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THE DESIGN AND USE OF SPECIFICATION LANGUAGES*

Olivier Roubine#*#

‘Stanford Research Institute

1 /Computer Science Laboratory
F Menlo Park, California 94025

ABSTRACT

The goal of proving the correctness of computer programs has
been hindered by the difficulty of stating formally what is to be
proven. The tools developed to achieve this latter purpose often
receive the name of "specification languages", but the formalization
and implementation of such languages has seldom been carried out, and
very few of these languages have been described in the literature.

We present some design 1issues concerning specification
languages, e.g., desirable properties of such languages, and their
limitations, as well as some ideas on their use (and hence on the use
of specifications in general) as an integral part of the design
‘»ocess leading ¢to reliable software systems. The (possibly
datomated) verification of some properties of formal specifications
is considered, and som2 conclusions are drawn concerning the help
such an approach can bring in providing greater confidence 1in the
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Olivier Roubine October 3, 1976

1. INTRODUCTION

Substantial efforts have been made in recent years to develop
techniques for writing better programs more easily, and to prove that
they behave correctly. In the first category are techniques
described in particular in [Dahl], where the use of step-wise program
composition (see also (Wirth]), hierarchical program structures, and
data abstraction is strongly advocated. The formal verification of
computer programs has also received much attention ([Elspas], [Manna
1]), and an even more challenging task is the automatic synthesis of
correct programs ([Manna 2]). All these approaches to software
development have at least one thing in common: the need to state what
a program or an operation does, independently of its implementation.
This is clearly a necessity in program verification, where the goal
is to prove that a given program actually does what it is «claimed to
do, and 1in program synthesis, where the goal 1is to generate a
program, knowing only what it is supposed to do -- and prove its
correctness during the generation process. When using a hierarchical
decomposition, the designer who writes one 1level of a program need
not know how the "abstract operations" he provides are to be used,
nor how the operations he himself uses are implemented. Since it is
sufficient for him to know what these functions do, the need for
specification techniques should become apparent. Similarly, program
verification and synthesis can benefit from the use of data
abstractions ([Liskov 1], [Guttagl], ([Flon], [Spitzen]), and the
techniques used to specify them.

Our concern is how statements about the actions of programs

are expressed, and we <call ¢the 1languages used for so doing
specification languages. We restrict ourselves here to particular
aspects of specifications. We shall not consider such issues as

specifying the semantics of programming languages ([Tennent],
[Wegner])), or specifying how programs operate: the specification of
algorithms can be done in various ways including flowchart languages,
a step-by-step description in some natural language, or the use of a
high~level programming language. The reason we do not insist on
algorithms is that some research in programming language design is
aimed at providing very high-level languages that tend to be non-
procedural (e.g., SETL - [Schwartz]) and where the specification of
algorithms becomes of little concern to the user: to some extent, the
specification language used in an automatic programming system can be
viewed as a very high level programming language. It is interesting
to notice how the trends for specifying algorithms have evolved in
the past: with the primitive control structure provided by assembly
languages and early languages such as FORTRAN, flowcharts enjoyed a
certain popularity: their lack of readability was a drawback, and
some designers preferred a description of an algorithm as a
succession of steps, each step being described in a natural language
and indicating what step should be performed next. However, the
development of ALGOL 60, 1in particular, was somewhat troublesome in
that the programming language used for implementing an algorithm had
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a more sophisticated control structure than the language wused for
describing the algorithm (the introduction of recursion was another
torment for several programmers faced with the problem of specifying
an algorithm using recursive function calls). Nowadays, the language
PASCAL seems to be quite popular as a tool for specifying algorithas,
but we can expect that the advent of a new programming language of
higher 1level would wmake PASCAL obsolete as a tool for specifying
algorithms. The issues we discuss here concern mostly the
specification 1languages used to describe formally the effects of
programs, functions and operations.

The remainder of this paper 1is divided 1into two main
sections, followed by some concluding remarks. We first state some
desirable properties that we think specification 1languages should
exhibit, and present some of the conflicts between these goals.
Following is a discussion of some issues that affect the way
specifications can be used for software development, and how they
foster or hinder the desirable characteristics of a specification
language.

