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RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES

Members of the faculty who teach at the undergraduate and graduate levels and a number of
professional engineers and scientists whose primary activity is research generate and conduct the
investigations that make up the school’s research program. The School of Engineering and Applied Science
of the University of Virginia believes that research goes hand in hand with teaching. Early in the
development of its graduate training program, the School recognized that men and women engaged in
research should be as free as possible of the administrative duties involved in sponsored research. In 1959,
therefore, the Research Laboratories for the Engineering Sciences (RLES) was established and assigned the
administrative responsibility for such research within the School.

The director of RLES—himself a facuity member and researcher—maintains familiarity with the
support requirements of the research under way. He is aided by an Academic Advisory Committee made up
of a faculty representative from each academic department of the School. This Committee serves to inform
RLES of the needs and perspectives of the research program.

In addition to administrative support, RLES is charged with providing certain technical assistance.
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B bilinear functional
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cy discrete dashpot coefficient :

ch viscous proportionality constant, g =2 + X;b

Cc] bearing damping matrix

Cm temporal coefficient

dA differential area element
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D N-square matrix linear differential operator

D N-square algebraic adjoint matrix differential operator

D* N-square Hermitian adjoint matrix differential operator
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f forcing function

fm temporal coefficient for classical systems; loading term
for forced normal mode response
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hm . temporal coefficient
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I moment of inertia taken about the neutral axis

.45} denotes imaginary part of S

m n n

J(t) complex compliance of a viscoelastic material

k Winkler (elastic) foundation modulus

ki extension spring constant

L length of beam

Li spatial matrix differential operator

M bending moment

Mn norm for forced normal mode response

N Norm

m

Pk viscoelastic material constant

P temporal differential operator

Pi column vectors of non-homogeneous boundary and in-span
condition

q applied loading intensity

4, temporal coefficient

9 viscoelastic material constant

Q temporal differential operator; transverse shear
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Introduction:

The purpose of this work is to formulate a general theory for the
dynamic response of linear damped continuous structural members subjected
to arbitrary excitation forces. Typical members which are included in
this theory are rods, beams, plates, shells, and rotating shafts. The
damping models to be considered include the traditional viscous dashpot,
so~called hysteretic (or material or structural) damping, and viscoelaétic
material damping.

A general technique for finding the dynamic response is modal
analysis, and it will be used exclusively in the following developments.
This method has been employed extensively for both undamped discrete and
undamped continuous linear systems (see for example, Hurty and Rubinstein
[l]l and Meirovitch [2]). However, when damping is present, the use of
modal analysis has been largely restricted to self-adjoint systems of
equations which may be uncoupled with the classical or undamped normal
modes. Meirovitch [2] presents several examples of such systems which
include structural members with proportional viscous and linear hysteretic
damping. For viscoelastic structural members, Valanis [3] was the first
to propose a suitable modal solution. By assuming that Poissoﬁ's ratio
remains constant, the dynamic viscoelastic problem may be resolved into
a quasi-static viscoelastic problem and a dynamic undamped elastic
problem. Robertson and Thomas [4] used a similar technique which allowed

more general boundary and non-zero initial conditions to be considered.

1Numbers in brackets refer to References at end of paper.




an example of this technique as applied to a self-adjoint viscoelastic
Timoshenko beam is given by Robertson [5].

When other forms of damping, such as non-proportional viscous
damping, are included in a structural member model the classical modes
cannot uncouple‘;he equations of motion. Hence, modal analysis in the
classical sense may not be used to determine the response. However, for
a discrete system with viscous damping, it has been shown by Foss [6]
that a resolution of the response is possible by using a new set of
orthogonal eigenfunctions. These are the so-called damped modes, which
can be shown to satisfy a different form of orthogonality [6]. In a
similar manner, the response of a continuous member with non-proportional
viscous damping was determined by O'Kelley [8] by using the damped mode
shapes. In addition, Caughey and 0'Kelley [8] studied the limitations

of modal analysis for this kind of general viscous damping by determining

necessary and sufficient conditions for which the undamped modes can be
used to uncouple the dynamic motion (i.e. proportional viscous damping).
However, few applications have appeared in the literature applying
damped modal analysis to continuous members with viscous damping. For
example, Lund [9] used_damped eigenfunctions to find the dynamic response
of a rotating shaft on damped bearings. The approach taken was not :
general and it involved a great deal of tedious algebraic manipulationms.
Thus far, very little work has been domne to generalizé any of the |
above results to any damped structural member with arbitrary non- |
homogeneous boundary conditions, in-span conditions, and non-self-adjoint

equations. This is true even for viscous damping which is the most pop-

ular model because of its mathematical convenience rather than its




physical exactness. O0'Kelley [7] did use a general approach to resolve
the dynamic response of viscously damped continuogs members, but his
remarks were restricted to self-adjoint systems with homogeneous boundary
conditions and no in-span c¢onditions. Meirovitch [2] also considered

l self-adjoint systems of equations for both viscous and structural damping

[ with only homogeneous boundary conditions and no in~-span conditions. The

moSst generél formulation was presented by Pfennigwerth [10] and later
| extended by Cinelli and Pilkey ([11]. However, only undamped continuous
f structural members were considered.

In this work, a comprehensive theory is presented for the dymamic

response of continuous damped structural members. A general set of
formulas is derived that explicitly provides the ingredients necessary
to form the modal solution due to arbitrary loadings. These ingredients
include the necessary normal modes (shown to possess the proper orthog-~

onality) and the timé-dependent uncoupled coordinates. It is shown

that a very general type of problem can be resolved with this approach.
That is, linear structural members can be self-adjoint or non~self-adjoint,
possess homogeneous or non-homogeneous boundary conditiomns, or have

| in~span conditions such as in-span supports. In addition, members

with two or three independent spatial variables may be treated as easily

as those with one spatial dimension. Knowing only the differential
equations of the structural member, the dynamic response is explicitly
written out, thus avoiding the tedious algebraic manipulations which are
now required when solving for a particular member. Finally, this

general approach also exposes the mathematical limitations imposed by

| the physical model which prohibit the uncoupling of some damped structural

members.




General Formulation for the Dynamic Resvonse of Continuous Structural

Members with Viscous Damping

The starting point of this general formulation is the governing
differential equation of mbtion of the structure. The class of viscously
damped structural members to be considered may be defined by the following

equation of motion:

2
Du(x,t) = }

A, (x)3,u(x,t)-F(x,t) (1a)
STy

with initial conditioms:
u(x,0)=uy (x) ; Ju(x,0) = u,(x) (1b)
and the time-dependent boundary and in-span conditions,
Liu(x,t) = Pi(x,t) on S, the-body surface (1le)
and in-span locations

where,

F(x,t)

N-dimensional column vector of body forces

D(x), Li(x) N-square spatial matrix linear differential operators

Aj(x) = N—squarg spatial matrix
Pi(x,t) = N-dimensional column vector of non-homogeneous
boundary and in-span conditions
u(x,t) = N-dimensional column vector of dependent state variables
uo(x),ﬁo(x) = N-dimensional vectors of prescribed state variable

initial conditions
3. = 930750

and x represents the independent spatial coordinates x;, X;, and x3.




