AD37 186 NAVAL ELECTRONICS LAB CENTER SAN DIEGO CALIF F/6 5/2
COMMAND CENTER INFORMATION SYSTEM (CCIS) FUNCTIONS AND CAPABILI--ETC(U)
NOV 76 D L SMALL, D O CHRISTY
UNCLASSIFIED NELC/TD=-498

[
f r|; >,;||.
Lo L'l

3

NELC / TD 498

ApAO037146

Technical Document 498

COMMAND CENTER INFORMATION SYSTEM (CCIS)

Functions and Capabilities

DL Small
DO Christy

10 November 1976

Research and Development,March 1974 to November 1976

Prepared for:
Naval Electronic Systems Command
Command Control Division, Code 330
Washington, DC 20360

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

NAVAL ELECTRONICS LABORATORY CENTER

San Diego, California 92152

|
L

86Y 4l /J13N

Ciadae > e

W

Lo

T

TR T TR

‘&7.~.~

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NELC Tachnical Document 498 (TD 498)

2. GOV ACCESSION NO

'1._

3_:__RECIPIENT'S CATALOG NUMBER

1T - w/,

4. TITLE (and Subll!ll) -
o (e e fr

5. TYPE OF REPORT & PERIOD COVERED

Research and Pevelopment 7 - " «
March 1974 to November 19764

| COMMAND CENTER INFORMATION SYSTEM ((‘ClS) ot
H Functions and Capabilitics o ; ‘

16. PERFORMING ORG. REPORT NUMBER

7 AUYHO_WA‘) T e R T D e -Or:GONIRAGI QR GRANT NUMBER(s)
4
DL Smau/ 1 / "’,} ____w,_,_:_ T et)
DO Christy ! /,,, } P . g NS T ey o
Jre A = 4 [l (wewef e A T - .

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Electronics Laboratory Center
San Diego, CA 92152

10. PnodnAM !LEMENT PROJECT TASK
AREA & WORK UNIT NUMBER

62721N; F21211; XF2121 1002/
XF21211001 (NELC N713)

11. CONTROLLING OFFICE NAME AND ADDRESS j A
-

P2 REPORT DATE
/10 November 1976

Naval Electronic Systems Command (Code 330) el
Washington, DC 20360

13. NUMBER OF PAGE} Yol
14 _.&» /| et IL

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

15. SECURITY CLASS” (o:‘m. npn/lr)

Unclassified

15a. DECL_ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and {dentify by block number)
Shipboard computers Magnetic disks
Computer systems hardware Data links
Computer memories Relational data management
Serial access computer storage Extensible query languages
Random access computer storage

20. ABSTRACT (Continue on reverse side If necesaary and identify by block number)

1200-baud communication line, a buffer memory, an interface processor,

which is data manipulation. The buffer memory provides buffering betwe
memory) and the data processor.

The Command Center Information System (CCIS) provides a question-answering facility for relationally
organized Navy data bases. The system consists of a query (user) processor, connected to a data processor by a

between the interface processor and buffer memory is exercised by the data processor, the principal function of

and bulk storage. Data-flow control

en bulk storage (currently a disk

EDITION OF | NOV 65 IS OBSOLETE
S/N 0102.LF 014.6601

DD 73R’ 1473

UNCLASSIFIED

— IR TSPV SR ToN

SECURITY CLASSIFICATION OF THIS PAGE m.n Det

\
1.4
e

i

m—

e

R Y R T T TR

i

WA

G

N o Pt G b

2

TN AN Y T

I T T YT T
R . .

UNCLASSIFIED

SECURITY CLASSIFICATION OF TH{IS PAGE(When Data Entered)

The processing organization is developed as follows: principal processing of the input user statements, which
are in a form of extensible English, is performed by the query processor which provides the dialog with the user and
parses the English statements. The query processor translates the parsed statements into an action sequence which, in
turn, drives the data processor in its manipulation of relations and records or which updates the dictionary of functions,
vocabulary words, and relations stored on the query processor’s floppy disk.

The data processor has control over the disk-data management, stores and retrieves data as needed by the query
processor, controls the interface processor, and loads the programs and data structures for both the user and interface
processors. Special functions are available for relational data management such as mapping, mapping-composition,
creating and deleting relations, creating, deleting, and replacing rows of a relation, projecting, prime-symbol mapping,
and search relation, for memory management such as page and logical record management for buffer, disk, and local
memory, and for scheduling and control. Special instructions are available to isolate the access to data (potentially
useful for maintaining data security), for conditional jumps to a cell (to aid in implementing thc scheduling monitor
concept as available in Concurrent PASCAL), and for expanding and compressing data retrieved from and stored on
the disk, respectively.

