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I. INTRODUCTION

In 1955, four shell types exhibited unusual behavior which involved
the movement of their internal parts. Tnree of these shell - the
20mm M282El, the 20mm T216El and the 3Cmm T306E10 - showed much less
fast mode damping when fired with the M505 fuze! 3. This fuze has a
spherical arming rotor in a cylindrical cavity with small but non-zero
clearances (Figure 1). The fourth siiell - the 8-inch T317 - showed
significant range losses and very large spin decays*. This shell has
several rings held on a central column but free to move with small but
non-zero clearances. In all these cases, small amplitude motions of
the internal parts had significant effect on the parent stell's motion.

Two types of internal parts motion are possible: (1) linear
movements* of their centers of mass relative to the external shell
center of mass; (2) angular motion of their spin axes with respect to
the external shell spin axis. In order that these internal movements
have a significant effect on the shell motion, they must have compouents
at the same frequencies as the shell's pitching and yawing motion,

Thus we have an internal resonance situation, but the amplitude of the
internal movement is bounded. In this report, we will develop the
theory for internal motions that have fixed phase with respect to the
angle-of-attack plane and obtain quasi-linear solutions to the resulting
differential equations. Next, much simpler results will be obtained for
motion which has fixed phase with respect to the plane of the hLigher
frequency component of the pitching and yawing motion. Finally, these
results will be used to explain the observed behavior of the four 1955
shell,

*Hodapp® has derived gemeral equations for this motion but applied them
to the very simple case of longitudinal motion of a mass on the shell's
axis of symmetry.

1. E.D. Boyer, "Comparison of Aerodynamic Characteristice of 20mm HEI
Shell M97 with Fuze M?5 and 20mm Shell T216E1 with Fuze M505,"
Ballistic Research Laboratories Memorandum Report 865, lpril 1955.
AD69003,

2. E.D. Boyer, "Aerodynamic Characteristice for Small Yawe ¢f 20mm Shell,
HEI, T282E1 with Fuze M505 for Mach Numbers .36 +o 3.78,'" Ballistic
Research Laboratories Memorandum Report 918, August 1955, AD77515,

3. E.T. Roecker anu E.D. Boyer, "Aerodynamic Characteristics of 30mm HEI
Shell, T306E10," Ballistic Research Laboratories Memorandum Report
1098, August 1957, AD152952,

4. B.G. Karpov and J.W. Bradley, "A Study of Causes of "“ort Ranges of
the 8" T317 Shell," Ballistic Research Laboratories Report 1049,
May 1958, AD377548.

5. A.E. Hodapp, "Fquations of Motion for Constant Mase Entry Vehicles
with Time Varying .enter of Mass Pogition," Sandia Laboratories
SC-RR-70-691, November 1970,




II. THEORY

The theoretical model consists of two bodies: (1) the external
symmetric shell body with mass my and (2) the internal rotationally

symmetric component with mass m.. The center of mass of the internal

component is allowed to perform a circular motion of radius e normal
to the axis of symmetry of the external body maintaining a fixed phase
angle, ¢€, with the angle of attack plane. The axis of symmetry of

the internal component can cant at a small fixed angle, y, with respect
to the axis of symmetry of the external body. The plane of this cant
angle is now constrained to rotate about the shell axis, maintaining
a constant angle ¢Y with the angle-of-attack plane. If 6 is the roll

orientation an§1e of the angle-of-attack plane with respect to aero-
ballistic axes®, the polar angle of the circular center of mass motion is

e€=ev¢e (1)

and the roll angle of the cant plane is

OY =0 + ¢Y (2)

In Appendix A, the angular momentum of this two-body system is
computed and used to obtain the following differential equations,

P, +1 P =A P

be b Xc ¢ 2 b

- B_|[(B cos 6 + a sin ® ;] Y
N Y Y Jav

- Be (B cos 6e + a sin ee)é]av £ (3)

R e

+
ITle

IE - (A *+ 1h)E - (A, + A DE + 4 (T +E) =0 (4)

6. C.H. Murphy, "Free Flight Motion of Symmetric Missiles," Ballistic
Research Laboratories Report 1216, July 1963, AD442757.
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E=R+ia is the complex angle of attack

be, 1xc are the roll moments of inertia of masses b and c
Itb’ Itc are the pitch moments of inertia of masses b and ¢
B =1 -1, 8

Y Xc pc tc

—
f

B
y Y exp (ieY)

E = BE 0 € exp (iee)

on = be Py * Ixc Pe

and the other symbols are defined in the List of Symbols.

