
7 
~ü—*o3~ 661. STANFORD UNIV CALIF CEPT OF CO* UTEN SCIENCE Ffl i2iiDETERMINING THE STABILITY NUMBER OF A GRAPH.(U)

DCC 76 V CHAVATAL N000j1.—76—Ce0330
UNCLASSIFIED STAN—CS—fl—SnI:: _

END
DATE

•5~~77



1.0 ~i 2 8

________________ ~ ~
1.1

11111 25 lIIl~•~ ~~~



DETERMINING THE STA B ILITY NUMBER OFA GRAPH

by

/V. Chvata l

STAN-C S-76-583
DECEMBER 1976

“I

COMPUTER S C I E N C E  DEPARTMENT
Schoo l of Humanities and Sciences

STANFOR D UNIVERSITY

I..LJ

PP~
ov.d f~ PU~~h~A N I Z D ”



( (• 4
S E C U R IT Y  C L A S S I F I C A T I O N  )F ~~~IS P A G E  (W),en Data ~~~~~e r e i I

~EP~~’ ~~~~~~~~~~~~~~~ DA rE READ INSTRUCTIONS
I~ UI% I UIR l~ I MI  luf ’ r ’~’~ BEFORE COMPLETING FORM

I ~~~PO RT NUMBER 12 GOVT ACCESSION NO. 3 RE C I P I E N T S  C A T A L O G  NUMBER

(J.~--~ ~
TAN-CS-76-58~~ /t’~ I ___________________________

4 T ITL E (end Subtitle) S TYPE or REPORT & PERIOD COVERED

DETERMIN~~ G T1U~ : iA }JLI ~~~N’ FMJ~1~: }, OF A G1~~PU~ technical, December l976~
- 6 PERFORMING ORG. REPORT NUMBER

~TAN-cS-76-583 L.-’
7 AUT HOR( a)  e. T R A C T  OR G R A N T  NUMBER( s )

~~./Chv~~~
i / ~~~~~~~~~~~~~~~~~~~~~~~~~~~

¼. - - _..L, ,~ 
/ / t I

I w _ . —
9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS 10. PROGRAM ELEM ENT . PR~~~~ CT , ~ *51~~~~ 

-

AR EA & WORK UNIT N U M B E R S
3tanlord .nlversity

Computer ~cience J epartment .-
Stanford, California ~ 3O5 ______________________________

I I  C C N T R O L L I N G O E F ~~CE N A M E  A N D  ADDRESS - -
~

. ~~~~~~~~ DAT E

Of f i c e  of :Javal Research 7 fl Dec ~~~~~~~76
Department of thc Navy ‘~ N U M 8 E R O F PAG~~4

Arlington , VA 2221 7 39
4 M N IT O R I N G  AGE N CY NAME & A DO R ESS( I I  di f fe ren t from Contro l l Ing Of f i ce)  IS . SECURITY CL~~~S. Ihia repo

~~~ Representative: Philip Surra
- UnclassifiedDurand Aeronautics Bldg.,  Rrn . 1o5

Jtar i ford  University tb. . D E C L A S S I F I C A T I O N  ‘ DOWNGRADIN G

st anford , 2a. 91~3O5 
SCHEDUL E

6 D I S T R I O U T IO N  S T A T E M E N T  (of thi. Report)

Releasable without limitations on dissemination

17 DISTRI BUTION S T A T E M E N T  (of the abst ract entered in Block 20. if differen t from Report)

18 S U P P L E M E N T A R Y  NOTE S

19. K E Y  W ORDS (Continu, on reverse aide ,f necess ary and identify by block numb.,)

analysis of algorithms , combinatorial mathematics

20. A B S T R A C T  (Continue~~~ r.v er
t
p. aide if necess ary and id.nf i Vy by block numb.,)

.W—~oim~~±’z~- r-~ain rules for deriving upper bounds on the stability
number of a grap ~ ‘The resulting system is powerful enough to (i) encompass
the algorithms of Te.rja.n’s type and (ii) provide very short proofs on
graphs fo ~which the stability number equals the clique-covering number.However , main result shows that for almost all graphs with a (sufficiently
large) linear number of edges, proofs within e~~ system must have at least
exponential length. ~~~ 

~Y 4 .  ~DD ~°‘ 1473 EDITION or I NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS P A G E  (*7ten flat. Entered)



S I - -

SECURITY C LASS IF ICAT t ON OF THIS PAGE(lThw Data Ent.r.d)

SECURITY CLASSIFICATION OF THIS PAOE(WPten D.fa Bnl.r.d )

a ” - .



Determining the Stability Number of a Graph

V. Chv~tal
Comp~ter Science Department

Stan ford U~iiversity
Stanford, California 91~3O5

Abstract.

We formalize certain rules for deriving upper bounds on the stability

number of a graph . The resulting system is power ful enough to

( i)  encompass the algorithms of Tarjan ’ s type and ( i i)  provide very

short proofs on graphs for which the stability number equals the

cli que-covering number . However, our main result shows that for almost

all graphs with a (sufficiently large) linear number of ed€es, proofs

within our system must have at least exponential length.
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1. Introduction.

By a graph, we shall mean what is sometimes called a Michigan graph :

one that Is finite, undirected, without loops and multiple edges. A set

S of vertices in a graph G is called independent or stable if no two

vertices in S are adjacent; the largest cardinality a(G) of a stable

set in G is called the stability number of G . Now, let G be a graph

and let t be a positive integer such that

a(s) < t ; (1.1)

how laborious is it to verify a proof of (i.1)~ Of course, this question

has a direct bearing on the conjecture that P ~ NP ; in particu.la.r, the

celebrated theorem of Cook [21 suggests that it is extremely time-consuming

to verify proofs of (1.1). We shall refrain from elaborating on this

interesting point; instead, we direct the reader to [2], [lii] and [1].

As for evaluating a(G) , the best available algorithm is due to Tar j an

n/3and Trojanowski [101 : its r~rining time on a graph of order n is 0(2 )
The framework of the present paper is quite modest: restricting the

intuitive notion of a proof rather drastically, we shall study the resulting

system of “recursive proofs”. This system remains powerful enough to

(I) encompass a certain class of algorithms that includes the Tarjan-

Trojanowski algorithm,

(ii) provide very short proofs of (1.1) for every graph G whose set of

vertices can be covered by a(G) cliques.

Nevertheless, we shall show that there are valid inequalities (1.1) whose

proofs must be excessively long. More explicitly, for every sufficiently

large d there is a positive £ with the following property: for an

overwhelming majority of all graphs G with n vertices and dn edges

- - 
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there are valid inequalities (1.1) whose recursive proofs must have

length at least (l+E)~ . (The assumption that the number of edges of

G grows linearly with n is crucial: in fact, the conc insion fails as

soon as d is allowed to grow beyond every bound. For details, see

Proposition 1~.l.)

At this moment, it may be worth pointing out two shortcomings that

practitioners sometimes find in results on computational complexity:

the worst case criterion and the asymptotic point of view. The first of

these objections does not apply to our result at all but the second one

certainly does: the numerical values of £ are very small. (one could

improve on them by taking a little more care in the computations but

even then they probably would not be very impressive.)

In Section 2, we point out those properties of random grapi.~ which

appear in the proof of the main result: looking at small subgraphs of G ,

and then extrapolating in a straightforward way, one would expect a(G) to

be much larger than it actually is. In that sense, a(G) is very much a

“global parameter”. And it is precisely this global character which makes

the proofs of (1.1) so long. In Section 3, we describe a certain class of

crude algorithms for evaluating a(G) and then touch briefly upon the

more sophisticated algorithm of Tarjan and Trojanowski. That section

provides the motivation for the definition of a recursive proof presented

in Section l~. The exponential that appears in our main result originates

from an upper bound on the tail of the hypergeometric distribution; it

finds its way into the theorem via a leama on binary trees which we set

aside in Section 

5 . 3



In the context of another NP-complete problem (namely, that of

~at-isfiability of Boolean expressions), there are many results similar

in spirit to ours; most of them can be found in [3) .  In particular, the

proof system investigated recently by Gau l [li i i~ very much like ours;

however, the similarity does not extend beyond the superficial level.

_  

14



~~. Random Gr~i~~ :.

In thi~ sec tion, ~ie shall deal with graphs whose vertices are labeled

as ~~~~~~~~~~~~ . Two such graphs may be distinct even if they are

n(n- l )/2
isomorphic; hence their total number is 2 • If P is a property

which a graph may or may not have then we shall denote by t ( P, n )  the

number of those graphs with n vertices which do have the property.

Finally, we shall say that almost all graphs have the property P if the

ratio t ( P ,n ) /2 n
~~

_
~~

)/2 tends to one as n tends to infinity. A typical

statement of this kind appear s in the following lemma. The lemma itself

seems to be a part of the graph-theoretical folklore. It appears at least

irrrplicitly in a 19147 paper by Erdbs [5] ;  further refinements can be found

in works of Matula [17], Grirnmett and McDiarxnid [121, Erdös and Bollobas

[81 and perhaps others.

Lenina 2.1. Almost all graphs G of order n have th~ property that

cz(G) < 2log n/ l o g  2

Proof. Denote 2 log n / log 2 , rounded up to the nearest integer, by

k ( n )  . Clearly, the number of those graphs of order n for which CX > k

divided by the number of a.ll graphs of order n , does not exceed

(
fl
)2
_k(k_1)/2 

. (2.1)

By elementary estImations, (2.1) is at most

(
~~~ 2