Since equations (1) are matrix equations, they represent N distinct
governing differential equations of motion and their associated boundary,
in-span, and initial conditions. MNote that lumping the boundary and
in-span conditions into one equation (equation (lc)) is reasonable be-
cause boundary terms may really be considered in-span conditicmns at

the boundary of the member. Furthermore, the case of homogeneous
boundary and in-span conditions may be considered to be a special case
of this development wherein Pi(x,t) is set equal to zero.

In order to determine the transient response using a modal analysis,
normal modes of the structural rember must be known. Depending on whether
the member possesses non-proportional, proportional, or no damping, the
normal modes used in the modal expansion will be different. It has been
shown by Caughey and 0'Kelley (8] that damped continuous lirear systems
can be uncoupled by either undamped or damped modes and these constitute
two mutually exclusive classes of problems. Systems which require only
undamped modes for uncoupling are called classical and all others are
non-classical. Necessary and sufficient conditions have also been formu-
lated to cetermine when a viscously damped self-adjoint linear continuous
system is classical or non-classical [8].

Solution cf a so-called free vibration problem will yielé the
normal modes and corresponding eigenvalues necessary for modal analysis.
Classical normal modes will result if damping is excluded from the free
vibration problem; non-classical modes if damping is included. By defi-
nition, the damped or undamped free vibration problem represents motion
in which all extermal forces and prescribed deflections have been set

equal to zero. When the prescribed conditions occur on the bcundary,




they are called non-homogeneous boundary conditions. Otherwise, they

constitute in-span conditions. A member undergoing free motion will
vibrate due to forces inherent in it, having been set in motiom by
prescribed initial conditionms.

For an undamped member, it can be shown that the free motion
response has a separable form of solution given by

1At
u(x,t) = wn(x)e . (2)

where An is the natural frequency and wn(x) is the vector of undamped
(or classical) mode shapes. The undamped governing equation of motion is
given by setting the damping matrix A1 = 0 in equation (la). By substi-
tuting the solution given bf equation (2) into the governing equation,

the undamped free vibration problem is obtained
] 2 ’
Dwn(x) (kn) Az(x)bn(x) : (3a)
with the boundary and in-span conditions
Liwn(x) =0 on S (3b)

It will be shown that only the classical modes wn(x) are needed to
express a modal series solution of equation (1) for undamped or pro-
portionally damped systems.

Guided by equation (2), when a member has non-proportional viscous

damping the damped free motion solution may be assumed to have the form

iw t -y t
u(x,t) = vn(X)e Yoy Bl (4)




e . — ——

-Yt
where e © represents the temporal decay due to damping in the struc-

tural member. By defining the complex frequency to be
= - + ’
sn "n iun )
equatiaon (4) may be written as

S t

u(x,t) = v_(x)e " (6)
in analogy with equation (2). Now Sn and vn(x) represent the eigenvalue
and vector of mode shapes, respectively, corresponding to the damped
structural member. Note that in contrast to the undamped member, the
eigenvalues and mode shapes are complex-valued for underdamped structural
members.

As was done for the undamped case, the damped free vibration
problem may now be derived by s;bstituting equation (€é) into equation
(la) and setting all applied loadings equal to zero. This results in

the equation
T
Dv_(x) = jzl(sn) Aj(x)vn(x) : (7a)

with the boundary and in-span conditions
Livn(x) =0 on S ’ (7b)

Equations (3) and (7) constitute eigenvalue problems. The undamped
free vibration problem led to equation (3), which for self-adjoint
systems is a higher-order generalization of the traditional Sturm-

Liouville boundary value problem. When damping 1is included in the free

2

1
3
1




vibration problem, a non-classical eigenvalue problem results in which
the eigenvalue appears non~linearly. Regardless of whether the system
is classical or non-classical, it will be assumed that the solution con-
sists of a denumerably infinite set of eigenvalues and eigenfunctions,
which are complete. Also since repeated eigenvalues are of limited
practical use, only zero multiplicity will be considered in this work.
Hence, the corresponding eigenfunctions will be assumed to be linearly
independent.

The previous undamped and damped free vibration problems may be

combined into the single general form:

2z
3 e 3
Du_ (%) I (-1 () A

(x)un(x) (8a)
j=a

3

with the boundary and in-span conditions
Liun(x) =0 on S (8b)

Here u and uw, are the eigenfunction and eigenvalue which can be classical
or non-classical, depending on whether damping is included in the free

motion problem. That is, assign the following significance:

(?n,kn), Undamped Free Motion
'(un,un) = (9)
(vn’sn)’ Damped Free Motion

Also, for no damping set a = 2 and when damping is present assign a = 1,
The remaining discussion in this work will use this notation whenever

possible to enhance the general approach underlying this work.




- ——

Associated with both the undamped and damped eigenvalue problems,
an adjoint eigenvalue problem may be described. Using the general

notation in equation (9), the adjoint problem takes the form

Da(x)= %(-1)‘“‘”( A, 0 & (0 (10a)
unx J-u lJn jx unx a

with homogeneous adjoint boundary and in-span conditions

Liun(x) =0 on S (10b)
where
D(x), Li(x) = N-square algebraic adjoint spatial matrix linear

differential operators

Aj(x) = N-square algebraic adjoint spatial matrix

4_(x) = N-dimensional column vector of algebraic adjoint
eigenfunctions corresponding to the nth eigenvalue,
either classical or non-classical (see equation (9)).

The eiéenvalue of the original free vibration problem is also the eigen-
value of the adjoint problem, for both undamped and damped cases (see
References (12) and (13)). Note that in equation (10a) the matrix ;j(x)
has been restricted not to be a differential operator; therefore, the
algebraic adjoint ;3(x) is equivalent to the transpose of Aj(x).

The adjoint operator and the adjoint boundary and in-span conditions
denoted by D(x) and ii(x) in equation (10a) ;re not known a priori from
the original statement of the eigenvalue problem. However, these
operators are formally shown to exist by the use of various forms of

the Green's identity. One form which is valid for homogeneous boundary

conditions and no in-span conditions is given by

e




<:1n, D WF = A, D > . 0 (11)

where the notation <ﬁn, D um> denotes the inner product,

<ﬁn, Du>= f ﬁn * (D u)dx (12)
= domain "

and uy and ﬁn represent either the classical or non-classical vector of
mode shapes and the associated vector of adjoint modes, respectively.
When in-span conditions are present, it can be shown [13] that the

Green's identity takes the form,
<Ln, Dup>=<u,D Gn> + By, u) (13)

where B(ah, um) is a bilinear function of the state variable vectors
u and Gn which represents the boundary term and in-span condition at
each location. Note that the eigenfunctions e and ﬁn must be differenti-
able to the extent demanded by the operators D and D when no in-span
conditions are present. Otherwise, these functions need only be
differentiable at all locations not coinciding with the in-span conditionms.
Using the proper form of the Green's identity, it may be used to
identify the adjoint free vibration problem for any classical or non-
classical structural member. Briefly, the left-hand-side of equation (13)
is formed, and then integrated by parts so that the operator D and
bilinear functional B are identified for any member. Several practical
illustrations of deriving equations (10) are provided in Reference [13].

