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SECTION I

INTRODUCTION AND SUMMARY

This report  presents results of a stud y of the feasibility of portable

MHD electric power generator systems operating at power densities in the

channel of 500 MW/rn 3 and higher. Operating parameters, weights and

dimensions of MHD generators  operating on variou s fuel-oxidizer combina-

tions were studied , for machines with electrical powe r output in the range

30 - 35 MW . Desi gn layouts were made for two systems with nominal

channel power density of 500 MW/rn 3. These are a liquid fuel system

operating on hydrocarbon fuels (e . g. , RP- 1 or JP-4)  and liquid oxygen ,

with cesium seed , and a system operating on a double-base solid fuel ,

seeded with cesium. Operation of the MHD generator  was considered both

in a continuous mode and in a pulsed mode with a typ ical duty cycle of 20

pulses of 7 second s duration per pulse , with 2 to 5 seconds between pulses .

Channel operating characteris t ics  and system weights and dimension -.

for the two systems are summarized below:

RP/o2 System Solid Fuel Sy s tem

Power Output [MW] 31 . 5 33 . 2

System Dry Weight [k g] 2305 169 5

Mass Flow Rate [k g/ secj  30 30

Total Weig ht (60 sec operation) [kg] 4625 3820
(includes reactants and coolant )

3. 6
Peak Magnetic Field [Tj  4. 6

1 .
Overall Diameter Im I  1. 6

Overall Length [m] 3. 7



The dry  weight of the solid fuel system depend s to some extent  on

the operating durat ion required , because the wei ght of the burne r depends

on the amount of reactant  required , for a given propellant  wei ght f rac t ion .

The propellant mass f rac t ion  assumed is 0. 9.

Major  development , for both systems , is requi r ed f or th e li ghtweig ht

superconducting magnet  which represents  the heaviest  single component of

the generator. Anothe r area of development required , f o r  pulsed oper at ion ,

is for burners , part icularly of solid fueled burners  capable of the required

dut y cycle. The potential for electrical breakdown and damage in the chan-

ne ls is con siderab ly in e x c e s s  of exp e r ience t o da te , because of the high

power densi ty operation , and development may  be requ ired in channel  tech-

nology.

In comparing the two systems, the solid fuel system is about 17%

lighter in total weight and requires  a magne t  of lowe r peak field than the

liquid fuel system. The liquid fuel system has the advantage  of us ing  a

readil y available fuel-oxidizer  combination , and allows pulse dura t ions  to

be independent of the initial fuel load . The choice between the solid and

liquid fueled genera tors  will also be inf lienced by their respective  operat ing

cha racter is t ics  and b y the reactant  s torage  and hand l ing  sys tems  and auxil-

iary system s required .

Operat ion of MHD g ene ra t o r s  at powe r de n si ti es  of 1 00 0 M W  rn 3

was  cons ide r ed , us ing the same fuels  cons ide red  p reviously.  The wei ght

reduct ions  achieved by this mode of operat ion are  small , an d the r isk  of

elect r ical  breakdown and damage to the channe l  is considerabl y hi gher than

in operation at 500 MW/m 3.

_ _ _ _



Section II of this report  p resen ts e l ec t ri ca l  operat ing c h a r a c t er i s t i c s

of the two system s inves tiga ted , and a lso p resen t s  cha r a c t e r i s t i c s  of chan-
nels ope rating at 1000 MW/rn 3.

Section Ill p re sen t s  the desi gn layout of the MHD g e n e r a t o r , es t i m ated

system weights and some sys tem design considera t ions .

Section IV contains  recommendations  for  a development  plan for

construction of a prototype high power densit y generator.

_ _ _ _  --



SECTION II

OPERATING PARAMETERS

A. INTRODUCTION

Operating parameters are presented for two MHD generators , both

operating at nominal power densit y, in the channel , of 500 MW/rn3. One

generator operate s on liquid hydrocarbon fuels and oxygen , with cesium

seed , and the other operate s on a cesium-seeded solid fuel . The nominal

power output level is 30 - 35 MW . Preliminary weight estimates are pre-

sented for the two systems.

The operating parameters shown provide some indication of the risk

of failure or damage involved in the channels described. Howeve r , assess-

ments of risk based solely on specific operating characterist ics tend to

underestimate the potential for serious or eve n destructive damage to the

channel , resuJ .ting from electrical breakdown of channe l wall elements .

The damage pote ntial is influenced by the channel operating characteristics ,

operating duration , and by the spe c ific confi guration of the channel walls

and loading scheme . Detaile d discussion of these factors is beyond the

scope of this report , but estimate s of risk and damage potential are made

in paragrap h C of this section.

In addition to the two systems above , which ope rate at 500 MW/rn 3,

operating parameters  and weig hts are presente d for systems operating at

powe r densitie s of 1000 MW/rn 3

— 5—
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B. GENERATOR PERFORMANCE PARAMETERS

T ypical operating charac ter i s t ics  of in te res t  for  the two genera to r

sys tems  of p r imary  in teres t  were calculated b y means  of a computer pro-

g ram which calculate s genera tor  operat ing cha rac te r i s t i c s  (powe r output ,

ax ial f ie lds , cur r en t densi t y, etc . ) and gene ra to r  length , volu me and area ,

etc . , with channel inlet Mach number for specified input bu rne r  p r e s s u r e

and gas mixture (fuel , oxidizer and seed). Cons t ra in t s  such as Hall pa ram-

e ter , electrical field l imitations and d i f f u s e r  r ecove ry  requi rement s are

imposed when establishing the regions of op timum opera t ing  c ondit ions.

Opera ting cha racter is t ics  are  calculated as outlined below; the

mathematical  details of the anal ytical  techniques  used in the computer

p ro gr am a r e desc r ibed  in prev ious  AER L pub l i ca t ions . 1-4 It is a s sumed

that the flow in the channel is develop in g r at her than f u l ly developed .

Therefore , the flow is divided into an invisc id  core occup ying most of the

channel area and a boundary laye r confined to the immediate vicini ty of the

channel wal l s. B oundary laye r disp lacement th i c k n e s s e s  a re  ca lcu la ted

from momentum integral equations for  both electrode and insula tor  wal ls ,

taking into consideration shape fac tor , comp ress ib i l i ty  and wall-cooling

ef f e c t s . Wal l - roughness  e f fec ts  on the skin f r i c t i o n  are  also included .

The boundary laye r shape factor is used to predict boundary laye r separa-

• t ion or channel stall conditions. The e lec t r ica l  dissi pa tion in the boundary

layer is general l y small compared to the wall heat t r an s f e r  ra te . Conse-

quently,  the usual  (no Mu D) compress ible  flow relat ion between velocity

and enthal py for the boundary laye r is suff ic ient l y a ccu ra t e .  Flow I ,U I~~~

uni formi ty  e f fec t s  are  included . Nonun i fo rmi t i e s  in v e l o c i t y ,  elec t r ica l

conductivity,  and Hal l pa rameter  in the v i c in i ty  of both the e l ec t rode  and

— 6—
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ins ulator  wal ls  are  cons idered . The combust ion products  a re  assumed to
be in chemical equi l ibr ium at the local condi t ions  and all points  in the flow
field , and the electron dens i ty  is assumed to be in Saha equi l ib r ium at the
t r ans l a tion  t empera tu re  of the plasma . The electrical conduc tiv i ty  and the
Flail pa rame te r  are  calculated as a func t ion  of t empera ture  and p r e s sur e

using Frost’  s app roximation with the e f fec ts  of e lectron a t t achment  to 01i
and other species included .

The pr inci pal result s f rom these ca lcula t io n s a re  p r e s e n t ed in the

f o r m  of g r a p hs which show ma jo r  op er a t i ng  c h a ra c t e r i s t i cs  of the MHD

~ v s te ms  of i nt e r e s t .

The curve s shown should be r e g a r d e d  onl y as t yp ical , in that they
rep re sent operating cha r a c t e r i st i c s  for  pa r t i cu l a r  genera to r  inlet  condi t ions
( s t a gna t ion p r e s su r e , m a s s  f low ra t e , r eac tan t mixture) and f or channe ls

des igned with minimum t e c h ni c a l  r isk in t erms  of the opera t ing p a r a m e t e r s

p resented . Tradeof f s  can be made in the inlet  condit ions , whici-’ would re-
sult in d i f f e r en t  operat ing cha racte r i s t i cs .  For ins tance , the chan n el c ould

be opera ted at reduced st ag nat ion p r essur e , in order  to reduce the convec-
tive heat  t r a n s f e r  ra te , but then a hig her m as s  flow rate would be required
for the same powe r out pu t ; or , the channe l could be operate d at a lower

mass  flow rate , in or der  to reduce  the to tal wei ght of the sys tem , including
fuel, but this would result in higher axial electric fields . These tradeoffs

are  di scussed  in more detai l  below . Such t r a d e o f f s  a re  essent ia l l y between

minimum total  weight and minimum technica l  r isk . The desi gn phi losophy
followed was to minimize  the t echn ica l  r isk as much as possible . A lso ,

the g e n e r a t o r s  described are not optimized , in the sense that the channel
geome t ry ,  magne t i c  f ie ld d i s t r i b u t i o n  and e le c t r i c al  loading have not been  

. —__•_.:._•_•__~~~~~ -‘—— ——-~
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precisely tailored to each other to the degree necessa ry  for  the detailed

design of a particular channel. The curve s shown do , however , disp lay

the general features  of the systems described , and neither these nor the

weight estimates made will be affected greatly b y further optimization.