_ (k_l)/2)k • (2.2)

For all sufficiently large n , we have

~~ ~~~~~~~~ = e21/2/k < .99

and so (2.1) tends to zero as n tends to infinity. ~

5



In the theory of random graphs develope l by Erd8s and Rényi [8],

[9], [10], one investigates graphs with n vertices and. m edges.

Clearly, the number of such graphs is

m ) • (2 .3)

We shall denote by t(P,n,m) the number of those graphs with n vertices

and m edges which have some property P • If m is a function of n

such that each m(n ) is a nonnegative integer not exceeding n(n- 1)/2

and if the ratio of t ( P,n,in) to (2.3) tends to one as n tends to

infinity then we shall say that almost all graphs with n vertices and m

edges have the property P . The following lemma has been used by Erd~ s in

and elsewhere. (Throughout the paper, log denotes the natural logar i thm. )

Lemma 2.2. If m (n )  > l6n for all sufficiently large n then almost

all graphs 0 with n vertices and m edges have the property that

2
a(G) < ~~ log ~ . (2 .~~)

Proof. Denote the right-hand side of (2.14), rounded up to the nearest

integer, by k(n) ; note that k(n) — as n -. . Clearly, the number

of those graphs with n vertices and in edges for which c~ > k , divided

by the number of all graphs with n vertices and m edges, does not exceed

(, fl~~ (k
, n~~( k 2 / ~~~2
“ k

( . (2.5)

By elementary estimations, ( 2 . 5 )  does not exceed

6



k k(k-l m I en I m (k-1’) \ k(
~

) (i - 
n~n~1~~) 

< exp~ n~ n-l~~) )

1: td~~i’,n , we have

~~~ exp(~~~m~~~~~~) < n log(m/n) 
exp
(~ 

1 o g_ +— ~~
)

the last q~antity becomes smaller than .99 for all sufficiently

iL r~.: n , we conclude that (2.5) tends to zero as n tends to infinity.

~-;ext , let us digress a little. When m , n , s are nonnegative integers

such that in < n and when t is a positive real number, we shall set

= , denote by the summation over all integers j  > s(p+t) and

define

B(m ,n, s, t )  =

(~~~) ( fl~~~ )
H(rn,n,s,t) = ~~~ ~ ~Th2__

(
~~

)

Thus B is the familiar “tail of the binomial distribution” and 1-I is the

“tail of the hypergeometric distribution” . The well-known interpretation

of these quantities goes as follows . Imagine a barrel containing n apples,

exactly m of which are rotten; take a random sample of s apples.

Technically, the sampling can be done in at least two ways. We might pick

and examine the apples one by one, each time throwing the apple back into

the barrel before reaching in again: this is called sampling with

replacement. Or we might just grab the s apples at the same time :

that is called sampling without replacement. Whichever method we use, we

should expect about ps rotten apples in the sample. The quantities B

and H give the probability that at least (p+t)s rotten apples will

appear in the sample with and without replacement, respectively.

7



An elegant argument (apparently due to ~~~. N. Bernstein) shows that

p+t l—p-t S
B(m, n, s, t )  < ((

~~
) ~~~~ )

A similar bound for H seems to be far more difficult  to establish.

A special case of a theorem of Hoeffding ([13], Theorem I~) states that

p+t l-p-t s
H(m,n, s,t)  

~ 
((

~~
) ~~~~ 

) • (2.~T)

It is a routine matter to convert (2.6) into weaker but more tractable

bounds; we are about to do that for t = p

_________ 

-ms/I#nLemma 2.3. H(m,n,s,m/n) < e

proof. If p > 1/2 then the left-hand side vanishes. If’ r < 1/2 then

(2.~ ) implies

log H(m,n,s,p) < 2plog + (1-2p) log (i + 
r~~~-)

< 2p log~~~+ p < -p/b

which is the desired conclusion . ~

Upper bounds on 1-I are useful in proving statements about random

graphs, such as the following one.

Le~ina 2.14. Almost al]. graphs G with n vertices and m edges have the

following property: every subgraph of G induced by s vertices such that

8



— log — (~- .7)

has fewer than 2ms~~/n2 edges.

ros~
’. Clearly, the number of those graphs which do not have the ~rnpert /,

divided by the number of all graphs with a vertices arid m edges, -does

not exceed

~~~)H((~~ ) ,  (~~ ) , m , (~ )/(~ ) )  • (2.8)

By Lemma 2.3, this quantity does not exceed.

