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INTRODUCTION

The motivation for using pyrolytic boron nitride (PBN)1 as a substrate is that by
proper choices of microstrip coupled line parameters the difference d between the
odd (vpo) and even (Vpe) mode phase velocities may be made very small in com~
parison to other commonly used isotropic (or nearly so) substrate materials.

d is given by

Vv - N
& = 100“22_6_E 1)

where v is the average mode phase velocity. Coupled line microstrip structures
built on PBN such as couplers and edge-coupled filters would have low d values
resulting in less unwanted microwave signal distortion. In couplers, this low d
value should result in both less signal distortion and greater directivity compared
to other substrate materials used in the microstrip configuration. Directivity
here refers to the power output of the isolated port (Pj) relative to the indirect

output port (Pjq) (Figure 1).

It is the anisotropic nature of the PBN permittivity tensor & which allows d to be
reduced markedly in comparison to other commonly used substrate materials such
as alumina and fused silica which give d values typically between 6. 7% and 8. 7%.
PBN has a crystalline structure with layered atomic planes in the x z-plane (the

x and z directions are referred to as-"a".directions)-normal to the y-axis ..
(referred to as the 'c" direction)., See Figure 2 for a diagram of the crystalline
geometry, In the xz-plane the relative permittivity is ex = €z = 5. 12 and normal

to this plane ey = 3.4.

Figure 3 shows a schematic cross-section of a coupled microstrip line structure.
The PBN crystal is oriented so that the "a'" axes lie parallel to the ground plane.
The "c" axis is perpendicular to the ground plane. H, t, S, and w are respec-
tively the PBN substrate thickness, the microstrip conductor line thickness, the
edge-to-edge spacing between the coupled lines, and the width of the lines. The
configuration in Figure 3 is idealized since the ground plane walls on the sides of
the substrate and above it are absent. In this uncovered microstrip structure the
electromagnetic field lines are found both in the dielectric substrate and in the
medium (air) above the dielectric. Two different types of propagating waves flow
down the lines: the even and odd modes. The even mode is that electromagnetic




i

ISOLATED D IRECT OUTPUT

P .
: —oPd
-%509
INPUT INDIRECT OUTPUT
Pir o —o Pid

Figure 1: Schematic diagram of a quadrature coupler.
The coupler is in the 500 system,
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Figure 2: Crystalline structure of pyrolytic boron nitride (PBN).
PBN has layered atomic planes parallel to the "a"
direction normal to the '¢" crystalligraphic direction,

aa38989 -3-

B - Pa— : i inttio



aa35631A

CONDUCTOR CONDUCTOR

Sl A
G 3

SUBSTRATE Z GROUND PLANE

Figure 3: Cross-section of simple uncovered coupled
microstrip lines.
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field solution corresponding to like charges residing on the two coupled lines.
The odd mode corresponds to opposite charges. The electric field lines are
shown in Figure 4 for the structure in Figure 3. The odd mode allows a much
greater amount of field lines to pass through the air in comparison to the even
mode. The net result of this difference in electric field distribution is that the
odd mode will effectively see a significantly lower dielectric constant ¢, than the
even mode ¢g if the dielectric substrate is isotropic and if the substrate
dielectric constant eg is substantially larger than air as it is for a number of
commonly used substrates such as alumina and fused silica (ealymina ~ 9. 8;

€fused silica ~ 3. 8).

Both the even and odd modes may be characterized as transverse electromagnetic
(TEM) solutions with their phase velocities of propagation v, ~ 1/ 2, since €
and ¢e are significantly different for isotropic substrates, there will be a sub-
stantial phase velocity discrepancy or difference d between the even and odd
modes. This vp discrepancy creates a phase imbalance in the coupler which
limits its directivity. However, if an anisotropic substrate is used which has one
dielectric constant €5 = ex = €z parallel to the ground plane and another €y nor-
mal to this plane such that ¢, > €,, the mismatch between the phase velocities
can be reduced. This is the case for PBN if the a-axes are placed parallel to the
ground plane since this will cause €3 =5.12 and ey = 3.4,

A qualitative argument will show that PBN in the above orientation reduces the
difference between ¢, and ¢, and therefore the phase velocity difference d.

