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January, 1977

ABSTRACT

Several models , which are believed to be generic for the estimation of
discrete—time axial processes, are proposed . By introducing axial exponential
Fourier densities and axial exponential trigonometric densities, finite—dimen-
sional recursive schemes are obtained for updating the conditional density
functions. The underlying idea is the closure properties under the Bayes rule
of the various combinations of these exponential densities.

An estimation error criterion, which is compatible with a Riemannian metric,
is Introduced . It is shown that the corresponding optimal axial estimates can
be easily computed from the conditional probability distributions .
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I. INTRODUCTION

In this paper we consider the problem of estimating axes in three—

dimensional space. An axis or axial vector is distinguished from a polar vector

in that the former is invariant under inversion. Such axes occur In many

diverse areas including the following: geophysical fluid dynamics to estimate

the vorticity of a flow, paleomagnetism to estimate a magnetic field, crystal—

lop,raphy to estimate the optic axis of a crystal, geology to estimate the

• direction of a normal to the axis of a fold in a layer of rock, and quantum

mechanics to estimate the axis of rotation of a rigid body rotation.

Using densities of the form exp f where f is a linear combination of

axially symmetric spherical harmonics, estimation problems which arise by

examining various possible ways of obtaining a displacement of an axis will be

solved in this paper. Although the state space under consideration is home—

omorphic to a hemisphere of S
2
, the results in Eli for estimation on S

2 cail—

not be applied for several important reasons: the displacements defined in

that paper may result in a given point being displaced to a non—antipodal

point in the opposite hemisphere, the densities discussed in [1] were not, in

general , axially symmetric, and the error criterion used for S2 is undesirable
since it would result in a rejection of the antipode of the optimal estimate.

Usinc~ the various displacements and conditional densities obtained in

this paper, detection for axial processes would be described by procedures

similar to those used for S
2 and SO(3) which have been discussed in [I] and [21.

( • II. PRELIMINARIES AND AXIAL EXPONENTIAL FOURIER DENSITIES

S The set of all axes centered at a fixed point can be identified

in a one—to—one manner with the points on a hemisphere HS(p) of the unit

sphere S2 with pole at p. Hence the state space for the axial processes to be

discussed can be considered to be the factor space obtained by partitioning

• 1
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s2 
into equivalence classes such that two different points on S2 belong to the

same equivalence class if and only if they are antipodal points. This factor

space, which is projective two—space, will be designated by the symbol S
2
/±l

• throughout this paper.

Since the spherical coordinates (0,4)), (ir—0 ,4)-i-ir), and (11+0 ,4) ) will all

represent the same axis, any probability density p(0,4)) on S
2/±l should have

the property tha t it is antipodally symmetric on S2, i.e.

p(0,4)) = p OT—O,4)+1T) = p(rr+O,4)) . (1)

An example of such an antipodally symmetric density tha t has been previously

studied is the Bingham distribution [3] which is a generalization of tile

Dimroth—Watson distribution of [4] and [5]. It can be expressed as a density

containing spherical harmonics of the form

2
c exp 

~ 
a Y

2 
(0,4))

• m’ -2 ,m

where c is a normalizing constant .

Clearly, given any den;ity p1(O ,4)) defined on S2 , a corresponding density

p(O,4)) can be obtained on S /±1 regarded as the upper hemisphere

HS(n) = [0,11/2] x [0,211]

by def ining

p(0,4)) — p1(O ,4)) + p1(11—0 ,4*rr ) , (0 ,4)) ~ H S(n)

However , having seen In [11 that exponential Fourier densities were most use—

ful in determining conditional densities that are needed for estimation, we

shall instead consider those densities of the form

~~ 
_  

2
_



• N 9~
p(0,4)) = exp ~ a~, Y~m(0

~ 4))
9,aO m —9 .

