~"AD=A037 438 WHARTON SCHOOL OF FINANCE AND COMMERCE PHILADELPHIA P==ETC F/6 9/2

i ALERTERS ON NETWORK DATABASES. (U) ,
' DEC 76 S F COHEN NO0014=75~C~0462
UNCLASSIFIED 77=-02=-07 NL

=z 2

o

= rw
|||“ L = 22
= L
28 flig e

MICROCOPY RESOLUTION TEST CHARI
NATIONAL BUREAU OF STANDARI)63 A

mA037438

ALERTERS ON NETWORK DATABASES

Stanley F. Cohen

77=02=07

ey
]
1]

MAR 29 1977

A thesis submitted to the Faculty of

The Moore School of Electrical Fngineering
in partial fulfillment of the requirements
for the degree of Master of Science in
Fngineerina (for graduate work in
Computer and Information Sciences)

University of Pennsylvania
Philadelphia, TFennsylvania

NDecemher, 197€

e

» SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

T REFORT NUMBER 7. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
77-02-07 L
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

'./’ e e o @ vt s -t PUSp— - "
_/;:t Alerters on Network Databases .

7. AUTHOR(s) NUMBER(e)
/| | Stanley F. Cohen - | NOOD14~75-C-P462
.“] X = i
9. PE'RFORMI;JG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, P-R‘;JECT. TASK
Decision Sciemces Department F AREA & WORK UN!IT NUMBERS
University of Pennsylvania/Wharton Scheol Technical report
Philadelphia, PA 19104
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE =, .
Office of Naval Research 12 /76 : { /
Information Systems 13 NUMBER OF PA
Arlington, VA 22217 59 /
| ~ MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 18. SECURITY

Unclassified
15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

- - ';:;‘1-.1'{" A
Unlimited Dot S
e 2asd;
£3pl
Yt i ed
Dt i e e
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) L i
¥
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if y and identify by block number)
Alerters
Network Databases
Event~driven procedures \
\ Demons 41 } 7
. 7
20. QSSTNACT (Continue on reverse side If necessary and identify by block number)
This thesis describes a system for alerting on network databases which
consists of a simple sharable data management system with a facility for
the user to create event-driven procedures called demons. A discussion

is included of related work in database systems and artificial intelligence “i\

DD ,%an'ss 1473 eoimion oF 1 NOv 6813 OBsOLETE
S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)

&w-r——‘ﬁ -

s s - BT i N et vl

Table of Contents

Introduction
Guarded Commands
Demons in Languages
for Artificial Intelligence
Alerter Binding
LDEMON LISP Alerter System
(and a DAISY interface)
Record Handling Faciiities
Demons
Daisy Interface
Records and Functions in SANDL
Implementation
Data Definition Language
Data Management Language
Demons
Demon Syntax
JCOND

References

s i

15

17
22
27
30
33
35
39
44
45
48
53

INTRODUCTION

The thesis falls into two major parts. 1In the first
part I discuss the concept of demons, event-driven
procedures which appear to run concurrently with the
processes they are monitoring. In the second portion of
the thesis I discuss a system for alerting on network

databases called SANDL and its precursor, LDEMON,

Some important points that will be examined are the
sharability of databases, with accessing and updating
functions that are conceived as message handlers, (the
requirement of shacrability being part of the
justification of an alerter system in the first place) as
well as the functional framework for the data base
accessing and updating functions and their implications,
and the modifiability of the schema which gives the user
the power to define new record classes and demons at will

while the system is running on-line.

Demons should be thought of in the context of
whether knowledge is synthesized in terms of goals or in
terms of data. At first sight this distinction might
seem more appropriate to an artificial intelligence
application such as computer vision, but in fact it is a
relevant issue for data base technology, where the
interest is not in acquiring an understanding of some

scene, but in forming an intelligent appraisal of the

Page 2

current state of affairs represented by the data base.
Goal-driven activities in artificial intelligence
applications tend to deal with hypothesis formulation, a
sort of top-down dividing and conquering of the problem.
Most well-structured programs outside the domain of
artificial intelligence can be put into this framework.
Data or event-driven activities (no distinction between
what is and what changes is necessary here) tend to be
bottom-up, in the sense that it is the input data which
proposes the way in which it should be handled. A good
example outside of artificial intelligence is an
intepreter, where it is the input that tells the system
what to do next. Demons, which monitor their
preconditions and take action when these preconditions
become true, ate' one possible implementation of an

event-driven system.

"Bobrow and Norman (1975) point out that driving an
automobile is a paradigm for an event-driven activity.
Even though the strateqy of a car trip may be planned in
advance to have a certain destination and route, the
tactics of driving are largely event-driven and
concurrent with a host of other activities - looking at
the scenery, talking, and so on. Most of the activity of

driving follows in response to changes in the data, for

which no plans could be made in advance.

Page 3

How does this distinction relate to databases?
Ordinarily we expect a data management system to be
preprogrammed to respond to some few types of requests,
e.g. what is the name of so-and-so, change the balance
of this account in this way, etc. Rarely is a user able
to program the system, only to command it. If he should
want to observe changes in the data he has no recourse
except to make the same query again and again. The
object of the research on alerters here reported is to

enable users to ask questions 1like:

“Report the name of any subscriber who changes hic

address.”

or *"Give a warning if a ship is too 1low on fuel to

reach a destination.”

or "Report if any department has more employees out

sick than the averaqe.’

or "Take corrective action if any bank balance falls

below zero dollars.”

These are just a few representative examples of a
common management problem. A bank may wish to monitor
the profitability and financial health of companies to
which it had 1lent money, or a company may want to keep

constant track of size of inventories versus sales.

Page 4

Alerters provide an answer whenever the manager has the

e

need to dynamically supply the conditions to be

monitored.

Page 5

Guarded Commands

Dijkstra has presented a new formal ism for
nondeterministic programs which is particularly well
suited to proofs of correctness and termination. He
notes that a number of deterministic programs may be
mapped into a single nondeterministic program which has
the same effect. In order to do this, Dijkstra invents a
syntax for the guarded command, which is a 1list of
statements preceded by a Boolean expression. If the
Boolean expression is true, the guarded command may be

executed, but need not be.