The even mode effective dielectric constant should be close to ey since most of
the electric field lines lie between the microstrip conductor lines and the ground .
plane (Figure 4). Thus €, ~ 3.4. On the other hand, the odd mode has field
lines between (1) the microstrip and the ground plane, and (2) between the
microstrip lines in air and the substrate. One can very roughly estimate what

€o might be by averaging the ¢'s parallel to the ground plane as

_L0+5.12
€p 2

]

3.06

and finding the average of ¢p and ey:

_ 3.06+3.4
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(b) Odd Mode
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Figure 4: Cross sectional views of the Even (a) and Odd (b) Mode electric
field distributions for uncovered coupled microstrip shown in
Figure 3,
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One sees that €g ~ 3.4 and ¢, ~ 3.23 are reasonably close implying that a
rigorous solution of the microstrip coupled line problem could indeed yield zeros
s for d.

The uncovered microstrip structure of Figure 3 can be compared to the conductor
line conﬁgui‘ation seen in the parallel coupled stripline of Figure 5. The conduc-
tor lines are immersed in one dielectric (chosen to be isotropic) so that the effec-
tive dielectric constants seen by the even and odd modes are equal. Notice that
the lines are symmetrically sandwiched by the dielectric material and the two
conducting ground planes. This geometric disposition of the lines leads to a
homogeneous boundary value problem for electromagnetic waves propagating down
the lines. In contrast, the microstrip line geometry seen in Figure 3 for the sim-
ple case of an isotropic dielectric constitutes an inhomogeneous boundary value
problem for electromagnetic waves. In the next section we shall solve this
inhomogeneous boundary value problem for an anisotropic dielectric substrate
having a diagonal relative dielectric tensor,
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Figure 5: Cross-sectional view of a stripline configuration where
the parallel coupled lines are parallel to the ground

A planes and equidistant between them,
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INHOMOGENEOUS BOUNDARY VALUE PROBLEM FOR AN ANISOTROPIC
SUBSTRATE

Here will we determine the Green's function for a single microstrip line in the
covered configuration shown in Figure 6. This configuration is very convenient
for solving the boundary value problem. As before, we define the y-axis perpen-
dicular to the ground planes with the x-axis in the plane of the paper and parallel
to the ground planes and the z-axis perpendicular to the plane of paper. The
medium above the anisotropic substrate is taken to be isotropic with a relative
dielectric constant of

2
€9 = N9 (2)

where no is the refractive index of the medium. For the anisotropic medium
ex and ey are two of the orthogonal components of the dielectric constant tensor.

We take €4 = €, so that the components in the x and z directions are degenerate.

The y component ¢, is such that ey # ex. We define the refractive indexes

ny and n, Sso that

(5= n}z( ’ (3)

4)

€y=n

<

In Figure 6, B is the ground-plane to ground-plane separation. For our
approach we set the conductor line thickness t (seen in Figure 3) equal to zero,

Once the Green's function has been determined for a single microstrip line, the
coupled microstrip line problem is also solved since the same form of Green's
function must be utilized. Employing a method of moments computation technique
which is standard in the literature allows coupled line electrical parameters to be
calculated.2 These parameters include the even and odd mode capacitances,

phase velocities, and characteristic line impedances, Figure 7 shows the covered
parallel coupled microstrip cross-sectional geometry where in the general case
the line widths wy and wg are wi# wa.
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Figure 6: Cross-section of a single covered microstrip line
above an anisotropic substrate dielectric.
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Figure 7: Cross-section of covered parallel coupled microstrip
lines on an anisotropic dielectric substrate.
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Consider the single line in Figure 6 where the line has unity coulombs per meter
of charge and runs parallel to the z-axis. Then the permittivities of the medium
above the substrate (e¢) and of the anisotropic substrate (€) are given based on
the above discussion, respectively, by

€e=¢y s Bey<B ; (5)
€x 0 0

e=140 eg O , 0<y<H. (6)
0 0 €x

A quasi-static solution to the potential problem can be obtained by solving
Laplace's equations in the two dielectric regions subject to the proper boundary
conditions. One needs to solve in the anisotropic region the equation

Ve (E-V¢p =0 . (M

Due to the infinite extent of the line in the z direction, the problem is two dimen-
sional, Therefore Eq. (7) yields

