number of disk accesses is 30000.

Hence the total is 31001.

Case 4: To insert a new STUDENT segment.

ISRT COURSE ( COUR SEII=CI S2I1)

OFFERING (DATE=73O1O5)

STUD EN T

In the IMS environment: The number of disk accesses required to locate the

(logical) position where the STUDENT segmen t can be inser ted

is the same as that calculated in Case 1, to retrieve a

student segmen t, i.e., the minimum is 2. The maximum is 
-

32 and the median is 17. It will also be necessary to

store the segment in a new block since no space is assumed 
-

to be available in the existing blocks . Therefore , one

more disk access is aeeded to actua lly insert  the segment .

The number of disk accesses for the insertion is:

3 (minimum)

33 (maximum)

18 (median)

In the DBC environment: The segment can actually be inserted in one disk

access since the sequence fields of the ancestors are g iven
S 

in the DL/l call. The DEC record can simply be formed using

the sequence fields given in the DL/1 call and only one

disk access is required to actually place the DBC record in an

MAU. However, if the sequence f ields of the ancestor  are
I - not given in the DL/l call , they must be retrieved first.

It takes one disk access to retrieve the root segment and

one disk access to retrieve the OFFERING segment. After

retrieving these two segments , the DBC record for the

STUDENT segment can be formed using the symbolic identifier

of its parent. It can then be inserted into the DBC in

• approximately one disk access. Therefore , insertion re—

quires a minimum of 1 and a maximum of 3 accesses.
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Case 5: To delete a COURSE segment.

GHU COURSE ( cOURsE#= cTS2n)

DLET

In the INS environment: Since all the dependent segments of the COURSE

segment must also be deleted , the entire database re-

cord must be traversed in order to complete the database.

The number of disk accesst~s is 40 (one disk access

to the index database , 39 disk accesses to traverse thc

database record).

In the DBC environment : Only one DBC access is needed to delete the

root. Since, according to the second clustering policy ,

the root and its dependent segments are clustered in two

different MAUS’ , the total number of disk accesses is

actually 2.

7.2. A Performance Analysis

A summary of the results of the preceding comparisons is given in Figure

31. Based on these observations , an analysis is made on the merits  of u sing S

the DBC to support  hierarchical databases.

The DBC has superior performance in updating operations. First , it

simplifies the process of inserting a segment into an INS database. In INS,

inserting a segment requires searching of the INS database for a (log ical)

position in which the segment can be placed. Address pointers are then ad-

justed in the INS database to support the actual insertion . This process

is ti•ne—consuming since the IMS system must search the database to establish

the (logical) position for insertion. In DBC, the segment can be placed

anywhere in the DEC database and there is no need to search the DBC database

if the symbolic identifier of its parent can he determined from the insert

call. Furthermore, there is no need to fix pointers for an insertion opera—

tion. - . -
-

Second , DI3C also si mp l i f ies  the process of d e l e t i n g  a segment .  The - 

--

argument is s i m i l a r  to that  of insert ion . Furthermore , the dependent  seg—

ments of the parent segment being de leted can be de leted at t h e same time

S with little overhead , because the symbolic i d e n t i f i e r  of the parent appears 4
:
.

in each of i t s  dependent  segments .  Hence , a DBC de le t ion  command w i t h  a

symbolic ide n ti fie r as the parameter will delete all segments having that

symbolic i d en t i f i e r , the reby au toma t i ca l l y de l e t ing  the parent  and al l  of i ts

depe ndent  segments  in one operation . On the o ther  hand , for  TMS to d e l e te  a l l  

~-- - --u
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Environments

-
- Case study IMS 

- 
DBC

1. To retrieve a mm 2 
-

~ 3
specific segment max 32 3

- 2. To retrieve a mm 31 2
number of segments max 40 - 32

“med” 36 17

3. To traverse —

S 
the entire database 39000 i 31000

4. To insert a mm 3 1
segment max 33 2

“med” 18 3

5. To delete a 
S

segment 40 2

Note: “med” = (mm + max)12

Figure 3]. Summary of results

‘ - 
S

- 5 - .  -.S—~- ~~~~~~~~ ~~~~~~~ 5 5 ~~~~~~~~~~~~~~~~ -~ -~ -—- .5—-—- --— S_S~ — ~~~~~~~~~~~~~~~ - —



—72—

the dependent segments of the parent, each dependent segment must be located

individually and then deleted , a time—consuming process.

With regard to retrieval operations , as seen in Cases 1 and 2, the DBC

performs well in re t r iev ing  a specif ic  segment or a small number of segments
requir ing a search of a large portion of the database.  In Case 1, a speci f ic -

segment is retrieved. For IMS , the n umb er of disk accesses depends on the 
-

length  of the (poin ter )  path  which is used to traverse from the entry point
of the databa se to the required segment. If this path spans many blocks ,

the number of disk accesses required would be large. However , in DBC , the
notion of a (pointer) path does not exist. By embedding the symbolic identifier

of the p arent into the child segments , each child segment can be searched
independently and , therefore , it is path independent. The number of disk

accesses is sensit ive to the number of levels tha t  are t r aver sed in reaching

the segment.

In Case 2, a number of segments are retrieved. For IMS , the number of
dis k accesses again depends on the length of the (pointer)  path required for -

traversal. For DBC , it depends (in this case ) on the number of OFFERING

segments , x, which satisfies the qualification. If x is small, then the

number of disk accesses will be small.

The capabili ty of the DBC for sequential processing is demonstrated

In Case 3. Even though the performance gap between IMS and DBC is narrowed in
comparison to Cases 1 and 2 , the DBC , which is not designed for sequential
p rocessing, can still  ou t—per form INS , which is desi gned for sequential  p ro-

cessing.

In addition tc the previously described benefi ts, the DBC allows more

f lexi b i l i t y  in retrieval operations . In IN S , in order to retrieve a segment ,
the system must enter the database through an entry point. Normally, the

en try poin ts are limited to the root segments because an index

(called p r ima ry index) is crea ted an d main ta in ed au toma t i cally only for the