for which (1) holds. For 0 in the interval [0,11] the spherical harmonics

Y~~(0,4)) are defined by

Y~~(O ,4)) = (_ ~~) m [
~~~

] P~(cos Q)e
im4) 

. (2)

where P~(x) is an associated 
Legendre function.

We extend this definition for 0 outside this interval by defining P~ (cos 0)

in such a way that the values of the spherical harmonics remain independent of

the choice of spherical coordinates. In particular, for —71 < 0 < 0, (2) becomes

Y (-0,4)+1T) = [(P~~)fj
l’2 

pm( (_0))e1m~

so that in order for the identity

~~~~~~~~ 
= Y~~(0,4))

to hold we must define

P~(cos 0) = (_1)
m 
P~(cos (—0)) for —ii < 0 < 0

SImilarly, we define

p’~(cos 8) = ( 1 ) m P~ (cos (2~—O)) for ii < 0 < 271

Suppose we now consider the point (e+Tr,4)) which is the antipodal point

• 
of (O,~

) where 0 < 0 < i i.  We have

3 
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Y (0+11,4)) = (_l)m [~~~~~:] P7(cos (8~~))e~~~

P~(cos (11-0))e~~~

[(&...m)l]1/
2 
P~(Cos 0)e~~~

= (_l)
[~~~~~] 

P~(cos 0)e~~~

= (-l)~ Y~~ (0 ,4))

The fourth equality follows from the property of associated Legendre polynomials

that

P~ (— cos 0) = (_1)m~~ P~ (cos 0) for 0 ~ [0,11]

Since the spherical harmonics are independent of the choice of coordinates

we can conclude that any spherical harmonic assumes the same value at ant i—

podal points if and only if it is of even order and hence we have the following

lemma which characterizes all EI~D’s for which antipodal points of S
2 have

the same density:

Lemma 1: Let p(e,4)) = exp f(0,4)) where

f( 0 ,4)) — 
~ 

a~ Y
t

(0 ,4))
9p0 m — 2

• 
. Relation (1) holds if and only if a~ = 0 whenever p. is an odd integer.

Thus we define an axial exponential Fourier density of order 214 on s21±i ,

denoted by AEFD(2N), to be a density of the form

N 22.
p(8,qt) — exp 

~ 
a
2 ~ (0 ,4)) • (3)
,in P.,m

9—0 m —22.

4 
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In the special case where the density is isotropic so that p(O,4)) is lade—

pendent of 4) (3) is replaced by

I
N N H

p(0) = exp 
~ 

a2p . Y2p .0
(8,4)) = exp a~ p. P2p.(cos 0) .

It should be noted that any twice continuously differentiable density can

be approximated by an AEFD in the space of square integrable functions on S
2/±l

as a consequence of Theorem 1 in [1].

In the determination of conditional densities for tne several estimation

models to be discussed, it will frequently be necessary to transform densities

of the form (3) into expressions containing the trigonometric functions

exp[i(mO+n4))]. By Lemma 3 of [1] a spherical harmonic of ev~n order can be

expressed as a linear combination of trigonometric functions of the form

N 2N
exp ~ b~ . k exp [l(2j0+k4))] (4)

j=—N k=—2N h

which we will refer to as an axial exponential trigonometric function of order

• 2N, denoted by AETF(2N) to differentiate it from an ETF(2N) of [1] where the

coefficient of 0 can be an odd integer. It should be observed that the use of

the word “axial” is a misnomer since (1) does not hold for densities of the

form (4).

Our choice of an error criterion for optimal estimation of a random axis

is motivated by the desire that antipodal points be indistinguishable. If x

and y are the column vectors of direction cosines of two points on S
2 and

p(x ,y) denotes the principal angle between them, then we shall use the measure

1 — cos 2p (x ,y) 2[l — cos
2 
p(x,y)] = 2[l — (x’y) 21

I c

5
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‘which is similar to the measure used for estimation on SO(3) in [2]. There-

fore, if x represents a random direction cosine vector , the axial estimation

problem will be to find its estimate y which minimizes the criterion

J(x ,y) = 2 E [l — (x ’y) 2J = 2(1 — y’E(xx ’)yJ ( 5 )

where the estimation is over an arbitrary hemisphere of S
2
.