The usual quasi-linear assumption is made that the pitching and
yawing motion when the internal motion occurs has the same epicyclic
form that describes the rigid body motion:

- i¢ i¢
£=K e 1 K, e 2 (5)
where
K. = A, K
J ) ]
=6, +0.t
¢J ¢Jo ¢J

In Appendix B, quasi-linear relations for the frequency shifts
and damping effects i~trcduced by these internal motions are given.

. - . . -1 . _l
A ¢5 ¢jr Kj cj [2 I, ¢jr - Lyo] (6)
. . . -1
K, = A.K. + ¢, S, [2I, ¢, - L 7
= 5Kyt ey 8y (20 6y - L] 7
11




P

P W T DTN s
N

3 g

PN > WV SO,

«:Nwa<“
Frme e vt

e

|
fy H

ot

N, WP

e

Ll

where

- M ie
C., = [ByjY cos ¢Y + B€¢je cos ¢€][e ]j

_ . . . i6
S. = [ByjY sin ¢Y + Be¢j€ sin ¢e][e ]j

>

[] ] —1
A, = [Aq¢j + Apu][ZItd)j - Ly,)

and the ¢jr are the frequencies of the rigid body.

The quasi-linear approximations can be inserted in the rell equation
(Equation 3) and the result averaged. This is done in Appendix C
with the result

bepb + Ixcpc = A9vp pb -¢KS -¢KS (8)
It should be noted® that

¢1r ¥ ¢2r = Lo/l

. (9

Thus 21t ¢j - on is positive for the fast rate and negative for the

slow rate.

Equations (7-8) show that positive Sj's (¢E,4>Y in the first or
second quadrant) can cause undamping of the fast component (Kl)’ damping

of tiie slow component (KZ) and a reduction in the spin rate.

12
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Now 6 can be determined by the definition

ele -t 51
where

~ I\l/z
§ = = (K2 +K2+ 2K cos
IEI (1 2 1 2 ¢)

Thus

W

1
()
ol
@
[N}
1
NLX
E

(1 + (Kz/Kl)ei¢]6—1 dé

2n
f[l + (KZ/KI) cos ¢]8 1 d¢
[o}

N
5

K [§71
1[ ]el

—
L

= K 6-1
) [ ],32

where’
- 1
1 gk 2
1

—
O
—
fa—
i

[(Kl-Kz) E (k) + (K1+K2) E, (k)]

- 1

K
2

—
(o)
—
s
i

" [(Kz-Kl) E (k) + (K1+K2) E, (x)]

4K K
k? = —12

(K +K )?
1 2

7. C.H., Murphy, "Prediction of the Motion of Missiles Acted on by
Non-1linear Forces and Moments,'" Ballistie Research Laboratories

Report 395, October 1966, AD122221,
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and

Ei is tne complete elliptic integral of the i-th kind.

When K1>K2, Equations (13-14) can be approximated by

O 1- 0.36(32/51)3
(s ]e1 K (15)

w

. 0.5 + o.14(g2/x1)3
[ o~
l.(S ]e2 = Kl (16)

When K2> KI’ interchange all 1 and 2 subscripts on both sides of

Equations (15-16).

ITI. FAST MODE LOCK-IN

The preceding section assumed that the e and y motions had constant
phase--that they were '"locked-in'--with the angle-of-attack plane. We
note from Equations (6-8) that the frequency, damping and roll effect

terms for the j-th mode contain $j or &g and thus the effect of the fast

mode is much greater than that of the slow mode. This suggests a much
simpler theorctical model, namely, one in which the ¢ and y motions are
locked-in with the plane of the fast mode. Then Equation (10) is replaced

by
6 = ¢ (17)

Under this assumption, Equations (4) and (5) very quickly yield

1

A¢1 = -ier;I[BYly cos ¢Y + Be&IE cos ¢€][21t$1r-Lx0]- (18)

A&z =0 (19)

kl =AK 4 $I[BY1Y sin ¢ + Beéle sin ¢€][21t$1—on]'1 (20)

k2 = 0K (21)
14
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Equations (3) and (5) can be combined and averaged to yield

bepb ¥ Ixc Pe = Ax Py
- ¢ K1 [BYl y sin ¢Y + Be ¢1 ¢ sin ¢€] (22)

IV. DISCUSSION

The ball fuze is a case where the center of mass motion can occur
but we can assume y = 0 and Py = P, Equations (20-22) become

. - 02 . - . - —1
l(1 Al K1 + ¢1 m, x, %esin¢ [21 ¢ -1 p] (23)
K =1 K 24
2 2 2 ( )
. = . .2 .