Note that in general, the solution of the adjoint problem given symbolically i

by equation (10) will be different from that of the original free motion

10




in equation (8). However, when the problem is self-adjoint these two

solutions will be identical. The advantage of this is obvious: only
one eigenvalue problem must be solved. Moreover, an orthogonality
relation which involves only the original eigenfunctions is needed to
uncouple the transient response.

The modal analysis solution of a dynamic vibration problem is

characterized by the form

o

u(x,t) = mzlqm(t)um(x) (14)
where u(x,t) is the vector of state variables describing the deflection
and internal forces present in the member at any given location and time.
The normal modes or eigenfunctions um(x) will be assumed to be known.

In the classical case, um(x) can often be determined analytically in
closed form for many simple members (2]. However, when non-proportional
damping is present in a structural member an analytical expression for
the eigenfunctions cannot be found and instead a numerical technique must
be used. When the structural member has one spatial direction, transfer
matrices are particularly well-suited to providing an accurate means of
solution. A description of this technique for numerically evaluating
the eigenfunctions will be given in a later section.

In this work, it is assuﬁed that the modal series solution given by
equation (14) is convergent for all physically admissible problems.
Furthermore, it will be assumed that the series is uniformly convergent
except at locations where discontinuities exist such as in-~span supports.

At these locations, the series may or may not converge. Hence, it may

11




be concluded that the dynamic response will be determined if the proper
eigenfunctions are shown to be theorecigally orthogonal, and the so-called
normal coordinates qm(t) can be found via an uncoupled differential
equation for each m~coordinate.

To find the dynmamic solution of a general damped structural member
using modal analysis, an orthogonality relation must be shown to exist
between the eigenfunctions. Because both the classical and non-classical
free vibration problems can be non-self-adjoint, orthogonality will be
shown to prevail between the vector of original eigenfunctions um(x)
and the associated vector of adjoint functions Gm(x). This is
commonly referred to as a biorthogonality relation. When the free motion
problem is self-adjoint, the biorthogonal form reduces to an orthogonality
condition between the original eigenf¥nctions only. In this work both
forms will be referred to as an orthogonality relation.

To derive the general orthogonality relation, begin with the form
of Green's identity given in equation (11). Note that even if the member
possesses in-span conditions, the extended Green's identity in equation
(13) reduces to the homogeneous fsrm by B(ﬁn,um) = 0. Substitute equations

(8a) and (10a) into equation (11) to give

f(-l)“‘l)[(u)jw Aus>- @) cu,a8 >1=0 (15)
j-a m n’jm n m’jn

Another form of the Green's identity may be given by

<um,Ajﬁn> ' <an,Ajum> j=1,2 (16)

12
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which is valid for Aj’ a matrix of scalar spatial elements. A common

inner product may now be factored out of equation (15) by applying

equation (16), so that equation (15) becomes

2
I 0@ Prap? - aplt a0 =0 (7)
3=a

The form of the orthogonal relation depends on whether the system is
classical or non-classical. Considering the former case, let a = 2 and
un(x) and o take on the values given by equation (9). Then equation

(17) may be rewritten as
(Bn~8m) <wn,Az¢m> =0 (18)

where Bn = Xi. When Bn # Bm the inner product must be zero to satisfy
equation (18); otherwise, it does not vanish. Thus, the orthogonal

relation for classical systems may be expressed in the form:

<$n,A2¢m> b W (19)
where Qn represents the classical norm given by

Q, = <6n,A2¢n> (20)

and Gmn is the Kronecker delta. Note that in the unlikely event that
the norm is zero, the vector of adjoint eigenfunctions in may be replaced
by its complex conjugate. The functions &n and wm would then be orthogonal
in the so-called Hermitian sense.

For non-classical systems, a = 1 and u, and My become Y and

Sn’ the vector of damped eigenfunctions and correspnding complex

13




eigenvalues in equation (15). After applying the same argument that led

to equation (19), non-classical orthogonality may be expressed by
- 3T + <7 =
(Sm Sn) [(Sﬁ+sn) <T AV > T ALV ] smnNn (21)
where now Nn is..the non-classical norm given by
Nn = 23n<vn'szn> + <vn,A1vn> (22)

Note that A; and Aj; may contain complex elements and therefore, both
norms, Nn and Qn’ may be complex~valued.
To complete the modal solution as given by equation (14) the

uncoupled coordinates qm(t) must be determined. This is accomplished by

transforming the governing equation of motion into an uncoupled differ-
ential equation. Uncoupled here means that a different equation exists
for each m-eigenvalue, independent of all cther values. To effect this
transformation, begin with the Green's identity in the general extended

form

<u_,Du> - <u,D u > = B(um,u) (23)

This equation is valid for a member with non-homogeneous boundary conditions
and in-span conditions (B # 0) as well as for homogeneous boundary and in-
span conditions (B = 0). Substitute equation (la) and (10a) into the above

equation to obtain

f'a <8 A u> - % (-1)(0_1)( )j < ; Q> =
L% y Oy 54 &, Ko uAsuy

(24)
<um,F> + B(Gm,u)

14




The bilinear form, once identified for a particular example, will retain

its form. By applying the following form of the Green's identity,

<u,3.jam> = <ﬁm,Aju> {=1,2 (25)

equation (24) may be rewritten as

2 2 (a-l) .
jZ aj <ﬁmAju> - ,Za(-l) (um)J <am,Aju> )
(26)

= <am,F> + B(am,u) »

To reduce this equation further, the value of o must be known. For a
classical system, @ = 2 and ﬁm and W are replaced by the adjoint classi-
cal mode shape &m and the corresponding eigenvalue km. Noting these
changes and expanding the sum, equation (26) becomes
3 + 2] <U_,Aqu> + 3<y_,Aju>
(27)

= <wm’F> * B(‘bmsu)

A common inner product may not-be factored out due to the presencevof
the damping term A;. At this point the proportionality assumption must

be invoked,
Aju = aAu ~b Du (28)

where a and b are constants of proportionality. That is, the damping

terms (A;) are assumed to be proportional to the mass (Az) and/or

15




stiffness (D) of the member. Another form of this condition may be
found by multiplying equation (28) by wm and integrating over the

domain to obtain

<lem,A1u> = a <y_,Au> - b <¢_,Du> (29)

Apply the extended Green's identity to the last term on the right-hand
side and then substitute the classical form of equation (10a) into
equation (29). After some rearrangement obtain the equation
<@m,A1u> = (a+bké) <wm,A2u>
(30)

- b B(y,,u)

With this form of the proportionality assumption, return to equation

(27). After substituting equation (30), obtain the equation

- Gty 2,
Em(t) + (a+bAm) &n + xm,m

= <wm,F> + (l+b3)B(¢m,u) (31)
= Fm (t)
where (.) = 3( )/3t and where Em has been assigned the value

sm(t) = <'b=,Azu> (32)

Note that gm is a function of time alone because the spatial variables
have been eliminated by the definite integral. The solution of equation

(31) may be easily found to be
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-Amcmt Amcm
[cos amt +

&m(t) = e

sin @ £] &m(O)

m

=X ¢t gina ¢t
m m

+e [ — 18 (@ (33a)
m

t -2z (t~1) sin a_ (t-T)
+ I F R Rl = dt
m a
0 o
where
1 .,a
Cm - (A +b Am) (33b)
m
and
a = A _ 2 (33c¢)
m m 1 ;m

where the initial conditioms, ém(o) are given by equation (32) by re-
placing u by Y, and &O’ respectively. Note that as a special case of a
classical system, equation (31) may be used to represent an undamped
member. For this case, set a = b = 0 in equations (31} and (33) and
continue to use equation (32).