~ 
(
~~

) e~~~(~ ~~
) <~~~ (~~~~ex~(~ m(:-l) ))

5

By (2.7), we have

en ( m (s-1) \ em m in
* 

-
~~
- exp~~ - 

4n2 ) ~ bn log(m/n) 
ex~(*~

_
~ - log < .99

Hence (2.8), being bounded from above by

~ ( 99 ) S < 100( 99)~~fl log (m/n)/m

tends to zero as n tends to infinity. ü 



~UCo1’ithms.

in this :~‘ct~ -~n, we shall first describe a class of crude algorithm:

r~r finding a largest stable set in a graph and point out that by the use

of ui-ropriate data structures, the running time of these algorithms can

h:~~ it down considerably . Then we shall briefly outline a class of more

:u’~hi:ticated algorithms which we shall call Tarjan 
algorii}is:,

L~~ us suppose that, given a graph G = (V,E) and a subset S of V

w-. - w~:1i to find a largest stable subset A of S . We may begin by

choosing a vertex vcS ; the desired set A either does not contain v

-
~~~~ it does contain v • In the first case, A is a largest stable subset

of the set S1 = S-[v} ; in the second case, A- [v~ is the largest stable

subset of the set S2 
obtained from S by deleting v with all of its

ne ghbors in S . We shall denote S~ by S-v and S2 by S*v ; with

thi s notation, we have

a(s) = max (z(~ -v) , l+a (S*v))

Thus we have reduced the original problem into two similar, but smaller,

subproblems : one for S-v and the other for S*v

row, an algorithm for finding a largest stable set in G suggests

itself : begin with S = V , do what we have just done and then simply

i~ er’ite away. One may visualize a binary tree with nodes labeled by

suh:ets of V • The root is labeled by V itself; if a node is labeled

by a nonempty set S then its left son is labeled by S-v and its ri~~it

son is labeled by S~-v for some vcS • If C has a vertices altogether

and if each vertex has fewer than d neighbors then the tree will have at

least nodes. Of course, that does not mean that the algorithm will.

n/d
create at least 2 subproblems: different nodes of the tree ma~j have

10



th~ sam e l’ii k - i .  (To ‘j~k~ an extrerse example, no~~- that all the leaves

of the t r e e  will b~’ la~ele-~ by ~ 
.)

We shall riescrib . a possib1~ implementation of the algorit}~t. For

Jefinitene:s , let u: ‘~~-s s’. t h ~it we hav e a f ixed “ choice funct ion”

which assigns te a*h r1~~:ern1 L;i subset S of V a vertex f(s) € 5

Such a function gives rise to an algorithm which we shall call the

f-driven algsrithrs.

In its first pha:.’, the algorithm creates a list of certain subsets

of V , which will be called subproblems. It will be convenient to keep

the list ordered, with larger subproblems preceding the smaller ones;

within each grcup of subproblems of the same size, the order may be

lexicographic. At each moment, we shall have a partial list of subproblems,

with a pointer at one of them. At the very beginning, V will be the

* only subproblem on the list; the first phase will terminate as soon as

the pointer gets to 0 . When the pointer is at a nonempty set S ,

we define = s-f(s) and 
~2 

= s*r(s) . Then we add S1 and 
~2 ~~

the list (unless they are already present), shift the pointer to the

successor of’ S and iterate.

In the second phase, we pass through the list in a reverse order

(from 0 to V ) and evaluate a(G) for each subprobleni S • To begin

with, we have a(Ø) = 0 ; for each nonempty subproblem S , we have

a(s) = max(a(51) , 1+a (S2
) )

In the third phase, we shall find a largest stable set A in 0

To begin with, let us set A = 0 and S = V . With each iteration, the

set S will shrink; when it will become empty, A will be the desired

largest stable set in G • Each iteration is simple. If a(s) = a(s1)

then we replace S by S~ ; otherwise a(s) = 1-i-a(S
2
) in which case we

add f(s) to A and replace S by 
~2

U



t i s  cruci at to use the iJ ru~ n ate daba :ttu-e~ or: when ( L.m ‘rb. 1ri~

the first phase. Trivially, the number of subi-robl en. : on the l1:t ‘ - ‘:V~~~

• ‘xceeds . If we implement the list as a balanced. tree (see [1 5 ] or [1])

S~~ t -och of the look-ups and insertions can be handled with l i i  -a i:~u:~~ .n

of set—comp ari son s i~~~ u i t -  onai. to n . If each r ( s l can be ~vaL ~~~~~

wi~~h~ s a :te3 S and if the total number of :ub j roLl e~is is U bh ’.:i~ U ’:

~- n t h~. t i : e  of the algorithm is 0(abn 2 ) • For at least a ~~~ choic : :

of that seine to rn ~ n d,  a is polynomial in n • In that case , b

th : ’est.eri: to be the dec i sive  factor in the ul por bound.

S ee d le s s  to say, the number of subproblerns depends on the choice

~‘umc Lion f ; for most function s f , that number seems difficult to

es t imate .  To simplify the situation, we shall restrict  ourselves to

ver:,* special choice functions: when the vertices of G are ordered. as

, the function f choose: that vertex of S which has the

smallest subscript. The resulting f-driven algorithm will be called an

order-driven algorithm.

The following proposition and its corollaries (Propositions 3.2-3.5)

are due to Szemer~di. In its statement, N(k) denotes the number of

:tai-le subset: of [vl,v2,...,vk) • Here and later on, we shall find it

ser ~veri~ ent. to denote by 5T the subset of S resulting when all the

.e rb~ ces in T and all their neighbors are deleted.

Proposition 3.1. The order-driven algorithm applied to a graph with

vertices v1,v2,...,v~ creates at most

a-].
1 + E min(N(k) ~n-k-l~

k = O

subprob.lems.

12



Proof. For each cubproblem S , let k be the largest subscript

such that (vl,v2,...,vk} f l S  = . It is not diff icult  to see that

5 = ~vk+l, vk+2 , . . . ,v
fl I B

for some stable subset B of [vl,v2,...,vk) . Hence for each fixed k

there are at most N(k) subproblems S • In addition, if k < n then

there are only 2n-k-1 subsets S of [Vk+l,...,Vn ) such that Vk+1 ES .

Proposition 7 •f~ The order-driven algorithm applied to a graph G of

order n such that a(G) < n/2 creates at most

2 nr~

subproblems.

Proof. Trivially, we have

• a(G ) kN(k)  
~ i = O  

~~~~~~~~ 
<

for each k ; the rest follows from Proposition 3.1. ~

Proposition 3.3. For almost all graphs 0 of order n , the order-

driven algorit1m~ creates at most

n2( 1 + log n/log 2)

subproblenis.

(The proof follows inimed.i ately from Proposition 3.2 and Lenmia 2.1.)

Proposition 3.14. If m (n)/n -. then almost all graphs G with n

vertices and m edges have the following property : for every constant

c > 1 , the order-driven algorithm on G creates o(c~ ) subproblems .