Figure s 1 and 2 present operating parameters for a gene rator oper-

ating on liquid hy drocarbo n fuel (RP- l , JP-4 , et c . )  and oxygen , with cesium

seed. Th ese reac tant s are readily available and have been commonly used

in MHD generator experiments to date . Stoichiornetric combustion is as-

sumed. The burne r is regeneratively cooled by the fuel, in orde r to reduce

heat loss. The channel is separately cooled . Power output of the generator

is 3 1. 5 M W.  The ge ne rator operate s at a mass fl ow rate of 30 kg/sec , with

a stagnation pre ssure of 30 atmospheres. The channel inlet Mach number

f or th is design is 2 . 2 , at which value (approximately)  the value of a u2 is

maximized, in orde r to maximize power densi ty.  The calculated electrical

condu ct ivity of the work in g f luid  at ~e channe l inlet is 49 rnho/m. This

value was obtained us ing  ari  es t imated value of 4% of the total enthal py input

for combustion losses , includ ing combustion ineff ic iencie s , heat losses  and

non- i sen tropic e f fec ts  in the nozzle .

The operat ing charac te r i s t i c s  shown are valid for  a channe l of two-

terminal diagonal configuration operating at the design point (no axial cur-

rent flow) and for a channel of segmented Faraday confi gurat ion . Figu re  1

shows parameters  which are indicative of the electrical  and thermal

“ s t r e s s e s” to which the channe l is subject .  These parameters  a re  the d cc-

tr ic  powe r output ~~~~~, the t r a n s v e r s e  c u r r e n t  dens i t y,  j~ , t h e axial  electric

field E , and the convective heat t r ans fe r to the channel walls , ~~~.

-8-



RP/0 2 ( STOICHIOMETRIC ) , ~6 % C s ( W t )

I I

‘P
* 12 3 0-  -

c%J ________

E
0

~~~. 1 0 -  2 5 -  J —

M~~30 Kg/sec
P0~~30 atm

._A 8 - 20 - BMAX~~4.6 T —

E .!.. ~ IN~~
49 mho/m

U E

0] 0~2 0~3 0~4 0~5 0~6 0~7 0~8 0~9 1.0
G3332 AX IAL  DISTANCE ALONG CHANNEL (meters )

Fi gure 1 Operat ing Characterist ics of RP/O2 System at 500 MW/rn 3
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Fi gure 2 shows dis tr ibut ions of the magnet ic  f ield , B , the static p r e s su re ,

p, and the Hall parameter  W7 .

The powe r output of the genera tor  is 31 . 5 MW . To obtain the de-

sired powe r density of 500 MW/rn 3 a peak magnet ic  field of 4 . 6 T is re-

quired. The field at the channel en t rance  is reduced in order  to reduce

current flow , and hence ohmic dissipat ion , to those par ts  of the gas flow

train (nozzle , channel entrance) subject to the hi ghest  convective heat

t ransfe r rate s.

Three of the channel s t ress  pa ramete r s :  the axial e lectr ic  f ield ,

E~ . the t ransverse  current  density J y~ 
and the convective heat t r a n s f e r  to

the channel walls , c~, approach or exceed desig n limits genera l l y fo und in

MI-ID generators  built to date . The axial field reache s a max imum value

of about 6. 6 kV/m at the channel exit , as compared to the maximum design

value of 4 ky/rn generall y used for  generators  built to date.  It is noted ,

however , that axial field s in excess of 4 ky/rn  have been observed in some

machines (e . g. , the A E R L  Mk VI genera to r)  for  short t imes , and i t is

possible that f ie lds  exceeding thi s value by considerable  m a r g ins can be

sustained b y generators  operating for short t imes  without  need for major

advances in the s ta t e -o f - the -a r t  of MHD channel desi gn . The t r a n s v e r s e

c u r r e n t  densi t y j~ reache s a peak value of about 11 . 5 arnp/ cn i~~, a n d  the

convec t ive  heat  t r a n s f e r to the channe l  walls reaches  a m ax in m m  value  of

about 650 W/c m 2 at the channe l inlet . This  value r e qu ir e s  c~ir e fu1  d e s i g n

of the cooling system , but p r e sen t s  no basic d i f f i cu l t i e s . F o r  e x a m p le ,

heat t r a n s f e r rates up to 1 kW/ cn i 2 a :~e f o u n d  in i- o n v e n t i o n a l l v  o o l e d l  Nu ll)

b u r n e r s , such as the compact MHD b u r n e r  r e c e n t l y  bu i l t  b y AER L.

— 1 1 ) —  
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RP/0 2 (STOICHIOMETRIC ) , 16% Cs (Wt )
M 30 kg /SEC
P0 30 ATM
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Fi gure  2 Magne t i c  Fie ld , Stat ic P r e s s u r e , Hal l  P a r a m e t e r D i s t r i b u t i o n s
of RP/0 2 Sy s t e m  at 500 MW/rn 3 
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The total heat loss in the channel due to convective heat t ransfer  to

the walls was calculated at 3. 4 MW , or about 1% of the total thermal input

to the channel. The channel wall tempe rature is 2000°K. An additional

2. 4 MW is dissipated in the electrode wall boundary layers , due to the

boundary layer voltage drop, which is about 1 35 volts at the channel

exit.

The channel is approximately squa re in c ross secti on , with an inlet

dimension of 20 cm (gas side ) and an exit dimension of 53 cm. The active

leng th is about 0 . 9 m . Channel construction details , further dimensions ,

e tc . ,  are given in Section III

Figures 3 and 4 show operating characteristics for a generator  op-

erating on a cesium-seeded solid propellant , with the following composition:

A~ : 23% (weight)

HMX: 8%

NC: 13%

NG: 38%

NDPA: 1%

TA: 2%

CsNO 3: 15%

A similar mixture has been used for generators operated previousl y in the

u. S. 6 The effective stagnation pressure is 30 atmospheres , and the total

mass flow rate is 30 kg/sec. The channel inlet Mach number is 2 . 4 . The

generator power output is 33. 2 MW .

The channel inlet conductivity in this system is higher than in the

R P - l  + LOX system discussed previously, (70 mho/m compared to

49 mho/ni) because of the higher stagnation temperature (4000 °K compared

- 12- 
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to 3500°K). The peak magnetic field required is 3. 5 T , and the act ive

length of the channel is about 0. 8 m. The maximum axial e lect r ic  f ield

is about 3500 V/m , the maximum t r ansve r se  current  densi ty is about

11 . 5 a/cm2 , and the maximum heat flux is about 700 W/cm 2 . The total

convective heat loss in the channel is 3. 8 MW , and an addit ional  2 MW is

diss ipated due to boundary layer voltage drop ( 120  volts at the channel exit).

The channel inlet is 24 cm square (gas  side),  the exit is 45 cm square , and

the act ive length is about 0. 8 m.

A compar i son  of the major  c h a r a c t e r i s t i c s of each sys tem is g ive n

in Table I. The wei ght estimate s given are for the s y s t e m s  described in

m o r e  deta i l  in Sect ion III.

TABLE I

MAJOR PARAMETERS , 500 MW/rn
3 MHD POWER SYSTEMS

System RP/O 2 Solid Fuel

Powe r Output [MW J 31 . 5 33 . 2

Power Density, Nominal jMW/m
3

J 500 500

Mass Flow Rate ~kg/secJ 30 k g/ sec 30 kg/ sec

Peak Magne t ic  Field E T I  4 . 6 3. 6

E (max) jkV/mJ 6. 6 1. 5

j (max) [amp/cm
2

J Il . 5 11 . 5

1)ry Weight ~kg~ 
2305 1695

Total Wei ght (60 sec operation ) (k gj 4625 3820
i n c l u de s  reactants and coolant)
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The stagnation pressure  and mass flow rate chosen for the systems

descr ibed previously are typ ica l and can be varied within limits . Detailed

tr adeoff studies would be necess ary to establish feasibili ty,  r isks and bene-

fits of variat ions in stagnation pressure  and mass flow rate s . Such trade-

offs  were not performed as part of this work , but some of the factors

which require consideration are outlined briefly be low. For example , an

inc r ease in stag nat ion p res su re , as compa red to the sy stems descr ibed

above , could involve the following t radeof fs :

1. Increased eff iciency (reduced flow rate requirement ) if ex-

pansion is carr ie d out to the same channel exit pressure .

2 . Re duced diffuser  requirement at the same eff ic iency since

higher  channe l exit pressures  are possible .

3. Increased heat t ransfe r rate .

4 . Inc reased  ma gn et ic fi eld r equ ireme nt ( increased magne t

wei ght) due to lowe r conductivity of working gas.

At a given stagnation p ressure , the mass flow rate could be reduced

by expanding the flow fu r the r than is required at hi gher flow ra tes .  How-

ever , the channe l exit pressure  would then be lower , and the axial field

s trength hi gher than its already hi gh value. Fi gures 5 and 6 show ope ra t ing

pa rameters  for the same solid fuel  as in Fi gs . 3 and 4 except for a mass

flow rate of 25 k g/ sec.  It is seen that the axial f ield increases  about 50%

from 3. 5 kV/rri to 5 . 2 kV/m . Operating at eve n lower mass flow rate s is

poss ible , but at hig her axial f ie lds , a nd hence , grea ter  r i sk  to the channe l .

C. CHANNE L RISK ASSESSM.ENT

The major cause of forced shutdown of MHD ge nera to rs  is destruc-

tive e lec t r ical  breakdown between axial  wall  e l emen t s . A s se s s men t  of the

- 16-

_ _  _ _ _ _  -.~~~~~~-- -~~~~~~~~~~~~~ .- .-~~~~~-~~~—~~~~~~~~~~~~~~ --



