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ABSTRACT
Several models, which are believed to be generic for the estimation of
discrete-time axial processes, are proposed. By introducing axial exponential
Fourier densities and axial exponential trigonometric densities, finite-dimen-
sional recursive schemes are obtained for updating the conditional density
functions. The underlying idea is the closure properties under the Bayes rule
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I. INTRODUCTION

In this paper we consider the problem of estimating axes in three-
dimensional space. An axis or axial vector is distinguished from a polar vector
in that the former is invariant under inversion. Such axes occur in many
diverse areas including the following: geophysical fluid dynamics to estimate
the vorticity of a flow, paleomagnetism to estimate a magnetic field, crystal-
lography to estimate the optic axis of a crystal, geology to estimate the
direction of a normal to the axis of a fold in a layer of rock, and quantum
mechanics to estimate the axis of rotation of a rigid body rotation.

Using densities of the form exp f where f is a linear combination of
axially symmetric spherical harmonics, estimation problems which arise by
examining various possible ways of obtaining a displacement of an axis will be
solved in this paper. Although the state space under consideration is home-
omorphic to a hemisphere of SZ, the results in [1] for estimation on S2 can-
not be applied for several important reasons: the displacements defined in

that paper may result in a given point being displaced to a non-antipodal

point in the opposite hemisphere, the densities discussed in [1] were not, in

general, axially symmetric, and the error criterion used for 82 is undesirable

since it would result in a rejection of the antipode of the optimal estimate.
Using the various displacements and conditional densities obtained in
this paper, detection for axial processes would be described by procedures

similar to those used for 82 and SO0(3) which have been discussed in [1] and ([2].

II. PRELIMINARIES AND AXIAL EXPONENTIAL FOURIER DENSITIES
The set of all axes centered at a fixed point can be identified
in a one-to-one manner with the points on a hemisphere HS(p) of the unit
sphere S2 with pole at p. Illence the state space for the axial processes to be

discussed can be considered to be the factor space obtained by partitioniug




S2 into equivalence classes such that two different points on 82 belong to the
same equivalence class if and only if they are antipodal points. This factor
space, which is projective two-space, will be designated by the symbol Szltl
throughout this paper.

Since the spherical coordinates (8,¢), (m-6,¢+m), and (1+0,¢) will all
represent the same ax1s, any probability density p(6,¢) on sz/il should have

the property that it is antipodally symmetric on Sz, i.e.
p(6,¢) = p(m-6,¢+1) = p(m+6,¢) . (1)

An example of such an antipodally symmetric density that has been previously
studied is the Bingham distribution [3] which is a generalization of tne
Dimroth-Watson distribution of [4] and [5]. It can be expressed as a density
containing spherical harmonics of the form
2
cexp ) a Y2,m(9’¢) ’
m=~2
where ¢ is a normalizing constant.

Clearly, given any density p1(6,¢) defined on 82, a corresponding density

p(6,9) can be obtained on Szlil regarded as the upper hemisphere
HS(n) = [O0,m/2] x [O,2m]

by defining
p(0,9) = p,(6,06) + p (m-6,0+m) ,  (8,9) € Hs(n) .

However, having seen in [1] that exponential Fourier densities were most use-
ful in determining conditional densities that are needed for estimation, we

shall instead consider those densities of the form
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N 2
p(6,9) = exp a, Y, (8,9)
220 mg-z In " ln :

for which (1) holds. For 6 in the interval [0,7w] the spherical harmonics

Yzm(6,¢) are defined by

1/2
Ylm(e’¢) = (-1)" [%%iﬁ%%] Pt(cos e)eim¢ . (2)

where P?(x) is an associated Legendre function.
We extend this definition for O outside this interval by defining Pz(cos 0)
in such a way that the values of the spherical harmonics remain independent of

the choice of spherical coordinates. 1In particular, for -m < 6 < 0, (2) becomes

1/2
Yzm(-e,¢+ﬂ) = [%%EE%%] P:(cos (—6))eim¢

so that in order for the identity
=6 =
Ylm( s o+) YQm(6,¢)

to hold we must define

Pz(cos 9) = (—1)m Pz(cos (-9)) for -t <9 < 0 .
Similarly, we define H
P:(cos ) = (-1)m Pz(cos (21-0)) for m < 6 < 27 s

Suppose we now consider the point (9+m,4) which is the antipodal point

of (0,p) where 0 < 6 <m. We have
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1/2
= (_1ym{ (-m)! m imp
Ylm(9+ﬂ,¢) (-1) [?E:ETT] Po(cos (6+m))e

1/2
=[%%iﬁ%%] Pz(cos (n—e))eim¢

1/2
=[E§;:;:] P?(—cos G)eim¢

1/2
= (—l)mz[-g%:%i—] P:(cos e)ei"‘”

o ook
= (-1) ng(e,cv) .

