AD-A038 462 CARNEGIE~MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2
EVALUATION OF ALTERNATIVE COMPUTER ARCHITECTURES.(U)
FEB 77 M R BARBACCI. W E BURRr S H FULLER F44620-73~C~0074
UNCLASSIFIED AFOSR=TR=77=-0381

o
= - L I3
T
m.‘IE fl2
22 flis pee

Evaluation via Test Programs
INDIVIDUAL M MEA

Computer Architecture
I1BM S/370 POP-11 Interdata 8/32

Test Program

© T TR

A. Priority I/O Kernel 212 [3] 28 (4] 28 [12]
354 [12) 24 [12) 32 {14}
522 (14] 24 [14] 28 (17]
B. FIFO 1/O Kernel 424 (2] 208 (2] 192 (2]
920 [13] 188 [3] 226 [4]
434 (17] 296 (13] 114 [13]
C. 1/0 Device Handler 328 1] 309 1] 426 [1]
304 [17] 290 [17] 279 [17]
D. Large FFT 10810 [11] 14746 [11] 10886 [11]
10810 [9)s 14746 (9} 8560 [9]+
8560 [17]A
E. Character Search 854 [1] 730 (1] 958 [1]
940 [4) 770 (11} 1044 (3]
1724 [11] 520 [17] 1021 [11]
F. Bit Test, Set, Reset 378 [9] 162 [3] 222 [4]
358 [12]) 178 (9] 176 [9)
238 [17] 152 [12] 296 [11)A
276 [12]
G. Runge-Kutta Int. 141074 [2] 102662 [2] 100062 [2])
228056 (17] 94960 (3] 100042 (4]
1769560 (17] 117984 [11]A
138414 [17]
3 H. Linked List Insertion 228 [4] 204 [13] 224 [3]
304 [13] 218 [14] 260 [13]
H 264 {14) 240 [17] 238 [14]
g 1. Quicksort 1024 [5] 14360 [5] 2968 (5]
f 1008 (6] 2756 (6] 1732 (6]
{ J. ASCII to Float-Pt. 241 (4] 292 [5) 363 [3)
437 [5) 275 [7] 423 [5)
E 433 (7] 283 [17] 334 (7]
K. Boolean Matrix 832 [3) 582 [4] 384 [6]
909 [6] 776 [6] 566 [8]
} 896 (8] 932 (8] 640 (17]
L. Virtual Memory Exchange 532 (3] 541 (4] 721 (7]
532 [7] 566 [7] 1058 (8]
ﬁ 645 (8] 945 (8] 780 [17]

TR e o N4

Evaluation via Test Programs

Test Program

A. Priority [/O Kernel

B. FIFO 1/0 Kernel

C. 1/0 Device Handler

D. Large FFT

E. Character Search

F. Bit Test, Set, Reset

G. Runge-Kutta Int.

H. Linked List Insertion

1. Quicksort

J. ASCII to Float-Pt.

K. Boolean Matrix

L. Virtual Memory Exchange

IBM S/370

947 [3]
2146 [12]
3052 [14]

2222 (2]
4583 [13]
2226 [17]

1789 (1)
1729 (17]

62904 [11]
62904 [9]¢

5603 [1]
5549 [4)
10239 [11]

1674 [9)
1542 [12]
1212 [17]

845966 [2)
1203952 (17]

950 (4]
1741 (13]
1137 [14]

7618 (5]
7540 (6]

1330 4]
2578 [5]
2226 (7]

.5576 [3]

5661 [6)
5277 (8]

1931 (3]
1934 (7]
2529 [8]

INDIVIDUAL R MEASURES

Computer Architecture

PDP-11

108 (4]
106 (12]
106 [14)

1096 [2]
810 [3)
1419 [13)

1480 (1]
1416 [17]

70512 [11]
70512 [9]s

4348 [1]
4326 [11)
3091 [17]

832 [3]
917 [9]
801 [12]

724372 [2)
665529 [3)
1012727 [17]

1025 [13]
1087 [14]
1210 [17]

74278 (5]
15205 (6]

1726 (5]
1512 [7]
1716 [17]

3180 [4]
3905 [6]
4446 (8]

2616 [4]
2911 (7]
4226 [8]

Interdata 8/32

166 [12]
166 [17]
214 [14]

698 [2]
937 [4]
482 [13]

1902 [1]
1391 (17]

60446 [11]
50045 [9]+
50045 [17]A

5885 [1]
3139 [3]
5767 [i1]

891 [4]
887 [9]
1167 [12)
1281 [11]A

696085 [2]
696049 [4]
777846 [11]A
874923 [17]

834 [3]
1049 [13]
965 [14]

13315 [5]
9609 (6]

2100 3]
2270 [5]
1897 [17]

2216 (6]
3154 [8]
3945 [17]

2539 [7]
4573 [8]
2643 [17]

Evaluation via Test Programs

(1)
(2)
&)}
(4)

(5)

(6) LOOP
(7)

(8)

(9)

(10)

(11)

LA
LA
LA
SDR

SR

LE
ME
ADR
LA
BCT

STO

2,10(0,0)
3,XVEC
4,YVEC
2,2

7,7

4,0(7,3)
4,0(7,4)
2,4

7,4(0,7)
2,LOOP

2,5UM

288

Comments

Set R2 to 10, the length of the vectors.
Load R3 with starting address of X vector.
Load R2 with starting address of Y vector.
Clear floating point reg. 2.

Use it to accumulate inner product.

Clear R7

Use it as index into floating point vectors.

Load X(i) into floating point register 4.

Multiply X(i) by Y(i).

Sum := Sum + X(i) = Y(i).

Increment index by 4 bytes.

Decrement loop count and branch back if not done

(Loop Total)
(Loop (6-10)s 10)
Store double precision result in SUM.

Grand Total

Table 3-1. M Measure for IBM 370 Inner Product Example

TR TR T

AL it

Primary

Memory

General Purpose
Register File

Accumulators,
Base Registors,
.Ilmlox regirlors, -
cmporaries, _A B lnpuls to
ofc f AJLlrmdacu!."1
InntructionRog |} v oo o o = s
[= =l s Mp Address Rog ,"’
1
Program Countor :
Read data Program Ststus g
from memory ¢
comﬁﬁon'
odo !
fires 1
Write deta |
to memory |
% + L
Arithmetic & =
Logic Unit
Specily ALU oporation

Controf Momory Opsrations

- -~ -

LEGEND

——— Data Path
Controi Path

Processor’s
Control
Unit

o 1 T et el
o o - -, o e

Figure 3 |: Canonical Processor Architecture

-
e

Evaluation via Test Programs

IR<0:15> « Mh[MAR] 2 Get halfword in instruction register
MAR « MAR + 2 3 Incrementation counts only 1 byte
IR<15:31> « Mh[MAR] 2 Get rest of instruction in IR
PC«PC+4 3 Increasing Program Counter

I

5. address interpretation

! instruction execution -
\

MAR « PC 6 Set up MAR for next instruction
TOTAL 1.6-

' RX A A AT

| R Comment

1.B2=0,X2=0
MAR « IR<20:31> 5 Read 12 bits from the IR

5 2.B2=0,X2>0
i MAR « IR<20:31> + R[x2}<8:31> 8
Add 12 bits from IR to 24 bits from index

W

.B2>0,X2 =0 |
MAR « [R<20:31> + R[B2])<8:31> 8

4,.B2>0,¥2>0
MAR ¢ IR<20:31> + R[B2]<8:31> 8

MAR « R[x2] + MAR 9 Full 24 bit (3 byte) addition

! TOTAL 17
‘ EXAMPLE INSTRUCTION: A R4,DISP(R2,R7)
é RX Add Instruction R
i
' RX instruction interpretation 16
{ address interpretation 17

MBR « Mw[MAR] 4

R[R1] « R[R1] + MBR 12

TOTAL 49

Figure 3-2. IBM S/370 R Measure Example

———

—

B

Phase

Programmer

Test Program

E F G

14
1
2
9

11

12

13

17

all

all

all

all

all

all

all

all

all

all

all

all

all

all

all

all

II

370
11

832

11

832

370

8322 11 11
370 832 832

11 370 370

832
370

11

832
370

11

370

11

832

370

11

832

III

all

all

all

all

all

all

all

all

Figure 4-1.