~~~~~~~ ---- 
-

~~~~
-- - --

~~~~~~
--

~~~~~~~~~~~~~~~
,-

~~~~~ 
.-.. -

~~~
-- -

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I I 1 I I I I I
SOLID FUEL (NC , N G , H M X , AU + 10% C s ( W t )

14 35 — m = 25 Kg/sec 
—

P 30 atm
8 MAX 3.6 T

2 12 30 — ~~~~~~ 70 mho/m /
* ( 

~~~~~~~~~~~~~~~~~~ /
N

E I /
~~I0 • 25 - 

/ 
-

/
•0

63631 AXIAL DISTANCE ALONG CHANNEL (meters )

Figure 5 Operating Characteristics for Solid Fuel System at 500 M W , i i i 3 ,
Reduced Mass Flow R ate

— 1 7 —

—.-— ~~~~~~~~~~~~~~~~~



~ --- -- - . —- - -~~~~~--.---- 

1 1 I 1 I
SOLID FUEL (NC ,NG ,HMX , AR )+ IO% Cs (wt)

m 25 Kg/sec
— P0 = 3Oatm

I-. ,wT
3

—

E
4-

0
—

a-
B

0 
O~2 O~3 0~4 d5 ~.6 O~7 ~.8 ~.9 

I

G3632 AXIAL DISTANCE ALONG CHANNEL ( meters )

Figure 6 Magnetic Field Static P ressu re , Hall  Paramete r D i s t r i b u t i o n
for 500 MW/mS Solid Fuel System , Reduced Mass Flow Rate

- Ih ~-

_ _ _ _ _ _ _ _ _  
~~--~~~~~~~~ — -- ..—,—



risk of such s hu t d own s ~ w h i i  Ii c a n  be as  Soc a l t  d w i t  ii e x t  i M S  I ye (lama c.~ to

the channe l , is in f l u e n c e d  10, t h r e e  ma ii i  f a c t o r

a) The p roba hi  l i t  y of ccc i i  r r en c e  of ax ia I b r e a k d o w n  (a r e t  ng

b ) The potential powe r a\  a i Ia ble cit he r to i O  i lp it ’ i n t o  s i t e  h b r e a k  —

d o wn s .

C )  ik e  t ime ( lu r at i on  o v e r  wh i c h  the pote n t i a l  f a u l t  powe r c a n  a ct

( t o t a l  op e r a t i n g  d u r a t i o n) .

The m a i n  c r i t e  n o n  used  to a s s e s s  t h e  p r o b a b i  1i t ~ of o c cu r r e nc e  ot

b reakdown is the a x i a l  e l e c t r i c  f i e ld  in  the  clia t ine I , b e c a u se  b rca k d o w n

o c c u r s  in a s h o r t  t inic , of the o rde r of a f~~y se co n ds , a t v a 51e s o I ax t a t .

field above sonic threshold value . h i gh axial fields for d u r a t i o n s  e xc e e d -

i ng a few seconds  a re  t h er e f o re a nia .I or  H sk f a c t o r  i n  c h a n n e l  d e s I gn and

opt ’ r a t i o n . Opt’ ration at low axial t~i t ’ ids does  not, howe \ e r , e ns it N’ II I  at

axia l b r e a k d o w n  w i l l  not occur . Such b r e a k d ow n  could , f o r  e~~an ip le , be

i n i t i a t e d  b y t h e  pa r t  ia I she r t i n g  of .1 ii i t i l e  r i  r a i i i e  ins it lat or , w h i c h  cci i  Id o c cu r

f o r  a var  it ’ ty  of rca so us , e . . , l o c a l  o v e r h e a t i n g  I t he  in s  ii l a t e r  o r  seed or

~-ate i~ pe net ra t  ion i nto the  i n s  ida to r i l i at e  r ia I o~~e t~ ~~.i i i i~~ I i  me pe r iod or  cv er

so me r of g e n e r a t o r  sta rt ups  or s h u t  dow u s

b e c a u s e  of the fault , c u r r e nt l e a k a g e  o cc u r s  t h r o u g h the  i n s u l a t o r ,

with an a s soc i a te d  a m o u n t  of powe i~ dissi p ation. If t h e  p ow e r  d i s s ip a t i o n  i n

t h e  insulate r is r i o nun  ifo r Ill , as  is l i k e l y , t h a t  cc g t O f l  in  wh ic Ii t h e  h i gh e s t

pow,.’ r d i s S i p a t i o n  Ot ’ C l t  rs  rca eli& ’ hi glie t~ I c I l ip e  ra l i t r e  t l ia  ii S it  r ro i l t i ( l i  ii

r e g i o n s , w i t h  a Co r re 5 potidi ng drop  in  el e c t  r t e a l  v e s s t a t i c  e . ‘l’h i~ i i i  t i i  r n

(1 r aws  mere  lea  ls ;i ge c it  r N’ n t  t o  I ha I re g i oti , th its fi t  r t  he r in c  re as i n c  t h e  d is —

s i p a t  ion a rid w o  r s  cii i ng the Ia n i t  , a rid the  i t e l  r e s  i t i t  is  a st  r on g  I a I c i i i -  r e n t

t i C  t ’ t it  r a t  i i )  ii ~ii I he in s i t  T , i t  r , i . e . , i n  a ri

- 
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The powe r avai lable  to coup le into breakdowns caused by e x c e s s i v e

axia l e lect r ic  f ields or by fa ults such as descr ibed above is in f luenced

strongl y by t he specif ic  details of the channel desi gn and its con trol  devices .

The refo re , this faul t  power is not shown on the curves  of Fi gs.  1 - 6. Ac-

curate  quan t i tati ve predict ion of damage power leading to channel  fa i lu re  is

in fact not ye t possible , but es timate s can be made , as follows . The powe r

which can be coup led in to an i n su l a to r  breakdown or fault is of the o rder  of

the voltage d i f fe renc e between the adjoining c u r r e n t - c a r r yi n g  ele me nts

time s the c u r r e n t  car r ied  by such eleme nts . For a channel  of two- te rmina l

dia gona l con f i gura tion , constru ’- te d of so-called window f rames  with

active len gth ~~, and with p itc h p, the i n t e r f ra m e  voltage is (E p )  and the

f rame cu r r e nt is ( Jy~ p
)~ where E

~ is the axia l electric field in the channel

and Jy the t r ansve r se  cu r ren t  dens i ty.  The fault powe r is then g ive n by:

~fault  = ( E J )  ~ p 2 ( E J )  C p2 ( — 4 5 ° connec tion)

(E~ J~~) is the powe r density in the generator . It is c lear  that the p itch

shou ld be made as sma ll as is p rac tica ll y possible in o rde r to reduce fau l t

power . For a window f rame  channel , this is about 1 cm , since window

f rame s thinne r than this are d i f f icu l t  to fabr ica te . T he powe r dens i ty  is

3 -500 MW/rn . Assuming 1 cm pitch, we have:

~ fault  [ wa t t s]  = 500 C ( cm)

The RP/O 2 channe l has an inlet c ross  sect ion of 20 cm x 20 cm and an e x i t

c ross section 53 cm x 53 cm as descr ibed previous ly.  Thus , a typ ical

dime nsion Q for a f r a m e  about in the iiiiddle of the channe l  is 36 . 5 cm and

the faul t  powe r is about 18 kW .

