
/AD—A038 763 STAPFORD RESEARCH INST PEPtO PARK CALIF COPWUTER SCI—ETC FIG 912
TIE DESIGN APe USE OF SPECIFICATION LANGUAGES. (U)
OCT 76 0 ROUBINE N00123 76 C—O195

IMCLASSIFIED CSI.—4$ Pt

i~ I’ll rS~~n
-

U ~~~~ IlpI~ ~j2~II _______

i ~ 3 2
___36 —

I I ~~~ ~2.O

tIIII~
8

Hill’ .25 IUhIi~ ~HQ~
6

MR RU(U lY R E ~(l~ 1J1 I(l N IF ~ (F I A R I
N A T I I \ A : hr l l (A l l 0 0 ~ l~~~Al:(II - A

1~Technical Report CSL - 48 October 1976

THE DESIGN AND USE
OF SPECIFICATION LANGUAGES

By: OLIVIER ROUBI~1E

Prepared for:

NAVAL OCEA N SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152

CONTRACT N00123-76-C-0195

V
W . LINWOOD SUTTON , Contract Monitor

D D C

~

STANFORD RESEARCH INSTITUTE Com~~~teY ~~~ ~~~~~~

~~71 Menlo Park , California 94025 • U.S.A.

Technical Report CSL - 49 October 1976

TH E DESIGN AND USE
OF SPECIFICATION LANGUA GES

By: OLIVIER ROUBINE

Prepared for:

NAVAL OCEAN SYSTEMS CEN TER
SAN DIEGO , CALIFORNIA 92152

CONTRACT NOOl 23-76-C-O1 95

W. LINWOOD SUTTON, Contract Monitor

Approved by:
JACK GOLDBERG, Director
Computer Science Laboratory

EARLE 0. JONES, Associate Executive Director
Information Science and Engineering Division

,fr

-

THE D E S I G N A N D USE OF S P E C I F I C A T I O N L A N G U A G E S ’

O l i v i e r R o u b i n e ”

‘ c o m p u t e r S c i e n c e L a b o r a t o r y
$ t an f or d R e s e a r c h I n s t i t u t e

M e n l o P a r k , C a l i f o r n i a 911025

A B S T R A C T

The goa l of p r o v i n g t h e c o r r e c t n e s s of c o m p u t e r p r o g r a m s h a s
been h i n d e r e d by t h e d i f f i c u l t y of s t a t i n g f o r m a l l y w h a t is to be
p r o v e n . The t o o l s d e v e lo p e d to a c h i e v e t h i s l a t t e r p u r p o s e o f t e n
r e c e i v e t h e n a m e of “ s p e c i f i c a t i o n l a n g u a g e s ” , b u t t h e f o r m a l i z a t i o n
and i m p l e m e n t a t i o n of s u c h l a n g u a g e s has s e l d o m been c a r r i e d out , and
v e r y f e w of t h e s e l a n g u a g e s h a v e been d e s c r i b e d in t h e l i t e r a t u r e .

We p r e s e n t some d e s i g n i s s u e s c o n c e r n i n g s p e c i f i c a t i o n
l a n g u a g e s , e . g . , d e s i r a b l e p r o p e r t i e s of s u c h l a n g u a g e s , and t h e i r
l i m i t a t i o n s, as w e l l as some i d e a s on t h e i r use (a n d h e n c e on t h e use
of s p e c i f i c a t i o n s in g e n e r a l) as an i n t e g r a l p a r t of t h e d e s i g n

‘ocess l e a d i n g to r e l i a b l e s o f t w a r e s y s t e m s . The (p o s s i b l y
~t o m a t e d) v e r i f i c a t i o n of some p r o p e r t i e s of f o r m a l s p e c i f i c a t i o n s

is c o n s i d e r e d , and so~’~ c o n c l u s i o n s a re d r a w n c o n c e r n i n g t h e h e l p
s u c h an a p p r o a c h can b r i n g in p r o v i d i n g g r e a t e r c o n f i d e n c e in t h e
f i n a l s o f t w a r e p r o d u c t . ACGZt~1~~ L -

While S~C~ICI ~~~~~~~~

~U1(
~~~ 0

UNANflOC~~ZO 0
jUSTIFICATW4 

a

BY 

• ~~~~~ .~ ~ .. . .~~~ 

‘ T h i s  w o r k  was  p a r t i a l l y  s u p p o r t e d  by t h e  N a v a l  E l e c t r o n i c s
L a b o r a t o r y  C e n t e r  u n d e r  C o n t r a c t  N 0 0 12 3 - 7 6 — C — 0 1 9 5 .

• “ The a u t h o r  is a l so  a s s o c i a t e d  w i t h  t h e  C o m p u t e r  S c i e n c e
D e p a r t m en t , U n i v e r s i t y  of  C a l i f o r n i a  at B e r k e l e y .

______ - .-- - - —~~~~~~~~ —~~
,
~~~~~~~——.—~~ —~~~~~~~ - ——_____



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- •-~~~
.— - —- —.

~~
..——. . — _____________

Ol iv ier Roub ine Oc tober 3, 1 976

1. INTRODUCTION

Subs tan ti al effor ts have been ma d e i n rec ent yea rs to d evelo p
techniques for writing better programs more easily, and to prove that
they behave correctly. In the first category are techniques
descr ibed in particular in [Dahi), where the use of step-wise program
com position (see also (Wir th i ), hierarchical program structures , and
data abstraction is strongly advocated. The formal verification of
computer programs has also received much attention ([Elspas), [Manna
1]) , and an even more challenging task is the automatic synthesis of
correc t programs ([Manna 2)). All these approaches to software
development have at least. one thing in common : the need to state what
a program or an operation does , independently of its implement ation.
This is clearly a necessity in program verification , where the goal
is to prove that a given program act .ually does what it is claimed to
do , and in program synthesis , where the goal is to generate a
program , knowing only what it is supposed to do -- and prove its
corr ectness during the generation process. When using a hierarchical
decomposition , the designer who writes one level of a program need
not know how the “abstract operations ” he provides are to be used ,
nor how the operations he himself uses are implemented. Since it is
suff icient for him to know what these functions do , the need for
specification techniques should become apparent . Similarly, program
ver ification and synthesis can benefit from the use of data
abstractions ([Liskov 11 , [Guttag ) , [Flon] , [Spitzen]) , and the
techni ques used to specify them.

