
AD—A 036 462 CARNEGIE—MELLON UNIV PITTSØLMGf4 PA DEPT OF COMPUTER —ETC F/S 9/2
EVALUATION OF ALTERNAT IVE COMPUTER ARCHITECTURES. (U)
FEB 77 P4 R BARBACCI . W E bURR. S H FULLER Ffl620—73—C—0074

UNCLA SSIFIED AFOSR—TR—7 7—0351 NL

2°’ 2


~~~. ~2 8  J 2 5
L L ~ ~ 

—

_ _ _ _  ~~~ IIll~L ~~ 
=

I ~ 
IHII~°

liii!’ .25 IIllI~ . ~~
MICROCOPY RESOLUTION TEST CHAR T

~A 1I O~.A L BI Of S~AN



Evaluation via Test Programs

INDIVIDUAL M MEASURE

Test Pro~r am Comouter ArchItectM!e~
IBM Sf370 POP-Il Interdata 8/32

A. Priority I/O Kernel 212 [3] 28 (4) 28 [12]
354 [12) 24 (12) 32 (14]
522 (14] 24 (143 28 (17]

8. FIFO I/O Kernel 424 (2) 208 [2) 192 (2)
920 [13) 188 [3) 226 (4)
434 (17] 296 (13] 114 (13]

C. I/O Device Handler 328 (1) 309 [1) 426 (1]
304 [17] 290 (173 279 (17]

0. Large FF1 10810 (11] 14746 [11] 10886 (11)
10810 (9)s 14746 (93* 8560 (93*

8560 [17]A

E. Character Search 854 [1) 730 (1) 958 (1]
940(4) 770(113 1044(33
1724 (11] 520 [17) 1021 (11)

F. Bit Test1 Set, Reset 378 [9) 162 [3) 222 [4)
358 (12] 178 [9) 176 (9)
238(17] 152 (12) 296 (11]A

276 [12]

G. Runge-Kutta m t .  141074 [2] 102662 (2) 100062 (2]
228056 (17] 94960 [3] 100042 (4)

176950 (173 117984 (lilA
138414 [17]

H. L~nIced List insertion 228 (4] 204 (13] 224 (3]
304 (13] 218 (14] 260 (13]
264 (14] 240 (17) 238 (14)

I. Quicksort 1024 (5) 14960 [5) 2968 (5)
1008 [6) 2756 (61 1732 (6)

J. ASCII to Float-Pt. 241 [4] 292 (5) 363 (3)
437 (5) 275 [7) 423 t5)
433 (7] 283 (17) 334 (7]

K. Booloan Matrix 832 [3) 582 [4) 384 [6)
909 [6) 776 (6] 566 [8]
896 (8) 932 [8] 640 (17)

L. Virtual Memory Exchange 532 (3] 541 [4] 721 (7)
532 (7] 566 (7) 1058 [8]
645 (8) 945 (8] 780 (17]

~~~~ ~~~~~ ~~~~~~~~~~~~~~ 

j

Evaluation via Test Programs

INDIVI DUAL R MEASURES

Test Program Computer Architectuiø
IBM S/370 POP-i 1 Interdata 8/32

A. Priority I/O Kernel 947 [3) 108 (4] 166 [12]
2146 [12] 106 (12) 166 [17]
3052 (14] 106 (14) 214 [14)

B. FIFO I/O Kernel 2222 [2] 1096 [2] 698 (2]
4583 [13] 810 [3) 937 (4]
2226 [17] 1419 (13] 482 (13]

C. I/O Device Handler 1789 [1) 1480 [1] 1902 [1]
1729 (171 1416 [17] 1391 (17]

D.Large FFT 62904(11] 70512 (11) 60446 (11]
62904 [9). 70512 [9). 50045 [93*

50045 t17]A

E. Character Search 5603 (1) 4348 [1] 5885 [1]
5549 (4) 4326 [11) 3139 (3)
10239 (11) 3091 (173 5767 (113

F. Bit Test , Set , Reset 1674 [9] 832 [3] 891 (4)
1542 [12] 917 [9] 887 [9]
1212 (17) 801 [12] 1167 [12]

1281 (1i)A

G. Runge-Kutta Int. 845966 [2] 724372 [2] 696085 [2]
1203952 (17) 665529 [3) 696049 [4)

1012727 [17) 777846 (11]A
874923 [17)

H. Linked List Insertion 950 [4] 1025 ~13] 834 [3)
1741 (13) 1087 [14] 1049 [13)
1137 [14] 1210 (17] 965 [143

I. Quiclcsort 7618 [5] 74278 [5] 13315 [5)
7540 (6] 15205 (6) 9609 (6]

J. ASCII to Float-Pt . 1330 [4] 1726 [5] 2100 (3)
2578 [5] 1512 [7) 2270 [5)
2226 [7) 1716 [17] 1897 (17]

K. Boolean Matrix 5576 (3] 3180 [4] 2216 (6]
5661 [6) 3905 (6) 3154 [8)
5277 [8) 4446 (8] 3945 (17]

L. Virtual Memory Exchange 1931 [3] 2616 (4] 2539 [7)
1934 [7] 2911 [7) 4573 [8]
2529 [8] 4226 [8] 2643 (17]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



Evaluation via Test Programs

~ Comments

(1) LA 2,10(0,0) 4 Set R2 to 10, the length of the vectors.
(2) LA 3,XVEC 4 Load P3 with starting address of X vector.
(3) LA 4,YVEC 4 Load R2 with starting address of V vector.
(4) SDR 2,2 2 Clear floating point reg. 2.

Use it to ar.cumulate inner product.
(5) SR 7,7 2 Clear R7

Use it as index into floating point vectors.

(6) LOOP LE 4,0(7,3) 8 Load X(i) into floating point register 4.
(7) ME 4,0(7,4) 8 Multiply X(i) by Y(i).
(8) AOR 2,4 2 Sum — Sum + X(i) * V( i).
(9) LA 7,4(0,7) 4 Increment index by 4 bytes.

• (10) BCT 2,LOOP 4 Decrement loop count and branch back it not done

26 (Loop Total)
260 (Loop (6-10). 10)

(11) STO 2,SUM 12 Store double precision result in SUM.

288 Grand Total

+ Table 3-1. M Measure f~r IBM 370 Inner Product Example

j
~

+— ,
~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S. ~~~~~~~~~~~~~ — —— -~ — —---. — —- —


_______ LEGEND

Data Path
General Purpose
Register File — — — Contro l Path

+ Primary Acc ~,~uhto r,,
Bas.. Re gu &tors ,

• Imlex r~~ t~ tors,
_________ T~ mprirs r.ss, + A4 B l~putu tol

Memory
etc AU1.nd~~cit.] P~oc~ss~r’s

InR(TUCI~OT~ Re1 + .-~~)
Unit

I

I . Up Addt... Re~

I
~

+ Prc’~ram C4untor I

~~~t dIIt~ 
P,ogy im St.tu. : : : I

• from memor y I
• I I corxtition

1 I

___________ I 1 1,1*1 1

Wr ite dits Jr I 1
to memory - 

‘
—

~~~ ~~~

‘ :
I Arithmetic & I. — • — l

• t
Logic Unit j~

Spici l y ALU opo retso n

• Covrtr ot Momory Operat~on.

Figurn 3.1: CanonIcal Processor Arch itecture

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~t~~~~~~; *-~~~~~~~~ 
;i ~~~~~. ~~~~ 

- u ~~~.w



Evaluation via Test Programs

RX. RS. & SI INSTRUCTION INTERPRETATION

~ Comment

IR’cO:15> ~ Mh(MAR] 2 Get half~ ord in instruction regist.r
MAR . MAR + 2 3 Incrementation counts only 1 byte
IR<15:31> ~-• Mh(MAR] 2 Get rest of instruction in IR
PC ~ PC + 4 3 Increasing Program Countsr
address interpretation -

instruction execution -

MAR i- PC 6 Set up MAR for next instruction

TOTAL 16

RX A DDRESS CALCULAT ION

~ Commei~t

1. B 2 — O ,X2~~ O 
+

MAR ~ IRc20:31> 5 Read 12 bits from the ZR

2. 8 2 — O ,X 2 > 0
MAR .- IRc20:31> + R(x2]<8:31> 8

Add 12 bits from IR to 24 bits from index

3. B 2> 0 ,X 2 — O
MAR ~- !R<20~3l> + R(B2](8:31> 8

4. B2 0, X2 >0
MAR I- IR(20:31> + R[82]C8:31> 8
MAR .- R(x2] + MAR 9 Full 24 bit (3 byte) addition

TOTAL 1 7

EXAMPLE INSTRUCTION: A R4,DISP(R2,R7)

RX Add Instruction

RX instruction interpretation 16
address interpretation 17
MBR ~- MW(MAR] 4
R(R1] ~ R(R1] + MBR 12

