
END
DATE

FILMED

i ~ ~
IlIt~8 ~~~

~~ ~~3 2

JJJJJ 2.2

~

I.. 0 :
~
° I~I~

2.Q

II~fl~H ‘ .25

~flflj .4 WH~

N1I(~~~) (O ~ ’~ ~I~~1) I 1 I I R ~N ~I~~ I ~I \ t ~
~~~~~~~ ~ : . . I A



—~~

~LF.P~FRS ON NETWORK DAThBkSFS

Stanley F. Cohen

77 — 02—07

~ ~~ ‘~ ) 1911

L . —
— a

i\ thesis submitted to the Faculty of
The J~’oore School of Electrical Engineering
in partial fulfillment of the requirements
for the degree of Master of Science in
Engineering (for graduate work in
(
~omputer and Information Sciences)

University of Pennsylvania
Philadelphia , rennsylvania

f L ~ 4

t)eceml’er, lfl7F

~ 

—~~~~~~~~~. —~~~--~~~-. .~~ . i5~ ~



p.- ———-—-—
~~~— .— ~

-
~~ ——~~~~~~ (._

~~~~~~~~~~~~~~~~~~~~~~~~~ -- ‘—~— - -..~.,—.---—---. . .
~

— . —-

SECURITY CLASSIF ICA TI ON OF THIS PAGE (Wli.n Data EnIar.d) 
___________________________________

~~~~~~ E~’~~~ ’~~ ~ A~~E READ INSTRUCTIONSr~ r iJl% I JI..UIR I~~I ~~ I I’JI~ ! ~~U BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

77—02—07 ________________________________

4. T ITLE (an d Subt l t l.) 5. TYPE OF REPORT & PERIOD COV(REO

Alerters on t w rk at~~~ aes Final ~
5. Ptfi~~~~ annu N*~~ RT NUMBER

__ / --1 77—02—07 ;
7. AU THOR(S) 1 Ol,RAe~ 0-P .,RIR~ NUMS~~R(I)

. Stanley F. - Cohen~ ~~~~~ NOO014_75_C-~~462’~~

9. PERFORMING ORGANIZATION NAM E AND ADDRESS ~~— 10. PROGRAM ELEMENT. PROJECT . TASK

Decision Sci~~ ces Department AR EA 4 WORK UNIT NUMBERS

University of Pennsylvania/Wharton School Technical report
Philadelphia, PA 19104

II . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -

Office of Naval Research 12 /76
info rmation Systems 13. NUMeER 0F~~ ,A9~ 7~~~ ~~~~~~~~~~~~~~~~~~

Arlington , VA 22217 —
59 ._

~~
_

1’

_

1*. MONITORING AGENCY NAME & ADORESS(if dSf f . r . n t (toni Controltin~ Oific .) *5. SECURITY et i1s ~~ sr mt. r. --

Unclassified
IS.. DECLASSIFICATION/DOWNG RADING

SCHEDULE

*6. DISTRI BU TION STA T EMENT (of thiS Rsport)
a

Unlimited 1;
I ~~ -

:~~~~ ~~~~~
17. DISTRIBUTION STATEMEN T (of th. .b.t,act ant.r.d Sn øiock 20, Sf dlfS.,anI (toni R.p or. t) ‘ I

IS. SUPPLEMENTARY NOT ES

IS. KEY WORDS (Cont inua on tav•,•. aid. if n.c...~~y and SdantSSy by block nsmub.t)

Alerters
Network Databases
Event—driven procedures i

_
~Demons

20. ~~~STRACT (Continua on r.v•ra• .id. U n.c...niy and idsntsfr by block manb~r)

This thesis describes a system for alerting on network databases which
consists of a simple sharable data management system with a facility for
the user to create event—driven procedures called demons. A discussion
is included of related work in database systems and artificial intelligence

DD , ~~~~~ 1473 EOITION OF I NOV II IS OBSOL ETE
S/N 0 I02-0 I4~~660 I

SECURITY CLASSIFICATION OF THIS PAGE (WR~~ Data ~~~~~~~~

- - ~~— - --- -

~~~~~~~~~ 
j



---—— —--_.—- ——_ -.._. . ~~. .-.~-.-----~~~~~~~~- ~~~ — —- -. .— _ -.
~~ —_ - ‘~~

j ,I-rr~~-~~~~~~~~.. -- 
.-- —

Tdble of Contents

Introduction I

Guarded Commands 5

Demons in Languages

for Artificial Intelligence 7

Alerter Bind ing 9

LDEMON L I S P  Alerter Sys tem

(and a DAISY interface) 15

Record Handling Facilities 17

Demons 22

Daisy Interface 27

Records and Functions in SANDL 30

Implemen tation 33

Data Definition Lanquaqe 35

Data Management Lanquaqe 39

Demons 44

Demon Syntax 45

JCOND 48

References 53

-
. , -~~ y

V~~C11iT’

_ _ _ _  _ _  ~~~- “- _ _ _ _ _ _ _



INTRODUCTION

The thesis falls into two major parts. In the first

Dart  I discuss the concept of demons , even t—dr iven

procedures which appear to run concurrently with the

processes they are monitoring . In the second Portion of

the thesis I discuss a system for alerting on network

databases called SANDL and its precursor , LDEMON.

Some important points that will be exam ined are the

sharability of databases, with accessing and updating

functions that are conceived as message handlers , (the

requiremen t of shacabjljtv beinq tart of the

justification of an aler ter system in the first olace) as

well as the func tional framewor k for the data base

accessing and updating functions and their impl ications,

and the modifiability of the schema which gives the user

the power to define new record classes and demons at will

while the system is running on—line.

Demons should be thought  of in the context  of

whether  knowledge is synthesized in term s of qoals or in

terms of d a t a .  At f i r s t  sight  t h i s  d i s t i n c t i o n  migh t

seem more appropr iate to an a r t i f i c i a l  in te l l iqence

app l icat ion such as computer visic~n , but in fac t  it is a

re levan t issue for data base technoloqy,  where  the

in teres t  is not in acqu i r inq  an unde r s t and ing  of some

scene , but in f o r m i ng  an i n t e l l i gent a~ pr a isa1  of the

_ _ _ _ _  _ _ _ _



- - ‘r - - --. 

a 

-- — --  -- -----------_.--- —----.----- ---- — .-, .--- -

Page 2

current state of affairs represented by the data base.

Goal—driven activities in artificial intelliqence

applications tend to deal with hypothesis formulation , a

sor t of top—down divid ing and conauering of the problem .

Most well—structured programs outside the domain of

artificial intelligence can be put into this framework.

Data or event—driven activities (no distinction between

what is an d wha t chan ges is necessar y here) tend to be

bottom—up , in the sense that it is the input  data which

proposes the way in which it.  should be handled . A good

example outside of artificial intelligence is an

in tepreter, where it is the input that tells the system

what to do next. Demons, which mon itor their

preconditions and take action when these preconditions

become true , are one possible implementation of an

event—dr iven system.

Bobrow and Norman (1975) point out that drivinq an

automobile is a parad igm for an event—driven activity.

Even though the strategy of a car trip may be planned in

advance to have a certain destination and route , the

tactics of driving are largely event—driven and

concurren t with a host of other activities — looking at

the scenery, talking , and so on. Most of the activity of

driving follows in response to changes in the data , for

which no p lans  could be made in advance.

-.

~

—

~

- -

~

-

~

. -— 
~~~~ . - -. -~~~.~~~~~~-—- -- - -—-—-—~~~~- - - -~~ - --~~~~~~~~~~ .-


- .
~~~~~~~~~~~~ L

Page 3

How does t h i s  di s t inc t ion  re la te  to databases?

Or d i n a r i l y  we expect a data management system to be

preprogrammed to respond to some few types of requests,

e.g. what is the name of so—and—so , change the balance

of this account in this way, etc. Rarely is a user able

to progr am the system , only to command it. If he should

want to observe changes in the data he has no recourse

except to make the same query again and again. The

object of the research on aler ters here repor ted is to

enable users to ask questions like:

“Report the name of any subscriber who changes h ic

address.”

or “Give a warning if a ship is too low on fuel to

reach a destination .”

or “Report if any department has more employees out

sick than the averaqe. ’

or °Take corrective action if any bank balance falls

below zero dollars.”

These are just a few representative examples of a

common manaqement problem . A bank may wish to monitor

the profitability and financ ial health of companies to

which it had lent money, or a company may want to keep

constant track of size of inventories versus sales.

I
—- .-—.————— ~~~~~

- - -..-.-——— —----- — -_-————.——-.—— ~-----—.. —-_-— —_ -—-- -- -.— - .. -.—--__ - ——---.-- 
— . __ _ -_ — . - — --.-_ ..~~~~~~~~~~~~~ . - -__ -- ~~

-—— _ 
~~~~~