Our concern is how statements about the actions of programs
are ex presse d , an d we call the lan guag es use d for so doing
smec ificatign languages. We restrict ourselves here to particular
aspects of specifications. We shall not consider such issues as
spec ifying the semant ics of programm ing lan gua ges ([Tennen t ],
[Wegner]), or specifying how programs operate: the specification of
algorithms can be done in various ways including flowchart languages ,
a step—by—s tep description in some natural language , or the use of a
h igh-level programming language. The reason we do not insist on
algor ithms is that some research in programm ing language design is
aimed at providing very high-level languages that tend to be non-
procedural (e.g., SETL - [Schwartz)) and where the specification of
al gorithms becomes of little concern to the user: to some extent , the
specification language used in an automatic programming system can be
v iewed as a very high level programming language. It is interesting
to notice how the trends for specifying algorithms have evolved in
the past: with the primitiv e control structure provided by assembly
lan guages and early languages such as FORTRAN , flowcharts en joyed a
cer tain popularity: their lack of readability was a drawback , and
some designers preferred a description of an algorithm as a
success ion of steps , each ste p being described in a natural language
and indicating what step should be performed next. However , the
develo pment of ALGOL 60 , in particular , was somewhat trou blesome in
that the programming language used for implementing an algorithm had

Page 1 .

~~~~~~~~ 

.

~~~~~~~~ .—— -.•- - -.



_ _ _
- -.-- - - -. -

Ol ivier Roubine October 3, 1 976

a more soph isticated control structure than the language used for
describing the algorithm (the introduction of recursion was another
torment for several programmers faced with the problem of specifying
an algor ithm using recursive function calls). Nowadays , the language
PASCAL seems to be quite popular as a tool for specifying algorithms ,
but we can expect that the advent of a new programming language of
h igher level would make PASCAL obsolete as a tool for specifying
algor ithms. The issues we discuss here concern mostly the
specification languages used to describe formally the effects of
p rograms , funct ions and operations.

The remainder of this paper is divided into two main
sec tions , followe d by some concluding remarks . We first state some
des irable properties that we think specification languages should
exhibit , and present some of the conflicts between these goals.
Follow ing is a discussion of some issues that affect the way
specifications can be used for software development , and how they
foster or h inder the desirable characteristics of a specification
language .

2. DESIRABLE FEATURES OF SPECIFICATION LANGUAGES

We distinguish three principal aspects of specification
languages that should receive attention. Those are readability, ease
of use an d precision. These aspects can be compared with the
cr iteria discussed in [L.iskov 2], for the evaluat ion of spec if ica ti on
techn iques for data abstraction: in this reference , the issues are
formal ity (which is very close to our notion of precision) ,
construct ibility (an element in the ease of use) , comprehensibility
(relate d to the readabilit y of a language) , minimality and wide range
of applications (which are discussed in section 3 as influencing the
des ign of a language) , and extensibility of a specification method

ii (which should not be confused with the extensibility of a language ,
discussed in 3.5).

2.1. Readability

The notion of readability is related to the need for
specifications to be used by humans: if the only reason for a formal
specification is to be used as input to an automatic program
ver if ier , then the issue of readability is of less importance.
However , when , in a large programming task , spec i f ica ti ons are used
as means of commun icating information between the various teams
involved in the project , then readab ility and understandability are
fundamental. When some part of a software system is designed by
someone an d used by someone else , the specification should contain
what the des igner discloses about what his part of the system does :
if what he says ha~ l ittle meaning for the one who uses his product ,

Page 2 

~~~~~~~~~~~~~~~~ -. - - - •-, . .~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --. - -~~~~~~~~~~~~~~~~~~ 


Ol ivier Roubine October 3 , 1976

the specification will have missed part of its purpose. It is also
worth not ing that there is a need for specifications as a statement
of purpose, similar to the formulation of a problem , for wh ich the
final software system is a solution. The specifications of what is
to be done shoul d ultimately coincide with the specifications of what
the user can see of the final product. We think that techniques for
defining a software system can be derived from the techniques used to
descr ib e a s y s t e m , and we shall therefore concentrate on the latter.

Com ing back to specifications of programs , cons ider the
exam ple of a program that sorts an array of integers A in non-
descending order. We give below various suggestions on how to state
th at after the execution of the program , the a r r a y A is in d ee d
sorted:

1) a c o m m e n t , e.g.,

(4 The array A is sorted in non-descending order 4)

2) a predicate of the form

(O R D E R E D A)
(exam ple taken from [Boyerl)

3) the assertion

(L T Q (S T R I P (T U P A A 1 N)))
(f r o m [Wal di n g e r])

11) t h e m a t h e m a t i c a l f o r m u l a

V i , j 4 {1 ,.. ., r i } i<j :> A (i) �. A (j)

In terms of reada bility, the f irs t t w o st a t e m e n ts a re
c l ea r e r , orov iding the terms “sorted” , “non- descending ” , “ORDERED”
are understoo d. We shall leave the appreciation of the third example
(QA 11 system) to the reader. As for the fourth suggestion , we think
it is c l e a r , conc ise and readable only beyond a certain mathematical
tra ining. The various forms shown above illustrate the concept of

7 readability. They could be ranked according to this particular
cr i t e r ion , but we w ill also discuss them with respect to other
cons iderations.

2.2. Ease .~~~.C l l i i

The conce pt of readability evolves from a concern for the
rea der of the specifications. That of ease of use stems from some
concern for the writer. The issues are: how easy is it for the
program des igner to express his conception of the program in terms of

• the specification language constructs? Are there any assertions he
• might want to write that would require a very complicated statement ,

or that would be impossible to write? (This last question defines
t h e ~pwer of the langua ge.) The specification language should be a

Ol iv ier Rou bi ne Oc t o ber 3, 1 976

tool to write precise assertions without diverting the designer from
h is ma in task b y p lac ing a h e a v y b u r d en on hi m e v e r y t ime an
assert ion has to be made. It is to be noted that the originality of
t h e s y n t a x is less i m p o r t a n t : t h e l a n g u a g e w i l l h a v e to be l e a r n t
a n y w a y , and a c r y p t i c bu t v e r y p o w e r f u l s y n t a x (e . g . , in a w a y
s i m i l a r t o API) may h a v e i t s a d v a n t a g e s in t e r m s of w r i t i n g
specifications , although often at the cost of hindering the
readability. Going back to our previous example , in the context of
the Boyer-Moore theorem prover ([Boyerfl, t h e a s s e r t ion (O R D E R E D A)
woul d also require that the user defines the term ORDERED as a 11Sf’
funct ion , wh ich is e x a c t l y t he k in d of e f f o r t t h e u se r w a n t s to be
spared from (not to mention the possibility of giving a wrong
definition for the function ORDERED). Another gain in terms of ease
of use is the elli psis Ui ,..., nfl notat ion used in the fourth
e x a m p l e : if t h i s p a r t i cu l a r n o t a t i o n is not p r o v i d e d , t h e f o r m u l a
m u s t be r e w r i t t e n :

V i , j (i ~ .i A i< n A j~. i A j .�.n A i <j)
A (i) .1 A (j)

2 . 3 . P r e c i s i o n

If t h e r e is a n y h o p e of p r o v i n g t h a t a p r o g r a m m e e t s i t s
s p e c i f i c a t i o n s w i t h t h e h e l p of an a u t o m a t e d v e r i f i e r , t h e s e m a n t i c s
of a specification language must be formal enough to lend itself to
the program verification process. Such a system generally works
w ithin some mathematical theory (e.g., predicate calculus , set
theory), an d specifications will have to be meaningful in the context
of t h i s t h e o r y . S p e c i f i c a t i o n s w i l l h a v e to be “ i n t e r p r e t e d” and
unders tood. Another reason why the definition of a specification
l a n g u a g e s h o u l d be e x t r e m e l y p r e c i s e is t h a t a n y i m p r e c i s i o n in t h e
l a n g u a g e i t s e l f w i l l l ead to i m p r e c i s e s p e c i f i c a t i o n s, w h o s e
c o n t r i b u t i o n t o t h e r e l i a b i l i t y of t h e f i n a l s o f t w a r e s y s t e m w i l l be
v e r y s m a l l , if no t n e g a t i v e .

2 . 14 . T r a de o f f s ~~~~~ C o n f l i ct s Be~t w een
~~~~~~~~~ 

