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Designations

X -- coordinate; t -- time; h -- thickness of plate; t -- thickness
of body; to -- initial temperature of body; At -- change in temperature

of body; is -- heat source of given power (heat source); It -- heat source

of given temperature (temperature source); ¢ -- ambient temperature;

« -- heat emission factor; S -- density of heat flow; A -- thermal
conductivity factor; a -- temperature conductivity factor; c -- specific
heat capacity; p -- density; h' -- thickness of layer of turbulent
liquid; X' -- thermal conductivity factor of turbulent liquid; c¢' --
specific heat capacity of turbulent liquid; p' -- density of turbulent

liquid; ht -- thickness of layer of temperature resistance; hS -- thickness

of layer of heat capacity resistance; n = %- -- relative coordinate;
"o = Fh -- relative thickness of plate; Fo = 3% -~ Fourier number;

S h

___ME—1t,)

T -- relative temperature at S = const of plate surface;

ﬁ:lﬁﬁli%ﬁL -- relative surface temperature of plate x = h when at
Ul

the other surface ¢ = const; = a symbol designating: if A is true,
then B is true; BC -- boundary condition.

Introduction

Solutions to problems in thermal technology form an integral part
of most areas of hydrotechnology. In some cases the results of thermal
calculations serve as the initial data for solving non-thermal problems,
for instance determining temperature stresses in facilities, or predicting
ice conditions; in other cases knowledge of water temperature is of
independent significance, for instance when water is used for industrial
purposes or as a raw material, in alluvium and in concrete work, in
pipe cooling as a coolant, for the purpose of irrigation, for developing
the fishing industry, etc. The role, scope and complexity of the
thermal problems to be examined are constantly increasing in connection
with development of hydraulic construction: the implementation of related
engineering solutions in erecting large facilities in difficult terrain.
Various methods, especially the analytical one, of finite differences
and simulation have been used to solve thermal problems. In this process,
regardless of the method, general principles of physics are frequently
used: symmetry, superposition, etc. The goal of the present article
is to demonstrate the possibilities for applying the reciprocity principle
to solving thermal conductivity problems.

The reciprocity principle was stated by Maxwell in 1864 with regard
to the deformation of elastic bodies and was published in his article
"Calculating the Equilibrium and Rigidity of Frames ([1], p. 598)",
the essence of this principle can be stated as follows (Figure 1):

"...in any linear elastic system under static load the shift GBA in

the direction of one force B caused by another quantitatively equal
force A is respectively equal to the shift 6AB in the direction of the
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second force caused by the f1rst" ([2], p. 123). Consequently, the
reciprocity principle was expanded to cover other systems as well.

Figure 1. Manifestation of the Reciprocity Principle in
the Loading of an Elastic Beam.

As applied to linear electrical systems, Maxwell's reciprocity
principle states that if in one section of a complex circuit electro-
motive force [EMF] E acts and if in the second section there appears
current I, then if we transfer EMF E to the second section, in the
first section there will appear current I ([3], p. 214). In general
terms we can state: if in element a of a complex system excitation F
acts which causes a response (reaction) H in another element of
this system b, then if we transfer excitation F to element b, in
element a it will cause the same response H. It is important to
note that in the other system elements the responses will be different
in the two cases; ''reciprocity' occurs only betwe.n two selected
elements. Thus, in the two cases the syster is in a different condition.

In this article we will demonstrate that the reciprocity principle
can also be applied to solving several problems in thermal conductivity;
this means that if heat source IS located at point 1 causes at point 2

a temperature change At = f(t), then if we transfer the source to point
2 at point 1 the same temperature change At will also occur.

It should be emphasized that at the respective points the temperature
change speeds are the same but the temperature gradients differ, and
therefore we must remember that the shift to a reciprocal problem is
not a shift to an equivalent problem: temperature fields are different.

1. Thz2 Reciprocity Principle in the Action of a Heat Source in a Semilimited
Object

Let us first examine an unbounded object. If at point 1 of
an uanbounded isotropic and homogeneous body there acts a heat source
of power IS which causes temperature change At = f(tr) at point 2, then

it is obvious that transferring heat source IS to point 2 will cause

the same temperature change At = f(r) at point 1. The temperature fields |
which arise in both cases are interrelated by first-order symmetry £
relative to a plane which is perpendicular to a straight line connecting ]
the two points and which intersects it in the middle. This case, of
course, is trivial.