2. DESIRABLE FEATURES OF SPECIFICATION LANGUAGES

We distinguish three principal aspects of specification
languages that should receive attention. Those are readability, ease
of wuse and precision. These aspects can be compared with the
criteria discussed in [Liskov 2], for the evaluation of specification
techniques for data abstraction: in this reference, the 1issues are
formality (which is very close to our notion of precision),
constructibility (an element in the ease of use), comprehensibility
(related to the readability of a language), minimality and wide range
of applications (which are discussed in section 3 as influencing the
design of a language), and extensibility of a specification method
(which should not be confused with the extensibility of a language,
discussed in 3.5).

2.1. Readability

The notion of readability is related to the need for
specifications to be used by humans: if the only reason for a formal
specification 1is to be used as input to an automatic program
verifier, then the 1issue of readability is of 1less importance.
However, when, in a 1large programming task, specifications are used
as means of communicating information between the various teams
involved in the project, then readability and understandability are
fundamental. When some part of a software system is designed by
someone and wused by someone else, the specification should contain
what the designer discloses about what his part of the system does:
if what he says has little meaning for the one who uses his product,
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Olivier Roubine October 3, 1976

the specification will have missed part of its purpose. It is also
worth noting that there is a need for specifications as a statement
of purpose, similar to the formulation of a problem, for which the
final software system is a solution. The specifications of what is
to be done should ultimately coincide with the specifications of what
the user can see of the final product. We think that techniques for
defining a software system can be derived from the techniques used to
describe a system, and we shall therefore concentrate on the latter.

Coming back to specifications of programs, consider the
example of a program that sorts an array of integers A 1in non-
descending order. We give btelow various suggestions on how ¢to state
that after the execution of the program, the array A 1is indeed
sorted:

1) a comment, e.g.,

(* The array A is sorted in non-descending order %)
2) a predicate of the form

(ORDERED A)
(example taken from [Boyer])

3) the assertion

(LTQ (STRIP (TUPA A 1 N)))
(from [Waldinger])

4) the mathematical formula
¥ i, 36 {1,...; nf 4<3 => K1) € R(J)

In terms of readability, ¢the first two statements are
clearer, providing the terms "sorted”, "non-descending", "ORDERED"
are understood. We shall leave the appreciation of the third example
(QAY system) to the reader. As for the fourth suggestion, we think
it is clear, concise and readable only beyond a certain mathematical
training. The various forms shown above illustrate the concept of
readability. They could be ranked according to this particular
criterion, but we will also discuss them with respect to other
considerations.

2.2. Ease of Use

The concept of readability evolves from a concern for the
reader of the specifications. That of ease of use stems from some
concern for the writer. The 1issues are: how easy is it for the
program designer to express his conception of the program in terms of
the specification language constructs? Are there any assertions he
might want to write that would require a very complicated statement,
or that would be impossible to write? (This last question defines
the power of the 1language.) The specification language should be a
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tool to write precise assertions without diverting the designer from
his main task by placing a heavy burden on him every time an
assertion has to be made. It is to be noted that the originality of
the syntax 1is less important: the language will have to be learnt
anyway, and a cryptic but very powerful syntax (e.g., in a way
similar to APL) may have its advantages in terms of writing
specifications, although often at the cost of hindering the
readability. Going back to our previous example, in the context of
the Boyer-Moore theorem prover ([Boyer]), the assertion (ORDERED A)
would also require that the user defines the term ORDERED as a LISF
function, which is exactly the kind of effort the user wants to be
spared from (not to mention the ©possibility of giving a wrong
definition for the function ORDERED). Another gain in terms of ease
of wuse is the ellipsis ({1,..., n}) notation used in the fourth
example: if this particular notation is not provided, the formula
must be rewritten:
¥i, 5§ Cipv A 1¢n AN 330 A 15 A <)
=> £(1) < A(}3)

2.3. Precision

If there 1is any hope of proving that a program wmeets its
specifications with the help of an automated verifier, the semantics
of a specification language must be formal enough to lend itself to
the program verificzction process. Such a system generally works
within some mathematical theory (e.g., predicate calculus, set
theory), and specifications will have to be meaningful in the context
of this theory. Specifications will have ¢to be "interpreted" and

understood. Another reason why the definition of a specification
language should be extremely precise is that any imprecision in the
language itself will lead to 1imprecise specifications, whose

contribution to the reliability of the final software system will be
very small, if not negative.