In an identical manner, an expression for the normal coordinates
for a non-classical system can be derived. Beginning with the general
equatioﬁ (26), let @ = 1 and ﬁm and Mo then become the adjoint non-
classical mode shape and the complex eigenvalue, respectively. When
these changes are introduced into equation (26) and the sums are

expanded, it may be expressed as

&




(a-sm) [ <6m,A1u> + (a+sm) v rAgu> ]

% <‘.fm,F> e B(;’m)u)

(34)

The term in square brackets is a function of time alone so that it may

be represented By the variable

= <V ,Aju> + <V v> + <7
ﬂm(t) e Vm’ 1u Vm,Az Sm < i

yArv> (35)

Using the above definition, equation (34) may be written as

n - = <V > + v

n (€) =S n_ v oF B(v »uw)
This equation is essentially an ordinary,
ferential equation which has the solution

S

t
n () =e® "g(® 7

and nn(O) is found by evaluating equation

(36)

first order, uncoupled dif-

+ B(Vm,u)] dt (37)

(35) at t = 0.

The solutions given by equations (33) and (37) represent the

first step in finding the uncoupling coordinates qm(t) necessary to com-

plete the modal solution given by equation (14). To avoid confusionm,

let qm(t) assume the values

fm(t) : Classical Systems

qm(t) =

(38)

gm(t) , Non-Classical Systems

18
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in equation (14). Considering first the non-classical systems, recall

that the ultimate goal is to find gm(c) in the series solutionm,

u(x,t) = [ g ()v (x) (39)
m=1

Since both N and 8, are functions of time alone, a relationship

becwéen them is sought. For no in-span conditions equation (39) is
assumed to be uniformly convergent. When in-span conditions are present,
discontinuities of some of the state variables will occur at these loca-
tions. However, at all other points along the member, the modal expan-
sion may be assumed to remain uniformly convergent. That is, the state
variables will be assumed to be continuous throughout all subintervals
which are punctuated by these discontinuities. Such functions are often
referred to as sectionally continuous. For any well-defined physical
problem, this modal expansion may converge very slowly or even diverge
at these p;ints of discontinuity. However, the analyst is frequently
not interested in the response at precisely these points so that the
formulation in equation (39) is still useful as long as these loca-
tions are excluded from the analysis. Then, at all points for which

the series is uniformly convergent, it may be differentiated with respect

to time. Guided by equation (37), gm(t) will have an exponential form

so it follows that

a -]
-a-% = J S 8, (8)v, (%) (40)
m=1

Substitute equations (39) and (40) into the definition of nn(t),

then by assuming that the integral of an infinite series is equivalent

L9




to an infinite series of the integrals, this equation may be rewritten

as

-]
nn(t) = mzl 8 [<vn,A1vm> + Sm <vn,A2vm>
(61)

+ <V L,A,v >
sn n’2 m ]

Using non-classical orthogonality and the associated norm in equations
(21) and (22), equation (41) becomes
nm(t)
sm(t) -t (42)

m

Since nm(t) is known from equation (37), gm(t) is also known. Hence,
the dynamic response may be written out as shown in equation (39).
For the classical system, the same procedure may be followed to

give

g ()
£ () = a2 (43)

U

a well-known result for undamped structural members. The modal solutiomn

then takes the form

o & _(t)
ulx,t) = 1} =
o=l Qm

wm(x) (44)

In summary, the dynamic response of any structural member with
equations of motion given by equation (1) may be found by applying

either of the following two series:

20




@ Em(t)
v (%) A Classical (45a)
m=1 m .
u(x,t) -{
o nn(t)
Z - v (x) k Non-Classical (45b)
m
\m"l m

where Em(t) and'nm(c) are given by equations (33) and (37), respectively.

Acceleration Method of the Dymamic Response of Continuous Structural
Members with Viscous Damping

In the previous section, the dynamic response of a completely
general viscously damped structural member was formulated as an

infinite series solution. This form of the solution is often referred

to as the displacement method. The advantage of this approach lies in
that it will usually converge to the response with only a small number
of terms. If the series solution requires many terms, it is often pos-
sible to overcome the slow convergence by modifying the displacement
solution. One technique which may be used to achieve this goal is
called the acceleration method. In this section, this form of the

modal solution will be derived for a structural member with proportiomal,

non-proportional, or no viscous damping.

Acceleration Method for Proportionally Damped Structural Members

The structural member treated in this subsection possesses the
so-called proportional damping, which satisfies the condition given in
equation (30). When a = b = 0 the member is undamped, and so undamped

members may be considered to be a special case of proportional damping.
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As mentioned in the previous section, proportionally damped
structural members are categorized as classical systems. Hence, only
the undamped modes are required to uncouple the dynamic response which

is given by equation (44). Recall that the uncoupling coordinates Em(t)

to obtain
1 .o e ?
£ (0) = - ;—2' (6, + (a¥b2 ) & - F ] \ (46)
m

Substitute this equation into equation (44) and arrive at the expression

© F' ©

¥
ulz,t) = } _:;E— zm
w1 XQO me=1 AQO

3 e
(e + (a+\2b) & ] 7

The first term on the right-hand side of this-.equation is a function
of the spatial and temporal variables. However, time only enters
through the generalized forcing function F; which represents applied
loadings and non~-homogeneous boundary and in-span conditions. Because
these are prescribed, F; may be determined at every instant of time
for which this first term may be considered to be a function of x
alone. With this understanding, define this expression as a static or

quasi-static term, given by

. 1. @ “’ Ff
voo 1 ':‘“ (48)
m=1 AQO
For additional convenience, define
cfey ==L (2 + (ama2) £ ) (49)
m Ai m n’ “m
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so that Equation (47) may be rewritten as

£ ® C+(t)
u(x,t) - v, + )

m
m=1 Qm

ey (50)

Note that u(x,t), v:, and wm(x) are column vectors representing the

dynamic static,.and classical mode state variables of the member,

e T T—

respectively.