root segments. Although the user has the option to define secondary indices

for the dependent segments for the purpose of entering the database in p laces

other  than the root segments (see Figure 32) ,  the use of secondary indices

requires extra amounts of storage and maintenance for the index files . In

DBC, however , every segment can be used as an entry point to the database .• 
-

because segments stored in the DBC are not located by po in te rs  or by

adjacency . Each se~ nent , stored in the DBC, can be located individually by

its contents , without depending on its position in the database , thus providing - -
~~~~
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Figure 32. Indexing a database with secondary indices.
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I 
retrieval flexibility even if secondary indices are not created.

7.3. Security Consideration

Besides the advantages in retrieval and updating operations, the DBC

offers security features which are more sophisticated than those provided in

IMS. IMS provides data security in several ways. We are concerned with the

kind of logical protection that IMS provides rather than physical protection ,

like terminal and password security , or encryption. The first logical

S protection concerns segment sensitivity . If a segmen t type is designated to
S be not sensitive to a user (program), the user cannot have any kind of access

to the segments of that type. For example, referring to the INS database
structure defined in Figure 7, if PREREQ is designated to be insensitive to

user A , then effectively, user A has access to the database structure as

shown in Fi gure 33. fliS also allows the database administrator to specif y
processing options for each segment type. For example, the user may be
allowed to get a segment of a given type but may not be allowed to perform
delete, insert, or replace operations on that segment type. In other words ,

segments are protected collectively within the same segment type. By over—
S looking the content of the segments expeditiously, IMS determines whether

the user has the right to have access to a segment type. Protection is said ,
therefore, to be on the segment type level. IMS does not provide protection

below the segment type level, i.e., individual segments cannot be protected

differently according to their contents. Protection below the segment type

level is more involved. However, the DBC can provide such protection by

hardware. 

- -~ -
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Figure 33. A case of access control.
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8. CONCLU DIN C REMARK S

As a mul ti—model database computer , the DBC is inten ded to support

various database models and associated systems . To this end , we have

endeavored in this report to show that the DBC is capable of support-

ing the hierarchical data model and IBM ’s INS data managemen t system . In

two for thc oming repor ts, we will show that the DBC can also support the

relational model and system as well as cne CODASYL network model and

system.

To suppor t a hierarchical  da tabase model , the or i ginal INS data-
base must be converted to a DBC database . This one—time database con—

vers ion is strai gh tforward and cost—effective . By strai gh tforward , we
me an tha t the al gorithms provided for the conversion , known as the repre-
sentations methods are simp le. The r.iain purpose of these al gori thms

is to remove a d d re s s —p o i n t e r s  embedded in the I~1S database and to intro-

duce the symbolic identifiera. Add ress—pointers are no longer needed

in the DBC since the mass rn~mory (nM ) of the DBC is content—addressable .

Symbolic identifiers preserve the parent—child and twin r e l a t i o n s h ips.

By using symbolic  i d e n t i f i e r s, IllS segments  can not  onl y be accessed in

accordance wi th  the t r aversa l  sequence bu t  also can be r e t r i eved  d i r e c t ly .

In o the r  words , bo th the sequential—oriented search for arid the random access to

individual INS segments are facilitated. Because the storage require-

ment for symbolic identifiers is compensated by the removal  of address—

poin ters and because the rando m access capabi l i ty ha s m ade the need for

secondary  indices  unnecessary , the DBC database is c o s t — e f f e c t i v e .

In addition to database conversion , the DBC requires a software

i:~terface , known as IM SI , to suppo r t  INS application programs . INS T

f l - e ) l ’ - c  T~~ users to run IN S (app l i c a t i on )  programs  in the  same c o m p u t e r

~~~~~~~~~ e nv i r ~~n n e n t  on w h i c h  they were developed (say , an IBM 360 / 370

s v ;~~~~~-i) ~.‘h i le  u t i l i z i n g  D!3C ’ s s to rage  and search  cap a b i l i t i e s

- ~~~~~~ 
- r ion li~~•s) for INS database records without anY modifica—

~ s• .  ‘i~ . r  ~5 r ~ r i:-~~ and without the presenc e of the INS data S

- . - • - ‘ . is in t~~r ’~s t i ng  t I -I n o t e  that the  so f twa re  r e q u i r e —

~~ ? 1 S ~~
- 1 ni n i :~ ii . Essenti~i l l , IMSI intercepts the

i-’ rts ~he calls to equ ive len t DBC commands ,

“ , ~ - i r  len . ~~~~~~~~~~~ t r a c k  of the INS segments

hii( f’~r ~r -  tc  ¶ .‘hf ch :lr ( o m od l t e  t h e  s(’~ !nent S ,

~ 1-
— — 

—- — 
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I’
and clears and resets buffers and tables. Because the DBC accepts queries

in the form of a Boolean expression of keyword predicates and because it has

commands in all storage, retrieval and update modes , the conversion of DL/l
S calls to the DBC queries and commands is st raigh t fo rward. Due to DBC ’s

content—addressability , segments retrieved from the mass memory and placed
in the buffer are all ‘valid’ segments. There is no need for the buffer manage—

-: ment routine to have an elaborate segment searching algorithm. Furthermore , —

I 
the size of the buffer need not be large since it contains no invalid seg-

ments.

There are other advantages in utilizing the DBC which are not available

S if the IMS database were running in a conventional computer system environ-

ment:

(1) The DBC can concurrently host several types of data models and interface

with different data management systems, making it possible to communicate

among d i f ferent  models and systems .
(2) The built—in security mechanisms are far more advanced than IMS can

offer, allowing users to enjoy more adequate access control and data

protection.

(3) The built—in clustering mechanisms can improve performance. Since the

partitioned content—addressable memories (PCANs ) utilize very large

partitions (in mass memory , the size of the partition is the size of
S 

the cylinder), clustering is easy and effective . Furthermore , only the

relevant segments of a cluster in a partitio~ are output . Therefore , one

is not concerned with the kind of problems associated with small page

size in a conventional computer system with virtual memory.

(4) The DBC can provide overall throughput improvements over conventional

computer systems , s ince the DBC is destined to suppo rt very large

databases of 1010 bytes with good cost/performance . It is difficult

for a conventional computer system to support a growing database

application by adding more disks and software . Furthermore , the DBC

can relieve the general—purpose computer from using much needed CPU

cycles for data management tasks.

S --- S _ - — - _ _ - _ _ _ - - _-- ---
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APPENDIX A — THE ALGORITHMS FOR THE TRANSLATION PROCESS

This section provides deta i l s  of how each ilL/i call is processed.

It should be noted t h a t  be fo re  any DL/l call  can be processed by the

IMSI , the (DBC) file contain ing the INS database must be opened using
the p repa ra to ry  DBC comman d given in Section 2 . 3 .

Since the interface system buffer (ISB) is managed only by the

system buffer manager (SBM), the ilL/i interface module (IN) communi—

-. - cates with the SBM by subroutine calls which then perform the functions

requested by the TM on the ISB. These functions include retrieving

delet ing,  replacing and inse r t ing  a segmen t in the ISB , loading and un-

loading of the ISB .

For imp lementa t ion  purpose s , the status information tables (SIT)

discussed in Section 5 would require  an add i t iona l  f i e l d  to each seg-

ment type . This  f i e l d , the  VALIDITY f ie ld , having value 1 or 0 is

used to i n d i cat e  whe ther  the in fo rmat ion  g iven in the  e n t r y  is mean—

S 
ing ful  or n o t .  For abbrev ia t ion , V , CS and ~ UAL wi l l  be used to s t a n d

for  the V-\LtDITY , CURRENT-SEGMENT and QUALIFICATION f i e lds , respec t ively.

We presen t a descr i p t ion  of these f u n c t i o n s  in the f o l l o w i n g .

(1) F e t ch_ cur ren t .

The p ar a m e t e r s  of the  ca l l  are k (segment type) , and addr (a

storage location i~. the IM) . The execut ion of the call causes the

c u r r e n t  segment of type k ( i. e .  the segment i n d i c a t e d  b y CP (k) in the

s t a tus  in fo rmat ion  tab le )  to be re t r ieved from the 1SB and t r a n s f e r r e d

to the locat ion addr.

(2) Rep l ace—current.

This call is used to rep lace a segment stored in t h e  ISB b y the

~~
S
~~rnent supp l i e d  as an argument. The parameters o t  t he  c a l l  are k

(the segmen t type ) and addr ~rhe s t n t a~~e l o c a t  ion of  the  segmen t used to

replace the on,- in the ISB). The segmen t replaced is the current st-g—

merit of type k.

(3) fle l t’te— -urre nt

The pi r i- ~~ter of  the call is k (the segment type). The execution

of the c - i ll deletes the current segmen t of type k from the ISB.

£-
~~~ (4) I n s e r t — - i c — c u r r e n t .