IL.p,=Ay Py ¢1 K1 m. X, 4 e sin ¢ (25)

In all flights, l(l remained less than 120 milliradians and no spin-

down moment could be observed.

or ademien .

In Figure 2, kl/K1 is plotted versus Mach number for the 20mm

shell T282El1 with and without the ball rotor. For Mach numbers below 2,
the exponential damping is well determined, but above this Mach number,
considerable scatter occurs. Projectiles whose fuzes did not have the
ball rotor have damping rates that lie close to -7 per second while
those with the rotor have values that are as much as 9 per second
greater (i.e. +2).

I I NS BT TP W =
Y N ) =LY ok > " A 0T TR = s
el A S Ll el R L pEr R P

o

L)
3
e e ———

o,

YTy
el VT

This phenomenon for Mach numbers near 2 can be ascribed to the
action of a locking spring which releases the ball when the shell spin
rate is large enough. For a given twist gun tube and air temperature,
the initia' spin rate is proportional to the launch Mach number.

K2 38 N S
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The appropriate parameters for the T282E1l at Mach number 3.3 are
given in Table 1, For Mach numbers between 2.8 and 3.8, measured K1 falls

between .05 and .12. The observed damping rate discrepancies can be
explained by Equation (23) with values of %e sin ¢€ between 0.09mm and

0.28 mm. These values are possible for the actual tolerances observed
in this shell.

The actual spin histories of several T317's are given in Reference 4
and are repeated as Figure 3. This figure also gives the spin history for
three T347. The T347 shell has the same external shape, mass, and
moments of inertia but no moveable internal components. In all observed
cases, the T317 had : greater spin loss and flew to a lesser range. The
relative decrements between the range of each T317 shell and the average
range of the T347's is given in the figure. Thus a spin loss of almost
70 Hz was observed for a projectile that flew 11% short of its proper range.

Unfortunately, measurements of angular motion were not made. A
range loss of 11% would, however, require an average angular motion
amplitude of 10° to 15°., The shell internal construction is fairly
complicated but can be theoretically approximated by a single ring freely
sliding on a central shaft (Figure 4). The tolerances are quite small
but are sufficient to allow the ring to cant at an angle as large as
.004 radian. When the ring is fully canted, its center of mass is on
the axis of the shell and, hence, ¢ is zero. For simplicity we will
assume that the ring is spinning with the shell. The fast mode damping
rate as given by Equation (20) becomes:

. _ . . . . "1
K o=AK + ¢ (I - T o)y sing [216 - Lp] (26)

The spin equation (Equation (22)) now reduces to

ILPy = Agp Py - ¢1K1(Ixcpb - Itc¢1)Y sin ¢, (27)

For a dynamically stable shell, xl is negative. If ¢Y is in the

first or second quadrant, the second term in Equation (26) is positive
and, hence, K1 should grow to some equilibrium value. This equilibrium

value of K1 can then be used in Equation {27) to give a spin-down moment,

Our theoretical model of the behavior of the T317 is basesd on the
assumption that it has values of Al, vy and ¢Y such that its fast mode

motion grows tc 10-15° and causes the observed range loss and spin-down.

16
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As a check on this conjecture, Equations (3-4) were coded for a
digital computer. Although the complete set of aercdynamic coefficients
are not well known for this shell, nominal values were used and are
given in Table 2.* Figures 5 and 6 give the yawing motion and spin for
the completely rigid shell (y=0). The yawing motion shows the usual
small amplitude slow mode limit cycle which is frequently observed.

Computer runs were then made for y = .004, ¢Y = 45°, Figure 7

shows a rapid growth of the fast mode angular motion to about 18° and

a decay on the down leg of the trajectory. A range loss of 11% was
computed and a large spin-down is shown in Figure 6. The computed
spin-down is as large as the observed spin-down but different in detail.
Thus we would assume that the actual angular motion grew much slower than
our computed motion but reached a much larger maximum value.

In summary then, the theory gives good qualitative agreement with
the observed behavior of the T317. In view of the incomplete information
on its aerodynamic properties and angular motion, better quantitative
results can not be expected.

V. CONCLUSIONS

A theory has been developed for the motion of a projectile with
a moviug internal component that performs either a forced center of
mass motion or a forced preccssion of its spin axis.

This theory gives a good explanation of the observed reduced
damping of shell with a ball rotor in its fuzes and the reduced range
and rapid spin-down of a projectile with a ring on a central column.