In operation, the query (user) processor looks up words in the user’s dictionary by accessing a highly portable
auxiliary memory, such as a floppy disk, through double hashing techniques. A word identifier is returned when the
words are found. A speller looks up words in the dictionary which may have been misspelled by the user.

When a statement has been found in the input to the query processor, it loads, from the floppy disk, action
descriptions for each of the key words found in the pruned parsed statement. A sequence of action statements is
transmitted to the data processor where their execution provides a final result, such as one or more relations. The
resulting record is transmitted to the query processor for format control, display control, and display. The query
processor can also act as a text editor for the query statements.

The interface processor operates like a data-transformation unit. Only a simple syntax is processed by this
processor and its principal functions are to recognize data structures of the retrieval system and to relate the incoming
data with the appropriate records in the retrieval system. Finally, it writes the data onto the buffer memory for

final disposition by the data processor.

By architecturally partitioning the CCIS into three processors, each can be organized for its specialized inter-
face (the user, bulk data storage access, and other computing systems). The interface and data processors and bulk
storage must be physically colocated because of their high-speed communication requirement. Since the query proces-
sors communicate with the data processor at a lower data rate, they can be located at remote network sites without
degrading system performance.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

i

G W AR WA NS NS N TS S0 S e

o

o v g YR AR s

ACKNOWLEDGMENT

The authors thank Mr Henry Gok and Mr Jack Pigniolo of the Communications
Processing Division, NELC Code 3200, and Drs Frederick Thompson and Bozena Thompson
of the California Institute of Technology for their continuing contribution to the develop-
ment of the Command Center Information System.

ADMINISTRATIVE INFORMATION

This work was performed by members of the Communications Processing Division for
the Naval Electronic Systems Command, Code 330, under Program Element 62721N, Project
F21211, Task Area XF21211002/XF21211001 (NELC N713). This document was approved

for publication 10 November 1976.

e e i e &

e A . s, K

R

CONTENTS

INTRODUCTION . . . page 3

INFORMATION STORAGE AND RETRIEVAL SYSTEM PROCESSOR FUNCTIONS . . . 4
The query (user) processor . . .4
The data processor . . . 6
Interface processor . . . 11
Auxiliary memory system . . . 11

REFERENCES . . . 14

ILLUSTRATIONS

Command Center Information System block diagram . . . 3
Query (user) processor block diagram . .. 5

Data processor hierarchy of functions . . . 7

Media Independent Memory Controller (MIMC) . .. 10
Diablo disk-drive auxiliary memory system .. .12
Combination controller and buffer memory . . . 12

[Y B N

TABLE

1 Information Storage and Retrieval (ISAR) functions . .. §

e

oy

b o

i

INTRODUCTION

\\)fhis document details the Command Center Information System (CCIS), a new
architectural concept for Navy Information Storage and Retrieval (ISAR). The system con-
sists of a query (user) processor, connected to a data processor by a 1200-baud communica-
tion line. a buffer memory, an interface processor, and bulk storage (dg-H7.

The architecture design features a functional separation of translation of natural or
formal language queries into data retrieval, update, and processing commands from the
execution of these commands in a back-end data processor. In this manner, query translation
and command execution are carried out by separate processors in a manner conceptually
similar to the Bell Telephone Laboratories front-end, back-nd processor system.

Updating of rapidly changing data is performed in a third processor. Communication
between processors or between processors and disk storage (except between the user proces-
sor and the other processors) is accomplished, first, by requesting data transfer via the
controller of a four-port buffer memory and, then, by actually transferring data from disk to
buffer and from buffer memory to processor (see fig 1).

QUERY
(USER) BULK
PROCESSOR STORAGE
1200
BAUD
NTDS
DATA NTDs BUFFER FAST INTERFACE
PROCESSOR FAST MEMORY PROCESSOR
~7 A}
/ \\
// \
/ \
/ \
NTDS OTHER DATA
SYSTEM (SHIPBOARD) SYSTEM(S)
WWMCCS
H6000

SYSTEM (SHORE)

Figure 1. Command Center Information System block diagram.