The syntax orovides for a repetitive construction
and an alternative construction, which are the
nondeterministic equivalents of do-loops and
if-statements and both of which are gquarded command
lists, i.e. 1lists of gquarded commands any one of which
may be executed if its guard is true. 1In the alternative
construction if any guard is true its guarded command may
be executed and at least one of them will be executed.
If no gquard is true the alternative construction
terminates with an error. The repetitive construction on
the other hand executes any guarded command whose guard
is true until no gquard is true, at which osint, the

repetitive construction terminates successfully. It is

this repetitive construction which is important in the

Page 6

discussion of demons.

Two important ideas can be taken from Dijkstra's
article. First, there 1is the notion that the quarded
command, like critical sections in operating systems, can
be used to specify that no other activity can interrupt
during the execution of the statements in the quarded
command. This corresponds to the requirement that demons
must be blocked from executing during the middle of an
update (unless they are FAIL demons), otherwise the
obvious cycling occurs. For example if a demon is
monitoring the <credits and debits of a balance sheet,
there will always be some point during the middle of an
update when the credit and debit figures do not
correspond, and the demon must be prevented from

prematurely taking action.

Secondly, guarded commands provide a formalism for
demons that abstract away from specific deterministic
implementations. Informally, the set of demons can be
taken as guarded commands in the do od repetitive

construction which attempts to execute any one the

quarded commands until no quard is true.

Page 7

Demons in Lanquages for Artificial Intell igence

In PLANNER the basic deductive mechanism is the
"theorem®, which consists of two parts: a pattern to be
matched, and a program. The lanquage supports three
types of theorems: "consequent®", "antecendent", and
“erase". The consequent theorem is closest to usual
programming techniques since the pattern to be matched is
considered proven if the program of the theorem executes
successfully. Essentially, this is little different from
the manner in which a program executes successfully only
when all its subroutines run to completion. The THGOAL
primitive acts somewhat like a CALL statement of FORTRAN
or PL/1 with a good deal more sophistication. THGOAL
attempts to find its arqument (a pattern) in the
database, but if the search for an assertion which
matches the pattern fails, THGOAL tries to execute
consequent theorems which match the pattern until one

succeeds and the pattern is “proven".

The antecedent and erase theorems operate in a
distinctly different manner. The vproqram for an
antecedent theorem is invoked whenever an assertion
matching its pattern is asserted. In this case the
antecedent theorem is directed by an event, the addition
of an assertion, which is the essential characteristic of

a demon. Correspondingly, an erase theorem monitors

Page 8

deletion of assertions which match its pattern and then
executes its program. Antecedent and erase theorems are
customarily used to add and delete assertions which are

implied by the assertion which matches the pattern.

QLISP has a more general method for handling which
allows teams of demons to be set up that will be invoked
upon any storage or retrieval operation. PLANNER-type
antecedent and erase theorems could be built oui of such

teams of demons.

What the 1langquages for research in artificial

intelligence lack in their demon mechanisms are

1. a clear concept of hierarchical record; the
basic unit of the database is the assertion, simply
a list of assertion type and fields, usually atoms.

2. a high-level concept of demons that observe

changes in existing records, not only additions and

deletions of assertions from the database.

Page 9

Alerter Binding

Alerters, as treated in this thesis, are vairs of
condition and program, similar in form to PLANNER
theorems or Dijkstra's guarded commands. Morgan (1970)
has dealt with the subject of event sequenced programs in
some detail, concentrating on the resolution of conflicts
caused by attempts to update a variable simultaneously by
different brograms. The approach taken here differs in
that the alerters run conceptually asynchronously and do
not require the update to be delayed until the program

portion of the alerter has run to completion.

The first task in explaining the alerting mechanism
is to sketch the range of possibilities for the object to
which the alerter can be bound. I follow the
classification of Morgan and Buneman (1975) which divides
alerters into several types according to the richness of

their properties.

A. Binding to variables

The most primitive sort of binding which an alerter
could have is at the level of variables, that is, simple
storage locations. I include this 1level of alerter
binding to emphasize how the more elaborate types of

bindings depend on the existence of records, with record

classes containing multiple instances of a record type.

Page 10

B. Simple Alerting

Simple alerting applies to alerters which can be
bound to a single record in the database in order to

monitor it.

1. monitoring an item, i.e. one or more fields of
a record, for example the age of a particular

student.

2. monitoring a single record as a whole, for
example change to any field of a bank account

record.

3. monitoring a field for a record type, for
example the age field in any record of the student

type.

4. monitoring the addition of a record to a set of

records.

5. monitoring the deletion of a record from a set

of records.

6. monitoring any field of any record, for example
reporting that any personnel record has been

modified in any way.

TS

e

e

Page 11

C. Structural Alerting

Alerters can monitor the structure of the database,
in other words the relations between records in terms of
set ownership. This requires at a minimum that the
alerter be bound to an owner record as well as an owned

record.

1. Change in set ownership or membership of
records. For example a doctor receives a new

patient or a company a new supplier.

2. Change in properties of the set as a whole. For
example, the number of students in a class exceeds

30.

3. Change in fields of the owned record. This may
arise in at least two ways: a doctor may acquire a
new patient with measles or a patient already being

treated may contract measles.

Page 12

D. Complex Alerting

Complex alerting covers those types of alerters
which require an even more holistic point of view in
| order to handle the interaction between user and

database. |

1. Statistical alerters. For example, inform the
user if the average bank balance of all accounts

changes by more than a given amount. It would be a

simple task to plan for the system to keep running

counters for average, maximum, minimum, count and

other simple statistical quantities, but it is |
apparent that more complicated calculations will

require complete scans of the database.]

2. Alecters which monitor transactions over time.
For example, inform the user whenever a bank balance
drops by more than $10,000 in any 24 hour period.
This form of alerting requires that a log be kept of

all transactions for the 24 hour period.