TOTAL 49 
+

Figure 3-2. IBM S/370 P Measure Example

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  

+

— +~~~~~~~~~~~~~ -++~~~ •-~~~~~~~~~~~~~~~~~~~~~~~~~~~ +

+
Test Program

• Phase Programmer A B C D B F C H 1 3 K L

I 14 all all

+ 1 all all

2 all all

9 all all

11 all all

12 all all

13 all all
+ 17 all all

3 370 11 832 11 11 832 832 370 370

II 4 11 832 370 832
•
832 370 370 11 11

17 832 370 11 370 370 11 11 832 832

5 all all

8 all all
+

iii
6 all all

7

—
all all

Figure 4-1. Layouts of Phase I, II , and III Designs

“al l” designates al l three machines

I

2 ~~~ ~~~~~
-
~~~~~~~‘~~~~~~~~~~~~~~ - ~~~~~~~~~~ — -~ TEl l



lie as ure
Comparison of
Machines .J~ 

in M in R —

143 — - .586 .018 .012

(-3.696 ,2.524) (- .430 , .466) (_ .449 ,.474 )

113 - 11
2 

—3.535 - .655 - 717

(-6.64 5 ,— .425) (— i . i 0 3 ,- .207) (—l . 178 ,— .255)

112 
— M

1 
2 .94 9 .673 .729

(— .161 , 6.059) ( .225 ,1.12 1) (.267 ,1.191)

-3 .242 - .664 - .723

(-5.936 ,- .548) (-l.052 ,- .276) (-1.122 ,- .323)

effect of PDP-11

model (5.1): 112
: effect of IBM Sf370

113
: effect of Interdata 8/32

Table 5-1 . Estimates of Machine Comparisons and
95% Confidence Intervals , Phas e I

I

1 
~~~~~~~~~ 2


Measure
_~~~~~ in s in 11 in R

Machine Effec ts

— .788 -.148 -.230 — .247

2.161 .354 .443 .482

113 —1.374 — .205 — .212 — .235

.862 .795 .781

1.425 1.557 1.619

.815 .809 .791

effects for PDP-11

112, p.2: effects for IBM S/370

14.35 U..3. effects for Interdata 8/32

Table 5-2. Estirates of Machine Effects in Models (5.1) and (5.2), Phase I

C

~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Measure
Comparison of
Machines _______________

in M in R

l43-M~ —3.80 6 - .295 — .348

(—8.780,1.168) (—l.0 00,.410) (— .988,.291)

—1 .585 .099 — .027

(-6.559 ,3.389) (— .606,.804) (— .666 ,.613)

M2
_TM

1
— 2.22 1 — .394 — .321

(—7.195 ,2.753) (—l.099,.311) (— .960,.318)

.318 .247 .147

(— 3.990,4.626) (— .364 , .858) (—.407, .701)

effect of PDP-11

112
: effect of IBM S/370

113 : e f fec t of Interdata 8/32

Table 5-3 . Estima tes of Machine Co~nparieons and 95% Confidence Intervals , Phase III

• ;~~
. :~~~~~~~~~~

• + +
~~ ~~ •t,~~-~~ ~~~~i:~~~

~~~~~~~~~~~~~~~ ~~~~~~~ ~~
•. 

‘~~~~~; ~~~~~~~~~~~~~~~~~ 1~~~~~~~ ~~~~~~~~ ~~~~~~



r ~~~~~~~~~

-.+ .—•

~~~~~~~

+-—

~~~~~~

-

~~~ ~~~~~~~~~~~~~~~~ 

-.—-.

~~~~~~~~~~~

-

~ 

-1

Measure .J~ in S in M in R 
+

Machine Effects

2.009 .133 .229 .223

- .212 .042 — .165 — .098

— 1.797 - .174 - .066 — .125

1.142 1.257 1.250

1.043 .848 .907

.84 0 .936 .882

M1, ~i: effects for PDP-1l

+ M2, ~~: effects for IBM S/370

M3, LL3. effects for Interdata 8/32

Table 5-4. Estimates of Machine Effects in Models (5.1) and (5.2), Phase III

~~ ~~~~~~~~~~~~~~~~~~ •± :i ~~~~~. 
‘

.
~~ ~J



Comparison 
easure in N in R

of Machines ~~
.... ~~ .67 .66 .61

!

~

5-M1 
-1.649 - .088 - .128

(—4.119 ,.821) (— .442 ,.266) (— .517 ,.261)

M3-M2 
-2.892 - .399 — .448

(-5.362 ,- .422) (— .753 ,— .045) (— .837,— .059)

1.243 .310 .320

(- 1.227 ,3.7 13) (- .044,.664) (-.069 ,. 708)

-2.067 - .354 - .384

+ (—4.207 ,.073) (— .661 ,— .047) (— .721 ,— .047)

M1
: effect of PDP—i1

112
: effect of IBM S/370

113. e f f e c t of Interdat~ 8/32

Table 5—5. E~~t imnt cs  of M a c h i n e  Comparisons~ and 95% Confidence Intervals ,
Phase I and I’hase III Da ta Combined



Measure in S in H in R

Machine Effects ~ .67 ~ .47 ~~‘ .66 ~ .61

+ 
M 1 .135 .001 .075 .064

112 1.378 .189 .236 .256

113 -1.514 - .189 — .163 — .192

1.001 .928 .938

1.208 1.266 1.292

.828 .850 .825

~~~~~
‘ effects for PDP-11

~~~~~
‘ 
~2 

effects for IBM S/370

l.5~ ~~ 
effects for Interdata 8,/32

Table 5— 6. E ’t i r L a t e s  of Machine  E f f e c L s  in Models  (5.1) a~~d ( 5 . 2 ) ,
Phase I and Phase III Data Cor~bj n ed

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+ • - , + - . .~~~ -• •

. :, W~~~ .Th~-+t - - + ‘~~~e -
~ T~~~~ j

- ~~~~~~~~~~~~~~~~~~~~~~ —~~ __t—



Measure ~JS in H in R

Sum of Squares Degrees of freedom

Programmers 2 .027 .018 .026

Test Programs 8 .623 .653 .660

Machines 2 .132 .076 .068

Progranmiers 2 .039 .053 .047
X Machines

Tes t Programs 8 .132 .124 .121
X Machines

Test Programs 4 .047 .076 .078
x Prograimners

Table 5-7. Phase II AN OVA C a l c u l a t i on s
Proportion of Varianc e A t t r ib u t a b l e  to Each Sum of Squares

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ + .~~+ : :~1::~~i

’ 
~~.+ . -- -:



Evalua tion via Test Programs

I i1RCI (ITEC TUI ~E S M R

PDP-11 1+00 0+93 094
+ 

IBM S/370 1.21 1.27 1.29
Interdata 8/32 0.83 0.85 0.83

Table 6-1 Average Performance of the ArchItectures on the 12 test Programs. 

~~~~~~~~~~~~~~~~~~~ I ‘ • : ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ +~~~~~~~~~~~~~~~~~~

_

~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~



AN ARCHITECTURA L RESEARCH FACILITY:
ISP DESCRIPTIONS, SIMULATION, DATA COLLECTION

Mario R. Barbacc i
Cai nege-Mellon University and

Naviil Research Laboratory

Daniel P. Siew iorek
Carnegie-Mellon Univers ity and

Naval Research Laboratory

Robert Gordon
N~ival Underwater Systems Center

Rosemary Howhrigg
Naval Underwater Systems Center

arid

Susan Zucker mari
Naval Research Laboratory

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~ 
— - - _ ~~

Architectural Research Facil i ty

T A B L E  Q F  C O N T E N T S

SECTION PAGE

1 Introduction 1

2 A Typical iSP Descrip tion 3

3 Abst ract ions and Implementa tion Dependencies 5

3.1 Abstractio ns 5

3.2 Implementat ion Dependencies 7

4 The Architecture Research Facility

4.1 Debugging 10

4.2 Preparation of Simulation Tests 10

4.3 Instrumentation 11

4.4 Art i f ic ial Labels ri the ISP Descriptions 12

5 Arc hitecture Parameters 13

6 Advantages of an A rchitectural Research Fac il i ty 17

6.1 A Simulator as a Training Tool 17

6.2 Architectu re Evaluation 17

6.3 Ex perimentation 18

6,4 Machine Relative Software 18

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _

Architectural Research Facilit y

ABSTRACT

The objectives of this paper are twofold. In the first place we di sc uss some

issues related to the formal description of computer systems and how these issues

wore handled in a specifi c project , the selection of a standard computer architecture

f or the Army/Navy Computer Famil y Architecture (CFA) project. The second purpose

is to present a methodology for automaticall y gathering architectura l data which can be

used f or evaluation and comparison purposes. We will not discuss the rationale behind

the selection of specific test programs and the statistical experiment set up to

ascertain the influence of the programmers , the test programs , and the machine

archit ecture on the results. These issues belong in a com panion paper.

1. Introducti on

There have been many attempts to specif y computer architectures in some

formal notation. The CFA project included, to our knowledge , the first attempt to

describe the complete instruction set of several large, c ommerciall y aveilable

archit ectures. The candidate architectures were the IBM Sf370 , DEC PDP- 1 1, and the

Interdata 8/32. The experiment described in this paper involved the preparation of

formal computer descriptions , the executi on of machine language programs under an

instrumented simulator , and the col ect i on of data used to evaluate the architectures.

Three aspects of the experiment are important to observe: 1) We did not imp lement

specific simula tors , ta ilored for each arch itecture; the system used in this project is a

general purpose computer simulat or driven by a forma l machine descri ption, 2) We

executed a large number of test programs s, each rang ing from less than a dozen

* A total of 114 simulation runs were executed. They correspond to a total of 70
different programs (some of which called for severa l test cases , in other instances a
test case had to be divided into separated sub-cases.) The 70 programs were divided
as follows: 26 for the PDP-1 1, 22 for each of the IBM Sf370 and Iriterdata 8/32.

4-1

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~



r~ w
Architectural Research Facility

instructions to several hundred instruct i ons, 3) We used real programs that had been

execut ed on actual physical machines d i d  then used to initialize the simulators.

The Naval Research Laboratory selected ISP [BeIC71) as the notation to formally

describe the candidate machines. This decision W as based on the availability of

expertise and sof tware support at CMU and in the fact that ISP was better suited than

other candidate notations for describing a computer architecture , independently of

timing and other implementation issues * . This however , does not imply that ISP is

free of blemisi’es. Some of its virtues and defects are discussed in [BarM75). In this

paper we w ill point out some characterist ics of the iotat ion that prevent a complete

separation between architectural and implementation details.

Volume IV of Inn f ina l  report of the CF.A comm ittee {Ba rM76o) includes the ISP

descripti ons of the three candidate architectures and more information about the

writing and debugging of ISP descr iptions. It also discusses the issue of the

correctness of the ISP descri pti ons arid other matters wh ich could not be covered in a

short paper .

Section 2 presents a brief introduction to ISP through a simplif ied vers ion of the

IBM Sf370 ISP descr iption. Section 3 discusses the separation of architecture vs.

implementation details. Section 4 describes the Architectural Research Facility.

Section 5 describes the collect ion of arch itectural data from the simulation of ISP

+ descriptions. Section 6 concludes the paper by outlining the areas in which future

work could benefit from the use of the Architecture Research Facility.

* The CFA selection committee adopted the definition of a rc hitprtu re proposed by the
designers of the IBM S/360: “The term a r c h t e c t i r t ~ .s used here to describe the
attr ibutes of a system as seen by the programmer , .e., the conceptual structu re and
functional behavior , as distinct from the organ uza Eor’ of the data flow arid con ’ro~, the
logical design, and the physical mpleme ntation ”~AmdG64).

4-2 

-

-~~ 
- ±. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~ ~~~~~~~~



A rchitectural Research Facility

2. A Typical I5P Description

The ISP notation was developed to formalize the informat ion normall y given in

basic machine manuals and to supplement or , if possible , eventually replace the

“programming reference manuals ”. Hence its essential requirements we re readability,

con.pleteness , f lexi bilit y, and brevity.

The orig inal notation was introduced for descriptive purposes and, in the context

of a book [BelC7l), certain ambigueties were permitted. For more formal uses , the

notati on had to be revised arid a language named ISPL was developed between 1973-

1975 [BarM76a]. Further developments on the notation continue at CMU, and a

language tentativel y named ISPS is being implemented. For the remainder of this

paper we shall refer exclusivel y to ISPL, the dialect used in the desc ri pti on of the CFA

- architectures.

The examp le shown in Figure 1 is derived from the iBM S/370 ISP descri ption.

+ We will only present the main declarati ons and the instruction interpretation cycle *.

The control flow for all instructions in Figure 1 follows a we ll defined path. The

main body of the ISP description is def ined by the Run procedure which cont inuousl y

performs a loop of instruction cycles (IFetch fol lowed by lExec). After an instruction

has been executed , a special secti on of code (INT) 5 executed. INT checks for the

presence of except ’o nal conditions (errors or external interru pts) and performs the

proper context 3w itching to handle these conditions.

The instruction fetch section (Icetch) reads the first half-word of the instructions

and from the f irst two bits (Instr<8> and In~tr<1>) it computes the length of the

* In order to keep the examp les withi n the space limitations of this paper , we have
taken sonic minor liberties with the syntax of ISPL. These a teratio ri s should not
overl y confuse readers familiar with ISPL.

4-3

4 1

-
~~~ -~~~~~~ - - - —


rr -

~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~

Architectural Research Facilit y

instructi on (PSW<32:33>) and updates the program counter (PSW<40:63>). IFetch then

proceeds to read one or two more half-w ords , the rest of the instruct i on.

The instruction execution section (lExec) uses the first two bits of the instruction

(Instr<8:1>) to select an instruction-type specific section. The RR, RX , RSSI, and SS

sections handle the corresponding instruction types. RX, RSSI, and SS begin by

computing the ef fect ive address of the operand (s) . After this step is completed the

next 6 bits of the instructi on (Instr<2:7>) are used to select a “routine” which describes

the behavior of the instruction.

If any errors are detected during the instruction cycle (address boundary

errors , illegal operations , storage protections , etc) the rest of the instruction is

aborted and the proper error code is set ri the PSW. This premature termination

allows the interrupt handler (INT) to take care of the situation (the usual mechanism is

to swi tch PSWs thus automatical ly start ing the execution of interrupt specific system

routines).

We have tried to keep the example as simp le as possible by avo ding any details

beyond those ex t r i c t l y necessary to follow the exa mp le. In part icular , the reader

might have noticed that we were making exp licit referen ces to fields of the Instruct ion

Register (Iii~tr) and the Program Status Word (P5W). It is clear that when we deal w ith

large descripti ons such explicit references tend to become cumbersome and error

prone *. The following section deals with the issues of how to improve the readability

and writeab il it y of ISP descri ptions by using abstract ions like pseudo-registers ,

procedures , temporary registers , etc.

* Even though some portions Of the Architectures were left out of the ISP
descriptions , notably the Floating-P oint instruct io ns , the ISP descri pti ons used in th !s
pr oject are non-trivial computer programs. Each description ta kes between 30 arid 40
pages of code. The size of the descriptions (1445 lines fo r the POP—U , 2345 lines for
the Interdata 8/32, and 2132 lines for the IBM Sf370) reflects the size of the
ins truction set , not necessarily the complexity of the architecture.

:

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~~~~ 
uj~ ~ t~~~~~~~~~~~~~~~’

$ 
~~~~~~~~~~


—
—— -. — -—-- -~~~~ +-- ~~-- - _ - - -

— .-

Architectural Research Facility

3. Abstractions and Implementation Dependencies

ISP can be viewed as a programming language for a specific class of algorithms ,

i.e. Instruction Set Processors or Architectures. Ideally, a language to describe

arc hitectures should avoid the specification of any implementati on details. Any

components introduced beyond these are unnecessary for the programmer of the

machine arid might even bias the imp lementor working fr om the description. While

these items must appear in a description of an implementation , the problem arises

when describing a famil y of machines where the abstractions and/or algorithms may

vary across members of the famil y. The rest of this section illustrates this problem.

3.1. Abstractions

An ISP description wr i t ten using only the arc ,i tectura l components would not

only be unreadable but also uriwritab le. Some form of abstraction is required. The

f ollowing subsections demonstrate this point by intr oducing pseudo-registers ,

procedures , and temporary registers. These abstractions may or may riot have a

counterpart in some or all physical implementati ons of the ISP description.

Pseudo-Registers. - When writing an ISP description for a real machine it immediately

bec omes apparent that describing everything in terms of just the components of the

architecture would lead to a cumbers ome and unreadable descri pti on. The concept of

a pseudo -reg ister to rename a frequentl y used field of a registe r greatl y relieves this -

+

problem. For example , c onsider the POP-i 1 which has an autoincrement addressing

mode. During the address computation an architecture register , pointed to by a

subfield of the current instruction , must be incremented. Dealing only with components

of the architecture would yield an expression like: R[M{Pc~<2:8>) ~- R[M[Pc)<2:~ >] + 2

where M[Pc) represents the current instruction in memory, pointed to by the program

4-5

I
V

.4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

— -



.

~ — — 
~~~~~~~

—
~~

=-
~

-
~~

- -—I_ - .-~
- , jjJ_

~
__ + ____ — — + - .- —

Architectural Research Facility

counter. Introducing the pseudo-register Ir (instruct ion register) for the current

instruction would yie ld~ R[Ir<2:O>] ~- R[Ir<2:8>] + 2. We could further define a pseudo-

register , Dr (for destination register) , f or the frequently used three bit subfield Ir<2:R>,

as in: R[Dr) ~ R[Dr) + 2

The pseudo-registers may suggest a reg ister (e.g.: Ir) or a set of wires (e.g.: Dr)

in sonic physical implementat ion. In reality they may have no physical correspondence

at all. In any event , pseudo-registers are a useful and necessary abstraction for

readable (and writable) ISP descri ptions. However creating pseudo-registers f or +

infrequentl y used fields or using obscure names may defeat the usefulness of this

abstract ion leading to reader confusion and excessive page flipping to find definitions.

Procedures. - Just as there are frequentl y used register fields in a machine description ,

there are frequentl y used sequences of operations. Forming these operations int o

procedures greatl y enhances readability.