2% ¢ 8%,
X ox2 |V gy2

T (®)

which has a solution of the form

$1(%5y) = l:al(l{) C°S<Ex‘) + by (k) Sin(g)] [cl(k) sinh(l—{‘!> + dy (k) cosh(l—(-x>] 9)
ny Ny ny ny

with k being a continuous variable. Because of the even symmetry in x and the
fact that at the ground plane ¢1(x,0) = 0, it follows that the general solution of

Eq. (8) can be written as

-12 -




0 Slﬂh(lﬁ{y)
kx y

faht s [ G cos<;l_x> sinh(k_H) - (10)
—00 - ny

where ny = (ex)l/ & and ny = (ey)l/ 2, Using Laplace's equation in the isotropic
region (H< y < B), i.e,

vigp =0 , . (11)

one must obtain ¢o(X,y) suchthat ¢o(x,B) =0 at the top ground plane.

Normalizing the x and y variables in Eq. (11) to the same constant n, ,
a general solution in region 2 is obtained in the form:

00 Sinh(-w>
Do(X,y) = Ao, (k) cos L . Ty SV dk (12)
2 B 2 ny Sinh(k(g—H)) .
X

The electric fields in the substrate region (region 1) and above it (region 2) must
at their interface (y = H) satisfy continuity of the tangential electric field com-
ponents and continuity of the normal electric displacement vector components
(51 and 32) . These boundary conditions may be stated, respectively, as

9¢91(X,y) o 292(%,9) (13)
ox y=H_ ox y=H+

and

§+(Dy-Dy) = -6(x) . (14)

e




Notice that D field continuity is broken at x= 0 (y = H) since we encounter the
line charge represented by 6§ (x). In Eq. (14);

51 = ﬁ]_(X:Y) ’ (15)
y=H~
and
Dy = Dy(x,y) (16)
y=H"
Also
51 = E—'eo B ﬁl
i "E_- 60 * V(pl ’ (17)
and
Dy = €5 ¢4 Ey

Here ¢, is the permittivity of a vacuum.

From the continuity of potentials at y = H (Eq. (13)), it follows that
Al(k) = Ag(k) = A(k). By employing the boundary condition aty = H which is
expressed in Eq, (13), it follows that

6 (X) =/ A k) eos(-kﬂ)
-0 nx

2
n
ny coth (H> + 'n—2 coth [5_(2&]

ny X

\
{




Since

o kx
[w cos<l—a-x->dk = 27r6<%> = 27 ng 6 (X) ’ (20)

A(k) is obtained from Eq. (19) in the form:

L. 2 : . (21)

AK) = .
2o - nyn,, coth kg + n2 coth[ﬂB—m]
Xy ny 2 n

The potential is now given by

%) sinh -lﬂ)

1 2neo J k 3nxny005h(%y§)+n§ sinh(kn';-j) coth[\‘(‘(lr?_;ﬁ)]&

(22)
for 0 < y < H, and by
0 cos<§—’5> sinh I:M%ZY)]
bo(%y) = —— / & = A
217 bz (B-H) (B-H)
i —0 = 3nxny sinh [k an] coth(ﬁ—;{) + ng cosh[k %XH ]%
(23)

for H< y < B.
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k| If we set y = H in either Egs. (22) or (23), the Green's function for the microstrip
ll‘ r line over an anisotropic substrate is expressed by the equation

E

| ‘ o0 cos(—-

|

i 1 dk “x)

i (x,H) = / - (24)
i k -

T3 S R ) P O =

| y X

e

since ¢1(X,H) = ¢,(x,H) .




NUMERICAL APPROACH FOR STUDYING PBN

In order to compute the even and odd mode characterisitc impedances Z, phase
velocities v , and coupling constant K parameters of coupled microstrip on
PBN, a numerical approach based on the method of moments has been employed.2
Two computer programs have been developed to compute ¢(x,H) in Eq. (24).
The first one evaluates Eq.(24) using a numerical integration approach,3 This
entails separating the integration interval into two ranges: Ato P and P to =,

If P is chosen large enough, the coth functions will approach one and the integra-
tion can be represented as follows:

P cos<k—§>
1 / dk Nx
A k

k 2 -
%nxny mth(ﬁ'?) + ng coth[l(‘(ﬁ—xﬁl]s

1 Tk (kx
" ngo(nxnymg)/p 5 =) i

In order for Eq. (25) to approximate ¢(x,H) well, A —0 and P must be such
that the coth arguments 65 > 6. The lower limit in the first integral is not set
A = 0 because the coth functions blow-up at k = 0, preventing a correct numeri-
cal evaluation, The second integral in Eq. (25) can be calculated using the IBM
Scientific Subroutine Package program SICI.