3. Pattern recognition. This type of alerter would

monitor the creation of a pattern by whatever means

that occurs. There would be no distinction between
changing of existing cecords and addition of new

ones if they give rise to the desired pattern.

Page 13

4. Time based alecrting., Althouah this is similar
to number 2. the distinction is that the alert need
not be signalled immediately, but only within
suficient time to be useful. Such alerters could

deliver reports on a weekly schedule for example.

5. Monitoring expbressions. This form of alerting
1s an elaboration of the simpler forms of alerting
in the direction of providing Boolean combinations
of conditions on the alerter. The alerter must
therefore be bound to possibly several records at
once. For example, the wuser might want to know
whenever a stock had exceeded its previous daily
high and sold in greater volume than the previous

day.

6. Alerting on the structure of the data base. The
issue here is to alert on a chain describable
through the schema from possibly multiple owners to
a record. It may reauire bindings to several
records at the same time. This is the sort of
alerter binding reauired by requests to monitor say
the age of the grandfather of some individual, where
the point in the data base may be acbitrarily

distant, although reachable.

Page 14

Bindina Time

Phe issue here is that when the demon is triqgered
its arquments may no longer be up-to-date if they have
been modified since the demon was triggered. If more
than one orocessor (human or computer) has been alerted
that, say, a fuel level was too low or some service was
required, one of the processors might have taken action
before the other, so the second must retest its condition
to make sure that the action is still needed. The issue
here is to alert on a chain describable throuagh the
schema from possibly multiple owners to a record. It may
require bindings to several frecords at the same time.
This is the sort of alerter binding required by requests
to monitor say the age of the grandfather of some
individual, where the point in the data base may be

arbitrarily distant, although reachable.

Page 15

t
“
3

LDEMON LISP Alerter System i

(and a DAISY interface)

LDEMON is a system consisting of two packages, one
for creating and updating a simple data base, and the
other for monitoring changes in the data by means of

procedures known as demons.

The approach taken by LDEMON has several features of
interest to the user. First, the user is able to define
new cecord classes and demons interactively. There is no
need to plan demons at the time of creating a new record

class, as would be necessary with a compiled system. The

only rcestriction is that a demon should not be created

prior to defining all relevant record classes. 3

A second point is that data bases may be shared '
amonq several users, within DAISY, for instance. Any of
the users may add new record classes, new demons, new

records, or uodates to existing records.

Third, even though LDEMON is not at all a production

system, since 1is written in an interpretive lanquage,
LISP, and does not handle data bases in auxiliary
storage, nevertheless it 1is an efficient appcoach to
processing data base demons, because the 1labor involved
in monitoring changes is of the order of the number of

updates and is independent of the size of the data base.

UPUTPR——

Page 16

As a consequence, the approach of LDEMON is particularly
useful for 1large data bases. Finally, the record
handling facilities of LDEMON provide a set of primitives
written in LISP that can form the basis for building
other experimental data base systems, as, for example,
David Root has done in writing a relational data base

language on top of LDEMON.

Record Handling Facil

LDEMON provides means for cre

ities

ating reco

rd

Page 17

classes,

adding new records, displaying and selecting records, and

updating the contents of records.

Creating a record class

The function used for crea

ting a ne

w

class of

records is DEF-RECTYPE, with the name of the record for

the first arqument, followed by all the

accessor) names of that record. For example,

(DEF-RECTYPE STUDENT SCHOOL AGE)

cceates a4 new record class STUDENT with accessors

and AGE.

DEF-RECTYPE provides the user

field (or

SCHOOL

with a record class

pcredicate function and one accessor function for each

field. In the example here, a new function

STUDENT has

been created which returns T or NIL depending on whether

its single arqument is or is not a
addition, thucre have been created
SCHOOL, and AGE, which select the
of their argument. The record

accessor functions all take one

applied either to a single record or a list of records.

In the second case they return a list of results.

STUDENT

record. In

two accessor functions,

SCHOOL and AGE fields

class predicate and the

arqument

and

may be

Page 18

Thus, if there is a STUDENT record pointed at by 0,

with SCHOOL field PENN and AGE field 20,
(STUDENT Q)

ceturns T

and
(SCHOOL Q)

ceturns PENN

Besides creating these auxiliary functions,
DEF-RECTYPE defines the «record class name as legal for

use in adding new records and updating existinag ones.

Adding new records

Two functions are of use in adding new recotrds to an
LDEMON "file" (i.e. 1list of recotrds cortresponding to a
record class). A “file"” is created by adding new cecords

once the record class has been started.

The function GENCONS takes as arquments a record
class name followed by values for every field of the
record class, in the appropriate order. Accessor Or
field values may be either alphanumeric (unauoted) or

numeric. For example,

Page 19

(GENCONS STUDENT PENN 21)

creates a new STUDENT record with PENN for the value of

SCHOOL, and 21 for the value of AGE.

The effect of GENCONS is to add the new record to
the front of the current 1list of records kept on the

RECORD propecrty of the record class name.

Another function, CREATE, allows the user to create
one or more identical records . All the arquments used
by GENCONS follow an integer for the number of times the
same record is to be added to the data base. For

example,

(CREATE 1 STUDENT DREXEL 22)

has exactly the same effect as (GENCONS STUDENT DREXEL

22) ,» while

(CREATE 3 STUDENT TEMPLE 23)

will cceate three records with TEMPLE for SCHOOL and 23

for AGE.

Displaying records

The function DISPLAY enables the user to display all
records of a aqiven record class or all values of a ,

specified field of a record class. The first arqument of

m—

Page 20

DISPLAY is a record class name and the optional second

arqgument is a accessor or field name. For example, if
(GENCONS STUDENT PENN 21) and (GENCONS STUDENT
DREXEL 22) have been executed,

(DISPLAY STUDENT)

returns (((STUDENT) DREXEL 22) ((STUDENT) PENN 21))
and (DISPLAY STUDENT AGE)
returns (22 21)

From the description of the record class predicate
and accessor functions it should be clear how

(STUDENT (DISPLAY STUDENT))

returns (T T)
and (AGE (DISPLAY STUDENT))
returns (22 21)

since DISPLAY returns the list of records in a record

class when applied to a record class name.