13



________ 
By Lemmo S. , have .. x( S )  = o(n) for ~ ssu:t oil gra~.lis w th

:~ ver t ices  and rn edges; the rest follows f rom I- ro~,osi tion 3.2 .

: r : ~ t ion  - .5. For every graph with n vert ices , the order-driven

oi~ r’ithm sn ot-u : at in’ 5
~ 3•~ 

(r:-1)/2 _ 1 :ub j rubles.:.

• Ve hove

n-l n-i
~ :~(k) , S

k
~~) < ~ n~ n(fl ~ 

l~ < 32
(n-l)/2 ,

k = O  
- k= 0 

—

th~ rest follows from Proposition 3.1.

:~ot~ that the bound of Proposition 3.5 is sharp : it is attained.

by the graph with vertices v1,v2~~
...,v

2~i-i-1 
and edges

Nevertheless, if we can choose the ordering

of the vertices then the bound can be improved.

Proposition 3..~~ Every graph with n vertices can be ordered in such

a way that the order-driven algorithm creates O(n2~~”~~) subproblems.

Proof. We shall first describe the ordering and then we shall show that

~t has the desired property. Suppose that we have already constructed

the initial segnent Vl,V2,...,V14t for some t > 0 • If the graph

H = G_ [vi,v2,.•.,v14t) contains a path w
1w2w3

w14 then we set v
~~i-~ 

=

for 1 < i < ~ and iterate. Otherwise each component of H is a star

or a triangle. In that case, we denote 14t by m and enumerate the

vertices of H as 
~~~~~~~~~~~~~~ 

in such a way that

(i) the vertices of each component of order j  are enumerated as

for some i

(ii) if that component is a star then is its center.

114



It is not d i  fficul t to verify that s(k) < 2 (3k+~~ / 14 for each

k = 1, 2 , .. . ,m • If m > l
~n/7 then

n-i
~ nu n ( r ~(k)  , ~n-k~l~ = 0(~ 23n/’7 )

k= 0

If m < 14n/7 then we resort to another argument : note that each

:ubprobl em has the form [v k+l, vk+2 , . . . , v
fl

}*B such th at 1 < k < n and

B is a stable subset of [vi,v2,...,
vm) . Since r-i (m) < 2(3

~~
1
~
’
~

the total number of subproblems is 0(~23n/7) .

It is not unlikely that the bound of Proposition 3.6 can be improved.

Let us call a number c admissible if every graph with n vertices can

be ordered in such a way that the order-driven algorithm creates O(C
r
~)

cubproblems; let c0 denote the infimum of all admissible c . By

Proposition 3.(., we have c0 < ~~~ ; on the other hand, the main result

of this paper implies that c0 > 
1 . What is the exact value of c0 ?

Similar questions apply to the wider class of f-driven algorithms and

to the even wider class of Tarjan algorithms which we are about to outline.

As pointed out at the beginning of this section, every f-driven

algorithm applied to a graph gives rise to a binary tree whose nodes are

labeled by subproblems : if a node x is labeled by a nonempty subproblem

S then the left son of x is labeled by S-v and the right son of x

is labeled by S~’-v for some vcS . Elimination of duplications on the

list of subproblems amounts to ~runing the tree: we simply omit nodes

whose presence would result in duplicated labels. The idea of Tarjan [19]

leads to pruning of a different kind. In an f-driven algorithm, each

subproblem S is generated in the form (V_A)*B such that B is a stable

set; eventually, such a subproblem yields a stable set of size a (S)+IBI

If another subproblem S1 is generated in the form (V_A
1
)tB
1 such that

15



S and 1B11 ~ ~Bf then 5
~ 

can be discarded: in a sense, S.~ is

dominated by S . In terms of the binary tree, we might index each node x

by the number r of right-hand turn s on the path from the root to x

a branch rooted at a node x1 (labeled by S~ and indexed by r1

may be pruned off whenever there is another node x (labeled by S and

indexed by r ) such that S and r1 < r

Now we have arrived at two kinds of pruning: these might be called.

‘ duplication pruning” and “domin ance pruning”, the former being (in a sense)

a special case of the latter. ~n f-driven algorithm with the option of

using both duplication pruning and dominance pruning to eliminate subproblems

will be called a Tarjan algorithm. Of course, systematic use of dominance

pruning may shorten the list of subproblems quite considerably. In terms

of running time, however, the means could defeat the purpose: in general,

it may tak e a very long time to decide whether the subproblem that has

been just created is dominated by at least one of the subproblems already

on the list. Thus it may be wise to pass up the option of (possible)

dominance pruning in most cases, resorting to it only in those simple

situations where the dominating subproblem is almost staring at us. Such

a strate~ r led Tarjan [19] to an algorithm whose worst-case running time

for a graph with n vertices is 0(1•286
n1) . Later on, Tarjan and

Trojanowski [20] desiWled an improved version of that algorithm with

- • n/3 -rumiing t ime 0(2 ) . It may be worth pointing out that these upper

bounds come out of rather rudimentary applications of dominance pruning

only : the argument does not take duplication pruning into account at all.

Thus, it is not inconceivable that (with the subproblems kept in a balanced

tree, so that duplication pruning is easy to inrp1~nent ) the worst-case

running time of the Tarjan-Trojanowski algorithm is even better than

16



o(2~~~) . Neve.~theless, the main result of this rarer implies the

existence of a constant c ~ 1 and arbitrarily large graphs 0 with

n vertices such that every Tarjan algorithm applied to S must create

at least different subproblems. (In fact, almost all graphs with n

vertices and dn edges have this property as long as d is sufficiently

large.)

One more comment : from the practical point of view, the Tarjan-

Trojanowski algorithm might be preferable even to (hypothetical) f-driven

algorithms creating ~
n subproblems for c fairly close to 1 • The

point is that the space requirements of such algorithms would be roughly

whereas the space required by the Tar j an - Trojanowski algorithm is

only polynomial in n

17



.1 1~eeur. iV u  I roofs.

For the moment, let us deal with an arbitrary but fixed graph

= (v , E) . By a statement, we shall mean an ordered pair (s,t) such

that S is a subset of’ V and t is a nonnegative integer. (Such a

statement is to be interpreted as the inequality a(S) < t which, oi •

course, may be true or false.) By a recursive proof of a statement

(s , t .)  over 0 , we shall mean a sequence of statements

(s 1,t.) , i = O,l,...,m (~ .l)

such that (s0,t0) = 0 , (Sm~
tm) = (s,t) and such that each statement

(;k,tk) with k > 1 can be derived from the previous statements (s
~
,t
~
)

O ‘-~ i < k , by at least one of the following two rules.

1. The dichotomy rule: from (S_v ,t~ ) and (S*v,t .) we can derive

(s , max(t~,1-4-t~ ))

2. The monotone rule: from (s,t) we can derive (S’,t’) whenever

S’ c S and t’ > t

Clearly, if (14.1) is a recursive proof of (s,t) then a(S1
) <

for every i ; in particular, a(s) < t • Conversely, if a(s) < t then

there is a re~ursive proof of (s,t) . In order to see that, consider the

family F of subproblems created by some f-driven algorithm that has

just found a largest stable subset of S . Enumerate all, the ordered pairs

(S,a(S*)) with S*€F as (14.1) in such a way that < L s • +~ I for

every i . Clearly, the resulting sequence constitutes a recursive proof

of (S,a(S)) ; if t >a (S) then one additional application of the

monoton e rule completes a recursive proof of (s,t)

It will be convenient to define the length of (14.1) as m . Now,

Propositions 3.1 -~~.6 yield direct corollaries in terms of recursive

proofs. We shall state explicitly only ~ ie of them.

18



os it: ~n 
I~.l. IS c > 1 and i: r . (n ) /n  —. kb ’. n , for aJsco:t -~ll

c-r o~ hi- G = (v , 5) with n vertices and m u lge-:, there are recursive

i ~~~ fi-  of (v,a(G)) r - ~ 2-u~th o (c
r
~)

In addition, eve -:~ 
I i  --rn a1gori~-1im aj~ lied to G = (v , E) yield:

a recursive j-roof of (V,ct(G)) . Hence for every graph G = (V , E) ut

srser n , there is a recursive proof of (V,a(G)) of ler1~ th

Now, we shall show that for a certain class of graphs G = (v , i~)

there exist very short recursive proofs of (V ,:.x (G)) . This class

cons i s t:  of all those graphs G for which a(G) equals ~(s) , the

:mallcst- number of cliques whose union is V • (Trivially, we have

-:~(~~) < Q(G) for every graph G . )  It may be instructive to split the

argument into three easy propositions.

Proposition 4.2. If G = (v,E) is a complete graph of order n then

k-here is a recursive proof of (v,l) whose length is n

Proof. ~ ~-:rating the vertices of G as v
1,v2,...,v , define

= [v1,v~,...,v1) . Trivially, the sequence

constitutes a recursive proof.

Proposition 14.3. Let = (v1,E1) and G2 = (v2,s2) be graphs such

that V1 fly2 = 0 ; let U 02 denote the graph (V 1 uv2 , U If

there are recursive proofs of (v,,-~(c ..)) of length m , for each
‘3 ‘~ ‘3

j = 1,2 then there is a recursive proof of (v1u V 2 ,  -~ (h 1) + - ; ~(G2 ) )  whose

• ~er ysIi does not exceed m1
+m
2

Proof. If (s ., t . )  with I = 0,1, ...,m is a recursive proof of

(v2,a(02)) then a recursive proof of (v1,a(01))  , followed by Ihu sequence

19



(v1u s. ,~~(G 1)÷t 1) , i = l,2, . .., m2

e nstitutes a recursive proof of (v1uv2 ,a(G1) ÷a(G2)) •

Jr - osition 14.14. Let F be a sub gr aph of G and let ( 14.1) be a recursive

~rooT over F • Then there is a recursive proof of 
~~m~

tm) over G

whose length does not exceed 2m

Proof. We shall create the desired proof over G from (4.1) by inserting

~ew statement immediately before each (Sk,
t
k
) that has been obtained

:~ -~m the previous statements by the dichotomy rule. For every such (S.i,,tk

there are subscripts i , j and a vertex vESk such that I < k , j < k

t = rnax(t. , i-1-t ) and S. = S -v , S . = S ~v in F . The statement to
k i ‘3 i k j  k

be inserted in~nediate1y before (S.
~
,tk) ~~ (s i , tk_l) such that

in G . Clearly, 
~5k’ tk_l) follows from (s~~t~ ) by the

monotone rule whereas (Sk,tk) follows from (S1,t~
) and (:.

~~
,tk

_l)

by the dichotomy rule. U

Proposition 14.5. For every graph 0 = (V,E) of order n there is a

recursive proof of (v, 9(0)) whose length does not exceed 2n

Proof. Consider the subgraph F of 0 consisting of 9(G) cliques

whose union equals V . By Proposition 14.2 and by repeated applications

of Proposition 4.3, there is a recursive proof of (v , Q(G’
~) over F

whose length equals n . The rest follows from Proposition 14.4. ~

We shall close this section with another easy observation which will

be handy later. The proof can be left to the reader.
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If (14.1) is a recursive proof over S = (‘J , E) ~~~- t

i i ’ W~~~V t h e n

(~ .fl W ,t.) , I = O,l,...,m

i i -  a recur si ve proof over the subgraph of G induced by ‘
~~ .

4
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5. A Lemma on Binary Trees.

Let a , b , r , be nonnegative integers.  A binary tree whose node:

are colored red and blue will be called (a,b, r, c) -constrained if, along

~ch path from the root to a leaf,

(i~ exactly a nodes are followed by their left sons and exactly b

n -se: are followed by their right sons,

(ii) at ~ost r nodes are red,

(iii) at least s red nodes are followed by their right sons.

5, ar some choice of integers a , b , r and s , there is at least

en - - (., L, r, s) -constrained tree then we denote by f ( a,b , r , s) the 1ar~e:t

; -- ~ :1Lle number of leaves in such a tree; otherwise we set f(a,b,r,s) = 0

~rivially, we have

a+bf(a,b,r,s) < 
~ b

T I  ‘I

f(a,b,r,s) = 0 whenever s > b or s > r

The purpose of this section is to derive the following upper bound on

f (a,b,r,s)

Lemma 5.1. If S > 2br/(a+b-l) , s > r-a+1 and s 1 then

- a+b ab -br/14(a+b)
( b 

—
~~~~~ e