The first integral can be determined using a Simpson integration routine. The
cos argument increment Af, must be chosen small engough to approximate the
cos oscillation behavior; Af, < 5°, This Af, value specifies the k integration
interval Ak = nx Af./x.

The other computer program computes ¢(x, H) in Eq.(24) through a series

expression Eq.(28) derived as follows., By analytic continuation ¢(x,H) in Eq.(24)
can be rewritten as

i(x/ny) z

¢ H) = — Re fg'z' ]
21, f. 2 {“x"y coth('n—};' Z) + n§ mth[@lﬁ)ﬂ%

(26)
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where z is a complex variable and C is the path of integration which extends
from -~ to +« alongthe Rg(z) axis and closes on the upper half x plane. It
can be easily demonstrated that z = 0 is an ordinary point and that there exists
an infinite number of poles restricted to the Im(z) axis. By invoking the residue
theorem, ¢(x,H) can be rewritten as

o(x,H) = '6‘1; Re Z Qp (27)
p=1

where Qp denotes the residue at the pth pole., In accordance with this approach
the residue series yields

w -(|x]rp/n
3 . (Ix|rp/ny)
dontn = =R (28)
€ o1 o oY 2/ 2 (Hy
rpH|ny csc ny +“2(’n§) csc “_x rp)
B :
where v T 1 and r, is the pth zero of the determinantal equation
Hr
cot(-n—'> 9
A i TP 29)
cot Hur) nyNy
nx

Of interest is the special case where ny = ny = ny; i. e., that of isotropic sub-
strate., In this case the parameter v is of importance in locating the roots of

p properly. For example, if v =1, Eq, (28) simplifies to

- I8 «

TErre

ahiing




oo e-(|x|/217)p7r

o(x,H) = 6_0 & W[n%"‘ n%]

(30)

which agrees with the result obtained for isotropic substrates by Farrar and
Adams. 4

Equation (28) works most efficiently for loosely coupled microstrip lines (com-
! puter program ANIGREEN1; see Reference 5) and Eq. (25) for tightly coupled
lines (computer program ANIGREENZ2; see Reference 5).
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THEORETICAL RESULTS FOR SINGLE AND COUPLED LINES ON PBN

One can calculate the electrical parameters of single and coupled microstrip lines
on PBN by using, respectively, Egs. (28) and (25).6 For PBN, ex = 5.12 and

€y = 3.4. Thus ny = 2,26 and ny = 1.84. Figure 8 shows the characteristic line
impedance Z against w/H for a single line on PBN. As expected, Z decreases
with increasing w/H. The result is for the cover-ground-plane to substrate-
ground-plane distance B/H = 6. The difference between B/H =6 and B/H=«
is at most a few percent. Figure 9 gives the phase velocity Vb normalized to

the speed of light ¢ in a vacuum against w/H. vp/c decreases with increasing
w/H, since the electric field lines are being progressively restricted to the area
under the line and out of the air above the substrate.

For coupled microstrip lines, the line lengths may be different, wj # wo. Below,
only the results for wi = wg =w are presented. Figure 10 gives the dependence
of the characteristic line impedance for the odd (Z,) and even (Z,) modes
versus w/H. Families of curves for the even and odd modes have been generated
in Figure 10 by varying S/H, the edge-to-edge coupled-line-spacing/height ratio.
w/H varies from 10 to 0,1 and S/H varies over an order of magnitude (0,1 to 1).
The behavior of these curves is not surprising, since we expect Zg > Zg, owing
to the fact that the total odd mode capacitance will exceed that seen by the even
mode.

Figure 11 gives the odd v,, and even Vpe phase velocities versus w/H for a
number of different S/H values. As expected, Vpo > Vpe for a range of w/H
values (w/H > 0.7). However, for small w/H, vpo > Vpe is by no means true,
and as Figure 11 shows, the odd and even mode curves can cross over, This
crossover point is different for different S/H. For S/H=1, 0.5, 0.25 and 0.1,
we see that the crossover, respectively, does not occur (in the w/H range),
occurs at w/H =0.22, w/H= 0,38 and at w/H = 0.65., It is at these crossover
points that one expects signal distortion due to the difference between the even
and odd mode phase velocities to be significantly reduced. Note that, for reason-
ably small w/H and S/H, the result that vpe can exceed vpo is understandable
in view of the fact that a greater proportion of the even mode fields are in air than
for the odd mode.