Gaala

The e n h a n c e m e n t  of r e a d al i l i t y ,  ease  of use , and  p r e c i s i o n  is
no t always a very easy task: too much emphasis on one  of t h e  goa l s
may com promise the other ones. We shall attempt to demonstrate some
of the possible conflicts.

2.11 .1 . Readabilit y ~~~~~~~~~ Eas..e. ~ L

If a specification is easy to write in a concise form , it
w ill also often be easier to read. We mentioned earlier , h o w e v e r ,
that the writers of spec ifications tend to be much more familiar with
the deta ils of a specification language than the readers , b e c a u s e
t h e y  n e e d  t o  u n d e r s t a n d  a l l  t h e  c o n s t r u c t s  in o r d e r  to  com o o s e
s p e c i f i c a t i o n s .  The a s s e r t i o n  3 f r o m  s e c t i o n  2 . 1  is an e x a m p l e  of an
a s s e r t i o n  t h a t  is c o n c i s e , bu t  m a y  r e q u i r e  a b i g  e f f o r t  f r o m  t h e



__

Ol ivier Roubine October 3, 1 976

reader. The example of an AP I—like syntax can also show how the
wr it e r ’s conven ience may diverge from the reader ’s.

2. 11. 2. Ease 
~
j ~~~ y~~ ~j~~c is ion

The ease of use of a spec i f icat ion l a n g u a ge is ge n e r a ll y
enhanced by the inclusion of built — in constructs to express
pa r t ic u l a r  p ro per t ies , e.g. the notion “ORDERED” applicable to a
v e c t o r  or a l i s t .  It  s h o u l d  be c l e a r  t h a t  t h e  m o r e  of  t h e s e  b u i l t - - in
eonst•’~ucts (wh ich we call primitive constructs) are provided by a
l a n g u a ge , the harder will be the task of formalizing the language. In
add ition , a plethora of different constructs (i.e., m ore cons t r u c t s
than provided by the underlying mathematical formalism) will
in t r o d uc e some re d u n d a n c y  in t h e  lan guage  it s e l f , thus making it more
prone to misuse. Redundancy also introduces possibility of various
“spec i f icat ion st y l e s ” , a theme that will be considered in section 3.

2.11.3. Reada bility vs. Precision

We w ill only mention here the case of the comment in the
first part of our array example , which is probably very meaningful to
a n y o n e  w ith  a m in imal  k n o w l e dg e of t h e  Engl ish lan g ua ge , an d on the
other hand deficient in terms of precision: even if “non- descending ”
is a kn o w n  t erm , “orde r ” can be understood only in a particular
contex t (and even we cannot be sure that the word refers to the
n a t u r a l  o rde r  r e l a t ion on in t e gers , since if the designer chose to
def ine a d if f e r e n t  or d er , the comment would still be applicable).

An ex ample of an assertion that is extremely precise but not
very rea dable is a variant of our mathematical formula. Assuming we
are al lowed neither the ellipsis notation , nor the multiple
quantification , we might write:

v i. (i�1 A i�.n)
=> Vj (j>i A jIn) ~> A(i) I A (j)

but we can ex pect some readers to find it more readable than the
ex press ion

( L T Q ( S T R I P  ( T U P A  A 1 N )))

j i  
~

•

3. ISSUES IN S P E C I F I C A T I O N  L A N G U A G E  D E S I G N

_ _ _ _  

‘I

3.1. G~enera1ity

A g e n e r a l  p u r p o s e  s p e c i f i c a t i o n  l a n g u ag e  s h o u l d  be a p p l i c a b l e
to  a l a r g e  c l ass  of p r o b l e m s , e . g . ,  n u m e r i c a l  a n a l y s i s  

~~~~~ 
s y s t e m

p r o g r a m m i n g ~~~~ s p e c i f i c a t i o n of d a t a s t r u c t u r e s ~~~ s t r i n g

Page 5

- - - — .. - .___

— ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—..—•,•- —

~
—-—

—~ —__.,_••-_ .—~ -•..— - -•— —-. .-- ~—.•-•-—.-——-.—-..------ - - --,--.-— - - -

Ol ivier Roubine October 3, 1 976

processing. If the specifications are to be used for autom atic
I verification , the particular verification system used will have to be

able to reason in a large variety of domains , e.g., number theory,
r -

p re di ca t e ca l c u l u s , set theory, integration theory, to po l o g y , riot to
ment ion a f e w a reas t h a t wou ld h ave to be mo d e led , e.g., the concept
of type. At the present time , it is not feasible to envision a
practical verifier working in all these branches. Even if automated
treatment of specifications is not envisioned , there is another
reason which makes too much generality not only infeasible but also
undesirable: the specification techniques that are suitable for a
particular class of problems may reveal themselves awkward in another
domain. For instance , in the specification of synchronization
problems ([Griffiths]) , global invariants may be of primary
importance. On the other hand , w h e n spec i f y in g t h e o pera ti ons
provided by an abstract machine ([Robinson 1)) , such global
assertions (e.g., P O P (P U S H (x ,s)) = s, where s re p r e s e n ts a stac k) m ay
b e re d un d ant , or even su perfluous . It is therefore our conclusion
that a general purpose , ye t p r a c t ical , specification language would
have to be too large to be manageable.

It seems th erefore more reasonable to expect a specification
l a n g u a ge to be fa irl y s m a l l an d li m it e d to a pa rt ic u l a r class of
problems. The language may then reflect a particular approach to
these problems , as is described next.

3 . 2 . Metho dologies for Specifying Problems

One should not expect specifications to be written in an
undisci plined manner: if various authors have advocated a “discipline
of programming ” , this discipline should also be reflected in the
specifications. If an operating system is to be designed using a
hierarchical decomposition into modules ([Neumann], [Robinson 2]) ,
then specifications will have to be written to describe modules. If
one ’s conce ption of data structures is in terms of sets ([Warren))
t hen one w ill h ave to wr it e a s se r t ions a b out se ts. An ill us t ra ti on o f
the diversity of the possible methodologies to handle a particular
class of problems can be found in [Liskov 2], and we will not give an
ex tensive description of the methods mentioned in this reference. We
wi l l , n o t e , h o w e v e r , t h a t each m e t h o d o l o g y p l a c e s s o m e e m p h a s i s on
c e r t a in “ob jects ” , e.g., graphs , l a b e l s an d no d es ([E a r l e y]), 0- and
V-funct ions ([Parnas)), operations and t h e i r p r o p e r t i e s ([Guttag),

k~
[Spitzen]) , or sets ([Warren]). Our concern here is to see how the
choice of a particular methodology affects the design of a
specification language. A met hodology reflects a vision of the world:
when dealing with problems in Newton ’s mec hanics , one works with the
not ions of mass , f o r c e , len g th , time , an d takes these notio n s as
predefined. Similarly, the conce pts existing in a methodology have to
be incorporated in a specification language , suc h as , fo r ins tance
processes ([Griffiths)) , or graphs ([Cook]). The methodology will
also rely on some domain of mathematics: for example , the algebraic
me thods of Guttag or Spitzen rely heavily on the notion of recursion
an d mathematical induction. On the other hand , the set-theoretical

Pa ge 6

