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Des i gna t ions

• x -- coordinate; t -- time ; h -- thickness of plate; t -- thickness
of body; t0 -- initial temperature of body; At -- change in temperature
of body; is -- heat source of given power (heat source); -- heat source
of given temperature (temperature source); t~~ -- ambient temperature;

-- heat emission factor; S -- density of heat flow; A -- thermal
• conductivity factor; a -- temperature conductivity factor; c -- specific• heat capacity; p -- density; h’ -- thickness of layer of turbulent

liquid; A ’ -- thermal conductivity factor of turbulent liquid; c ’ --
0 specific heat capacity of turbulent liquid; p ’ -- density of turbulent

liquid; h
~ -- thickness of layer of temperature resistance; hs -- thickness

of layer of heat capacity resistance; n -- relative coordinate;
-- relative thickness of plate; Fo ~~~~~~ -- Fourier number;

S h

~ X (t— t0)
sh -- relative temperature at S = const of plate surface;

______ -- relative surface temperature of plate x = h when at

the other surface t~ = const; a symbol designating : if A is true,
then B is true; BC -- boundary condition.

Introduction

Solutions to problems in thermal technology form an integral part
of most areas of hydrotechnology. In some cases the results of thermal
calculations serve as the initial data for solving non-thermal problems,
for instance determining temperature stresses in facilities, or predicting
ice conditions; in other cases knowledge of water temperature is of
independent significance, for instance when water is used for industrial
purposes or as a raw material , in alluvium and in concrete work, in
pipe cooling as a coolant , for the purpose of irrigation, for developing

0 
the fishing industry, etc. The role, scope and complexity of the
thermal problems to be examined are constantly increasing in connection
with development of hydraulic construction : the implementation of related

• engineering solutions in erecting large facilities in difficult terrain.
Various methods , especially the analytical one, of finite differences

- ~• 
and simulat ion have been used to solve thermal problems. In this process,
regardless of the method , general principles of physics are frequently
used: symmetry, superposition , etc. The goal of the present article
is to demonstrate the possibilities for applying the reciprocity principle

0 to solving thermal conductivity problems .

0 
• . The rec iprocity principle was stated by Maxwell in 1864 with regard

to the deformation of elastic bodies and was published in his article
• • :;~~~~~, ‘ “Calculating the Equilibrium and Rig idity of Frames ([1], p. 598)”,

the essence of this principle can be stated as follows (Figure 1):
in any linear elastic system under static load the shift •

~BA in
• the direction of one force B caused by another quantitatively equal
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second force caused by the first” ([2], p. 123). Consequently, the0

_i reciprocity principle was expanded to cover other systems as well.
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Fi gure 1. Manifestation of the Rec i proc i ty Principle in
• the Loading of an Elastic Beam .

As applied to linear electrical systems, Maxwell ’s reciprocity
principle states that if in one section of a complex circuit electro-
motive force [EMF] E acts and if in the second section there appears
current I, then if we transfer EMP E to the second section, in the
first section there will appear current 1 ([3], p. 214). In general
terms we can state: if in element a of a complex system excitation F
acts which causes a response (reaction) H in another element of
this system b, then if we transfer excitation F to element b , in
element a it will cause the same response H. It is important to

0 
note that in the other system elements the re.ponses will be different
in the two cases; “reciprocity” occurs only betwc..n two selected

• — . elements. Thus, in the two cases the systeir is in a different condition.

In this article we will demonstrate that the reciprocity principle
can also be applied to solving several problems in thermal conductivity;
this means that if heat source located at point 1 causes at point 2

a temperature change At = f(r), then if we transfer the source to point
2 at point 1 the same temperature change ~t will also occur.

It should be emphasized that at the respective points the temperature
O c~an~e speeds are the sam e but the temperature gradients differ, and

therefore we must remember that the shift to a reciprocal problem is
not a shift to an equivalent problem : temperature fields are different.