2.4, Tradeoffs and Conflicts Between the Goals

The enhancement of reada’ility, ease of use, and precision is
not always a very easy task: too much emphasis on one of the goals
may compromise the other ones. We shall attempt to demonstrate some
of the possible conflicts.

2.4.1. Readability vs. Ease of Use

If a specification is easy to write in a concise form, it
will also often be easier to read. We mentioned earlier, however,
that the writers of specifications tend to be much more familiar with
the details of a specification language than the readers, because
they need +to understand all the constructs in order to compose
specifications. The assertion 3 from section 2.1 is an example of an
assertion that 1is concise, but may require a big effort from the

Page 4




Olivier Roubine October 3, 1976

e

} reader. The example of an APL-like syntax can also show how the
writer’s convenience may diverge from the reader’s. 1

2.4.2. Ease of Use vs. Precision

The ease of wuse of a specification 1language 1is generally
enhanced by the inclusion of built-in constructs to express
particular properties, e.g. the notion "ORDERED" applicable to a
i vector or a list. It should be clear that the more of +these built-in
constructs (which we call primitive constructs) are provided by a
language, the harder will be the task of formalizing the language. In
? addition, a plethora of different constructs (i.e., more constructs
| than provided by the underlying mathematical formalism) will
f introduce some redundancy in the language itself, thus making it more
| prone to misuse. Redundancy also introduces possibility of various
"specification styles", a theme that will be considered in section 3.

T

2.4.3. Readability vs. Precision 3

| We will only mention here the case of the comment 1in the
| first part of our array example, which is probably very meaningful to
anyone with a minimal knowledge of the English language, and on the
other hand deficient in terms of precision: even 1if "non-descending"
is a known term, "order" can be understood only in a particular
context (and even we cannot be sure that the word refers to the
natural order relation on integers, since if the designer chose to
define a different order, the comment would still be applicable).

An example of an assertion that is extremely precise but not
very readable is a variant of our mathematical formula. Assuming we
are allowed neither the ellipsis notation, nor the mwmultiple
¢ quantification, we might write:

! $ & (121 /A 1gn)
& => ¥3 (i A j<n) => A1) < A(J)

but we can expect some readers to find it more readable than the

expression
(LTQ (STRIP (TUPA A 1 N)))

i 3. ISSUES IN SPECIFICATION LANGUAGE DESIGN

"
7

3.1. Generality

R - A general purpose specification language should be applicable
% to a large class of problems, e.g., numerical analysis and system
= programming and specification of data structures and string
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processing. If the specifications are to be wused for automatic
verification, the particular verification system used will have to be
able to reason in a large variety of domains, e.g., number theory,
predicate calculus, set theory, integration theory, topology, not to
mention a few areas that would have to be modeled, e.g., the concept
of type. At the present time, it is not feasible to envision a
practical verifier working in all these branches. Even 1if automated
treatment of specifications 1is not envisioned, there 1is another
reason which makes too much generality not only infeasible but also
undesirable: the specification techniques that are suitable for a
particular class of problems may reveal themselves awkward in another
domain. For 1instance, in the specification of synchronization
problems ([Griffiths]), global invariants may be of primary
importance. On the other hand, when specifying the operations
provided by an abstract machine ([Robinson 1]), such global
assertions (e.g., POP(PUSH(x,s)) = s, where s represents a stack) may
be redundant, or even superfluous. It 1is therefore our conclusion
that a general purpose, yet practical, specification 1language would
have to be too large to be manageable.

It seems therefore more reasonable to expect a specification
language to be fairly small and limited to a particular class of
problems. The language may then reflect a particular approach to
these problems, as is described next.