~~~~~~~~~~~~ --~~~~~~~~~~~--.—~~~~~~.-



_ _  ~~~~~~~~

.

Ol ivier Roubine October 3, 1 976

approach of Warren relies on set theory (this should come to no
sur pr ise ). When  us in g Floy d ’s met hod for verifying programs ([Floyd] ,
[H o a r e ] ) , asser ti ons ( u su a l l y  ex presse d in p r edi ca te  ca l c u l us ) mus t
be used .

It is therefore our claim that a specification language can
only be designed after the choice of a methodology for designing ,
writing or verifying programs has been made , an d only in the context .
of a particular domain of applications.

Another criterion may affect the choice of a mathematical
formalism within which specifications must be written , namely the
availability of verifiers working in the particular formalism: for
example , first-order predicate calculus may be more suitable ,
be c a u s e , in sp ite of some efforts (e.g., [Darlington]) , verification
techniques using higher-order logic have not . reached a practical
point (see [Ernst]). Some approaches to verification may also place
more emphasis on pure set theory, or recursive function theory (e.g.,
[B o y e r ] ), an d thus introduce a new constraint in the orientation of a
specification language. Following [Kowalski], we would tend to
cons id er pr e di ca te  c a l c u l us as em in e n t l y  su i ta b l e fo r  ex pr ess in g
assertions in a generally natural form , “in that it derives from the
nor ma t ive s t u d y of h u m a n  lo gi c ” .

It should be clear that the formal methodology and the
mat hematical domain in the context of which specifications are to be
wr itten are key to the precision of the language: if some concepts
introduced by the methodology are not defined in a sufficiently
formal way , the precision of the language will suffer. Of particular
importance is the definition of the classes of objects that are
manipulated .

3 .3 .  Ob lec ts jj~ Spec ifications

Whereas a program operates on data and may manipulate data
st ruc t u r e s , a specification describes properties of a software
s y s t e m , and may  th e r e f o r e  r e f e r  to obj ec ts man ip u l a t e d b y th a t

7;- sys t em , but may also use some other objects in the process of
descr ibing a system: for example , when we spec if y  tha t an a r r ay  is to
be s o r t e d , we m u s t  h a v e  a r e p r e s e n t a t i o n  in o u r  s p e c i f i c a t i o n  of t h i s
a r r a y  w h i c h  is an o b j e c t  of t h e  s y s t e m  b e i n g  d e s c r i b e d :  ho w e v e r , wh en
we w r i t e

V i , j  4. {1 ,.. ., n i i<j :> A(i) I A (j)
t h e  o b j e c t s  i and j  h a v e  no e x i s t e n c e  in t h e  s y s t e m , an d exist only
in the specifications. An analogy can be found in considering an
ar ch it e c t ’s blue print as a specification for a building: we will see
th ick lines supposed to represent walls (these are re~ resenta tions of
system objects in the specification), and thinner lines possibly
term inated by arrows and associated with a number , that denote
particular dimensions. It is important for the builder to realize
that the thinner line does not correspond to a part of the house he
is b u i l d i n g . Our  p o i n t  h e r e  is t h a t  t h e  d i s t i n c t i o n  b e t w e e n  s y s t e m

_ _ _ _ _ _ _ _ _ _ _ _  j



rT ~LTT~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _

~T 1
Olivier Roubine October 3, 1 976

objects and specification objects must appear clearly in the
formalization of the specification language , lest the specification
becomes mean ingless (one does not build a wall out of me asurir~g
tapes). Similarl y, the distinction between the objects manipulated in
a s y s t e m , t h e re p r e sen ta ti on of t hese obj ec t s in sp ec i f ica ti ons , and
the objects that exist only in the specifications , must be made
extremely clear. This distinction is also a prerequisite to the
introduction of types in specification languages.

3. 11. Tvi~~es in Sp e c i f i c a t i o n L a ng u a g e s

As described in Hoare ’s “Notes on Data Structuri n g ” (in
[Dahi], pp. 83— 17 11), types are sometimes used by mathematicians to
recognize different categories of objects (e.g., variables ,
f u n c ti ons , f u n c ti ona ls , or v a l ues , se t s , sets of sets). The notion of
type was very early related to the representation of data inside a
co mp u t e r (e . g . , F I X E D (5 ,2)) very early in the history of programming
languages. This relation is obviously of little interest in a
specification language. More important is the fact that both in
ma th e m a ti cs an d in p r o g r a m m in g , the notion of type introduces the
possibility of detecting expressions that are meaningless , regardless
of the particular values of their components.

A similar feature might be desirable in specification
languages for the reasons that make it appealing both to
mathematicians and (to some extent) to programmers: types allow the
programmer to make assumptions about the arguments to operators and
functions and relieve him of the burden of having to make sense out
of every possible value : types also allow a mathematician to apply
some knowledge about properties of particular objects , when reasoning
about these objects. For example , the knowledge that a value is a

‘ natural integer will permit the use of mathematical inducti or~,
whereas this would not work on reals.