The fourth equality follows from the property of associated Legendre polynomials
that

Pl (-cos 0) = (-1)™* Pl(cos 8)  for 6 € [0,7]

Since the spherical harmonics are independent of the choice of coordinates
we can conclude that any spherical harmonic assumes the same value at anti-
podal points if and only if it is of even order and hence we have the following

lemma which characterizes all EFD's for which antipodal points of 82 have

the same density:

Lemma 1: Let p(68,¢) = exp £(0,¢) where

i3
£(6,9) = a, Y, (6,¢) .
I e fm fm

Relation (1) holds if and only if arm = 0 whenever g is an odd integer.

Thus we define an axial exponential Fourier density of order 2N on Szltl,

denoted by AEFD(2N), to be a density of the form

N 2g

p(6,0) =exp ) ) a Y (8,9) . (3)
0=0 ma-24 28,m 24,m
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In the special case where the density is isotropic so that p(6,¢) is inde-

pendent of ¢ (3) is replaced by

N N
p(6) = exp QZO ay, Y22’0(9,¢) = exp QZO ag PZQ(cos 6) >

It should be noted that any twice continuously differentiable density can
be approximated by an AEFD in thé space of square integrable functions on SZ/tl
as a consequence of Theorem 1 in [1].

In the determination of conditional densities for the several estimation
models to be discussed, it will frequently be necessary to transform densities
of the form (3) into expressions containing the trigonometric functions
exp[i(m6+nd)]. By Lemma 3 of [1l] a spherical harmonic of even order can be

expressed as a linear combination of trigonometric functions of the form

N 2N
exp | I by exp [1(2364k0)] (4)
j=-N k=-2N 5

which we will refer to as an axial exponential trigonometric function of order

2N, denoted by AETF(2N) to differentiate it from an ETF(2N) of [1] where the
coefficient of 6 can be an odd integer. It should be observed that the use of
the word "axial" is a misnomer since (1) does not hold for densities of the
form (4).

Our choice of an error criterion for optimal estimation of a random axis
is motivated by the desire that antipodal points be indistinguishable. If x
and y are the column vectors of direction cosines of two points on 82 and

p(x,y) denotes the principal angle between them, then we shall use the measure

1 - cos 2p(x,y) = 2[1 - cos2 p(x,y)] = 2[1 - (x'y)2]




e S Sy N W

A s N eSSBS R Y s

which is similar to the measure used for estimation on SO(3) in [2].

fore, if x represents a random direction cosine vector, the axial estimation

problem will be to find its estimate y which minimizes the criterion
2
J(x,y) = 2 E[1 - (x'y)"] = 2(1 - y'E(xx')y]

where the estimation is over an arbitrary hemisphere of Sz.
Since E(xx') is a positive definite 3x3 symmetric matrix, it is known

that, just as in the SO(3) case, the quadratic form y'E(xx')y is maximized

when y is the unit eigenvector associated with the largest eigenvalue of E(xx').

Hence
min J(x,y) =1 - R'E(xx")& =1 - )

Y
where ) is the maximum eigenvalue of the matrix E(xx') and & is the unit

eigenvector associated with A.

Once &' = [, &, R%.] is calculated, the spherical coordinates (6,@)
1 2 3

of the optimal estimate can be determined from the relations

cos 6 = §3 ’ 0<B8 <
X
cos ¢ =‘\r===é%F===:
1 - x3
X
sin ¢ = g

III. DISPLACEMENTS ON 52/11

In order to use a hemisphere of s2 as a representation for 82/11 in the
estimation of axial processes, it is necessary to use displacements @ which

have the property that for any x &« SZ/tl, the displaced points x @ y and x @ y

are either identical or antipodal points on Sz,‘; being the antipode of x.

There-
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While the displacements used for estimation on 82 in [1] do not have this

property, it will be seen that variations of these displacements which have
this property can be defined which result in usable estimation models.