1. Canady, RH, et al, ““A Back End Computer for Data Base Management,” Communications of the Association
for Computing Machinery (CACM), October 1974

sadGatde

b

Implementation of the architecture depends upon the use of the latest microproces-
sor technology, query translation, and data retrieval. Update and processing command
execution will use special microcomputers whose instruction repertoires are specifically
designed to optimize execution of such commands. All buffer memory-to-processor com-
munication is via high data-rate input and output channels.

INFORMATION STORAGE AND RETRIEVAL SYSTEM PROCESSOR FUNCTIONS

Early architecture implementations for this ISAR system will use a query and update
language with limited syntax: however, language-defining facilities. a natural language parser.
and a semantic interpreter will be implemented so that a language with a richer syntax and
extension facilities similar to those implemented in Thompson’s Rapidly Extensible Language
System~ can be added easily later. The latter will permit addition of new vocabulary ele-
ments and new data relationships by the system user (see the sample query session in NELC
Technical Note 2782, Initial Command Center Information System Capability, S September
1974, by DL Small and DR Duke, for a potential Navy application).

Thompson’s system also features optimization of relational data-base retrieval.>
Thus, queries are optimized when they require a search for one or more specific elements in
a class (set of elements with a similar characteristic, such as all ships), or when they require
a search for the image of a class of elements in a large binary relation (u relationship which
holds between two elements). The architecture will preserve this feature.

In addition, the architecture will support multiple user interactions with one or more
data bases. A language specifically designed for writing syntax and semantic routines to sup-
port interpretive execution of user queries will be provided as well. This meta-language,
based primarily upon relational primitives, some of the Rapidly Extensible Language System
(REL) macros (such as the REL paging macros™), and the usual arithmetic and Boolean opera-
tors will be supported by software and a special microcomputer instruction repertoire designed
for optimal execution of the meta-language.

The functional or logical structure of the system is shown in table I.

THE QUERY (USER) PROCESSOR

The function of the query (user) processor (fig 2) is to provide the user with real-
time translation of his English-like statements and queries into the control language of the
data processor. The query processor provides the translation function in a manner such
that the data processor does not have to execute this function in addition to the data-
handling functions for which it is optimized. The translation process is a high-processing
function, so that, by dedicating this function to the query processor, more queries can be
handled. Several query processors can be attached to the data processor without noticeable
degradation in response. In addition, the query processor provides buffering and editing
functions for the user that do not contend with other users and with the data-updating
function.

2. California Institute of Technology REL Report 3, REL — An Information System for a Dynamic
Environment, by BH Dostert, December 1971

3. California Institute of Technology REL Report 4, Computer System Support for Data Analysis,
by NR Greenfield, March 1972

4. California Institute of Technology REL Report 17, The REL Paging System, by FB Thompson, 1974

TABLE 1. INFORMATION STORAGE AND RETRIEVAL (ISAR) FUNCTIONS.

Query (user) processor

1. Editor module

2. Lexicon handler

3. Speller

4. Parsing

5. Semantic translator

Data processor

1. Scheduler

2. Executive

3. Relational data base management
4. Disk page management

5. Local and cache memory management
6. MIMC instructions

Interface processor

Auxiliary memory subsystem

QUERY (USER) PROCESSOR

— N |
PRINTER
r{ OUTPUT DATA FORMATTER BUFFER
vsoAT-] L PARSER J—D R coMM =
i LEXIEON MOD L RATA
HANDLER PROCESSOR
. 4Y 4 Y
BUFFER
- CHART l
SPELLER
CONTROL J
A
INSTRUCTION
HANDLER
PARSING >
EXECUTIVE "
—4 FLOPPY DISK
DATA HANDLER
AURION
EDITOR COMPILER
ss:mmcc SYSTEM
RANS i
MODULE ool FLOPPY DISK
« SYNTAX MEMORY
* SPELLING LEXICON
£ * USER SPECIFIED
FUNCTIONS & SYNTAX
= .
oo o] mew raorey it L
5
MUK Ui ROREER BUFFER COLLECTION

Figure 2. Query (user) processor block diagram.

P

The primary functions of the query processor are to provide editing to the user, to
parse the English or formal language query, and to generate the appropriatc instructions to
the wata processor for query response. A number of secondary functions, such as an execu-
tive which controls the order of activity (parsing executive), are required to accomplish
these primary functions. This executive module calls an editor module which performs
appropriate edit control and parsing. Once a sentence is parsed, it calls the translation mod-
ule (semantic translator). In figure 2, these calls are denoted by double-lined arrows to the
appropriate boxes.