An important distinction has been made between system objects
H and specification objects: if a specification language incorporates

the notion of type , it should allow the user to distinguish between
the types of system objects and the types of specification objects.
In pa r t ic u l a r , if the system being specified manipulates numbers , and
the specification language also provides for numbers , the
specifications may lead to misunderstanding and confusion between the
two cate gories of numbers : the general assertion

“fo r all specification _number i , there exists a unique
s y s t e m _ n u m b e r j s u c h t h a t i =

is likel y to be l e f t i m p l i c i t . N o t e , h o w e v e r , t h a t t h e a s s e r t i o n “i =
j ” w o u l d be m e a n i n g l e s s in a n y strongly typed language , since i w o u l d
be of type “specification _ n u m b er ” ~nd j of type “sys t e m _ n u m ber ” . This
brings forth the issue of strong t.ype checking: unless restrictions
are im posed , it may be impossible to determine whether an object
belongs to a particular set , and t.he question is how much constraint
s h o u l d t h e l a n g u a g e i m p o s e on t h e u s e r by f o r b i d d i n g t h e w r i t i n g of

•

Page 8

-

~

-——- *—.——

~

—- ~-- ——- .-- -

_ __ _ _

O l i v i e r R o u b i n e O c t o b e r 3 , 1976

e x p r e s s i o n s t h a t do not , a b i d e by c e r t a i n r u l e s ? For e x a m p l e , t h e
u n i o n of a set of i n t e g e r s and a se t of c h a r a c t e r s m a y be a p e r f e c t l y
reasonable set of objects (in particular for an input/o utput
routine). It mi ght be worthwhile to have an automatic checker process
the specifications , detect some possible type conflicts and warn the
u s e r , but it might not be desirable to reject the specifi cations
because of such conflicts. Too many constraints of this order will
cause the users to express what they mean in specifications that are
less c l e a r , because the simplest way would cause a rejection of the
specifications.

3 . 5 . Extensibility

Types are a convenient way of stating structural properties
of objects. In addition , the possibility of naming types tends to
make specifications more readable by the use of relevant name s (e.g.,
“ s t a c k”) .

The use of v a r i o u s k i n d s of d e f i n i t i o n a l f a c i l i t i e s (f o r
t y p e s , d e c l a r a t i o n s , e x p r e s s i o n s) can h e l p m a k e sp e c i f i c a t i o n s m o r e
con ci se , m o r e rea d ab le , and easier to write. An example of t h e g a in s
to be achieved by such mechanisms is the expression “ (ORDERED A)”
gi ven a bove , where ORDERED may have been defined at an earlier stage
of the specification. Strong type checking requires definitional
f a c i l i t i e s of g r e a t e r s o p h i s t i c a t i o n in o r d e r t o a c h i e v e a g i v e n

—
deg ree of f l e x i b i l i t y, For i n s t a n c e , in a l a n g u a g e t h a t p r o v i d e s b o t h
se ts an d v ec t o r s of any t y p e (e . g . , S P E C I A L — [R o b i n s o n 3]) it w o u l d
be v e r y c o n v e n i e n t , on some o c c a s i o n s , to be able to talk about the
set of a l l t h e coordinates of the vector , no matter what the base
type is. Rather than providing a predefined set of constructs , m u c h
more flexibility could be gained from a minimal set of basic
constructs (those identified by the methodology and the mathematical
t h eor ies use d to w r i t e s p e c i f i c a t i o n s) , t o g e t h e r w i t h s u i t a b l e
extension mechanisms. In this way , only a small language has to be
formalized and understood in order to read , write and interpret
specifications. On the other hand , if the language that is provided
is too c r u d e , t h e w r i t e r w i l l h a v e to be d i s t r a c t e d f r o m h i s m a i n
design effort in order to write a simple concept in the available

:~ . s y n t a x .

For in s t a n c e , in set theory, the set inclusion can be easily
r d e f i n e d in t e r m s of set m e m b e r s h i p b y :

Si is a subset of S2 if and only if
Vx , x4S l = > x4S2

Having to write such definitions in all his specifications is likely
to be considered as a burden by the user. There is a subtle balance
between providing too simple a language , in which each expression is
fairly complicated , and a language that is so rich that there is a
particular form for each possible expression , if only the user eac
remember wh ich one. In addition , a language that is too uneconomical
in its power of expression may be difficult to formalize.

I. ’ Pa ge 9

4


~~~~ Ti ii. ~~~~~~~~~~~~~~~~~~~~~~~~ T Ti~ iI~ ~1iiI ~~

Olivier Roubine October 3, 1 97 6

3 . 6 .  P r o c e d u r a l  A s p e c t s  of  Sp e c i f i c a t i o n  L a n gu a g e s

We h a v e  e x c l u d e d  f r o m  our  s cope  t h e  l a n g u a g e s  f o r  s p e c i f y i n g
a l g o r i t h m s .  The  s p e c i f i c a t i o n  of operations or data structures tends
t o  r e l y  on a s s e r t i o n s  t h a t  s h o u l d  be t r u e  in a particular state
( e . g . ,  bef o re or after an operation is executed) , or always true
( e . g . ,  a x i o m s  of  t h e  k i n d  “ P O P ( P U S H ( s , x ) )  s” . The n o t i o n  of
s e q u e n c i n g ,  i . e . ,  of  an e x p r e s s i o n  b e i n g  e v a l u a t e d  b e f o r e  a n o t h e r ,
and  t h a t  of  t r a n s f e r  of c o n t r o l  ( e . g . ,  p r o c e d u r e  c a l l s)  a r e  of
little , if any, concern in  s p e c i f i c a t i o n s :  w h e n  we w r i t e

V i , j  4 {1 , . . . ,  n~ i < j  ~> A ( i )  I A ( j )

we a r e  n o t  s a y i n g  t h a t  t h i s  f o r m u l a  h a s  to  be t r u e  s u c c e s s i v e ly  f o r
i :i  a nd j = 2 , i~~i and  j = 3 ,  e t c .  In f a c t , t h e  p r o c e d u r e

f u n c t i o n  O R D E R E D  ( v a r  A:  a r r ay  [ 1 . . n ]  ~j  i n t eg e r ) :  b o o l e a n ;
b e gi n

ORDER E D :~~ t r u e :
fo r  i ::1  to  N - i  ~~

O R D E R E D  : =  O R D E R E D  A ( A [ i ]  I A [ i + i ] ) :

i n t r o d u c e s  t h e  u n w a n ’~~ d n o t i o n  of  s e q u e n c i n g  ( n o t e , h o w e v e r , t h a t  as
it  is w r i t t e n , t h e  f .,.ni c on w i l l  a l w a y s  be e x e c u t e d  in a f i x e d  n u m b e r
of s t e p s , t h u s  h i d i n g  t h e  f a c t  t h a t  a l l  i n d i c e s  a r e  n o t  t r e a t e d
e q u a l l y ) .  P r o c e d u r a l  s p e c i f i c a t i o n s  t e n d  t o  be m o r e  c o m p l i c a t e d ,
f o r c i n g  t h e  u s e r  to  d e v i s e  an a l g o r i t h m  to e v a l u a t e  a p r e d i c a t e .

There are some cases where some notion of sequencing has to
be i n c l u d e d  in t h e  s p e c i f i c a t i o n s .  For  i n s t a n c e , in t h e  l a n g u a g e  SAL
( [ G r i f f i t h s] ) , t h e  c o n c e p t  of “ t r y i n g ” to  w a k e  up  a p r o c e s s , ~ nd
“ t h e n ” , in  case  of f a i l u r e , t r y  a n d  w a k e  up  a n o t h e r  one , is
essential.

N o t e  t h a t  t h i s  use  of  “ t h e n ” is b a s i c a l l y  d i f f e r e n t  f r o m  i t s
use  in t h e  f o r m  “ i f  P t h e n  Q e l s e  R ”  w h i c h  can  be t r a n s l a t e d  v e r y
s i m p l y  as
( P  A ND Q )  OR ( ( N O T  P )  A N D  R )
O n e  of t h e  p r o b l e m s  f a c i n g  t h e  d e s i g n e r  of  a s p e c i f i c a t i o n  l a n g u a g e
is t h a t  of  d e v i s i n g  a s y n t a x  t h a t  w i l l  r e m i n d  a u s e r  of  s o m e
p r o c e d u r a l  c o n s t r u c t s .  For  i n s t a n c e , in S P E C I A L  ( [ R o b i n s o n  3]),
boolean assertions may be separated by ‘

;
‘

, “ P :  Q : ” m e a n i n g  t h a t  b o t h
P and  Q a r e  a s s e r t e d .  In t h i s  c o n t e x t  , i t  s o m e t i m e s  c o m e s  as a
surprise to some occasional users that

i
• j  = k :

necessarily implies the relation “i = k ” . F i r s t , ‘
=

‘ does not  c on n o t e
a s s i g n m e n t , a n d  s econd , n a m e s  g e n e r a l l y  do n o t  s t a n d  f o r  v a r i a b l e s ,
in  t h e  p r o g r a m m i n g  s e n s e .  :

I t  is i n t e r e s t i n g  t .o n o t i c e  h o w  s o m e  p e o p l e  f a m i l i a r  w i t h
programming practices will try to transfer their procedural notions

Page 10

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- , . - -
~~~

-
~~~~~