Let us consider the first displacement on the sphere S2 with center O
given in [1] of a point s(8,¢) by an ordered pair v(a,B). Assuming that (6,9)
and (a,B) are both in [0,m) x [0,2m), let n denote the point (0,0,1) and let
ns be the smaller great circle arc between n and s. There is a unique semi-
circle I' with center at 0 having s as an endpoint such that the angle from s

to I' has measure B, using the right-hand screw rule in the direction Os. The

point m which is the endpoint of the arc Smon I of length o is shown in

Figure 1 and its coordinates (\,n) are related to those of s and v by the equations

cos Qo

sin o cos B

cos A cos B + sin A sin 6 cos (u-9)

= cos A sin 6 + sin A cos 8 sin (p-¢)

(6)

sin A sin (¢-u)

sin o sin B

By considering the special case where B = 0 it is seen that the spherical

coordinates of m are (0-0,¢); but the displacement of the signai's antipode

;(ﬂ—9,¢+ﬂ) is (m-0-a,¢+T) which does not coincide with either m or m on SZ.

Z
A

n

Figure 1
m(}, 1)




0108 5 L o AN v e i S SRR+ e o b i s A b e

\|

This difficulty can be resolved by making the restriction that a fixed hemi-

sphere be used as the state space. For convenience we choose the upper hemi-
sphere and require that its points have spherical coordinates (6,¢) such that
0<686 f_n/Z and 0 < ¢ < 2m. Throughout the remainder of this paper we will

identify S2/+1 with this set
s2/:1 = [0,m/2] x [0,2m) . (7)

If s(6,¢) and v(a,B) belong to Sz/tl let m(),n) be the displaced point

¢ | where (X,ﬁ) is in [-m,7) x [-2m,27). Now we define m(XA,u) as being a point of

; i Szltl with coordinates

-
(T+A, 1 mod 2) 1f X < -m/2
(=X, (1+T) mod 2m) 1f -m/2 <X <0
()\’u) = e L
| (A,u mod 2m) if 0 <X < n/2
L(n—X,(ﬁﬂr) mod 2T) if X > n/2

and we indicate this relation of m to s and v by

n(A, 1) = s(8,0) @ v(a,B)

Geometrically, it is seen that (:) is identical to the spherical displace-

ment whenever m is in HS(n), while m is the antipode of m otherwise. The require-

i
1 .
ment that the first spherical coordinate be between 0 and w/2 is made to avoid
~j some unnecessary difficulties in the calculation of conditional densities to
e g"
- 5 be discussed later.
e

A second displacement (:) arises by increasing each coordinate of the
position of the signal. Let 80(60,¢0) be in Sz/tl and suppose w(£,7) is a

pair of angles satisfying the condition

(5,5) € [-n/2,m/2) x [0,2m)
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|
4

- K ~ = 2
Now set 61 = 90 + £ and ¢1 ¢0 + Z. Let 31(61,¢1) be the point of S°/#1
with coordinates
(-8, (§,*+m mod 2m) if ~/2 < 8 <0
(61,¢1) = (61,4)l mod 2m) if 0 5_91 i /2
(n—el,(¢l+n) mod 2m) if /2 < 61 <T

This relationship of s, to S0

5,(6.91) = 508,00 (B) w(E,0)

If 0 < & < /2 then, since 0 < 6

is denoted by

0 + £ < 7, the two hypotheses

Hpt (8),0)) = (8, (9,+2) mod 2m)

H

2: (el’¢1) (ﬂ—GO—E,(¢O+Q+ﬁ) mod 2m)

must be considered in the determination of s, if 51 and w are known. If,

0
instead, -m/2 < £ < 0, these hypotheses are replaced by

Hl: (61’¢1) . (90+€,(¢0+€) mod 2T)

H2: (-GO-E,(¢0+C+N) mod 2m)

since -m/2 < 80 * E < T2,

It should be observed that (:) identifies s, with the antipode of El when

1

;1 is not in HS(n) and is similar to the second displacement (:) on S2 in [1]

when El is in HS(n).