The editor simply changes the parsing chart to correspond to the changes requested
by the editing action. The chart stores the partially parsed statement, which the user has
already entered into the translator, and provides all needed information for editing, con-
tinued parsing, and translation. A chart is built up for each new sentence entered into the
translator. The parser takes the input from the parsing executive and builds on the chart by
communicating with the lexicon module and with the syntax memory of the data processor
in order to acquire new words entered by the user and new syntax rules for parsing. The
lexicon handler uses a fast hash-code strategy for word lookups from the portable auxiliary
memory (currently a floppy disk). The syntax handler gets new syntax rules from the syn-
tax memory via the floppy disk buffer and the floppy disk handler.

The semantic translator takes a completed chart, prunes unnecessary paths from the
chart, and formulates a course of action for the handling of data. It also determines whether
the action is a meta action (a new definition), in which case it calls the syntax handler to see
if a new syntax has been generated which must be added to the system. The semantic trans-
lator module calls system control if a system action is involved, such as formulating a new
language or changing the effective data base for which subsequent statements are to be
applied, and it also directs the user to his user preference history on the floppy disk. In the
case where new words are being added to the system, the semantic translator module calls
the lexicon handler to create a new word for the lexicon, calls the data action compiler for
the reduced chart, and creates a sequence ot commands for the data processor to carry out
any desired file processing. The data action compiler calls the data-handling instruction
module to communicate with the file handler of the data processor.

Each handler has a special protocol for carrying out the particular module’s neces-
sary action. Processing and protocol go hand-in-hand to reduce execution time of the state-
ment. In order to limit the size of the query processor memory, excessive information from
the data processor is minimized.

THE DATA PROCESSOR

The data processor is responsible for scheduling, fetching, updating, and analysis of
data, the executive or semantic command interpretation (execution of commands as
received from the translator), and storage-management processes. The latter consists of rela-
tional data-base maintenance, disk-page management, and local- and buffer-memory manage- E
ment. The hierarchy of functions for the data processor is shown in figure 3.

RELATIONAL PRIMITIVES SCHEDULER

LOGICAL

RECORD PAGE DIRECTORY
CATALOG FUNCTIONS
HANDLING

LOCAL AND BUFFER MEMORY MANAGEMENT

EXECUTIVE

MIMC MICROCODED INSTRUCTIONS

Figure 3. Data processor hicrarchy of functions.

THE SCHEDULER

The scheduler is designed to be in an idling mode which continually examines a
queue of processes ready to be executed. If the ready queue is empty. idling continues:
otherwise the first process in the queue is initiated. An executing process (which may con-
sist of several activities for the executive) may run to completion or be suspended prior
to completion either because the process requires a resource which is not currently available
or because the process is interrupted. Interruptions can occur by a buffer-memory control-
ler request, by completion of a data transfer, or by an alert. The scheduler processes the
interrupt and, if appropriate, determines if some other process is now ready (eg, a process
that was suspended waiting for data from disk) for execution. If so. then the priority of 1
the now ready process is compared with that of the interrupted process. the process with
the higher priority is executed, and the one with the lower priority is inserted in the
appropriate ready-queue position. When a process is completed, the highest priority process
awaiting completion is placed in the ready queue.

DATA PROCESSOR EXECUTIVE CYCLE

The philosophy of executive cycle operation is based upon an activity discipline in
which activities are executed in sequence from an activity tree. An activity-tree organization
is used rather than an activity list. since it is desirable to move grouped activities on and off
the tree. an action which is quite difficult to perform with a list structure. The sensing of
input from the user processor is always on the activity tree with appropriate inputs which

TR TR R T TR e T T T T T T AR D

i o i

I T L SRR T e O e T

hadA e A el e

B i o aagndiie S ikl iy 7

2

E i atich oot Ll

result in placing other activities on the tree. However. an input does not place an activity
directly on the tree, since such an action could result in the loss of the executive system’s
integrity. Rather. the executive looks for a flag set by inputs on the input list on the activity
tree. If a flag is found, a different activity is executed. The executive is said to scan the tree
if it executes each activity on the tree once. The tree actually consists of both a slow and a
fast tree. but for the present purposes, the trees together will be referred to as “the tree.”
The executive first scans the entire fast tree, unless empty, then executes one slow tree
activity, returns to the scan of the fast tree, and so forth.