VI. ACKNOWLEDGMENT

This theoretical work has benefited greatly from discussions with
W. Chadwick and W. Soper of Naval Surface Weapons Center/Dahlgren
Laboratory, H. Vaughn of Sandia Laboratories, and R. Kline of Picatinny
Arsenal. The author is particularly indebted to J. Bradley of BRL
for his critical review of the analysis and his programming of the
necessary numerical calculations.

*Since a nonlinear Magnus moment was used in the numerical work,
Equations (6-7, 26) no longer apply but quasi-linear forms of
these equations can be obtained by the usual techniques.®
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LIST OF SYMBOLS*

(1/2)p saZVC2
p

(1/2)p S82VIp Gy + (L /me?) C| ]
pa o

(1/2)p SL2V[C, + G, - (I,/m?) C ]
q a a

(1/2)pS2Vv2 Cy
a

(ByjY cos ¢Y + B€$je cos ¢€)[ele]. ,» j = 1,2

J

roll damping moment coefficient, Equation (A39)
lift force coefficient, Equation (A41)

Magnus moment coefficient, Equation (A40)
damping moment coefficients, Equation (A40)

static moment coefficient, Equation (A40)

*In this List, the words "projectile,'" "body" and "internal component"
are used in the sense that the projectile consists of an extermal symmetric
body and an internal symmetric component.
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LIST OF SYMBOLS (Continued)

unit vectors in the nonrolling aeroballistic system,

gl along the body's axis of symmetry

unit vectors in the internal component's coordinate

system, 31c along the internal component's axis of
-+ .

symmetry and e3c normal to gl, Equations (A23-A25)

2n i(0-¢.) .

e d¢ , j = 1,2
(0

A
27

complete elliptic integral of the i-th kind,
i=1,2, with modulus k

axial and transverse moments of inertia of the
projectile

axial and transverse moments of inertia of the
body, Equation (A20)

axial and transverse moments of inertia of the
internal component, Equation (A31)

tength of the j-th modal arm, j = 1,2

reference length
angular momentum vector of the projectile

angular momentum vector of the body and internal
component, respectively

I I

xb pb * XC pc

the mass of the projectile, my +m

mass of the body
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LiIST OF SYMBOLS (Continued)

mass of the internal component

components of the aerodynamic moment vector in the
nonrolling aeroballistic system, Equations (A39-A40)

components of the projectile's angular velocity in
the missile-fixed coordinate system, Equation (Al)

components of the projectile's angular velocity in
the nonrolling aeroballistic system, Equation (A4)

&b’ the roll rate of the body

éc + é, the roll rate of the internal component

q + ir

distance of the body submass dm from the IS -axis,
Equation (A12) 1

vector from the center of mass of the projectile to
the center of mass of the body, Equation (A8)

vector from the center of mass of the body to the
submass dm of the body, Equation (Al2)

distance of the internal component submass dm

from the glc-axis, Equation (A29)

vector from the center of mass of the projectile to
the center of mass of the internal component,
Equation (A9)
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LIST OF SYMBOLS (Continued)

vector from the center of mass of the internal
component to the submass dm of the component,
Equation (A29)

reference area

L j=1,2

(BYj y sin ¢Y + Be$je sin ¢€)[ele]J

time

magnitude of the velocity vector

missile~fixed coordinates, with the x-axis along

the body's axis of symmetry, the y-axis initially
pointed down and rolling with the body and the z-axis
determined by the right-hand rule

> > -+ .
el-component of rb, KB and rc, respectively

->
e _-component of R
1€ c

angles of attack and sideslip in the nonrolling
aeroballistic system

the cant angle: the angle (assumed small and
constant) between the axis of symmetry of the
internal component and the axis of symmetry of the
body

BYY exp (16Y)
lg]
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LIST OF SYMBOLS (Continued)

1 .
—_— .- . K)J)E (K], = 1,2
" [(KJ K3_J)El(k) + (K1+ 2) 2( )], 3

J
¢j = ¢jr: }J = 1,2

€y * G the nondimensional radius of the circular

motion performed by the center of mass of the internal
component about the axis of symmetry of the body

mC
(e
(T-%) €

Be 8 € exp (162)

the orientation angle of the angle-of-attack plane

with respect to the aeroballistic axes (6e16=£);
in most relations, 6 can be approximated by ¢1

the orientation angle of the cant plane with respect
to the aeroballistic axes

the polar angle of the circuiar motion performed
by the center of mass of the internal component
about the axis of symmetry of the body