3.2. Methodologies for Specifying Problems

One should not expect specifications to be written in an
undisciplined manner: if various authors have advocated a "discipline
of programming", this discipline should also be reflected in the
specifications. If an operating system 1is to be designed using a
hierarchical decomposition into modules ([Neumann], [Robinson 2]),
then specifications will have to be written to describe modules. If
one’s conception of data structures is in terms of sets ([Warren])
then one will have to write assertions about sets. An illustration of
the diversity of the possible methodologies to handle a particular
class of problems can be found in [Liskov 2], and we will not give an
extensive description of the methods mentioned in this reference. We
will note, however, that each methodology places some emphasis on
certain "objects", e.g., graphs, labels and nodes ([Earley]), O0- and
V-functions ([Parnas]), operations and their properties ([Guttag],
(Spitzen]), or sets ([Warren]). Our concern here is to see how the
choice of a particular methodology affects the design of @&
specification language. A methodology reflects a vision of the world:
when dealing with problems in Newton’s mechanics, one works with the
notions of mass, force, length, time, and takes these notions as
predefined. Similarly, the concepts existing in a methodology have to
be incorporated 1in a specification 1language, such as, for instance
processes ([Griffiths]), or graphs ([Cook]). The methodology will
also rely on some domain of mathematics: for example, the algebraic
methods of Guttag or Spitzen rely heavily on the notion of recursion
and mathematical induction. On the other hand, the set-theoretical
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approach of Warren relies on set theory (this should come to no
surprise). When using Floyd s method for verifying programs ([Floyd],
[Hoarel), assertions (usually expressed in predicate calculus) must
be used.

It is therefore our c¢laim that a specification language can
only be designed after the choice of a methodology for designing,
writing or verifying programs has been made, and only in the context
of a particular domain of applications.

Another criterion may affect the choice of a mathematical
formalism within which specifications must be written, namely the
availability of verifiers working in the particular formalism: for
example, first-order predicate calculus may be more suitable,
because, in spite of some efforts (e.g., [Darlington]), verification
techniques wusing higher-order 1logic have not reached a practical
point (see [Ernst]). Some approaches to verification may also place
more emphasis on pure set theory, or recursive function theory (e.g.,
[Boyer]), and thus introduce a new constraint in the orientation of a
specification 1language. Following [Kowalski]l, we would tend to
consider predicate <calculus as eminently suitable for expressing
assertions in a generally natural form, "in that it derives from the
normative study of human logic".

It should be clear that the formal wmethodology and the
mathematical domain in the context of which specifications are to be
written are key to the precision of the language: if some concepts
introduced by the methodology are not defined in a sufficiently
formal way, the precision of the language will suffer. Of particular
importance 1is the definition of the classes of objects that are
manipulated.

3.3. Objects in Specifications

Whereas a program operates on data and may manipulate data
structures, a specification describes properties of a software
system, and may therefore refer to objects manipulated by that
system, but may also wuse some other objects 1in the process of
describing a system: for example, when we specify that an array is to
be sorted, we must have a representation in our specification of this
array which is an object of the system being described: however, when
we write

¥ 3y 3¢ Vovin, B 1¢) =3 A0L) £ KCI)
the objects i and j have no existence in the system, and exist only
in the specifications. An analogy can be found in considering an
architect “s blueprint as a specification for a building: we will see
thick lines supposed to represent walls (these are representations of
system objects in the specification), and thinner 1lines possibly
terminated by arrows and associated with a number, that denote
particular dimensions. It is important for the builder to realize
that the thinner line does not correspond to a part of the house he
is buildirng. Our point here is that the distinction between system
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objects and specification objects must appear clearly in the
formalization of the specification language, lest the specification
becomes meaningless (one does not build a wall out of measuring
tapes). Similarly, the distinction between the objects manipulated in
a system, the representation of these objects in specifications, and
the objects that exist only in the specifications, must be made
extremely clear. This distinction 1is also a prerequisite to the
introduction of types in specification languages.

o <
3.4. Types in Specification Languages

As described in Hoare’s "Notes on Data Structuring" (in
[Dahl], pp. 83-174), types are sometimes used by mathematicians to
recognize different categories of objects Ll , variables,
functions, functionals, or values, sets, sets of sets). The notion of
type was very early related to the representation of data inside a
computer (e.g., FIXED(5,2)) very early in the history of programming
languages. This relation is obviously of 1little 1interest in a
specification 1language. More important is the fact that both in
mathematics and in programming, the notion of type introduces the
possibility of detecting expressions that are meaningless, regardless
of the particular values of their components.