Let us make the problem more complex. Assume that points 1 and 2
are located in a semi-limited object and that an adiabatic condition

ala
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= is assigned at the surface of the body. It is easy to see that in this

B case the reciprocity principle is also observed. For this purpose it is

| necessary to use the symmetry principle and to shift to an unlimited

E body with a pair of like-sign sources located within it (Figure 2).

F At these points 1 or 2 temperature will change under the influence of

¥ 1| the two sources. When shifting from the initial system to the reciprocal

f system, the distances between the sources and the point under examination i

. remain unchanged, and therefore the values of At will be the same, i.e.,
E the reciprocity principle is observed. However, in contrast to the
4 infinite range temperature symmetry does not occur here.
3
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* ’ Figure 2. Reciprocity Principle When Two Heat Sources
i Act in a Semilimited Body: In the Initial Task the Heat
| & Source is at Point 1; at Point 2 Occurs the Temperature
, . Increase At] = At' + At"; In the Reciprocal Problem the
i Heat Source is Located at Point 2; at Point | the
i : Temperature Increases is Also Equal to At].
It is important to note that if the boundary condition is an
{ isothermic curve rather than an adiabatic curve, then the reciprocity
| principle is also correct; it is easy to see this if we change the
if sign of the sources acting at points 1l' and 2' in Figure 2.
!
b
A
% It is useful to keep in mind the following three consequences which
!? flow from this (in this the superposition principle is also used).

In the first place, knowing the temperature change at point 2
when a single heat source acts at point 1 makes it possible to
evaluate the temperature changes at point 2 when there are different
values for the sources at point 1, as well as to evaluate temperature
change at point 1 when a heat source of any given intensity acts at
point 2.

B0

' In the second place, knowing the temperature change at points 2, 3,

.., k under the action of a single heat source at point 1 makes it
possible to determine the temperature change at point 1 when heat
' sources act at points 2, 3, ..., k.
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I In the third place, conclusions on reciprocity made in the case
i where a point source acts can also be applied without change to cases
| where a linear or planar, uniformly distributed source parallel to .
the surface of the semilimited body acts. |

‘ Example 1. The following is given: if a semilimited body

¢ (A = 380 Wt/m-deg, a = 0.4 m?/hr) at a distance x = 0.5 m from the
£ surface there acts a planar heat source S = 1000 Wt/m?. The initial |
£ temperature is the same throughout the body. The surface body is |
g heat-insulated.

It is necessary to find the temperature change on the body surface |
at T = 5 hours after the source begins to operate. |

' Solution. We should note that if we reciprocally exchange the |
positions of the source and the plane whose temperature is being sought, |
then we find a problem the solution to which is known ([S], problem
no. 2). According to the reciprocity principle the temperature at

[ the plane x = 0.5 m in the reciprocal problem will be equal to the
unknown surface temperature in the initial problem.

The solution to the reciprocal problem has the form

Sx
At =0 T-
Since
£ az 045
P = 0 =5

according to the computation graph ([S5], page 107) we find 6 = 2.3,
and consequently the desired temperature value is equal to:

2. Reciprocity Principle When Heat Sources Act in an Unlimited Plate i

The reciprocity principle is also correct for an unlimited plate
on whose surface first-order or second-order BC are assigned. The
correctness of this proposition is proved in essentially the same
way as was the action of the reciprocity principle in the semilimited
body. It is especially useful to note the existence of the reciprocity
principle between the surfaces x = 0 or x = h and any other plane
X (see Figure 3, a); this makes it possible to utilize the known
solutions to problems with second-order BC to calculate the temperature
change at the surface in the presence of internal heat sources.
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Let us examine the following case in order to illustrate the
correctness of the reciprocity principle for plates.