Selecting records

The function RECORD selects a particular record from
a record class. The first argqument is an integer
referring to the reverse order of accession of the record
and the second arqument 1is a record class name. For

exemple,

(RECORD 1 STUDENT)

Paqge 21

returns ((STUDENT) DREXEL 22)

The user of LDEMON may vrefer to keep explicit

pointers to records by doing something like

(SETQ FRED (GENCONS STUDENT HAVERFORD 19))

at the time of creating a record.

Updating records

To change field values, the function SET-VAL jis used.
The first arqument must specify a single record by means

of a pointer to the record in an expression 1ljike

(EVAL (QUOTE <pointer>)) {

or a sSelecting expression which points to a single
record. The second argument is a record class name, and

the third arqument is a field value. For example,

(SET-VAL (RECORD 1 STUDENT) SCHOOL CORNELL)

will change the value of the SCHOOL field to CORNELL.

It should be noted that all records are changed in

place, so no new space is acquired by SET-VAL.

Paqe 22

Demons

Defining new demons

LDEMON adds two new functions (from the user's point
of view) and two special keywords to the apparatus
already in LISP for defining new functions in order to
define demons. This is best illustrated by an example.
For instance, assuming that there exists a record class
BANK-ACCOUNT, with fields BALANCE and NAME, and the demon
is supposed to print the name of any depositor whose bank
account balance falls below 200 dollars. The demon to do

this can be wcitten as

(DEMON OVERDRAWN (X)
(JCOND ((LESSP (BALANCE X) 200)
(PRINT (NAME X))
(PRINC (QUOTE "IS OVERDRAWN"))

)))

As seen from this example, a demon is defined much
like a LISP function, with a name, OVERDRAWN, an arqument
list, (X) , and a function body. The argqument 1list
contains only one variable, X , which is bound
conceptually to all records of any recocd class which has

both BALANCE and NAME among its fields. It should be

emphasized that the binding is not to a variable or an

classes containing multiple instances of a record type.

Page 23

instance of a record, but to a set of records. 1In other
words, the demon OVERDRAWN should be read as if it
constantly monitored all BANK-ACCOUNT records (and the
records of any other record class that had BALANCE and
NAME fields) and printed the NAME field of any such

record whenever its BALANCE field went below 200.

The JCOND construction used here can be thought of
as a natural refinement for demons of the LISP CUND.
Ordinarily, demons are activated only when changes have
taken place in the data base. It is both unnecessary and
impcactical for a demon to perform its action continually
as long as its condition is true. Therefore, instead of
testing a condition with a COND, LDEMON uses the JCOND to
perform the action only when a condition has just become
true which was not true before. In the example, this i
means that the name of a depositor is printed only once
whenever his bank account becomes too low. If a COND had
been used instead of the JCOND, the name would be printed
every time the balance changed as long as it was below

1 200 dollars.

The demon OVERDRAWN is processed by the DEMON
. function to form a LISP function called OVERDRAWN, which
| is then added to the DEMON property of all the field

names. The LISP function looks like this:

Paqe 24

(LAMBDA (X)
(COND ((AND (LESSP (BALANCE OLD) 200)
(NOT (LESSP (BALANCE NEW) 200)))
(PRINT (NAME X))
(PRINC (QUOTE “IS OVERDRAWN"))

)))

The arqument variable X in the first oredicate of the
JCOND has been replaced by OLD and NEW in the course of
transforming the JCOND into an ordinary LISP COND. These
two new keywords are introduced to refer to the record
before and after it has been updated. OLD and NEW may
also be wused in the action part of the demon. The old

balance could be printed, for instance, by writing

(PRINT (BALANCE OLD))

In more detail, the DEMON function takes three or
more arquments of which the first is the name of the
demon, the second is the arqument list, which may contain
only one variable, and the third and further arquments
are any LISP expressions. The third or further arquments
must contain an accessor expression which refers to a
field of some existing record class, like

(NAME X)

and the arqument of that accessor must be either the
variable in the arqument list, or OLD, or NEW. OLD or

the argument list variable refer to the value of the

RS- AV S

Page 25

field before the wupdate, and NEW refers to the value
after the update. For example, if a new record class A
has been defined, with fields B and C, the following

could be written,

(DEMON A1l (X) (PRINT (B X)))

which will cause the old value of any B field to be
printed whenever it has been updated by a call to

SET-VAL.

JCOND

The JCOND (for Just changed COND) is the
construction which allows a demon to register a change
that has just happened. Its syntax is similar to that of
a COND with a single predicate-action pair. However,
unlike the COND, the JCOND has only one alternative; if
the predicate for this condition is not true, the demon
simply does not perform its action.

(JCOND (<predicate> <action>))
Using the same example as before, and assuming that B is

a numeric field, it would be possible to write

(DEMON A2 (X) (JCOND ((GREATERP (B X) 7)

(PRINT (C NEW)))))

to create a demon which would print the value of the C

field (OLD, NEW, or X mean the same here), whenever the

mastendl

Paade 26

value of the B field has been changed to a value laraqer
than 7 from a value that was not larger. The important
point to note here is that a JCOND is converted without
change into a COND wunless it involves an accessor
expression with the demon arqument variable as its
arqument. This is why the oredicate is (B X) in the

example.

The predicate may be of any complexity, provided it
follows these rules, and a seauence of actions may follow

the predicate, as in a COND in UCI LISP,

At the nbpresent time demons dre not exolicitly
aualified by cecord classes; the field names in the
action and condition oortions of the demon imnlicitly
cestrict the set of record classes. This can cause
difficulties if two record classes share a field name,
since both record classes will cause a demon to be
activated even though only one was intended. However,
the user is always able to limit the demon to one record
class by usina the record class name as a oredicate.
This was a design decision that could warcant chanaing
for different types of user interaction with the data

base.