The above results indicate that it should be possible to couple lines such that
Vpe —Vpo for different (w/H, S/H) combinations., Different (w/H, S/H) sets
means different coupling constants K for the line-to-line coupling, K is plotted
against w/H in Figure 12 for S/H = 0.1, 0.25, 0.5 and 1.0.
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EXPERIMENTAL MEASUREMENTS ON SINGLE MICROSTRIP LINES ON PBN

In this section an expression is presented which can be used to determine the
characteristic impedance Z of a single microstrip line provided the return loss
|1“r|2 , where I, is the input reflection coefficient being measured from a
standard 509 line, is known. This expression is used to compare experimental
voltage standing wave ratio (VSWR) data for microstrip lines on the substrate
material pyrolytic boron nitride with theoretical VSWR predictions based on Z
found in Figure 8,

Figure 13 shows a 509 line going into @another impedance line Zj at junction 1,
into another line Zg at junction 2, into another line Z3 at junction 3, and back
into a 509 line at junction 4, By adding up the infinite series of internal reflec-
tions between junctions 1, 2, 3, and 4, we obtain the following formula for |rr|2:

(1 - |T4|%ir )2 e S R T
1T 11Tl y Pemreu [T 2[OIT4]

ITyr|2 = [|r1|2+
1- |rq|Frol? 1- |r]?(rgf?

%5 42
(= IF1|2)|F2|2] [IF 2. (1 - |I3|7)| Iy ]
1- |T1)?|rg)? 1- |rs|?|rs?

x [1 - rq)? -

-1

2 2 2 2
(1-[To)IT 1 - |raHIr
s 1_[1 9 | Tl |1|]l:lr32+ 1 T3l T4l }'

Lo + .
P Tl 1- rsl2ira?

(30)

Here I'1, I's, I's, and I'y are the junction reflection coefficients given by the
difference between the characteristic line impedances on either side of the junc-
tions, (One should note that Eq. (30) assumes lossless lines. )

For the case of a single line between junctions 1 and 4, I'p = I'3 = 0, and if we
assume that these junctions are identical due to symmetry, I'i = I'4.
Equation (30) becomes under these conditions

2
g By
1+ |rql?

[Tr| (31)
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Figure 13: Reflection coefficient I'y looking into a series of transmission
lines with different characteristic impedances Zq, Zg, and Zg,
forming junctions at the points 1, 2, 3, and 4, The lines on
either side of the network have Z = 504 lines,
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In the R = 509 system the definition of I'y leads to

E+ Ty
Z =R =Ty " (32)
Combining Eqgs. (31) and (32) yields
P
15
Z =R CRlt (33)
P
1+
2-P

where P = |I‘r|2. The lower sign in Eq. (33) is for Z > R. By measuring the
voltage standing wave ratio, I'. can be found as

VSWR -1

2 _
| Tef” = VSWR + 1

(34)

Knowledge of VSWR allows one to calculate Z, or the converse,

Single microstrip lines on the substrate PBN have been fabricated and the VSWR
measured for five w/H cases: w/H=3, 2, 1, 0.6, and 0.4, Table 1 shows the
experimental results (test frequency is 2. 0 GHz) and the theoretically determined
VSWR obtained from Egs. (31), (32), and (34), and from Figure 8 which plots Z
versus w/H based on quasi-static TEM analysis. The agreement between theory
and experiment is seen to be within 107%. Improvement in the measurement pro-
cedure’s8 should reduce the discrepancy between theory and experiment, The
measurements reported here were made using an HP 8545A Automatic Network
Analyzer with an HP 8500 Console System.
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EXPERIMENTAL MEASUREMENTS ON COUPLED MICROSTRIP LINES ON PBN

Here we discuss the theoretical and experimental analysis leading to the fabrica-
tion of 7 dB quadrature interdigitated microstrip couplers using the anisotropic
dielectric material PBN as the substrate. The importance of interdigitating the
coupler will become apparent later on in this section. In order to obtain reason-
able line widths w and gap spacings S between the lines, the couplers were built
on H = 15 mil thick PBN substrates using n =4 interdigitated lines. The dimen-
sions to be discussed below are compatible with the material properties (includ-
ing surface roughness and etching behavior) of PBN.