The final displacement (c ) to be used is obtained from a rotation of tihree-

dimensional space. If so is in Sz/il and R is a rotation that rotates S5 to

the position §1 on Sz, we define s, to be El if §l

if El is not in HS(n) and write

is in HS(n) and to be the

antipode of §1

81 = 50 (:) R
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It should be noted that since R will rotate the antipode o intolgl, unlike

the previous displacements, it is actually unnecessary to require that the

fixed hemisphere (7) be used as the state space.

| T IV. ESTIMATION OF AN AXIS ON §°/:1
! We now consider a signal s, represented by the point s(6,¢) on SZ/tl,
which we want to estimate, given an observation m(\,u) in 82/11 and using the

f error criterion (5). The optimal estimate requires the calculation of the

conditional density
p(s/m) = ¢ p(m|s) p(s) (8)

according to Bayes' rule. Because of the nature of the definitions of the
various displacements in the previous section, m may be the antipode of the
measurement of some displacement on 82, and consequently care must be taken in 1

determining the density p(m|s).

;
Estimation Model E(a) ;
- Let m be a measurement on Szltl of an axial signal s which can be described (

|
|

by the relation
m(A, 1) = 5(6,0) v(a,B)

where s and v have AEFD(2N)'s exp fs(9,¢) and exp fv(a,B), respectively, where

N 20 ,‘

Gy
A £ (08) = F ] @ Y., (6:6) f
 1 s 020 m=-22 2%,m 22,m |

{ and |
x P

1 £ (a,B8) = b Y (a, B)

; v 2=0 m=-22 2%,m "2&,m

Consider the possible positions of m(A,u) on SZ/tl. First, suppose m(A,u)

is in the hemisphere HS(s) whose pole is at the point s(8,¢). Since

SIS ————— Y7 LR T S i

0 <a<m/2, it follows that we have

10 '
o " . i I‘I *_n v m . 2 b " A
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p(m|s) = exp £,(a,8) =g (A1) (9)

where gv(k,u) is obtained by using the spherical trigonometric relations in (6).

On the other hand, if m(),u) is not in HS(s), then it must be the antipode

of a point E(X,ﬁ) not in HS(n) where

BRI 3 S

A=m-X , 0§ = (u1) mod 2m

But this means that there is a unique directional process V(&,E) such that

(L1 = s(8,9) (:) 3, B
where O_i a < m/2 and hence
p(m|s) = p(i|s) = exp £-(a,B) = g, (X,i) . (10)

1f gv(x,u) = g;(x,ﬁ) then p(m{s) could be determined in the same manner
as in model SE-1 of [1]. The following lemma gives the important result that

{ any AEFD in the variables (o,B) has this property:

Lemma 2: If ng(k,u) denotes the function obtained by substituting the

relations (6) into the spherical harmonic Ylm(a,s) then

z, () = (DY 2, (-rm)

-

Proof: By examining the relations (6) we see that the statement hoids for the

spherical harmonics of orders zero and one:

le(k,u) = - l-(sin o cos B+ 1 sin a sin B)
V2

Zlo(k,u) = cos a

c e ©
e i TR UR NS | e T < el T
FUPROPE

e

Zl,;l(k,u) = J% (sin 0 cos B ~ 1 sin a sin B) "

PR vy
3

i R
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Now assume the statement holds for all 2.i L. From the recursive relations

for spherical harmonics we have

Zi41,m W) = [(L+m+1)(L'm+1)]—1/2[(2L+1)Zlo(k,u)ZLm(A.u)

- ey @) 2y O]

when m = -L,-L+1,...,L-1,L and

1/2
2141
ZL+1,L+1“’“.) [ff?I] 2y Quw 2 O

If L is even, it is evident from the induction hypotheses that

ZL+1,m(ﬂ-A,u+ﬂ) = - ZL+l,m(A’u)
while for L odd we have
ZL+l,m("-A’u+ﬂ) il zL+1,m(A’U)

Hence the statement holds for all integers %.

This lemma assures us that (9) and (10) have the same value since

exp fv(a,B) is an AEFD and hence without any loss of generality we can assume

that m(\,u) is in HS(s) with o and B defined by (6).

By Lemma 1 of [1], exp fv(a,B) is an exponential trigonometric function

of the form
2N

exp Z b exp[i(mb+nd) ]
m, n==2N -

when transformed by (6) into a function of (6,¢) so that
p(s|m) = c exp [£,(0,0)+f (a,B)]

is also an exponential trigonometric function.