For examp le , consi der operand fetching. Every machine has a more or less

comp licate d effect ive address calculation that is performed when access ing these

operands. A memory reference to a destination operand might appear as; M[Dealj

where Dest is a procedure for calculating the ef fect ive address of the destination

operand. Without procedures the same reference for the PDP- 1 1 would appear as

shown in Figure 2. The situation would further be aggravated if the effect ive address

had to be processed by some form of memory management wh ich provides for address +

translation and rights checking. These operations would have to be performed in the

descripti on on top of the effective address calculation. It should be noted that many

minicomputers and all larger computers have some form of memory management.

Tem poraries. - Occasionall y readability is improved b~- - introducing a temporary register

4-6

- - - -~
- . $,+ ~~~ ~~~~~~~~~ ~ T -

~~-

Architectural Research Facility

in cases whore the operands before and after the operation are required or a complex

result is used repeatedl y. Figure 3 shows a portion of the memory management

pr ocedures for the PDP-11.

The Read procedure shows the translation of a virtual address into a physical

address. A temporary Memory Address Register (Mar) initially contains the virtual

address (the result of the effect ive address calculation) which is then translated into a

physical address in the line that reads:

+ Mar #- (PAR[Temp)<1I:13> + Mar<12:6>) ~ Mar<5:B> next

The PAR (Page Address Reg ister) and PDR (Page Data Register) arrays contain

the necessary address translation information. A bounds check is performed before

the ac tual memory fetch from physical memory. Without the tem porary variable Mar

the Read procedure would be substantiall y complicated by having to rep lace every

appearance of the temporary by the complex expression given above. Of course , the

temporary variable may or may not have a counterpa rt in some implementation.

+ 3.2. Implementation Dependencies

There are multiple examples of details t h3t must be specified in an

• imp lementati on descri ption but do not belong in an architecture descri ption. Typically,

these are features that exhibit model dependencies. For instance , in the specif ica tion

of the interrup t handling faci l ty of a computer system , t could be the case that

because of c ost / performance requ irements , dif f e rent models must respond to

simultaneous interrup ts in di f ferent orders. An ISP description must by its very nature

describe a specif ic order of interrupt trapp ing, thus losing a degree of freedom that

one mig ht wish to pr ovide the machine iniplementors.

Figure 4 shows how the specific order in wni ich simultaneous inter rupts are

4-7

~~~~~~ ~~~~i~±* 

-.

~~

- 

~

-‘ - ~~- .- * - •~ 
~~ ~

i_
~ ~ ~~~~~~~~~~



- - - - - --
~ ---~ -

Archi tectural  Research Facilit y

fielded is build into an ISP descrip tion. Individual bits of INTVEC indicate the presence

of a pending interrupt of a given priority. When oni y one interrupt is pending the

proper context switching w i l  take place. When more tha n one is pending there will be

multiple c ontext swaps and lower priority interrupts will be delayed to be processed

later (the “new P5W associated with a low pri ority nter’upt wil l be stored into the

“old P5W” position associated with a higher level interrupt ) .

It is not clear whether having to be spec f ic about ordering of interrupts or

similar events is a bad pract ice.  A~thoug h one can claim that machine designers wi ll be

c onstrained in their choice of designs , t he fact still remains that somebody must wr i te

the interrupt handling sof tware , and for these programmers the order of interrupt

fielding is important. This type of di lemma occurs quite often when dealing w i th  ISP

descr i ptions. The solution mig ht be simp ly to write model-dependent ISP procedures

whenever this c onfl ict ari ses and then indicate in the ISP descri ption which version of

a given procedure must be impleme nted for a given model.

Another problerr with implementation dependencies is that the def inition of the

input/output behavior of an instruction mi ght actuall y imp ly a particular

imp lementation. For examp le , consider the PDP-1 1 Subtract instruction. The carry

condition code (C) is set according to the borrow during the subtract ion. The POP-i 1

Processor Handbooks describes the sett ing of the C bit as:

“C condition code is c leared if there was a carry from the most si gnif icant bit of

the result , set otherwi se. ”

This definition imp li c i t l y assumes that subtraction is imp lemented by forming the

two ’s comp lement and adding. Figure 5 i l lust rates the situation . Consider four-bit

numbers arid the two methods to perfor m subt ractions , by using a su btractOr , and by

using an adder after fo r~iing the two ’s c omplement .

4-8

V
~~~~~ ~~~~ -.. - .


Architectural Research Facil ity

In the adder case , the carry 5 the complement of the borrow which is exact l y

the definition given by the POP-li Processor Handooc?.. The ISP description of the

setting of C becomes:

C (dest - source)< 16>; ! Subtraction

C ~ NOT (dest + NOT(source) + i)<16>, ! Addition

As in the previous examp le (the order of interrupt handling), a comp lete

algorithm had to be given. In this case , the subtract o r/ borrow al gorithm is preferred

since it presupposes only the proper ties of the two ’s complement number system.

However , if an al ternate implementation (such as forming the two ’s complement and

adding) is utilized , then the impienientor should be aware of possible changes in other

al gorithms ri the ISP description.

4. The Arch itecture Research Facil it y

The fac~lit y used for the data co llection phase of the CFA project is depicted in

Figure 6. Reference [BarM76aJ explains in full detail the features of the ISP compiler

and simulator. Sonic fami liarit y with their capabilit ies is needed in order to understand

the data collection phase described later. The f ollowing paragraphs attempt to satisf y

this need.

The ISP compi ler produces code for a hypothetical machine , dubbed the Registe r

Transfer Machine (RTM), The “ob j ect c ode ” produced by the c ompiler can be linked

together with a program which is capable of interpreting RIM ns~ru c t i o ns + Thi s

separation between the ISP descriptio n , the RIM code , and the RTM interpreter allows

the simulation of arbitrary, user defined architectures. The result of linking the RrM

code with the RIM interpret er is a running program , a sim ulator .

4-9

_ _ _

~~~~~~~~~~~~~ .~~~~~~~~ +~~:::: i~~::



Architectural Research Facil it y

The simulator accepts commands from a teletype or user designated command

file. The state of the simulator can be dumped to a co mn-and file which can be read at

a future date when the simulation is continued. Command t i les can also be used to load

pr ograms and data into the simulated target machine memory and reg ist ers.

4.1. Debugging

Most of the test programs were debugged and run on the real machines , other

programs were executed exclusivel y under the simulat or. The latter included those

programs using privileged instructions that were riot directl y available t o non-system

pr ogrammers (e.g. interrupt and I/O handlers. ) Results from the actual runs , whenever

available , were used to check the simulated execution.

Onl y minor modif ications and corrections were perfon ed during the data

collection phase. The largest unforeseen probIe~ was presented by the memory

management feature of the POP-il which was based on the PDP-1i/40. The test

programs which made use of this feature had been tested on a PDP-11/45 whic h use r

dif ferent Unihus addresses for the memo ry management registers. This difference

required minor modifications in the test programs. Most other problems we re of a

• simpler nature and required onl y a few minutes to c orrect. It sriould be noted here

that the simulator fac i l ity was also used to debug some programs for the Iriterciata

8/3 2 before they were executed on the real machine. This was dictated by he fact

that no 8/32 was ava lable near CMU and a large tu rn-around time (several days)

would have complicated the debugging of the test programs.

4.2. Preparat ion of S i m U l a t i o n  Tes t s

The ISP simu lator provides commands for the loading and initialization of the

simulated machine memory and internal register s . The single most important feature of

4-10

~• Ii
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ T~~~~~


~
. ~~~~~~~~~~~~~~~~

Archi tectural Research Facil it y

the command language which permitted the fast execution and collection of stat ist ics

was the abil ity to read command f i les containing the test programs to be executed.

The command language cannot handle programs in symbolic form (assembly language);

i t requires the preassembl y of the programs into absolute , numeric , code. To get

around this problem , a set of utilities was developed at CMU which permitted the

transformat ion of assembl y listings prepared by the real machine ’s assembler into

simulati on command files. This operat ion was performed off-line as shown in Figure 6.

Figures 7 and S show the transcript of a typical session using the ISP simulator .

The session consists of runn~ng one of the test programs (Bit Test , Set , and Reset) on

the PDP—1 1. The input for a simu lation session consists of several fi les prepared of f —

line. These f i les include: The te~l program (derived from the assemb l y listing), a driven

(s imulation commands used to initialize the parameters for the test program) , and

finally, a command fi l e wi th a list of those ISP procedures which must be “opaqued”

(these are the procedures during which the act i v i ~y counters are disabled). A t ypical

command fi le , derived from an assembler listing is shown in Fi gure 9. This ~ as the test

program used in the sample simu lator session shown in Figures 7 and 8.

4.3. Instrumentation

The ISP simulator permits the instrumentation of an ISP descript ion oy

assoc ia ting act iv i t y counters w t h each of the machine reg isters and memories. These

counters allow the co llectio n of s tat is t ics indicating the number of t mes each

compo nen t of the ma~ h.ne is read f r 3 m or wr i t ten : nto . A separate c ounter is kept for

each label in the ISP desc ription. Labels are included in the ISP descr iptions to

identif y machine n~tructi oni s , addressing modes , loops (used t o describe vector- l ike

instructions like move c h i r a c t e r on the 5/370) , as we l l as other ISP procedures.

4 - i l

- . ., ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ‘~~
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ..- -- . - ~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

—-— -—.- -



Archi tectura l  Research Facil it y

During the execution of the test programs , a data base was created by c ollecting

dumps of the cou nter s after each test case was comp leted. The files containing the

counters were then processed by other , off-line , programs in order to arr ive at the M

and R measures.

4.4. Art i f ic ia l  Labels in the I$P Descr iptions

Cer tain modifications riot normall y needed w ere made to the ISP descriptions to

aid in the col lection of data during the running of the test programs for the CFA

project.  Several labels and “do-not hing ” procedures were added to identif y certain

phases in the instruction interpretat ion al gorithm and to measure selected events (e.g.,

dif ferent addressing n odes) . The labels added to count these events are c learl y not

part of the a rch i te c t j - e  or even the implem entati on.

Figure 10 shows an example extracted fro m the 5/370 ISP Descriptio n . It shows

the use of ar t i f ic ia l  labels to identif y different address - ri g modes for the RX ns truct ~on

set. Accord ing to the definit ion of the S/ 360 and S/370 architectu res , The RX

instructions can specif y both a base and an index reg ister to be added together wi th

the c i is placem ent f e ! d  of the instruction to compute the add ress of the memory

operand. The a rchi tecture fur t her  ‘.> pec r f ie s that R[a], when specif ied as either a base

or index reg ister does not take p ace ri he ef fect ive address calcu lation , i.e. , R[Ø]

should be spec if ied ~vH r~nc ’~ i one o’ t hese two components (base or index) is rnics ng.

in the above exam ple four cJur ~ ~
,v i n- ’e procedures w t~e re introd uced t o cou nt the

num ber of t imes each pos: . 1 ’ e c o i -~)-riu1~ ofl of base / index modes occur s Thus RX~~ 0~1

is “executed ” whenever R[~ ] is spec if ied as both the base and the index register

RXØItX2 is “executed ” whenever R[O] is used as t he base re~;is te r  and any of R[1:15] is

used as the Index register. RXBIDO is “executed ” whenever B[ti ] is specif ied ac the

4- 12

~~ll~IL’ 
—. ~ ~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~

,,. ~~ •~~~,$.‘. ~~~ 
•s~t . - - *.~ i~ •~~ ~~~~‘

. .-. ‘~
~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~ -. -.~- •~ .-- .--- -----.~ —‘——a— _~~__.~~_ -—-.- -.-- —-— —.---‘——.—.—.•—.—-— .—---


w —— ----- -— - -—--- .—-.-.—.,- -—- --.
~~~~~.— .~~~~~~ —- -- —-- -.- --- --.- . .