There is an unlimited plate. The boundary conditions are (Figure 4):

when x = 0 3
. S,
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when x = h
% 0. (2)
According to a known solution ([4], page 115; [5], p. 266; [6],

page 155), the change in temperature is determined by the equation
Sh

=g (3)
L w1 WY 2(—=1)e .
8= " —'L — e r———— ' SO __u'_i
where Fo— T3 ?§ o cos [, (1 —7)]exp (—u,” Fo), @)

no-l

i": ) s : - |
‘ (5) =T 1
L")
Let us turn our attention to the temperature change in plane o
x = h/2; according to (3) it is equal to S
———
S —
6
A ==-'S;—he,; (6) -
. . . .
here in determining 61 3 ;E;?:
Fo, = ‘—1_—;-, - :
h (N —
X 1
S St ol -
(8) (—

Now let us transfer heat source S from the surface into plane
x = h/2 (Figure 4). Then, if the reciprocity principle is correct,
at the boundary where the heat source previously acted temperature
change Atz should be equal to Atl. In view of the symmetric nature

%

of the temperature field relative to plane x = h/2, the problem of
determining Atz can be solved by examining only one half of the

plate; then it is obvious that

282 (9)

’

S

v

.M._.

where in determining the values of €, it is necessary to assume

(10)

(11)
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Figure 3. Reciprocity Principle when a Heat Source Acts in an
Unlimited Plate. a, In the initial problem the heat source is
located on surface x = 0; in the reciprocal problem the heat

g source is loacted in plane x = X5 b, the heat source is located

within the plane.

It is easy to see that condition (11) is observed; thus when
Fo > 0.5 and when the value of the sum of the series is negligibly

small, according to (4) we have

P R Ry

a 1 1 1 < 1
hy=Fo, —5+¢ Ak s Foy = 5
} and
by < Fo,—1 -7-_:)— '-1)' ==Fo, — ’El;‘ = “'(Fol . ’)1—-'\,
9 24 )

Equality (11) also occurs when Fo < 0.5.

Thus, we have not only confirmed the correctness of the
reciprocity principle but have also incidentally established the
i curious fact that temperature in the middle plane of the plate, at
| a given heat flow on one surface and with an adiabatic condition
{ on the other surface, is equal to the temperature of the adiabatic : 7
g surface of the plate if its thickness and the given heat flow are : H
i

half as large (Figure 4).
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Figure 4. Proof of the Reciprocity Principle in a Plate.

Of course, the reciprocity principle also holds between two
horizontal planes, parallel straight lines and individual points
located within the plate (Figure 3, b).

Ad0)

E | This conclusion can also be reached by another route. Thus,
| for example, let us take the solution to the problem concerning the
temperature curve at depth x = x. of a heat-insulated plate in which

1
when t = 0, in plane x = X, an instantaneous single heat source acts ]
([4], page 354):
B 1 =2 axp{— 1,7 Fol ns iy, COS 17, (12)
o pank
where
9 ) ¥
Voo = p=amy oy g, =2
av il 1

From formula (12) it follows that the temperature course is the

same when the source is located in X, and the temperature curve is

k| monitored in plane X, or whether the source is located in plane X,

and the temperature course is monitored in plane x The superposition

1
principle makes it possible to extend this conclusion to heat sources
which act constantly and are of constant or variable intensity.

L R

Example 2. The following are given: two concrete slabs (X = 1.2
Wt/m-deg, a = 2.57-10 3 m2/hr) of thickness hy = 0.2mand h, = 0.35m

o b are laid one on the other; an electrical heating element (planar heat
b 1 source) of power S = 500 Wt/m? is arranged along the surface between

5 4w

o vy s

] them. Both free surfaces of the two-plate slab are heat-insulated.

B @

¥ | Kires It is necessary to find the temperature change on the heat-insulated

# i surfaces after ten hours.

4

¥ 4 Solution: a diagram of the problem solution is given in Figure 3, a.

g’; ; o : In order to determine the temperature change on the heat-insulated ¥
{8 4 surface of the first slab (of thickness hl), it is necessary to mentally !

2ls
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. transfer the heat source to this surface and to find the temperature
o change in an unlimited plate of thickness h = h1 + h2 = 0.55 m at a
B 1 distance of Xq
3 placed. The solution to this 'reciprocal' problem is known [4]-[6].

= h1 = 0.2 m from the surface on which the source is

,
ga %

| She g S
= oy The initial arguments for determining the value of 6 are:
2 ey
. j % ax an _'_'.37-‘0—3-!0_ e
i -~ B = e g .
: ‘] X h, 02 .
‘, T = —h—= m = U.T-.—_UU(\
| 2
; 1 By using the computation graphs g[S], p. 145), we find 6 = 0.1;
i o consequently, the temperature change is equal to
e - Lo
== St 7N oo
A L

' The way in which the temperature change on the second heat-insulated
surface is found is similar to the one examined above. The only
1 difference is that in this case in the reciprocal problem the heat
\ source is transferred to another free surface; the value Fo remains
as before, but the relative coordinate of the point for which the
temperature change is being sought is equal to

wr 8

hs U.3s

o omm — e e (V1
f

[l‘.‘_ ,'1_ .0
' Having determined from the computation graph that ¢ = 0.02, we find:

300-0.55 :
At =002 S P L O

> Consequently, according to the reciprocity principle the unknown
3 temperature change on the heat-insulated surface of the first plate is
equal to At = 22.9°C, and that on the surface of the second plate is
equal to At = 4.6°C.