‘The underlying goal of the acceleration method is to extract a
static solution from the modal expansicn. In effect, the acceleration
solution achieves a "jump" on the dynamic response by beginning with
the static solution. To define the terms in equatiomn (50) in greater
detail, a specific solution form is needed. Recall the solution for
Em(ti given by equation (33). To extract the static solution, integrate

the last term in equation (33a) by parts twice. Substitute the resulting

equation into equation (45a), and then compare this expression with
equation (50) for determining u(x,t). In this way, the alternative

expression for Cﬁ(t) may be identified as

2T s
E<F (E) = S g A F_(0)
Cm(t) - LB, T8 [cos a t + : 2 sin a t] (£ (0) - 2
(1-z2)A2 - m - » a?
m’ o n
Az t sin .t dF*(O)
- sin a
+emm——;2-[6m(0)--l——-:t—]+
m ai (51)
) It {[‘g- + (a + bA2) L. 2 '(X (= )2] F+(T)
2 2 m° dr m’m m
am 0 dt

-chm(t-t) sin am(t-r)

e dt

a
m

]




To summarize, an alternative solution of the transient response problem
has been derived in equation (50). The static solutionm, v: is obtained
from equation (48) and the temporal coefficient C;(t) is given in
equation (51). Note that v: may also be found by solving equations

(1) in which u ’,v: and A; = A = 0 by any suitable method.

As special cases of the above acceleration solution, note that if
the member was undamped merely setting ;m equal to zero (a = b = 0) and
o - Am would allow uncoupling of the response. In addition, the case
of the homogeneous boundary conditions and no in-span conditions would
affect only the value of the generalized force term defined in equation

(31). That is, set B(wm,u) equal to zero.

Acceleration Method for Non-Proportionally Damped Structural Members

The assumption of proportional damping is relaxed in this sub-
section. Hence, the dynamic response of such structural members will
be uncoupléd with the non-classical or damped mode shapes. Recall
that for general viscous damping the uncoupling coordinates nm(t) are
found by solving equation (36). To find the acceleration method for

this case, begin by solving this equation for nm(t):
n(e) = (A -F) (52)
m S n m
m
Where the non-classical form of the generalized forcing function,

Fm(t) =< C'm,F > + B(c-m,u) (53)

has been employed. Upon substitution of equation (52) into equation
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(45b), obtain the expression for the dynamic response

v F
u(x,t) = =) EEEE + 7 SmN v (54)

In identical fashion to the previous subsection, the first series in
this equation may be recognized as being quasi-static so that it may

be rewritten in the form

o Cm(t)
u(x,t) = v, + mzl N v (%) (55)

where ¥ is the static solution for the non-classical system.

Following the pattern of the previous subsection, the solution
for the temporal coefficient nm(t) in equation (37) is integrated by
parts twice to extract the static portion of the response. Then the
resulting equation for nm(t) is substituted back into the displacement
modal expansion in equation (45b). This equation is then compared with
equation (55), the static portion of the solution is identified, and

the coefficient Cm(t) is given by

dFm(t) v eSmt [!;_dFm(O)

C (t) = « — ——r +
m( $2 dt 52 dt
m m
F_(0) 36
=+ (oa =
S m
t Sm(t-r) 42F
s . 2 dt
0 S dt
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Hence, the acceleration form of the modal solution is given by equation

(55) where Cm(t) is found from the above equation. No simplifying
assumptions have been made in this derivation, so that the structural
member can possess general (non-proportional) viscous properties, have
time-dependent non-homogeneous boundary and in-span conditions, and
accept any arbitrary loadings. For a structural member fnr which the
usual modal expansion is prohibitive because of the many terms needed
for adequate convergence, this acceleration form of the solution may
still provide a viable means of finding the dynamic response using

modal analysis.

Dynamic Response of a Viscoelastic Structural Member on a Proportional
Viscous Foundation: Part I

In this section the response of a general viscoelastic structural
member will be found using modal analysis. The constitutive relation
to be used will be of the hereditary integral variety. However, it can
be shown that the final solution may be altered to allow a differential
operator form of the material law to also be used (see Reference [13]).
As mentioned previously, Valanis (3] was the first to resolve the
solution of such a genmeral '"viscoelasto-kinetic" problem into a
superposition of a viscoelastic quasi-static and a dynamic elastic
solution. This section will go beyond the work of Valanis and others
(Robertson, [4],[5] etc.) by considering a more general approach
applicable to both self-adjoint and non-self-adjoint systems, which
may also possess a proportionally damped viscous foundation (hereafter

a viscoelastic member on a viscous foundation will be referred to as a
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*
damped viscoelastic structural member) . In addition, non-homogeneous

surface tractions or intermal forces, such as shear forces or moments,

may be included in-span or on the boundaries of the member. However,
prescribed displacements on the surface are restricted to be homogeneous.
This limitation has also béen used by Valanis [3]. It will be shown
in this section that this restriction is necessary to uncouple the |
dynamic response of viscoelastic structural members using the general
approach involving the Green's identity.

The starting point of this general formulation will again be the

differential equations governing the motion of the member given by

2
G*Du(x,t) = ) A (x) 3

ju(x,t) - F(x,t) (57a)
J=1
with the initial conditioms,
u(x,0) = uo(x); du(x,0) = &O(x) # (57b)

and the time-dependent boundary and in-span conditioms,
G*L u(x,t) = P, (x,t) on S (57¢)

where Pi(x,t) is a vector containing the prescribed non-homogeneous
surface tractions and homogeneous prescribed displacements. The
notation used for viscous damping remains unchanged for the general
viscoelastic problem. Hence, proportional viscous damping, such as
found in a foundation, is included in the matrix A;(x). In additionm,

*
In fact, it can be shown [13] if the viscous foundation is non-

proportional, a modal solution is not possible.

&1
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equation (57c) contains all boundary conditions including the non-
homogeneous displacements. Although the prescribed displacements do
not involve G*, equation (57c) can be used to represent these boundary
conditions because they are homogeneous and G is a monotonically
decreasing function of time. Note that equations (57) apply only to

a linear isotropic viscoelastic material, deforming under isothermal
conditions with a constant Poisson's Ratio, and which is incompressible.
Nevertheless, this general form of the equations of motion describe a
wide class of viscoelastic members on a proportionally damped viscous
foundation. An example of such a structural member will be shown to
fit this general theory in the Applications section.