Architectural  Researc b Facility

index reg ister and any of J~{1:15] is spec ified as the base register. Finall y, RXB IX2 is

“executed ” whenever 1~[Ø] is not specif ied as either the base or index registers. NOP

is a dummy procedure which does not have any side ef fects.

5. Archi tecture Parameters

As a means of comparing architectures , three measures were defined f or the

CFA project [FulS77a]:

Measure of 
~~~~~

5 The number of bytes used to represent a test program ,

Measures of Execut ion Time

M The number of bytes t ransferred between primary memory and the
pr ocessor during the execution of the test programs.

R The number of b-,-; e ~. t ra n~~er r e d dmong i i te rn a i registers of the
processor during exe c ul ion of the test program .

The S measure is a stat ic par ame ~e’ which c a n be computed independentl y of

the ISP description . For the purposes of this paper w e wi~l restr ict the discussion to

the other two measures. The actua l computat io n of the M and P measures was done

through a semiautomatic process. The raw data collected from the simulator was used

t o count frequencies of instruct ions and addressing modes. These counters we re

multip lied by certa ,n har :~ ca lc u la ted fac tors in order to arr ive at the M arid R

measures for each test program. Ideall y, the SP simulator should perform the entire

operatio n and th i~ would be a better approach , ess subjec t to human errors. We had

to use the hand computed factors due to our inability to determ ine the influence of the

ISP writ ing sty le on the architecture parameters as defined above.

The exact methodology for writ:ng ISP desc riptions so that the M arid P

I
4-1 3

I

~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~I_IT1 :~~ TT .~~~~


~~ ,- —-. - - - -. .--.--- ~~~~~~~~ - - - ~~ — — - --, -- —---—- - -—--.--- - —.~~~~~~

Architectural Research Facility

measures can be calculated automaticall y has yet to be developed. It is clear ,

however , that a careful control of the counting mechanism is paramount t o the

collection of meaning ful data. During the data collection phase we made use of the

following techni ques towards this goal.

Qpaqueci Procedures. - A Simulator command al lows the select ive masking of in-~ rie and

off—line procedures. Masking or opaquing a procedure inhibits a act iv i ty counts inside

the body of the procedure.

Certai n operations , such as incrementi ng tr~e program counter after an

ins truct ion , or the sett ing of the condition codes ~ m. a re~ uit of an inst ruct ion do not

a f fec t the R measure and should not be counted. This is t ypical of those actions which ,

in a reasonable impleme ntation , wou ld be done using ad-huc circuitry , separate from

the main operational units of the machine. These operations could be implemented by

combinational logic (e.g.: sett ing conditi on codes from ALU lines) , special registers (e.g

using a counter instead of a simple register f or the program counter), or even complex

sequential networks (e.g.: the virtu al address translation can be performed using its

own arithmetic units and data paths) .

Operations lic e those described above can be easily marked by adding art i f ic ia l

• labels to the ISP descript ion and then aisabling the counters whi le the selected

operation is being oerfor med.

• Pse1ido-Re~ ister Cha ins .- Every component declared in an ISP description has act iv i ty

counters assoc iated wi t h i t . When a reg ister is defined in terms of another register ,

such as: Pc<15:t3 > ;~~ R[7]<15:13>; a redefiniti on chain is estab l ished. Accesses higher up

ri the chain increment all counters lower in the chain but not vice-versa. In the above

example an access of the Fe causes the reg ister ‘ Ic counter for R to be incremented

4- 14

- ~_:1~
-

~ ii: i~1LT ~

Architectural Research Facilit y

but accessing R[7] does not increment the program counter (Pc). By establishing

appr opriate redefinition chains , dis tinction between access types can be maintained.

One variation of this techni que is the use of ~shadow ” registers. For example twp

instruction registers can be defined: Ir<15:8’ :— IrI<15:8>; where In is the shadow

register. The loading of the Ir from memory is to be counted in the R measu re ,

however , the combinational logic decoding of the instruction and effective addressing

mode is not to be counted. The former is performed on Ir, the latter on In thus

distinguishing the two different types of accesses.

Memory Access Procedures. - Modern machines provide the user with an address space

defined in terms of small units of information , typicall y 8-bit bytes. For convenience ,

however , the architectures also define larger access units in mul tiples of bytes. Thus ,

the IBM S/370 provides bytes , half-words , full-words , and double-words. Since the

physical mem ory is the same , the ISP description must declare the different address

spaces by building a redefinition chain in which the different address spaces are

declared as “pseudo-memories ” so that the M measure component of each address

space is properl y accounted for.

Machines like the PDP- 1. 1 add some more complexity to the issue of having

multiple address spaces. The PDP-1 architecture defines the concept of an I/O page

as a reserved portion of the address space , not necessaril y implemented as a physical

memory. Addresses in the upper 4K bytes of the POP- i 1 are used to address I/O

devices , machine registers , etc. Addresses in the I/ O page must be handled di f ferent ly

when computing the M measure. If one attempts to include in-line address checks in

the ISP descri pti on, the descrip tion quickl y bec omes bulky and unreadable. A

4 sat is factory solution is simpl y to define memory access procedures (Read and Write) ,

4-1 5

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~T * ” ~ 

~~~~~~~~~~~~~~ 


- --

Architectural Research Facil ity

which can then be proper l y instrumented , thus enabling the automatic computation of

the M measure.

Tem porary Registers. - The automatic comp utation of the R measure is more difficult. In

an ISP descri ption there are three t ypes of registers to consider: architectural ,

standard impte mentation , arid temporaries. Architectural registers and certain standard

implementation registers (instruction register , memory address register , and mem ory

buffer reg ister) can be handled using the same techniques used to automate the M

measure (declaration chains and encapsulating procedures). Handling temporary

registers presents a more di f f icul t problem. The number , type, and manipulation of

temporary reg isters are a matter of wr tt ing sty le.

Architecture parameter s which are based so lel y on architecture registers while

ignoring temporary registers introduced for clarity might overlook hidden computations

performed on these registers. Unlike the memory, archi tectura l registers , and standard

imp lementation reg isters , a tightl y defined writ ing sty le cannot be developed f or

temporary reg is ters. One solution would be to use well known expression optimization

techniques [Wu IW7 S] on the ISP description to uniform l y minimi ze the temporary

register act iv i ty. Hopefully the optimiz ation would lead to si milar results for equivalent

{ al gorithms.

Archi tectural parameters should be independent of the experience , sty le , and

object ives of the ISP w r i e r . Ths wi l l then guarantee that the ISP descript ions which

make use of abstract ions (pseudo-regi sters , procedures , and temporary registe rs , etc)

to enhance c lar i ty arid reada bi l i ty w it not be penalized. By the same token , no

advantage should be deriveci from the use of “clever ” program ming tr icks which might

attempt to bias the measu rements ,

4-16

• j

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ .



-
~

-— .~ ~~~~~~~~~~~~~~~~~ -~~~ 

Architectural Research Facility

6. Adva ntages of an Archite ctu ral Research Facil ity

Althoug h for the purposes of this paper we have presented the uses of the ISPL

compiler and simulator in the context of a specific project , we should point out the

wider range of applications in which a sys tem like ARE can be of great value.

6.1. A Simulator as a Training Tool

In this paper we described how machine language test programs can be

executed under the simulator. The implied assumption during the data collection phase

was that we were dealing with correct , finished programs. W ith no extra effort the

ISP simulator can be a powerful training device for novice programmers. Speed of

simulati on is not an issue in th~s app lication. Programmers learning a new machine

language tend to spend long hours single-stepping via the machine cons ole. An

interac tive simulator can easily satisfy the needs of these users , whit e providing much

better diagnostic and debugging facil i t ies than a computer console (did you ever see a

“help ’ button on a machine?.) ISP descriptions exist for the following machines: DEC

POP-B, PDP-10, POP- i 1, IBM 9/370, Iriterdata 8/32, and Intel 8080.

6.2. Architecture Evaluation

The S, M, and R measures are by no means the only set of architecture

parameters one might wish to evaluate. Nothing in the ISP simulator depends upon

this particular se t of parameters. The instrumentation in the simulator allows count ing

every event we care to define by simp ly !abelling the event. There is no need to

create new procedures which might impact the organization or readability of the

descri ption; even a single register transfer operation can be labelled and counted.

4-17

If
i i

-~~~~~~~~~~~~~~~~~~~~~~~~ *-~~~~~“. ;‘~~~~~-



Architectural Research Facility

6.3. Experimentation

Once the initial e f for t  of writ ing an ISP descr iption is accomp lished, only

moderate ef for t  is required to perturb it to reflect proposed or actual changes in the

architecture. Thus the effect of a modification in an architecture can be measured and

studied bef ore any funds are c ommited to the development of a new machine. By a

careful design of the ISP description it is possible to pattern a descri ption along the

lines of the organizati on of the physical machine. Thus one would be able to measure

and evaluate different models of the architecture. For instance , functional units and

data paths can be represented by separate procedures in the ISP descrip tion. An ISP

descri ption could then be para meteri zed to invoke these procedures in different order ,

concurrentl y or sequentially, with or without intermediate steps , etc. as the dtf f e rent

models differ in their imp lementat ion. An examp le mig ht be determining the ef fect  of a

cache mem ory on the apparent instruction execut ion speed in high perf or mance

imp lementations.

6.4. Machine Relative Sof tware

As the number of different architectures coming into existence increases ever )’

year , it is becoming more and more expensive t o develop the necessary so f tware

support base that allows the effect ive use of those mech nes. The availabil i ty ct user

micro-programmable machines enlarges the space of possible architectures to the poirit

that automatic so f twa re  generation systems will become a necessity. Tools that

operate relative to a com puter description could represent a si gnificant breakthroug h

in the manner that com puter systems (hardware / sof tware )  are designed and evaluated.
I

The Advanced Research Projects A ger~y (ARPA ) of the Department of Defense is

currentl y sponsoring this area of research at CMU and elsewhere [BarM74).

4-18

~ 

~~~~~~~~~~ .:~~~~~~ ::i11 ~~~~~


Architectural Research Facilit y

In the future one can foresee hardware and software automation systems that

take as input comp uter descri ptions , and language and problem sp ec if icat ions ; and from

these , generat e operating systems , compilers , and other support and application

software autom aticall y. Other areas of current resear ch include automatic diagnostic

generation , microcode generati on , machine verification , etc.

Formal computer des~riptions will play an increasing and important role in the

evaluation, procurement , verification , and programming of computers. The ARE facility

is a step in this direction.

I

4-19

~~~~ ~EI T~~~1_I. ~~~~~~~~~



n -

~~~~~~~~~~~

-

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

-- -.. --- ----

~~~~~~~~

-

~~~~~~~~~

—

Architectural Research Facility

S378:
begin dechire

Memary {8:”FFPPFP]<8:7> ; Pr mary Memory
R[B: 15)<8: 31> ; General Purpor ,e Register s
PSW<8:63>; I Program Status Wcrd

! Auxiliary Registers (Instr , Mar , Mbr, etc .)
eralced ! End of Declarations

Run:= begin ! Main Executable Program
IFetch:— ht!g in Instruction Fetch Section

Mar4—PSW<4B:63> next I Initia l Instruction Address
Ini tr<G:15>..-Memary[Mar:Mar+1] next ! Read First Half—Word at Instruction
PSW<32:33>.-Instr<8>+Instr<1>+1 next I Instruction Length
PSW<4a:63>.-PSW<4 8:63>+FSW<32:33>*2 next ! Progr am Counter

I Fetch the rest of the Instruct ion
end;

lExec:” begin I Instruction Execution Section
deci idu Instr<8:1> => I Select Instruction Type;
RR:~ begin ! RR Instruction Decade Table

(dccut li~ Instr<2:7> .> ) I Select RR Instructiona
end;

RX:— bi:jin I F~X In struction DecwIc~ Table
Mar—Instr<28:31> next Displacement
(if Instr<16:19> ~~> Mari—Mar+R[Instr<16:19>)) next ! Base
(if Instr<12:15> ~~> Mar4—Mar+R[Inatr<12:15>)) next I Index
(di’ctiilu Inslr<2:7> —> ) I Select RX Instructions
end ,

RSSI:— bi~ij in RS,SI Instruction Decode Table
Mar ~ Instr<28:31> next I Disp lace m ent
(if Instr<16:13> —> Mar .- Mar+R[Instr<16:19>)) next Base
(decade Instr<2:7> ~~> ) ! Se lect RS , SI Instruct ions
en d;

SS:— beg in I 55 Instruction Decade Tahie
AMarb— Imistr<2O.3 1~; A Mar2,—I nst r’c38:47> next ! Displacem ents
(if Inr,tr’clS:19> ~~> AMarli—AMarl+R[Instr<16:19’]); ! Base
(if Instr<32:35> •> AMar24-AMar2+R[Instr<32:35>]) next Base
(decade Instr<2:7> > ) ! Select SS In~tru ct iens
end;

end;
INT:— beg in end next I Interrupt Handling Se c t i on
Run I Repeat Main Fruct:dure
end

end

Figure 1 - A Simp lified Vers ion of the IBM S/370 ISP Descri ption

4-20 

‘~~~~~~~ ~~. -: ~~~~~~~~~~~~ ~~~~~~ ~~ ~~-~~— _-~~~~~~_. 1



—~~~~~~~~~~~~~~~~~~ ~~~~~ -.~~~~~~-~~--—~~~~ -- - . - , - ~~~~~~~~~~~~~~ - -~~~~~~~~~~~~

Architectural Research Facility

M[ decade Dd ~~>

(decode Urn :,> ! Direct Addressing
*374~ B~ Dr; I Register Mode
R[Dr]~ R[Dr]+2 next R[Br)-2~ 

I Autoincr ement Mode
R[Dr]~ R[flr]- 2 next R(Br) I Autad ecrmnent Mode
M[Pc+2] + fi[ IJr) I Index mod e

(decode Urn .> ! Deferred Mode
M[u374BOgaDr}, I Register mode
R[DrJ.-R[Br]+2 next M[K(Dr)-23 I Autoincr cmen$ Mode
R[Drj .-R[Dr] -2 next M[R[D r]] ! Autod ecr eme nt made
M(M(Pc+2] + R(Dr]) I Index mode

3

Figure 2 - Inline Effective Address Calculation

4-2 1

L.~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



- j . T — . .  
.

- -j~~ j~~-- ~~~
- 

~~~~~~~ 
. , — - .-- - - - -

~~~~~
--.-----

~ 
- - - - - - . - . --

~~

--.-— -

Arch i tec tura l  Pe~;ear il i Fac ility

Read: ~‘ big in
Temp Mar I~il~4 next
Mar ÷- (PA~1(T~iiip].1i:~ > + M~ir I2 6>) ~ M,i~’-S - fl next Compute Physical Address
( i f  not PDh1{Teii~p]c2 1 => Ab o rt)  next
(if (Mar<12:6> gtr POR[Tem p)~z 1~ :8>) and not PDFi[Temp)<3> ~~> Abort) next
(if (Mar<12:6> Iss PLJTt(Temp~<I4:8>) and PDR(Tempj 3> —> Abort) next

Read from Physical Memory
end;

Figure 3 - A Portion of the POP-li Memory Management

4 .2 2  

~~~~~~~~~~~~~~~~~~~~ t~~t 
~~;t ~~~

. .
~~~~~~~~~ 

-



Architectural Research Facility

Int :— beg in
Temn p.-PSW<32:33> next I Save Instruc tion Length
(if INTVEC<B> AND FSW<13> —> I Handle Priority (1) Interrupts

) nexl
(if INTVEC<1> —> I Handle Priority (2) Interrrupts

next
(if INTVEC<2> —>

next
(if INTVEC<3> AND PSW<B :7> ~ > I Handle Priority (3) Interrupts

)nex t
(if INTVIIC<4> AND IOMSK —> I Handle Priority (4) Interrupts

) ncxt
P5W<16:3 I>~—8; PSW<32:33>~ Tem p I Reset Instruction Length & Interrupt Code
end;

Figure 4 - Exp licit Interrupt Processing Order in the IBM S/370

4-23

Ipd*~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~
-:: - J -

~~~~~i~~~~~
t ’

.._ .
- ~~~~~~~~

-
~~~~~

---~~~~~
,, 

~~~~~~~~~~ ~~
-*.