—.-— — - — — - - . _—-.—---
~~~~~~~~~~~~~~~~~~ —~~~ ‘—— - . “ r ~~~~~tr ~~~~~~~ ~—~

-— — -,..._ ._—.. -- —.—---—_. —.- -.— ——..--——.—— - — —--—- .

Page 4

Aler ters provide an answer whenever the manager has the

need to dynamically supply the conditions to be

mon itored .

~ 

~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ - -

~~~~~~

—-- -.-_ -

Page 5

Guarded Commands

Djjkstra has presented a new formalism for

nondeterministic programs which is particularly well

su ited to proofs of correctness and termination. He

notes that a number of deterministi * oroqrams may be

mapped into a sinqle nondeterministic program which has

the sane effect. In order to do this , Dijkstra invents a

syntax for the guarded command , wh ich is a list of

statements preceded by a Boolean expression. If the

Boolean ex pression is true , the guarded command may be

executed , but need not be.

The syntax orov ides for a repetitive construction

and an al tern ative construc tion , which are the

nondeterministic equivalents of do—loops and

if—statements and both of which are guarded command

lists, i.e. lists of guarded commands any one of which

may be executed if its guard is true. In the alternative

construction if any guard is true its guarded command may

be executed and at least one of them will be executed .

If no guard is true the alternative construction

terminates with an error. The repetitive construction on

the other hand executes any guarded command whose quard

is true until no guard is true , at which o. int , the

repetitive construction terminates successfully. It is

this repetitive construction which is important in the

_ .__

~

_ _ _ . _

__

~

.__.j_

~

~~ _____

V ~~~

-. -

~~~~~~~~~~~~~~ 
-
~~
--.--- . ,--

~~~~~~~~~~~
- --- -

~~~~
_—-

~
--- - ----- . -_

~~ -~~~ — -— 
._ --—-- _—-

~~

-

Pdqe 6

discussion of demons.

Two important ideas can be taken from Dijkstra ’s

article. First , there is the notion that the guarded

command , li ke critical sections in operatinq systems, can

be used to specify that no other activity can interrupt

during the execution of the statements in the guarded

command. This corresponds to the recuirement that demons

must be blocked from executing durinq the middle of an

update (unless they are FAIL demons), otherwise the

obvious cyclinq occurs. For example if a demon is

monitoring the credits and debits of a balance sheet ,

there will always be some point durinq the middle of an

update when the credit and debit figures do not

correspond , and the demon must be prevented from

prematurely taking action .

Secondly, guarded commands provide a formalism for

demons that abstract away from specific deterministic

implementations. Informally, the set of demons can be

taken as guarded commands in the do od repetitive

construction which attempts to execute any one the

guarded commands until no guard is true. 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ___________

— .-_.-~—_ - -— - ——..~~ ———--~—- -.

Pag e 7

Demons in Lanquages for Artificial Intelligence

In PLANNER the basic deductive mechanism is the

“theorem ” , which consists of two parts: a pattern to be

matched , and a program. The language supports three

types of theorems: “consequent” , “an tecendent” , and

“erase”. The consequent theorem is closest to usual

programming techniques since the pattern to be matched is

considered proven if the program of the theorem executes

successfully. Essentially, this is little different from

the manner in which a program executes successfully only

when all its subroutines run to completion. The THGOAL

primitive acts somewhat like a CA LL statement of FORTRAN

or PL/l with d good deal more sophistication. THGOAL a

attempts to find its argument (a pattern) in the

database , hut if the search for an assertion which

matches the pattern fails , THGOA L tries to execute

consequen t theorems which match the pattern until one

succeeds and the pattern is “proven ”.

The antecedent and erase theorems operate in a

distinctly different manner. The proqcam for an

antecedent theorem is invoked whenever an assertion

rnatchirvi its nattern is asserted. In this case thr ~

dntecedent theorem is directed by an event, the addition

of an assertion , whic h is the essen tial cha r acte r i st ic of

a demon . Correspond ingly, an e rase th eorem moni tors

______ ~~~~~~~~~~~~~~~~~ .-.._-- .- --_-—---—- -
—--- .-.-.-. •—

~

— -

~~~



_ _ _  - ~~~~~~-_ -~~~~~~~~~~~~~~~~ -~~~~~~~~~ -—-._ - — - _ .  - -~~~ 

Page 8

deletion of assertions which match its pdttern and then

executes its orogram. Anteceden t and erase theorems  a re

customarily used to add and delete assert~.ons which are

impl ied  by the  a s s e r t i o n  which  m a t c h e s  the  Pattern.

QLISP has a more general method for handling which

allows teams of demons to be set up that will be invoked

upon any storage or retrieval operation. PLANNER—type

anteceden t and erase theorems could be built out of such

teams of demons.

What the languages for research in artificial

i n t e l l i g e n c e  l ack  in t h e i r  demon m e c h a n i s m s  a r e

1. a clear concept of hierarchical record; the

basic u n i t  of the  da tabase  is the a s s e r t i o n, s imply

a list of assertion type and fields , usually atoms.

2. a high—level concept of demons that observe

changes in exis tin g recor ds , not only additions and

deletions of assertions from the database .

~~IIraL 
- -  - .———- ~ —~ - ..——_— ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ _~~~_ . .~~ . . _ . --



-=~— -.~~ ~~~~- 
- — --

—-

Page 9

A l e r t e r  B i n d i n g

Alerters , as treated in this thesis , are oairs of

condition and program , similar in form to PLANNFR

theorems or Dijkstra ’s guarded commands. Morgan (1970)

has dealt with the subject of even t sequenced programs in

some detail , concentrating on the resolution of conflicts

caused by attempts to update a variable simultaneously by

differen t orograms. The aooroach taken here differs in

that the aler ters run conceptually asynchronously and do

not require the update to be delayed until the program

Por tion of the alerter has run to completion .

The first task in explaining the alertinq mechanism

is to sketch the  range  of poss ib i l i t ies  for the object to

which the alerter can be bound . I follow the

classification of Morgan and Buneman (1975) which divides

aler ters into several types according to the r ichness of

• t he i r  proper t ies .

A. Bind ing to var iables

The most primi tive sor t of bind ing which an aler ter

could have is at the level of var iables , that is, simol e

storage locations. I include this level of alerter

binding to emphasize how the more elaborate types of

bind ings depend on the existence of records , with record

classes containing multiple instances of a record type.