The parameters of the call are k (the segment type) and addr (a stor—

age location in TM). The execution of the call inserts the segment

iJ IA _ _ _ _ _ _ _ _  _
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addressed by addr into the ISB and establishes this segment in the ISB

as the current segment of type k.

(5) Release—buffer—space .

The parameter is k (the segment type). The execution of the call

releases all buffer space allocated to segment type k. 
S

(6) Load—buffer.

The parameters are k (the segment type) and command—ID ( i.e .,  a
DBC command identifier). This call causes the SBM to load the response

set from the DBC identified by command—ID into the segment type k por— S

don of the ISB. This call is issued to the SBM after the IM has is-

sued a DBC retrieve command to the DBC.

A .l Processing the Get Calls

The get—unique (CU), get—next (GN) and get—next—within—parent (GNP)

S calls have b€en shown to be similar except for the initial setting of

the parent position and the current position in the IMS database . Hence

the processing of each of the three types of call is described by

basically che same set of algorithms excep t for the initializat ion part.

The get—hold calls will  be tre ated as semantical ly equivalent to their

respective get calls.

In the algorithms , we assume the SSAs for  the get call are (So , Qo), —

~~i’ ~i~
’ -
~~~’ 

(Sn, Qn). Furthermore , the variable parent contains a

segmen t type indicating the parent position . Similarly, the variable

CPDB contains a segment type indicating the current position in the

database . Notice that parent and CPDB conta in  onl y segment types and

do no t direc t ly address  the ac tua l  segments. The ac tua l  segments can

be located by the respective CS fie lds in the SIT.

The subroutine structure of the get call is dep icted in Figure  34.

The initialization process for three get calls is performed by algoritnms

~\ (for GU), B (for GN) and C (for GNP). This initialization process
S 

incl udes the setting of the appropriate paren t pos i t ion  and cur ren t

posi t ion in the database .  Al g o r i t h m  I) f i r s t  determines at which level

processing should ~tnrt by comparing the input qualifications with the

qti .~lificat ion s stored in the SIT. It t h en , call s -\lgorIthm s E, F or G

depending on the cases (to be discussed) to complete the processing. Essen t i a l ly
I 

- they bring In a set of segments on each level starting f rom the leve l

d e t e rm i n e d  by a l g o r i t h m  D down to the lowest leve l sp ec ified by the get

_
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call. Algorithm H is the algorithm which actually retrieves a set of

segments at a given level.

Algorithms D—H are the same as the algorithm given in Section 5 although
specified differently.

S A.2 Algorithms for Processing Get Calls with SSAs

ALGORITHM A: To process a CU call.

Step 1: Pa ren t i- o.
Step 2: (Let r be the total number of segment types) For i=l, 2,

r~ pe r fo rm step 3 and 4.
S Step 3: V (i) *- o.

Step 4: Call Re lease—buffe r—space  ( i).
Step 5: Execute  al go r i thm D.
Step 6: If algorithm D terminates normally, then Parent Sn;

CPDB +- Sn.
Step 7: Return .

Notes: Step 1 sets Parent to the zero level. Steps 2—4 set the
curren t posi tion in the da tabase to leve l zero by clearing

S the validity field for each segment type greater than zero
and at the sam e time release all the spaces allocated
the ISB. Step 5 executes a lgor i thm D. If algorithm D is
executed successfully ,then s t ep 5 resets the parent position
and current position to be used by subsequen t calls.

ALGORITHM B: To process a GM call.

S 
Step 1: Parent +- o.
Step 2: Execute algorithm D.
Step 3: If algorithm D terminates normall y ,  the n Parent  ÷- CPDB i- Sn.
Step 4: Retucn .

No tes: These steps are similar to those in algorithm ~~. The cur-
rent position in the database need not be reset because
this was a GN call.

ALGORITHM C: To process a CNP call.

Step 1: Execute algorithm D.
S 

- 
Step 2: If algorithm D terminates normally, then CPDB ~

- Sn.
Step 3: Return .

Ncte: In step 2, the parent position is not reset due to the rule
of the GNP call.

ALGORITH M D: This  al gor ithm initializes the search of the I’-~S traversal
sequence by finding the first level, if it exists , where

QUAL(Si) is incompatible with Q i ( i .e . ,  QUQUAL(Si )  and
• Q1~ NULL). It then distinguishes three cases and makes calls —

to algorithms E, F, and C respectively . The cases are :
E. QUAL(S1) is incompatible with Qi for some i.
F. QUAL(Si) is not incompatible with Qi for i 0 , 1, .. ., 

•

- - 
I m and m~n.

r I C. QUAL (Si) is not incompatible with Qi for i 0 , 1, ...,
m andmn.

-— -—•-~~~~~~~~~ - - ~~~~~ — — -  ~~~~~ -~
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Step 1: i4- l.
Step 2: If V (Si) = o, then go to Step 5.
Step 3: i ~- I + 1.
Step 4: If i ~ n ,then go to Step 2.
Step S: m~~~i — l .
Step 6: For i = 1, 2, ..., m ,p er form Step 7 .

S Step 7: If Qual(Si) is incoi::patable with Qi then execute al go-
rithm E with argument i; return with condition from
algorithm E.

S Step 8: If in < n , then execute al g o r i t hm  F ;else~ execute al g o r i t h m  C.
Step 9: Return  wi th  condition .

Notes : S teps  1—5 locate  t i le  louest level  ii such t h a t  t h e  SI~ contai’is
mennin~’fu l  d a t a  on the  sec~n ent  tyn es  So , ~ i , . . . , Sn .  St cp~ ‘- — 7

S locate the smalles t i such t~ at ~u a l( S~~ “is incc~mp a t ab l e
wi th  Qi. If such an i ex i s ts , then  al gor i thm E is execu ted .
Otherwise ,e i ther  al gor i thm F or C is executed depend ing  on 

-

whether  or not m is less than n .

ALGORITHM E:

Input parameter :  i , a segment type.

Step 1: Issue a F e t ch—cur r en t  call to the SBM to fetch th e current
segment of segment type  Si.

Step 2: Ex trac t the val ue of the sequence f i e l d  of the seonCut
into x (assume SEQ is  the f i e ld  n a m e ) .

Step 3: 1-ct K1, K 7,  . .., K~ be the keywords of the symbolic Identi-
f ie r of t h e  pa ren t  of the segment obta i r .ed  in S t e p  1.

Step 4: Form the DBC query : (TYPE S i ) A (SEQ ~ x)t i  K1 ~ K~ A
A Kt A Qi.

Step 5: Issue a r e t r i eve—by—query—wi th --po in t e r  command tc the  DBC
using the query created in Step 3 and the sort attribute
SEQ.

Step 6: Issue a Load—buffer call to the SB~-I to load the response
• - set of the above command into the ISB.

Step 7: If the SBM indicates an empty response set , then per form
Steps 8—12;else go to step 13.

Step 8: If Si_i = Parent ,then r e t u r n  ‘n o t — f o u n d ’ .
Step 9: CS (sf 1 ) CS (S1_1) + 1.
Step 10: Execu te Algorithn H with input argumen t i.

- 
- Step 11: If a ‘not—found’ condition is r e t u r n e d  f rom Step lO , then

return ‘not—found’ .
Step 12: Go to Step 15.
Step 13: Quai(Si) ~

- Qi.
Step 14: V(Si) 4- 1.
Step 15: For all j such that Sj is a dependent of Si ,perform Step

16— 17.
Step 16: V(Sj) ‘- o.
Step 17: Call Release—buffer--space(S ).
Step 18: CS (Si) 1. •

— 
Step 19: If i n ,then go to  S tep  23 :e lse  per form Steps 2 0 — 2 2 .

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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S Step 20: Issue a Fetch—current call to the SBM to fetch the current
S segment of segment type Sn.

Step 21: Send the segment to the user.
Step 22; Return .
Step 23: i ~ i + 1.
Step 24: Execute algorithm H with input argument i.
Step 25: If ‘not—found’ is returned from Step 24 ,then return ‘not—

found ’ ;else.go to Step 19.

Notes: This algorithm implements the first case discussed in
Algorithm D. Steps 1—6 retrieve a new set of segments un-
der the current parent with sequence fields having values
greater than or equal to that of the current segment at
level i. Steps 13—18 change the content of the status
information table to reflect the changes in the ISB from
by Steps 1—6. If Steps 1—6 retrieve an empty response set,
then Steps 7—12 are executed to retrieve a new set of seg—

• ments at level i under the segment which is next to the
current parent at level i—i . Steps 19—25 retrieve a new
set of segment at level i+l under the current parent at
level i. These last steps are repeated zero or more times
unti l  the level n is reached.

ALGORI THM F :

Step 1: i4- m.
Step 2: i 4- i + 1.
Step 3: Execute algorithm H with input argument i.
Step 4: If ‘not—found’condition is returned from Step 3,then

return ‘not—found ’.
Step 5: If i < n,then go to Step 2.
Step 6: Issue a Fetch—current call to the SBM to fetch the current

segment of segment type Sn.
Step 7: Send the segment to the user.
Step 8: Return .

Notes: This algorithm implements the second case discussed in
Algorithm D. It retrieves a new set of segments from level
m + 1 to level n by calling algorithm H.

ALGORITHM G:

Step 1: i 4- m.
Step 2: CS(Si) 4- CS(Si) + 1.
Step 3: If CS(Si) > COUNT(Si), then perform Steps 4—11; else .go to Step 9.
Step 4: If 1=1, then return ‘not—found’ .
Step 5: If S1_~~Parent, then return ‘not—found ’.
Step 6: CS(Si_i) 4- CS(S ._1) + 1.
Step 7: Execute algorit~itu H with input arguement i.
Step 8: If ‘not—found ’ condition is returned from Step 7, then

return ‘not—found ’.
Step 9: Issue a Fetch—current call to the SBM to fetch the current

segment of segment type m .
Step 10: Send the segment to the user.
Step 11: Return. 

-~~~~~~~~ - -~~~~~~~~~ S SS -—S--~~~~~~~ S -- -— -—-- • - - -S~~
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Note : This algorithm implements the third case as discussed in
Al gorithm D.

ALGORITHM H:

Input argument: i, a level number. Retrieves the first sets of seg—
ments of types S0, S1, ..., S~ which satisfy Q0, Q1,
~~~~ Q~ starting from the current segment of segmenttype S~~1.

Step 1: If CS(Sj1) > COUNT(Si i ), then go to Step 11.
• Step 2: Issue a Fetch—current call to the SBM to fetch the current

segment of segment type S~_1. If the segment is “deleted” ,
then CS(Si_i) ~ CS(S~_1) + 1 and go to Step 1.

Step 3: Let K1, K7, ... , K~ be the keywords of the symbolic identi-
fier of tf~e segment fetched in Step 2.

Step 4: Form the DBC query: (TYPE = si)~ K1 A K2 
A • . .  A Kt A Qi.

Step 5: Issue a retrieve—b y—query—with—pointer command to the DBC
using the query created in Step 4 and the sort a t t r ibu te
is the sequence field name of Si.

Step 6: Issue a Load—buffer call to the SBM to load the response
set of the above command into the ISB.

Step 7: If the SBM indicates an empty response set,then go to Step
8;else go to Step 30.

Step 8: If Qual(S~_~ ) = Qi...1,then go to Step 9;else.go to Step 16.
Step 9: CS(S

~_i) ~~- CS(S1_1) + 1.
Step 10: If CS(~1...1) ~ COUNT(S1 1),then go to Step 2.S Step 11: If Si_i o ,then return ‘not—found ’.
Step 12: If 5i 2  Parent ,then return ‘not—found ’.
Step l3: CS(S

~~2
) 4- CS(S~~2) + 1.