~i r :t  of all, we shall establish a simple recursive bound.

I f(a-l,b,r,s) +
act 5.2. f(a,b,r, s) < m~~ (________ — 

f(a-l, b, r-l, s) f(a, b-I, r-l, s-i)

Proof. Let T be an (a,b,r,:) _constrsdlied tree. li its root is blue

T t I ’ . li the t u f t  subtree is either empty or (a-1,b,r,s) -constrained and the
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ri gh t suetree is e i t h e r  emj t ;: nr ( , b— I , r , s) — con :tiujirie-i. If t} (- i-nut

is red then the left subtree of T is either empty or (a-l , b , r-i , s)

-constrained and the right subtree of T is either empty or (a,b-1,r-i ,:-l ’
~

-constrained. Hence the desired concluciop . ~

I-;ext , for every choice of nonnegative integers a , b , r , : sush thY

, s < r  , s>r-a+l

we define

F(a,b,r,s) = 

~~~~~ 
~~~~~~~~~ 

a+b:r:1~i~

It is easy to veri fy that

F(a,b,r,0) = (
a-I-b )

F(a,b,r,b) = (~~~~
)

a-I- b - r
F( -a , b, r, r )  = a ‘

F(a,b,r,r-a+l) = (
a+b ) ( r

)

F(a_l,b,r,s)+F(a,b_l,r,s) = F(a,b,r,s)

F(a-l,b,r-i,s) + F(a,b-l, r-1, s-l) = F(a ,b, r, s)

whenever the left-hand side terms are defined.