Each activity can call four executive functions: Exit, which allows the executive to
continue scanning the tree but leaves that activity on the tree: Quit, which also continues
executive scanning of the tree but also removes the activity from the tree so that activity is
not encountered on the next scan; Activate, which initiates new activities by placing new
branches on the tree (requires the location of the new branch be specified as well as which
tree (fast or slow) will be used); and Retire, which is the complement of Activate. This
function removes an entire branch from the activity tree and, when it is carried out, the
executive does not continue with the ongoing scan but reinitiates the scan of the entire tree.

The order in which activities are executed cannot be assumed, but, if an order is re-
quired, a sequence of “‘activate” and “quit” functions within the activities is necessary.

This architecture was selected for the executive since it supports rule-based program-
ming as well as alerts, both of which are important in the intended application. The architec-
ture does not exclude sequential programming since an activity is a sequential program. In
addition, the architecture contains the spirit of timesharing since a wait in one sequential
program can be utilized by another program. Slicing can also be introduced if required.

RELATIONAL DATA-MANAGEMENT OPERATORS

The logical-record-catalog-handling utilities are used to support the implementation
of the relational data-management operators. These relational operators include mapping.
prime-symbol mapping, mapping-composition, projection, create-relation, delete-relation,
insert-new-row. delete-row, and replace-row (see the description of the SQUARE Data Sub-
language in reference 5).

The mapping operator returns a new relation of values in the range column or
columns of the given relation whose associated domain column(s) values match the domain
argument of the operator. The domain argument can itself be a relation.

Prime-symbol mapping is the same as mapping except that all duplicate elements are
maintained in the new relation. This is useful when element counts, sums, and averages are
desired.

Mapping-composition is an operation which takes the result of the first mapping it
receives and uses that relation as the argument for the second mapping. Of course, the
domain of the relation of the second mapping must be the same type of relation as the value
of the first mapping. Mapping-composition, thus, calls on the first mapping. The first map-
ping will form as a value the logical record address of a new temporary relation. When the
first mapping is complete., mapping-composition then calls the second mapping with the
argument being the value of the first mapping, specifically its logical record address.

5. Boyce, R, Chamberlin, D, King, W, and Hammer, M, “Specifying Queries as Rational Expressions: The
SQUARE Data Sublanguage,” Communications of the Association for Computing Machinery, November
1975

e

Ruial ol e

At this point, no real constraints have been placed on the domain argument of a
mapping. As previously mentioned it could be a relation, but it can also be a relation with
constraints; ie. each ship of a specific task group which has 30 percent of its fuel remaining.
Here, percentage of tuel remaining on a ship is a relation, but the mapping will only pick out
those ships having 30 percent of their fuel remaining. The mapping operator and its varia-
tions are designed to be general enough to handle calculable arguments as well as lists of
arguments (or an argument which is a relation).

Projection returns as its value a given column or columns of a relation, and is most
useful in composition with mappings. Projection is implemented as a trivial case of mapping
where the domain argument is all elements.

Create-relation determines the logical record address of the relation and then adds
an clement on the first page of that record which indicates the type of relation. For
example, the number of columns will be given as will the meaning ot each of the columns.
Delete-relation returns the pages of its logical record to the available page list.

Insert-new-row and delete-row perform the normal operations. Replace-row replaces
(or updates) the row of the relation. The requested update can be an arithmetic manipula-
tion on each of the elements of the record or selected elements of the record. It can also be
a strict replacement of selected elements.

BULK MEMORY PAGE MANAGEMENT

The bulk memory (currently disk) is organized into pages of fixed length with pages
grouped into logical records. A pointer to the head of cach logical record is maintained as
an index to bulk storage by use of the logical record catalog.

The next layer of indices into bulk storage is maintained in the page directory.
where the connectivity of each page to other than itself is maintained. Pages in use are kept
in this directory and pointers to the rest of the pages are located in the availability list.

A unique feature of the system is the change record in which changes to pages are
recorded until such time as the changes ave actually performed in bulk storage. This fea-
ture eliminates excessive waiting for access to bulk storage when a user requests an update.
Change-record functions are implemented to cffect one change at a time on a noninterfer-
ence-with-the-user basis.

The handlers and utilities are designed to provide redundancy in the pointer struc-
ture and to provide additional means for finding those pages belonging to a relation or logi-
cal record without loading all pages of the record. It should be noted. however, that the
next-page-pointer redundancy for cach page of the record is maintained in order to avoid
loss of record structure if the page directory and/or catalog becomes lost.