-2 u .  
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The solid fuel channe l has dimensions of 24 cm (inlet)  and 45 ( outlet)

with an average  f rame dimension of 34. 5 cm , and the fault  power is about

17 kW.

Th e ch annel r isk fac tors  liste d in a) - c) above , together with other

pe rformance  parameters  of inte res t  for var ious gene ra to r s  are shown in

Table II , which lists as a summary of the presen t  status of this technology,

combust ion-dr iven  genera tors  designed for hi gh per f ormance which have

been operated to date. Both liquid and solid-fueled genera to r s  are listed.

The Mk V (tw o terminal)  and Pamir- l  genera tors  have non-segmented

electrode walls without insulators . These have a different breakdown mech-

a nism f r o m  the o ther  channels  shown , and so compa rison on the same basis

is not valid. The 30 MW genera tor  in the table is a two-te rminal diagonally

connected channel of window frame construct ion.  It is seen that in te rms

of fault power and ope rating dura t ion , the hi gh power (lensi ty genera tors

cons idered here in  operate in a reg ime cons iderably in excess of the exist ing

sta te -o f - the -a r t  and thus must be considered hi gh r isk devices.

A potential  technique by which the r isk can be reduced is to reduc e

the breakdown power available to produc e an arc  or to coup le in to an insulator

f aul t . For a f ixed value of p i tch it was shown that the b reakdown powe r in-

c r eases linear ly with the genera tor  size , i . e .  , sca les up like the power per

u n i t  wall a rea .  When  the gene ra to r  size becomes l a rge  e noug h , as in the de -

si g n ch annel , so that  e x c e s s i v e  break dow n powe r ex i s t s , t he b reakdown  powe r

per wall element can be kept below the value which would result  in wall  des-

t ru c t i o n  by limiting the size of the wall e lement , i . e .  , by splitting the fram es.
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Th is technique can be used in conjunction with current control devices

(e.g. , r es i s to r s , in the simplest case) in o rde r  to reduce  the powe r capable

of coupling into any single element. A possible segmentation/control scheme ,

typ ica l  of that used in the A E R L  Mk VI long -durat ion g e n e r a t o r , is shown

in Fig. 7.

OPERATING CHARACTERISTICS OF 1000 MW/rn
3 

GENE RATORS

Operat ion of channels  at power d e n s i t i e s  of 1000 M W/r n
3 

was  investi-

gateci . In pr inciple , these  high powe r dens it ies can  be obta ined by use of

inc reased  magnet ic  f ie lds , ann/ o r  by use of gases  with hig h e r  vaiuc-  of the

produce ~ u~~. For the reac tan t s investigated , t he  produc t ~y u  was  approxi-

mately maximized , and for  these  r eac tan t s , hi gh power  d e n s i t i e s  c a n  be

achieved only by u se  of inc reased  magnet ic  f i e lds .  This resu l t s  in l a rge

i n c r e a s e s  in axial  e lect r ic  f ield and thus inc reases  the r i sk  of ax ia l  break-

down in’ the c h a n n e l .  F u r t h e r m o re , the hi gh magnet ic  fie ld s r equ i r ed  r e s u l t

in heavier  magne t s , which  of fse ts  the weight g r a i n s  which o t h e r w i se  mig ht

he ex p e c t e d .

Table  111 shows sonic pa r a n i e t e i s  of the c e s i u m —  s e e d e d  s o l i d  fu t - l

system ope rat ed at a nominal  power densi ty  of 1000 M W / r n  
C

• C h a r a c t e r -

istic s for operation at 500 M W/r n  a re  also show n f o r  c o mp a r i s o n . It  c an

Lie seen that  at power  d ens it i e  $ of 1 000 Nt W/rn  ‘ a x i a l  fields in t h e  cl i i i  nn e l

a r e  hi gh , and that  the r educ t ion  in tota l  we ig ht  is less t h a n  11) ’ ; C o i t l j h l  r ed

to ope r at ion  ~i t  ~ 00 M W/ r n  ~~
. The ax ia l  f i e l d s  can  be r educed  by ope n i t  i o n

;
~~ h ighe r mass  flow ra t e , as exp lai ned previously, b i t t  t l i i ’  t o t a l  ‘v e i g l i t

inc hiding c c i  c tat -its , is t hen  g n a t e  r f o r  ope r i  I i ng  ( lu ra  tions of i u i t ~ r e st

— 
)
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TABLE III

SYSTEM WEIGHT S COMPARISON

(Solid Fue l , Cs Seed)

Nominal Power Density [MW/rn 3] 500 1000

Power Output [MW ] 33 32

Mass Flow Rate [k g/sec ] 30 30

Peak Magnetic Field [T] 3.6 4 .5

E (max) [kY/rn] 3 .5  8.8

(max) [amp/cm 2
] 11 .5  13.6

System Dry Wei ght [k g] 1695 1480

Tota l Weight (60 se-c operation) [kg) 3820 3530
( include s reactants  and coolan t )

Operation at power density of 1000 MW/rn 3 and with lower axial f ields

can be achieved by use of working gases with hig her electr ical  conductivity,

such as C2 N 2 + with cesium seed. This working gas has an e lec t r i ca l

conductivity of 150 mho/m , abou t double that obtainable with the solid fuel.

Ope rating parameters for t h i s  case a r e  shown in Table 1V and it is s e e n  t ha t

a x i a l  l i t -  Ids reach  a n i a x  i rn i tn i  v a l u e  of abou t 6. 5 k\ ’/rn , w h i c h  IS CO O S ide i~ —

abl y less  than  those  of the so l id  f u e l  sy s t e m s  ope r a t e d  a t  the same p O \ v e r

d e n s i t y  - 1’ r a n sv e  rse  c u r r e n t  d e n s  i t y  i s  i nc  ce ase d  b y abou t  1 ‘ .

The most  a t t r a c t i v e  sy st e  h i s  a r e  the cc s iui i i  seeded  so l i d  f i te  I s v s  I t i l l s,

ope rated a t  500 MW and  the RP/O , system , also at 500 NI \V ~~ 
C 

Ope r~i -

t i o n  at h i ghe r  powe r d e n s i t y  in c  r e a st - s  s i g n i f i c a n t l y  t he  r i s k s  i n v o l v e d  i n  c h a n —

flC I dcvt .lopnit- nt , w i t h  reduc t ion  in  total ~v ei  ght  of  o n ly  abou t  1 ()~~n . hi c lo ’’’se

-~~~ 
c_

L ~~~~~~~~~~~~~~~~~~~~~~~~~ .
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TABLE I V

C
2
N2 + °2 

SYSTEM CHARACTERISTICS

Nominal Power Density 1 MW/rn 3] 1000

Power Output (MWJ 33.6

Mass Flow Rate [k g/ sec ] 30

Peak Magnetic Field [Ti 4 . 2

E (max) [ky/rn] 6.5

2
j (max) [amp/cm 19 .2

System Dry Weight [k g] 1660

System Total Wei ght 1k g] 3730
( inc lude s r eac tan t s  and coolant for
60 sec ope ration)

between the two s y s t e m s  r e q u i r e s  c o n s i d e r a t i o n  of r e a c t a n t  h a n d l i n g  a n d

storage systems and auxi l iary  sys t ems . Some d i s c u s s i o n  is  g i v e n  in

Section III.

The cyanogen fuel systems can probably be e l i m i n a t e d  f r o m  con-

s ide ra t ion  because  the fuel  is toxic and  poses  s e v e r e  h a n d l i n g  p r o b l e m s .

— ‘~ i
_
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SECTION III

SYSTEM DESIGN

Figures  8 and 9 a re  funct ional  block d i a g r a m s  of the RP/ 02 sys tem

and the solid fuel  sys tem, respect ively. The major  components and sub-

systems are  shown , including the gas flow t r a in , magnet , cool ing system

contro ls , and the r eac t an t  s torage and feed system (RP/ 02 system only) .

The cooling system is necessa ry  for  the channel and di f fuser  for  pulse dura-

tions which exceed the component capability for  hea t  sink operation . The

liquid fuel combustor  is regene ratively cooled , and the solid fuel combus tor

is ab la t ively  cooled . The principal d i f fe rence  between the solid and l iqu id-

fueled systems is that no reactant  s torage  and feed system is necessa ry for

the solid-fueled genera to r .  The major subsystems of the genera tors  a r e

discussed in the following subsect ions .