"all" designates all three machines

Layouts of Phase I, II, and III Designs

B ARSI

Measure
Comparison of
Machines yE In M In R
» 2 ; .012
My - M 586 018
(-3.696,2.524) | (-.430,.466) (-.449,.474)
My - M -3.535 -.655 717
(-6.645,-.425) | (-1.103,-.207)| (-1.178,-.255) j
M, - M, 2.949 .673 .729
’ (-.161,6.059) (.225,1.121) (.267,1.191)
9
1
X < =3, » -.723
2(M1+M3) M, 3.242 664
(-5.936,-.548) | (-1.052,-.276)| (-1.122,-.323)

M,: effect of PDP-11

| model (5.1): M,: effect of IBM §/370
My: effect of Interdata 8/32

Table 5-1. LCstimates of Machine Comparisons and
§ 95% Confidence Intervals, Phase I

it a2

B Y

T N R S e AN Bk e B

Yeagure JE In S In M In R
Machine Effects

My S S 7T R R
M, 2.161 .354 443 482
e -1.374 -.205 -.212 -.235
! .862 .795 .781
) 1.425 1.557 1.619
H3 <815 .809 791

Ml, K effects for PDP-11
My, py: effects for IBM s/370

H3. gt effects for Interdata 8/32

Table 5-2. Estimates of Machine Effects in Models (5.1) and (5.2), Phase I

Measure
Comparison of
Machines J8 In M In R
M3-M1 -3.806 -.295 -.348
(-8.786,1.168) (-1.000,.410) (-.988,.291)
MB-MZ -1.585 .099 -.027
(-6.559,3.389) | (-.606,.804) (- .666,.613)
"2'“1 -2.,221 -.394 -.321
(-7.195,2.753) | (-1.099,.311) (-.960,.318)
1
- - .318 247 147
7 (MytMy) -, !
(-3.990,4.626) | (-.364,.858) (-.407,.701)

MI:

My: effect of IBM s/370

effect of PDP-11

M

Table 5-3. Estimates of Machine Comparisons and 95% Confidence Intervals, Phase III

y: effect of Interdata 8/32

Measure N In S In M In R
Machine Effects

Ml 2.009 .133 .229 .223
M, -.212 .042 -.165 -.098
M, -1.797 -.174 -.066 -.125
By 1.142 1.257 1.250
by 1,043 .848 -907
g .840 .936 .882

Ml’ uI: effects for PDP-11
My, uy: effects for IBM s/370

My, uy: effects for Jnterdata 8/32

Table 5-4. Estimates of Machine Effects in Models (5.1) and (5.2), Phase III

TG R

Comparison AT J§ ln M ln R ?
of Machines o= .67 a= .66 o= .61 g
i
My-M, -1.649 -.088 -.128 j
(-4.119,.821) (- .442,.266) (-.517,.261) i
My-M, -2.892 -.399 -.448 I
(-5.362,-.422) | (-.753,-.045) | (-.837,-.059) |
M,-H, 1.243 .310 .320 gg
(=1.227,3.713) | (-.044,.664) (-.069,.708) '
1 { §
5(r«11+M3)-M2 -2.067 ~.354 -.384 |
(-4.207,.073) (-.661,-.047) | (-.721,-.047)

M,: effect of PDP-11

My: effect of IBM s/370

effect of Interdata 8/32

>
-

Table 5-5. Estimates of Machine Comparisons and 95% Confidence Intervals,
Phase I and Phase III Data Combined

T NG S R, T

e T

Measure . In S In M In R

_Machine Effects o= .67 o= .47 ¥ = .66 o= .61
M, .135 .001 .075 .064
¥ 1.378 .189 .236 .256
¥, ~1.514 -.189 -.163 =192
3] 1.001 .928 .938
Ha 1.208 1.266 1.292
H3 .828 .850 .825

Ml’ u.l: effects for PDP-11

My, by effects for IBMS/370

M3, Byt effects for Interdata 8/32

Table 5- 6.

Estimates of Machine Effects in Models

Phase I and Phase III Data Combined

WG S e W
N F ’ o AA“A 3

(5.1) and (5.2),

e~ w-mwn

Measure

Jg ln M

Sum of Squares Degrees of freedom

Programmers 2

Test Frograms 8

Machines 2

Programmers 2
X Machines

Test Programs 8

X Machines

Test Programs 4
X Programmers

Table 5-7.

PURTP P PRSP

B s

.027 .018
.623 .653
.132 .076
.039 .053
«132 124
047 .076

Phase II ANOVA Calculations

Proportion of Variance Attributable to Each Sum of

ln R

.660
.068

. 047

121

.078

Squares

wreR

AN N EMRERR NN e SIS e

Evaluation via Test Programs

ARCHITECTUKE

PDP-11
IBM 5/370
Interdata 8/32

Table 6-1 Average Performance of the Architectures on the 12 test Programs.

S

1.00
1.21
0.83

M

0.93
1.27
0.85

R

0.94
1.29
0.83

A - NG e

AN ARCHITECTURAL RESEARCH FACILITY:
ISP DESCRIPTIONS, SIMULATION, DATA COLLECTION

Mario R. Barbacci
Carnegie-Mellon University and
Naval Research Laboratory

Daniel P. Siewiorek
Carnegie-Mellon University and
Naval Research Laboratory

Robert Gordon
Naval Underwater Systems Center

Rosemary Howbrigg
Naval Underwater Systems Center

and

Susan Zuckerman
Naval Research Labaratory

- T N 7 e T - T ’
cimms sk i AR 1 TR K - G

TR YR T

Architectural Research Facility

TABLE OF CONTENTS

SECTION PAGE

1 Infroduction . » « - & V5 o 5 e @ s it on e m e w aLy e b s E W E 1

2 A Typical ISP Description LR S o i 3

' 3 Abstractions and Implementation Dependencies o

FL ABStEActionS s = o e o i B ier b o et ol R e e et 5

3.2 Implementation Dependencies 7

4 The Architecture Research Faciiity 9

41 Beblgging: 0 F e s o L e S s DR 10

4.2 Preparation of Simulation Tests 10

&3 Vnstramentation It a0 e S Tl e s e e i
4.4 Artificial Labels in the ISP Descriptions 12

!

f 5 Architecture Parameters00 e e e 13

! 6 Advantages of an Architectural Research Facility 17

: “ 6.1 A Simulator as a framing Tooll . . + ¢« « o« . & « & v 5 & & 3 b oa 17
2 6.2 Architecture Bvaluation < ¢ « v v v 4 v s T v e e e s 17
6.3 Experimentalion b e v e e e s s s e e s 18
6.4 Machine Relative Software00 18

A AT e e

Architectural Research Facility

ABSTRACT

The objectives of this paper are twofold. In the first place we discuss some
issues related to the formal description of computer systems and how these issues
were handled in a specific project, the selection of a standard computer architecture
for the Army/Navy Computer Family Architecture (CFA) project. The second purpose
is to present a methodology for automatically gathering architectural data which can be
used for evaluation and comparison purposes. We will not discuss the rationale behind
the selection of specific test programs and the statistical experiment set up to
ascertain the influence of the programmers, the test programs, and the machine

architecture on the results. These issues belong in a companion paper.