I. The Rec i proc i ty Princip le in the Action of a Heat Source in a Semil imited
Object

Let us first examine an unbounded object. If at point 1 of
an u~tbounded isotropic and homogeneous body there acts a heat source
of power I~ which causes temperature change At = f(r) at point 2, then

it is obvious that transferring heat source I to point 2 will cause

the same temperature change At = f(r) at point 1. The temperature fields
• which arise in both cases are interrelated by first-order symmetry

relative to a plane which is perpendicular to a straight l ine connecting
the two points and which intersects it in the middle. This case , of
course , is trivial .

• 
~~0 Let us make the problem more complex . Assume that points I and 2

semi-Limited object and that an :diabatic cond:tion
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is assigned at the surface of the body. It is easy to see that in this
case the reciprocity principle is also observed . For this purpose it is

• necessary to use the symmetry principle and to shift to an unlimited
- body with a pair of like-sign sources located within it (Figure 2).

• At these points 1 or 2 temperature will change under the influence of
the two sources. When shifting from the initial system to the reciprocal

O system , the distances between the sources and the point under examination
remain unchanged, and therefore the values of At wil l  be the same , i .e. ,
the reciprocity principle is observed. However, in contrast to the

O 

infinite range temperature symmetry does not occur here.

f o ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ’% —
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Adiaba tic curve I •

Figure 2. Reciproc i ty Princip l e When Two Heat Sources
Act in a Semi limited Body: In the Initial Task the Heat
Source is at Point 1; at Point 2 Occurs the Temperature
increase At 1 = At ’ + At ”; In the Reciproca l Prob l em the

Heat Source is Located at Point 2; at Point I the
Temperature Increases is Also Equa l to ~t 1 .

It is important to note that if the boundary condition is an
isothermic curve rather than an adiabatic curve, then the reciprocity
principle is also correct; it is easy to see this if we change the
sign of the sources acting at points 1’ and 2’ in Figure 2.

It is useful to keep in mind the following three consequences which
flow from this (in this the superposition principle is also used).

rn the first place , knowing the temperature change at point 2
when a single heat source acts at point 1 makes it possible to

O evaluate the temperature changes at point 2 when there are different
- 

0
• • values for the sources at point 1 , as well as to evaluate temperature

0 ~ ~~~~~~ change at point 1 when a heat source of any given intensity acts at
point 2.

In the second plac e, knowing the temperature change at points 2 , 3,
• • • • • •~~~~ . ...,  k under the action of a single heat source at point 1 makes it

• possible to determine the temperature change at point 1 when heat
; ~~~~~~~~ sources act at points 2, 3, .. ., k.

3-
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•
0 In the third place , conclusions on reciprocity made in the case

where a point source acts can also be applied without change to cases
• where a linear or planar, uniformly distributed source parallel to

the surface of the semilimited body acts.

Example 1. The following is given: if a semilimited body
(A = 380 Wt/m~deg , a = 0.4 m2/hr) at a distance x = 0.5 m from the
surface there acts a planar heat source S = 1000 Wt/m 2 . The initial
t emperature is the same throughou t the body. The surface body is

• heat-insulated.

It is necessary to find the temperature change on the body surface
at -r = S hours after the source begins to operate.

Solution. We should note that if we reciprocally exchange the
positions of the source and the plane whose temperature is being sought,

O then we find a problem the solution to which is known ([5], problem
no. 2). According to the reciprocity principle the temperature at
the plane x = 0.5 m in the reciprocal problem will be equal to the
unknown surface temperature in the initial problem .

The solution to the reciprocal problem has the form

• Since

according to the computation graph ([5], page 107) we find 8 2 .3 ,
and consequently the desired temperature value is equal to:

IoUo.o•-~= •, - 3.O3’C.

2. Reci proc i ty Principle When Heat Sources Act i n  an Unlimited Plate

The reciprocity principle is also correct for an unlimited plate
on whose surface first-order or second-order BC are assigned . The
correctness of this proposition is proved in essentially the same
way as was the action of the reciprocity principle  in the semilimited
body . It is especially useful to note the existence of the reciprocity
principle between the surfaces x = 0 or x = h and any other plane
x (see Figure 3, a) ;  this makes it possible to u t i l i z e  the known
solutions to problem s with second-order BC to calculate the temperature
change at the surface in the presence of internal heat sources. •

0

Let us examine the following case in order to illustrate the 0

correctness of the reciprocity principle for plates .