-S Step 14: Execute algorithm H with input argument (1—1).
Step 15: If ‘not—found ’ condition is returned from Step l4 ,then

return ‘not—found ’ ;else.go to Step 2.
Step 16: Issue a Fetch—current call to the SBM to fetch the current

segment of Si— l .
Step 17: Extract the value of the sequence field , say SEQ, of the

• retrieved segment into x.
Step 18: Let K1, K2, ..., Kt be the keywords of the symbolic identi—

fier of the parent of the retrieved segment.
Step 19: Form the DBC query : (TYPE = Si l)A (SEQ ? x)A K1 A K2 

A

A Kt A

Step 20: Issue a retrieve—by—query—with—pointer command to the DBC
using the query created in Step 19 and the sort attribute

- 

- SEQ.
Step 21: Issue a Load—buffer call to the SBM to load the response

- - set of the above command into the ISB.
Step 22: If the SBM indicates an empty response set ,then go to Step 12.

r- -i Step 23: Qual(S1~.1)
Step 24: CS(S

~_i ) 
4- 1.

Step 25: V(S1 1 ) 1.
Step 26: For all j such that Sj is a dependent of ~i. 

perform Steps
27—28.

Step 27: V(S j) o.
Step 28: Call Release—buffer—space (Sj).

_ _  _ __ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ • S ~5
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Step 29: Go to Step 2.
Step 30: Qual(Sj) 4- Qj.
Step 31: V(Si) ~ — 1.
Step 32: CS (Si) 1.
Step 33: For all j such that S

1 
is a dependent of S~ , perform Steps

34—35.
Step 34: V(S4) ~~ o.S 

Step 35: Ca1~ Release—buffer—space (S4).
Step 36: Return. S

Notes: This algorithm retrie’ves a set of segments of type Si (lets
- 

- call them child segments) which sa t i s fy  Qi. First , it
must fetch the parent so that its symbolic identifier can
be used to retrieve the child segments. There are two cases
(tested for in Step 1). First , the parent under considera-
tion does not reside in the ISB, then algorithm H calls it-
self to retrieve the set of parent segments (Le.,of type
S1_1). This is performed in Steps 11—15 . In the second
case , the parent  in considerat ion resides in the ISB. Then ,
Step 2 is executed- to fetch the parent from the ISB and
Steps 3—6 are performed to re tr ieve the child segments using
the parent ’s symbolic identifier. However the situation
is more complex if Steps 3—6 retrieve an empty set of child
segments . Then the “next” parent segment should be esta-
blished as the new parent. It is possible that the set of
pa rent segments residing in the ISB is not suitable to be
used to provide the “next ” parent . This is the case when
Qual(S 1 1) is not equal to Qi~-i~ 

This case is tested in
Step 8. If Qual(S1 1 ) is equal to Q~~1, 

then the “next ”
pa rent segment can be established as the new segment
(Steps 9—10). Otherwise , Steps 16—22 are executed to re—
t r ieve the parent  segments from the DBC.
Steps 23—28 change the SIT to r e f l ec t  the retr ieval  of a
new set of parent segments.  Steps 30—35 change the SIT to
r e f l e c t  the retr ieval  of the child segments .

A . 3  A l g o r i t h m s  for  Processing Get Calls without SSAs

The algorithms given in the previous section app ly to any get call

with SSAs. This section presents the algorithms for processing a GN or

GM? call without SSAs. In the former , the IM has to use only the seg—
S mcnt types given in the SSAs to process the call. Jlowever ,ifl the latter ,

any segmen t type in the database is e l ig ible .  The IM simply follows the
traversal sequence and retrieves the “next” segment on the sequence.

The following definitions are used in the algorithms that follow .

Leftmost—child (S) denotes the leftmost child segment type under the seg—

ment type S. It has a NIL value if S has no chi ld  segment types.  Ne xt —

b r o t h e r ( S )  denotes  the  segment type which  is on the same level as S and

is next r igh t  to S. I t  has a N I L  value if S has no segment type on its

I~ _ _ _ __ _ _ _ _ _ _--—--— -•-*- m—-SS---_~~ - ~~~~~~~ —.5 —--~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- —- S
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right side. Parent//(S) denotes the segment type of the parent segment of S.

ALGORITHM A: To process a GN call with no SSA .

S S Step 1: Parent 4- 0.
Step 2: Execute algorithm C.
Step 3: If algorithm C terminates normally,then Parent -4- CPDB.
Step 4: Return.

ALGORITHM B: To process a GNP call with no SSA.
Step 1: Exec ute algori thm C.
Step 2: Return .

ALGORITHM C:

Step 1: S 4- CPDB.
— Step 2: r 4- Leftmost—child (S)

Step 3: If r = NIL ,then go to Step 8.
Step 4: Temp - r. -

S 
- Step 5: r 4- S.

Step 6: S — Temp.
Step 7: Go to Step 25.
Step 8: If S = Parent ,then return ‘not—found’.
Step 9: If Qual(S) = NULL,then go to Step 17.
Step 10: Issue a Fetch—current call to the SBM to fetch the current

segment of segment type S.
Step 11: Extract the value of the sequence field , say SEQ , of the

retrieved segment into x. S

Step 12: Let K1, K 2 , ... , K~ be the keywords of the symbolic identi-
f ier  of the pa rent of the retrieved segment.

Step 13: Form the DBC query : (TYPE = S) A ( S E Q  > x)A K1 A K2 A . . . A Kt.
Step 14: Issue a retrieve—by—query—wi th—pointer command to the DBC

using the query created in Step  13 and the sort a t t r i b u t e
SEQ .

Step 15: issue a Load—buffer  call to the SBM to load the response
set of the above command into the I SH .

Step 16: If the SBM indicates an emp ty response set ,then go to Step
l9;else ,go to Step 31.

Step 17: CS(S) - CS(S) + 1.
Step 18: If CS(S) ~ COtJNT(S),then go to Step 37.
Step 19: r ~

- Next—brother (S).
Step 20: If r � NI L , then go to Step 23.

F Step 21: S 4- Parent//(r).
Step 22:  Go to Step 8.
Step 23: S r .

-: Step 24: S 4- Parent//(S).
Step 25: Issue a Fetch—current  call to the SBM to fe tch  the current

segment of segment type r.
Step 26 : Let K 1, K 7, ..., Kt be the keywords of the symbolic i den t i—

L 
fier of tfie retrieved segment.

Step 27: Form the DBC query : TYPE S A K1 A K2 A ... A K
~
.

Step 28: Issue a retrieve—by—query—with—pointer command to the DBC
using the query created in Step 27 and the sort a t t r i b u t e
is the sequence field name of S. 

- 5- ~~~~~~~~-. S ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Step 29: Issue a Load—buffer call to the SBM to load the response
set of the above DBC command into the ISB.