Since E(xx’) is a positive definite 3x3 symmetric matrix, it is known

that, just as in the SO(3) case, the quadratic form y ’E(xx ’)y is maximized

when y is the unit eigenvector associated with the largest eigenvalue of E(xx’).

Hence
min J(x, y )= l— * ’ E(xx ’ ) 2 = l — A
y

where A is the maximum eigenvalue of the matrix E(xx’) and 2 is the unit

eigenvector associated with X .

Once 2’ = [2
1 

2
2 

231 is calculated , the spherical coordinates (0,c~)

of the optimal estimate can be determined from the relations

cos 6 x
3 , O~~Z < 7 r

xl
con 4) = __________

I

sin3= 
X

2

III .  DISPLACEMENTS ON S2/±l

In order to use a hemisphere of S
2 
as a representation for S

2/±l in the

estimation of axial processes, it is necessary to use displacements o which

have the property that for any x ~ - s2 /± l , the displaced points x • y and i ~ y

are either identical or antipodal points on S
2
, x being the antipode of x.

.
,

~~
‘j

.

6
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While the displacements used for estimation on S
2 in [1] do not have this

property, it will be seen that variations of these displacements which have

this property can be defined which result in usable estimation models.

Let us consider the first displacement on the sphere S
2 with center 0

given in [1] of a point s(0,4)) by an ordered pair v(ci,13). Assuming that (0,4)

and (a,~) are both in [0,11) 
X [O ,2n ) , let n denote the point (0,0,1) and let

~~ be the smaller great circle arc between n and s. 
There is a unique semi-

circle F with center at 0 having s as an endpoint such that the angle from

to F has measure ~~~, using the right—hand screw rule in the direction Os. The

• point in which is the endpoint of the arc ~n on F of length ci is shown in

Figure 1 and its coordinates (X,p) are related to those of s and v by the equations

con ci = cos A cos 0 + sin A sin 0 cos

sin ci con = con A sin 0 + sin A cos 0 sin (~i—~~)  (6)

sin ci sin ~ = sin A sin (4)—u)

By considering the special case where ~ = 0 it is seen that the spherical

coordinates of m are (0—ci,4)); but the displacement of the signal’s antipode

(it—0 ,4)+r) is ( ir—0 — ct ,4)+rr ) which does not coincide with either m or on S
2
.

k . 
0

A
s(0 ,

~
)

~~

Ci Figure 1

tj ~~~ 
m( ,u

LL~ I
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This difficulty can be resolved by making the restriction that a fixed heini—

sphere be used as the• state space. For convenience we choose the upper hemi-

sphere and require that its points have spherical coordinates (0,4)) such that

0 < 0 < 11/2 and 0 < 4) < 211. Throughout the remainder of this paper we will

• 
• . identify S2/±l with this set

• s
2/±1. = [0 ,11/2] x [0,211) • (7)

If s(0 ,4)) and v(ci,~ ) belong to S
2/±l let rn (A ,~~) be the displaced point

• where (A ,u) is in [—11 , 11) x [—211,211). Now we define m (A ,~ ) as being a point of

s2 /± 1 with coordinates

(ii+X ,u mod 211) if A < — 71 /2

(— A ,(~ +ir ) mod 2ir ) if —71/2 < A < 0
(A ,u ) =  

—

• (A ,~i mod 211) if 0 < A

(T r — A , (p+1r) mod 271) if A > ii/2

and we indicate this relation of m to s and v by

m(A ,p) = s(0,4)) v(ci,~) .

Geometrically, it is seen that is identical to the spherical displace—

ment whenever m is in HS(n), while m is the antipode of otherwise. The require—

ment that the first spherical coordinate be between 0 and 11/2 is made to avoid

some unnecessary difficulties in the calculation of conditional densities to

• be discussed later.