-
~~~~

- - --
~~~~~~~~~

—
~~~~~~~~~~~~

--——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Olivier Roubine October 3, 1976

to non-orocedural specification languages: for instance , a n o t h e r  w ay
of writing our predicate

V i , j  6 {i , . .. ,  n i i<j :> A ( i )  I A ( j )
c o u l d  h a v e  b e e n

Vi 4 { i , . . . ,  n— fl A (i) I A(i+ 1)
T h i s  l a t t e r  e x p r e s s i o n  f o r c e s  a r e a d e r  ( o r  a v e r i f i e r)  to  use  h i s
f u l l  k n o w l e d g e  of t h e  n a t u r a l  o r d e r i n g  of i n t e g e r s  a n d  t h e
t r a n s i t i v i t y  of t h e  r e l a t i o n  “I” in o r d e r  to  c o m p a r e  A ( i )  and  A ( j )
f o r  a r b i t r a r y  i and j .  In t h a t  r e s p e c t , t h e  s t y l e  i t s e l f  is m o r e
p r o c e d u r a l  in t h e  s econd  case  t h a n  in  t h e  f i r s t .

The above example illustrates why procedural specifications
a re  no t  d e s i r a b l e  if  they can be avoided: they tend to require a
g r e a t e r  e f f o r t  in o rd e r  to  be u n d e r s t o o d , or e v e n  some  e x p l a n a t i o n s ,
in t h e  f o r m  of specifications (see the definition of ORDERED).

3 . 7 .  Some Sy n t a c t i c  A s p e c t s  of Sp e c i f i c a t i o n  Lan ~~ua~~es

A specification language is a desirable vehicle for
c o m m u n i c a t i n g  i n f o r m a t i on  b e t w e e n  v a r i o u s  p e o p l e .  T h e r e f o r e  on e  m u s t
be particularly careful about syntactic constructs thQt may have some
c o n n o t a t i o n  in t h e  u s e r ’s m i n d , d i f f e r e n t  f r o m  i t s  a c t u a l  m e a n i n g ,  or
on t h e  c o n t r a r y  no c o n n o t a t i o n  at a l l  ( e . g . ,  STR I P ) .

One e x a m p l e  is t h e  c h o i c e  of i d e n t i f i e r s  t o  t r a n s l a t e
m a t h e m a t i c a l  s y mb o l s :  if t h e  l a n g u a g e  d e s i g n e r  h a s  a h i g h e r  t r a i n i n g
in m a t h e m a t i c s , he w i l l  in a l l  l i k e l i h o o d  a t t a c h  to  t h e  s y m b o l s
E P S I L O N  and  S I G M A  t h e  n o t i o n  of set m e m b e r s h i p and  a r i t h m e t i c  s u m ,
r e s p e c t i v e l y .  The p r o b l e m  is to  k n o w  t o  w h a t  e x t e n t  t h e s e  n a m e s  w i l l
b e as m e a n in g fu l in t h e  u s e r ’s mind , an d i f a di f f e r e n t cho ice ( e . g . ,
M E M B E R _OF and  S U M )  w o u l d  be c l e a r e r .

We have mentioned in the previous section how the ‘
:

‘ s i g n
may be misleadi ngly interpreted as an assignment. One of the notions
that may be unfortunately introduced in a language is that of
se q u e n c in g , as in the case  of th e “if...then...else...” ex press io n .

11 . CONCLUSION

Specification techniques have received some attention in the
r e c e n t  y e a r s , al though probably not enough . The term “structured
p r o g r a m m i n g ” is too  o f t e n  a s s o c i a t e d  w i t h  a m e t h o d  f o r  w r i t i n g  good
p r o g r a m s , or f o r  w r i t i n g  t h e m  m o r e  e a s i l y .  We t h i n k  t h a t  s o f t w a r e
rel iability involves not only the “s t r u c t u r e d wr it ing ” of programs ,
b u t  m o r e  g e n e r a l l y  t h e i r  “ s t r u c t u r e d  d e s i g n ” . We h a v e  reasons to
e x p e c t  t h a t  t h e  d e v e l o p m e n t  of f o r m a l  d e s i g n  m e t h o d o l o g i e s  is one  of
the best approaches for achieving this goal , and formal specification
l a n g u a g e s  a r e  a n e c e s s a r y  e l e m e n t  of s u c h  m e t h o d o l o g i e s .