1. Introduction

There have been many attempts to specify computer architectures in some
formal notation. The CFA project included, to our knowledge, the first attempt to
describe the complete instruction set of several large, commercially aveilable
architectures. The candidate architectures were the IBM S/370, DEC PDP-11, and the
Interdata 8/32. The experiment described in this paper involved the preparation of
formal computer descriptions, the execution of machine language programs under an
instrumented simulator, and the coliection of data used to evaluate the architectures.
Three aspects of the experiment are important to observe: 1) We did not implement
specific simulators, tailored for each architecture; the system used in this project is a
general purpose computer simulator driven by a formal machine description, 2) We

executed a large number of test programs &, each ranging from less than a dozen

* A total of 114 simulation runs were executed. They correspond to a total of 70
different programs (some of which called for several test cases, in other instances a
test case had to be divided into separated sub-cases.) The 70 programs were divided
as follows: 26 for the PDP-11, 22 for each of the IBM S/370 and Interdata 8/32.

4-1

A T STTRERD. N A NI A ST A

Architectural Research Facility

instructions to several hundred instructions, 3) We used real programs that had been
executed on actual physical machines aad then used to initialize the simulators.

The Naval Research Laboratory selected ISP [BelC71] as the notation to formally
describe the candidate machines. This decision was based on the availability of
expertise and software support at CMU and in the fact that ISP was better suited than
other candidate notations for describing a computer architecture, independently of
timing and other implementation issues # . This however, does not imply that ISP is
free of blemisites. Some of its virtues and defects are discussed in [BarM75] In this
paper we will point out some characteristics of the notation that prevent a complete
separation between architectural and implementation details.

Volume [V of the final report of the CFA committee [BarM76b] includes the ISP
descriptions of the three candidate architectures and more information about the
writing and debugging of ISP descriptions. It also discusses the issue of the
correctness of the ISP descriptions and other matters which could not be covered in a
short paper.

Section 2 presents a brief introduction to ISP through a simplified version of the
IBM S/370 ISP description. Section 3 discusses the separation of architecture vs.
implementation details. Section 4 describes the Architectural Research Facility.
Section 5 describes the collection of architectural data from the simulation of ISP
descriptions. Section 6 concludes the paper by outlining the areas in which future

work could benefit from the use of the Architecture Research Facility.

* The CFA selection committee adopted the definition of architecture proposed by the
designers of the IBM S§/360: "The term architecture is used here to describe the
attributes of a system as seen by the programmer, i.e., the conceptual structure and
functional behavior, as distinct from the organization of the data flow and control, the
logical design, and the physical implementation"{AmdG64].

4-2

S TN R R o : T SN Sy T

Architectural Research Facility

2. A Typical ISP Description

The ISP notation was developed to formalize the information normally given in
basic machine manuals and to supplement or, if possible, eventually replace the
% “programming reference manuals". Hence its essential requirements were readability,

conipleteness, flexibility, and brevity.

The original notation was introduced for descriptive purposes and, in the context
of a book [BelC71], certain ambigueties were permitted. For more formal uses, the
notation had to be revised and a language named ISPL was developed between 1973-
1975 [BarM76a). Further developments on the notation continue at CMU, and a
language tentatively named ISPS is being implemented. For the remainder of this
paper we shall refer exclusively to ISPL, the dialect used in the description of the CFA

- architectures.

The example shown in Figure 1 is derived from the 1BM S/370 ISP description.
We will only present the main declarations and the instruction interpretation cycle *.

The control fiow for all instructions in Figure 1 follows a well defined path. The

L ‘ main body of the ISP description is defined by the Run procedure which continuously
I performs a loop of instruction cycles (IFetch foliowed by IExec). After an instruction
has been executed, a special section of code (INT) is execuled. INT checks for the
presence of exceptional conditions (errors or external interrupts) and performs the
proper context switching to handle these conditions.

The instruction fetch section (IFetch) reads the first half-word of the instructions

T ¢ SRR A SO A A% s MR

and from the first two bits (Instr and Instr<I>) it computes the iength of the

* In order to keep the examples within the space limitations of this paper, we have
taken some minor liberties with the syntax of ISPL. These alterations should not
overly confuse readers familiar with ISPL.

3-3

T ———————

Architectural Research Facility

instruction (PSW<32:33>) and updates the program counter (PSW<48:63>). IFetch then
proceeds to read one or two more half-words, the rest of the instruction.
The instruction execution section (IExec) uses the first two bits of the instruction

(Instr<B:1>) to select an instruction-type specific section. The RR, RX, RSSI, and SS

sections handle the corresponding instruction types. RX, RSSI, and SS begin by
computing the effective address of the operand(s). After this step is completed the
next 6 bits of the instruction (Instr<2:7>) are used to select a "routine” which describes
the behavior of the instruction.

If any errors are detected during the instruction cycle (address boundary
errors, illegal operations, storage protections, etc) the rest of the instruction is
aborted and the proper error code is set in the PSW. This premature termination
allows the interrupt handler (INT) to take care of the situation (the usual mechanism is

to switch PSWs thus automatically starting the execution of interrupt specific system

routines).
We have tried to keep the example as simple as possible by avoiding any details

beyond those extrictly necessary to follow the example. In particular, the reader

‘ might have noticed that we were making explicit references to fields of the Instruction
;: Register (Instr) and the Program Status Word (PSW). It is clear that when we deal with
b

{ large descriptions such explicit references tend to become cumbersome and error
prone *. The following section deals with the issues of how to improve the readabiiity
and writeability of ISP descriptions by using abstractions like pseudo-registers,

procedures, temporary registers, etc.

* Even though some portions of the Architectures were left out of the ISP
descriptions, notably the Floating-Point Instructions, the ISP descriptions used in this
project are non-trivial computer programs. Each description takes between 30 and 40
pages of code. The size of the descriptions (1445 lines for the POP-11, 2345 lines for
the Interdata 8/32, and 2132 lines for the IBM S5/370) reflects the size of the
instruction set, not necessarily the compliexity of the architecture.

4-4

—

A R CMRERD TN e WM e

Architectural Research Facility

3. Abstractions and Implementation Dependencies

ISP can be viewed as a programming language for a specific class of algorithms,
i.e. Instruction Set Processors or Architectures. Ideally, a language to describe
architectures should avoid the specification of any implementation details. Any
components introduced beyond these are unnecessary for the programmer of the
machine and might even bias the implementor working from the description. While
these items must appear in a description of an implementation, the problem arises
when describing a family of machines where the abstractions and/or algorithms may
vary across members of the family. The rest of this section illustrates this problem.
3.1. Abstractions

An ISP description written using only the architectural components would not
oniy be unreadable but also unwritable. Some form of abstraction is required. The
following subsections demonstrate this point by introducing pseudo-registers,
procedures, and temporary registers. These abstractions may or may not have a
counterpart in some or all physical implementations of the ISP description.

Pseudo-Registers.- When writing an ISP description for a real machine it immediately

becomes apparent that describing everything in terms of just the components of the
architecture would lead to a cumbersome and unreadable description. The concept of
a pseudo-register to rename a frequently used field of a register greatly relieves this
problem. For example, consider the PDP-11 which has an autoincrement addressing
mode. During the address computation an architecture register, pointed to by a
subfield of the current instruction, must be incremented. Dealing only with components
of the architecture would yield an expression like: R[M[Pc]<2:8>] « R[M[Pc]<2:8>] + 2

where M([Pc] represents the current instruction in memory, pointed to by the program

3-5

TN g g T

Architectural Research Facility

counter. Introducing the pseudo-register Ir (instruction register) for the current
instruction would yield: R[Ir<2:8>] « R[Ir<2:8>] + 2. We could further define a pseudo-
register, Dr (for destination register), for the frequently used three bit subfield Ir<2:8>,
as in: R[Dr) « R(Dr] + 2

The pseudo-registers may suggest a register (e.g.: Ir) or a set of wires (e.g.: Dr)
in some physical implementation. In reality they may have no physical correspondence
at all. In any event, pseudo-registers are a useful and necessary abstraction for
readable (and writable) ISP descriptions. However creating pseudo-registers for
infrequently used fields or using obscure names may defeat the usefulness of this
abstraction leading to reader confusion and excessive page flipping to find definitions.
Procedures.- Just as there are frequently used register fields in a machine description,
there are frequently used sequences of operations. Forming these operations into
procedures greatly enhances readability.