(Aq ¢j + Apa)/(ZIt ¢j - Lyp), the j-th damping rate

(kj/Kj) for a rigid projectile, j = 1,2
é + i;, the complex angle of attack

air density
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LIST OF SYMBOLS (Continued)

the polar angle in the 32-33 plane of the body
submass, Equation (Al12)

the polar angle in the ch-ésc plane of the

internal component submass, Equation (A29)

¢jo + éjt’ the orientation angle of the j-th modal
arm, j = 1,2

initial orientation angle of the j-th modal arm,
j=1,2

frequency of the j-th modal arm, j = 1,2 (it is

assumed that 5 >$ , that is, the l-arm is the fast
arm) 1 2

frequency of the j-th modal arm for a rigid
projectile, j = 1,2

eY-e, assumed constant

ee-e, assumed constant

¢2_¢1

angular velocity of the projectile, Equations (Al, A4)

angular velocity of the missile-fixed coordinate
system, Equations (A2, A4)

angular velocity of the nonrolling aeroballistic
coordinate system, Equations (A3, AS5)
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3 Subscripts

av

[ = [ [ 14

b,c body, internal component

X,Y,2 vector components in the nonrolling aeroballistic
system

Special Notation

. . -> >
a + ib complex representation of the vector ae2 + be3

; ) d( )/dt

-4

wmze

T
prionde
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APPENDIX A. DERIVATION OF EQUATIONS OF MOTION

A missile-fixed coordinate system can be defined with x-axis
along the missile axis of symmetry, z-axis initially pointed down and
rolling with the missile, and a y-axis determined by the right-hand
rule. If the angular velocity of the missile in these coordinates is

6= (p, q T) (A1)
the angular velocity of the coordinate system is

8= (0 q 1) (A2)

For the motion of symmetric missiles, a much more convenient co-
ordinate system is the aeroballistic system, which pitches and yaws
with the missile but has zero roll rate. Its angular velocity vector
in missile-fixed coordinates is

d=(0,q, 1 (A3)
Transverse components of a vector in the nonrolling coordinates will

be identified by tilde superscripts. In aeroballistic coordinates,
the three angular velocity vectors assume the form

< -+ - > ~ >
b=QR.=pe +qe,+Te, (A4)
> ~ ~
Q=qeé +18 (AS5)
2 3
> > -> . : :
where e, e,, e, are unit vectors along the aeroballistic axes,

We now consider the projectile to consist of its external
symmetric body with mass my, and an internal symmetric component of

mass m_ which is free to move perpendicular to the body's axis of

symmetry. The axis of symmetry of the internal mass is assumed to
cant at constant angle y with respect to the body's axis of symmetry
and the plane of this cant angle is assumed to maintain a constant
phase angle ¢Y with the angle-of-attack plane. If 6 and eY are the
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orientation angles of the angle-of-attack plane and the cant plane,
respectively, then

BY =0 + ¢Y (A6)

The motion of the center of mass of the internal component will
be assumed to be a circolar motion of amplitude fe and constant phase
angle ¢e with respect to ithe angle-of-attack plane. If 6e is the

phase angle of this center of mass motion, then
6e =0 + ¢e (A7)

With respect to the body-plus-internal-component center of mass, both
the body and the component are performing circular motions with radii
zeb and zec, respectively. The vectors locating these two centers

of mass with respect to the projectile center of mass are

+> -+ -> + .

T, =X e ¢ zeb (e2 cos ee + e, sin ee) (A8)

-+ -> -+ -+ .

T, =X, e - Zec (e2 cos ee + e, sin ee) (A9)
Xy My +X M = 0 (A10)

where

"

& = M, e/m

™
H

my e/m

m

My * e
The angular momentum vector of the body, tb’ can now be computed
from its definition® in terms of a large number of small submasses,

8. Herbert Goldstein, Classical Mechanics, Reading, Massachusetts,
Addison-Wesley Publishing Company, Ine., 1950.
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dm, with position vectors ;b + ﬁs .