Page 11Li .~~~~~~ .



~~~~TII~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ol iv .~e r R o u bi ne Oc t obe r 3, 1 976

The d e s i g n of s p e c i f i c a t i o n l a n g u a g e s p r e s e n t s some
i n t e r e s t i n g q u e s t i o n s , and t h e i s s u e s i n v o l v e d a r e s o m e w h a t d i f f e r e n t
f r o m t h o s e e n c o u n t e r e d in t h e d e s i g n of p r o g r a m m i n g l a n g u a g e s . The
language designer has to show a great concern for the potential users
in o r d e r t o m a k e h i s l a n g u a g e p r a c t i c a l : t h e r e is a n o t i o n of cos t
involved in that specifications are only a part of the programming
process: if the specification language is not easy to use (this
implies both ease of writing and ease of reading) , then the cost of
us ing formal specifications will have a disproportionate part in the
f i n a l cost of the software product . On the other hand , constraints
have to be imposed for the sake of precision , so that the design of a
s p e c i f i c a t i o n l a n g u a g e r e q u i r e s a subtle balance of conflicting
e l e m e n t s . I t is p r e c i s e l y t h e l a c k of an a b u n d a n t l i t e r a t u r e
d e s c r i b i n g past e x p e r i e n c e in t h i s f i e l d t h a t m o t i v a t e d t h i s p a p e r .

A l t h o u g h we h a v e v o l u n t a r i l y l i m i t e d o u r s e l v e s t o f o r m a l
specifications of large software systems , it is o u r h o p e t h a t t h e
i d e a s p r e s e n t e d above can s t i l l be of some i n t e r e s t in s l i g h t l y
d i f f e r e n t c o n t e x t s .

A C K N O W L E D G M E N T S

The a u t h o r is i n d e b t e d to s e v e r a l peo p le who , by stimulating
discussions or criticisms , have had a significant impact on this
w o r k : R . Boye r , R . S h o s t a k and J Moore provided helpful comments on
the problems created by the use of various mathematical formalisms in
au tomatic verification. The experience of P . G r i f f i t h s in t h e d e s i g n
of a specification language was also of great interest , an d the work
of L . R o b i n s o n and several members of the Computer Science Laboratory
at SRI in t h e use of a formal methodology and specifications was at
the origin of this paper. In addition , the paper has greatly
benefited from the comments of K. Levitt.

Page 12

~
__ I—

~
--— _

~~
- - _ -

~~I~~~
__

--,

I.

Ol ivier Roubine October 3, 1 97 6

REFERENCES

[B o y e r] : Boye r , R . S. and M o o r e , J S.; “Prov ing Theorems about LISP
F u n c t i o n s , ” J A C M , v o l . 22 , N o . 1 (J a n u a r y 1 9 7 5) .

[C o o k) : Cook , S. A . and O p p e n , D . C . : “A n A s s e r t i o n L a n g u a g e f o r
D a t a S t r u c t u r e s , ” P r o c . 2nd ACM S y m p o s i u m on P r i n c i p les of
P r o g r a m m i n g L a n gu a g e s , Pa lo A l t o , Cal ifornia (January 20— 22 , 1975).

[D a h l] : D a h l , O. -J . , D i j k s t r a , E . W . , and H o a r e , C . A . R . :
“Structured Programming, ” Aca demic Press (1972).

[Darl ington] : Darlington , J. I.: “Au tomatic Program Synthesis in
Secon d-Order Logic ,” Proc . Th ird International Joint conference on
Art ificial Intelligence , Stanfor d University, Stanfor d , Cal i f o r n ia
(Au gust 20—23, 1973).

[E a r l e y] : E a r l e y , J . : “Towar d an Understanding of Data Structures ,”
Comm. ACM , V o l . lii , No. 10 (October 1 9 7 1) .

[E l s pas) : Els pas , 8., Lev itt , K. N., Waldinger , R . J . , and W a k s m a n ,
A . : “A n A s s e s s m e n t of T e c h n i q u e s f o r P r o v i n g P r o g r a m C o r r e c t n e s s ,”

• Comput ing Surveys , Vol . 11 , No. 2 (June 7972).

• [E r n s t] : E r n s t , G . W . , and H o o k w a y , R . J . : “T h e Use of H i g h e r O r d e r
; Lo gi c in P r o g r a m V e r i f i c a t i o n , ” I E E E Tr a n s a c t i o ns on C o mp u t e r s , V o l .

C—25 , No. 8 (August 1976).

[F l o n] : F l o n , I . : “P r o g r a m D e s i g n w i t h A b s t r a c t D a t a Types , ”
Techn ical Report , Carnegie-Mellon University, Pittsburgh ,
Pennsylvan ia (June 1975).

-
~~~~~~

. I,
S . [Floyd] : Floyd , R. W .: “Ass igning Meaning to Programs ,” in

Mathemat ical Aspects of ~q~~puter Science , Vol~ 19, A m e r ican
Mathemat ics Society (1967).

E

[Gr iffiths] : Griffiths , P.: “SYNVER: A System for the Automat ic
Synthes is and Verification of’ Synchronization Processes ,” Proc . ACM
711 (Novem ber 19711).