Page 27

The Daisy Interface

LDEMON allows the user to create simplified demons
Ccalled alerters to observe updates of a data base. The
LISP user, however, has available the full opower of
demons in LISP, and these are essentially anythina that
can be piroararmed in LISP, as can be seen from the

previous section.

The ALERT function

The DAISY user needs to know only the ALERT function
to specify simple alerters which are triggered by a
single condition on some field value in a record. The
ALERT function takes as first arqument a name for the
alerter to be created; as second arqument a condition on
whether the alerter is to be triggered; and as optional
third and further arquments LISP expressions to do
whatever actions are required. The condition may be any

of the following:

(CHANGE <field name>)

ot (<field name> <relation> <field value>)

where <relation> is one of EQUAL, GREATERP, or LESSP.

For example,

Page 28

(ALERT SCHOOL-CHANGE (CHANGE SCHOOL)
(PRINT AGE))
which creates an alerter SCHOOL~CHANGE to print the value
of the SCHOOL field in any STUDENT crecord which has just

had its SCHOOL field updated.

If this alerter is compared with the demons of the
last section, it will be seen that the demon arqument
var iable, OLD, and NEW are not used. The argquments of
the accessors used in the alerter are filled in by ALERT,
which creates a call to DEMON as the following example

will show.

(ALERT HAVER (SCHOOL EQUAL HAVERFORD)
(PRINT AGE))
becomes
(DEMON HAVER (X) (JCOND
((EQUAL (SCHOOL X) (QUOTE HAVERFORD))
(DAISYWRITE “ALERT " (QUOTE HAVER))
(PRINT (SCHOOL NEW))
)))
which turns into the function HAVER with definition
(LAMBDA (X)
(COND ((OR (STUDENT X))
(COND
((AND (EQUAL (SCHOOL NEW)
(QUOTE HAVERFORD))

(NOT (EQUAL (SCHOOL OLD)

Page 29

(QUOTE HAVERFORD))

))
(DAISYWRITE "ALERT *
(QUOTE HAVER)) *
(PRINT (SCHOOL NEW))

)))))

The DAISYWRITE expressions which are created by ALERT

tell the DAISY user which alerter has been triagered.

Records and Functions in SANDL

In contrast with the LDEMON system which handles
records consisting of data items, the SANDL data
management system is based on the semantics behind the
DBTG report translated into a more LISP-compatible

functional format.

In DBTG there are three basic relations between
objects: the one-to-one relation between records and
their fields, the one-to-many relations between owner
record and the set of records owned, and a many-to-many
celation between records which is accomplished by the
so-called confluent hierarchy in which a record owned by
several records simultaneously in the one-to-may mode is
used to embody the many-to-may relation between all the

owners.

In the SANDL system the first type of relation is
thought of as a function from record to field. The
function has the same name as the field. Since the field
names are not required to be uniaque in the schema, the
field function is in fact a family of functions from
which the appropriate one is chosen according to the

record class of the argument.

Page 31

The second type of relation is treated in two ways:
as function from record to owned set with the name of the
record field used as the set accessing function. (This
corcesponds to the downward arcrow in the diagram.) It is
also treated as a function from an owned record to its

owner, in which case the owner record class is the

function name. There is a possibility of ambiguity
however if a record can be owned be the same record in
two different sets. The owner record need not be
immediately above the owned record since the system can
automatically crefer to the schema to find an access chain

from owner to set member.

A particularly good point in favor of the functional

syntax is how well it matches ordinary English language '
usage in accessing data. Instead of spelling out an
access chain to the desired data object, the user can

much more simply use

field (record (object))

as in NAME (FATHER (X)) which reads as NAME of FATHER of
X. While this parallelism between English and functional
notation might be painfully obvious, it does pose a
question why a more programmatic form of data access by a
chain of pointers is not used. Perhaps human cognitive
data management is much better suited to dealing with
intentione! processes rather than extensional ones such

as set membership.

T— - —

Page 32

The many-to-many ¢elation is a bit trickier to
handle within a functional framework. In the
doctor-patient relation shown below, where a doctor has
many patients and a paetient, many doctors all connected
through a confluent record CASE, the best that can be
done is to return the set of patients for the doctor or

the set of doctors for the patient.

In the above discussion, I emphasize that set names
are simply fields that access sets. For the most part
they are not needed in accessing records exceot in cases

of ambiquity and one-to-many celations.

Page 33

Implementation

This portion of the thes: s pitovides the
specifications of a system for alerting on netwocrk data
bases. SANDL is an extension of an earlier system,
LDEMON, a data base management system wcitten in LISP
with a capability for monitoring changes in the data by
means of procedures which avbpear to be continuously

active, called demons.

Statement of the Problem

The design of SANDL allows demons (also called
alerters) to be placed on an updatable network data base
management system which has the power of the basic
semantic notions detailed in the CODASYL report on DBTG,
without any attempt to deal with snecifics of
implementation. What will be new to LDEMON is the DBTG
concept of set ownership and the ability to create demons

which monitor changes in the composition of a set.

The general bias throughout this paper has been to
avoid as far as possible any need to refer to sets
through set names, by an intelligent use of a schema
which stores a representation of the hierarchy of record
types. Thus, although a set may always be teferred to

unambigously through a field of type SET in the owner

[

Page 34

record, it is sufficient to supply the owner record and
the rcecord type name of the owned set of records, if the

rtelation is unique.

Page 35

Data Definition Langquage

The data definition lanquage (DDL) allows the user
to specify what types of records may be placed in the
data base, with what fields, and what domain (or type) of
field values. In addition, the DDL specifies set
ownership and set membership of records. In contrast

with the situation in DBTG, the DDL of SANDL is dynamic.

In order to inform the data base management system
as well as the demon processor about the current state of
the recotrd hierarchy, a special directed graph known as
the schema 1is kept in memory and is updated by the DDL.
The schema contains information on all record classes,
their field names and range of values, as well as set
owner - set member relations. In DBTG, one can naturally
construct three distinct sorts of relations between
oieces of data; a one-to-one relation between a record
and its constituent fields, a one-to-many relation
between an owner record and the set of records owned by
it, and a many-to-many relation (called a confluent
hiecacchy) between records which share owned records

between them.