A second displacement arises by increasing each coordinate of tile

position of the signal. Let s
o

(O o,$o) be in S
2/±l and suppose w(~ ,.c) is a

pair of angles satisfying the condition

(~ ,
laE [_ 11/2,rTf2) x ( O , 2ir )
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Now set Oi = 00 + ~ and ~l 
= + ~~~. Let be the point t~f S

2/±1

with coordinates

• 1(_0l,(4)l÷) mod 2ii) if —n /2 < 0~ < 0

(O i,4)i) = j (0~,q~ mod 2n) if 0 
~ 
01 < 11/2

mod 211) if ri / 2 
~~ 

O~ < ii

• This relationship of s
~ 

to s
0 
is denoted by

• s1(01,4 )1) = 

~o~°
o,4)o~ ® w(~~~ )

If 0 < < 71/2 then, since 0 < 0
~ 

+ ~ < IT , the two hypotheses

H1: (O i ,4 )i) = (Oo+~
,(4)o+C~

) mod 211)

H 2 : 
~~~~~~ 

= (ir~0O~~,(4)0+~+ir) mod 271)

must be considered in the determination of s0 if s1 and w ar e known. If,

instead , — 11/2 < < 0, these hypotheses are replaced by

Hi : (O i ,4 )i) 
~~~~~~~~~ 

mod 2-n )

112 : 
~~~~~~~~~~ 

mod 2-n )

since — 11/2 < 00 + ~ < i r/2.

It should be observed th it identifies 
~l 

with the antipode of when

s1 is not in HS(n) and is similar to the second displacement on S 2 in [1]

when is in HS(n) .

The final displacemen t to be used is obtained f r om a rotation of three—

dimensional space. If s~ is in S2/±l and R is a rotation that rotates s~ to

• the position 
~~ 

on S2 , we define s
~ 

to be 
~l ~~ is in HS( n) and to be the

antipode of if is not in HS(n) and write

R .
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It should be noted that since R will rotate the antipode into s1, unlike

-
• 

the previous displacements, it is actually unnecessary to require that the

fixed hemisphere (7) be used as the state space.

IV. ESTIMATION OF AN AXIS ON S
2
/±l

We now consider a signal s, represented by the point s(0,4)) on S
2/±1,

which we want to estimate, given an observation m (A,p) in S
2/±1 and using the

error criterion (5). The optimal estimate requires the calculation of the

conditional density

p(sjm) = c p(mjs) p(s) (8)

according to Bayes’ rule. Because of the nature of the definitions of the

various displacements in the previous section, m may be the antipode of the

measurement of some displacement on S2, and consequently care must be taken in

determining the density p (m l s).

Estimation lIodel E(a)

Let m be a measurement on s
2,±i of an axial signal s which can be described

• by the relation

m (X ,p) = s(0 ,$) v(ct,~)

where s and v have AEFD(2N)’s exp f ( 8 ,4)) and exp f (cc ,~3), respectively, where

N 29.
• f(0 ,4)) = 

~ 
a~p. 

‘
~
‘29.,m~

0’~~9=0 m —22
and

N 22.
-

~~ 
f (ct,~) 

— 
~ 

b2p. Y2p.m
(ci
~
t3) 

-

2. 0 ni —22.

• Consider the possible positions of m(A ,p) on S
2/±1. First, suppose m (A ,u)

is in the hemisphere HS(s) whose pole is at the point s(0,4)). Since