12




g — - — Y o A 4 sl & sery dits o pos - o B s
- S A RS R A TR A o N SRR SN A =

We remark that if fv(a,B) has coefficients with the special property that

= D" 1

b 20 om

2f,m

then by Lemma 3 of [1], exp fv(a,B) when transformed into a function of (6,9¢)
is an AETF(2N) and hence p(slm) is an AETF(2N).
For the isotropic noise case where

N N 22

£ @By = T BB leosa)= F ] b, ¥, (LB Y, (6,4 ,
v 2=0 2029 220 me-2% 22 “2%,m 2%,m ;

% it is observed that p(s[m) is itself an AEFD(2N).
A generalization of the noise density to include the situation where the

density depends not only on the spherical coordinates (o,B) but also on the

position of the signal s(8,¢) can be used. Suppose

No 2
; £,(a,B) = QZO mz_ZQ byg,n(®® Ypy (08

where each b22 m(9,¢) is a smooth function of 6 and ¢ on Szltl so that there
bl

i is an integer N(%,m) and coefficients b(2%,m,2k,j) such that ﬁ
| _
| .
E | N(&,m) 2k '
f I b(22,m,2k,3) Y, G 4
tj k=0  j=-2k ’

‘A R

%‘ & D approximates b22,m(e’¢) sufficiently closely. Since YZl,m(a’B) and YZE,m(e’¢)

| can each be expressed as linear combinations of terms of the form exp(i(2j0+k¢)],

their product and hence fv(a,B) are also such linear combinations. Therefore,

the noise density is an exponential trigonometric density of order 2M where

M=N

+ max N(2,m) . ;

0
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If this generalized density has the additional property that
by, (8,0) = (<D b, _ (8,0)
2%,m" 28,-m "’ 3

then

bzg’_m(e’¢)Y22’_m(a,B) + bZQ,m(e,q))YzQ'm(a’B) =

3
(6,0) {(b(28,m, 2k, ) [Y,, (e, B)+(-1)"Y,, _ (a,8)]

N(2,m) 2k

)
k=0 j=-2k 2K»J

By Lemma 3 of [l], we can thus conclude that fv(a,B) is of the form

No 20 N(2,m) 2k -
£(,B) = ] T 1 ] C(28m2k,3)exp[1(2k6+i9) 1Y, (6,¢)
b 2=0 m=0 k=0 j=—2k o

and hence that exp fv(a,B) is an AETF(2M) in (6,¢).

V. ESTIMATION OF A TIME-VARYING AXIAL PROCESS ON Sz/il

Using displacements (:) and <:> to define a sequence of signals in
conjunction with measurements obtained by using the displacement (:) as well

as tne important case of additive white noise, we now describe several time-

varying estimafion modefs tor axial processes.

A. Estimation Model E(b,a)

Suppose signal and measurement processes are described by

SRR NNEEN R O JEXCRN
m oty = 88,60 () v (0,8

where -7/2 :-Ek <n/2, 0 :-Ck < 2m, and the densities of So and v, are AEFD(2N) 's.

Let us assume that 0 5-50 < m/2 so that

p(sy) = p(s; [H)P(H)) + p(s, [H,)P(H,)

14
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where

k. 2m n/2-£0
k.| P(H,) -J J (s,) ds
: f 1 o Fi¥gt “Fp
2
E | and 2m /2
k- | P(H,)) = I f p(s,) ds
F 2 0 n/2-E 0 0
3 0
E Let

‘ - L #F B>2%
¥ g, (s,m) =
o 0 otherwise
3 and
[ 1 if 8 >m/2-¢§
3 gz(s’m) =

0 otherwise

0
so that if p(so) = p(so|m ) = exp fl(60,¢0) then

2m n/2-£0
p(so) dsO

E | plsy [n) = g, (s mp)exp f1(61'50""1‘40)[o

(2m /2
+ gz(sl,mo)exp fl(n-61-50,¢1—c0-n)J J p(so) ds0 .