BUFFER AND LOCAL-MEMORY MANAGEMENT

These functions are designed for maintaining memory status with respect to space
available for pages. Bits are kept for cach page location in butter and in local memory to
show if the page is locked into memory and cannot be written to disk, it the page is pro-
tected against writing, has been written on. and so forth. One of the functions copies pages
from disk to butter and/or local memory as space is available.

Sl o Sabomis o

MEDIA INDEPENDENT MEMORY CONTROLLER (MIMC)

The data processor hardware and firmware design is based on that of the MIMC
processor, a processor being designed to interface the newer solid-state technologies, such
as charge-coupled devices, with advanced systems which will require storage of digital data

(fig 4). The central processor used is a general purpose, four-bit-slice microprocessor which "
is the equivalent of the Monolithic Memories 6701. This is a bipolar chip which can be ‘
cycled in about 300 nanoscconds, alfowing high transfer rates and minimum processing time :
for the required system ftunctions such as searching for information, updating, and data $
analysis.
“
| 5

- LSF 0006-01-77
‘ Figure 4. Media Independent Memory Controller (MIMC).

T'he present word width is 32 bits tor high speed and compatibility with the
{/UYK-7 and other existing Navy computers which will still be in use for the next S to .«
10 years. Maximum memory size is 65 thousand words.

BASIC INSTRUCTION FORMAT. The lower halt word is a 16-bit address. The upper
half contains an 8-bit operation code and two 4-bit register addresses. The repertoire has not
been completely defined at this time but the microprogrammability of the controller allows
the instructions to be modified rather simply. A basic set including load and store. ex-
change. shifts. and basic logical relational. arithmetic. jumps. and stacking instructions has

10

been defined. Other instructions have been added to localize all data access. to decrement 4
cell conditionally, to initialize a repcat flag, to save registers on a subroutine call and restore
them on a return, to do a binary search, and to do a bubble sort. Hardware has been de-
signed to compress and expand fields of data.

The internal architecture of MIMC uses a bidirectional bus with bus control signals
similar to the controls of the SEM/SSIXS 8080 (NELC Technical Note 3005, A Quick and
Easy Design (QED) Terminal — INTEL 8%Q_lw_ig_rﬂlroccs§)_[pnd Common-Bus System. by
GR Huckell, 18 July 1975). ; T A e

The interrupt structure allows 32 interrupt sources which can be enabled or disabled
under software control. Priority is determinced by a daisy-chained technique: the highest
priority disables the lower priorities. When an interrupt is received and accepted by the
processor. the starting address for the particular interrupt handling routine is forced into the
bus and the processor executes the required program.

The input/output (1/0) philosophy uses the normal addressing procedure to designate
ports: regards an 1/O port as a read or write memory address. For systems having only a very
few ports, a separate dedicated control line can be used to simplify address decoding on the
I/O port module. Input-output interfaces currently available include the 32-bit Navy
Tactical Data System parallel interface and the RS-232 Teletype interface.

INTERFACE PROCESSOR

This processor is designed to accommodate limited-syntax (such as fixed-tield records)
bulk updates which can arrive from a variety of ditferent computer I/O channels and/or data
links. Thus. the processor can readily accommodate different word lengths and data rates.

All updates will be done eventually in bulk storage through the cache-memory system but
under the control of the data processor.

AUXILIARY MEMORY SYSTEM

Most requirements for Navy information storage and retrieval demand random-access
auxiliary storage. An initial choice for such a storage device is the Model 44 Diablo disk
drive with a nominal disk capacity of 6 250000 sixteen-bit words and an access time of
about 50 milliseconds (fig 5). This drive is reasonably typical of the lower-cost disk drives
which are available.

The functions of the disk controller and the 1/O channel interface will be performed by
a combination controller and buffer-memory (12000 thirty-two-bit words) designed and
constructed at NELC (fig 6).

There are a number of advantages in having a buffer-memory interface between a com-
puter and a disk drive. These include a reduction in the total disk-drive access time and the
provision of a temporary storage area and interface for multiple devices.

REDUCTION OF ACCESS TIME
When using a disk drive, head positioning and latency of the disk drive (waiting for the

disk drive to reach the proper track and the sector within the track) present a delay prob-
lem. Without the buffer-memory (a direct interface between the computer and the disk

11

et e 1 - 2 . .