• 0 < ci < tr/2, it follows that we have
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p ( m f s )  = exp f(ci,8) = g(X ,~i) (9)

where g ( A ,ii ) is obtained by using the spherical trigonometric relations in (6).

• On the other hand , if m(A ,i.i) is not in H S(s) ,  then it must be the antipode

of a point rnU~~I) not in HS(n) where

A i r — A  , ~i = (p+ii)mod 2it

But this means that there is a unique directional process ~F(cz,~ ) such that

~(A ,ji) = s(0,4)) ~~ ~(&,~
)

where 0 < & < -rr/2 and hence

p(mls) = p6~Is) 
= exp f- (ct,~ ) = g- (X,~i) . (10)

V V

If g (A ,p) = g~ (A ,~ ) then p(m~s) could be determined in the same manner

as in model SE—i of [1]. The following lemma gives the important result that

-
• any AEFD in the variables (a,~

) has this property:

Lemma 2: If Zp.
(X ,ii) denotes the function obtained by substituting the

relations (6) into the spherical harmonic Yp. (ct,~) then

H Zp. (A,p) = (—l)~ Zp. (11~ A ,p+~lT)

Proof: By examining the relations (6) we see that the statement holdS for the

-j I • spherical harmonics of orders zero and one:

• Z00(A ,p) — 1

z 1 (A ,p) = — (sin ci cos ~ + i sin ci sin ~
)

1

Z10(A ,ii) — cos ci

Z (X ,~) 
A (sin ci cos B — i sin ci sin B)

1,—i

J .  • - ~‘Q~
• 11

_ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~ —-rn~- • -~~ •-~~ - •—-~~-
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Now assume the statement holds for all 2. < L. From th e recursive relations

for spherical harmonics we have

• 
ZL+l m

(A
~

1•1) = [(L+m+1)(L_m+l)i~~
2
((2L+i)ZlO (A ,u)ZL~

(A ,u)

• - V(L-m)(L+tn) ZL_l,m
(A
~
U)]

• when m = —L ,—L+l,...,L—l,L and

2L+1 1/2
ZL+l L+l (A

~
1i) = 
[L+1] 

Z11(A ,i•i) ZLL (A ,1J) -

If L is even, it is evident from the induction hypotheses that

ZL+l m
(•ff A

~
U+•ff) — ZL+l m

(A
~

P)

while for L odd we have

Z
L+l,m

(•I1_A 1I I•1+
~
JT) = ZL+l m (A

~
U)

Hence the statement holds for all integers 9.. C

This lemma assures us that (9) and (10) have the same value since

exp f(ci,~ ) is an AEFD and 
hence without any loss of generality we can assume

that m(A ,p) is in HS(s) with ci and B defined by (6).

By Lemma 1 of [1], exp f (ct,B) is an exponential trigonometric function

of the form
- 

• 2N
• exp 

~ ~~~ exp(i(mO+n4))]
• - • m,n —2N

when transformed by (6) into a function of (0,4)) so that

p(slm) = c exp [f (0,4))+f
~
(ci,8))

• ,.-• c
is also an exponential trigonometric func tion

12
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p

We remark that if f (cz,B) has coefficients with the special property that

b = ( l ) m
b

22.,m 22.,—m

then by Lemma 3 of [1], exp f
~
(ci,B) when transformed into a function of (0,4))

• is an AETF(2N) and hence p(slm) is an AETF(2N).

For the isotropic noise case where

= 