A similar feature might be desirable in specification
languages for the reasons that make it appealing both to
mathematicians and (to some extent) to programmers: types allow the
programmer to make assumptions about the arguments to operators and
functions and relieve him of the burden of having to make sense out
of every possible value: types also allow a mathematician to apply
some knowledge about properties of particular objects, when reasoning
about these objects. For example, the knowledge that a value 1is a
natural integer will permit the use of mathematical induction,
whereas this would not work on reals.

An important distinction has been made between system objects
and specification objects: if a specification 1language incorporates
the notion of type, it should allow the user to distinguish between
the types of system objects and the types of specification objects.
In particular, if the system being specified manipulates numbers, and
the specification language also provides for numbers, the
specifications may lead to misunderstanding and confusion between the
two categories of numbers: the general assertion

"for all specification_number i, there exists a unique
system_number j such that i = j"

is likely to be left implicit. Note, however, that the assertion "i =
J" would be meaningless in any strongly typed language, since i would
be of type "specification_number" .nd j of type "system_number". This
brings forth the issue of strong type checking: wunless restrictions
are imposed, it may be impossible to determine whether an object
belongs to a particular set, and the question is how much constraint
should the language impose on the user by forbidding the writing of
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expressions that do not abide by certain rules? For example, the
union of a set of integers and a set of characters may be a perfectly
reasonable set of objects (in particular for an input/output
routine). Tt might be worthwhile to have an automatic checker process
the specifications, detect some possible type conflicts and warn the
user, but it wmight not be desirable to reject the specifications
because of such conflicts. Too many constraints of this order will
cause the users to express what they mean in specifications that are

- ol less clear, because the simplest way would cause a rejection of the
specifications.

3.5. Extensibility

Types are a convenient way of stating structural properties
of objects. 1In addition, the possibility of naming types tends to
make specifications more readable by the use of relevant names (e.g.,
"stack").

The wuse of various kinds of definitional facilities (for
types, declarations, expressions) can help make specifications mcre
concise, more readable, and easier to write. An example of the gains
to be achieved by such mechanisms is the expression "(ORDERED A)"
given above, where ORDERED may have been defined at an earlier stage
of the specification. Strong type checking requires definitional

i facilities of greater sophistication in order to achieve a given
degree of flexibility, For instance, in a language that provides both
sets and vectors of any type (e.g., SPECIAL - [Robinson 3]) it would
be very convenient, on some occasions, to be able to talk about the
set of all the coordinates of the vector, no matter what the base
type is. Rather than providing a predefined set of constructs, much
more flexibility could be gained from a minimal set of basic
: constructs (those identified by the methodology and the mathematical

‘ theories wused to write specifications), ¢together with suitable
5 1 extension mechanisms. In this way, only a small language has to be
B formalized and understood in order to read, write and interpret
& | specifications. On the other hand, if the language that is provided
is too crude, the writer will have to be distracted from his main
o design effort in order to write a simple concept in the available
St syntax.

For instance, in set theory, the set inclusion can be easily
defined in terms of set membership by:
S1 is a subset of S2 if and only if
¥x, x€S1 => x4(S2
Having to write such definitions in all his specifications 1is likely
to be considered as a burden by the user. There is a subtle balance
between providing too simple a language, in which each expression is
fairly complicated, and a language that is so rich that there 1is a
- particular form for each possible expression, 1if only the user caa
= remember which one. In addition, a language that is too uneconomical
in its power of expression may be difficult to formalize.

Eer " Page 9
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3.6. Procedural Aspects of Specification Languages

We have excluded from our scope the languages for specifying
algorithms. The specification of operations or data structures tends
to rely on assertions that should be true in a particular state
(e.g., before or after an operation is executed), or always true
(e.2., axioms of the kind YPOP(PUSH(s,x)) = =s", The mnotion of
sequencing, i.e., of an expression being evaluated before another,
and that of transfer of control (e.g., procedure calls) are of
little, if any, concern in specifications: when we write

¥i, 3 & §1, ...y B} 1<K 2> RELY € AL )

we are not saying that this formula has to be true successively for
i=1 and j=2, i=1 and j=3, etc. In fact, the procedure

function ORDERED (var A: array [1..n] of integer): boolean:

tegin
ORDERED := true:
for i:=1 £o N=1 do
ORDERED := ORDERED A (A[i] < A[i+1]):
end:
introduces the unwan*2d notion of sequencing (note, however, that as

it is written, the func .on will always be executed in a fixed number
of steps, thus hiding the fact that all indices are not treated
equally). Procedural specifications tend ¢to be more complicated,
forcing the user to devise an algorithm to evaluate a predicate.