Page 36

The schema is modifiable and means are nrovided for
displaying it to the wuser. Saying that the schema is
modifiable means that new record types can e added to
the data base while the system is ctunning and additional
fields can be declared for already existing record types.
Changes in the schema will of course be constrained by
the necessity of not destroying entire sets of records by

destroyin g their crecord type. i

Creating new cecord types

In LDEMON a new record type is created by a call to

the function DEF-RECTYPE of the form

(DEF-RECTYPE STUDENT SCHOOL AGE)

in order to define a new crecord type STUDENT with fields
SCHOOL and AGE. SANDL replaces this form of the function
call by adding argquments for the owner record types and
the type of each field.

For example,

(DEF-RECTYPE STUDENT (DORMITORY) SCHOOL CHARACTER

AGE NUMBER)

where DORMITORY is the record type of the only ownet
record, SCHOOL is declared of type CHARACTER, and AGE of

type NUMBER.

s ——————

Page 37

DEF-RECTYPE adds the STUDENT record type to the data
base schema and places this record in the relationship of
set member to the owner record class DORMITORY. In DBTG

tecms,

DORMITORY

STUDENT

Furthermore, selector functions are created corresponding
to each of the fields SCHOOL and AGE. Unlike in LDEMON,
the function STUDENT, alsc created by DEF-RECTYPE, is not
a record type predicate but a selector function that
yields the set of students when applied to a DORMITORY

cecord.

The syntax of the DEF-RECTYPE function call is

(DEF-RECTYPE <record type>
<list of owner record types>

<field and type>*)

and <field and type> is

<field> <type>

where <type> is chosen from the 1list

NUMBER

CHARACTER (with no length qualification)

SET

which may be abbreviated to NUM, CHAR, and SET.

In the example below, the record type DORMITORY Iis
defined with some field of type SET which is to own the
STUDENT records. This is an intentional devarture from
DBTG and combines the relationship of data-items to a
record with that of sets owned by the record. If
DORMITORY 1is considered to be a top-level record type in
the schema, i.e. a member of no set owned by any other
record, its owner is simply the null set of record types,
NIL. In this case the record type DORMITORY 1is defined

by

(DEF-RECTYPE DORMITORY NIL RESIDENTS SET

NAME CHARACTER)

Page 39
Data Management Langquage

The data management langquage (DML) allows the
creation, deletion, and modification of records contained
in sets owned by other records. In addition, functions
are to be provided that select subsets of records that

meet specified conditions.

Adding new records

To add a new record to the data base rteauires that
the record type and the owner record be supplied,
together with the appropriate field values for each field
defined for the record type. In other words, the
arquments of the function to do this, INSERT, are the
same as those for GENCONS in LDEMON, except for the
addition of the owner record as an argument. For
example, if DOC1l is a particular DOCTOR record, where the
DOCTOR record is defined as owning a set of records, and

PATIENT has been defined by

(DEF-RECTYPE PATIENT (DOCTOR) AGE NUMBER

SEX CHARACTER

NAME CHARACTER)
then

(INSERT PATIENT DOC1l 20 MALE JONES)

will insert a PATIENT record into the set of patients

Page 40

owned by the DOC1l cecord. DOC1 serves as a uniaue
identifier of some particular DOCTOR record. In this
implementation it is a pointer to the specified record,
but it can be thought of as an identifyina kevy. The
value of the INSERT function is the newly created record.
If the record to be inserted belonas to a top-level
record type then the function needs no owner record

argument.

The syntax of INSERT is

(INSERT <record type> <field value>*)

or

(INSERT <record type> <owner record>

<field value>*)

where there must be as many field values as there are
fields in the record type and they must agree in typoe and
order with their definitions at the time of defining the

record type.

Deleting records

A record can be deleted from the data base bv the
function DELETE with value NIL. When a record is deleted
it is removed from all sets to which it belongs. The

syntax of the function call is simply

ST

Page 41

(DELETE <record>)

Updating records

Values of NUMBER and CHARACTER fields may be changed

by the function SET-VAL, with the syntax

(SET-VAL <record> <field name> <field value))

where <record> is any cecord in the database with the
data item <field name>. No owner record is needed. A
further function, SET-VALUES, changes all the fields of a
record, leaving those with <field value> equal to '*'

unchanged.

(SET-VALUES <record > <field value>*)

SET-VALUES must have as many field values as the number
of fields in the record type.
SET-VALUES is provided as a convenience for changing

several fields of a record at the same time.

Moving records between sets

In order to move a single record from one set to
another, as for example transferring a case from one

doctor to another, the function TRANSFER is wused, with

the syntax

Page 42 [

(TRANSFER <record> <from owner record>

<to owner record>)

Selecting records from a set

Three functions to select a subset of records or
apply a function to all elements of a set are SELECT,

SELECT-ONE, and MAPSET. Their syntax is

(SELECT <predicate> <set>)
(SELECT-ONE <predicate> <set>)

(MAPSET <function> <set>)

where <set> 1is a set of records, <predicate> 1is a i
predicate of one arqument that evaluates to T or NIL when |
applied to a sinale record, and <function> is a function
or lambda exoression of one arqument. For example, if
SOMESET is a set of recoids with a field NAME of tvoe

CHARACTER,

(SELECT (QUOTE (LAMBDA (X) (EQ (NAME X)

(QUOTE SMITH))))

SOMESET)

will retucn as its value that subset of SOMESET whose

NAMEs are SMITH.

_—

—

Page 43

SELECT-ONE returns that unique record which
satisfies the bpredicate; if more than one exists, the
value returned is NIL. The main use for SELECT-ONE is to

retrieve items from record types with unique keys.

The function MAPSET aprlies the function to every
ctecord in the set and returns NIL. It could be used for
its effect, changing the value of some field for every

record in a set, for example.