3. Reciprocity Principle when Heat Sources Act in an Unlimited Plate
Covered with a Layer of Turbulent Liquid

s B B

The reciprocity principle is also valid when at the surface there
exists a layer with a very high thermal conductivity factor (A' = «).
This assertion is by no means obvious; therefore let us examine this
case in greater detail (Figure 5).

A.;'i Ry

Assume, for example, that at surface X of an unlimited plate h

thick there is a layer of fairly agitated liquid; the initial temperature
is equal to tyr @ heat flow S enters the liquid from outside and at

surface x = h there is an adiabatic condition (Figure 5):

~ .
mh&wm’-. ~

e X L R
S "

._.-__(.’i == o— lv.il
N ki =8—cphy o° I‘,-\'. s (13) ;}:
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t=h

where
C"J’}l,
co

hs =

The solution to this problem (we will refer to it as problem A)
for the case S = const is known ([4], p. 129; (5], p. 271):

7 . Ai—g) 3 =,
64 = L Fo— e S — —_—
AT wkl [ S 6 (1 + %)
Y £
~ Wi cosful=exp(=iFo)
prasy| ]
n=1 it
o a,
vg ‘a = — T‘O- '3) :
-
e 2+,° "3.
S .,dz (.{12 = 7;(.2 — 7 ) COS 7, - :
e
[ %%L =0 -
A v
,' R [ ) 18 -
tFg A= o0 ¢ é'rs AE=c ¢ 7 Ll
H Sy
r | [
J d =4, -
2 I A'a ! L %
| To Ata=bo
" | sl g
hlat, h e .
A 1Lt-=0 ?S Ws i
ax J' v’(;f P
*3 'a

Figure 5. Reciprocity Principle in an Unlimited Plate
with a Layer of Liquid Under the Influence of a Heat
Source.

Let us now examine problem B where the heat source is located
not at surface x = 0, but at surface x = h. In this case instead
of (13) and (14), we have to write

; ot cth ot
— ) S— T — ;, A —.:— "
dx | gt |,
’. ﬁf- = N
a.x

hy=H

(14)

(15)

(16)

(17)

(18)

(19)

(20)

The solution to this problem is also known ([4], p. 129; [5], p.

) ) B
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ba = [ Bor st o  n t i<
Y - B 1—1%[ e 6(1-%*10)]-"1»*&1
= S (21)
N
&5 - }1 A, 08 [v, (1—7)] exp (—v,? Fo);

- |

' Ao sbiEmAY (22)

.,":(.,'}: =y R ,) ’

the values v, are determined from equation (17).

It is easy to see that if we substitute n = 1 into (16) and
n = 0 into (21), then we obtain the identity

0
"

QAUI =g 4 .
Er Thus, the temperature course at the boundaries which are opposite ;
to the boundaries with sources is identical, which indicates that the |
reciprocity principle is observed. In other words, transferring the
layer of liquid to the opposite boundary does not change the temperature
course at the boundary opposite the source.

In conclusion let us recall that the superposition principle
; makes it possible to extend these results to cases where the value
3 of heat source S changes in time in accordance with any law.

L. ine Reciprocity Principle in a Plate When There is a Liquid Layer
and the Adiabatic Condition on One Boundary and a Third-Order
Boundary Condition on the Other

Earlier in this article we examined the effect of the reciprocity
principle in the presence of heat sources of a given intensity (power).
Sources of this type can act both within a body and on its surface,
i.e., in this case it is basically possible to transfer the sources
to any points and consequently it is possible for the reciprocity
principle to be manifested.

p¢ In this article we would now examine a problem with temperature

: sources. These sources cannot be located within the body. Therefore

Y 1 the possibilities for transferring the heat source are extremely limited,

£, and the reciprocity phenomenon occurs, as you will see, somewhat
differently than in the case where heat flow sources act.