Ib = J(?t + Kb) X (?5 " ﬁﬁ) dm

wﬁ”%+1@x@m (A11)

The rotational symmetry of the body can be best exploited by
expressing the position vectors of the submasses in cylindrical co-
ordinates:

A A -+ »> .
ﬁb =X e +Ty [e2 cos ¢b + e, sin ¢b] (Al12)

The rotational symmetry implies several useful integral relationships:

I % T cos ¢ dnm = I %, T, sin ¢, dm =0 (A13)
[ §§ sin ¢, cos ¢, dm =0 (A14)
[ §§ cos? ¢, dm = [ %g sin ¢, dn = (1/2) I 12 dn (A15)

Since the body is spinning with respect to the aeroballistic axes, it
should be emphasized that &b is not zero, The derivatives of Ty and
Y

Rb can, however, be easily computed using the relation

zj = % X 'éj- (A16)
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LTy = - 2 €y 0 (e2 sin 6e - e, cos ee) + 8 X T, (A17)
3 A +
Kb = -1 6 (e, sin ¢b - €, cos ¢b) + B x ﬁb (A18)

The first cross product in the angular momentum equation
(Equation (All)) can now be computed from Equations (A8) and (Al17) and
simplified by neglecting terms involving e% .

-+ + > > .
TLXTy =X Ly 8 (e, cos 6_ + €5 sin 6 )

-+ -+
T X (3 X rb) ¢

->®

=-X 2¢g (qcos 6 +Tsinbd ) e
-~ 2 . ->
+ (q Xy - X, &g 6 cos ee) e,
~ 2 [3 . b d
+(rx2-x te 6sing) e, (A19)
The integral in Equation (All) can be simplified quite easily to a

familiar form. This is (ue to the fact that the aeroballistic axes
are normal axes of inertia for the body.

[(Kbxﬁb)dm=$b 1,8+ lbe (Sxib) dn

> -+
e e

. - ~ ~
=ty L€ *Iy (e, +r 3) (A20)
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where

Iy = I §§ dm

I, = I (x2 + (1/2) T}) dn

Equations (A19-A20) can now be used to compute the angular
momentum of the body from Equation (All):

(A21)

where
be = pb be + Be € (q cos ee + T sin ee)
.. =@ 2 § 6
Lop = @ (Tgp + m, Xg) + B g 8 cos 9,

e
2

!
-

-~ 2 M .
(Itb +m xb) + BE € 6 sin 6E

The angular momentum of the internal component can be computed
in a similar way

T =m T XT_ + I B xR dn (A22)
[ c C C
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The integral in Equation (A22) can best be treated by the introduction
of axes that pitch and yaw with the internal component. These axes can
be selected so that they are normal axes of inertia for the internal
component. For small cant angles (y < 0.1), unit vectors along these
axes can be defined by the followi-g equations:

-+ > -+ -+ .
o= Y [e2 cos eY + e, sin eY] (A23)
+ > > > .

€ =~ Y € + €, cos eY + e, sin eY (A24)
> -> +

e,. = - ¢, sin eY + e, cos eY (A25)

The derivatives of these unit vectors can be computed in terms of 6
and the derivatives of the aeroballistic unit vectors.

> . -+ + -+
= - i - A26
€l 6y [e, sin eY e, cos eY] + 8 X e . (A26)
> e . + +
€ = - 8 [e2 sin eY - e, cos ey] + 3 X e, (A27)
; ;
-+ . > -+ >
€. = - 8 [e2 cos eY + e, sin eY] + §x € (A28) §

b pa o2 S IR

The position vector of the internal component's submasses can now

be given in cylindrical coordinates and the je unit vectors.,

sin ¢ ] (A29)
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The derivative of this vector is somewhat mcre complicated than the

derivative of since a term involving the precession rate, 8, is
present.

R = ¢ (e i e o )
¢ " c ¢c €,. sin ¢c - €3, COs ¢c

M A ~ -»>
) . . N
e~{[y x, sin eY + I sin (¢c + eY‘,]e2

A -~ ->
- [y X, cos eY + T, cos (¢c + eY)]es}

> >
+ AXR (A30)

The integral in Equation (A22) can now be computed in a similar
fashion as was done for the integral in Equation (All) since symmetry
conditions like Equations (A13-A15) apply. An additional term in-
veiring the precession rate, 8, must, of course, appear.

I E XR dm= $ I. ¢
c c ¢ "xc 1c

. -> > -> . .
+ 8 [Ixc e, *y (Ix - Itc)(e2 cos eY + e, sin ey)J

c

+ j’ KC X (& X Kc) dm (A31)
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where
- 12
Ixc = I rc dm
- $2 22
Itc = I [xc + (1/2) rc] dm

The integral on the left side of Equation (A31) can easily be handled
if the unit vectors along the normal axes of inertia of the internal
component are used.