0 11/2-&U

Now if f1 is the exponent of an AEFD so that it can be written in the form
N 2N 0
£00,0) = J ] a  exp(i(2mbtnd)]
mn
m=~N n=-2N
. then
0 N 2N 0
p(sy|m) = Ry, exp ) ) a__exp[-i(2mE -nz,) Jexp[i(2md, +np )]
m=-N n=-2N
P P
+ R, exp {(-1)"a" _exp[i(2mf -n7 )] exp[i(2m6 +nd, )]}
02 m=-N n=-2N -m, N 0 0 1 1
where
2n n/Z-EO
Rop = 81(810mg) I I p(sy) ds,
0 ‘0
15
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and o

/2
Rpp = 32(81’“‘0) J J p(so) ds,

0 ﬂ/2-§0

Since p(mllsl) is a density of the form

%N %N 1 ’
exp b~ exp[i(mb,+nd.)]
m=-2N n=-2N " Le :

the conditional density p(sl|ml) will be the sum of two exponential functions:

1 S
a1 p(sllm ) = cq{Ry; exp z a exp[i(mel+n¢1)]
A m, n=-2N
2N 12
+ Ry, €xp Z a = exp[i(nd +nb,)] g
m,n=-2N
with
e agn exp[—i(m£0+nc0)] + bin if m is even
a =
mn
1
b if m is odd .
mn
E (--l)n ao exp[i(mf -nz,.)] + bl if m is even
k| -m,n 0 "0 nn
E 12
1 a
| mn =
k. |
b 1
'] . b if m is odd
Y i mn
; ¥
t

o
o
i

I1f instead -m/2 :-EO < 0, then

2m [nlz 2m

=&
P(so) ds0 ; P(HZ) - I JO ¢ P(so) ds0

o J J
g Yeg, 0

so that if we let

16
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1 1f O <9f2 + &
- g3(s,m) =

0 otherwise

, 1 if 0 < -

é; - gé(s,m) =

‘ 0 otherwise

then

’. 0 r2'ﬂ' TT/2
p(sllm ) = g3(81,m0) exp f1(91-50,¢1—€0)'J0 J

'
. | 2m (/2
+ gl’(slsmo) exp fl(_el—EO’(bl—CO) ¢ J

so that

s T g

1 S
p(sllm ) = c;iRy, exp ) . exp[i(m61+n¢1)]
m,n=-2N

2N 12
+Ry, exp| [ a - expli(mdy+ng))] |V,
m,n=-2N

where

r
0 1
an exp[—i(m£0+n§0)] + bmn if m is even

b1 if m is odd 5

mn
"

. 0 1
ra-m,n exp[i(mgo—ngo)] + bmn if m is even

12
a =
mn 1

11: if m is odd y

-'A-}.L-E;.L.\_, et
——

-

R

- mn

where R.. = 33(81’m0)P(H1)’ and R02 = ga(sl,mo)P(Hz). The computation of

01

b p(s,ln?) = p(s,|n’, B )P(H, |n') + p(s, [ H)P(H, |n')

17
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will not be included here although it proceeds in a similar manner. We observe

that for any k, p(sk|mk) will be a linear combination of 2k terms of the form

AW i ?
exp ) a__ exp[i(mf +no )] :
mn k Tk
m,n=-2N |
and it will be necessary to determine twice as many parameters as for p(sk_llmk-l). !

B. Estimation Model E(c,a) Using Isotropic Noise
Suppose the signal process {sk} is described by

Seel T % @ Ry

where {Rk} is a sequence of rotations in three-dimensional space. From the

definition of @we have, using direction cosine vectors for s, and s1 and the

direction cosine matrix representation for R0
8, = R0 s or s0 = R0 s1

where 51 is the antipode of 8 having spherical coordinates (61+n,¢1). By
[6, p.150]
2% 20,
Youm®r® = 1 DTURY . Yy 18150
n=-2%
for either case, so that if
a2
p(s,) = exp a Y (6,:95)
0 2=0 m=-2% 2,m 2%,m 0’70

()
plsy) = exp | L %20,a0 (Ro)mn]Yzz.m(el"’l) :

then
N 2% 29
2=0 m=-22n=-20 ~
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Now if there is a measurement process such that

where Vi has an isotropic noise density of the form

N
k
p(vk) = exp z bZQ PZQ(cos ak) 5
£2=0
then N 29 .
(]

p(mls)) =exp ] ] by Yoo  Ohom) Yy ((Bady)
2=0 m=-24%

Therefore, =
D
p(s, |m) = exp i, ¥ € 1)
k 20 melog 2w 22,m Kk
where
|3 24 k-1 2% k ————————
229,m - n=§21 Sin T Bt VP NP