Recall that the solution of a general self-adjoint vigcoelastic
member has been given by Valanis to be a superposition of a quasi-
static viscoelastic and a dyn;mic elastic solution. Guided by this
observation and the fact that the viscous damping is restricted to be
proportional, it is presumed that the undamped mode shapes may be used
to uncouple the response of any complicated member. Recall from a
previous section that the classical eigenfunctions were found by con-
sidering the undamped free vibration problem given by equations (3). In
addition, the viscoelastic member may be non-self-adjoint, so that a
biorthogonality relation will be needed in deriving the elastic modal
expansion. Hence, usewill be made of the adjoint undamped free motion
problem given by equations (10) along with equation (9). Because the
elastic undamped free vibration problems are identical to the proportional
viscous damping case, the orthogonality relation given by equations

(19) and (20 is also unchanged.
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Assume that the solution of the general viscoelastic dymamic

problem may be expressed in the usual modal series form,
@« -~
u(x,t) = § h (t) v_(x) (58)
=1 O m

The classical eigenfunctioms, wm(x), can be easily found for a variety
of structural members. Thus, only the temporal coefficients hm(t) need
to be determined to complete the modal solution. In order to derive
an uncoupled equation for these coefficients, proceed as follows. The

Green's identity, in extended form, may be written as
s wm,D(G*u) > = < (G*u), Dy & b B(wm,(G*u)) (59)

The term, (G*u), is really a function of both the spatial and temporal
variables and its use in equation (59) is valid if it is differentiable
to the extent demanded by the operator D. This is assumed to be the
case. The bilinear form B(&m,(G*u)) is determined in exactly the same
way as for the elastic member. That is, the inner product < @m,D(G*u) >
is formed and then integrated by parts with respect to the spatial
coordinates. Note that the appearance of G does not effect the inte-
gration by parts because G is a function of time. The boundary and
in-span conditions are then grouped to form the bilinear functional
B(&m,(G*u)). Since the prescribed displacements on the boundary are
zero, this bilineaf form contains only the non-homogeneous surface
tractions which involve the relaxation modulus G(t). 1In fact, it is
this form of B(;m,(c*u)) that prohibits non-homogeneous displacements
from being prescribed on the boundaries because these may not be expressed

in the form G*u.
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Before returning to equation (59), note that a property of the

convolution is that
G*(Du(x,t)) = (Du(x,t))*G (60)

where Du(x,t) may be treated as an arbitrary function of x and t.
Since D is a spatial differential operator it does not effect G, a

function of time, so that
G*Du = Du*G = D(u*G) = D(G*u) (61)

With this equation, the governing equation of motion, equation (57a)

becomes
2,
D(G*u = J A, (x) 3,u(x,t) - F(x,t) (62)
gug 3 j

Now substitute equations (10a) and (62) into the Green's identity in

equation (59) to obtain

3 < YAl >+ 3 < ¥p,A0u >+ A2 < (GRu), A >

- . (63)
= <»¢m,F > + B(wm,(G*u))
Noting the homogeneous form of the Green's identity,
< (G*u), Ag¥_ > = < §_,Ay(Cru) > (64)
and that G is a function of time, it follows that
< (G*u) ,Agh_ > = G < b rAu > (65)
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Using equation (65) in equation (63) gives
32 < ¥, Agu > + 3 <y A >+ )% G# < b pAqu >

= < §_,F > + B(y_, (G*u)) (66)

by using the proportionality condition in equation (30), a common

inner product may be factored out of equation (66) to give

£ 2y 2

am(c) + (a + bAm) gm + (xm) c*gm
~ - - (67)
= < wm,F > + B(wm,(G*u)) + baB(wm,u)

where Em(t) has been defined as before in the viscous damping case in
equation (32). Likewise, the generalized initial conditionms, Em(O) and
ém(O) are ‘found from this equation at t = 0. The coefficiénts hm(t)

are found as before for undamped members to be

b (0) _ fa® (68)

where Em(t) is found from equation (67). Note that although §,(0) has
the same form for elastic and viscoelastic members, the solution for
Em(t) will in general be different, due to the G*Em term in equation
(67). Thege solutions coincide when G* reduces to unity, i.e. the
viscoelastic member becomes elastic.

Although a solution of the viscoelastic dynamic problem may in
principle be éiven by equation {(58), this form of the modal solution
is seldom used because of its poor convergence qualities. In fact, most

authors do not even consider the displacement form as a viable approach.
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Therefore, attention will be focused on the more rapidly converging
acceleration (or Williams) method for a general viscoelastic structural
member.

The acceleration form of the modal solution may be derived by
following the steps used in the previous section. Begin by rearranging

equation (67) into the form,

G*Z = - 1

r 2y 2.
5 iy ( 8 T (a+blm) Sy — R (69)
s _

where Hm is the generalized force term given by

Hm(t) = {&mp dx + B(@m(c*u)) +b s(im,u) (70)

X

Taking the convolution of both sides of equation (58) and using equation

(68) gives
= (G*E )
Gku = § — §_(x) (71)
m=1 Qm -

assuming the summation and convolution may be reversed. Now introduce

equation (69) into (71) and after some rearrangement obtain

OWH
G*u-z m m

(72)

2 .
- Z o [Em + (a+bkm) Em
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The first term in equation (72) is the static contribution to the vis-
coelastic solution. As Valanis [3] and Robertson and Thomas (4] have

pointed out, a dynamic viscoelastic problem has a solution of the form

e © E (t)
ulx,t) = v_(x,8) + [ Z REY) (73)

m=1 Qm

where ;s is the quasi-static viscoelastic solution. Equations (72)

and (73) are equivalent by letting

_ = uE
G*vs = z _fn__!! (74)

2
m=1 AQO

and

L 2y
GHE_ = - ) e LG (a+br2) | (75)
m=1 X;

Then equation (72) becomes

@ ¥

Gku = G*v_ + J (G*E ) == (76)
s m=1 = Qm

which implies equation (73). A more thorough understanding of the terms

in equation (76) may now be undertaken. The Green's identity may be

expressed in the form

< ¥, DEGHT) > = < (G¥), Du_> + By, (6K ) (77)

Substitute equations (10a) and (74) into this equation to obtain
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= ® A2 =
mm

o o (78)
*

+ B, (6*V))

where integration of the series is assumed to be equal to a series of

the integrals. Using the orthogonality relation for undamped systems

and in view of equations (61) and (70), equation (78) becomes

<Y, G*DV_ > = - < ,F > - B, (G*u))

(79)
-b 3 B(wn,u) - B*(¥_, (G*GS))

The bilinear forms in the above equation contain contributions to the
generalized forcing function fr;m the non-homogeneous tractions on the
surface. In particular, the form B(&n, (G*u)) contains the non-
homogeneous surface tractions as given by equation (57¢). Therefore,

B(wn, (G*;s)) implies that the same boundary and in-span conditions

apply to ;s when damping is absent (b = 0). In addition, a differential

equation valid throughout the volume is implied by the remaining two
terms in equation (79). That is, the following boundary value problem

may be reduced from equation (79):

G*D(v_(x,t)) = - F(x,t) (80)
with boundary and in-span conditions

G*LiGs(x,c) = P (x,1) on S (81)
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which when solved will yield the quasi-static response of a viscoelastic
member used to obtain the complete dynamic response as shown in equation
(73). Note that this solution is quasi-static in the sense that ;s is
a function of x alone which is to be found for each instant of time.

To complete the acceleration form of the solution, an uncoupled
equation for Em(t) must be found. Substitute the series representation

in equation (73) into the governing equation of motiom, equation (57a).