]chcnxﬁc)dm=n

+ 1, 8 (A32)

i
~

—

=i

where

->
njc=§- L

Since the first cross-product in Equation (A22) can be handled
by an equation similur to Equation (A19), Equations (A31-A32) can be
used to yield the angular momentum cf the internal component in the

aeroballistic axes.
L]

(A33)

[ 2%

> >
= + ~ + |~
tc Lee €1 * Lye & * Tge &
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where

Lxc = Ixc P+ (Ixc - Itc) y (q cos eY + r sin eY)

+ Be £ (q cos eE + T sin ee)

= 2y q + os 6
(1 +mcx)q Byyc y

L~
yc tc c

+
Be ] ec cos eE

L+ = (I

2y 1 B sin 6
zC moxy) T BY Y

tc

Equations (A21) and (A33) can be added to yield the total angular
momentum of the projectile:

+
L=L e +L. e +L.e (A34)
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where

L. =L + (I

. X0 ¢ Itc) y (q cos eY + r sin ey)

x
. . % e
+ Be e (q cos ee T sin ee)

L. =I,q+B ycos8 +B §c¢cosé
y Y Y € €

L-=I_ T +B ysine +B 6 ¢ sin 6
Y Yy e €

X0 xb Pb * Ixc Pe

=
t

u
-
+
—
[nd
O

-+
o
ofi
+
=)
[g]

ted
(o ]

tb

The differential equations for the angular motion can now be
computed in the usual way.

f =z Lx e, + L; ;2 + L; 33 + 3 X t
. =M o +M.-o + M & (A35)
X 1 y 2 z 3

The roll equation is obtained from the first component of
Equation (A35):

L +B (Gsin® - % cos 8 .
x* B @ y VY
+ Be 6 (q sin e€ - T cos ee)e = Mx (A36)
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Since our primary interest in the rolling motion is in its averagc
behavior, x can be replaced by its average.

. 3

Clay = Lxo * Tup Po * Ixc Pe (A37)

The transverse angular motion equation is obtained by multiplying
the third component of Equation (A35) by i and adding the result to
the second component:

c i I .= ~ iM~ A38
I, Q- il Q+T+E=M +iM (A38)

where

1
n

B i 6
y Y XP (i Y)

E = B€ 8 ¢ exp (i es)

The usual linear aerodynamic moment can be written in the form®

rex
e

Frime e

s
S s
PRNY oAV

k5

M o= (1/2) p S 2 v2 Czp (p, £/V) (A39)

4
F

Liabre o 5

b N .
2 51 . - 2 s

i M; + 1 ME = (1/2) p S ¢ V (pb L/V) CM i CM E

) po o
ki
7
Q§§ +Cy (/W) -1ig, (& 2/V) (A40)
L q &
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where

t=8+4ia= complex angle of attack

A good approximate relation between Q and £ is®

iQ=£+ = C & (A41)

The small 1ift term can be neglected when we use this relation in the
roll equation, but that term does have a damping effect on the complex
angle of attack equation. Equations (A39-A4l) can now be used to
write Equations (A36) and (A38) in their final forms:

T Po * Txe Pe - Azp Pp * BylEB cos By v @ sin eYi]av Y

™
i

. 2 L
+ Be[% (R cos ee + o sin Bei] 0 (A42)

av

I, ¢ - (Aq + iLly)E - (A, + iApa) E+i (P+E)=0 (A43)

where
- 2
A2 = (1/2) p S 2% V CQ
p p
= 2 - 2
Aq (1/2) p S ¢ V[CM + CM. (It/m 24) CL ]
q a a
- 2
A = (1/2) p s V2 G
a
= 2 2
Apa (1/2) o S ¢ V[pb CMpa + (on/m 24) CLa]
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Although Equations (A42-A43) were derived for a canted internal
component precessing with the angle-of-attack plane, they can be

applied to a canted component that is fixed with respect to the body
of the shell. For this case,

6= p, and ¢ = 0 . (A44)
pc = Py (A45)

Thus Equations (A42-A43) also are valid for the motion of a shell
with mass asymmetry.

49




N5 AL S A TINLY g S 4

PR W

-

b

%3’!‘ t‘—"fﬂ;’%& - = 3 m“}i

IR

ATPENDIX B. QUASI-LINEAR SOLUTION OF PITCHING AND YAWING MOTION
The quasi-linear approach assumes that the actual angular motion
can be approximated over sections of the trajectory by the epicycle
solution of the linearized equation with constant coefficients.