Step 30: If the SBM indicates an empty response set then go to Step 19.
Step 31: Qual(S) -~- null.
Step 32: V(S) 4- 1.
Step 33: CS(S) 1.
Step 34: For each j such that Sj is a dependent of S perform Steps

35—36.
Step 35: V(S1) — o.
Step 36: Call Release—buffer—space (Si).
Step 37: CPDB ~~

- S.
-
~ - Step 38: Issue a Fetch—current call to the SBM to fetch the current

segment of type S.
Step 39: Send the segment to the user.
Step 40: Return.

Notes : The algorithm f i rs t  tries to get the “next ” segment to sat is—
fy the call by seeking the leftmost child of the current
position in the database. This is done in Steps 1—2. If
the re is a leftmost child , then Steps 4—7 and Steps 25—40
are executed to process the call. Otherwise , the algorithm
seeks the twins of the current position in the database
to satisfy the call. This is performed in Steps 8—18.
However, if there are no twins, then the brothers (segment
types under the same parent segment type) are sought to
satisfy the call. This is performed in Steps 19—20 and
Steps 23—40. If there are no brothers , then the “uncle”
of the current position is sought. This is performed in
Steps 21—22.

A.4  Processing a Delete Call

[ The delete call is issued to delete the occurrence of a segment from

the database. The segment to be deleted must f i r s t  be obtained by is—

S suing a get-hold call. Hence the segment to be deleted is always the cur—
S 

rent position in the database. The deletion of a segment has a side—

effect if the segment is a parent. All segment occurrences beneath the

parent are deleted as well.

The delete call can be processed quite easily by a DBC command call.

Since the symbolic identifier of the parent appears in all of its depen-

dent segments , a single DBC delete command with the symbolic iden t i f i e r

as the parameter will e f fect ive ly  delete the parent and all of its depen-

den t segments .

ALGORITH M A: To process a delete call.

Step 1: Issue a Fetch—current  call to the SBM to fe tch  the cur rent
segment of the segment number CPDB.

Step 2: Let K1, K 2 , ..., K
~ 

be the keywords of the symbolic identi-
f ie r extracted from the retrieved segment.

. 1
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Step 3: Form the DBC query: K1 A K2 A ... A Kt.
S Step 4: Issue a delete—by—query command to the DBC using the query

created in Step 3.
Step 5: Issue a Delete—current call to the SBM to mark the current

segment of segment type CPDB as “deleted”.
Step 6: For each j  such that S. is a dependent of CPDB ,perform Steps

7—8.
Step 7: V(S.) o.
Step 8: Cali release—buffer—s~ace(S~).
Step 9: Return.

Notes: Steps 1—4 delete the segment and its dependent segments in
the DBC. Step 5 deletes the segment in the ISB. Steps
6—8 delete its dependent segments in the ISB.

A.5 Processlng a Rep lace Call

The segment to be replaced must first be obtained by a get-hold call.

Hence the segment to be replaced is always the current position in the

database. In describing the algorithm, we assume that the segmen t used

in the replace call is stored in the storage location addressed by addr

in the IM.

ALGORITHM A: To process a replace call.

Step 1: Issue a replace—by—pointer command to the DBC using the seg—
ment addressed by addr and its (DBC record)pointer as the
parameters.

Step 2: Issue a replace—current call to the SBM to replace the cur-
rent segment of segment type CPDB in the ISB by the segment
addressed by addr in the IM.

Step 3: Return .

• A.6 Processing an Insert Call

An insert call has the following format:

ISRT [S1, Q1
S2, Q2

S 

~~~~~~~~~ 
~n-i~Sn

where the last unquatified SSA specifies the segment to be Inserted into

the database. Hence in the above format, S~ represents the segment to be

inserted. The specification of the SSAs above S~ is to position the data

base for the insert call. Up to the level n—i , the SSA evaluation and

positioning for the insert call is exactly the same as that for a get -

unique call of the following format:

- S 
S 

-



AD—A039 038 OHIO STATE UpflV COLLMBUS COMPUTER AP~ INF ORMATI ON SC—C T C FIG 5/2 N
DeC sOFTWARE REQUIREMENTS FOR SUPPORTING HIERARCHXCAL DATABASES—ETC(U)
APR 7? 0 K HSIAO * D S KERR. F K NB N0001I—75—C—0573

(*ICLASSIFIED OSU—CISRC—TR—77—t

20F 2 END
-

. - D A T E

W ~ I L

5—77

I

I
I

I

I jø



I
~ i ~ L~ DDI2~ IH2~I .~J L~~~~

______ 

L ~~ 2.2
~~

I I ~
11111 1.8

lUll’ .25 IUIl~ flhII~
•6

MICROCOPY RESO LUIION IESI CHART
NA NA ~ AU A Nt  AUI  A



T~~~~~~~~ T~~~~~~~IT1T ~IIiT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—90—

H CU S1,Q 1
S2,Q2

5n~
;, Qn—j.

If the sequence S1, S2, ... , S~_1 is not specified at all, then the cur—

rent position in the database is used to determine the hierarchical path

for the insert call. Since the positioning of the database for an insert

call is the same as that for a get-unique call, the algorithms for posi—

tioning the database for an insert call will not be given in this section .

The reader is referred to Section A.l for the algorithms.

Once the positioning for an insert call has been set, the actual in-

sertion operation can be performed in a fairly simple manner. A DBC

record is created for the given segment using the rules given in Section

4.1. Then the mandatory clustering condition (MCC) for physical placement

of the DBC record is created (in our discussion, we use the second cluster-

ing policy given in Section 4.2). The DBC record is then inserted into

the M14 by a load—record (LR) or an insert—record (IR) command , depending

on whether the current operation is creating or updating the file. Notice

that we use only the IR command in the algorithm for simplicity .

ALGORITBN A: To process an insert call.

Step 1: If the sequence S1, S2, ..., S1~~1 is not specified ,then go
to Step 4.

Step 2: Execute the get unique algorithm using (si, Ql) , (S2, Q2 ),
(s~_1, Q~—i~ •Step 3: If a ?not_foundT condition is returned from the get-unique

algorithm then return ‘not—found’.
Step 4: If V(S~_~) = o,then return ‘not—found ’.
Step 5: Create a DBC record by performing Steps 6—11.
Step 6: For each field in the segment which will be used as a search

argument in a DL/l call, form a type—N keyword using the
field name as the attribute of the keyword and the field
value as the value of the keyword.

Step 7: For each field in the segment which will not be used as a
search argument in a DL/l call, form a nonkeyword attribute—
value pair using the field name as the attribute and field
value as the value of the attribute—value pair.

Step 8: Form a type—D keyword of the form (TYPE, segtype) where seg—
type is the segment type of the segment to be inserted .
Designate this keyword as a clustering keyword.

Step 9: If S~ is the root segment, then change the keyword formed in
Step 6 for the sequence field of the root segment to a type—
D keyword and designate it as a clustering keyword . Skip
the next two steps.
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Step 10: Issue a Fetch—current call to the SBM to fetch the current
segment of the segment number S~_1.

Step 11: Let Kj, K2, ..., Kt be the keywords of the symbolic identi—
fier of the segment retrieved in Step 10. Use these key-
words as the keywords for the segment.

Step 12: If Sn is the root segment, then form the MCC: (TYPE = Snj~otherwise form the MCC: (K1AK
1) V (K2AK]-) V ... V(KtAK )

where K~- is the keyword representing the sequence field of
the root segment and K1, K2, ... , K~ are the keywords repre-
senting all the dependent segment types.

Step 13: Issue an insert—record command using the DBC record created
in Step 4 and the MCC created in Step 12.

Step 14: Issue an insert—as—current call to the SBM to insert the
DBC record created in Step 5 into the ISB.

Step 15: CP(S~) 1.
Step 16: COUNT ~ — 1.
Step 17: V(S~) 1.
Step 18: QUAL (S~) sequence key of the inserted segment.
Step 19: Return.

Notes: Step 2 positions the database for the insert call. Steps
5—11 create the DBC record by forming the appropriate key-
words. The keywords representing the sequence field of the
root segment and all the segment types are designated as
type—D and clustering keywords. The rest of the keywords
are designated as type—N keyword. Step 12 forms the appro-
priate MCC for physical placement. Steps 14—18 update the
ISB and the SIT.
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APPENDIX B — THE ALGORITHMS OF THE SYSTEM BUFFE R MANAGER (SBM )

The SEll executes the subroutine calls from the DLI 1 interface module (IM) .
These calls are executed according to the b u f f e r  management policy discussed in

Section 6.1 and using the data structures given in Section 6 .2. The description

of the function of each of the calls was given in Appendix A. The funct ion names

are listed as follows.

(1) Load—buffer.

(2) Fetch—current.

(3) Replace—current.

(4) Delete—current.

(5) insert—as—current.

(6) Release—buffer—space.

B.l. The Load—buffer Call.

ALGORITHM A: To execute the Load—buffer call.