~~~ 

b 2p . P2p.(cos ci) = 

~~~~ m~-29. 
b2p . Y2p . (A~~~ Y2p . m

(O
~
4))

• it is observed that p(slm) is itself an AEFD(2N) .

• A generalization of the noise density to include the situation where the

density depends not only on the spherical coordinates (ct ,B) but also on the

position of the signal s(0 ,4)) can be used. Suppose

N 0 29.
I (c*43) = ~ b~p. (0 ,4)) ‘

~22. 
(ct,B)

V 9 ( )  m ’—2 9.  ,m ,ni

where each b2p .m
(O
~
4)) is a smooth function of 0 and 4) on s2/±]. so that there

is an integer N(2.,m) and coefficients b(29.,m,2k,j) such that

N(9.,m) 2k
~ b(2 9,m,2k ,j) ?

2k 4
(0 ,4))

k=O j=—2k

approximates b2p. (0 ,4)) sufficiently closely. Since Yap . (ci,8) and Y2p . (0,4)),m ,m ,m

can each be expressed as linear combinations of terms of the form exp[i(2j0+kcp)],
- 

• ~~~
their product and hence f (cz,B) are also such linear combinations. Therefore,

the noise density is an exponential trigonometric density of order 2M where

M - N0 + max N(9. ,m)
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If this generalized density has the add itional property that

b2p.~~
(O
~
4)) — (_ 1 )

in 
b2p.,_~

(O ,4))

then

b2p.,_m(O~4))Y2p., m(ci~B) + b 2p . m
(0
~
4))Y2p . m

(Ci
~~
) =

N(9.,m) 2k
= 

~ 
‘
~2k (0 ,4)){b(29 ,m,2k ,j ) [Y (ci,B)+(—l)”1Y 

— 
(ct ,8) i

k=O =—2k ,in , 51

By Lemma 3 of [11, we can thus conclude that f(ci,B) is of the form

N0 29. N(9.,m) 2k
f (ci,B) = 

~ 
C(22.,m,2k,j)exp[i(2k0+j4))]Y

2~ ~(O~4))• V 9.0 m 0  k0 j=—2k

and hence that exp f (c*,B) is an AETF (2M) in (0 ,4)).

V. ESTIMATION OF A TIME-VARYING AXIAL PROCESS ON s
2i±i

Using displacements and to define a sequence of signals in

conjunction with measurements obtained by using the displacement as well

as tee ~unportant case of additive white noise, 
we nov des~.ribe several time—

varying estimation models for axial processes.

A. Estimation Model E(b,a)

Suppose signal a~d measurement processes are described by

• 
~k+1~°k+l’4)k+l~ 

= 
~k~

0k ’4)k~ ® wk(~k,~ k
)

mk(Ak,1•lk) = 
~k~°k ’4)k~ c~ 

vk (Ci.~,B k)

where —11.12 
~ ~k 

< 11/2, 0 < < 2iT, and the densities of and vk are AEFD(2N)’s.

• Let us assume that 0 
~ 

< w/2 so that

p(s1) — p(s1~H1)P(H1) + p( 811H 2)P(H2)

14
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where
p211 (1T/2—~0P(H

1
) = J J p(s,~) da

0 0

• and p271 11/2
1’
~
I
2

) = J p (a~ ) ds
0

-‘0 -rr/2—E
0

• 
. Let (

- 

~
l if 0 > ~~

• g1
(s ,m)

otherwise

and
f i  i f 0 > i r / 2 —~~

= 
—

(0 otherwise

so that if p(s0
) = p(s0lm°) exp f

1
(0
0,4)0
) then

-• • 2n i r / 2— E ~
p(s

1Jm ) = g
1

(s
1
,m0
)~~p f1

(0
1
_
~0~4)1

_
~0)J 10 

0 p(s0
) ds

0

+ g
2
(s1,m0)~~ p f1(71_01

_
~0~4)1

_
~0_71)J 

J
P (s 0) ds

0

Now if is the exponent of an AEFD so that it can be written in the form

N 2N
= ~ a° exp[i(2m0+n4))]

4 m-N n -2N

then 
N 2N

• 

- p(s
1~
m
0) — R01 ex~

[ 
~ ~ a~~exP[_i(2mf0

_n?
0)1exP Ei(2m0l+fl4)1)J]

sr-N n ’-2N

+ R02 ex~
[ 
~ !f(_1)hl

a
0
m ~~~~~~~~~~~~~~~ 

exP[i(2m01+n4)i)]}]
• •

~~ 
~~ - sr—N n —2N

where

~~~~~~~ 

~ 2-n
R01 — g1

(s1,m0) 10 J p(s0
) dt3

0

15
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and 2-n- n-/2
R02 

= g2(s1,m0) 10 L/2 E 0 ~~
8~ ) ds

0 
-

Since p(m1Is1
) is a density of the form

r 2 N  2N 1

ex~
[ 

~ ~ b1 exP[i(inol+n4)1)]]
sr-2N n -2N

the conditional density p(s1jm
1) will be the sum of two exponential functions :

p(s1~m
1) = c1 R01 ex~

[ 

~N 
a~~ exP[i(mOi.