~~ ~~~~~~ .. - •~~---~ -~ -- ~~~~~~~~~~~~~~~~~~~~~~~ j  
~~~~~~~~~~~ —~~~~~~~--~~~~~~~~~~ —-—- 


- ~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~

------_---- -

Paqe 10

B. Simple Alerting

Simple alerting applies to alerters which can he

bound to a single record in the database in order to

moni to r i t .

1. mon i t o r i n g an item , i .e . one or more f i e l d s of

a record , for example the age of a particular

student.

2. m o n i t o r i n g a single record as a whole , for

example change to any field of a bank account

record.

3. monitoring a field for a record type , for

example the age field in any record of the student

type .

4. monitoring the addition of a record to a set of

records.

5. monitoring the deletion of a record from a set

of records.

6. monitorinq any field of any record , for example

reporting that any personnel record has been

modified in any way.

- --- _

Pag e 11

C. Structural Alerting

Alerters can monitor the structure of the database ,

in other words the relations between records in terms of

set ownership. This requires at a minimum that the

alerter be bound to an owner record as well as an owned

record.

1. Change in set ownership or membership of

records. For example a doctor receives a new

patient or a company a new supplier.

2. Change in properties of the set as a whole. For

example, the number of students in a class exceeds

30.

3. Change in fields of the owned record. This may

arise in at least two ways: a doctor may acquire a

new patient with measles or a patient already beinq

treated may contract measles.

_ _ _ _ _ _ __ _ _

D. Complex Alertinq

Complex alerting covers those types of alerters

which require an even more holistic point of view in

order to handle the interaction between user and

database.

1. Statistical alerters . For example , inform the

user if the average ban k balan ce of all accoun ts

changes by more than a given amount. It would be a

sim ple task to plan for the system to keep runninq

counters for average, maximum , m i n i m u m , count and

other simple statistical quantities , but it is

apparent that more complicated calculations will

reauire complete scans of the database.

2. Alerters which monitor transactions over time.

For example , i n f o r m the user whenever a bank balance

drops by more than $10 ,000 in any 24 hour period .

This form of a l e r t i n g requires tha t a loq be kept of

a l l t r ansac t ions for the 24 hour period .

3. Pa t t e rn recogn i t ion . This type of aler ter would

monitor the crea t ion of a pa t t e rn by whatever means

that occurs. Thece would be no distinction between

changing of existing records and addition of new

ones if they give rise to the desired pattern.

I

F
-:

Page 13

4. Time based a l e r ti ng . A l t h o u a h t h i s is s i m i l a r

to number 2. the d i s t i n c t i o n is t h a t the a l e r t need

not be s igna l l ed immed i a t e ly , but on ly w i t h i n

su f i c i e ri t t ime to he useful. Such alerters could

deliver reports on a weekly schedule for examp le .

5. Monitorin g expressions. This f o r m of a l e r t i n g

is an e l a b o r a t i o n of the s imoler f o r m s of a l e r t i n g

in the direction of providing Boolean combinations

of conditions on t he a l er t e r . The alerter must

therefore be bound to possibly several records at

once. For example , the user might want to know

whenever a stock had exceeded its previous daily

hiqh and sold in greater volume than the previous

da y .
a

6. Alertinq on the structure of the data base . The

issue here is to alert on a chain describable

through the schema from possibly multiple owners to

a record. It may ceauire bindings to several

records at the same time. This is the sort of

alerter binding reauired by requests to monitor say

the age of the grandfather of some ind ividual , where

the point in the data base may be arbitrarily

distant , al though reachable.

_ _ _ _ _ _
-~~~ ~~~~ -- -~~~~

-- -
~~

.- - - -
~~

._ -_ - - . -

__ —~~~~~--- ---~~~~~~~~~~~~~~~~~~~~~ --- _ --- -. — - -~~ -—--— ------

Page 14

R~ n d L n q T4m e

he 4ssue here ~,s t h d t when the demon is t r i q q e r e d

~ts mt qum~nts may no longer be up—to—date if they have

been m o d i f i e d since the demon was triqqered . If more

than one orocessor (humdn or computer) has been alerted

that , say , a fue l level WdS too low or some servic e was

r e a u ir ed , one of the processors might have taken action

before the other, so the second must retest its condition

to make sure that the action is still needed. The issue

here is to alert on a chain describable through the

schema from possibly multiple owners to a record. It may

reauire bindings to several records at the same time.

This is the sort of alerter binding required by requests

to monitor say the age of the grandfather of some

i n d i v i d u a l , whe re the poin t in the data base may be

arbitrarily distant , although reachable.

-j

_ -_ ---— - - ._-—
~~~.--- --—- _ — - -  _----—~~~ - - -~~~~~~~~~~ ~~~~~~~~ -~~~_-~~~~~~~~~~~~



—_------~-—-—— -—_-~~~~- ~~~~~
—

~ - —- —_-~~~~~~ ~~
--- —-• --—-_--—-.--—-- - _ - -

Page 15

LDEMON LISP Alerter System

(and a DAISY i n t e r f a c e )

LDEMON is a system consisting of two packages , one

for  c r ea t ing  and upda t ing  a simp le data base , and the

other  for monitoring changes in the data by means of

orocedures known as demons.

The approach taken by LDEMON has several  f ea t u r e s  of

in te res t  to the user . F i r s t ,  the  user is dble to d e f i n e

new record classes and demons interactively. There is no

need to plan demon s at the  t ime of c r e a t i ng  a new record

class, as would be necessary with a compiled system. The

only r e s t r i c t i on  is that  a demon shoul d no t be crea ted

pr ior to d e f i n i n g  al l  re levant  record classes.

A second point  is t h a t  data bases may be shared

among several users , w i t h i n  DAISY , for ins tance.  Any of

the users may add new record classes, new demons , new

records , or up dates to ex i s t ing  records.

Th ird , even though LDEMON is not at all a production

system , since is wr i t t e n  in an i n t e rpr e t i v e  langua ge ,

LI SP , and does not handle  data  bases in auxili ary

storage , never the less  it is an e f f ic i e n t  approach to

processing data base demon s , because the labor involved

in m o n i t o r i ng  chanqes is of the order of the number of

a updates and is independen t of the size of the data base .

- - _ -----_--~~~ --- ~ - - - _ -- —---- -. --j, ~~~~~~~~~~~~~~~~~ 
- -

~~
~_



_________________ _____ - —
~~~~.. :—---

Paqe 16

As a consequence , the approach of LDEMON is oarticularly

useful for ldrqe data bases. Finally, the r ecor d

handling facilities of LDEMON provide a set of pr imitives

wr itten in LISP that can form the basis for building

other experimental data base systems , as , for example,

David Root has done in writing a relational data base

language on top of LDEMON .

-~~~~~—-~~~ ~~~

- ~~~~—~~~~~~~~~~~~ --- ~~~~~~~~~~ -—--•- - -_ - -~~--~~~~~- —-- .-

Page 17

Record Handling Facilities

LDEMON provides means for creating record classes,

adding new records , displaying and selecting records , an d

updating the contents of records.

Creating a record class

The function used for creating a new class of

records is DEF—RECTYPE , wi th the name of the recor d for

the first arqument, followed by all the field (or

accessor) names of that record. For example,

(DEF—RECTYPE STUDENT SCHOOL AGE)

creates a new record class STUDENT with accessors SCHOOL

and AGE.

DEF—RECTYPE provides the user with a record class

predicate function and one accessor function for each

field. In the example here, a new function STUDENT has

been created which returns T or NIL depending on whether

its single ,irqument is or is not a STUDENT record. In

addition , tht ce have been created two accessor functions ,

SCHOOL, and AGE , which select the SCHOOL and AGE fields

of their argument. The recor d class pred ica te and the

accessor func tions all take one argument and may be

appl ied either to a single record or a list of records.

In the second case they return a l ist of results.

- —
~~~~~~~~~~~~~~~ .-___ ~~~- 

- -

Page 18

Th u s ,  if  t h e r e  is a STUDEN T record oointed at by 0,

w i t h  SCHOOL f i e l d  PENN a nd AGE f i e l d  20 ,

(ST UDENT 0)

returns T

and

(SCHOO L Q)

returns PENN

Besides creatinq these auxiliary functions ,

DEF—RECTYPE d e f i n e s  the record class name as legal  for

use in addi ng new records and updating existino ones.

Add ing new records

Two f u n c t i o n s  are  of use in add inq new records  to an

LD EMO N “ f i l e ” ( i . e .  l is t  of records  c o r r e sp o n d i ng  to a

record c l a s s) .  A “ f i l e ” is created by add inq new records

once the record class has been started.

The function GENCONS takes as arquments a record

class name fol lowed by values  for ever y field of the

recor d cla ss , in the appropriate order . Accessor or

field values may be either alphanumer ic (unauoted ) or

numeric. For ex ample ,

_ _ _ _ _ _ _  - - —~~~~~~~~~~~~~~~~~~~ --— — —- _ - - - - - -~~~~ - . -  _ _ _  _ _ _ _ _ _ _ _ _ _ _ _



- - --~~~~~~~
:--- --~~~~

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~~

-_
~~
-- - - --

Page 19

(GENCONS STUDENT PENN 21)

creates a new STUDENT record with PENN for the value of

SCHOOL, and 21 for the value of AGE.

The effect of GENCONS is to add the new record to

the front of the current list of records kept on the

RECORD property of the record class name.

Another function, CREATE , a l lows the user to cr ea te

one or more iden tical records . All the arquments used

by GENCONS follow an integer for the number of times the

same r ecord is to be added to the data base. For

example ,

(CREATE 1 STUDENT DREXEL 22)

has exactly the same effect as (GENCONS STUDENT DREXEL

22) , while

(CREATE 3 STUDENT TEMPLE 23)

will create three records with TEMPLE for SCHOOL and 23

for AGE.

Displaying cecords

The func tion DISPLAY enables the user to display all

records of a given record class or all values of a

specif ied field of a record class. The first argument of

-~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

Page 20

DISPLAY is a record class name and the  o p t i o n a l  second

ar gument is a accessor or f i e l d  name. For examp le , if

(GENCONS STUDEN T PENN 2 1) and (GENCONS STUDENT

D R E X E L  22) have been executed ,

( D I S P L A Y  STUDENT )

returns (((STUDENT) DREXEL 22) ((STUDENT) PENN 21))

and ( D I S P L A Y  STUDENT A G E )

r e t u r n s  (2 2 21)

From the description of the record class pred icate

and accessor functions it should  be c lear  how

(STUDENT (DISPLAY STUDENT))

returns (T T)

and (AGE (DISPLAY STUDENT))

returns (22 21)

since DISPLAY returns the list of records in a record

class when applied to a record class name .

Selecting records

The function RECORD selects a particular record from

a record class. The first argument is an integer

referrin g to the reverse order of accession of the record

and the second argumen t is a record class name. For

example ,

(RECORD 1 STUDENT) 

_ -  -- - —  -— ____ _ ._ __  4



~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
-•-— ——--—-—-———

~~
—