For example, consider operand fetching. Every machine has a more or less
complicated effective address calculation that is performed when accessing these
operands. A memory reference to a destination operand might appear as: M[Dest]
where Dest is a procedure for calculating the effective address of the destination
operand. Without procedures the same reference for the PDP-11 would appear as
shown in Figure 2. The situation would further be aggravated if the effective address
had to be processed by some form of memory management which provides for address
translation and rights checking. These operations would have to be performed in the
description on top of the effective address calculation. It should be noted that many
minicomputers and all larger computers have some form of memory management.

Termporaries.- Occasionally readability is improved by introducing a temporary register

4-6

I TTEEI=——=——————

Architectural Research Facility

in cases where the operands before and after the operation are required or a complex
result is used repeatedly. Figure 3 shows a portion of the memory management
procedures for the PDP-11.

The Read procedure shows the translation of a virtual address into a physical
address. A temporary Memory Address Register (Mar) initially contains the virtual
address (the result of the effective address calculation) which is then translated into a
physical address in the line that reads:

Mar « (PAR[Temp)<11:8> + Mar<12:6>) ® Mar<5:8> next

The PAR (Page Address Register) and PDR (Page Data Register) arrays contain
the necessary address translation information. A bounds check is performed before
the actual memory fetch from physical memory. Without the temporary variable Mar
the Read procedure would be substantially complicated by having to replace every
appearance of the temporary by the complex expression given above. Of course, the
temporary variable may or may not have a counterpart in some implementation.

3.2. Implementation Dependencies

! There are multiple examples of details that must be specified in an

implementation description but do not belong in an architecture description. Typically,
these are features that exhibit model dependencies. For instance, in the specification
of the interrupt handling facility of a computer system, it could be the case that
because of cost/performance requirements, different models must respond to
simultaneous interrupts in different orders. An ISP description must by its very nature
i describe a specific order of interrupt trapping, thus losing a degree of freedom that
one might wish to provide the machine implementors.

Figure 4 shows how the specific order in which simultaneous interrupts are

ﬂ

o BTN K e B

Architectural Research Facility

fielded is build into an ISP description. Individual bits of INTVEC indicate the presence
of a pending interrupt of a given priority. When only one interrupt is pending the
proper context switching wili take place. When more than one 1s pending there will be
multiple context swaps and lower priority interrupts will be delayed to be processed
later (the "new PSW'" associated with a low priority interrupt will be stored into the
"old PSW" position associated with a higher level interrupt).

It is not clear whether having to be specific about ordering of interrupts or
similar events is a bad practice. Although one can claim that machine designers will be
constrained in their choice of designs, the fact still remains that somebody must write
the interrupt handiing software, and for these programmers the order of interrupt
fielding is important. This lype of dilemma occurs quite often when dealing with ISP
descriptions. The solution might be simply to write model-dependent ISP procedures
whenever this conflict arises and then indicate in the ISP description which version of
a given procedure must be implemented for a given model.

Another problem with implementation dependencies is that the definition of the
input /output behavior of an instruction might actually imply a particular
implementation. For example, consider the PDP-11 Subtract instruction. The carry
condition code (C) is set according to the borrow during the subtraction. The POP-11
Processor Handbooks describes the setting of the C bit as:

"C condition code is cleared If there was a carry from the most significant bit of
the result, set otherwise."

This definition implicitly assumes that subtraction is implemented by forming the
two’s complement and adding. Figure 5 illustrates the situation. Consider four-bit
numbers and the two methods to perform subtractions, by using a subtractor, and by

using an adder after forming the two’s complement.

4-8

Architectural Research Facility

In the adder case, the carry is the complement of the borrow which is exactly
the definition given by the PDP-11 Processor Handbock. The ISP description of the
setting of C becomes:

C « (dest - source)<16>; ! Subtraction

C « NOT (dest + NOT(source) + 1)<16>; ! Addition

As in the previous example (the order of interrupt handling), a complete
algorithm had to be given. In this case, the subtractor/borrow aigorithm is preferred
since it presupposes only the properties of the two's complement number system.

However, if an alternate implementation (such as forming the two’s complement and

| adding) is utilized, then the implementor should be aware of possible changes in other

E algorithms in the ISP description.

4. The Architecture Research Facility

The facility used for the data collection phase of the CFA project is depicted in
Figure 6. Reference [BarM76a] explains in full detail the features of the ISP compiler
and simulator. Some familiarity with their capabilities is needed in order to understand

the data coliection phase described later. The foilowing paragraphs attempt to satisfy

E | this need.

e

E ¢ The ISP compiler produces code for a hypothetical machine, dubbed the Register

Transfer Machine (RTM). The "object code" produced by the compiler can be linked

|
TN AT

together with a program which is capable of interpreting RTM instructions. This
separation between the ISP description, the RTM code, and the RTM interpreter allows

the simulation of arbitrary, user defined architectures. The result of linking the RTM

code with the RTM interpreter is a running program, a simulator.

H a-9

Architectural Research Facility

The simulator accepts commands from a teletype or user designated command
file. The state of the simulator can be dumped to a command file which can be read at
a future date when the simulation is continued. Command files can also be used to load
programs and data into the simulated target machine memory and registers.

4.1. Debugging

Most of the test programs were debugged and run on the real machines, other
programs were executed exclusively under the simulator. The latter included those
programs using privileged instructions that were not directly available to non-system
programmers (e.g. interrupt and 1/O handlers.) Results from the actual runs, whenever
available, were used to check the simulated execution.

Only minor modifications and corrections were performed during the data
collection phase. The largest unforeseen problem was presented by the memory
management feature of the PDP-11 which was based on the PDP-11/40. The test
programs which made use of this feature had been tested on a PDP-11/45 which u'sec
different Unibus addresses for the memory management registers. This difference
required minor modifications in the test programs. Most other problems were of a
simpler nature and required only a few minutes to correct. It should be noted here
that the simulator facility was also used to debug some programs for the Interdata
8/32 before they were executed on the real machine. This was dictated by the fact
that no 8/32 was available near CMU and a large turn-around time (several days)
would have complicated the debugging of the test programs.

4.2. Preparation of Simulation Tests

The ISP simulator provides commands for the loading and initialization of the

simulated machine memory and internal registers. The single most important feature of

TN K T o

Architectural Research Facility

the command language which permitted the fast execution and collection of statistics
was the ability to read command files containing the test programs to be executed.
The command language cannot handle programs in symbolic form (assembly language);
it requires the preassembly of the programs into absolute, numeric, code. To get
around this problem, a set of utilities was developed at CMU which permitted the
transformation of assembly listings prepared by the real machine's assembler into
simulation command files. This operation was performed off-line as shown in Figure 6.

Figures 7 and & show the transcript of a typical session using the ISP simulator.