There is an unlimited plate. The boundary conditions are (Figure 4):
4 -‘

w h e n x = 0
~31

(1)

_ _ _ _ _ _ _ _  _ _ _  _ _  
Li



• 0

w h e n x = h

H !~~=o. (2)
dx

According to a known solution ([4], page 115; [5], p. 266; [6],
page 155), the change in temperature is determined by the equation

S/i
(3)

• 1 1
where 0= ~~~~~~~~~~~ +.-~— ~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~

-- U-

0 
• —I

Let us turn our attention to the temperature change in plane
x = h/2; according to (3) it is equal to •

~~~~

.~~~ = .2!o . 
(6) ~~~~

I ‘

here in determining 81
• -,

It~ (7~0 ‘~ ‘

-V I

• (8)
Now let us transfer heat source S from the surface into plane

x = h/2 (Figure 4). Then, if the reciprocity principle is correct, ....~~~~~

at the boundary where the heat source previously acted temperature
change At2 should be equal to 

At1. In view of the symmetric nature

of the temperature field relative to plane x = h/2, the problem of
• determining At2 

can be solved by examining only one half  of the

plate; then it is obvious that

I 
—

where in determining the values of ~~, it is necessary to assume

0 . a:1•0 = ——-. —

0 
- / IL ~ (10)

i , = l
~0 

-

By comparing (6) and (9), we see that At , = ~ t
1 

if

~ (11)
I:,

04t
j  -5-
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Figure 3. Reciproc i ty Principle when a Heat Source Acts in an
Unlimited Plate . a , In the initial problem the heat source is
located on surface x = 0; in the reciproca l prob l em the heat
source is loacted i n  plane x = x 1 ; b , the heat source is located

within the plane.

It is easy to see that condition (11) is observed ; thus when
Fo > 0.5 and when the value of the sum of the series is neglig ibly
small , according to (4) we have

Fo~ - -

and

—1 +-~
-- ~~~~ 4(Fo~ —

Equality (11) also occurs when Fo ~ 0.5.

Thus, we have not only confirmed the correctness of the
reciprocity principle but have also incidentally established the
curious fact that temperature in the middle plane of the plate , at
a given heat flow on one surface and with an adiabatic condition . 0 •~• on the other surface, is equal to the temperature of the adiabatic
surface of the plate if its thickness and the given heat flow are
half as large (Figure 4).

• • 0 0 _____________ _ _ _  _ _ _
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Fi gure 4. Proof of the Reciproc i ty Principle in a Plate.

Of course, the reciprocity principle also holds between two
horizontal planes, parallel straight lines and individual points 0
located within the plate (Figure 3, b).

• This conclusion can also be reached by another route. Thus,
for example, let us take the solution to the problem concerning the
temperature curve at depth x = x

1 of a heat-insulated plate in which

when r = 0, in plane x = x2 an instantaneous single heat source acts

• ([4], page 354):

8 0  - — 2 ~~~~ x -~( —  ~~~~~~~ ~~~~~ :~~~~~. . (12)

where t
—- ; :~ ., =. !r—; 

~~4 l  
~~
•7

~ 0 ;  ~ =

From formula (12) it follows that the temperature course is the
same when the source is located in x1 and the temperature curve is

• monitored in plane x2 or whether the source is located in plane x2
and the temperature course is monitored in plane x1. The superposition

principle makes it possible to extend this conclusion to heat sources
which act constantly and are of constant or variable intensity.

Example 2. The following are given : two concrete slabs (A = 1.2
Wt/m .deg , a = 2.57 10 ~ m2lhr) of thickness h1 = 0.2 m and h., = 0 .35  m

are laid one on the other; an electrical heating element (planar heat
• source) of power S = 500 Wt/m2 is arranged along the surface between

them . Both free surfaces of the two-plate slab are heat-insulated .

It is necessary to find the temperature change on the heat-insulated
surfaces after ten hours.

Solution : a diagram of the problem solution is given in Figure 3, a.

In order to determine the temperature change on the heat-insulatt~d
surface of the first slab (of thickn::: h 1), it is necessary to menta11~
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transfer the heat source to this surface and to find the temperature
• change in an unlimited plate of thickness h = h1 

+ h2 = 0.55 m at a

•1 distance of x1 = h1 = 0.2 m from the surface on which the source is