~~~~
——‘.—— -- — • ,

~~~

--

Page 21

returns ((STUDENT) DREXEL 22)

The user of LDEMON may orefer to keep explicit

pointers to records by doing something like

(SETQ FRED (GENCONS STUDENT HAVERFOR D 19))

at the time of creating a r ecord.

Upda t ing r ecords

To change field values , the function SET—VAL is used.

The first argument must specify a single record by means

of a oointec to the record in an expression like

(EVA L (QUOTE < p o i n t e r >)) a

or a selecting expression which points to a single

record. The second argument is a record class name , and

the third argument is a field value . For example,

(SET—VAL (RECORD 1 STUDENT) SCHOOL CORNELL)

w i l l c h a n g e the v a l ue of t he SCHOOL f i e l d to CORNELL .

It should be noted that all records are changed in

place , so no new space is acquired by SET—VAL.

~~~ ---- - - - -—--- --------—--_ ---~~~ . - - --- ~~~~



-- - -~ -—•~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Pdge 22

Demons

D e f i n i n g new demons

LDE MON adds two new functions (from t he user ’s Po in t

of view) and two special keywords to the apparatus

already in LISP for defining new functions in order to

d e f i n e demons . Thi s is best i l l u s t r a t e d by an e x a m p l e .

For instance , assuming that there exists a record class

BANK—ACCOUNT , w i t h f i e l d s BALANC E and NAME , and the demon

is supposed to p r i n t the name of any depos i to r whose b a n k

account balance falls below 200 d o l l ar s . The demon to do

t h i s can be written as

(DEM ON OVERDRAWN (X)

(JC OND ((L E S S P (BALANC E X) 200)

(PRINT (NAME X))

(PRI N C (QUOTE “IS OVERDRAWN ”))

As seen from t h i s exam ple , a demon is defined much

like a LISP function , with a name , OVERDRAWN , an ar qu’nent

l i s t , (X) , and a function body. The argument list

contains only one va r i ab l e , X , which is bound

conceptually to all records of any record class which has

both BALANC E and NAME among its fields. It should be

emphasized that the bindinq is not to a variable or an

- ~~~~~~—

—

~~~~~~~~

_ 

-S  —~~~~~~ ~ - - ~~~~~~—-- ~~~- ~~~~~_ -  — - - - -~~~~~~~ -



classes containing multiple instances of a record type.

- 
~~~~~~~~~~~~~~ - -~~~ - - - ~~~~~~~~~~~~~~~~ 

_ _

Paqe 23

instance of a record , but to a set of records. In other

words , the demon OVERDRAWN should be read as if it

constantly monitored all BANK—ACCOUNT records (and the

records of any Other record class that had BALANCE and

NAME fields) and printed the NAM E f .~e1d of any such

record whenever its BALANCE field went below 200.

The JCOND construction used here can be thouqht of

as a natural refinement for demons of the LISP CC’1D.

Ordinar ily, demons are activated only when changes have

taken place in the data base. It is both unnecessary and

i mp r a c t i c a l for a demon to p e r f o r m its ac t ion c o nt i n u a l l y

as lonq as its condition is true. Therefore , instead of

L testinn a condition with a COND , LDEMON uses the JCOND to

nerform the action only when a condition has just become

true which was not true before. In the example, this

means that the name of a dep ositor is p r i n t e d only once

whenever his bank account becomes too low. If a COND had

been used instead of the JCOND , the name would be printed

every time the balance changed as long as it was below

200 dollars.

The demon OVERDRAWN is processed by the DEMON

function to form a LISP function called OVERDRAWN , which

is then added to the DEMON property of all the field

names. The LISP function looks like this:

L

Page 24
1

(LAMBDA (X)

(COND ((AND (LESSP (BALANCE OLD) 200)

(NOT (LESSP (B ALANCE NEW) 200)))

(P R I N T (NAM E X))

(PR IN C (QUOTE “IS O V E R D R A W N ”))

)

The argument variable X in the first oredicate of the

JCOND has been replaced by OLD and NEW in the course of

transformin g the JCOND into an ordinary LISP COND. These

two new keywords are introduced to refer to the record

before and after it has been updated. OLD and NEW may

also be used in the action part of the demon. The old

balance could be Printed , for instance, by writin g

(P R I N T (BALANCE OLD))

In more detail , the DEMON function takes three or

more arguments of which the first is the name of the

demon , the second is the argument list , which may contain

only one variable , and the third and further arguments

are any LISP expressions. The third or further arguments

must contain an accessor expression which refers to a

field of 5ome existing record class , l i k e

(N A M E X)

arid the argumen t of that accessor must be either the

variable in the argument list, or OLD , or NEW. OLD or

the argument list variable refer to the value of the

- - - — -~~ -- S—S’- ~~~~~~~~~~~ ~~ S~~S S S~S— - ’.~ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Pa ge 25

field before the update , and NEW refers to the value

after the update . For example , if a new record class A

has been defined , with fields B and C, the following

could be written ,

(DEMON Al (X) (PRINT (B X)))

which will cause the old value of any B field to he

pr inted whenever it has been updated by a call to

SET-VAL.

JCOND

The JCOND (for Just changed COND) is the

construction which allows a demon to reqister a change

that has just happened . Its syntax is similar to that of

a COND with a single predicate—action pair. However ,

unlike the COND, the JCOND has only one alternative; if

the predicate for this condition is not true , the demon

simply does not perform its action.

(JCOND (<ored icate> <action>))

Using the same example as before, and assuming that B is

a n u m e r i c f i e ld , it would be possible to write

(DEMON A2 (X) (JCON D ((G R E A T E R P (B X) 7)

(PRINT (C NEW)))))

to create a demon which would print the value of the C

f i e l d (OLD , NEW , or X mean the same here), whenever the

- -

Pane 26

v a l u e of the B f i e l d has been changed to a value larger

t h a n 7 f r o m a v a l u e t h a t was not larger. The imoortari t

ooin t to note h e r e iS that a JCOND is converted without

c h a n g e i n t o a CON D u n l e s s it i n v o l v e s an accessor

e xpr e s s i o n w it h t he demon a r gu m e n t v a r i a b l e dS i t s

a r q u m e n t . Th i s is why the o r e di cat e is (B X) in t he

example.

The p r e d i c a t e may be of a n y comp lex~~tv , pr o v i d e d it

f o l l o w s these r u l e s , and a secuence of a c t i o n s may f o l l o w

the pr e d i c a t e , as in a CON!) in UCI L I S P .

At t h e o re s e n t t i m e demons are not exolicitly

ciualified by record c l a s se s ; the f i e l d names rn the

a c t i o n and c o n d i t i o n o or t i o n s of t he demon i mo l ic i t l y

r e s t r i c t t h e set of r e c o r d c lasses. Th i s can cause

difficulties i f two record classes share a field name ,

s.nce both r ecord classes w i l l cause a demon to he

activated even though only one was intended . However ,

t he user is a l w a y s ab le to l i m i t t h e demon to one r ecord

c l a s s by u s i nn the record class n ame as a or edj c a t e.

This was a des ign dec is ion t h a t cou ld w a r r a n t c h a ng i ng

f o r d i f f e r e n t typ es of user i n t e r a c t i o n w i t h t he da td

base .

_ _ _ _ _-_ _ _ -- -~~~
S____ S - -~~~~_ ~ --- -~~~—

-
~~~~---- - -- - - , .---—- - -S’ ~~~~~~~~~~~ 

I

Paqe 27

The Daisy In ter f ace

LDEMON allows the user to create simplified demons

called alerters to observe updates of a data base. The

LISP user , however , has available the full Dower of

demons in LISP , and these ar~ essentially anythino that

can be pror c~r-~red .a~ri LISP , as can be seen from the

previous section.