As mentioned in the Introduction, the interest in substituting PBN for a more
commonly used substrate material such as alumina is that the percentage differ-
ence d between the even and odd mode phase velocities,

v A
d = 100—P°—‘_/—-1°—e 1)

may be made much smaller. One expects the loss in directivity due to phase
velocity mismatch to go down, Degradation of the directivity due to terminal
VSWR mismatch is a separate component and so the measured directivity must be
taken as the lower limit on directivity improvement caused by a coupler design
which reduces the d value,

Using a method of moments computer program (ANIGREEN1) employing Eq. (25)
which enables microstrip coupled line parameters to be determined for anisotropic
substrates under the quasi-static TEM approximation,5 we have optimized d so
that for an n = 2 structure on PBN d = 0,034%. Since the computation error is
on the order of a percent or less, the w/H and S/H values corresponding to

this d value (Table 2) must be interpreted as being close to the actual values for
a local d zero point, and d itself taken as indicative of the fact that it can
approach zeros by the proper choice of coupler parameters for PBN.

Table 2 gives w/H, S/H, B/H where B is the ground piane-to-ground plane
distance for covered microstrip, the even and odd mode characteristic imped-
ances Ze and Zg , the even and odd mode phase velocities ve/c and vo/c
normalized to the speed of light ¢ in a vacuum, the average mode phase velocity
V/¢c normalized to c, the coupler characteristic impedance Zc¢ , the power
coupling constant K, and d. One sees from Table 2 that for the n = 2 coupler

- 30 -




g 91qeL

06T | 60679 2 09 02660 | 65650 | 08860 2

P00 0¢ 01 € Vel 67660 | 06650 | 8650 I
P (9PN (1)2Z 9IA 9% NES R
6T L€ 1286 02 | ovo €€ 0 p 2

8. 68 22Ul 02 | 0r0 120 2 I
(©)07 (0)37 H/d HIS H/M  SINIT  3SVD

*s9jex)sqns 9LI3O99TP d1dorjosTue U0 saur] pa[dnoo 1oy sisA[eue WAL Onyels-1senb
aumsse yoTym NODINYV pue INAAUDINY swexdoxd xojndurod ayy SurAojdwis aprijru
uoxoq 9nAoaAd uo drysoxoTur pordnod [arreIed J0J pauTuLIdlep sadjawered xaydno)

«8]

aa38562

- &




K =10,20 dB and Z, = 124,39, This Z, value would not enable the coupler to be

easily characterized experimentally with equipment calibrated to operate in a 509

system. In order to bring Z, closer to 502 while still maintaining a low d

value and a K value around 10 dB, another computer program (ANICOU) has been

used, It is capable of calculating interdigitated coupled line electrical parameters

for anisotrdpic substrates assuming equal line widths and quasi-static TEM condi~

tions to hold, Table 2 shows the results for an n=4 coupler: We see that

K=6.909dB, d=1,30%, and Z,=60.42Q. Z,=60.42Q corresponds to a volt-

age standing wave ratio VSWR = 1, 21, I8

This 4-line coupler has been fabricated on H = 15 mil PBN using A /4 lines equal :
to 171. 5 mils (the center frequency is 10. 19 GHz) and its characteristics measured

from 2 to 18 GHz using a Wiltron Company 610B Frequency Sweep with RF plug-ins

6219 (2-8 GHz) and 6229 (7.9-18.5 GHz), and using the HP 8425 Automatic Network

Analyzer. The measured VSWR using the HP ANA is between 1. 06 and 2, 11 for

frequencies between 2 and 12 GHz. Phase quadrature is maintained over the same

frequency range within -3. 99 and +2.68°, Power output from the direct (Pg)s

indirect (P;4), and isolated (Pj) coupler ports relative to a 0 dB reference are

shown in Figure 14, The isolation ranges from 35.06 dB at 2 GHz to a low value
of 14,31 dB at 11. 250 GHz (within a 2-12 GHz interval). One sees that |
7 dB g|Pid|g 8 dB for 5.6 GHz g f g 14.3 GHz. Pjq stays between 7 dB and 9 dB |
for 4.2 GHz < f < 15.7 GHz. The insertion loss L of the coupler can be deter- (;
mined by computing Py, = (1 - P4 - Pjq - Pj). L has a low value of 0. 15 dB f
around 3 GHz, a high value of 1.5 dB near 12 GHz, and a value of 1,3 dB at i
17 GHz. '