+n4)i.)J]
m,n —2N

+ R02 ex~
[ 

2N 
a~~ exp[i(m01+n4)1

) ]  ] 
~m,n —2N

with

= 

a° exp [—i(m~0
+nr

0
) ]  + b1 if m is even

if m is odd

a
12 

= 

~~ (—l)~ a~m n  
exp[i(m

~ø
—n
~&1 

+ b if m is even

I b l

If instead —i~/2 
~ ~o 

< 0, then

• 2-it 11/2 2-n —

~~~~~P(H
1
) = J~ 1—E 0 

p(s0
) ds

0 
P(1-1

2
) 10 J~ p(s0) ds0

so that if we let

16 
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ri i f o < / 2 +~~

g
3

(s,m) =

0 otherwise

11
4 

• g4
(s,m) i~

t. 0 otherwise

then

0 ~2-ir -n/2
p(s1Im ) = g

3
(s1,m0) exp f1(0

1-~0~4)1-C0).J J p(s0
) ds

0
0

211 p11/2
+ g

4
(s1,m0) exp f 1(— 0 1—~0,4 )1—~0) • f J p(s

0
) ds

0

so that r 2N
p(s

1~
m
1) = c

1 R01 exp i ~ a
11 exp [t( m01+n4)1) ]

+ R02 exP
[ 

~N 
a~
2 exp[i(m01+n4)1

) ]  ] 
~m,n —2N

where

= 

~
fa

0 exp[—i (inf~0
+nt

0
) ]  + b1 if in is even

4 mu
if in is odd

Ia~m n  exp [i(m~0—nç0)] + b
1
~ if in is even

12a —mn
b if in is odd
inn

where R — g (s ,m )P(H ),  and R — g (a ,m )P(H ). The computation of
01 3 1 0 1 02 4 1 0 2

p(s
2~
m2) p(s2tm’,111)POi1ln

’) + p(s
21m ’,H2

)P (H
21m’)

hI• 
_ _ _ _  
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will not be included here although it proceeds in a similar manner. We observe

that for any k , p(s k lm
k) will be a linear combination of terms of the form

r 2N
expi ~ a

r exp[i(m0~+n4)~ )]
Lm ,n —2N

and it will be necessary to determine twice as many parameters as for p (sk l jm’
~~
’).

B. Estimation Model E(ç,a) Using Isotropic Noise

Suppose the signal process 
~~~ 

is described by

H 5k+1 5k ~D
where {R.K} is a sequence of rotations in three—dimensiona l space. From the

definition of ~~~~ we have , using direction cosine vectors for s0 and s1 and the

direction cosine matrix representation f or R0

= R
1 

S
1 

or 
~o 

= R~~

- 

• where is the antipode of s
~ 

having spherical coordinates (Oi
+IT,4)i

). By

[6 , p.150]

29.
Y29.~~

(Oo,4)o) = ~ D
29.(R0)~~ ‘

~29.,n~
81’4)1)

n —29.

for either case, so that if

N 29. 0
• p ( s )— e x p  ~ a29. 

Y 9. 
(0 ,4))

t=O m=—2t ,m 2 ,m 0 0

then

p(s
1
) - exp 

~ [ ~~ 
a~~ ~

D
29.(R

o
) ]Y29. m~

8l’4)l~
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Now if there is a measurement process such that

mk~~k~
Pk
) = 

~k~°
k’4)k~ ~~~ 

V~~(ci~~,B ~~)

where Vk 
has an isotropic noise density of the form

• N
p(v

k
) = exp ~ b~ 9. P29.

(cos ct.~)

• then N 29. ___________

p(m.
K Jsk
) = exp 

9.=O m 2 9 .
2. 
Y2 L m (X

k~
1J k
) 
~~~~~~~~~~~

Therefore , -

N 29.
p(s k lm k ) = exp 

~ 
~~~

a
~9.~~

Y29.~~
(A k ,Pk)

where

= 

n=-29. 
a~~~~ D29.(R k ~~ 

+ b~ 9. ~29.,51 k1u k)