Input arguments: 1. A segment type k .
2. A DBC command ident if ier, C— ID.

Notations : Let m be the number of DBC records retrieved.

Step 1: Wait  un t i l  the response set identif ied by C—Il) is ready for  trans-
mission from the DBC.

Step 2: If response set is empty, then return “empty” .
Step 3: Call Load (k). (see Alporithin BI
Step 4: COUN T (k) ~~

--— m.
Step 5: Return .
Note: Step 4 sets the COUNT f ield of the status informat ion table (SIT)

$ to the total  number of DEC re cords re trieved.

P.LGORITIN B: The Load Algorithm .

Input argument:  A segmen t type k.

Notations: 1. Let rn he the number of DEC records retrieved.
2. Let n be the to ta l  number of segment types for  the INS database .
3. Let N be the size of the ISE (in pages) . 

- 

-

Step 1: Calculate the number of pages needed to store the DBC records us—
in~ m and L~~V~TH(k), Let this rn.miber be t.

Step 2: If ~ TOTAL(i) + t > N, then go to step 5.
t~~l

Step 3: Call Load—r ecor d(k ,t ,o ,) .  (see al gori thm Cl
Step 4: ‘~etnrn .
Step 5: (~i1~ 

(~~rb~i~e—collection . [see algorithm D]
Step 6: If ~ TOTAL(i) + t ~ N, then go to step 3.

i= 1
Step 7: i+ - l.
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Step 8: y ~ TOTAL(i) — QUOTA(i) .
Step 9: If y

~~ 
0, then go to step 14.

Step 10: If 
~ TOTAL(i) + t — N ~ y, then go to step 13.

i~ 1
Step 11: Call Deallocation (i, ZTOTAL(i) + t — ‘v) . [see algorithm E]
Step 12: Go to step 3.
Step 13: Call Deallocation(i,y).
Step l4~ I ~~

— I + 1.

Step 15: If i ~ n,then go to step 8.
Step 16: Call Load—record (k ,QVOTA(k) ,l).
Step 17: Return .

Note: Step 3 is executed if the ISE has enough space for the response set.
Otherwise , step 5 is executed for garbage collection . If the ISB
still has not enough space after garbage collection , then steps 7—15
are executed for deallocation of ISB soace . The segmen t types on
the higher levels will be deallocated first. Step 8 calculates how
much space occup ied by the segmen t type should he returned to the
comm on pooi.  When step 16 is executed , i t  ind ica tes  the only space
available is the space al located to i ts  quota .

ALGORITHM C: The Load—record Algorithm .

Input argument : 1. A segment type k.
2.  The number of pages x to he loaded.
3. An indicator d.

Step 1: 1 ~ 1.
Step 2 : Find a page y usin g the ISB page map and set the corresponding bi t

to ze ro.
St ep 3: Transfer DBC re.~ords to the page y.
Step 4; Make adj u s~~ ent to the  no i~ te r f ie lds  in the TSR page table and

the segment  control table to r e f l ec t  the a l loca t ion  of t h i s  page
to the segmen t type k .

Step 5: i~~ — i + 1 .
St ep 6; If  I ~ x, then go to step 2.
Step 7: If d~ 1, tben en te r  the value of the sequence f ie ld  of the las t seg-

men t stored in to  SEO (k) .
St ep 8: TOT AL (k) ~~— x .
Step 9: UPAGE (k) ~~

— o
Step 11: CP~

\C1 (k) ~~— LHEAD (k) -
Step 12 : OFFSET(k) ~~

— o .
Step 13 :  C c —  d .
Step 14: Return .

Notes: This algorithm stores the DRC records into x pages of the TSR . nBC
• - records are stored in a specified order. If all DBC records cannot

i.e stored in x pages , the i~Ii~C records uitii lar cest  sequence
- - 

f ie ld values wi ll  not be s t o r ed .

ALGORITHM D: The Garbage—collect ion Algor i thm .

Nota t ion s :  T,~ t n he the total numb er  of segmon t rvp ’s.

Step 1: 1 — 1.
Step 2: If  UPAGF. (i) = 0 , the n go to step 10.
Step 3: j .~— 1 .
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• Step 4: ii 4— LHEA~~i).
Step 5: Set the m bit in ISB bit map to 1.
Step 6: j c-. j+ 1.
Step 7: If j  < UPAGE( i) , then LHEAD(i ) ~~ — FPTR (m ) and go to sten lv).
Step 8: m ~~ -- FPTR(tn )
Step 9: Go to step 5.
Step 10: I .~— i + l.
Step 11: If I ~ n, then go to step 2.
Step 12: Return .
Notes: This algorithm returns the pages occup ied by any segmen t type

which have been processed to the common pool.

ALGORITHM E: The Deallocation Algorithm.

Input arguments: 1. A segment type k.
2. The number of pages x to be returned to the common pool.

Step 1: 1 ~~~
— 1-

Step 2: m ~~
— LTAIL(k) .

Step 3: Set the mth bit  in the ISE page table to 1.
Step 4 : 1 ~~

— I + 1.
• Step 5: If I > x , then LTAIL (k) ~~

— BPTR (m ) and return .
Step 6: m <— BPTR(m).
Step 7: Go to step 3.

Notes: This algorithm returns the last x pages of the segment type k to
the common pool.

B.2. The Fetch—current Call.

ALGORITHM A: To execute the Fetch—current call.

Input arguments: 1. A segment typ e k .
2. An address, addr, to which the retrieved DEC record is

transferred.

Step 1: If OCS (k) ~ CS(k), then go to step 4.
Step 2: RetrIeve the DEC record in the TSR addressed by (cP ACE ( k ) ,  OF F S E T ( k ) ) .
Step 3: [f “deleted” is indicated on the DEC record , then return “dele ted”

L I - else return the DEC record to addr .
Step 4: OCS(k) ~~

— cs(k).
Step 5: OFFSET(k) ~~ — OFFSET(k) + LENGTH (k) .
Step 6: If OFFSET(k) > page size, then go to step 9.
Step 7: Retrieve the DEC record in the ISB addressed by (CPAGE (k),

OFFSET (k)).
Step 8: if the retrieved record indicates the end—record , then return

“error” else return the DEC record to addr .
Step : CPAGE ~~

— FPTR(CPAGE).
Step 10: [f CPACE = “Null” , then go to step 14.
Step 11: OFFSET ~~~— 0 . I i
Step 12: rJFACE ~~

— UPAGE + 1.
Step 13: Go to step 7.
Step 14: If C(k) = 0, then return “error”. -iStep 15: Form a DBC qu’ry: ( 1’ypE = 1)~~( ATT > SE~~~ QUAL(k) , where ATT ~~

the field name of the sequence field.

-- 
-