By applying these functions to sets, explicit loops
become unnecessary for traversing a data base. This
should be compared with the non-procedural approach taken
with the HI-IQ retrieval lanquage in Rob Gerritsen's
dissertation, which creates an access path for finding
the requested data. A simple example using the PATIENT
record type defined above is to find the ages of all male
patients of a doctor whose record is DOCl. All that is

needed is

(AGE (SELECT (QUOTE (LAMBDA (X)
(EQ (SEX X)
(QUOTE MALE))))

(PATIENT DOC1)))

-

Page 44

Demons

The ideas presented here go beyond those of LDEMON
in two orincipal ways. Demons are used to monitor
ctecords within sets owned by other records, and the

schedul ing of the processing of demons is more elaborate.

In LDEMON, demons are used to take specific action
whenever any member of a record type has its fields
modified. SANDL adds the ability of demons to watch for
changes in the set of records owned by a given record
type. In other words, demons in LDEMON are similar to
the IFMODIFIED demons of SANDL, while IFADDED and

IFREMOVED demons are completely new.

In LDEMON a demon has a sinale arqument variable
which is bound to whatever record triqggers the demon. In
general, demons monitoring sets bind at least two
acquments, one for the record in the set, the second for
the ctecoctd owning the set. The one exceotion is that
top-level records are not owned by any record, so the

DBTG schema

DOCTOR

coccesnonds to a demon arqument list

"

Page 45

(DOCTOR X)

The decision was made in LDEMON to execute the
action of a demon before the update which triggered the
demon. For demons used as alerters (i.e. without any
effect on the data base) this seems to have been a bad
choice, since the update itself 1is delayed until all
relevant demons have been checked and those triggered
have been executed. SANDL therefore distinquishes two
types of demons: what will be called fail demons, and
non-fail demons. A fail demon will be activated
immediately upon being triggered, while a non-fail demon
waits until after a change to the data base has taken
place. The fail demons can be used to send messages
that, say, an illegal update has been attempted, or to
enforce data inteqgrity, for example by preventing any

field from chanaing to a value of the wrong type.

Demon syntax
The syntax for creating a demon is

(<demon type> <demon name> <arqument list> <body>)
or
(<demon type> <demon name> FAIL <arqument list>

<body>)

where <demon type> is IFADDED, IFREMOVED, or IFMODIFIED,

and <body> is any sequence of LISP expressions.

Page 46
The <argument list> is either
(<record class> <variable name>)
or

(<record class> <variable name> <arqument list>*)

To illustrate the use of arqument lists compare the

DBTG structure

HOSPITAL
/\
DOCTOR PATIENT
\
CASE

with the arqgument 1list

(CASE U (DOCTOR V (HOSPITAL W))

(PATIENT X (HOSPITAL Y)))

Note the two separate bindings of HOSPITAL records to the
variables W and Y. The reason for this is that there is
no way to exclude the possibility of two different
HOSPITAL records leading through sevarate ownership
chains to a particular CASE record. If it is essential
that records X and Y be the same, this must be tested in

the body of the demon.

e —— T— _ — "

Page 47

The lowest record class in the schema is placed
first in the argument list, so the schema is to be read

uowards in writing the arqument 1ist.

Page 48

JCOND

The JCOND construction for chanves which have just
occucred is carried over from LDEMON in the IFMODIFIED
demon. Only the COND (the ordinary LISP “IF-THEN-ELSE"
construction) is meaningful for IFADDED and IFREMOVED
demons, since in these cases there is no distinction to

be made between 0ld and new versions of the record.

For the IFMODIFIED demon the convention for
distinguishing o0ld versus new versions of a record is to
prefix the variable with '=' for old and '+' for new. In

this way
(AGE -=X)

would stand for the value of the AGE field of the record

X before an update. If there is no ambiguity the '+' and

pcefixes are not needed and the JCOND always uses the

unadocned variable in its test.

Page 49

Some examples of demons

If the DBTG schema is

DOCTOR PATIENT

\/

CASE

CASE has a field DIAGNOSIS, and DOCTOR has a field NAME.
An expression to orint the name of any doctor who has a

patient who contracts measles is:

(IFMODIFIED M1 (CASE X (DOCTOR Y))
(JCOND ((EQ (DIAGNOSIS X) (QUOTE MEASLES))

(PRINT (NAME Y)))))

However, to print the name of any doctor who gets a

patient who has measles is:

(IFADDED Al (CASE X (DOCTOR Y))
(COND ((EQ (DIAGNOSIS X) (QUOTE MEASLES))

(PRINT (NAME Y)))))

A more complicated example is to report the name of
any department i1f the proportion of female staff falls

below 25%.

rr T .
: Page 50
In this case the schema is
DEPT
EMPLOYEE
DEPT has fields NUM-STAFF and PROPORTION-FEMALE, and
EMPLOYEE has a field SEX. Then the problem is solved by

means of three demons.

First, the table below gives the changes to
PROPORTION-FEMALE (ceoresented by P) and NUM-STAFF
(represented by N).

Emplovyee
Female Male
Add P := ((P*N)+1)/(N+1) P := (P*N)/(N+1)
N := N+1 N := N+l
Remove P := ((P*N)-1l)/(N-1) P := (P*N)/(N-1)
N := N-1 N := N-1

(IFADDED A2 (EMPLOYEE X (DEPT Y))
(COND ((EQ (SEX X) (QUOTE FEMALE))
(SET-VAL Y PROPORTION-FEMALE

(DIVIDE (ADD1 (TIMES
(PROPORTION-FEMALE Y)

(NUM-STAFF Y)))

...lll.I.ll.lI===:;;;-.-l-.-liIlﬁil..u--n.‘....._.~¢

Page 51

(ADD1 (NUM-STAFF Y)))))
(T (SET-VAL Y PROPORTION-FEMALE
(DIVIDE (TIMES
(PROPORTION-FEMALE Y)
(NUM-STAFF Y)))

(ADD]1 (NUM-=STAFF Y)))))
(SET-VAL Y NUM-STAFF (ADD1 (NUMSTAFF Y))))