Fact 5.3. We have f(a,h,r,i- ) < F(a,b,r,s) whenever the right-hand sije

is defined.

This inequality can be proved by induction on a+b in a straightforward

way; we omit the tedious details. It is not unlikely th ut there is a

direct combinatorial proof of Fact 5.3. Furthermore, it is not diffi cult



P t . hew t h i e f  f(~., i ,r,:) = F(a,b ,r,s) whenever the rigiY —h~ u - .I s -i u is

Je fh~ed~ however, t h a t  is irrelevant for our purpose.

r :u f  sf Lemma 5.1. We may assume s < b and s < r for otherwi se

Y~e i~~:t_hand side vanishes. Then, by Fact 5.3,

f ( a , b , r , s)  < F(a, b, r, s)

~ince r ~~ s > 2br/(a+b-1) , we have 2b/ (a+b-1) < 1 and

i’+1
s*~ > 2b

— a+b-1

:or every nonnegative i . Hence, with the notation of Section 2,

~~~~
( a+b-r-l-i ) < H(i~I-i,a+b-l,b,(r+i)/(a+b-l)) (~~~~ 1 )

By Lemma 2.3, we have

t (a,b,r,s) < (
a+b

) ~~~~~~~,

-~J
- -;ch imj l ies  the desired result.
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1 he Ma in  ~~~~~~~~~~~

A graph of order n will be called (d,c) -sparse if

(1) every vertex Y G has degree less than d

(ii) every subgraph of 0 induced by m vertices such that m > En

has fewer than dm~/n edges.

Theorem u.l. Let n , t be positive integers and let d , E be po:it ve

reals such that

n < lOtd

n > 500t
2/’3 d

n > ~~~~~~~~ d~~
14 

,

~ 2000t

~ < n~/l8iOt~ d
2 

;

let 0 = (v,s) be a (d , E )  -sparse graph of order n . Then every recursive

proof of (v,t )  has length at least

( . 1)
2Od

Proof. We shall set

a = Ln~/14500Ot
2d25 , b = Ln

2
/900td2i

and show that every recursive proof of (v,t) has length itt least

2
a+b b

The reader may easily verify that a b ~‘ 200 and so

200 n3 200 n2a > . 

145 000t2d2 b > 

~~~~d2

Then it follows that (6.2) is at least ( - .i).
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:~~t us outline our strate~~r. With each recursive proof of (v, t )

we shall associate a binary tree T whose nodes will be labeled by

statements from the proof. The assi~~ment of labels to nodes will not

ho one-to-one (to take an extreme example, all the leaves of T will be

labeled by 0 ) and so the number of nodes of T may be much greater

thu~ the length of the proof. We shall find a node z with a certal r.

convenient property and then we shall construct a new binary tree T’

1~ven though T * will not be a subtree of T in a strict sense, it s nob .

will come from T ; in particular, z will be the root of T* . FinaJJ;i ,

vu shall show that within the set N of leaves of’ T* , no label is

ru 3 sa ted too often. More precisely, for each subset S of V we shall

cc fine

ri(s) = [xcN: x is labeled by (s,t’) for some t’ ~

aril prove that

IN(S) I ~ I~I 
~~~~~~~ 

ex~~
(

~ 

~
) . (~ .3)

Since N will be nonempty, (6.3) will imply the desired result : indeed ,

the number of’ those sets S for which N(S) 
~ 0 must be at least C .2).

Before going into the details, the reader may welcome a preview

at the idea behind the proof of (.3), however vague such a preview may

h a m  to be. Let (w,t*) be the statement that labels z • In the

atsurice of the monotone rule, the tree T* is constructed in such a

va,, that every subproblem S labeling a leaf of T* is obtained from

1 by simply deleting a vertices and by deleting b vertices with

their nei~~borz. If we had our way, the subgraph H induced by W-S

would consist of a isolated vertices and b disjoint stars: in that
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case, we could reconstruct the two i-ot :-jf vertices , proving that

= i . Actually, we shall be content even if things are not all

that clear-cut, as long as we can approximately reconstruct the two sets.

That will be the case as long as H is reasonably large. (If H is

large then most of the b vertices must have large degrees. At tb ’- - ‘ es

time, the second defining property of f j  (d , € )  -sparse graj h m i  lies

that the average degree in H is rather small. Hence thu vertices ef

large degrees are quite conspi cuous.) In order to guarantee that H wiiI

be large, we have to choose z ap~ rojriately. In general, the rules

for constructing T~ are desi~~ied to neutralize the desultory effects

of the monotone rule. Now that the poor reader is properly confused,

we can proceed to the details.

Constructing T , we shall find it convenient to call certain statements

in the proof’ eligible: a statement will be called eligible if it is (0,0)

or if it follows from some two earlier statements by the dichotomy rule.

c~ly the eligible statements, with a possible exception of (v,t) , will be

used to label the nodes of T . The construction of T is recursive; the

root of T is labeled by (v,t )  . Suppose that we have constructed a neil ’

x labeled by a statement (sk, tk ) and having no sons at th s moment.

If (sk,tk) = (0, 0) then x will be a leaf of T . Otherwise there are

eligible statements (S
~
,tj) , (s~~t~) and a vertex vcSk such that
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i,j < k , 
~ ~k ” S . Ok~~ 

t~ rnax(t. , l-+ t.)

In that case, we shall create both sons of x , label the left one by

( S . , t~
) and label the right one by (s~~t~) . For further reference,

we shall set 5(x) = S~ , t(x) = tk and v(x) = v . It will be useful

to note that

t. < t and t .  < t -l . ( .~ -)i — k  j — k

Next, we shall find the special node z . A node y will be called

a descendant of a node x if there is a path xO,xl,...,xk 
such that

= x0 , y = Xk 
and each x~÷1 is a son of x. . If, in addition,

t-~~ctly b nodes x. are followed by their right sons x.~~ then y

will be called a b-descendant of x . Repeated applications of (.L) show

that

if y i~ a b-descendant of x then t ( y )  < t ( x ) - b  . (‘ . 5 )

We claim -that

there is a node z such that S(z) u- n/2 and such that
(t - . )

S(y)~ < ~S(z)~ -bn/2t for every b-descendant y of z

A node with this property can be found by constructing a certain sequence

y0,y1,... of nodes of T such that y0 is the root of T . If the most

recently constructed y~ has a b-descendant y such that

:> ~s(y1)~ -bn/2t then set 
~~~~~~~~~ 

= y ; otherwise stop. By (1~.5) and

by the construction of the sequence, we have

> n(l -bi/2t) , t (y1) < t-bi

for every i . Since t(y1) > 0 , we must have i < t/b and so

n/2 for every i . In particular, the very last y~ in the

sequence has the properties required of z • We shall denote S(z) by W
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With 1- i-h - n’ :cenfait t x s-f z , ~~~ .- ‘u’Ji a .. u c i ’~te two sun. - ’ - 1 s

A(x) , B(x)  of V : considering the  path X ( •. . , fro n  x =

to = x we shall define

A(x) = [v(x 1): 0 -~ I Ic and x 1 1  i s  the left s-sn of x.)