~~~~~~~~~~
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Step 16: Issue a DBC retrieve—by—query—with--pointer command using the query
created in step 15.

Step 17: If the response set i~ empty ,  then return “error”.
Step 18: Call Load—buffer (k ,C..ID) [algorithm B in Section 8.1] where C—ID

is the DBC command Identifier used in step 16.
Step 19: OFFSET(k) ~~~— OFFSET(k) + LENCTH(k) .
Step 20: Retrieve the DBC record In the TSR addressed by (CPAGE(k) , OFF—

SET(k)).
Step 21: Return the DBC record to addr .

Notes: Steps 2—3 are executed if the segment last retrieved by the SBM is
the same as the curren t segment. Otherwise.steps 5—13 are executed
to retrieve the next DBC record with respect to the one addressed
by (CPAGE(k), OFFSET(k)). If the DEC record addressed by (CPAGE(k),
OFFSET(k)) is the last DEC record stored in the ISB, then steps. . 15—21 are executed to fetch more DBC records from the DBC.

B.3. The Replace—current Call.

ALGORITHM A: To execute the Replace—current call.
- 

Input arguments: 1. A segment type k.
• 2. An address, addr , to a DEC record used to replace the one

stored In the ISB.

Step 1: Store the DEC record addressed by addr into the ISB addressed by
(cPAGE(k), OFFSET(k)).

Step 2: Return.

3.4. The Delete—curren t Call.

ALGORITHM A: To execute the Delete—current call.

Input argument: A segment type k.

Step 1: Mark the DBC record in the ISS addressed by (CPACE’k) ,OFFSE T(k) )
as “deleted”.

Step 2: Return .

8.5. The Insert—as—current Call.

ALGORITHM A: To execute the Insert—as—current call.

Input arguments: 1. A segment type k.
- - 2. An address, addr , to a DEC record to be inserted into the

ISE.

Step 1: Call Deallocation(k, TOTAL (k)).
• Step 2: Find a page x using the TSR bit map and set the corresponding
• hit to zero.

Step 3: Store the DBC record R addressed by addr into page x starting from
• location 0.

t ‘ Step 4: Store an “end—record” a f t e r R In page x.
Step 5: 11(k) ~~

— C(k) ~~
— IJPAGE(k) ~~ — OFFSET (k) ~~~

— 0.
Step 6: U-TEAD(k) ~~ — LTAIL(k) <— CPACE (k) <— x . 

- -~~~~~~ -~~~~~
--

~~~ - - •“ ~~~~ • - - - -- --~~ - - - - -~ 
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Step 7: BPTR(x) ~~~— FPTR(x ) ~~ — “null”.
Step 8: TOTAL(k) ~~

— 1.
Step 9: Return .

Notes: This algorithm releases all pages allocated to the segment t ype
and allocates a new page for the DBC record to be inserted. The
page only contains this DBC record. All the fields in the segment
control table entry are set appropriately in steps 5—8.

B.6. The Release—buffer—space Call.

ALGORITHM A: To execute the Release—buffer—space Call.

Input argument : A type code k.

Step 1: Call Deallocatlon(k, TOTAL (k)). 
•

Step 2: D(k) ~~~
— 1.

Step 3: Return .

Notes: This algorithm releases all pages allocated to the segment type k.
The D field is set to 1 to indicate the segment control table
entry is deactivated .

F

Li
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APPENDIX C — A DISCUSSI ON OF HIDAN

There are two database organizations in IMS: Hierarchical Sequen-

tial (HS) and Hierarchical Direct (liD). Each of these two physical organi—

zations is supported by two database access methods : HSAN and HISAM for

HS organization and 11DM and 111DM-I for HD organization . We will restrict

our attention to Hierarchical Indexed Direct Access Method (HIDAN).

HIDAN is used for indexed access to the root segments of a hierarchi—

cal database. The index is stored in an index area and no user data seg-

ments exist within this area. The user data segments are stored in a

separate area. FIg. 35 illustrates a possible HIDAN physical storage of

the IMS database of Fig. G.

T,’then a 111DM-I database is created , the user presents the segments of

each database record to IMS in proper sequence. The data area is then

used in a purely sequential order to load all segments presented. As

each root segment is presented , the system automatically creates an in-

dexing segment and places it in the index area. Notice that bccause of

the allocation of blocks In sequential order , the logical adjacency of

segments -is often reflected by physical adjacency as well (although pointers

have to be maintained , nevertheless).

t

• ____
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Fig. 35 HIDAN physical storage of the database of Fig. 6.
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