This gives
® .
G*Dv_ + G*D | [ E v | = Ay,
m=1

(82)

@ .. Ll ..
3 v = E
Al ]} By | * A7+ &2 ) Ev, | -F .
m=1 m=1

where it is assumed that the infinite series converges at all points of
interest. The first term-in equation (82) is equal to -F which can
be cancelled from either side of this equation. Premultiply by wn’

then integrate over the volume to obtain

< wn, Alvs > + mzl Em < wn’ Alwm > 4+ < wn’ szs >
(83)
bl .. y -~ ® -~
+ = Y *
mzl E, < Vo, A2b > L (G*E)) < ¥ _, Dy >

Note that the validity of reversing the convolution and the summation
sign has been assumed. Apply equation (3) to the azbove equation and

then use the orthogonality relation for undamped members to find
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- " . 3
Em(:) + (a+bxm)zm + Am(G*Em) Rm(t) (84a)
where
1 . - - =
R (t) = - < [< VALV > F <YL A0v {] (84b)

and where the pfbportionality condition in equation (30) has been
employed. Note that the condition B(;n, wm) = 0 has also been used.
The initial condition for Em(t) may be found by premultiplying the
initial condition form of equation (73) by LnAz and then integrating

over x to give

4 5 = E(0) -
<ULA u(x,0) > = <y AV (x,0) >+ [ o <y A0 > (85)

=1 "m

After applying undamped orthogonality, the generalized initial conditions

are

E (0) = [} &m,Azuo(x) > - < @m,AZGS<x,0) {] (86)
and similarly,

Ey(0) = [< bgrh2ly(x) > = < J)m,Azés(x,O) :l (87)

An alternmative form of the right-hand side of equation (84a) may
be found which incorporates the complex compliance J(t) of the visco-
elastic material. With this form, either the experimental or modeling
information of a given material may be easily included in the solution

for Em(c). Begin by applying the broportionality condition in equation

(30) to give




!
|
g
I
l

- - 2 i - " » -
<V sAv, > = (athhl) < UgrA2vg > = b By ,v s) (88)

Substitution of this condition into equation (84b) leads to

Rm--

"

[:(cm3+32) < wm’szS > - b B(Wm,vs):] (89)

where Rm denotes the right-hand side of equation (84a), and a is the
proportionality comstant, (a+k;b). The inner product may now be trans-

formed by use of the Green's identity into

- -

< wm’AZGS > = < ;s,Azwm > (90)

Using equation (10a) in equation (90) gives

gh3is R
N AT (91)

AZ
m

Now apply the extended Green's identity,
b Vs,Dwm XS wm,nvs > + B(Wm,vs) (92)

to obtain from equation {91) the result,

- - T 1 -
< wm’szs i . kg < Wm,DVs - A% B(lllm,‘v’s) (93)

The term D;s may now be transformed by taking the Laplace transform of

equation (890)

sGDv_ = -F (94)
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where the bar represents the corresponding transformed variable and

G*€ = s G £ (95)

Equation (94) may be easily solved for D;s to obtain

= -5 JF (96)

where the relation between the Laplace transforms of the complex
compliance J and the relaxation modulus G has been used. Taking the

inverse Laplace transform of equation (96) gives
DGS =-J*%F (97)

Finally, substitute this equation back into equation (93), which when

placed in equation (89) leads to

1 (Cm3+32) 5 By L
R o —— —_— * - 3
R q 2 VO B(Pm,vs)
m

(98)
-b B(&m,Gs)
This is the alternate form for the right-hand side of equation (84a)
which was sought. This form of Rm(t) involves directly the complex
compliance J of the viscoelastic material. When substituted back into
equation (84a) the solution for Em(t) may now be found by taking several
approaches. If a known viscoelastic model composed of springs and dash-
pots has been selected, the compliance will be known once the model
parameters have been defined. These parameters may be prescribed a
priori or, chosen by fitting experimental data to the model [14]. 1In

addition, experimental data may be used directly in equation (98) without
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any reliance on a particular model [15], in which case equation (84a)
may be solved by Laplace transforms, which may be inverted amalytically
for simple models. An example of how this procedure may be carried out
for a Voigt-Kelvin material will be shown subsequently. Otherwise, a
numerical inversion process may be needed. Another approach which may
be taken in fin&ing the coordinates Em(t) from equation (84a) has been
suggested by Valanis [3]. When a Laplace transform of equation (84a)
has been taken, a Voltera integral equation of the second kind results.
Then, any number of techniques may be used to solve this integral equa-

tion. Note that if the usual normal mode approach had been undertaken,
the above comments on how to find Em(t) may be applied unchanged in

determining Em(t) in equation (67). However, as mentioned previously

the acceleration method's more rapidly convergent solution makes solving
the additionmal quasi-static problem worth the trouble, since ;s may

be found easily for many structural members by using a correspondence

principle.

To summarize breifly, the dynamic response of a viscoelastic

r—

structural member on a proportional viscous foundation may be formally

expressed by

; = E_(t)
ulx,t) = v_ (x,t) = m'f_l o Vg (%) (99)

where wm(x) and Qm are the corresponding undamped elastic member eigen-
functions and norm, respectively. The temporal coefficients may be

found by solving
E 2y¢ 2(G*E ) =
Em(:) + (a+bxm)nm + xm(G Em) Rm(t) (100)
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and Rm(t) may take on either of the two forms as given by equations
(84b), or (98). As special cases, when a = b = 0, a viscoelastic

member without a damped foundation may be examined, and when the bilinear
form is absent the member possesses homogeneous boundary and in-span

conditions.

Forced Response of a Structural Member with Linear Hysteretic Damping

In this section, the concept of hysteretic damping will be explored
for the purpose of finding the forced response of structurally damped
structural members. The hysteretic damping to be considered is linear;
hence, the standard assumed solution of modal analysis will again be
employed. Both self-adjoint as well as non-self-adjoint systems will
again be considered.

Consider a continuous structural member with linear hysteretic

damping govermed by the following equation of motion:

2 )
Du(x,t) = ) A, (x)3,u(x,t) - f(x)eith (101a)
- b
with the boundary and in-span conditions,
Liu(x,t) = Pi(x)eint on S (101b)

where f(x) and Pi(x) are vectors of functions which represent the
spatial variations of the forcing function, and boundary and in-span
conditions, respectively. Note that the temporal portions of the

excitation functions are harmonically oscillating with a driving
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frequency @, which is a simplification of F(x,t) given by equation (la).
The initial conditions are zero because interest is focused on the steady
state response, or the particular solution of the differential equation.
Based upon the form of the forcing function and boundary condi-
tions, the steady state response sought will also be harmonic with
frequency Q. This is identical to a single degree of freedom system,

since all points in the member are oscillating in phase. Hence

2 (u,0) = u = 1fu(x,t) (102)
which when substituted into Equation (10la) yields

Du(x,t) = 10Aju + Apdsu - £(x)el™® (103)