(IFREMOVED R2 (EMPLOYEE X (DEPT Y))
(COND ((EQ (SEX X) (QUOTE FEMALE))
(SET-VAL Y PROPORTION-FEMALE
(DIVIDE (SUB1 (TIMES
(PROPORTION-FEMAT Y)
(NUM-STAFF Y)))

(SUB1 (NUM=STAFF Y)))))
(T (SET-VAL Y PROPORTION-FEMALE

(DIVIDE (TIMES
(PROPORTION-FEMALE Y)
(NUM-STAFF Y)))

(SUB1 (NUM-STAFF Y)))))

(SET-VAL Y NUM-STAFF (SUB1 (NUMSTAFF Y))))

(IFMODIFIED M2 (DEPT W (UNIVERSAL X))

(JCOND ((LESSP (PROPORTION-FEMALE W) .25)

(PRINT (NAME W))))

Page 52

This example shows how demons can be used to monitor
average, maximum, minimum, and count of a set. IFADDED
and IFREMOVED demons must uodate fields in the owner

record and an IFMODIFIED demon watches for chanaes in

these fields.

T o ™ gl oy

Page 53
REFERENCES

1. Becker J.D. "Reflections on the Formal Description
of Behavior." in Representation and Understandina:
Studies in Cognitive Science, ed. Bobrow, D.G. and
Collins, A., Academic Press, N.Y. 1975,
2. Bobrow, D.G. and Brown, J.S. "Systematic
Understanding: Synthesis, Analysis, and Continaent
Knowledge in Specialized Understanding Systems." in

Representation and Understanding: Studies in Cognitive
Science, ed. Bobrow, D.G. and Collins, A., Academic

Press, N.Y, 1975,

3. Bobrow, D.G. and Norman D. A. "Some Principles of
Memory Schemata.” in Representation and Understandinq:
Studies in Cognitive Science, ed. Bobrow, D.G. and

Collins, A., Academic Press, N.,Y. 1975,
4, Bobrow, D.G. and Raphael B. "New Programming
Languages for Artificial Intell igence Research."

Computing Surveys 6, 3 (September 1974).

5. CODASYL, CODASYL Data Base Task Group, April 1971

Report.

6. Cohen, S.F. "SANDL: A System for Alerting on

R ————— o

R

Page 54

Network Databases in LISP." Working Paper 76-05-07, Dept.
of Decision Sciences, The Wharton School, University of

Pennsylvania, May 1976.

7. Date, C.J. An Introduction to Database Systems,

Add ison Wesley, Readinqg, Mass. 1975,

8. Dijkstra, E.W. "Guarded Commands, Nondeterminacy and

Formal Derivation of Programs." Comm. ACM 18, 8 (Augqust

1975), 453-457.

9. Gerritsen, Rob "Understanding Data Structures," PhD
Thesis, Carnegie-Mellon University, Pittsbucqgh,

Pennsylvania, 1975.

10. Morgan, H.L. "Event seauenced orogcramming.,"
Technical Report No. 119. Dept. of Ovecrations

Reseacch. Cornell University, Ithaca, N.Y., September

1970.

11. Morgan, H.L. "“An Intecrrupt Based Organization for
Management Information Systems." Comm. ACM 13, 12

(December 1970).

12, Morgan, H.L. and Buneman, O.P.B. "Alecting in
Database Systems: Concents and Techniaues." Working

Paper 75-12-02, Dept. of Decision Sciences, The Wharton

f e e

Page 55

School, University of Pennsylvania, June 1976.

13. Sussman G. and McDermott D. “Why Conniving is
better than Planning." MIT Artificial memo 255A (April

1972).

14. Sussman G.J. and Winograd T. "Micro-Planner
Reference Manual,” Project MAC Report, Massachusetts

Institute of Technology, Cambridge, Mass., 1972.

At o

Defense Documentation Center (12)
Cameron Station
Alexandria, VA 22314

Of fice of Naval Research (6)
Arlington, VA 22217

Office of Naval Resecarch
Branch Office, Chicago
536 South Clark Street
Chicago, 11linois (1605

New York Area Office
715 Breasdway — S5th Flaor
New York, RY 10003

Dr. A. L. Slafkosky
'-".'l'nn['
of the Moviue Curps

Seientific
g ydomit
(Cude D])
Washington, DC 20380

of fice of Naval Researych
(‘wde /458
Arlington, VA 22217

Mr. E. H. Gleissner

Nival Ship Research and
Developnent Center

Computation & Mathematics Dept.
Petlisda, MD 20084

Mr. Eim B. Thecupson

Technical Director

Information Systems Division
(0P-911G)

Office of Chief of Nival Operations
Wechington, DC 20350

Professor Omar Wing
Colunbia University
Dept of Electrical Engineering
and Computer Science
New York, NY 10027

N —

DISTRIRULTON L1IST
Department of the Navy Office of Naval Rescarch

Data Base Management Systems Project

Office of Naval Research (2)
Information Systems Proegram
Code 437

Arlington, VA 22217

Of fice of Nawval Rescarch

Code 1021IP Branch Office, Boston
495 Sunaner Street

Roston, MA 02210

Office of N{iViil R !xl'i-.)‘('h
Branch Office, Pasadena i
1030 East €Green Street i
Pasadena, CA 91106

}
Ni:val Research Ioboratory (6) '
Technical TInformation Divisfon ;
(“‘l,(‘ .)(‘27 ¥
Ylove ’Ai‘,.“"t L2 7 S BC /(]375
Of fice of RNaval '“A:|.‘)'Ch
Code 45 =
Avlinetien, MA 22217 g
!
AR v o] " 1 1 X { t
Naval Electronics Toboratopy | <L 4
Edvanced St Fircanre Teely 1 nY s Ton i

Code 5200
San Dhego, CA 42152

Captain Grace M. Bopper

NALCOM/MIS Planning Branch
(0P-916D)

Office of Chief of Naval Operations
Washingten, DC 20350

Burcau of library and
Information Scicnce Research
Rutgers - The State University
189 College Averue

New Brunswick, NJ 08£903

\r

Attn: Dr. Benry Voos

BEST AVAILABLE COPY