A. ESTIMATED W EIG HTS

Est inia te d wei ghts a r t .- g iven in Table  V f o r  the MH F) ge n e r a t o r  p ower

supplies shown in Fi gs . 8 and ~1. Wei gh t s  g iven i n c l u d e  t h o s e  of the  b u r n e r

and  n o z z le , channe l , d i f f u s e r  (opera t ion  at sea level is assumed\ , magnet

and  consumab le s . Tab le  V shows we i g l it s  of s y s t e m s  d e s i gned for  eon -

t in u o u s  o p e r a t i o n , or pu lsed  o p e r a t i o n  at shor t  i n t e r v a l s , and t h e r e f o r e

in c l u d e  a l so  the  w e i g ht of a c h a n nel  c o o l i n g  sys tem. In t he  c a s t ’  of t l i t ’

so l id  fit i - i  s ys t ciii s , the w c i g u t  of t h e  b u r n e r  depends  on t ii c t o t a l  am oti i it

of r eac t an t  requi red , s ince  b u r ner  and r e a c t a n t s  a r e  i n te g r a l  w ith each othe r .

The prope llant  wei ght f r ~i c t ion was  i s  sunic d to be eo~~.

L _ _ _  

-
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I A F 1 5 E  V

ESTIMATE D WE IGHTS OF 30 M W  ( N O M I N A L )  MI-ID G E N E R A T O R S

POWE R DENSIT Y IN C H A N N E L :  500 MW/in
3 ( N O M I N A L)

System RP/ 02 Solid Fuel

Weig ht (kg)  Weig ht (kg l

Combustor/Nozzle 125 l80~

Channel/Diffuser 130 110

Magnet Subsystem 1, 190 890

Cooling Subsystem (dry)  2 15 215

Control s and Instrumentation 80 80

Reactant  Storage and Feed Subsystem (dry)  285 -

Support Structure 280 220

Comp lete System (dry) 2, 305 1 , 695

Reactant s (60 sec operation) l , 995~ ~ 1 ,800

Coolant s 325 325

Comp le te  Syste m ( w e t)  4 , 625 3 , 820

— 

Refers  to RP/02 system , per formanc e as in Figs .  1 , 2 .

‘‘ Refer s  to solid fuel syste m , pe rforma nc e as in F igs .  3 , 4.

Propellant f rac t ion  = 0 . 9 .

Includes 1 0~ ullag e .