B(x) = jv(x.): 0 < i < k and is the right son of x.

Clearly, we have

IS(x ) flW I ‘ > IW I - j(A (x) - B ( x ) )  nw l - E (1 d ( v ) )  (•
v~ B (x)

for every descendant x of z . in particular,

~~~ I ( A ( x )  - B ( x ) )  f l W~ K a and IB(x ) I K b then 5(x) ~ 0 : 
( - . - )

just observe that

a + b(l-I-d) < 2a + bd < 3bd < n/2

Before proceeding to construct T~ , we shall associate a node x

with each descendant x of z such that

I(A(x)-B(x))flWt < a  and I B (x) (  K b

Consider the path XO,Xl~ • • •~
Xk such that x0 = x , X

k 
is a leaf of

and each x1~1 is the left son of x1 . Note that B(x.) = B(x) for

every I . There must be at least one i such that 0 < i < k and

v (x
~~

) c W  , v(x .) /A(x) LJB(x)

for otherwise

(A(xk
)_B (x

k))flW = (A(x) -B (x))flW and B(x,K) = 13(x)

but S(xk) = 0 contradicting (6.8). We shall denote the f irst  x~

satisfying (6.9) by x~ ; note that

(A(x*)_B(x *) ) f l w  = (A (x) - B ( x ) ) f l w

At last, we are ready to construct T* . Each of Its node s x will

come from T and satisfy
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v ( x )  W , v(x) jA(x) UB(x) ,

(A (x) - B(x)) flW~ < a  , IB (x)I K b  , B(x) c W

~t ie con struction of T~ is recursive; the root of T~ is z . Suppose

~h- s~ w~ have already constructed some node x of T* ; let X
L 

denote

in left set of x in T and let X
R 

denot e the right son of x in T

~f I(A(x) - B (x))flWj = a then x will have no left son in T~ ; otherwise

we shall mak e x~ the left son of x in T~ . If I B ( x ) I  = b then x

wJi have no right son in T* ; otherwise we shall make x the right son

of x in T~ . It will be useful to make note of the following property

along each path from the root to a leaf,

exactly a nodes are followed by their left cons,
(~1 .lJ~

exactly b nodes are f’ollowed by their right sons,

and these a+b nodes x give rise to distinct vertices v(x)

Finally, we shall prove the inequality (6.3). Without loss of

generality, we may assume that N(s) 
~ 0 and 50 5 = S(y) for some yr t’~

Denot e by H the subgraph of G induced by W-S(y) and denote by in the

order of’ H . Since y is a b-descendant of z in T , (~~~.6) implies that

in > bn/2t

On the other hand, ( n .7) implies that

in < a+b (l’f-d) < 2a+bd < 3bd

En umerat e the vertices of I-I as u1,u2,...,u~ 
in such a way

d11(u1) > d,2~(u2) I> ... >

Since bri/2t > n3/1809t
2d2 and since G is (d,E) -sparse, the graph H

has fewer than dm2/n edges. That is,
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~~1( uA  < 2~[~-~ fl

1 = 1  -

it is now easy to see that, ~- - r ever:1’ j-usitive integt~ - r , we ItO ’.

d
l!(u.) < 2dm~ ~nr whenever i > r . ( -  .

We shall use ( .11’) with

r = Lam/~bdJ

Let us note at once that r - 200 -i-id ‘0

200 sinr 2Dl~~ Ii~~~

It will be also useful to note that

2rbd ~
, in

2dm2b 201 8b2d2 (201 ~2 3 r< — . •m  < i — inr — 200 an — \ 200)

r < a , (- .L

2br br 
> 1 .a÷b-l — a —

-.nl while we ~re at it, let us also verify that

201 bn - 201 ma < .-~

1 bn inb 
1000 2t 1000

So much for hi~~-school algebra. Now, we shall set l’~ = [I
L
,U,, , ..

and prove that

-~ ~~~~ 
( .ib )

for every xeN (S ) . To begin with, (u .7), ( .11) and. 13(x ) 
~ W im~li

in < a+b+dIB (x)flR~~+ 2dn1
2
h/nr



If ( - .l1~) failed then we would have

m < a+b+2rbd /a + 2dm
2
b/nr

However, the right-hand side of this inequality is at most

(201 1 1 1 (20l \2

Hence (‘. . l1~) must hold.

The rest is easy. Consider the subtree of T* consisting of all

he paths from the root z to leaves in N(S) ; color each of’ its nodes

X red if v(x) cR and blue otherwise. By (6.10) and (6.lli~), this tree

is (a,b,r,2br/(a+b-1)) -constrained. Because of (6.12) and (6.13),

Lenmia 5.1 applies and shows that

< (
a+b
) ~ e~c~(- ~

)
i~:/ virtue of (h.l0), 

this is the desired inequality (6.3).

Theorem (- .2. Let m be a function of n such that m(n) = o((n/log n) 2 )

but m (n)  > 10
10n for all sufficiently large n . Then, for almost all

graphs G = (v,E) with xi vertices and in edges, every recursive proof

e~’ (V ,cz(G)) has length at least

2

n m~~350 log

I reel. By Le~mna 2.2 and by Lei~~a 2. 14 , almost all graphs with n vertices

and in edges have the following two properties:

2
(ri) cr (G) < ~~~~~ log ~

(II-) every sub gra~h induced by s vertices such that

21~n m
a > — log —— in n

has at most 2ms2/n2 edges.
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- e  :it’dl chow that nil :uffi ~i el t i ;,’ lar~ e g rj . ii. - w ’
~ .h t i ’ . :e t~.c

1-el-e rtier s at i s I~J the conclusion of Theorem .2. Let us define

k(n) = L~ 
( 5u  log

d ( n )  hkj~ n

Ln’ m
e(n) = -~~ - 1og —

~:irstly, we shall show that every graph with n vertices - L t d  m > 1- r .

edges satisfying (F2 ) contains an induced (i , ~~) -sparse r-uhi-rai,-h of

order k . -To begin with, Tk(n) -
~~ n . i-text , on easy aver -i~’~ n~ - s

shows that C contains an induced :ubgraph H0 
with 2k vertices an-s

at most I4rnk /n edges. Beginning wth H
0 , we shall construct a s~ uence

of induced subgraphs of H0 as follows: if the last construn~ -~s

IT . has a vertex v of degree at least d then set H. = H.-v , otherw se
~÷l i

-J . Clearly, if an H
~ 

gets constructed then H~ had at least di

ages and so i < k • In particular, the very last H~ in the renueni-.’

as at least Ic vertices; in H~ , we shall choose an induced subgrnp h H

~f order k . Let W denote the set of vertices of H . By (~~~~), every

sat-graph of H with s ~k ~. 14n
2log(m/n)/m vertices has at sost

2~~ 2-ms /n < ds 1k edges. Hence H is (d,€ ) -sparse.

Next, by (p1), we have

2n m
— log — .m n

On the other hand, we have

> x ( H )  - k / ( d+ l )