C. Estimation Model E(b,+) with Additive White Noise

Let {sk} be a sequence of signals such that
SRCREAREER RN O JEACRLY
and suppose {mk} is a sequence of vectors such that

where {vk} is a sequence of independent Gaussian vectors with mean zero and

covariance matrix Rk = E(vkvi] and h is a vector-valued function on 52/11. The

completeness of the spherical harmonics of even order on Szltl allows us to

consider h(s) to be approximately of the form

g
h Y (6,9) .
40 m=-2% 28,m 2%,m

19




B TP

S B T

A R o AR A AT Y S, S AR P S 5 sl fhvaa b P T U T T

Now

= £ P Y y
P = (20 P 2(dee r )™ 2exp[—% gt vi]

where Rk has matrix elements Rij and vector v, has entries vi. We therefore
k k
have as the conditional density

N 2%

p(mk]sk) = (Zn)-plz(det Rk)_llzexp[ck+ ) ) ck(ﬂ,,m)Y22 m(ek’¢k)
220 m=-22 ’
bzx %2 29
+ T oc (B, 2hmmY, . (8, ,6.) ¥, (8,0 )] a1
2,1’=0 =24 f=-2g' k 2%,m" k>"'k? "28,m" k’'k
with
e e
e
T
=1 i T gt
ok et §=1R“ (o M50, * Pk Pag,n!
c, (2,8 m,m) = - i E gl i hd
Reri et 2451 Kk 2m 29, m'

(11) is an AETF(4N) since each spherical harmonic of even order is an AETF and
hence so is the product of two such spherical harmonics.
1f o has an AEFD(2N), then using (11) the conditional density, obtained

in the same manner as in model E(b,a), will be a finite linear combination

of exponential trigonometric functions of order 4N.

D. Estimation Model E(c,+)

As our final model consider the signal and measurement processes given by

81t Ouen? Pesr) = SO0y @ R

mk = h(sk) + Ve

20




< i e i e AP S A S A TS AL B ] e B A SR BRS l  gy . i i 3 i da i et
5 e o

where h and Vi are defined as for model E(b,+).

If p(mk|sk) given by (11) can be written as an AEFD(4N) of the form

following lemma:

2N 2% K
p(m s) = exp } _Z bog,m Y20,m G %) (12)
E 2=0 m=-29%
E
i
E and if
ks 2N %2 0
p(sy) = exp ] a R S
i 0 00 melag (2%.m 28,m 0770
E.
:
} then
P ; %N Ez ¥
£
p(s |m ) = exp a Y 6, ,9,)
t_ k 050 mes2q  2om 28w k7K
E where
é 2%
| k i k-1 22 k ————
i 220,m " n=§22, Btin” St T Y1 Do et
!
|
t The apparent difficulty in requiring that (12) holds is resolved by the
:
!

,.Y‘

Lemma 3: The product of two spherical harmonics of even orders is a sum

T ——_—

of spherical harmonics of even orders.

The product of two spherical harmonics of orders 24 and 2%' where

N
et B T B3 e

A Proof:
R L' > % is specified by [6,p.165]:
d
d ) 20428
YZE,m(e’¢) Y22§m‘e’¢) i L=2§L22 aL,m+m‘YL,m+d(e’¢)

: - G | 2% 22 L
B (-1)"*“‘(2L+1)( ' ) (

m m -m-m 0O 0 O

L, m+m

21
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Now the proof follows as an immediate consequence of Lemma 1.

VI. CONCLUSIONS

Several models for the estimation of discrete-time axial processes have

been proposed and have been found to be solvable by introducing axial expon-

ential Fourier densities which employ spherical harmonics of even orders.

1
i
|

9,‘ When these densities are expressed as trigonometric functions a closure property

for the conditional densities is seen to exist that permits their computation

by updating a finite number of parameters.

The three displacements defined on Sz/tl which were used to obtain the

2 estimation models, together with the properties of spherical harmonics of

even order yielded conditional densities which resembled the conditional

densities arising in estimation models for directional processes on S2 that

; appear in [1]. It should be kept in mind, however, that S2 and Szltl have

inherent geometrical differences as is evidenced by the need to use different
error criteria on the spaces involved.

The displacements defined for Sz/il, with the only exception being (::),
required that SZ/tl be represented by a fixed hemisphere of Sz. The question
arises as to whether or not it is possible to define other displacements for

which this requirement can be removed.
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