~~~~~~-



r ~~~~~ 

- 
- .

~~~~~~ 

- .. -

~~~~~~~~ 

- ,. 

~~~~~~~~~~~~~~~~ 

-— . .- -

Architectural Research Facility

5 - 3 — 2 (no borrow) 3 - 5 — -2 (borrow)

0101 0011 Subtracting
0011 0101

O 0010 1 1110
borrow borrow

0101 001 1 Adding Two ’s Complement
1101 1011

1 0010 0 1 110
carry carry

Figure 5 - imp lementatio n Dependant Condition Code Setting

4- 24

_ _

-p 4 .

~1i~~ i~~ ~~~~~~~~~~~

Il l

z(
F

[11 ~I~I _ _ __ _ _ _ _ C

:fh
I

~~~~ 
L

_ _  

_ 
_ _  

I
U) (1) c i—~~~~~~O Q..

I), I

ii

\J

- 
~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4 T  Z~~~~~~~~~ k 
~~~~~~~~~~~~~~~~~~~~~~~


.— -‘-
~~~~

----
~
--- ‘:.~~~...... . 

— -
~~~~~~

--
~ ~~~~~~~~~~~~~~~~~ - - . -ur——~~

—
~~~~’-

Archi tectura l  Research Facilit y

ri. : i li l i -’
ISP S !~ iL l ITL i ~ V 3 .- Nfl ; i?F4 F S T I~L 2
Fr i.~y 10 So t :  76 17 :  1 3: 58  rgplj t i . IS P I L 4 I O f l $2 5 )

5E~1 til L 1?.~ T iJh CO1I I’ LLTED
SPflC E n LLO :nTL ~
TYPE H[Li ~oR H ELP
TYPE ..~~SC> TO INTERH(JPI SItl U i.flhi O N LOOPS

> r o . :1 ~ an .~~ rn Rea ct  in  the bo , chla rc I le
,..~Rf l f l h ,  OCT P L
>>O EC II O I The benci :ear i. 4 ii die .b i.e  the I it  irt g

I on P a  ueer te r ii: ” a i .

>>IOIJ 1N~ f~( lf l
u a ~

1 
~~~ 1r3 i Ree d in the dr ~er ii i s

HEI:I : coin s T HE :iHI~ i P C i l L L S
> >~~~ T V L I i 13000 1 ~O 1 3 ’.6 005:0: I r-~~ e#5202 ,— (S P) ; F

l i i I ~ l3.~) . - (4 13 74 6 005 2 0 1e I ~~ e9520 4 ,— ISP) ; N
> - ,5i T v n L l i i i till O ti l ‘-012~ ’i6 00 00(4 “J c ’ #4000 , -ISP) ; P1
>> SE TVI IL l i l t - l L ~L t ,.f lL2 ~~ (- O05 ~~~0 i M L. - t5200 ,— (SP) RC

>~~S E T V i L h U t 2 1 0 1 — 0 1 2 7 4 6 0 0 5 2 0 6 i C OV t~ 206 ,— (S P) W

>> S ET V i1 L lii 1:: 1 2) _ e O l ,~~3~ 80 1000 I JSR PC ,esIeOe BTSR

~~ S E T V U L 1114 (301 61 . .00 i~~ - I ~
I lILT

>~~
‘l o aho -0 ~oq t .ci cc 0 * P 1 - I i l ’s I ~c t l on e p u O h o C t h e pa rc i e t e r ;

o n i - ~ t t :o s t a~~l , -~~. i i the bo nd ~~‘ i ac C r o u t i n o , .nd h a i l .
>> SF T V U L l i t l i ~ 0 1 . 1 2 3 . ~. ? 8?1 3a 167006 1656 70 I B T STRING

~f :TV i i L i l iI 1: 3 (4 1 — 0 I R ETU R N C O O E
~.~~~TVnL 4 l 4 i , ; l j J , . 2 I F

.~-I F T ~I ° I : ’ L?t 5 i N
T . ” IL ~ U 1 31 .6 I ‘~l G R i . P R E P

> -~SF.TV PL. PC. .6000
>~.S E T V i l L S - . i .~l

The R i)O io c o q~~o n r n i,:ili~~~~ zCs the d a t e (p a r a i i o t e r a) , the ~ t ac i:
i p0 : : lO r c r 1 t l :n p r o g ~~~ I c . i i i r t o i ’ l w , ci: now po i n t s ho tho code

~~~q~~f ln ( ’ fl l i~~ ¶ puoh ao t im p a -  a r1o t e r s  a’ :d c e l  I 11:0 rout  no .

~~~~~~~~ ~~ 
I

~~ IS~ n t a i a i ~~~ ab~e — I n d I c a t e S w ho t ha r the
r i a c l’ i n o i rulm il- It) , h~~4 t ed , or w a i t in g.

-.~~5FTCT~ (iLL 0,0
I Rni~e: act I v i t y counto rs

>- ~R Fflfl ~l 1 . s 1 P t L 4 1oMp:: ~ J i PO P IA Opaquod Procodu rou

>> IT 1. 04W
>>> S 3 LINl~ REII L

3 -, , f I l ill UUO11 .S IMIL4 10I IB2SI i UNIMPI. LliI . N r[:- OPE RPTI 3 N 3 P E P I S
IT I. C 1W

~~~~~ L INF.S REP S
..TRII C E IR ,PC ,~~,(1W1O I Tr .~c o ~ law s n i a c t o c i  ri q I s t e r s

Is  ‘o 1 — a i r u c t  10 1 ’  P u g i e t a r ,
I PC is  the 1’. cq ’~m s Co in1u~ (R I?) ) ,
I P18 :7 )  are the goi:o rai r e g i s t e r s ,

111.10 is  :‘ ci 1/0 peg s  iP s aep ped o n t o  (11110)

~.BP( i~3 i IS R ,P T ., I Bre ai  on ~~ le c I e d  i S t r ~~C t I o n B

‘~ E L I N t S  R~ il3:

rigure 7 — lnit a i i za t on of a S m u~~t o n  Run

4- 26

L11~! ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~ . * :  ~~~~~~~~~~~~~~~~~~~ ~
,. 1



- . - - - .

Architectural Research Facility

> b t c , ’ t  In t e r  I Here we start th e s imul i t  ion
a INTER + 15 IR 13746
a INTER + 28 PC • 6002
a S I N C O  ., 22 R 1 7). 6004
a O DECRO i 21 R 1 61. 176

• INTER • 15 IR • 13746

I Pushin g Pa r...t.ri

a I N T E R  4 15 IR • 12746

• INTER + 20 PC - 6022
a SINCO • 22 R C 7). 6024

• DO ECRO a 21 R 1 6). 166
a INTER + 15 OR • 4737
a i N T E R  + 28 PC • 6826
BREPI: R FTE R JSR I The si m ulation slops on a br sat po snt

*s etctr i i i  0,0 I The real b.n~ hnirl. s t a rts hors , wo lu st
res et a l l  counters (they xe re m odifi e d
during the b en chCa rl~ cal l i n g  sequence )

*CO nt  w e co nt i nue th e , , m u i a t i o n
a D IN C R O  • 22 R I 7)~ 6030
a JSR • 14 R C 7). 6030
a JSR + 1 5  PC .1000

a INTER + 15 OR • 18066

a INTER + 26 PC 1802

t Program Execution Traci

a I NT E R  + 28 PC • 1872
a SINCI) + 22 R C 6].  164
a WRO TE + 131 MWI O I 3740001 . 0

• INTER + 15 IR • 207
a INTER + 20 PC • 1676
BRF.flI: RFT ER RIS the mim u h i t i o n  stops it the end of IN.