There are some cases where some notion of sequencing has to
be included in the specifications. For instance, in the 1language SAL
([Griffiths]), the concept of "trying" to wake up a process, and
"then", in case of failure, try and wake up another one, is
essential.

Note that this use of "then" is basically different from its
use in the form "if P then Q else R" which can be translated very
simply as
(P AND Q) OR ((NOT P) AND R)

One of the problems facing the designer of a specification language
is that of devising a syntax that will remind a user of some
procedural constructs. For instance, 1in SPECIAL ([Robinson 3]),
boolean assertions may be separated by “:°, "P: Q:" meaning that both

P and Q are asserted. In this context, it sometimes comes as a
surprise to some occasional users that

i = Js

J = ki
necessarily implies the relation "i = k". First, =" does not connote

assignment, and second, names generally do not stand for variables,
in the programming sense.

It is interesting to notice how some people familiar with
programming practices will ¢try to transfer their procedural notions

Page 10

BOER Bl 1

ety T

Voo rekon




Olivier Roubine October 3, 1976

to non-oprocedural specification languages: for instance, another way
of writing our predicate

¥i, 3 ¢ 1, «voy mi ¢ => K1) < ACI)
could have been

¥i € 11, ...y n=1F E(1) <€ A(i+l)
This latter expression forces a reader (or a verifier) to use his
full knowledge of the natural ordering of integers and the
transitivity of the relation "<" in order to compare A(i) and A(j)
for arbitrary i and j. In that respect, the style itself is more
procedural in the second case than in the first.

The above example illustrates why procedural specifications
are not desirable if they can be avoided: they ¢tend to require a
greater effort in order to be understood, or even some explanations,
in the form of specifications (see the definition of ORDERED).

3.7. Some Syntactic Aspects of Specification Languages

A specification language 1is a desirable vehicle for
communicating information between various people. Therefore one must
be particularly careful about syntactic constructs that may have some
connotation in the user’s mind, different from its actual meaning, or
on the contrary no connotation at all (e.g., STRIP).

One example 1is the choice of 1identifiers to translate
mathematical symbols: if the language designer has a higher training
in mathematics, he will in all 1likelihood attach to the symbols
EPSILON and SIGMA the notion of set membership and arithmetic sum,
respectively. The problem is to know to what extent these names will
be as meaningful in the user’s mind, and if a different choice (e.g.,
MEMBER_OF and SUM) would be clearer.

We have mentioned in the previous section how the 'z’ sign
may be misleadingly interpreted as an assignment. One of the notions
that may be unfortunately introduced in a 1language 1is that of
sequencing, as in the case of the "if...then...else..." expression.

4., CONCLUSION

Specification techniques have received some attention in the
recent years, although probably not enough. The term "structured
programming” is too often associated with a method for writing good
programs, or for writing them more easily. We think that software
reliability involves not only the "structured writing" of prograams,
but more generally their "structured design". We have reasons to
expect that the development of formal design methodologies is one of
the best approaches for achieving this goal, and formal specification
languages are a necessary element of such methodologies.
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The design of specification languages presents some
interesting questions, and the issues involved are somewhat different
from those encountered in the design of programming 1languages. The
language designer has to show a great concern for the potential users
in order to make his language practical: there is a notion of cost
involved in that specifications are only a part of the programming
process: if the specification 1language is not easy to use (this
implies both ease of writing and ease of reading), then the cost of
using formal specifications will have a disproportionate part in the
final cost of the software product. O©On the other hand, constraints
have to be imposed for the sake of precision, so that the design of a
specification 1language requires a subtle balance of conflicting
elements. It 1is precisely the 1lack of an abundant 1literature
describing past experience in this field that motivated this paper.

Although we have voluntarily 1limited ourselves to formal
specifications of 1large software systems, it is our hope that the
ideas presented above <can still be of some 1interest in slightly
different contexts.
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