The session consists of running one of the test programs (Bit Test, Set, and Reset) on

the PDP-11. The input for a simulation session consists of several files prepared off-
line. These files include: The test program (derived from the assembly listing), a driver
(simulation commands used to initialize the parameters for the test program), and
finaliy: a command file with a list of those ISP procedures which must be “opaqued"

(these are the procedures during which the activity counters are disabled). A typical

command file, derived from an assembler listing is shown in Figure 9. This was the test
program used in the sample simulator session shown in Figures 7 and 8.
4.3. Instrumentation

The ISP simulator permits the instrumentation of an ISP description by

il 32)

associating activity counters with each of the machine registers and memories. These

counters allow the collection of statistics indicating the number of times each

TR

component of the machine is read from or written into. A separate counter is kept for
each label in the ISP description. Labels are included in the ISP descriptions to

identify machine instructions, addressing modes, loops (used to describe vector-like

o
T NI CIMIEAR S e WARE BT AT At

instructions like move character on the 5/370), as well as other ISP procedures.

' A 4-11

TN TR T

TR

AR T L TR S AL S

B S s

Architectural Research Facility

During the execution of the test programs, a data base was created by collecting
dumps of the counters after each test case was completed. The files containing the
counters were then processed by other, off-line, programs in order to arrive at the M
and R measures.

4.4, Artificial Labels in the ISP Descriptions

Certain modifications not normaily needed were made to the ISP descriptions to
aid in the collection of data during the running of the test programs for the CFA
project. Several labels and "do-nothing" procedures were added to identify certain
phases in the instruction interpretation algorithm and to measure selected events (e.g.,
different addressing modes). The labeis added to count these events are clearly not
part of the architecture or even the implementation.

Figure 10 shows an example extracted from the 5/370 ISP Description. It shows
the use of artificial labels to identify different addressing modes for the RX instruction
set. According to the definition of the S$/360 and $/370 architectures, The RX
instructions can specify both a base and an index register to be added together with
the displacement field of the instruction to compute the address of the memory
operand. The architecture further specifies that R[8], when specified as either a base
or index register does not take place in the effective address calculation, ie,, R[8]
should be specified whenever one of these two components (base or index) is missing.
In the above example four dummy in-line procedures where introduced to count the
number of times each possible combination of base/index modes occurs. Thus RX3888
is "executed" whenever R[B] is specified as both the base and the index register
RXB0X2 1s "executed" whenever R[8] is used as the base register and any of R[1:15] is

used as the Index register. RXB188 is "executed” whenever R[8] is specified as the

BT ¥ G

1

|
|
ARl S L ?m-i

B Lt

LS.

Architectural Research Facility

index register and any of R[1:15] is specified as the base register. Finally, RXBIX2 is
"executed" whenever R{@] is not specified as either the base or index registers. NOP

is a dummy procedure which does not have any side effects.

5. Architecture Parameters

As a means of comparing architectures, three measures were defined for the
CFA project [FulS77a):

Measure of Space

S The number of bytes used to represent a test program.

Measures of Execution Time

M The number of bytes transferred between primary memory and the
processor during the execution of the test programs.

R The number of bytes transferred among internal registers of the
processor during execution of the test program.

The S measure is a static parameter which can be computed independently of
the ISP description. For the purposes of this paper we will restrict the discussion to
the other two measures. The actual computation of the M and R measures was done
through a semiautomatic process. The raw data coliected from the simulator was used
to count frequencies of instructions and addressing modes. These counters were
multiplied by certain hand calculated factors in order to arrive at the M and R
measures for each test program. Ideally, the ISP simulator should perform the entire
operation and this would be a better approach, less subject to human errors. We had
to use the hand computed factors due to our inability to determine the influence of the
ISP writing style on the architecture parameters as defined above.

The exact methodology for writing ISP descriptions so that the M and R

T e S R A T3P % = Wi ‘ e e ——-—

Architectural Research Facility

measures can be caiculated automatically has yet to be developed. It is clear,
however, that a careful ccntrol of the counting mechanism is paramount to the
collection of meaningful data. During the data collection phase we made use of the
following techniques towards this goal.

Opaqued Procedures.- A Simulator command allows the selective masking of in-line and

off-line procedures. Masking or opaquing a procedure inhibits all activity counts inside
the body of the procedure.

Certain operations, such as incrementing the program counter after an
instruction, or the setting of the condition codes as a result of an instruction do not
affect the R measure and should not be counted. This is typical of those actions which,
in a reasonable implementation, would be done using ad-hoc circuitry, separate from
the main operational units of the machine. These operations could be implemented by
combinational logic (e.g.: setting condition codes from ALU lines), special registers (e.g.:
using a counter instead of a simpie register for the program counter), or even complex
sequential networks (e.g.: the virtual address translation can be performed using its
own arithmetic units and data paths).

? Operations like those described above can be easily marked by adding artificial
labels to the ISP description and then disabling the counters while the selected
operation is being performed.

Pseudo-Register Chains.- Every component declared in an ISP description has activity

counters associated with it. When a register is defined in terms of another register,

such as: Pc<15:8> ;= R[7]<15:8>; a redefinition chain is established. Accesses higher up

A A MR N o AW 4

in the chain increment all counters lower in the chain but not vice-versa. In the above

example an access of the Pc causes the register file counter for R to be incremented

" A o s, X A T "y il T

et i pWURTTT 2 4 WINR 0D Do ST ors gt 4

SR TR W T e e ———

Architectural Research Facility
but accessing R[7] does not increment the program counter (Pc). By establishing
appropriate redefinition chains, distinction between access types can be maintained.

One variation of this technique is the use of “shadow" registers. For example twp

instruction registers can be defined: Ir<15:8> := Ir1<15:8>; where Irl is the shadow

register. The loading of the Ir from memory is to be counted in the R measure,

e N

however, the combinational logic decoding of the instruction and effective addressing i
mode is not to be counted. The former is performed on Ir, the latter on Irl thus
distinguishing the two different types of accesses.

Memory Access Procedures.- Modern machines provide the user with an address space

defined in terms of small units of information, typically 8-bit bytes. For convenience,
however, the architectures also define larger access units in multiples of bytes. Thus,
the IBM $/370 provides bytes, haif-words, full-words, and double-words. Since the
physical memory is the same, the ISP description must declare the different address
spaces by building a redefinition chain in which the different address spaces are
declared as "pseudo-memories" so that the M measure component of each address
space is properly accounted for.

Machines like the PDP-11 add some more complexity to the issue of having

{ multiple address spaces. The PDP-1! architecture defines the concept of an 1/O page
as a reserved portion of the address space, not necessarily implemented as a physical
memory. Addresses in the upper 4K bytes of the PDP-11 are used to address [/O
devices, machine registers, etc. Addresses in the [/O page must be handled differently

when computing the M measure. If one attempts to include in-line address checks in

A L MRS A o BSR4

the ISP description, the description quickly becomes bulky and unreadable. A

satisfactory solution is simply to define memory access procedures (Read and Write),

W10,

2Ry R V%
Fon Roaneying 3 A4ty Al

TP P S S P T T ———

AN - BRI A

R oM LR T
e & 5 VNI ot TR RPINSL PO o (FROTLTH 0| PS4 Ay

Architectural Research Facility

which can then be properly instrumented, thus enabling the automatic computation of
the M measure.

Temporary Registers.- The automatic computation of the R measure is more difficult. In

an ISP description there are three types of registers to consider: architectural,
standard implementation, and temporaries. Architectural registers and certain standard
implementation registers (instruction register, memory address register, and memory
buffer register) can be handled using the same techniques used to automate the M
measure (declaration chains and encapsulating procedures). Handiing temporary
registers presents a more difficuit problem. The number, type, and manipulation of
temporary registers are a matter of writing style.