~~~ placed. The solution to this “reciprocal” problem is known [4]-{6].
• The initial arguments for determining the value of 8 are:

O (10 
~~~~ 

.1fl~~~~1(J
= (k , —I i~)~ 

=

-
• 

•~ I 
-~ k 1 ~~~

= ~~~~~ li —Ii

O By using the computation graphs ([5], p. 145), we find 0 = 0.1;
consequently, the temperature change is equal to

The way in which the temperature change on the second heat-insulated
• 

~~~~ surface is found is similar to the one examined above. The only
• 0 difference is that in this case in the reciprocal problem the heat

source is transferred to another free surface; the value Fo remains
as before, but the relative coordinate of the point for which the
temperature change is being sought is equal to

‘ • ±__~ (~~1
••O 1

• /z ,-—h _ !l • • • •

Having determined from the computation graph that 8 = 0.02, we find:

0.0.. 1 2

Consequently, according to the reciprocity principle the unknown
• temperature change on the heat-insulated surface of the first plate is
• equal to At = 22.9°C, and that on the surface of the second plate is

equal to At = 4.6°C.

3. Reciproc i ty Principle when Heat Sources Act in an Unl imited Plate
I Covered with a Laye r of Turbu lent Liquid

The reciprocity principle is also valid when at the surface there
exists a layer with a very high thermal conductivity factor ( A ’  =

This assertion is by no means obvious; therefore let us examine this
O case in greater detail (Figure 5).

Assume , for example , that at surface x0 of an unlimited plate h

• 
• ~~~~~~~ • • 0 thick there is a layer of fairly agitated liquid; the initial temperature

• • ~& • . 
; is equal to to, a heat flow S enters the l iquid from outside and at

surface x = h there is an adiabatic condition (Figure 5):

— ~~ ~~~~~~~ ( l3~

~~~~~ ~~~~~~~~~~~~~~~~~~~~~ •~• • • • • Or _ 0 0  __________________



0 0

0
0 ‘it

• ~i =0, (14)

where
c’~’h’ (15)

The solution to this problem (we will refer to it as problem A)
for the case S = const is known ( [ 4 ] ,  p. 129; [5] , p. 27 1) :

-

~ 6 = ~~ IFO~ 
‘ 3 — ~~ 1— (16)

A 
~(,+I [

~ 
• 2 6( 1 ~~~ -I :~

•

000 
, - . 

-
~~~~

— •4 ,, cos j 0 ,, ( 1  — i)’ exp ( ~_
. ru);

• , g =  _ _i_ .~; (17)
~‘0

0
0 0

4 — 
2i,~.

~~
— 

••_ ~ —.-- ~,,)cos .~ 

- -. (18)

0 
0

_ _  

~~~OA

~~~ 
x’— ~o~~{] ~ ~:;; j  A’ ‘° ~~ -<

• ~J._. ~~~~~ / ~

~~

F igure 5. Reciproc i ty Principle in an Unlimited Plate
with a Layer of Li quid Under the Influence of a Heat
Sou rce.

Let us now examine problem B where the heat source is located
no t at surface x = 0, but at surface x = h. In this case instead
of (13) and (14), we have to write

—~~~. -~~~~
— r = — c~hc (19)

dx • 0 
0 - 

-

• 1  cit
‘• — =~~~~~. 