We will examine the thermal regime of a plate where at surface
X = 0 the ambient temperature (temperature source) and heat emission
= | factor are assigned, and at a second surface x = h there is a layer
| of agitated liquid on whose free surface the adiabatic condition is
: assigned, i.e., the following BC obtain (Figure 6, a):

when x

0 ]
AT ; o .
-lai = (=1 9] (23

at (24)
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The solution for the case where when 1t = 0, t = tO and when

Tt > 09 = const, is known ([6], p. 378; [7], p. 71). For the sake of
analytical convenience we will present the function for the temperature
of surface x = h, i.e., for the surface which is opposite to that at
which the temperature source acts, as follows:

i == t\'~h "{.\ b e = (25)

it g -= f (Fo, B'qu'

where
SRR
Biggy= ke ) (26)
L

/i Foo-dy o 2 (27)
Azt f (28)

An examination of (25)-(28) shows that the temperature change
at boundary x = h is the same if hR = idem. This condition can be

observed at various combinations of hs and ht values at a given plate

thickness h. Therefore it is possible to draw certain conclusions
concerning the possibility of replacing one problem with another in
which the course of the temperature B ™ h remains the same.

Thus, for instance, it is possible to switch from a problem with
third-order BC on one surface and the adiabatic condition without a
liquid layer on the second surface (ht # 0, hS = 0) to a problem with

first-order BC and a liquid layer (ht =0, hs # 0), based on the
relationship (Figure 6, b):

By =2 &, (29)

This same relationship (29) makes it possible to make the reverse
transition from the problem with the first-order BC and the liquid layer
to the problem with the third-order BC without the liquid layer.

The physical essence of relationship (29) consists of the following.

In transferring a temperature source to another surface of the plate,
the heat-capacity resistance should be replaced by the temperature
resistance, and vice versa. In doing so the reciprocity principle is
observed: the course of the temperature at the boundary opposite to

that where the heat source is located will remain unchanged. Of course,
with the same justification we may speak of transferring heat resistance
from one surface to another with the heat source remaining in the same
place. With this type of physical interpretation there arises the
problem of whether it is proper to call this phenomenon a reciprocity
phenomena. In answering this question in the affirmative, we consider
the fact that the '"responses' are unchanged at a certain point and

only at this point when one of the problem's similarity conditions is
changed: heat resistance at the boundaries.
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Figure 6. Reciprocity Principie in Unbounded Plate with a
a, Transition from

Layer of Liquid and a Temperature Source,
problem with third-order BC and liquid layer to problem with
first-order BC and liquid layer or to problem with third-order
BC without liquid layer; b, transition from problem with
first-order BC and liquid layer to problem with third-order BC

without liquid layer.
If in the initial condition there occur third-order BC (ht £1),

then when there is a liquid layer at the other surface the transition
to first-order BC is carried out by increasing the thickness of the

liquid layer (Figure 6, a):
Mgy {1532,

(30)

On the other hand, switching to the problem without the liquid
layer is accomplished by increasing the thickness of the temperature

resistance layer:

[2¥4] :-;~{"'-‘__/':_'\ 3
I .L\‘A J (31)
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We should note that in both cases, in switching from one layer
(type) of heat resistance the thickness of the latter remains unchanged
and is equal to hR.

Observance of the condition hR = idem requires that when the layer
of thickness ht is frequently changed (by Aht)’ hs was changed by the value

h--k N
A= h, +— 3,

Ay = =38 (32)

When the thickness of the liquid layer hs is changed by the value

Ahs, it is necessary to replace ht with the value

Al = = Ay e m (33)

Of course, these conditions are also correct for cases where the
temperature source is not constant, but depends on time (¢ = f(1)).
However, it is necessary to avoid the following false conclusion as if
the solution to the problem remained the same in the case where hS and
ht change in time but the value of hR remains the same.

It is also interesting to note that in recent years computation
functions corresponding to equation (25) have been calculated and
constructed in the USA (see [7], [8]). These works have attracted
considerable attention. However, in light of what we have said above
it becomes clear that these data are not required since they simply
repeat the long-known and tabulated solution for a plate with third-order
BC without a liquid layer in which Bi = Biequ and, consequently

re=w ;;. (34)

It is easy to see that the temperatures of the adiabatic surface are
identical in both problems if we compare the graphs of 23f and 24b with
30b in [7] or graphs 6.10 and 6.11 with 10.5 in [6]; it is only necessary
to keep in mind the fact that in the graphs for a plate with liquid
in [6] and [7] the parameter u corresponds to the values of 1/Biequ

in this case.!