Thus

g

- Klei¢1 . Kzei¢2 (B1)

by = 05t 454

Equation (Bl) can be substituted in Equation (A43) and the small terms

involving Kj omitted:

.2 . L[] *
It(—Kl¢1 +2i¢ K)

LSRG ily) (K + 1K $)

(A +1iA ) K
A

A

Al s Bye iy () ol (B2)

]}

where ¢ = ¢2 -¢1 and {} is the same expression as on the left side

of Equation (B2) with the 1 subscript replaced by a 2 subscript.
This second term on the right side of Equation (B2) is periodic

with an average value of zero while the left side is constant. We
therefore have to average the first term on the right side to obtain
its contribution to the quasi-linear frequencies and damping rates.
eY and 6C in T and E respectively can be computed from 6 using the

definition

eie E/G

-1/2

[K1e1¢1 ‘ K2e1¢2][xf + KZ + 2K X cos 6] (B3)
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When exp (i6) is multiplied by exp (- 1¢ ), we see that the product

is a periodic function of $.

Now o

[(eie)'e'iellav . E%r'f (18101 g3 )

v
+
[
©-
y—
S
=3
o
[
~~
e+
b=
—
~—r
(=%
-S>
~
[38)
=

2 e N T N .

“ERS S 451 2 B e s Ll L L e
. M R g ST T T N7 o) &
RV S A . DAY #.13 st el

= i$ [e®] (B4)

. . . . X 2w
[(he™®) e 1] =4 [dbe?®e™191]

+

2m
$1J[‘(e‘°)'e‘1¢ld$ /2%
[o]

1o 16
17 [e ]l (B5)

. 7 100
j i ET‘L/P

Equations (B4-B5) can be used in averaging Equation (B2) and the
result separated into real and imaginary parts:

where

B T T T Y TS YN, n v —
"ﬂ*‘ P, o e vt osa e e L ki
P B s an o L N < - o A .

e

I 2-L-C|<'1'+A=o B6
¢ 9] ( K8 A (B6)

TR

| N o
i o T AR i
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e
[

AK +¢ S [2I.é - L
11 ¢1 1[ t¢1 x0]

where

(@]
H

s i6
[BYjY cos ¢Y + B€¢je cos ¢e][e ]j

wn
H

[Bij sin ¢Y + Beijs sin ¢€][ele]j

B . I
Yj xc'c

-1

>
1]

i [Aq¢j + Apa][21t¢j - onl

In a similar fashion, the frequencies and damping rates for the

second mode can be derived.

It&s;—(L -C K)é, +A =0 (B8)
(B9)

Let A$j = $j - $jr
body consisting of the external body and the internal component.
Equations (B6) and (B8) become

where éjr is the j-th frequency of the rigid

-2 . . M
I, (¢jr + 2 ¢jrA¢j) - L (¢jr + A ¢j)
+ C; K.71 4. +A =0 (B10)

Thus .
Ap, = —L L JT (B11)
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APPENDIX C. QUASI-LINEAR SOLUTION OF THE ROLL EQUATION

The average of the periodic y-term in the roll equation (Equation
(A42)) can be obtained from the following relations*:

i[(9-¢j)+¢Y] i[(¢j-9)-¢Y]

. _le e
[sin (eY-,-Bj)]av = " av
= [ele]j sin ¢Y (C1)
1 : ¢ -i8
. - Y
[B cos eY + o sin ey]av = R{E e }av

[0, K sin (8,4 ) + ¢ K sin (8.-0 )],

. i@ . i0 )
;\\
(¢1K1{e ]1 + ¢2K2[e ]2) sin ¢Y (€2)

5( cos & + a sin 6 “(8 sin & - « cos 6 )
[6(B ¢ y y)]av L(8 Y Y)

- B sin eY + 0 COoS ey]av
-i8

- Y
1{¢ e }av

12 ; - 52 i -
[¢1 K1 sin (GY ¢1) + ¢2 K2 sin (GY ¢2)]av

el®1 432k [eielz)sin 0, ©3)

12
(67 K [

Equations (C2-C3) and similar relations for subscript e can now be
used to average Equation (A42)) which reduces to

I P +1 P =A P -¢6KS -6¢KS (C4)

*For the ¢'s of this report,‘//;i(6"¢l) d$ =‘//;i(¢1—6) s
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Note that the spin moment depends on y sin ¢Y and e sin ¢e , the
i

out-of-plane components of ye ' and ce ° . Moreover, only the out-
of-plane components appear in the damping rate equations (B7) and (B9).
If S1 and S2 are positive, their effect is to undamp the fast (Kl) mode,

damp the slow (K2) mode and reduce the spin rate,
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