0

(J.X (20)

The so lu t ion  to th i s  problem is a lso known ( [ 4 ] ,  p. 129; [ 5 ] ,  p.
2 7 1) :

_ _ _  _ _  -~~~~~~~~~~ ~:~
-
~~~~

_ 
—
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Fo •

_~~~ A cos j v (1 _ _ .r) ] e x p ( _ v ~~F o) ;  (21)

• r~~~~
_

~~~~
’.~~~~

t
~~
2_ ..; (22)

* 
I ~~~~ (~l~~ •t-

• ‘ - the values v~ are determined from equation (17).

It is easy to see that if we substitute n = 1 into (16) and
- • = 0 into (21),  then we obtain the identity

0 

~~~~~~ 
O • 0 ~,f).,

Thus , the temperature course at the boundar ies wh ich are oppos ite
1 4 to the boundaries with sources is identical , which indicates that the
• •-_J reciprocity principle is observed . In other words , transferr ing the

layer of liquid to the oppos ite boundary does not change the temperature
- course at the boundary opposi te the source.

In conclusion let us recall that the superposition principle
makes it possible to extend these results to cases where the value
of heat source S changes in time in accordance with any law.

4. I n c  Rec iproc i ty P r i n c i p l e  in a Plate When There is a Liquid Layer
and the Adiabatic Condition on One Boundary and a Third-Order
Boundary Condition on the Other

Earlier in this article we examined the effect of the reciprocity
principle in the presence of hea t sources of a g iven intens ity (power) .
Sources of this type can act both within a body and on its surface,
i.e., in this case it is basically possible to transfer the sources
to any points and consequently it is possible for the reciprocity
principle to be manifested .

In this article we would now examine a problem with temperature
sources. These sources cannot be located within the body. Therefore
the possibilities for transferring the heat source are extremely limited ,
and the rec iproci ty ph enomenon occurs , as you wi ll  see , somewha t
differently than in the case where heat flow sources act.

We will examine the therm al regime of a plat e where at surface
x = 0 the ambien t tempera ture (tempera ture source) and hea t emission
fac tor are assi gned , and at a second surface x = h there is a layer
of agitated liquid on whose free surface the adiabatic condition is

0 

• ass igned , i.e. , the following BC obtain (Figure 6, a):
0 

w h e n x = O
100• at -

— ‘ - ~~~~-— - -=  :.(~ ..~~~ (~ 3)

w h e n x = h
_ , 2L. _ ( 0 0o 0 1 0  • : •

~ 
(2 3)

aX • (10 

O- -— —-—— • - ---0000--~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - ——- •—-—~~~-—0 0~~~~~~~ ~~~~~ •
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• The solution for the case where when r = 0 , t = t
0 
and when

r > 0  8 = const , is known ([6], p. 378; [7], p. 71). For the sake of
analytical convenience we will present the function for the temperature
of surface x = h , i.e., for the surface which is opposite to that at
which the temperature source acts, as follows:

• 40 t I .il --- t ,, f ! ~~) BI (25) 2
• - :~ — 

— -‘ “ equ

where
0 

8
~equ~~~ ~~ • 

(26) • 
o

t o /. 0~ 
—

“ 
0 

•
~

0
~ 

0 (27) ~- o._0J

0 • • 
• .

• • 
0 

(28)

An examination of (25)-(28) shows that the temperature change
at boundary x = h is the same if hR = idem . This condition can be

0 observed at various combinations of h5 and ht values at a given plate

thickness h. Therefore it is possible to draw certain conclusions
• concerning the possibility of replacing one prob lem with another in
• which the course of the temperature t~ = h remains the same.

Thus, for instance, it is possible to switch from a problem with
third-order BC on one surface and the adiabatic condition without a
liquid layer on the second surface (ht ~ 0, hs = 0) to a problem with

first-order BC and a liquid layer (ht = 0, h~ ~ 0), based on the
relationship (Figure 6, b):

• (29)

This same relat ionship (29) makes it possible to make the reverse
0 0 transition from the problem with the first-order BC and the liquid layer

to the problem wi th  the third-order BC without  the liquid layer .

The physical  essence of re la t ionship  (29) consis ts  of the fo l lowing .
In t ransferring a temperature source to another surface of the pla te,
the heat-capacity resistance should be replaced by the tempera ture

O resistance , and vice versa. In doing so the reciprocity principle is
• observed: the course of the temperature at the boundary opposite to 0

that where the heat source is located will remain unchanged. Of course,
- w ith the same justification we may speak of transferring heat resistance

from one surface to another with the heat source remaining in the same
• place. Wi th this type of phys ical in terpretation there arises the

prob lem of whether it is proper to call this phenomenon a reciproc~ty
phenomena . In answering this question in the affirmative , we cons ider
the fact that the “responses” are unchanged at a certain poin t and
only at this point when one of the problem ’s similarity conditions is
changed heat res is tance 

— —  _____—
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Fi gure 6. Reciprocity Principle in Unbounded Plate with a
Layer of L i q u i d  and a Temperature Source , a , Tr a n s i t i o n  f rom
prob l em with third-order BC and li quid layer to prob l em with

A 
f i r s t—order  BC and l i q u i d  l ayer  or to prob l em w i t h  t h i r d —order

• BC w i t h o u t  l i q u i d  l aye r ;  b , t r a n s i t i o n  from prob l em w i t h
f i rs t -order  BC and l i q u i d  layer  to prob l em w i t h  t h i r d - o r d e r  BC
withou t liquid layer .

If in the initial condition there occur third-order BC (h
~ ~ 

1),

4 then when there is a liquid layer at the other surface the transition
to first-order BC is carried out by increasing the thickness of the

~
; liquid layer (Figure 6, a):