We can conclude from the above results that it is theoretically possible to predict
experimental coupled line parameters for quadrature interdigitated couplers built
on anisotropic pyrolytic boron nitride, The 7 dB coupler which has been discussed
demonstrates that bandwidths of over an octave with isolation over 14, 3 dB can be
realized for coupled structures on PBN. These results should be due in part to
the low d = 1,30% value found for the phase velocity mode difference.

In order to put the above results in perspective, two other experiments were con-
ducted: (1) 7 dB couplers using alumina and operating at a center frequency f,
equal to about 6,983 GHz were built and experimentally characterized; and

(2) 7 dB couplers using PBN but operating at f, = 5.0 GHz were constructed and
characterized.

For a PBN 4-1line coupler designed to yield the same electrical parameters as
the 7 dB coupler with a f; = 10. 2 GHz, but with the f; lowered to 5.0 GHz using
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A /4 lines equal to 349.5 mils, we obtain the results shown in Figure 15. Note
that the actual etched line widths and gap spacings lead to K = -7, 34 dB,

VSWR =1.23, and d= 1.45%. The insertion loss L is between 0.2 dB and

0,91 dB for 3.5 < f< 7.5 GHz, For 3.15 < f< 6,15 GHz, 7.87 < IPid| < 8.25dB.
For 1.0 < f < 9.0 GHz, |Pi| > 18,87 dB. If we take D= IPid = Pil as the
directivity, we see that in the range 1.0 < f < 7,25 GHz, D> 10.62 dB.

The 7 dB alumina couplers were designed to have a length ¢ of 171, 5 mils

(fo = 6.98 GHz when Ao/4 = () with K = -6,923, Z,= 50,4092, and d= 10.8%.
Figure 16 shows the experimental results for a coupler where we see that L lies
between 0.1 dB and about 0,75 dB for 6.0 < f < 10,0 GHz., For 4.0< f< 9,2
GHz, 8.0 < |Pjg|< 9.15dB. When 3.0 < f < 12,5 GHz, |Pi| > 20.2 dB. In the
frequency range 3.0 < f< 9.0 GHz, D> 11.5 dB.

The alumina D value is comparable to the 7 db PBN coupler result seen in
Figure 15, whereas the theoretical dajymina = 10. 89% compared to

dpBN = 1.45%. This seems to imply that several factors besides d differences
are important or collectively dominant over phase velocity mode dispersion in
determining the values of Pj and D. Such factors could be masking the effect of
using the anisotropic properties of PBN to significantly reduce d.
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CONCLUSION

In this report we have determined the boundary conditions (B. C.) necessary to
solve the problem of electromagnetic propagation in microstrip transmission
lines utilizing anisotropic dielectric substrates. These B. C.'s have been used to
theoretically find the Green's function relating charge on the microstrip lines to
the potential around the lines. The theoretical formulation was developed to
correspond to the anisotropic dielectric tensor properties of pyrolytic boron
nitride (PBN) which can be obtained with two out of its three diagonal elements
non-equal. The Green's function has been used in a few computer programs
(ANIGREEN1, ANIGREEN2, and ANICOU) to numerically calculate by method of
moments the electrical behavior of single, coupled, and interdigitated microstrip
lines on PBN.

The numerical results indicate that the difference d between the even and odd
mode phase velocities in coupled microstrip structures may be made very small
compared to other commonly used substrates such as alumina and fused silica.
By suitable choices of K and Z.,, d may be reduced by factors of five or more
to values equal to 1, 5% and less. One might expect the isolation in microstrip
couplers fabricated on PBN to be markedly improved (P; to decrease) due to such
a low d value since the isolated power Pj is dependent on d.

The couplers built using PBN did not display this anticipated isolation (and direc-
tivity) improvement. It is felt that other material and electrical factors besides
d may control the isolation performance of microstrip couplers, especially for
PBN, so that a decrease in d is not unambiguously reflected in the experimental
parameter measurements., Further work to clarify this problem is indicated by
the experimental results,
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