For all sufficiently large n , Theo rem ‘ .1 asserts that every proo f of

(W ,a(G)) has length at least

i f) )

•  

~~--.--



dod Ic 3 - On 
_____________

~
-j-
~
— exp ;;

~
. > — exp 

m (350 log

ia -v roposition 14.~~, this  is also a lower bound on the length of every

la-cursive proof of (V,a(G)) .

Let us state a special case of Theorem 6.2 in a compact form .

Th-~L-r,sm 6.15. For every sufficiently large integer d there is a

constant c > 1 with the following property : for almost all gra~ is

-~~ = (‘i,E) with n vertices ax-id dn edges, every recursive proof of

(V ,-i(G)) has length at least cxi

In closing, two remarks may be in order . Firstly, it would be intereL- - t L ng

to construct an infinite class 
~ 

of graphs for which there is a constant

c > 1 with the following property : for every graph C = (v, E) in ~~ and

with n vertices, every recursive proof of (V ,cr(G)) has length at

least cx-l 
. Secondly, it is somewhat frustrating that Theorem 6.2 does

not apply to graphs with ~~2 edges. Perhaps the following is true.

Conjecture 6.4. There is a positive constant C with the following

property: for almost all graphs C = (v,E) with xi vertices, every

c log n
recursive proof of (V , c z ( G ) )  has length at least n
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7 . S n l u d  h f  I- ’ pi ’ t r y S.

The re ar c au~,y “tin O I Ll. i-nc --I  ~5/ teflIL~ Which OX L’ n- - -ur sys4 or’. o S

recursive j  root’:; w i  shi ll  mention lust a few. It w oi i be nt e r - , L,ni~

to :t r e i i~~th ’tc our resuit : by j-roving their onniogu -s for the extended

re-sf sy:t

To ~‘og it i  with, otto might adjoin the following nI’erercc ’ - t ’

~ror (s1, t1) and (s2,t2) we can deduce (.~~~i j , . , t- t
2 )

t ’-j s s i t i o n  h .~ shows that, to some e~~ ent , this rule is inry l cit in  ~~

sys tem of recursive i r cs, s. Sovesthe i  s , its additisci ,ju~ S o~igh S iictke

the system considerably more ~-ewerSal . Along this lit e, urti er ‘sxtai :-sr~s

lead to the system of cut t ing plane proofs which we are about to descr ise

briefly. Let us consider a graph C = (v,E) with vertices ~~~~~~~~~~~~~

none of which is isolated. A cutting plane proof of (v,t) ~s a secucece

of inequalities

j=l 
a1~x~ < b. (i = l, 2, .• . , m)

such that

(i) all the n umbers ~~~ 
and b1 are nonnegative in t e g e r s ,

(ii ) for every k = l, 2,..., m , either the k-th inequality reads

Xr+X s < 1 for some edge V
r
V 5 or else there are nonnegative

multipliers Yl~
Y2~

...
~
Ykl  such that

L y 1a~~ � N L E Y ib ij  bk

n
( i ii )  the last inequality reads ~I x . < t

j=l ~~~

It is not d i f f icul t  to see that a(G)  < t whenever there is a cut ting j-lan-

proof of’ (v , t )  • The converse is easy as well: in t act-, every recursiv -
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j  ri--cc ’ of (v, I ) can he ‘coy -n -ed into a cut t ing  jlone roof of (‘- ,‘

(The -detaiLs are left to the reader.)

‘n ~n fcrence rule which strengthens the monotone rule and is not

~ub:w~ed III the notion of a cut t ing liaise proof goes as follows. Let us

write S
~ 

< .,i ,~ if there is a one-to-one mapping f :  S1 
-
~~ S2 such that

f ( u )  ari d f ( v )  are adjacent only if u and v are . Clearly,

from (s ,t) we can derive (~ ‘,t’) whenever St < S and t’ t

Again, it would be interesting to find out whether the addition of th i s

inference rule makes the system of recursive proofs considerably .trorig ’r .

Coh n McDiarmid [l~ J investigated a proof system, similar to our s;i:~ or:,

uf recursive proofs, for deriving lower b wnds on the chromatic number of

graphs. We shaLl describe his  system very briefly. Let C be a gra~b

whose vertices are labeled by nonempty and pairwise disjoint subsets of

[i , S ,. . ., n)  ; let u and v be two vertices of C . We shall denote by

C’ the graph obtained from G by adding the edge uv ; we shall denote by

C” the graph obtained from G by identifying u with v (in which case

the label of’ the new vertex is the union of the labels of u and v

As usual, u(G) denotes the order of the largest clique in C . By a

recursive j~roof of [Gm~
tr } , we shall mean a sequence

[G1,t~ J , i =

such that, for each Ic , either tIc < ~
(G
k) or else there are subs cnit tc

I , j ‘5 k such that C1 = C~ , G.  = and tk = min(t.,t .) .

if there is a recursive prool of [C
~
,t
~
] then X (Gm) t~ McDiarrnid

ha: proved that, for almost all graphs with n vertices, cv ry recursive

jroof of [C , ~(G)] 
has length at least

exp(.l57 n (log n) )

16



I L ’S- i~~’d- U c ’-,’ - - i- I ’’ - nos i ng I i,:’ c, ‘ l b  - ‘o - -

‘c tg rU!u~i r 1 1 ) 1 5 0 0  lIce ‘ 1 ’  -nal e ~ ri U- n ut ~ 0~~-’LJ~~i [1 ] _ r s. : ‘

than - -very - -x’~ c-ncn iial . - liii - Ilie r hand, Lnwl- r [l1 J ha: s- nJ c..’ an

:ctg ri thm ‘ ‘ - ‘r  Si t i - l : in ’5  the ch ‘ naIl c n inl er 0f ‘i ~ Y’ ’~~ 
1 c~” : - 1’ 1.

•1 °) sI -ps. (of course , thes- “ cts  are ci ’ an 0 , 0: Fe tv ’ c i ’ -

ins Icc nothing about F-h 0 relative inc-n t: of the two -Jo H - so ’ ‘l  -

i i :  ~‘Ii it , say, 2r~() ver t loes .

F - nail;;, I wish S I Shar k s r iS ,  fr i  ‘fl r t s  t on  - Si -si r 1i~ F r  ~d th -‘ .-os

on this  1-aJ or . To - ‘cJ~~n SIc I ris ’ I 1 1  ~s s r -  , : i r - - - ~~-~- i ;  1 -a U- i - s c - I ’  : a”

- - i s , ,  st iciut at tig cc,nv rs’it ens. j n:J I ) i acus l s t e l -i me aL-os ,~ - - n - n  - . 
-

I a~~cr f l ” ]. L u ~~ d A vt s , S-un ~~~~~~~ lye i-ka - on t - - rc , ‘fl - I hon ‘i’s:’ at r- -
‘

s’ariOU . r :son : of the nan-s:crij1~ an - I  ‘sade mccc helpful sligge’ . S c-n .

Us~ rev-s I-h e r c .’ :entr c t s  -in .
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