The ALERT f u n ct i o n

The DAISY user needs to know only the A LERT fune ’ ion

to sr ecify simple aler ters which are triggered by a

single condition on some field value in a record. The

ALERT function takes as first arqument a name for the

alerter to be created ; as second argument a condition on

-
~ whether the alerter is to be triggered ; and as optional

third and further arguments LISP expressions to do

whatever actions are required . The condition may be any

of the following :

(CHANGE <field name>)

or (<field name> <relation> <field value>)

where <rel ation> is one of EQUA L, GREATERP , or LESSP.

For exam ple ,



_____  ~~~~~~~~~~~~~~~~-
-
~
--
~~~ - - ~~~~~~~~~~--~~~~ - -~~ -- -~~~~- - --- - ----~~~

Page 28 —

(ALERT SCHOOL—CHANGE (CHANGE SCHOOL)

(PRINT AGE))

which creates an alerter SCHOOL—CHANGE to print the value

of the SCHOOL field in any STUDENT record which has just

had its SCHOOL field updated .

If this alerte r is compared with the demons of the

last section , it will be seen that the demon arqumeri t

v a r i able , OLD, and NEW are not used . The arguments of

the accessors used in the alerter are filled in by ALERT ,

which creates a call to DEMON as the following example

will show.

(ALERT HAVER (SCHOOL EQUAL HAVERFORD)

(PRINT AGE))

becomes

(DEMON HAVER (X) (JCOND

((EQUAL (SCHOOL X) (QUOTE HAVERFORD))

(DAISYWRITE “ALERT “ (QUOTE HAVER))

(PRINT (SCHOOL NEW))

)))

which turns into the function HAVER with definition

(LAMBDA (X)

(COND ((OR (STUD ENT X))

(COND

((AND (EQUAL (SCHOOL NEW)

(QUOTE HAVERFORD))

(NOT (EQUAL (SCHOOL OLD)

_________________________ ___ __________________-

~

—— - - - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~ -~~~.‘-- --~~-~~~~~~~~~ - 
_ _

Page 29

(QUOTE HAVERFORD))

(DAISYWRITE “ALERT “

(QUOTE H A V E S ) )

(PRINT (SCHOOL NEW))

) )  ) )  )

The DAISYWRITE expressions which are created by ALERT

tell the DAISY user which alerter has been triggered .

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -



- -

Page 30

Records and Functions in SANDL

In con tras t wi th the LDEMON system w h i c h  h a n d l e s

records consisting of data items , the SANDL data

managemen t system is based on the semantics behind the

DBTG report translated into a more LISP—comoatjble

functional format.

In DBTG there are three basic relations between

objects: the one—to—one relation between records and

their fields , the one—to—many relations between owner

record and the set of records owned , and a many—to—many

relation between records which is accomplished by the

so—cdlled confluent hierarchy in which a record owned by

several records simultaneously in the one—to—may mod e is

used to embody the many—to—m ay relation between all the

owners.

In the SANDL system the first type of relation is

thought of as a function from record to field. The

function has the same name as the field. Since the field

names ace not reouired to be uniaue in the schema, the

fiel d func tion is in fac t a f am i l y  of f u n c t ions f r o m

which the appropriate one is chosen according to the

record class of the argument.

—.----S---—-----— —--— —- - - -— - - -



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
——-  

~~
‘- -—

~~
- — - -----——S —- . 

Page 31

The second type of relation is treated in two ways:

as function from record to owned set with the name of the

record field used as the set accessing function. (This

corresponds to the downward arrow in the diaqram .) It is

al so treated as a function from art owned record to its

owner , in whic h case the owner recor d class is the

function name. There is a possibility of ambiquity

however if a record can be owned be the same record in

two differen t sets. The owner record need not be

immed ia tely above the owned recor d since the system can

automatically refer to the schema to find dfl access chain

from owner to set member .

A particularly good point in favor of the functional

syntax is how well it matches ordinary English language

usage in accessing data. Instead of spelling out an

access chain to the desired data object, the user can

muc h more simply use

field ( record (object))

as in NAME (FATHER (X)) which reads as NAME of FATHER of

X. While this parallelism between Enqlish and functional

no ta t ion mi ght be pain full y obvious , it does pose a

question why a more proqrammatic form of data access by a

cha in  of pointers is not used . Perhaps human cognit ive

data manaqement is much better suited to dealing with

inten tione t processes rather than extensional ones such

as set m e m b e r s h i p .  



-
~~~~~~~~~ - - - ------ - --—

~~
-- ---- — - —-- -- --

Page 32

The many—to—many relation is a hit trickier to

h a n d l e w i t hi n a functional framework. In the

doctor—patient relation shown below , where a doctor has

many patients and a oatient, many doctors all connected

through a confluent record CASE , the best that can be

done is to return the set of patients for the doctor or

the set of doctors for the odtient .

In the above discussion , I emphasize that set names

are simply fields that access sets. For the most part

they are not needed in accessing records exceot in cases

of ambiquity and one—to—many relations .

_ _ _

-

~~

Page 33

I mp l e m e n t a t i o n

This portion of the thes.s provides the

specifications of a system for aler t~ nq on network data

bases. SANDIJ is an extension of an earlier system ,

LOEMON , a data base management system written in LISP

w i t h a capability for monitoring changes in the data by

means of p rocedures which aopear to be c o n t i n u o u s l y

ac t ive , cal led demons .

S ta tement of the Problem

The design of SANDL al lows demons (a lso ca l led

alerters) to be placed on an updatable network data base

management system which has the power of the basic

semantic notions detailed in the CODASYL report on DBTG ,

w i t h o u t any a t t empt to deal wi th soecif ics of

i mp l e m e n t a t i o n . What w i l l be new to LDEMO N is the DBTG

concept of set ownership and the ability to create demons

which moni to r chanqes in the comp osi t ion of a set.

The general bias t h r ou gh o u t this paper has been to

avoid as far as possible any need to refer to sets

through set names , by an in te l l iqen t use of a schem a

which stores a representation of the hierarchy of record

types. Thus , although a set may always be referred to

unambiqously through a field of type SET in the owner

--- - - - - --~~~~~

-
~~~~~~~~~~~~~~~~~~~ 

- -: - 
~ _ _ _  - - - - -

Paqe 34

recor d , it is sufficient to supply the owner record and

the record type name of the owned set of records , if the

rel ation is unique.



,— - - 

I

Page 35

Data Definition Languaqe

The data definition language (DDL) allows the user

to soec~ fy what types of records may be placed in the

data base , with what fields , and what domain (or type) of

field values. In addition , the DDL soecifies set

ownership and set membership of records. In contrast

w i t h  the  s i t u a t i o n  in DBTG , the  DDL of SANDL is dynamic .

In order to inform the data base managemen t system

as well as the demon processor about the current state of

the record hierarchy, a spec ial directed graph known as

the schema is kept in memory and is updated by the DDL.

The schema contains information on all record classes,

t h e i r  f i e l d  names ari d range of va lues , as well  as set

owner — set member relations. In DBTG, one can naturally

construct three distinct sorts of relations between

nieces of data ; a one—to—one relation between a record

and its cons t i t uen t  f i eld s , a one—to—many relation

between an owner record and the set of records owned by

a , and a man y—to—many relation (called a confluent

hierarchy) between records which share owned records

between them .

_ _  _ _ _  _ _  - - -  - -  — - -—
~~~
——-—

~~~~~~

- -



r 
- - __ _ _ _ _ _  

- - -