— 

~~~~~~ .. - - ‘ - 5 - -----5---— -- --- ~~~~--- . -— - - ..
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E s t i m a t e s  of component wei ghts in Table V a r e  b ased  on r c e cn t

work i n c l u d i n g  the  d e t a i led  des ign  of a g r o u n d - b a s e d  p ro to type  10 M W  M I I I )

gene r a t o r , and r e p r e s e n t  cu r r en t  s t a t e - o f - t h e  - a r t  t e c h n ol o gy .  The

wei ghts shown do not inc lude  the  weig ht of power  c o n d i t i o n i n g  e q u i p m e n t

which  may  be r eq ui r e d . If s h i e l d i n g  is n e c e s s a r y  f o r  t le~ magne t , t h e  mag-

net weight and thus the system weight , is i n c r e a s ed  cons iderab l y .  The spec i f ic

amount by which the weig ht is increased  depends on the degree  of shielding

required.

The c ooling system in the table is primari ly for  cooling of the channe l

and diffuser , but not of the burner , sinc e liquid fuel burners  can be regen-

eratively cooled by the reactants  and solid fuel burners  a re  uncooled. For

operation at durations up to about 30 seconds , hea t -s ink  operation of flow

train components may be possible , thus eliminating the need for the cooling

system. The weight saving so made is considerable , for  most systems , as

can be seen f r o m  Table V .

The solid fuel system is about 17% lighter in total weight than the

liquid fueled system, for 60 seconds operating time . This is possible for

two main r easons:

1. The solid fuel  sys tem needs  no r e a c t a n t  s t o r a g e  and feed  s y s t tn i .

2 . The m agnet is of lower f ie ld , and l i t -ne t ’ , l ig h t e r  wei ght , bc - i ’ u --~s

of the i n c r e a s e d  c o nd u c t i v i t y of th e  s ol i d  fuel  (7 0  mho ‘ n i l  ‘. oni -

pa i-ed to the l i quid fuel (4° n i h i o ’m) .

B. GENERATOR DESIGN

Design layouts of the  gas  fl ow train and m a i z n t t  f o r  both  t h e  so l i d

fueled and the  l i quid fueled gene rat or s  a r e  shown in Ft gs . 10 and  I 1 .

- ~l

_ _ _ _ _ _ _ _ _ _ _ _  -5 --~~~~~~~~--,-—..
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I
Th e liquid fuel  s y s t em  has an  overal l  l eng th  of ~~. 7 in , and an overall ( h a  —

m e t e r  of I . 6 in. The solid fuel  s y s t e m  is als o a bout 3. 7 in long by I . in

in dj a n i t ’t c  r .  The solid fuel  sy s t e m  has  a s l i or t e  r d i f f u s e r  than  t i n -  l iquid

fue l  s y s t e m , b e c a u s e  the c h a n n e l  s >:i t  p r e s s u re  is  Iu c~n - r . a n d  t h e  d H f i ~ st ’r

can  have low-er  p r e s s u r e  r e c o v e r \ — . Th s  sol d f~n -1 h t i r n ’ - r  ~s l . i r~~~- r  t h a n

the  l i qu id  f~iel b u r n e r , b e c a u s e  it c o n t a i n s  f i t s  f u s - 1 r s ’q t j i~~~-d t s r  t i a  t ’ t

o p e r a t i n g  du ra t ion.

The channe l , magne t  and d i f f u s s  r a r -  ~- i t o d a r  ri d — . -~ or

s y st em s , but  d i f t s ~’r to some d e ’& r c c  in i t , - r i s i i s n s  an d  v~~5 ~~~~~ 
¶~~ ‘. It 0 or  n-

c ipa l d i f f - ’r ~’nce b e t w e e n  t h e  two y~~t s ’ n~~ is  to  t h e  W~~~~O F - 0:01 i s s o c i a t t - d

subsy ~ t e n ’~-~.

The liquid fuel b u r n e r is r eg e  n s r . i t iv e l  y c s - s  i i  5 d  v ¶ he  t m - I , a n d

follow s conven t iona l  r o c k e t  eng ine  p r a c t i c e  in a s t  r e sp s ’~ I s . ‘I he .~ ed f o r

ad eq u a t e  seed ing  of the g e n e r a t o r  t : i e a n s  t h at  the  hu r m -  r ~ ii c so n i e wh a t

l a rg e r  than a rocke t  engine  with t he  sa i n s  mass  f l ow  r a t e  t al low ;n f c q i l at e

r e s i den c e  tin~e for seed vaporization. [ ‘or pui  si~~ i t e r a t i o n  sonic d e v e l o p —

mn ent  would be r e q u i r e d  s inc e this t y p e  of o’ & r a t  i n  imp o s e s  r e q u ir e m e n t s

on the ti~n it i o n  system , the fue l  feed  S \ st s ’ r 1  i t t ~(1 the  coo l ing  s y s t e m  which

di f fe r f r o m  those  of conven t iona l  r a c k e t  eng ines .

T h e  r e a c t a n t s  used in the solid fue l  sv S te  in a re based on those used

for the h l & - r c u l e s  X— ~~~° - -\ ts ~o ck ct  motor :  a t i i t  :- ( g 1 y~ e r i n — n i t r o c  ellulose

ba se , c o n t a i n i n g  IIM X i lumn inumn an d  c e s i u m  seed !ltat( ’rial. lhc grain is

i n t e r n a l ly b u r n i n g ,  with a b u r n i n g  r a t e  of ab o u t  0. i nch e s  s e con d .  Th is

co m b i n a t i o n  is chosen because  it has  seen  use (I  as  a n  M I I I )  g s - n - r i t o r  f ue l

by I l e i c t i l e s  Powder  ~. o!1 ipa i iv , 
( 6 1  a t  e f f e c t i v e  s t i g n t t ’ i s n i  p r e s s u r e s  of i i o n t t

— ~ -I —
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30 a t m o sp h e r es , as required in t h i s  g e n e r a t o r s  i n v e s t i g a t e d  h er - . For con-

tinuous ope ra t ion  a scale d v e r s i o n  of the  X - 2 59 -A 6  motor i tself  c ould be

used . The moto r con t a in s  a bout 1200 k g of p rope l l an t  and has  an  a c t i o n

time of about 33 sec o n d s .  For con t inuous  o p e r a t i o n  of an M i l D  g e ne r a t o r

at 20 kg/3ec for 60 seconds  aominal  c o n d i t i o n s) ,  the web  of the g r a i n  would

be about twic e as thick as in t1~~- r o c k e t  niotor , and  tL~ g r a i n  would be s h o r t e r

For pulsed  operation of solid f ue l e d  g~~s g en e r a t o r s  of the size re-

quired for  the MHD g e n e r a to r  more  e x t e n s i ve  deve lopment  will  probably

be requ i red .  Solid rocke t  motors  opera ted  in multiple b u r s t s  to date have

been relatively small. A multi ple burn  solid propel lant rocket motor d e s i g n

was  used in the  SRA M p r og ra m .  The multiple b u r n s  w e t s  a cc o n i p l i s hed  by

means of insulator/ignite r units in the form of wafers which s epa ra te  in-

dividual grains. However , the gas  gen e rat or  fo r  the M I l D  app l ica t ions

woul( .l d i f f e r  ii i  the following major respec ts  f r o m  th e  S R AN i  rocket  m otor:

1. A multi -burn capabi l i ty  of 20 is required , ve r sus  2 for  the

S R A M  motor .

2 . The MIlD gas g e n e r a t o r  is about  2 - 2 1/2  t i n -a s the d i ame te r

of the SRAM motor.

In addit ion to the SRAM motor , w h i ch  w a s  i s ’ s  s tL~ n half the d i a m e t e r

of the proposed MHD gas generator , another motor , also with s ep a r a t o r

w a f e r s , was operated for some 40 pulses of 5 second duration per pulse.

H o w e v e r, this motor has a mass  flow of about 2 . 7 k g/ see , or about  1 0’ .

that  of the proposed MHD gas g en e r a t o r .

Pul sed opera t ion u sin g w a fe r  i n s ul a t o r/ i cn t s - r s , in the S i /e S  r ’ q n i r s s!

for the MUD app lication , would require an i-nd — b u r n i n g  p t a i l  e s i i t i  g n t t

- 

- 
_ _ _ _ _ _  _ _ _  _ _ _-‘ -__-_
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with a f a s t e r  burning rate than the gra in  used in the X -2 59-A 6  motor.

For typical pulsed applications , i . e.  , pulses of 7 seconds each at a mass

flow rate of 30 kg/ see , the grain length per pulse is about ~ cm , at the

burning rate of 0 .3  inch/sec . The grain weight required is 210 kg, and

the grain diameter can then be found to be about 1 .7 m. A grain of this

configuration may be difficult to ignite with SRAM-type wafers , because of

the very small thickness of the grain, relative to the diameter. Higher

burning rates would allow longer grains of smaller diameter .  A burning

rate of 0 .6  inch/sec was assumed for the desi gn layouts.

The channel, magnet , diffuser  and channel cooling system follow

des ign s developed previously for  a compact 10 MW MIlD genera to r  ~7)

F igure  12 shows details of channel construct ion and also shows a non-power

producing model channel which was built and tested in a previous  p r o g r a m

to ve rif y the design ideas. The channel is c o n s t r u c t e d  of e s s e n t i a l ly con-

tinuous window f r a me s .  If segmented f rames  a re  found ~o ri n e c e s s a r y ,

as discussed in the previous section, design m o d i f i c a t t o ns  ca rt  h -  m a d e  to

accommodate this requirement.

The f rame s are formed of thin-wall coppe r tubing which is shape d

to fo rm the p roper  c ro s s  sec t ion  and wh ich  a r e  o r i e n t e d  at [ I t s -  a p p r o p r i a t e

diagonal  ang le to the  flow (Fi g. 1 2 ( h) ) .

The gas side ( c u r r e n t - c a r r ying)  su r faces  a re  of z i rconia  c e r a m i c

cast between fins which arc- brazed to the tube s (Fig . 12 ( a ) ) .  I n s u l a t i n g

ce ramic  (magnes ia  or alumina) is cas t  between ad j a c e n t  t u b e s .  A f i l a m e n t -

wound g lass re inforced  epoxy shell is laid U~~ a round  [l ie  tubes  a rid bon ded to

them.  The  s h e l l  is the main  s t r u c t u r a l  n i e t i  h e r  of t li ’ c1i~t i n t e l .  i i i ’  gas

-5 —- -- —
— —  -- _ a - — -%
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sea l  is a l a y e r  of s i l i c o n  rubbe r be tween  the shel l  and the t u b e s . The g a s -

ti ght sea l s  a 15 c m ade a r o u n d  the  tubes  which p r oj e c t  t h r o ug h t i t s  o u t e r  shel l .

A concep tua l d e s ig n  of the m a g net  is shown in Fi g s .  13 a n d  14 . T h e

magnet  uses  fu l l y bonded coil  w i n d i n g s  to s u p p o r t  t r a n s v e r s e  sh e a r  and

compre  ss ive  to t~ces  . A supp  ml s t r u c t u r e  s x t e  rna l  to the w i n d i n g s  s up p o r t s

ove ra l l  magne t  loads el a s t i c a l ly w i t h i n  de f l ec t ion  l imi t s  that do not i n d u c e