Architecture parameters which are based solely on architecture registers while
ignoring temporary registers introduced for clarity might overlook hidden computations
performed on these registers. Unlike the memory, architectural registers, and standard
implementation registers, a tightly defined writing style cannot be developed for
temporary registers. One solution would be to use well known expression optimization
techniques [WulW75] on the ISP description to uniformly minimize the temporary
register activity. Hopefully the optimization would lead to similar results for equivalent
algorithms,

Architectural parameters should be independent of the experience, style, and
objectives of the ISP writer. This will then guarantee that the ISP descriptions which
make use of abstractions (pseudo-registers, procedures, and temporary registers, etc)
to enhance clarity and readability will not be penalized. By the same token, no
advantage should be derived from the use of “clever"” programming tricks which might

attempt to bias the measurements.

e

0N ",m"..‘mv'ﬂ S T SR 5 R R

N e

Architectural Research Facility

6. Advantages of an Architectural Research Facility

Although for the purposes of this paper we have presented the uses of the ISPL
compiler and simulator in the context of a specific project, we should point out the
wider range of applications in which a system like ARF can be of great value.

6.1. A Simulator as a Training Tool

In this paper we described how machine langugge test programs can be
executed under the simulator. The implied assumption during the data collection phase
was that we were dealing with correct, finished programs. With no extra effort the
ISP simulator can be a powerful training device for novice programmers. Speed of
simulation is not an issue in this application. Programmers learning a new machine
language tend to spend long hours single-stepping via the machine console. An
interactive simulator can easily satisty the needs of these users, while providing much
better diagnostic and debugging facilities than a computer console (did you ever see a
"help" button on a machine?) ISP descriptions exist for the following machines: DEC
PDP-8, PDP-10, PDP-11, IBM $/370, Interdata 8/32, and Intel 8080.

g | 6.2. Architecture Evaluation

The S, M, and R measures are by no means the only set of architecture
parameters one might wish to evaluate. Nothing in the ISP simulator depends upon
$] this particular set of parameters. The instrumentation in the simulator allows counting

every event we care to define by simply labelling the event. There is no need to

e

create new procedures which might impact the organization or readability of the

description; even a single register transfer operation can be labelled and counted.

TR R Ry T

Architectural Research Facility

6.3. Experimentation

Once the initial effort of writing an ISP description is accomplished, only
moderate effort is required to perturb it to reflect proposed or actual changes in the
architecture. Thus the effect of a modification in an architecture can be measured and
studied before any funds are commited to the development of a new machine. By a
careful design of the ISP description it is possible to pattern a description along the
lines of the organization of the physical machine. Thus one would be able to measure
and evaluate different models of the architecture. For instance, functional units and
data paths can be represented by separate procedures in the ISP description. An ISP
description could then be parameterized to invoke these procedures in different order,
concurrently or sequentially, with or without intermediate steps, etc. as the different
models differ in their implementation. An example might be determining the effect of a
cache memory on the apparent instruction execution speed in high performance
implementations.

6.4. Machine Relative Software

As the number of different architectures coming into existence increases every

year, it is becoming more and more expensive to develop the necessary software

{ support base that allows the effective use of these machines. The availability of user

H micro-programmable machines enlarges the space of possible architectures to the point

that automatic software generation systems will become a necessity. Tools that

S

operate relative to a computer description could represent a significant breakthrough
in the manner that computer systems (hardware/software) are designed and evaluated.

The Advanced Research Projects Agercy (ARPA) of the Department of Defense is

currently sponsoring this area of research at CMU and elsewhere [BarM74]

Architectural Research Facility

In the future one can foresee hardware and software automation systems that

take as input computer descriptions, and language and problem specifications; and from

these, generate operating systems, compilers, and other support and application
software automatically. Other areas of current research include automatic diagnostic
generation, microcode generation, machine verification, etc.

Formal computer desrriptions will play an increasing and important role in the
evaluation, procurement, verification, and programming of computers. The ARF facility

is a step in this direction.

A 3

e

4-19

Architectural Research Facility

S370:=
begin declare
Memory[8:"FFFPFF]<8:7>; ! Primary Memory
R[8:15]<8:31>; ! General Purpose Registers
PSW<8:63>; ! Program Status Waord
....... ! Auxiliary Registers (Instr, Mar, Mbr, etc.)
eralcad ! End of Declarations
Run:= begin ! Main Executable Program
[Fetch:= beyin ! Instruction Fetch Section
Mar<PSW<48:63> next ! Initial Instruction Address
Instr<@:15>«Memary[Mar:Mar+1] next ! Read First Half-Word of Instruction
PSW<32:33>¢Instr<@>+Instr<1>+1 next ! Instruction Length
PSW<40:63>«PSW<48:63>+P5W<32:33>%2 next ! Program Counter
....... ! Petch the rest of the Instruction
end;
IExec:= begin ! Instruction Execution Section
decade Instr<@:1> => ! Select Instruction Type;
RR:= begin ! RR Instruction Decade Table
(decade Instr<2:7> =>) ! Select RR Instructions
end;
RX:= begin ! RX Instruction Decode Table
Mar«Instr<28:31> next ! Displacement
(it Instr<16:18> => MareMar+R[Instr<16:13>]) next ! Base
(if Instr<12:15> => MareMar+R[Instr<12:15>)) next ! Index
(decade Instr<2:7> w>) ! Select RX Instructions
end,
RSSIL:= beyin f RS,SI Instruction Decode Table
Mar « Instr<28:31> next ! Displacement
(if Instr<16:19> => Mar « Mar+R[Instr<16:19>]) next ! Base
(decade Instr<2:7> => . .) ! Select RS, SI Instructions
| end;
! SS:= begin ! SS Instruction Decode Table
] AMarlelInstr<28:31>; AMar2<Instr<36:47> next ! Digplacements
{ (f Instr<16:19> => AMarl-AMarl+R[Instr<16:19>)); ! Base
§ (if Instr<32:35> => AMar2<AMar2+R[Instr<32:35>]) next ! Base
: (decade Instr<2:7> =>) ! Sclect 5S Instructions
i end;
3 end;
i INT:= begin..... end next ! Interrupt Handling Sectian
t Run ! Repeat Main Procedure
end
end

Figure 1 - A Simplified Version of the IBM 5/370 ISP Description

e T < P 0 <R e YR M

4-20

Architectural Research Facility

M(decode Dd =>

(decode Dm <> ! Direct Addressing
#37488aDr; ! Register Mode
R[Dr]~R[Dr]+2 next R[Dr]-2; ! Autoincrement Mode
R[Dr]<R[Dr]-2 next R[Dr}; ! Autodecrement Maode
M(Pc+2] + R([Dr] ! Index mode
)

(decade Dm => ! Deferred Mode
M[#374806Dr}; ! Regisler made
R[Dr}-R[Dr]+2 next M(R[Dr]-2}; ! Autoincrement Mode
R[Dr j«R[Dr]-2 next M{R[Dr]} ! Autodecrement made
M{M(Pc+2] + R{Dr]] ! Index mode
)

Figure 2 - Inline Effective Address Calculation

e T

4-21

A A TR R I A SRR < S b T ML N e A
2
.