C. Estimation Model E(b,+) with Additive White Noise

Let be a sequence of signals such that

Sk+l (Ok+l,4)k+l) = ~k~
0k’4)k~ ® ~~~~~~~~~~~~~

and suppose (ink
] is a sequence of vectors such that

mk
h(a

k) + v k

where (V
k
} is a sequence of independen t Gaussian vectors with mean zero and

covariance matrix Rk 
= E [vkv~ J and Ii is a vector—valued function on S

2
/±l . The

completeness of the spherical harmonics of even order on S
2
f± 1 allows us to

- ~~~~~~~~~~ consider h(s) to be approximately of the form
.~~

# •
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Now

p(vk
) = (27T)~~~

2(det R
k)

h/ 2exp[_ 4 
~ 

it~~ v~ v~~
]

• where R.
K 
has matrix elements R~~ and vector vk 

has entries v~ . We therefore

have as the conditional density

= (211)~~~
’2 (det i~~~_ l/ 2exp [c + ~ r ck (9.,m)Y 29. (0~~4)j

9 . 0  m —2 2.

N 22. 29~
+ 

, ~ ~~~~~~~~~~~~~~~~~~~~~~ 
Y29.~~

(0
k~

4)k)] 
(11)

9., 9~~0 m — 2t

with

• 1 p i j
Ck

=
~~~2 1~~~1

m
k m

k Rk

c
k(9.,m) = 4 ~ R~~ [m~ h

~ 9 . m  + m~ h~9 .51]i, j= l

= - 4 
~j=1 R~~ h~9. 149.I~~I

• (11) is an AETF(4N) since each spherical harmonic of even order is an AETF and

hence so is the product of two such spherical harmonics.

If s~ has an AEFD(2N) , then using (11) the conditional density, obtained

in the same manner as in model E(b,a), will be a finite linear combination

• 
- 

of exponential trigonometric functions of order 4N.

D. Estimation Model E(c,+)

As our f inal model consider the signal and measurement processes given by

~k+1~°k+1’ k+1~ 
— 
~k~

0k’4)k~ ®

~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _  ~~~~-rn ~~~~~~~~~~~~~~~~~~_
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where h and Vk 
are defined as for model E(b,+).

If p(mklsk) g
iven by (11) can be written as an AEFD(4i’O of the form

= exp 
2N ~9. 

49.m ~22.,m~
0k’4)k~ 

(12)
9.=0 m=—29.

and if

p(s0) = exp 

~ m 2 .  
a22.51 Y29.m

(O
0~

4)ø
)

then

-

• 2N 22.
-

• 

: p(sk lm
k) = exp 

Z=O m=-29. 
~~~~~ ~29.,m~

0
k’4)k~

where

29. ______________

= 
n —29. 

2~~n 
D 29.(Rk_ l )

mfl + 49.

The apparent difficulty in requiring tha t ( 12) ho lds is r esolved by the

following lemma :

Lemma 3: The product of two spherical harmonics of even orders is a sum

of spherical harmonics of even orders.

j I Proof: The product of two spherical harmonics of orders 29. and 29. ’ where

9.’ > 9. is specified by [6,p.l6Sl:

‘ 2Q~+29.

~29.,~~
°’4)

~ 
Y
29.1 

,(0,4)) 
L’2Q~—29. 

a
L~~4lflI

YL fll.f~
(O
~
4))

where
/29. 29.’ L \ (22. 29.’ L

• a
L , — (_l)~~

Iin(2L+1)( J ~‘~~~~~ m in’ -rn-rn’ / \ 0 0 0

21
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Now the proof follows as an immediate consequence of Lemma 1.

VI. CONCLUSIONS

Several models for the estimation of discrete—time axial processes have

been proposed and have been found to be solvable by introducing axial expon-

ential Fourier densities which employ spherical harmonics of even orders.

When these densities are expressed as trigonometric functions a closure property

for the conditional densities Is seen to exist that  permits their  computation

• by updating a finite number of parameters.

• The three displacements de f ined on S2
/ ±1 which were used to obtain the

estimation models, together with the properties of spherical harmonics of

even order yielded conditional densities which resembled the conditional

densities arising in estimation models for directional processes on S
2 that

L appear in [1]. It should be kept in mind , however , that S2 and S2/±l have

inherent geometrical differences as is evidenced by the need to use d i f f e r e n t

error criteria on the spaces involved.

The displacements defined for S2/±l, with the only exception being

required that S2/±l be represented by a fixed hemisphere of S
2. The question

arises as to whether or not it is possible to define other disp lacements for

which this requirement can be removed .
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