ex c e s s i v e  s t r e s s e s  in the wind ing  s t r u c t u r e .

The d i f f u s e r  de s i gn c o ns i s t s  of a cons t an t  a r e a  sup e r s o n i c  d i f f u s e r

sec t ion  followed by a d ive rg ing subsonic d i f fus ion  se c t i o n. The l eng th  of

t h e  d i f f u s e r  is governed by t h e  p r es s u r e  r e c o v e ry  r e q u i r e d  ( r a t i o  of am-

bh -nt  p r e s s u r e  to channel exit p r e s s u r e ) .  For r e c o v e r y  to 1 a t m o s phe re

(sea  level)  f rom a channel  exit p r e s s u r e  of 0. 45 atmosphe res , a s  fo r  t h e

R P/ 0 2 sys tem (F i g. 2 ) ,  a d i f f u s e r  of lengt h equal to about 3 i n le t  d i a m e t e r s

(channe l  exit d i a m e t e r )  is r eq u ir e d . For the  solid fuel  case  w i t h  h i gh e r

c h a n n el  ex i t  p r e s s u r e  (Fi g. 4 ) ,  a s h o r t e r  d i f f u s e r  can  be u s e d . The

d i f f u s e r  can be pa r t i t i oned  as shown in Fi g. 15 in o r d e r  to r e d u c - th i - s -f -

fe c t i ve  l e n g t h , but  this  in t roduces  add i t i ona l  m~’chanical  and c o o l i n g  sy s-

tern comp l e x i t y .  Th rus t  loading could be mm m ii 7,ed b y b i f t u  r s  a t ion  al  t i n -

exhaust  duct .

The c o o l i n g  sys t em fo r  the channel  is a p u m p - d r i v e n  f o r c e d  o n-

ve t  [ion c lo sed  loop u s i n g  ~v at e  r as the  l i t - a t  t r a n sp o r t  liii id , in  o m h in ~i t i on

t b  a s e c o n d a r y  w a t e r  boi loff  open loop w i t h  v e n t i n g  ov~ rh o t rd . The f low

d i a g r a m  for  t in -  sy s t t - m  is shown in Fig.  16 . S i m i l a r  s y s te m s , but on

— --- -- - 5 -- - - -- - -~~~~~~~~~~~ -5- _ _ _ _ _ _ _
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- INSULATED METALLIC

I 
BEARING STRIPS , BONDED

/ TO COIL PANCAKES

I

I Lik FLOW DISTRIBUTION
TRANSVERSE PASSAGES
TI E RODS

RING STIFFENED BORE TUBE (COMPRESSIVE SUPPORT)

i WEDGE SPACERS

L 00 TENSILE SUPPORT

RADIAL TIE BOLTS (SECURE ID AND 00 SUPPORTS
THROUGH WEDGE SPACERS TO FORM OVERALL
SUPPORT “ BEAM )

09417

Figure 14 T r a n s v e r s e  Section th roug h the M a g n e t

The conceptua l  de t a i l s  of the l a t e r a l  suppor t  s t r u c t u r e
and the winding a r r a n g e m e n t  a r e  shown.  The coo l ing
passages  in t he w i n d i n g s  and the f low d i s t r i b u t i o n  p - s s s t c e s
in the suppor t  s t r u c t ur e  a r e  i n d i c a t e d , h ut  t he  o v e r a l l
c i r c u l a t i o n  p a t t - cn and f l ow  m a n i f o l d i n g  i s  no t  shown .
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a much smaller scale , have been used successfu l ly for airborne electronics

equipment cooling. Lightweight , h igh-performance pumps which meet

anticipated temperature and pressure  requirements arc  available and the

water  boiler can be custom designed on the basis of aerospace heat ex-

changer design experience.

C. R E A C T A N T  STORAGE AND HANDLING

A m aj o r  d i f f e r e n ce  between the li quid fuel sy s tem and the solid fuel

sys tem is that the li quid fuel b u r n e r  r equ i re s  a r e a c t a n t  s to rage  and feed

sys tem, and the solid fuel bu rne r  does not , since the bu rne r  and i t s

r E a c t a n t s  a r e  e s s e n t i a l ly in tegra l. The r e a c t a n t  s t o r a g e  and feed sy st e m

is an i m p o r t a n t  subsys tem of the  li quid fuel ge n e r a t o r  and a f f e c ts  both  [l ie

s i / c  and  wei ght of the c omp lete sys te m a n d  i ts  o p e r a t i on . D l f f e r e t l e L -s  be-

t w e e n  the two  s y s t em s  due to the s t o r a g e , f e ed  a n d  h a n d l i n g  ol the  r e a c t a n t s

a r e  d i s c u s s ed  be lo\ \

1 . Liquid Fuel Cornbustor

a) Operat ional  Mode

The combustor  is r egenera t ivel y cooled , us ing  the  RP fue l as the

coolant .  The o x i d iz e r  is l i quid oxygen , fed to t h e  e o r n i n u st i o n  i han i b e  r

i nj e c tor  by a t r ub o  —pu mp which  a l so  ,~~~~~s the  R T~ t h r o u g h the  s y s t e m .

The  t u r b o - p u m p  sys tem was  seb-  t e d  over a pr - s s i t r i z ’ - d  t ank  feed  s \ ’st em

in order to avoid pressurizing large reactant tank s. Seed T 5 i n j e c t e d  t n t o

the c o m b u s t i o n  c h a m be r  as a li q u id  f r o m  a p r e s s u r i ze d  tank .  1 he  t a n k

is  s m a l l  because  of the  smal l  amount  of seed u s e d .

4~~.
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The main operational adva ntage of this syste m ove r the solid pro-

pellant system is that the number of f i r ing pulses and the minimum pulse

length can be varied. The importance of this depends on the specific ap-

plication. Because of the many components in the liquid fueled systei 
*

its inherent reliability is not as high as that of the solid propellant system.

However , experienc e gained with space hardware has demonstrated that

high reliability can be obtained. By using a programmable  sequencing

logic system in conjunction with all the s tar t/ s top and running  steps , it is

possible to have essentially the same one push button f i r ing c ontrol as in

the solid propellant system.

b) Storage and Feed Systems

A schematic diagram of the reactant  s torage and feed system is

shown in Fig. 17. The system is sized for 60 seconds of ope ration .

Briefly, the system consists of:

(i) Gas Storage Assembly - A titanium alloy helium tank with a

capacity of 6 lbs at 3000 psi , fill and vent valve , isolating valve s , regula-

tors and check valves to prevent the inadvertent  feedback of propellants

into the gas system.

(ii) Propellant Storage Assembl y_- The oxygen tank is a vacuum

insulated aluminum alloy tank of 3020 lb capacity wi th a desi gn operating

pressure of 35 psia . The fuel tank is alurii inutn alloy with a capaci ty  of

1250 lbs and operating pressure  of 15 psia . Tin- ces ium tank of A286 stain-

less steel has a capacity of 300 lbs and an operat ing p re ssu re  of 660 psia .

The t r ie th ylalu m i n u m t t s I ~d fo r  i g n i t i n g  t he  p r o p e l l an t  S i s  s t l s r e d  at  400 p~ 
a .

2 1 lb of t r i e t h y la lurn inum is p rov id ed . ! l u ~- t snk i s  s o a de  of 0 ( 0 1 1 4 —

a luminum alloy.

- 4 4  -
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Sph e r i c a l  tanks a r c  shown , to minimize w e i g l~t .  u s e  J r i ) 1 ) 4 lld at

s tor au ~c assembl ies  include manua l vent — - a l v e s , fill valve s and isolating

valves and an oxidizer  tank re l ie f  valve .

( i i i )  ~~~~~~~~~~~~~~~~~~~~~~~ 
This  o ns i s t s  of a ~in t  g tI  s t u r b i n e , cea r

box , oxidizer and fuel i~umps , gas genera tor , sta r t tank s , ann

control  s y s t e m. ~~~mp speed cont ro l  is by n l e an s  of c av s t , u t l r 5 g ve  I S t u r  5

in the liquid propellant feed f rom the nun i j )b . S tar t  t u g  is a c h i ev e d  by

using p r e s s u r i z ed  s tar t  tank s , the fuel in a i) c I lGW S tank p r i  s s u r i z e d  with an

inert  gas , and the oxidizer stored in th~ gaseous ph a s e .  A heat  ex c h an g e r

mounted in the turbine e x h a u s t  vapor i zes  the  oxygen  fed to t b .  - g a - 4  g ’- n -

era tor  and the s tar t  tank so that the gas gene ra to r  L n l e c t o r  a l w a y s  ope rates

with ~aseou s phase oxygen . The s t a r t  t a n k -~ autom a t i c a l l y r - c h a rg ’ - I L )

Lull p ressure  when the turbopump reaches  ( leSign ru nning c o n d i t i on s .  Check

valves p r e ve n t  loss of s t a r t  tank c h a r g e  on the inle t  side and the  s ta r t  stop

con t ro l  va lves  on the  d e l i v e r y  side .

e l  G r o u n d  S e r v ice

Reac tan t  loading is required on the ground because  the oxidizer  is

c ryogenic. Ground servicing ‘viii t h e r e f o r e  employ the ~- l ; t l ) O r t S t I  p r o c e ( lU r e S

es tab l i shed for the  space p r o g r a m .  To fa c i l i ta 4o_ e a s ier  s erv i c ing  by not

i n v o l v i n u ~ the a i re  raf t , i t  may  he d e s i r a b l e to moun t  t i a - - r e a L  t a u t  s t o r a e e

sys t em an a p a l l - t  and serv ice  it in a r e mo t e  a rea and then load aboard  the

~ ~~~ raf t . T l t c -  inte r fact -  wi th  t h e  ci ( - c t r i c a i  g e n e r a t o r  is sin pier  than  fo r  t h e

solid propellant  sys tem b e c au s e  m aj o r  n u e c h a  iu i ~~u l c o l it i e ct i o n S  i . ~
- . , gas

i2(~ 01’ r at or to  M I I I )  channel)  a rc ~o t ’ e  qu i red  .

R i - si d es  t h e  l o a d i n g  r i - q i l i r e m s i u t . a p m o i ( R t r t ’  is nee ’ - s s i ” y

for serVicing 4 he  t i T J ) l  y prop ellant s y s t ei i i  t i t e r  l~~ti d i i i g ,  \v lu i c l I  is

- — 5 -  -- 
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c r i t i c a l  when r ecyc l ing  the s ys te m . N l o r ~ u t ~d bi g i r  S k I l l e d  g r o u n d n t r —

sonnel  would be r e q u i r e d  fo r  r e l o a d i t i g  I h t ~- v ~ t i m  \~ l r s t i  s s i t  sv st  c o t .

dl Log i s t i c s

The shipping and s t o rage  of J l’— 4 and s er d  ii~~ s t  c t~ie I p r e s s - u t  no ( ! i f —

ficulty. Shipp ing and  s t o r age  of LOX requi res  m o r E -  e l a l S u r a l L - p r oc * - ( i u r &- s ,

such as are  used in the space p r o g ri  m i t .

~~. Solid_ Pr~~~e l l a n t C o nib u s t o r

a) 2pyrat ional  Mode

The main o p e r a t i o n a l  a d v a n t a ge  of the s o l i d — f u e l e d  s y s t c m t s  ~-om np a r u( 1

to a liquid fueled sys tem is in the simpl ic i ty  of f i r i ng  t:he gas g e n e r a t o r .

Initiation of a burn  cons i s t s  essen t ia l ly of pushing the f i r e  button fo r  each