Architectural Research Facility

Read:=begin
Temp « Mar<15:13> next
Mar « (PAR[Tewmp)<ll:8> + Mar<12:6>) ® Mar<5:8> next ! Compute Physical Address
(it not PDR[Temp]<2:1> => Abort) next
(if (Mar<12:6> gtr PDA[Temp]<14:8>) and not PDR[Temp]<3> => Abort) next
(it (Mar<12:6> lss PDR[Temp)<i4:8>) and PDR[Temp]<3> => Abort) next
....... ! Read from Physical Memory

end;
Figure 3 - A Portion of the PDP-11 Memory Management
|
:
|
H
]
‘ 4-22

YT RS TR TR T

e TSR

Architectural Research Facility

Int:=

begin

Tempe-PSW<32:33> next ! Save Instruction Length

(if INTVEC AND PSW<13> => ! Handle Priority (1) Interrupts
) next

(if INTVEC<I> => ! Handle Priority (2) Interrrupts
Yaigxh

(if INTVEC<2> =>

) next

(if INTVEC<3> AND PSW<8:7> => ! Handle Priority (3) Interrupts
) next

(if INTVEC<4> AND IOMSK => ! Handle Priority (4) Interrupts
') next

PSW<16:31>«8; PSW<32:33>«Temp ! Reset Instruction Length & Interrupt Code
end;

Figure 4 - Explicit Interrupt Processing Order in the IBM S/370

4-23

: Sh TR VIR R, & T T Ry, T

Architectural Research Facility

5 -3 =2 (no borrow)

0101
0011

0 0010
borrow

0101
1101

1 0010
carry

3 -5 = -2 (borrow)

0011
0101

1 1110
borrow

0011
1011

0 1110
carry

Subtracting

Adding Two's Complement

Figure 5 - Implementation Dependant Condition Code Setting

4-24

T T e ST e e ; ; ——Y e -

44y {epuf) uolyndaxy weldoud }sa) - g 34ndi g

AT T

s)insay ¢
uo!jNd8x3
CIVHERTIY
uosiiedwo) Gq————— 19818 K-
weJB04d
12890
suyoe
s}insay “mw._m.\u
uolje|nwig
"~
ejeq }s3
Lt 1eQ issy 54
L=y :
S3|14 8)e}8 uoleNWIg -m
|i'J ».‘2
% .‘odm_:E..m 31e50(8y 1sjquassy (3 _ 7 T m
s8ji4 8del) m&ﬂumi a4 | /iewuoyay Buiysn weuSoud #
jo=de} puewwo) Alqwassy 1581 m
B
| e A3
10585820.4d .N
sainsean -1s0d Sjunod % s2enguen i E
N pue ¥ Adusnbsiy Nw pUBWIWG) m
8A1}2€I3IU] mz
[
ne
81!d 3HS b
satisouseq pue 2ulisiy
01-dad ¢ g :
f
OT-XNI -
uoijdiissag =
dSl !
40jg|nwi!s :

dSlI

g,

e ——— - . - - T T s T NN S -y T . S L .

- _—m

Architectural Research Facility

ru pdpllm

ISP SINULATOR V3 - NRL ARF STRGE 2

Friday 18 Sep 76 17:13:58 PDP11IN. ISP{L418NB25)
SERIALIZATION COHPLETEQ

SPACE ALLOCATED

TYPE HELP FOR MELP

TYPE <ESC> TO INTERRUPT SIHULRTION LOOPS

>raead fadl.sim | Read in the banuchmark {i(le
>>RANIX OCTAL
>>DECHO | The benchnark {ile disables the liating

! on the user terminal.
>>1060 LINES RERD

>raad fa.dr3 | Read in the driver file
> ! HERE CONES THE URIVER (CALLS)
>>SETVAL NI(3000] ~0137646 805202 ! nov #5282, - (SP) ;s F
>>SETVAL Ml (3002 ~013746 005200 ! MoV ens204, - (SP) i N -
>>SETVAL NUL3006] 812746 666000 ! HOV 440600, - (5P) ; Rl
>>SETVAL NMH(30061+012746 0805200 ! MOV #5200, - (SP) ; RC
>>SETVAL MH(3010) 812746 805206 ! MOV #5206, - (SP) i W
>>SETVAL MI[3812)«800737 801000 ! JSR PC,ad1808 ; BTSR
>>SETVAL MI(30141«000000 ! HLT
>> ! The abouve soquuance ot POP-1i nstructions pushes the parameters

! onte tho stac)l, call the benchnari as & routine, and halt.
>>SETVAL HHL/AN01 123457 871234 167806 145670 ! BIT STRING
>>AETVAL HU(2500]1 -0 L RETURN CODE
>>SETVAL HUHI2501) 2 ! F
>>SETVAL MHL26HB2) «25 ! N
>>SETVAHL HMH(2503] -8 ! WORK AREA
>>SETVAL PC.«6000
>>SETVAL SP.200

! The abowvo sequanca initializas the data (paranmeters’, the stack

! pointer and thn progran countar (uhich now points to the code

! sequanca that pusher tho paraneters and call the routine.
>>SETVAL A0 ' This 15 an ISP intarnal vartable - indicates whathar the

! machine i8 running, halted, or watting.

>>SETCTR ALL 0,8 ! Raset activity counters
>>REAN 0OPQ11.SIMILA1OMBYS] | POP11 Qpaquad Proceduros

>>>0ECHO

>>>53 LINES RERAD

>>REAN UUD11.SIM(L4A1GNBRS)
>>>DECHD

>>>15 LINES READ

>>TRACE IR,PC,R,HKIO0

UNIHPLEMENTEQ OPERRTION BRERKLS

Trace a feu solected registars
IR 15 the Instruction Register,
PC 1s the Program Counter (RI7)),
R[8:7) are the gonoral registers,
I MKIO is the 1/0 page (R 1s mapped onto MHIO)
>>BREAL JSR, RT3 ! Breal on selected instructions
>>26 LINES READ

e

e AT RS A e

Figure 7 - Initialization of a Simulation Run

4-26

FRV. TR R e o 4 "

o S T, PR A AL S e 3 e T

Architectural Research Facility

>start inter '

@ INTER + IS IR = 13746
@ INTER + 28 PC = 6002
@ SINCD + 22 R [7)= 6804
@ DDECRD + 21 R [6l= 176
@ INTER + 1S IR = 13746

Here we start the simulation

! Pushing Paraneters

The simulation stops on a breakpont
The real benchnar)k starts hare, wo must
reset all countars (they were modified
during the benchmark calling sequence)
we continue the simulation

@ INTER + 15 IR = 12746

@ INTER + 28 PC = 6022

@ SINCO + 22 R [7)= 6824

@ DDECRO + 21 R [6l= 166

@ INTER + 1S IR = 4737

@ INTER + 28 PC = 6626

BREAK AFTER JSR !

asetctr all 3,8 !
[
!

wcont |

@ DINCRD + 22 R (7)= 6630

e JSR + 14 R [7)= 6830

e JSR + 15 PC = 1800

@ INTER + 1S5 IR = 18046

@ INTER + 28 PC = 1802

. | Program Exacution Trace

@ INTER + 28 PC = 1872

@ SINCD + 22 R (6= 166

@ WRITE + 131 MHIO ([3748081= 0

@ INTER + 15 IR = 287

@ INTER + 28 PC = 1876

BREAK AFTER RTS !

soutctr fadi.rm3

xcont !
e RTS + 2 PC = 1874

@ RTS + 7 R { 7)= 6830
@ INTER + 15 1R = 8

@ INTER + 28 PC = 60832

SIMULATION COMPLUTED

RUN TIME (18 usoc units)=831678
RTH OPS EXECUTEDa6535

>ox 1t

EXIT

the sinulation stops at the end of the
benchunark (the return instruction)

we duup all the counters into a file
we continue the simuiation

we axacuted the Halt instruction

we finish tha session

Figure 8 - Program Execution Trace

4-27

Architectural Research Faciity

RANIX OCTAL

OECHO
ICFAF NACN11 VBO3F 5-JUL-76 12:564 PRGE 1
IBTSR1 M1L
!
! Program, Programmer Identification (Supressed)
! 13 81380 ; Offsets of parameters from stack p
| 14 81400
! 15 80000w 81500 SAVL=4 ; we nood to save 2
! 16 81600
! 17 200016 017808 Fel2+SAVE ; function code
! 18 800014 81888 N=10+SAVE 3 relative bit numbe
! 19 600012 61900 A1l=64SAVE ; addross of bit str
! 20 800010 02000 RC=G+SAVE ; addross ot return
! 2 800000 82100 HORKa24SAVE ; address of work ar
! 22 62280
! 23 eoon00’ 02300 BTSR:
! 24 200000" 0100640 02400 MOV RG, - (SP)
! 25 000002" 010146 02500 KoV R1,-(5@)
! 26 00000n" 005076 000010 62600 CLR eRC (5P) } ze
! 27 800016” 016609 0600014 82780 Hnov N(SP),R8 i ge
! Ralocatable Ovjoct Code Listing