~~~~ 

-

~~~~~

Pdge 36

The schema is m o d i f i a b l e  and me ans  a re  nrov ided  for

d~~snlayinq it to the user . Saying that the srhema is

m o d i f i a b l e  means  that new record tynes can ~‘e added to

the  data  base w h i l e  the sys tem ~.s c u n n in g  and a d d it i o n a l

fields can be declared for already existing record types.

Changes in the schema will of course he c o ns t r a i n e d  by

the  necess i ty  of no~ de s t r o y i nq  e n t i r e  sets of r eco rds  by

destroyin q their record type .

C r e a t i nq  new record types

In LOEMON a new record type is created by a call to

the function DEF—RECTYPE of the fo rm

(DEF—RECTYPE STUDENT SCHOO L AGE )

in order to define a new record type STUDENT w i t h  f i e l d s

SC HOO L and AGE . SANDL rep laces  t h i s  f o r m  of the  f u n c t i o n

cal l  by adding a rgumen t s  for  the owner r ecord  types and

the type of each field.

For example ,

(DE F— R ECTY P E STUDENT (DORMITORY)  SCHOOL CHARACTER

AGE NUMBER

where DORMITORY is the record type of the only owner

recor d , SCHOOL is declared of type CHARACTER , and AGE of

type NUMBER.



--- - - -~
-

~
-

~
-

~
- 

--- - - - - -  7=
___ 

- - -- —
~~~~~~~~

-—
~~~

-- .-
~~~~
—- -- - -

Page 37

DEF—RECTYPE adds the STUDENT record type to the da ta

base schema and olaces this record in the r e l a t i o n s h i p of

set member to the owner record class DORMITORY. In DBTG

t e r m s ,

- DOR M I T O R Y

STUDENT

Furthermore, selector functions are created corresnondinq

t o each of the f i e l d s SCHOOL and AGE. U n l i k e in LDEMON ,

the function STUDENT, also created by DEF—RECTYPE , is not

d record type predicate but a selec tor function thdt

yields the set of students when applied to a DORMITORY

record.

The syntax of the DEP—RECTYPE function call is

(DEF-RECTYPE <record type >

< l i s t of owner record types>

< f i e l d and type>*

and < f i e l d and typ e> is

<field) <type>

-
—~

-
~~~~- - ---- ~~~~~~~

- 
- - -  -~~ --- ~~~~~~ - —~~-- -

~~~~~


- - — - — -
~~~~~

-- - - - - --— --- --
~~~~~ 

- -- - - - -
~~~~

---
~~

Page 38

whe re  < type>  is chosen f rom the l i s t

NUMBER

CHARACTE R ( w i t h  no l e ngt h  qu a l i f i c a t i o n )

SET

wh i ch may be abbrev iated to NUM , CHAR , and SET.

En the  example  below , th e record type DORMITORY is

d e f i n ed w i t h  some f i e l d  of type SET w h i c h  is to own the

STUDENT records. This is art intentional deoarture from

DBTG and combines  the  r e l a t i o n s h i p  of d a t a — i t e m s  to d

record wi th  t h a t  of sets owned by the  record . If

DORMITORY is cons idered  to be a top—l evel  record  type in

the  schema,  i .e .  a member of no set owned by a ny  o ther

rec O rd , i t s  owner is s i mp l y  the n u l l  set of r ecord  types ,

N I L .  I n t h i s  case the  record type DORMITORY is d e f i n e d

by

(DEP—RECTYPE DORMITORY NIL RESIDENTS SET

NAME C H A R A C T E R )  

-----* ~~~~—-— -  - - - - - - - - -~~~~~ —---~~~~~~~ ~~~— - - - -~~~~~~~~ --- - -



______________ - - - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 39

Data Manaqeynent Language

The da ta managemen t l a n g u a g e (DML) allows the

c r e a t i o n , deletion , and modification of records contained

in sets owned by other records. In addition , f u n ct i o n s

are to be provided that select subsets of records that

meet specified conditions.

Addin g new records

To add a new record to the data base r eauires that

the record type and the owner record be supolied ,

together with the appropriate field values for each field

d e f i n e d for the record type. In other words , the

arquments of the function to do this , INSERT , are the

same as those for GENCONS in LDEMON , except for the

addition of the owner record as an argument. For

example , if DOd is a particular DOCTOR record , where the

DOCTOR record is defined as owning a set of records , an d

PATIENT has been defined by

(DEF—RECTYPE PATIENT (DOCTOR) AGE NUMBER

SEX CHARACTER

NAME CHARACTER

then

(INSERT PATIENT DOC1 20 MALE JONES

will insert a PATIENT record into the set of patients

_ _ _ _ _ ~-~~--~~~~—~~
- - -

- -~~~~~-—~~~ - -- - - --~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
— -- --

Page 40

owned by the DOd record. DOC 1 serves as a uniaue

identifier of some particular DOCTOR record. In this

implementation it is a pointer to the specified record ,

but it can be th ought of as an i d en t i f y i n a key . The

val ue of the INSERT function is the newly created record .

If the record to be inserted belongs to a top—level

record type then the function needs no owner record

a r q u m e n t .

The syntax of INSERT is

(INSERT <record type> <field vdlue>*

I ’
or

(INSERT <record type> <owner record>

< f i e l d v a l u e > *

where there must be as many field values as there are

fields in the record type and they must agree in tyPe and

order w i t h t h e i r d e f i n i t i o n s at the t ime of d e f i n i ng the

record type.

Dele t in g recor d s

A record can be deleted from the data base by the

f u n c t i o n DELETE w i th va lue NIL . When a record is deleted

it is removed from all sets to which it belongs. The

syntax of the function call is simply

- - - - - —--~ - ~~~~~~~~~~~—~~~~~
-

~~
-

~~~~~~~~~~~~~
-- -- 

-~~~~-——-— ---- -- —---- —

Page 41

(DELETE <record))

Up dat ing  r ecords

Values of NUMBER and CHA RACTER fields may be chanqed

by the f u n c t i o n  SET—VAL , with the syntax

(SET—VA L <r ecord> < f i e l d  name > < f i e l d  v a l u e > )

where <record> is any record in the database with the

data  i tem < f i e l d  name> . No owner  record is needed . A

further function , SET—VALUES , chan ges all the fields of a

record , leaving those with (field value> equal to ‘~~~~‘

unchanged .

(SET—VA LUES < record > < f i e l d  v a l u e > *

SET—VA LUES must have as many field values as the number

of fields in the record type.

SET—VA LUES is provided as a convenience  for  c h a n g i n g

several  f i e l d s  of a record at the  same t i m e .