Example 3. The following are given: a concrete slab (» = 1.2
Wt/m-deg, ¢ = 0.233 Wt/kg-deg, o = 2000 kg/m3, a = 2.57-10 3 m?/hr)
of thickness h = 0.5 m is heated in a gas medium with ¢ = 300°C and
a heat emission factor of a = 30 Wt/m?-deg. The initial temperature

of the slab is tO = 10°C. The lower surface of the slab makes contact

2
with a layer of agitated water (c' = 1.163 Wt'hr/kg-deg; o' = 1000 kg/m~;
A' = ») of thickness h' = 0.25 m.

'In [6] the captions under Figures 10.4 and 10.5 are transposed.
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It is necessary to find how long it takes the water to be heated
up to t = 90°C.

e s ST

>—2 Solution: in accordance with (27) we find |
é: ; R Lo, el ) oe's'h ]
hp = byhgr—p= = —+ e o =
( ’ 5 ¢ i
| 12 1163-1000.025 1,2 1,163-1600.023
8 L T | =30 T 000 T 20 0eiaodnngs T el {
- |
, .} from which according to (26) |
E ”‘:—i"!ﬂ ; h ()5 =
(:' [‘,quus-h—[e -'WSU'“
: | -
g | = According to (25)
- |
b | :.1 ty=h - L. i i
A 0—:“.‘.?—=/(."u. Bleq'[\]
=i —.as :
By utilizing the graph for computing the temperature course
([6], p. 203) for n = 1, we find that when 6 = 0.276, Fo = 0.73.
From this we find the desired value
‘ i R
==Fo T =073 :ﬁf—IOT-:/ | hrs. ]
Example 4. The following are given: the conditions of example 3,
with the exception of the boundary condition: at the boundary there
obtains a linear law of temperature change ¥ = tO'br. The temperature
of the gas medium increases with a constant speed b = 4.0 deg/hr. The
{ initial temperature of the concrete plate and the gas medium is the
| same t, = ¥ = 10°C.
B 0
i
: It is necessary to find how long it takes the water to be heated
‘ to t = 90°C.
b Solution. In order to solve this problem we utilize the computation
4 graph ([5], p. 192). The initial arguments of the problem are
f
{ o am
P - as--r.) 2,57-10=-.30 8
'j Blgqu= 0.7 and® = === = —= g5z = 0.205; 4
3 3
| -

when n = 1 and 8 = 0.206 and Biequ = 0.7, we find Fo = 1.1 and consequently

3 3 () L B4
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Conclusions

i This article has shown that the phenomenon expressed as the
reciprocity principle which is known in various branches of physics
- also occurs when heat propagates in solids. This conclusions is not
B | only of purely scientific interests. Thus, utilization of the reciprocity
k| principle makes it possible to find analytical solutions for certain
: thermal problems, the solution to which has not yet been obtained by
! means of other methods. In addition, it should prove useful to
E | apply the reciprocity principle in setting up laboratory and whole-scale
studies since for practical purposes in a number of cases it is
& . convenient to transpose the locations of the heat sources and the
{ points in the object the temperature of which has to be measured.
, The possibility of exploiting the reciprocity principle in design is
‘ no less important. Thus, for instance function (32) indicates how
to replace heat-insulation material at surface x = 0 either partially
| or completely with a layer of liquid at surface x = h so that the
- heat-protection effect of surface x = h remains unchanged.

e e o h o L S o ke e et g L L Bl e e e e e b b e o

The reciprocity phenomenon has been studied in this article only
with regard to problems in non-stationary thermal conductivity in
; homogeneous isotropic plates of limited and unlimited thickness and
- under various boundary conditions, including the presence on the body
L surface of a layer with a very high heat conductivity factor and with
E | internal heat sources. There is no doubt that attempts to apply this
t principle to other problems, for instance rectangular, equilateral,
polygonal and isosceles triangles, straight prisms based on the above-
| -mentioned planar figures, as well as cylinders, spheres, etc., will
s provide positive results.

In the future it will be advisable to search for more general
laws to govern the manifestation of the reciprocity principle in thermal
conductivity processes. This will make it possible to expand the range
of application for the reciprocity principle while at the same time
delimiting its boundaries.
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