required pulse , with a mnininiurn of p r e — o p e rat ion c h e ck o u t .  S tan d ar d  in t er -

locks with the e lec t r ica l  power gen~- ra to r  system would be c o n n e c t e d  t o

the  f i r i n g  c i r c u i t .

A n o t h - r  a d v a n t a g e  is th a t  t he  Cs seed m a t e r i a l  is c a s t  i n t o  t h e  L r u i n ,

t h u s  &~I imi  nat  ing the  ni 1( 1 f o r  a s e p a r a te  ~~ u -d f & - e d  ~ v st em.

A c 1 i s a d v a n t a t ~s - ol  t h i s  s y s t e m  is t h i t ’ I i i i  t h a t  t h e  i e n g t l u s  of  t h e  I n t r o

and  h e n c e  t h e  l e n g t hs  of  l u t e  e l eL - t r i c a l  p u l s & -s  a r i  f i x E d by the  fue l  g r t i m i

d e s i g n . The n u n  i n iu n u  p u l s e  I n t r o  i l n S t  is , n o r t u  a l ly , t h a t  r equ i  rs i i  t o  bu rt i  an

i n d i v i d u a l  g r a i n , u n l e s s  c m i i i  r s 2 e m i c y  s h u t  — d o w n  ro~~e d ur r s  I r s  t iup l e v i d .

Thu s , I h e  d u r a t i o n ( s)  of t he  s - l & ( t r i c a l  p u i s t - o r  pu l s e a  a r E - J ) t ~( ’ ( l . t L t ~i i i m i t ) l

b y t he  i n i t i a l  g r a i n  s u e  au d i c o t i t u g u t r i t u o n .  I-i s ~.a h i l l y  ~~i t 1 t  r E - -p  to  p t t i ~-

d u r t t ioii - m d  i n t e r v a l  is  l i n h i t e d i . I l i e  U - n g t l i  u I  t h .  s l E E t  r u E  i i  P01s1 t i - c i m i t

t h e  \ 1}II ’) s~ene r a t or  is  e s s s - n t i a l l v  t h i - s l i ~ 1s ~ t I n  1eti ~~t li at  t I n -  l i t t i i i o u u

p u l s e , b e c au s e  t h e  g i - t i e r u t o r  p r o d u c t -s  p . n v e r  i s  l u a u -, i s  t h e  ~ o r l 4 in g  g —

f low s t l t  r o t  ig hi t } i s -  I i  t i n s - i . l’ 1 -  r i s  s\\ u i- p r o d o s  in in  i c  t n t  s r  r - d i d

- - 1 7 -
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only by shutting off the magnet ic  field , which is not possible during the

short  pulse length , or by open circuit ing or shor t -ci rcu i t ing  the genera to r ,

which would cause excessive electrical s t resses  within the channel .

b) Ground Ser v ice

The most  likely mode of operat ion expected is that the r eactant  g ra in

and the combustor/nozzle  a re  in tegra l , and that the c omplete unit will be

assembled to the rest of the MHD genera to r  for  each mission. This will

require  careful handling of l a rge  un i t s :  for 60 second ope r ation , the assem-

bly is about 1. 2 m in diameter, 1. 6 m long , and wei gh s about 2 000 k g. It

is proportionall y larger  if longer  operation is requ i red. Bes ides  the  actual

lif ting of the combustor/nozzle/reactant  unit aboard the a i r c r af t , it is

necessary  to control the movement of the unit so that the gas seal between

it and th e generator ch annel can be p rope rly accomplis h ed.

A possible design with some handling advantages is to mount the gas

generator on a stru ctural pallet which would take up the th rus t  load , support

the combustor , and act as the lift s tructure for putting the unit aboard the

a i rcraf t . This in turn would be attached to the a i r f r a m e  when in place.

Another  mode of operation is to load the reac tant  g ra in  into a c om-

bustor shell which remains attached to the MHD channel . In this  case , the

nozzle would requi re  cooling so that it need not be replaced af ter  each

miss ion as would be necessa r y for the ablativel y cooled nozz le  used in the

f i r s t  mode of operat ion descr ibed  above .

c)  Log istic s

The logis t ics  plan for the gas genera to r  would be the  same as that

used fo r mis s i l e  weapon system s. One added f e a t u r e  wh ich  can be con -

s ide red  is the r e c y c l i n g  of the empty p r ope l l an t  s a s e  to the p r o p ef la n t

- -p4 - 
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l oad ing  c o n t r a c t o r. Th e shi pp i n g  c on ta ine r s  p r e s e n t ly u s e d  for  miss i les

are  re turned  to the f ac tory ,  and  the empty c omnbustor  ca ses  can be sent

wi th  them. Rocket  motor cases  can be r e c y c l e d  and c o n s i d e r i n g  the  end

use  appl ica t ion , such  an approach is j u s t i f i a b l e and cos t  e f f e c t i v e .

_ 4 L i  — 
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The magnet  is regarded  as a c r i t i c a l  component because a) f a i l u r e

to produce the required fields would resul t  in degrada t ion  of g e n e r a t o r

power output; b) the magnet  is the heaviest  s ingle component  of the sys tem ,

and represen ts  about 50% of the system dry weight (more  if shielded);

c)  the gap between exi sting technology and required  technology is l a rge ,

with respect to size and weight of the required magnets  compared  to mag-

nets which have actually been bui lt.

The burne r is another important component because of its dominant

influence on the gas electr ical  conductivity , through the e f fec t s  of burner

losses on gas temperature .  Relativel y small reductions in gas temperature ,

due to increases  in burne r losses , resul t  in large  reduct ions in e lec t r ica l

conductivity, and henc e , in generator  power output . Development of bu rne r s

for  c ontinuous operation represents  a relatively s t ra igh t f o r w a r d  app l icat ion

of existing rocket technology , e i ther  solid or liquid fueled.  Some niodifica-

tions are necessary  to ensure seed vaporization anti uniform seed diStr i l)Ut i o f l

in the gas. This is probabl y more easily accomplished with solid fuel bu rne r s

than with liquid fue l b ur n e r s .  I- or pulsed opera t ion , with the reac tan ts  to

be used for the MHD g e n e ra t o r , soni c deve lopmen t  of b u r n e r s  will probabl y

be necessary, particularl y of sol id  — f u e l e d  b u r n t -  rs , as  t h i s  t ype  of o p e r a t i o n

represents  a l a rge r  de pa r ture  f r a n -  c x i  s t i n g  rot. k s t  t o r i  lie t e ch n o lo g y  than

dOes cont inuous  opt -  r u t  t i  ( i t t .

The channe l  ope r at e s  in t n - g u l l s -  i f l  w h i ch  t l i t ’ p ot t t i t t ; t I  f a r  s i t m i t a g s -

resul t ing f rom axial  s - l e c t r i ~~s I  h r c s l - d ’ ii i s  u - m t t .  Ii l u i r l t , r l i t - t n  in  o t l u i - r  M I I I )

channe l s  o p e r a t e d  to d i  I s - . T h e  cc f t i r t -  t l~~- s l i i  mt t . I u m t u s t  t i -  s u m l s i ( l s -  r t -d a h i g h —

r i sk  c onipone ru t .  I ) m - v t - I  op lu  te  mi t  of i i  H i t  ~ e i t - i t t  
~~

t (  iw t -  m - - s I t  I t u g  lm:m h u e  I s  t
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required.  Lightwe ight model channels have been built and operated unde r

hot gas flow conditions , but not yet to produce power.

Operation at 1000 MW/rn 3 increases the risks for the magnet ,

because of the higher  fields required , and for the channel , because of the

more severe electrical s tresses , particularly the axia l electric field.

System weight s a re r educed by about 10%, compared to operation at

500 MW/rn 3. Risks can be reduced by use of reactant s producing hig her

electrical conductivity, which allows lower magnetic and electric f ie lds .

However , the disadvantage , perhaps crucial , of such reactants is that they

are highly toxic and difficult to handle.

A development plan and suggested schedule is show n in Fig. 18 for

generator  operation at 500 MW/rn
3
. The plan is in three phases , as follows:

Phase 1 - Fabrication and operation of a channel opera t ing at

500 MW/rn 3 in an existing MHD test facility. The objective of this phase

is to verif y channel operating charac ter is t ics .  This phase would a lso

include the development of a burner which produces a working gas with

the required electrical conductivity. The flow train components in this

phase need not be light in weight , and the magnet need not be superconduc t ing .

Phase 2 - Desi gn , cons truction and test ing of a f i r s t  gene ra t ion  proto-

type gene ra to r .  This genera tor  would use a superconduc t ing  magnet  and

would be li ght in weight , al thoug h not as lig ht as the eventual a i rbo rne  u n i t s .

Phase 3 - Fabricat ion of a fli ghtweight gene ra to r .

The three phases of the development  p la n would over lap  to sonic

extent , as shown in F ’ig . I 8 , as ex p e r i e n e t -  was gained d u r i n g  each phasi-

which would enable  I I n -  n ex t  ph a s e  to be sta r t ( (l . The f i r s t  phi t is e  would be

( ornp leted in twe nty — fou r  ( 24 )  i i  t on t  I t s  , I I s t-  f i  rs t —g t t i t ~ r u  l i i i  m u  g r 0011(1 h as  t -d

— 5 3 -
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prototype (Phase 2) would be completed by f i f t y - f o u r  ( 54 )  mon ths  and the

f l ightweight generator  ( Phase 3) by six ty-e ight (68)  months .  The p r o g ra m

could be advanced by eighteen ( 1 8 )  months  by e l i nt i n a ti t i g  Phase I , and by

eliminating the tes t  p rog ram for  the superconduct ing  m a g n e t .  W i t h  t h i s

p r o g r a m  modif ica t ion, the f i r s t  gene ra t ion  pro to type  would he completed

in t h i r t y - s ix  ( 36 )  months  and the flig htwcight  prototype in f i f t y  ( 5 0 )  months .

The technica l  r i sk  of the shortened p rogram would be cons iderably hig he r .

Operat ion at 1000 MW/rn
3 would add an estimated ei ghteen ( 18 1

months to the pro g ra m , to so lve problems which would be expected to occur

in the more highly s t re s sed  channels and higher  f ield m a g n e ts  which w o u l d

be required.
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