Page 13

-

~

--

~

- .- • -~~~~~- • -- • - —~~~~~~~~~ _ - ~~- - ., ~~ .-,-- _~~~~~ ._ _ ~~



- .,, -,~~ _ , ,- ,. .-_... n-,. --- - -C 
~~~~ ~~~~~~~~~~~ “~~~~ ~~~~~ 

—
~~

• Ol ivier Roubine October 3, 1976

[Guttag] : Guttag, ~~~~~~~ Horow itz , E., an d Musse r , D.: “The Design of
Data Structure Specifications ,” Proc. Second Internat ional Conference

- - on Software Eng ineering , San F ranc isco , Cal ifornia (October 13- 15 ,
19 7 6) .

— [H o a r e] : Hoare , C. A. R . ; “An Ax iomatic Basis f o r C o m p u t e r
Pro gr amm in g , ” Comm. ACM , Vol. 12 , No. 10 (October 1969).

[Kowa iski] : Kowalski , R .: “Predicate Logic as a Programming
L a n g u a ge ,” Memo No. 70, De pa r t m e n t of C o m p u t a t i o n a l L o g i c , U n i v e r s i t y

• of Ed imburgh , U.K. (November 19 7 3) .

[L iskov 1] : Liskov , B. H., an d Z il les , S.: “Programming with
A b s t r a c t Data Ty pes ;” P r o c . ACM C o n f e r e n c e on V e r y H i g h L e v e l
L a n g u a ges , SIGPLAN Not ices, Vol. 9, No. 11 (April 19714).

[Liskov 2] : Liskov , B. H., and Z il les , S.: “Specification Techniques
fo r Data Ab s t r a c t ions ,” Proc . Internat ional Conference on Reliable
S o f t w a r e , Los An geles , Cal ifornia (April 1975).

[M a n n a 1] : M a n n a , Z . , Ness , S . , and Vu il l e m in , J .; “In duc tive
Methods for Prov ing Properties of Programs ,” Comm. ~~~ V o l . 16 , N o .
8 (Au gust 1973).

[M a n n a 2] : M a n n a , Z . , and W a l d in g e r , R . J . : “ T o w a r d A u t o m a t i c
Pro gr am S y n t h e s is ,” Comm. A~J1, Vol . 111 , N o . 3 (M a r c h 1 9 7 1) .

[N e u m a n n] : N e u m a n n , P. G ., et al.: “On the Design of a Provably
Secure Operating System ,” Proc. Interna tional Workshop on Protection
in Ope r a t i n g S y s t e m s , I R I A , Roc qu e n c o u r t , France (August 19711).

[P a r n a s) : P a r n a s , D. L. ; “A Tec hnique for Software Module
Specification with Examples ,” Comm. jQ~1,

V o l . 1 5 , No. 5 (May 1972).

[Robinson 1] : Robinson , L., and Lev itt , K. N.: “Proof Techn iques for
Hierarchically Structured Programs ,” (to appear in Comm. A~Ji) .

[Rob inson 2] : Robinson , L., Lev itt , K. N., Neumann , P. G., and
Saxena , A. R .: “On Atta ining Reliable Software for a Secure Operating
System ,” Proc . Internat ional Conference on Reliable Software , Los
A n g e l e s , Cal ifornia (April 1975).

a

• Page 111

_ _ _ _ _ _ _ _ _ _ _ _ •~~~~~~~ - - -- — -.-- --~ .--—— - • _ ~~~ _- — --—-_—-•_ - •~~ — • - - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~

-

~~

_ _

Ol ivier Roubine October 3, 1 976

[Rob inson 3] : Robinson , 1..., and Roub ine , 0. M .; “SPECIAL -- A
SPECIf ication and Assertion Language ,” (su bmitted to the Conference
on Lan guage Design for Reliable Software).

[Schwartz] : Schwartz , J. T.; “On Pro gramming, an Interim Re port on
the SETL Project ,” Computer Science Department , Couran t Institute of
Mathe matical Science , New York Un iversity (1973).

[Spitzen) : Spitzen , J. M ., and W e g b r e it , B.: “The Ver ification and
S y n t h e s is of Data S t r u c t u r e s ,” Acta Informat ica, Vol. 11 (1 9 7 5) .

[Tennent) : Tennent , B. D.: “The Denotat ional Semantics of
P r o g r a m m in g Lan guages ,” Comm. ~~~~ Vol. 19, No. 8 (Au gust 1976).

[Wal di n ge r] : Wal di nger , B. J., an d Levitt , K. N.: “Reaaon ing about
Pro gr ams ,” Art ificial Intelligence Journal, Vol. 5, No. 3 (Fall
19 7 14) .

[Wa r r e n] : W a r r e n , H. S . : “D a t a Types and Structures for a Set
Theoretic Programming Language ,” IBM Tec hnical Report BC 5567 (2 3 1 2 14)
(August 1975).

•

(W e g n e r] : W e g n e r , P.: “The V i e n n a D e f i n i t i o n L a n g u a g e , ” C o m p u t i n g
• Surveys , Vol. 11 , No. 1 (March 1972).

(Wirth] : Wirth , N.: “Program Develo pment by Stepwise Refinement ,”
Comm . ~Qjj, Vol . 111 , No. 11 (A pril 1971).

~

.
- I

4

_ _ _

• Page i5

-

Unclassified
• SECURITY CLASSIFICATION OF THIS PAGE (Wh.n Dst• Enter.d)

REPORT DOCUMENTATION PAGE BEFORE co MPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

H• 4. TITLE (end Subtitl.) 5. TYPE OF REPORT & PERIOD COVERED

The Design and Use of SPecificati!
~J ~

(/ r~J~ h i 1
• .•

-
-• -

- Languages , - - -—.—-*..- —-—-- -- .1
— /

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) Technical Report CSL—4f ~~
- CONT Aa GRANT NUMBER(s)

/O1jvie~. Roubine
NOOi23-76-C-Ol95~

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT , PROJECT . TA SK

- AREA & WORK UNIT NUMBERS
Stanford Research Institute ‘

~~ /
- -

333 Ravenswood Avenue 4,
, Part of deliverable A006

Menlo Park, CA 94025 12. REPORT DATE - 13. NO. OF PAGES
II. CONTROLLING OFFICE NAME AND ADDRESS

~~~~~~~~~~~~~~~~~~~~~ 
,
, -

~

, ~~~ O~t..~~~~’ 7 6  - 17
Naval Ocean Systems Center / ;-~ 

,~~~) ~
. 15. SECU~ TYY CLASS. (01 this report)

San Diego, CA 95152 1 Unclassified
14. MONITORING AGENCY NAME & ADDRESS (If d iff . f rom ControllIn g Off ic .)

15.. DECLASSIF ICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thi S report)

Approved for public release ; distribution unlimited
1~~

-I. ,  v •
‘V

17 . D ISTRIBUTION STATEMENT (of the •b$tr .ct entered In Block 20 , if d lf f .rent from report)

18. SUPPLEMENTARY NOTES

1’

19. KEY  WORDS (Continu , on reverse side If neCesse ry end IdentIfy by block number)

Specification , Abstraction, Proof of Correctness, Formal Semantics , Design,
Mathematical Logic, Verification , Software Reliability

2 - ABSTRACT (Cont Inu, on rivers . •idS if n.cs.s.ry •nd Identif y by block nu mber)
The goal of proving the correctness of computer programs has been hindered by the
difficulty of stating formally what is to be proven. ‘~~e tools developed to -;

achieve this latter purpose often receive the name of specification languages,~-but the formalization and imp lementation of such languages has seldom been car—
n e d  out , and very few of these languages have been described in the literature.

We present some design issues concerning specification languages, e.g., desirable
properties of such languages, and their limitations , as well as some ideas on_ 

,,,

- . PORM j -.

1 JAN 7~ URa1 I11*d - —~ 
-

IaITIaN OY 1 NOV N 1 O SOS IT& UCU~ I TY CLMIM Y~I~~W b P  THI$ PAQI 4WIISS OSt. Entr.d~~~~.



~~~~~~~~~~~

—

-
~~~~~~ 

- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

,: I

-~ 1Tn r’ 1~~ctc, 1F1gr1
SECURITY CLASSIFICAT ION OF THIS PAG E (When U~ t a Entered)

19. KEY WORDS (Continued)

2~~~~ BSTRACT (Continued )

their use (and hence on the use of specifications in general) as an integral
part of the design process leading to reliable software systems. The (possibly

F automated) verification of some properties of formal specifications is con—
sidered , and some conclusions are drawn concerning the help such an approach can
bring in providing greater confidence in the final software Product.

1
/
A

\

‘I

e

FORM 1A’T~~sAC K
~~~~~~~~~~~~~ JAN 73 U~~~ ’ 

~~~~~~ SECURITy CLASSIFICATION OF THIS PAGE (When Dit. Entsrsd ) J



DISTRIBUTION LIST

Defense Documentation Center 12 copies
Cameron Station
Alexandria, VA 22314

Mr. Tony Allos Code 6201 1 copy
• Naval Ocean Systems Center

271 Catalina Boulevard
San Diego, CA 92151

Mr. L. Sutton Code 5200 35 copies
Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, CA 92151

Mr. William Carison 15 copies
Advanced Research Projects Agency
Office of Secretary of Defense
1400 Wilson Boulevard
Arlington , VA 22209

Mr. Neal Hampton Code 5200 15 copies
Naval Ocean Systems Center

• 271 Catalina Boulevard
• San Diego, CA 92151

Professor Stuart Madnick 1 copy
MIT — Sloan School
E5 3—330
Cambridge, MaSS 02139

Mr. John Machado 5 copies
The Naval Electronic Systems Command
National Center No. 1
Crystal City, Washington, D.C. 20360

I,

~

- .

~

- - - - — - - — ----

~

-— - - - — - -— -

~ 

-