Moving records between sets

In order to move a single record from one set to

another, as for example transferring a case from one

doc tor to another , the function TRANSFER is used , with

the syntax 

--- --.-- - - - - -—-------—~~~~~~~~~ --- - - -_-
~~~-~~~~ --~~~~~~~~~~-- - ---~~~ 

_ _ _ _ _ _ _

Page 42

(TRANSFER <record> <from owner record>

<to owner r eco rd >

Selecting records from a set

Three functions to select a subset of records or

apply a f u n c t i o n to all elements of a set are SELECT,

SELECT—ONE , and MA PSET. Their syntax is

(SELECT <pred icate> <set>)

(SELE CT—ONE <pred icate> <set>)

(MAPSET <function> <set>)

where <set> is a set of records , <pred icate> is a

ored icate of one argument that evaluates to P or NIL when

app l ied to a sinale record , and <function> is d fu n c t i on

or l a m bda exoress ion of one a r n u”~~nt. For examole , if

SOMESET is a set of r ecn~~Th wjt.h a fielr~ ~&AM E of tvoe

CHARACTER ,

(SELE CT (QUOTE (LAMBDA (X) (EQ (NAME X)

(QUOTE S M I T H))))

SOP4ESET

w i l l r e t u r n as i t s va lue t h a t subset of SOMESET whose

NAME s a r e SMITH.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

Paqe 43

SELECT—ONE r e t u r n s  t h a t  un iaue  record which

satisfies the ored icate; if more than one exists, the

value returned is NIL. The main use for SELECT—ONE is to

r e t r i e v e  i tems f rom record types wi th  un iaue  keys .

The function MA PSET applies the function to every

record in the set and returns NIL. It could be used for

its effect, changing the value of some field for every

record in a set, for example.

By applying these functions to sets , exol icit loops

become unnecessa ry  for  t r a v e r s i n g  a da ta  base . This

should be compared w i th  the non—procedural a~~~roach taken

w i t h  the H I - I Q  r e t r i e v a l  l anguage  in Rob Ger r i t s en s

dissertation , which creates an access path for findin g

the requested data . A simple examole using the PATIENT

record type defined above is to find the aqes of all male

patients of a doc tor whose record is DOd . All that is

needed is

(AGE (SELE CT (QUOTE ( LAMBDA ( X )

(EQ ( SEX X)

(QUOTE MALE ) )) )

(PATIENT DOd ) ) )  

—~~~--- - -- - - - -- - — 



_ _  _ _ _ _ _  - - —‘--~~~~~~~~~--

Page 44

Demons

The ideas presen ted  here  go beyond those of LDE M ON

in two orincipal ways. Demons are used to monitor

records within sets owned by other records , and the

scheduling of the processing of demons is more elaborate.

In LDEMON , demons a re  used to t ake  sp ec i f i c  ac t ion

whenever any membe r of d record tyPe has its fields

modified . SANDL adds the  ability of demons to watch for

changes in the set of records owned by a given record

type . In other words , demons in LDEMON a re  s i m i l a r  to

the IFMODIFIED demons of SANDL , while IFADDED and

IFREMOVED demons are completely new.

In LDEMON a demon has a sinale argument variable

which  is bound to wha teve r  record triggers the demon . In

general , demons m o n i t o r i n g  sets bind at least two

acquments , one for the record in the set , the second for

the  record  owning the set.  The one exceotion is that .

too—level records are not owned by any record , so the

DBTG schema

DOCTOR

corcesoond s to a demon a r gu m e n t  l i s t  

--—- -*—-~~-- - - -~~~~~~~~~-- _ -- - - - — -~~~~~~~



P~qe 45

( DOCTOR X)

The decision was made in LDEMON to execute the

action of a demon before the update which tciqqered the

demon . For demons used as aler ters (i.e. without any

effect on the data base) this seems to have been a bad

choice , since the update itself is delayed until all

relevant demons have been checked and those triggered

have been executed . SANDL t h e r e f o r e  d i s t i n g u i s h e s  two

types of demons: what  w i l l  be ca l l ed  fa i l  demons,  and

n o n — f a i l  demons.  A fail demon will be activated

immed iately upon being triggered , while a non— fail demon

waits until after a change to the data base has taken

place. The fail demons can be used to send messages

t h a t ,  say,  an i l leqal  update has been at tempted , or to

enforce data integrity, for example by preventing any

field from chang ing to a value of the wrong type.

Demon syntax

The syntax for creating a demon is

(<demon type> <demon name> <argument list> <body>)

or

(<demon type> <demon name) FAIL <arqumen t list>

(body>)

where  <demon type> is IFAD D E D , I FREMOVED , o r I F M O D I F I E D ,

and < body> is any seauence of LISP expressions.

~Iti~ —-—-———-~ - - - - - - - --~-- - - —---~~ - ---- --- —- —- .- -- - 
_ :~z~~: — --



_ _  ~~~- ~~~--— ~~~~-~~~~-

Page 46

The (arqument list> is either

(<record class> <var iable name>

or

(<record  class> <var iable name> <arqument list>*

To illustrate the use of argumen t lists compare the

DBTG structure

P1 T A L

l

DOCTOR PATIENT

~~~~CASE

j

with the argumen t list

(CASE U (DOCTOR V (HOSPITAL W))

(PATIENT X (HOSPITA L Y)))

Note the two separate bindings of HOSPITAL records to the

va r i ab l e s W and Y. The reason for t h i s is t h a t t he r e is

no way to exclude the possibility of two different

HOSPITA L records lead ing through seoara te ownersh ip

chains to d particular CASE record. If it is essential

that records X and Y be the same , this must be tested in

the body of the demon .

~

-~~~- ~~~ —---- —-——— - -

~- -----~
_ _

- - - -

_ _ _ _ _ --~~~~~ -~~~~~~~~~~~~-~~~—- -~~~~~~~~~~ - — - ----- ~~~~~ _ - -~~~~~~~-- - _ _ -

Paqe 47

The lowest record cldss in the schema is placed

first in the argument list , so the schema is to be read

upw ar ds in wr i t i n q the ac~~ument l i s t .

___________ - - —:
~~~

_ -- ---- ~~~ -. -________________________________ -~--——- .—-—-———~~~~~~~~~~~~~~ ————-.-. .—.-—.--—-——~~~—~~ ---



Page 48

JCOND

The JCOND construction for chan’es which have lust

occurred is carried over from LDEMON in the IFMODIFICD

demon . Only the COND ( the  ordinary LISP “IF—THEN—ELSE”

construction) is meaningful for IFADDED and IFREMOVED

demons , since in these cases there is no distinction to

be mad e between old and new versions of the record.

For the IFMODIFIE E) demon the convention for

distinguishing old versus new versions of a record is to

pr e f i x  the var iable w i t h  ‘— ‘ for old and ‘+ ‘ for new. In

t h i s  way

(AGE —X)

would s tand for  the va lue  of the AGE f i e l d  of the  record

X before  an update . If t h e r e  is no ambiquity the ‘+ ‘  and

‘ — p r e f i x e s  a re  not. needed and the JCOND always uses the

unadorned variable in its test.



p.. —~ -~-:~~ - ---- --~~-- --- -— ---~~—---——-~ - _
_.~~

,_ -‘——.—..--
~~
-‘- - — .--—---------

Page 49

Some examples of demons

If the DBTG schema is

~~~~~~~ OR PATIENT

CASE has a field DIAGNOSIS , and DOCTOR has a field NAME.

An exoression to or m t the name of any doctor who has a

patient who contc-’cts measles is:

(IFMODIFIED MI (CASE X (DOCTOR Y)

(JCOND ((E Q (DIAGNOSIS X) (QUOTE MEASLES))

(P R I N T (NAME Y)))))

However , to pr int the name of any doctor who qets a

patient who has measles is:

(I F A D D E D Al (CASE X (DOCTOR Y))

(COND ((E Q (DIAGNOSIS X) (QUOTE M E A S L E S))

(PRINT (NAME Y)))))

A more compl icated example is to reoort the name of

any deoar tment if the proPortion of female staff falls

below 25%.


~~~~~~~~~~~~~~~~~~ -,-
~~- 

7___-
~~
_

~ —~~~~~~~~~
_ - 

_ 
-~~~~~~~—-- _—--~~~ -—~~- —----- -~~~~~ 

— _ _ _ _

I
Page 50

In this case the schema is

DE PT

EM PLOYEE

DEPT has fields NUM—STAFF and PROPORTION—FEMALE , and

EMPLOYEE has a field SEX. Then the problem is solved by

means of three demons.

Fi r st , the table below gives the changes to

P R O P O R T I O N — F E M A L E  (represented by P) and NUM — S TA F F

(represented by N).

Emolovee

Female M a l e

Add P :~ ((p*N)4.l)/(N+l) P : ( p *N ) / ( N + l )

N :~ N+l N :~ N + l

Remove P : ((p*N)_l)/(N l) P :~

N : N — l  N : s N — l

(IFADDE D A2 (EMPLOYEE X (DEPT Y))

(COND ( ( E Q  (SEX X )  (QUOTE F E M A L E ) )

(SET—VAL Y PROPORTION—FEMALE

(DIVIDE (ADD1 (TIMES

( P R O P O R T I O N — F E M A L E  Y)

( N UM — S T A F F  Y ) ) )



Page 51

(ADDI (NUM—STAFF Y)))))

(- r (SET—VA L Y PROPORTION—FEMALE

(D I V I D E  (TIMES

( P R O P O R T I O N— F E M A L E  Y )

(NUll—STAFF Y ) ) )

( A D D J  ( N U M — S T A F’ F Y ) ) ) ) )

(SET—VA L Y NUM—STAFF (ADD I (NUMSrAP F Y ) ) ) )

(IFREMOVE D R2 (EMPLOYEE X (DEPT Y))

(COND ((EQ (SEX X) (000TE FEMALE))

(SET—VAL Y PROPORTIO N—FEMM~’

( D I V I D E  ( SU ~~l ( T I M E S

(PROPORTION—FEMA T fl

(NUM—STAFF Y)))

(SuB l (NUM—STAFE’ Y)H))

(P (S ET—VAL Y PROPORTION—FEMA LE

(D IVIDE (TIMES

(PROPORTION— FEMAL E Y)

(NUM—STAFF Y)))

(SU R 1 (N UM—STAFF Y ) ) ) ) )

(SET—VA L Y NUM—STAFF (SUB l (NUMSTAFF Y))))

(I F M O D I F I E D  ‘12 (DEPT W (UNIVERSA L X ))

(JCOND ( ( L E S S P  (PROPORTION—FEMALE W) . 2 5 )

( P R I N T  (NAM E W I ) ) )  

“-- --~~~~



-—

Page 52

This  e xam o l e  shows how demons can be used to m oni tor

averaqe , m a x i m u m , m i n i m u m , and count of a set. I E ’A D D E D

and IFREMOVED demons must uodate fields in the owner

record and an IFMODIE’IED demon watches for changes ~n

these fields. 

-~~~~~~~~~~~ - - - -- - -~~~~~~~~~~~ - - - -- ----~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Paqe 53

R E F E R E N C E S

1. Becker J.D. “Reflections on the Formal Description

of Behavior. ” in Representation and Understanding :

Stud ies in Coqn i t iv e  Science , ed. Bobrow , D.G. and

C o l l i n s , A . ,  Academic  Press , N .Y.  1975 .

2. Bobrow, D.G. and Brown , J.S. “Systemat ic

Underst anding : Synthesis , A n a l y s i s , and Contingen t

Knowledge in Specialized Understanding Systems. ” in

Representation and Understanding : Studies in Cognitive

Science , ed. Bobrow , D.C. dnd Collins, A ., Acade m ic

Press , N.Y . 1975.

3. Bobrow , D.C.  and N o r m a n  D. A .  “Some P r i n c i p l e s  of

Memory Schemata .” in Reoresentation and Understanding:

Studies in Cognitive Science , ed. Bobrow , D.C. and

C o l l i n s , A . ,  Academic  Press , N .Y . 1975.

4. Bobrow , D.C. and Raphael B. “New Proqramm~ nq

Languages  fo r  A r t i fi c i a l  I n t e l l i g e n c e  R e s e a r c h . ”

Computing Surveys 6, 3 (September 1974).

5. CODASYL , CODASYL Data Base Task Group , Apr il 1971

Report.

6 .  Cohen, S.F. “ SAN DL : A System for A 1ert~ nq on

-



- - - .- - --~ — - - - - - -—---- - - - — ---
~~~~~~~~~~~~~