~~~~~~~~ 
4 ’ ) . (30)

On the other hand , switching to the problem without the liquid
- layer is accomplished by increasing the thickness of the temperature

resistance layer:

(31)

~~~~~~~~~~~~~~~~
. • •~~~~~~~~~~~~~~~
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We should note that in both cases , in switching from one layer
(type) of heat resistance the thickness of the latter remains unchanged
and is equal to hR.

Observance of the condition hR = idem requires that when the layer
of thickness h is frequently changed (by Ah ), h was changed by the valuet t S

0 0
—~~~~~~~~~~~~

— 
‘~~ t~— I i - ~— A !i, (32)

When the thickness of the liquid layer hs is changed by the value
O 

• Ah , it is necessary to replace h with th e value -
~~~~S 

I! — !?.Al~ r . — A/i ., ~~~~~~~~~~~~~~ 
~~~~~~~~~~ (33)

Of course, these conditions are also correct for cases where the
temperature source is not con~tant, but depends on time (8 = f ( r ) ) .
However , it is necessary to avoid the following false conclusion as if

00 

the solution to the problem remained the same in the case where hs and
0 ht change in time but the value of hR remains the same.

It is also interesting to note that in recent years computation
functions corresponding to equation (25) have been calculated and
constructed in the USA (see [7] ,  [8 ] ) .  These works have attracted
considerable attention. However, in light of what we have said above
it becomes clear that these data are not required since they simply

* repeat the long-known and tabulated solution for a plate with third-order
BC without a liquid layer in which Bi = Biequ and , consequently

• (34)

It is easy to see that the temperatures of the adiabatic surface are
identical in both problems if we compare the graphs of 23f and 24b with
30b in [7] or graphs 6.10 and 6.11 with 10.5 in [6]; it is only necessary
to keep in mind the fact that in the graphs for a plate  wi th  l i quid

H in [6] and [7] the parameter ii corresponds to the values of 1/BiequA 
in this case. 1

0 0 

Example 3. The following are given : a concrete slab (~ = 1 .2
Wt/m~deg, c = 0.233 Wt/kg~deg, ~ 2000 kg/rn3, a = 2 . 5 7~~l0 ~ m 2 /hr)
of thickness h = 0.5 m is heated in a gas medium with t~ = 300°C and
a heat emission factor of a = 30 Wt/m 2.deg . The initial temperature
of the slab is t = 10°C. The lower surface of the slab makes contact

I 0
• w i th  a layer of agitated water (c ’ = 1.163 Wt~hr/kg~deg ; ~~~

‘ = 1000 kg/rn ;
A’ = o) of thickness h’ = 0 .25  m.

0 
1 1n [6] the captions under Figures 10.4 and 10.5 are transposed.
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It is necessary to find how long it takes the water to be heated
up t o t = 9 0 °C.

• Solution: in accordance with (27) we find
r~. -