I bonch ai rtl (the return i nstruction )

* o u t c t ”  f a d l . r r e 3 I we du Mp a l l  the count er s int o a f i l e
$con t ! we co nt i nua the simu l ation
a RTS + 2  PC .1074

a RTS + 7 R C 7). 6030

a I N T E R  + 15 (P 8
a INT ER + 20 PC • 603 2
SII1ULIITION CO 1IPLLTEO I we executed the Hilt inst ru ct ion
RUN TIFI E (10 usoc units).831678

RTF1 OP S EX ECUT ED. 4 535
> o x i t  I we fi n i s h  the ses sion
EXIT

Figure 8 - Program Execution Trace

4-2 7

- 
- 

:~~r~~~ i



--

Architectural Research Facil ity

R P I T I X  O C TP L
DC C If C
ICF QF IIWCN11 V OO 3F 5—JUL - 76 12:54 PPGE 1
IBTSRI 1111

I P ro g r am , Prog rei i er I d e n t i t f c a t i o n  (Supr os ~~ed )

I 13 81300 ; Offsets of perimete rs from slid : p
I 14 01400
I 15 00000’. 01500 SPVC.6 ; we need to •ivs 2
I 16 81600
I 17 000016 01780 V .12.SPVE ; function code
I iS 000 (416 81800 H.10.SPVL ; relat i ve b i t numbo
I 19 000012 01900 P1~6.SfliJE ; add roee of bit  ut r
I 20 800010 02000 RC”4,SRIJE addre ss of return
I 21 00000 6 82100 WOR I. .2 .S PVE address of wo rt ar
I 22 0~2 OO
I .~3 00 (1( 4(1 0 ’ 02300 B TSR:
I P~ ON’fl’ O iOO t iO 02400 h1O~J R0 ,— (SP)
I 25 000002’  0 1 0 1 4 6  02500 (lOU R1,— (S P)
I 26 000006 ’ 005076 000010 02600 CLR •RC (SP)

I 27 800010’ 016600 000014 82780 1ICU N (SP),R8

I Ro i o c a i , i~:le O~~oct Coda L i sting

I 43 000066’ 012601 84100 QUIT : IIOV (SP).,R1 ; sx
I 4~ 000070’ 012600 04200 (lOU (SP)+ ,R8
I 4 3  000(l’2’ 000 2 0? 043 00 RIS PC
I 44 0000” . ’ 1501 18 84600 SET: BIS O R1,eRO ; Ft

F I 45 800076’ p~~~’;’ j 04500 BR QUIT
I 46 000001 84600 .ENO

I C r o s s — R e f e r e n c e  Li stin g

I Here b o g i n  the s i r n u i a t i o n  co m mands
I d e r i v e d  f rom the above l i s t i n g

— I r . l o c a t  ion add ress  • word  400 (o ct a l ) • b y te 1800

SETV IT L 1111 600 1 ~O 100 .6
SETVUL hllI(601] ~~810166
SETVPL hhI I (4021 ..0850?6 00 (4010

SETVIT L 1(11(406] —016600 000014

I T a - p o t  P I AC I ’ i r i e P r o g r a m  Load in g

SETV 11L 1111 (633] ~012601
SETV 11L IbU(634]~~812 6OO
SETV (1L 11111635).-00020?
SETV R L M l lC636 ) ~~150110
SETVPL ( 111(4 371. 00077 3

t ECHO
Figure 9 - A Command File Derived from art Assembl y Listing

4-28



Architectural Research Facility

fIX:— bc~ti~
Marl-Inatr<28 :31 next
(dec odu (I ncl r <I 6: 19> NE Q 8)~ (I natr <12:15> NCU 8)—>
\80 R XBDBO :— (NO? ); l No Base , No Index
\81 R X 8~t)( 2: — (NO ?); ! No Bau e , Indexin g
\IR RXB IO O ; i (ND?); ! Base , No Index
\11 RXB1X2:— (HOP) ! Base , Ind exing

) next
(if Ini tr<16:19> —> Mara-Mar+R[Ins tr <16:19>]) next
(if Instr<12:15> —> M ar e-Mar +R [In str <12 :15>)) next
(decade Instr<2;7> — ‘

! Select RX Instructions

end;

Figure 10 — Use of Artif icial Labels

4-29

_ _ _

- -.—- —---- ____________



F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~

-

Refer enc,es

[AmdG64] Amdahl, G. (vi., B~~iuw , C. A., and Brooks , F. P., ‘Architecture of the IBM
System/360”, IBM Journal Research and Development, Vol. 8, No. 2,
April 1964 , pp. 87-101,

[AndV74] Anderson , V. L. and Mc Lean, R. A., Design of Experiments , a Realistic
Approach , Marcel Dekker , Inc., New York , 1974.

[Bar(vi74J Barbacci , M R . arid Siewi orek D.P.: ~~~~ As pects of the Symbolic
Manipulation of Computer Descriptio ns. Department of Computer Science,
CarnegIe-Mellon Universit y, Jul y 1974.

[BarPvi7S) Barb acci , M R .: “A Compar ison of Register Transfer Languages for
Describing Computers arid Digita l Systems ”. IC EE Transactions on
Computers , Volume C- 24, Number 2, February 1975 , pp. 137-149.

[BarM76a] Barbacc i , MR. : “The Symbol ic Manipulation of Computer Descri ptions: ISPL
Compiler and Simulator ”. Technical Report , Department of Computer
Science , Carnegie-Mellon University, 1976 .

[BarM76b] Barbacci , M.R, D.P. Siewi o re k , R. Gordon , P. Howbrigg , and S. Zucker mari :
“Archite c tur E? Researc h Faci l it y: ISP Descriptions , Simulation , Da t a
Collect ion. ” Vo lume IV of Computer Family Ar ch itecture $electio n
Co m mittee Final Report. Naval Research Laboratory , Washington D.C.,
December 1976.

[BeIC7I] Bell , C. C. and A. Newell , Computer St ructures: Readings and Examples.
McGraw-Hill , New York , 1971.

[BerN75J Bernwell , N. (editor) , Benchmark ing~ CompUter Evaluation ~~~~~~~

Measurement , John Wi ley & Sons , New York , 1975.

~8oxG643 Box , G. E. P. and Cox , B. P., “An Anal ysis of Transformations ”, The
Journal of the ~~~at Stat is t ica l 5oci~iy. Series B, Vol . 26 (1964), 21 1-252.

[GMLC753 Computer Review (formerl y Computer Character istics Review, GML
Corporation , Lexington , (vIA , 02173 , 197 5.

[ConW59] Conrior , W S~ and Zelen , M., “Fra ctior i a Factorial Experiment Designs ~~~

Factors at Three Levels ’ , National Bureau of Standards , Applied
Ma themat ics Series Vol . 54 , 1959.

[CorJ77} Cornyn, J.J, Sm ith , W P., Svirs ky, W. R., and Coleman , AR: “Two Life-C ~, - le
Cost Models for Comparing Computer Architectures ”. Submitted t o
Nat ional Computer Conference , NCC-77.

[DavO7 lJ Davies , 0. L. (editor) , Ce~~ ” arid An~~j~ v~ of Industria l Ex perimeflt~,,
2nd

ed., Oliver and Boyd, Edinburgh, 1971.

~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



[FulS76a) Fuller , S. H. , Stone , H. S., and Burr , W. E., “Selection of Candidate
Compute r Architectures and Initial Screening. ” Volume II of Computer
Family Archi tecture 5elect ion Committee Final Repoft Naval Research
Laboratory , Wash ing ton , D.C. 20375. 1 December , 1976.

[FulS76b] Fuller , S.F., W .E. Burr , P. Shaman, and D. Lamb: “Evaluation of Computer
Architectures via Test Programs ”. Volume III of Computer Family
Architecture Selection Committee Final Report. Naval Research
Laboratory, Washington D.C., 1 December 1976.

[FuIS77a) Fuller , 5. H., Bu r r , W. E., Shaman , P., and Lamb , 0. A., “Evaluation of
Computer Architectures via Test Programs. ” This Volume.

lFulS77bi Fuller , S.F., H.S. Stone , arid W.E. Burr: “Initial Selection and Screening of
the CFA Candidate Computer Architecture. ” This Volume.

[LucH7I) Lucas , H. C., “Perf ormance Evaluation and MonitorIng ”, ACM Computing
Surveys , 3, 3 (1971) , pp 79-91.

[PopG74] Popek , G. J., and Goldberg, R. P., “Formal Requirements for Virtuali zab lo
Third Generation Architectures ,” Commu nicat ions of the ~ , Vol. 17, No.
7, Jul y 1974 , 412-421.

[RaoC73) Rao, C. P., Linear Stat is t ical  infere nce and its App lications , 2nd ed., John
Wiley &. Sons, New York , 1973.

~SmiW7 6J Smith , W.R ., J.J. Cornyn , AR Coleman , W. Svirsk y, R. Estell , P. Sabiri : “Life
Cycle Cost Models for Comparing Computer Famil y Architectures ”.
Submitted to National Computer Conference , NCC-77.

[StoH75] Stone , H. 5. (editor ) , Introduct ’on to Computer Architecture , Science
Research Associates , Chicago , 1975.

[StoH76
~ 

Stone , H. S., “An A udit of the Selection Criteria for Computer Family
Arch itecture ,” CFA memorandum , January 1 1976. Distributed at the 18-20
February CFA meet ing.

[WagJ76] Wagner , J., B. Lieblain , J. Rodriguez , H.S. Stone: “Evaluation of the
Candidate A rchi tectures for the Mil itary Camputer Family ”. Submitted to
National Computer Conferenc e, NCC-77

[W 1c873) W lchman n , B. A,, 
~~~~ 

60 Compilation and Asses me~it, Anderson Press ,
New York , 1973. Ii

[Wu lW7 5] Wu lf , W . et . at ftr Design of an Opt~n’ i~~ing Compiler. American Elsevier ,
Progranimi- g Language Series , New York , 1975.

~

~~~~~~~ ~~~~ ~~~