--
~~~

--- - —-

Pa ge 54

Network Databases in LISP.” Workin g Paner 76—05—07 , Dept .

of Decision Sciences , The Wharton School, University of

Pennsylvan ia , May 1976.

7. Date , C.J. An Introduction to Database Systems ,

Add ison Wesley, Read ing , Mass. 1975.

8. Dilkstra , E.W. “Guarded Commands , Nondeterminacy and

Formal Derivation of Programs. ” Comm . AC M 18, 8 (August

1 9 7 5 ) ,  4 5 3 — 4 5 7 .

9. G e c rit s e n , Rob “ U n d e r s t a n d i n g  Data S t r u c t u r e s,” PhD

Thesis , Carnegie—Mellon University, Pittshuc qh ,

P e n n s y l v a n i a , 1975.

10. M o r g a n , H.L. “Ev ent senuenced P r o g r a m m i ng . ”

Technical Report No. 119. Dept . of Ooerations

Research. Cornell University, Ithaca, N.Y., Seotember

1970.

11. Morgan , H.L. “An I n t e r r up t  Bdsed Or q a n i z a t i o n  for

M a n a g e m e n t  I n f o r m a t i o n  Sys tems . ” Comm . ACM 13 , 12

(December 1970).

12. Morgan , H.L. and B u n e m a n ,  O.P.B. “Ale r t ing in

Database Systems: Concents and Techniou es . ” W o r k i n g

Paper 75—12—02 , Dept . of Decision Sciences , The Wharton

~

- - -  
~
- - --

~~~~~~~~~~-


Page 55

School , University of Pennsylvania , June 1976.

13. Sussman C. and McDermott D. “Why Conn iv ing is

better than Planninq .” MIL’ Artificial memo 255A (April

1972).

14. Sussman C.J. and Winograd T. “Micro—Planner

Refe rence Manua l , ” Projec t MAC Rep or t , Massachuse t t s

Institute of Technology, Cambridge, Mass ., 1972.

~~~~~~~~~~ -- - -



___ -~~~~~~~

t f t h e  ~- . y  - t M -  ~f ~: v a  h

D at a  Base ~
-
~~~~1 i ~~~~y - i~ - n t  c yst  i -ms  P r oj e c t

D t - f t - n ~-,e Do c: u i - n t at fl C t - n t -r (12) O f f i c e of ~ - v a i P - i i i ch (2)
C - L -I a i f l St a t i o n T n f o i - - n i t i on ?y~~t
~~~ : - . i i r i a , VA 2 2 3 1 4  Cede 637

-- il L - . -~ -n , VA - 2 2 1 1

t 1 f ~ t ’ : . - a i  ~~ - t- . i h  (6) i f i of • . ‘a . l ~~- -~~~~h
1 a , V A  22 2 17 (3 do I ( 2  [P  5 r n  - , I’ ~ t t l l

( 3.  ~- r  St ~
a , -\ 12210

f i n  of ~~-~~ i l  P • If  i i ~~ of “ h IV a ~ 5 ~ - ic h

Pr ~-h V t f h e , (11W -~~o Pr ~~i ch  Offi ce , P n  1

5~~6 (3-~ t h  CL rk St r . -t  1030  5,- n t  (
~L i n  1

Ch I - .~~o , I i i  i S 1 1 ) 5  P o  p a a , IA 9 1 1 6

P w  Y i - i k  2~~~~ i t l f f i i : e  ‘ . ‘:-l 1 P~~~1 - : r i h 1 , ~~~ i . H z y  ( 6 )
/ 1 5  ~ 

— r 1h 1 T ”  i i i  111 (3 , : i - 1  ~~i V ’ ~~ - 1 , f l

- : -~ 1’ k , \Y I - ‘u3 (1 , ‘~~~ ‘ i - _~7
P : 1  on , IC - 0 3 ) 5

‘‘1 r .  -~~. . ~~~~~~ ‘- o -d-.y I ’) f 1 - i ]  •‘
~~

- - c c -h

-
~ i I I ‘ - -  - c  r I - 5

1 - t  f t ’~ 
- ,  

- 
~
‘
~~- :  ~s 2 1 ~~, :-\ , 17

( t ’~~1 - ~ 1)
ii , -

i ’ ~_ _ I  ‘- ‘ ; _ l l  ~~~~ - 1 t j -  - n  ~~~
1 : t c c _ - - r

C- ~~~~~ 14 5 8  2 - h . . - i i  - t - - ‘ • - L _‘ 
- -

- - i  1 ig t  on , VA 22 .17 1 ’ - ‘ - n

- I ‘ n , A - - - 1 - 2

~ r.  }~~. H.  C 1 i - - n i o r  C . c i t a j f l  ( i , r c , 1.

‘- v a l  Sh i p  Pa -p e rch  and N A I ( , ( ( - 1/NI S P 1~~n n J n g  B r , n c h
P. v i  ~ - i  - n t  Cent  or (OP - 91 6D)
( n ~ c i t - i  i o n & ~‘at 1 i  i t  i r s  Dept .  f l f f i ( -e of ( T h i e f  of ~~ v i 1 (l p( i ; i I  l o f l S

‘ i, 1!) ‘ 1 )0 34  U . - L I n i ~t ~~~~~~ hC 0 ~ 50

B . - - n  ‘~~~~1 c  a n  i f  I i~ - r a : y  n d
I - , ~~~~i c  t i D i j i - i t o r  T i i f ~— i  i t  i o n  Sc j i n o  - i - a r c h
1 f t i :. :i  h n  Sy ’ . t l - i S  D iv i n io n  P .c i t g cr s  — Tile S t a t e  5 ’ i v e r s i t y
(c l i  i l  i t ; )  I ~—~9 C l  11 ( ‘0  n I  C

I f t - I ( i i i  - I of v i  I (~ - t i - - S (3 ~/ ~ ui n i  ~-k , ~ I I - - ( 3

~~~~~ i i  h~~ t a , )C ) J  
~30 - i t n : D r . 5 i t y V -s

P r u f - n a o r (~~i c r W i n g
C o l u - l i a U n i v e r s i t y

t . t ~~~~~~~~~~~ 4 n i t i ng

BEST AVAILABLE COPY

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A