~~~~~~~~ J’’~I 
.‘ C 0 i~ 1. ~hp lZ g - ~~h r ~~~~~~~~~~~~ ± 

~~
1 ,2 l .l6.’~•1O00.02.5 1,2 1,1C3.lh ’)o-O ._ T

- • 
= .-

~~~
- + 

~~T 13i~ 
± 

~ö ‘2~~~~~i~i~~~ 
~~~~~ ~

from which according to (26)

~.1
• it 0-5

• 0 00 According to (25)

• 
• °r t l o . h t o o  -— ~ 0 —  

~—f (’ ’. B~ ~:1 
L-~ t .

C 4

By utilizing the graph for computing the temperature course
([6], p. 203) for r~ = 1, we find that when 0 0.276, Fo = 0.73.
From this we find the desired value

.
~~~~~~~ ‘ * _ _  _ Q7~~~~~ -1~~~~.=7It1~S.

Example 4. The following are given : the conditions of example 3,
with the exception of the boundary condition: at the boundary there
obtains a linear law of temperature change 8 = t0’b-r . The temperature

of the gas medium increases with a constant speed b = 4.0 deg/hr. The
initial temperature of the concrete plate and the gas medium is the
same t = 8 = 10°C.0

It is necessary to find ho~ long it takes the water to be heated
to t = 90°C.

Solution . In order to solve this problem we u t i l i z e  the computation
graph ( [5 ] ,  p. 192). The ini t ial  arguments of the problem are

0 0 1  
— .

~ 
( : - - ~ .) 2.57 •IO° -~ ()

and~ = 
~~~ 

= (J . 2 * , 0~~;

when i = 1 and 8 = 0.206 and Blequ = 0 .7 , we find Fo = 1.1 and consequently

02 i
- F ~, 1 2 , 7. I * *  ~~~ hn.

-~~~~~~~~~ ~~~00
1t 
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Conc lu s ions

This article has shown that the phenomenon expressed as the
reciprocity principle which is known in various branches of physics
also occurs when heat propagates in solids. This conclusions is not
only of purely scientific interests. Thus, utilization of the reciprocity
principle makes it possible to find analytical solutions for certain
thermal problems, the solution to which has not yet been obtained by
means of other methods. In addition, it should prove useful to

• apply the reciprocity principle in setting up laboratory and whole-scale
o studies since for practical purposes in a number of cases it is

convenient to transpose the locations of the heat sources and the
points in the object the temperature of which has to be measured.
The possibility of exploiting the reciprocity principle in design is
no less important. Thus, for instance function (32) indicates how
to replace heat-insulation material at surface x = 0 either partially
or completely with a layer of liquid at surface x = h so that the
heat-protection effect of surface x = h remains unchanged.

0 

The reciprocity phenomenon has been studied in this article only
I with regard to problems in non-stationary thermal conductivity in
I homogeneous isotropic plates of limited and unlimited thickness and

• under various boundary conditions, including the presence on the body
surface of a layer with a very high heat conductivity factor and with
internal heat sources. There is no doubt that attempts to apply this
principle to other problems, for instance rectangular, equilateral ,
polygonal and isosoeles triangles, straight prisms based on the above-O -mentioned planar figures, as well as cylinders, spheres, etc., will
provide positive results.

In the future it will be advisable to search for more general
laws to govern the manifestation of the reciprocity principle in thermal

• conductivity processes. This will make it possible to expand the range
of application for the reciprocity principle while at the same time
delimiting its boundaries.

o 0
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