LSF 0856-05-76

Figure 5. Diablo disk-drive auxiliary memory system.

Figure 6. Combination controller and buffer memory.

12

LSF 0859-05-76

Sy

T P TR T TR R

drive), the computer would have to wait the length of this disk-access time which is about
50 milliseconds for the Diablo disk drive. With the buffer-memory interface, the computer
instructs the main controller to input a certain page into the buffer. While the main con-
troller waits to access the disk and inputs the page to the buffer, the computer can be
processing other data and can receive an interrupt whenever the data are in the buffer. The
50-millisecond access time of the Diablo disk drive is very significant and will slow the
processing time of the computer if the disk is interfaced directly.

TEMPORARY STORAGE AREA

The bufter can be used to store intermediate data of an incomplete operation
(temporary scratchpad memory). The buffer will allow small changes to be made in a page
from the disk without having to bring a whole page of memory into main memory. The page
is first brought from disk to the buffer and then the changes are sent from the computer to
the desired location in the buffer. As few computer words as one may be rewritten from the
buffer back to the disk. This saves computer I/O time and main-memory space. Page thrash-
ing can be reduced with the use of the buffer as a temporary storage when generating and
recognizing item names (especially on a small-memory computer).

INTERFACE FOR MULTIPLE DEVICES
The buffer will be used to interface more than one device to each other and to the
disk drive (fig). The buffer presently has four ports. In the proposed ISAR architecture,

two ports are devoted to the data processor and interface processor microcomputers and the
third is devoted to the Diablo disk drive. The fourth port is not used at present.

13

—

T

(9]

REFERENCES

Canady, RH, et al, ““A Back End Computer for Data Base Management,” Communica-
tions of the Association for Computing Machinery (CACM), October 1974

California Institute of Technology REL Report 3, REL — An Information System for
a Dynamic Environment, by BH Dostert, December 1971

California Institute of Technology REL Report 4, Computer System Support for Data

Analysis, by NR Greenfield, March 1972

California Institute of Technology REL Report 17, The REL Paging System, by
FB Thompson, 1974

Boyce, R, Chamberlin, D, King, W, and Hammer, M, “Specifying Queries as Rational
Expressions: The SQUARE Data Sublanguage,” Communications of the Association

for Computing Machinery, November 1975

Naval Electronics Laboratory Center Technical Note 3005, A Quick and Easy Design
(QED) Terminal — INTEL 8080 Microprocessor and Common-Bus System, by
GR Huckell, 18 July 1975*

*NELC Technical Notes are informal documents intended primarily for use within the Center.

14

S

G i i

INITIAL DISTRIBUTION LIST

NAVAL ELECTRONIC SYSTEMS COMMAND
NELEX-330 (R. KAHANE)
NELEX-330 (C. STOUT) (5)
NELEX-330 (J. MACADO)
NELEX-330 (R. FRATILLA)
NELEX-570 (R. DUBELOIS)
PME-108 (D. SCHUTZER)
PME-108 (J. OLSON)
PME-108 (J. NEWELL)
PME-108 (T. CONNELLY)
PME-108 (G. NEELEY)
PME-108 (D. MULLIKIN)
PME-108 (G. HAMILTON)
PME-108 (S. DAVIDSON)

DEFENSE TELECOMMUNICATIONS AND
COMMAND AND CONTROL SYSTEMS
F. KUO

DEFENSE COMMUNICATIONS ENGINEERING CENTER
COMMAND AND CONTROL TECHNICAL CENTER

M. CHAMPAIGN (2)
LTC T. H. BAUMGARTNER (2)
BOB MARION (2)

OFFICE OF NAVAL RESEARCH
ONR-437 (J. TRIMBLE)
ONR-437 (M. DENICOFF)
ONR-437 (G. GOLDSTEIN)

ROME AIR DEVELOPMENT CENTER
DUANE STONE (3)
PAT LANGENDORF

NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER

J. WOLFF (2)
NAVAL UNDERSEA CENTER
CODE 14 (C. MERROW) (2)

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
IPTO (CDR F. HOLLISTER)

SYSTEM DEVELOPMENT CORPORATION
SANTA MONICA, CA 90406
GEORGE CADY
JEFF BARNETT
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CA 91103
DR. F. THOMPSON

IBM RESEARCH LIBRARY
SAN JOSE, CA
VI MA

DEFENSE DOCUMENTATION CENTER (12)

, 'I