! 4} 80066" 012601 84160 QUIT: MOV (5P)+,R1) ex
! 42 800070" 012600 86200 HOV (SP)+,R8
' 43 8on0”2" 8e00? 84300 RTS PC
' 44 800076’ 150118 846400 SET: BISB R1,eR8 3 FC
! 45 800876" 0080773 84500 BR Qulr
' 46 880001 84608 END

E- « « « v« . ! Cross-Rafarance Listing

:)

| ! Here bogin the sinulation conmands

E 3 ! derived fron the abovo listing

1 { ! relocation addross = word 400 (octal) = bytse 1808
\

: SETVAL MU (4001 ~D18016

SETVAL MH(401]«8181406
SETVAL HH(402]+B65076 000010
SETVAL MH(406]-816600 000016

I Target Machine Progran Loading

SETVAL MH(433)+812601
SETVAL MH(636]+8126080
SETVAL MUL435).000207
SETVAL MU (436)«150110
SETVAL HW(437)+800773

ECHO
Figure 9 - A Command File Derived from an Assembly Listing

4-28 |

REUTTTR 110 RN bl B w . Taalh o 2 o o . PR

Architectural Research Facility

RX:i= begin
Mar«Instr<28:31> next
(decade (Instr<16:19> NEQ 8)@(Instr<12;15> NEQ 8)=>

\88 RXB008:= (NOPy; ! No Base, No Index

\81 RXB0BX2:= (NOP); ! No Base, Indexing

\18 RXB1808:= (NOP); ! Base, No Index

\l1 RXBIX2:= (NOP) ! Base, Indexing
) next

(if Instr<16:19> => MareMar+R[Instr<16:19>)) next {
(if Instr<12:15> => MareMar+R[Instr<12:15>}) next

(decade Instr<2:7> =>

...... ! Select RX Instructions

Figure 10 - Use of Artificial Labels

References

[AmdG64] Amdahl, G. M, Blaauw, G. A, and Brooks, F. P, "Architecture of the IBM
System /360", 1BM Journal of Research and Development, Vol. 8 No. 2,
April 1964, pp. 87-101.

(AndV74] Anderson, V. L. and Mclean, R. A, Design of Experiments, a Realistic
Approach, Marcel Dekker, Inc., New York, 1974,

[BarM74] Barbacci, MR. and Siewiorek D.P.. Some Aspects of the Symbolic
Manipulation of Computer Descriptions. Department of Computer Science,
Carnegie-Mellon University, July 1974,

[BarM75] Barbacci, M.R.: "A Comparison of Register Transfer Languages for
Describing Computers and Digital Systems". I£EE Transactions on
Computers, Volume C-24, Number 2, February 1975, pp. 137-149.

[BarM76a] Barbacci, MR: "The Symbolic Manipulation of Computer Descriptions: ISPL
Compiler and Simulator”. Technical Report, Department of Computer
Science, Carnegie-Mellon University, 1976.

"Architecture Research Facility: ISP Descriptions, Simulation, Data

& [BarM76b] Barbacci, M.R, D.P. Siewiorek, R. Gordon, R. Howbrigg, and S. Zuckerman:
l Collection." Volume 1V of Computer Family Architecture Selection

| Comnittee Final Report. Naval Research Laboratory, Washington DC,
B | December 1976.

‘ [BelC71] Bell, C. G. and A. Newell, Computer Structures: Readings and Examples,
| McGraw-Hill, New York, 1971.

[BerN75] Bernwell, N. (editor), Benchmarking: Computer Evaluation and
Measurement, John Wiley & Sons, New York, 1975.

[BoxG64] Box, G. E. P. and Cox, B. R, "An Analysis of Transformations”, The
Journal of the Royal Statistical Society, Series B, Vol. 26 (1964), 211-252.

[GMLC75] Computer Review (formerly Computer Characteristics Review, GML
Corporation, Lexington, MA, 02173, 1975.

L el s g i 1L i il

[ConW59] Connor, W. S. and Zelen, M, "Fractiona! Factorial Experiment Designs for
Factors at Three Levels", National Bureau of Standards, Applied
Mathematics Series Vol. 54, 1958.

B

(Cord77] Cornyn, J.J, Smith, WR., Svirsky, W.R, and Coleman, AH: "Two Life-Cy_le
Cost Models for Comparing Computer Architectures”. Submitted to
National Computer Conference, NCC-77.

[(DavO71] Davies, 0. L. (editor), Design and Analysis of Industrial Experiments, 2nd

ed., Oliver and Boyd, Edinburgh, 1971.

BEiie dnaiac . B 2. o o S

T T T T P T Y T T T Ty

[FulS76a)

[FulS76b]

[FulS77a)

[FulS77b)

[LucH71]

[PopG74]

[RaoC73]

L[SmiW76]

[StoH75]

[StoH76]

[WagJ76]

[WicB73]

[(WulW75]

Fuller, S. H., Stone, H. S, and Burr, W. E, "Selection of Candidate
Computer Architectures and Initial Screening." Volume Il of Computer
Family Architecture Selection Committee Final Report, Naval Research

Laboratory, Washington, D.C. 20375. 1 December, 1976.

Fuller, S.F., W.E. Burr, P. Shaman, and D. Lamb: "Evaluation of Computer
Architectures via Test Programs”. Volume III of Computer Family
Architecture Selection Committee Final Report. Naval Research
Laboratory, Washington D.C., 1 December 1976.

Fuller, S. H., Burr, W. E., Shaman, P, and Lamb, D. A, "Evaluation of
Computer Architectures via Test Programs.” This Volume.

Fuller, S.F., H.S. Stone, and W.E. Burr: "Initial Selection and Screening of
the CFA Candidate Computer Architecture." This Volume.

Lucas, H C., "Performance Evaluation and Monitoring"”, ACM Computing
Surveys, 3, 3 (1971), pp 79-91.

Popek, G. J, and Goldberg, R. P., "Formal Requirements for Virtualizable
Third Generation Architectures," Communications of the ACM, Vol. 17, No.
7, July 1974, 412-42].

Rao, C. R, Linear Statistical Inference and its Applications, 2nd ed,, John
Wiley & Sons, New York, 1973.

Smith, W.R,, J.J. Cornyn, AH Coleman, W. Svirsky, R. Estell, P. Sabin: “Life
Cycle Cost Models for Comparing Computer Family Architectures™
Submitted to National Computer Conference, NCC-77.

Stone, H. S. (editor), Introduction to Computer Architecture, Science
Research Associates, Chicago, 1975.

Stone, H. S, "An Audit of the Selection Criteria for Computer Family
Architecture,” CFA memorandum, January, 1976. Distributed at the 18-20
February CFA meeting.

Wagner, J, B. Lieblamn, J. Rodriguez, HS. Stone: "Evaluation of the
Candidate Architectures for the Military Camputer Family". Submitted to
National Computer Conference, NCC-77.

Wichmann, B. A, Algol 60 Compilation and Assesment, Anderson Press,
New York, 1973.

Wulf, W. et. al: The Design of an Oplinizing Compiler. American Elsevier,

Programming Language Series, New York, 1975,