This matrix equation represents the governing equations of motion of a

structurally damped member undergoing steady state mocion.' As before,
the goal is to determine the proper modal expansion which gives the
response. This entails defining the modes and orthogonality conditiom,
and the uncoupling coordinates. It will be shown that only the undamped
modes are needed to resolve the solution so that the response may be

written as

ulx,t) = ] q () (x) (104)
m=1

Hence, the coordinates qm(t) must be determined to complete the steady

state respomnse.
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Once again the starting point of the general formulation is the

extended Green's identity,

< ;m.Du > =< u,Bim > = B(@m,u) (105)

Since A; and A are restricted to be only functions of x, (or at best,
spatial matrix differential operators with homogeneous boundary condi-
tions) B(;m,u) contains all the elastic non-homogeneous boundary and
in-span conditions of the member. Substitute the classical free vibra-
tion problem (equation (3a)) and equation (103) into the above identity

and after some rearrangement obtain

32 < ¥ hAu <+ 10 > Y LA >+ e v ,Agu >

(106)
- < wm,f(x)emt >+ B(y_,u)

where the classical form of equation (25) has been used. Note that the
imaginary unit i makes the operator complex. However, by foregoing the
Hermitian norm the Green's identity remains the same for both real and
complex operators. That is, the imaginary un;t is effectively treated
as a constant. By defining Em(t) as previously (see equation (32), the
above equation may be rewritten as

- " =
Em(t) * Xmsm e wm’Alu 5 (107)

= < @m.f(x)eiﬂt > + B(;m’u)
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This expression is not yet uncoupled due to the A; term. A proportion-
ality condition must be invoked, which for hysteretic damping, may be
called proportional structural damping. Recall that for a single
degree of freedom system, an equivalent viscous damping coefficient can
be defined for hysteretic damping which is proportional to the stiffness
and inversely proportional to the driving frequency. For a continuous

member, a similar equivalence may be established so that
aju=-ZLou (108)

where Meirovitch refers to Yy as the structural damping factor [16].

Using this condition leads to

-~

10 < b _,Aju > = -iy < y_,Du > = - iy < u,Dy_ >

8 (109)
-iY B (‘bm, U)
which after employing classical free vibration gives
10 < ¢ ,Aju > = iA;Y < u,dgy, > -1YB(Y_u)
(110)
= 12y < ¥ ,Au > - 1YB(Y_,u)
Thus equation (107) becomes
e 2 - it F >
Em(t) * Xm(l + iy) Em e < wm,f(X)
LL1)

+ L+ 1) B (¥ ,w
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This equation is identical in form to an uncoupled equation for a SDOF

system with hysteretic damping. The solution for non-homogeneous
(time-dependent or constant) boundary and in-span conditions may be found
easily. For example, if the boundary and in-span conditions are separable

such that the right-hand side of the above equation may be written as

iQ

£ e = (< b E() >+ (L+ 1) BG_,UG)] e

(112)

£ eiQt
n

the solution for Em(t) is given by = (113)
x;(l + ly) - o2

This is the particular solution of equation (111) since it is assumed
that all initial condition transients have died out. Since classical

orthogonality was used, qm(t) in equation (104) may be shown to be

Em(t)

(114

qm(t) =

so that the steady state response may be readily found. This result is
identical to that obtained by Meirovitch [16], except that this formulation
now includes non-self-adjoint systems, non-homogeneous boundary and in-
span conditions, as well as incorporating the very powerful matrix

differential operator notation.

Applications:

In this section will be presented several applications of the
general dynamic theory to typical damped structural members. One objec-

tive of presenting these examples is to illustrate in detail usage of

the general formulas provided in previous chapters. However, these




formulas provide the dynamic response in terms of some quantities which
have been assumed to be known. For example, the solution of the damped
free vibration problem was not actually solved but merely represented
symbolically by the vector of eigenfunctions v and the corresponding
eigenvalue Sn' - Hence, another goal of these examples is to demonstrate
how the response may be calculated for some simple damped structural
members. It will be shown that transfer matrices may be easily coupled
to a modal analysis of structural members which possess one independent
coordinate. The dynamic fesponse is computed for two typical members, a
beam on a non-proportional viscous foundation, and a viscoelastic beam.
Since no similar results could be found in the literature, these cases
will be presented as- benchmark examples. For more complicated members,
the response will be theoretically formulated and then compared with
available theoretical results. The intention here is to show how the
general formulas presented in this section iead to the dynamic response
without the involved algebraic manipulations taken in the past. Whether
the applications are numerical or theoretical, these examples are
intended to be illustrative rather than comprehensive. Therefore, com-
plexities in a structural member which may be treated without comfusion
in theory but are tedious in practice, will be avoided to demonstrate

clearly the methodology of finding the dynamic response.

Cantilever Beam on a Damped Viscous Foundation

Consider the uniform cantilever beam shown in Figure 1, which is

resting on a stepped damped foundation. The value of the mass densitvy
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Figure 1 Damped Cantilever Beam
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(p), modulus of elasticity (E), moment of inertia (I), length (2),

and viscous foundation coefficient (c) are

p = .002301 1b - sec?/in?
E = 10 x 105 psi
I = .7854 in*

(115)
£ = 100 in

.0011505 lb-sec/in? for x < 50 in

.0017257 lb-sec/in? for x > 50 in
The force P applied at ¥=100 in. is a static load of 20 lbs. At t = O it
will be removed and the previous formulas will be used to find the resulting

transient response.

The equations of motion governing this member have been introduced in

equations (1). The matrix differential operators are given by
0 0 '0 g =
3
0 o = I 1
D = (116a)
) 1 0 :

¢ 3x  EI
)

L-B—x L 0 0
-¢ 0 0 0 P 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
LP 0 0 x L. g
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u = (116¢)

L

In addition, the'forcing function F(x,t) is set equal to zero and the

initial condition vectors are

L 0]
% : 0
uo(x) = uo(x) = (117)
0 0
0 0

where w. and 8, are the static deflection and rotation due to P given by

0 0
Px? .
Yo = 7ET (2-x/3) (118)
e X
60 =5 (‘i' - ) (119)

Note that the proportionality condition given by equation (30) is not
satisfied by the variable damped foundation. However, this stepped
foundation does not intefere witha the self-adjoint property of this
member. Therefore, the damped adjoint eigenfunctions ;m are not needed
to determine the response. For this case, use of equatiens (22), (37),

and (45b) leads to the deflection responmse.
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P
w(x,t) = 2ET z 1
m=1 2 5 2 :
28 p (w_)4dx + c(w )4dx
m m m
0 0

(120)

2 2
J (c+SmD)(x22 - x3/3) dx wm(x)
0

In this expression Sm is the complex eigenvalue and v is the deflected
mode shape, both of which are found from the damped free vibration prob-
lem. This free motion problem may not be solved analytically. Rather,
a numerical technique must be employed. Since this beam possesses one
independent coordinate direction, transfer matrices may be used. For

further simplicity, approximate the continuous member by dividing it

. into massless elastic sections punctuated by mass lumps (stations). The

damped foundation is also concentrated into discrete dashpots located at

the mass stations. For example, this leads to the equation,

w R 3 0 0 0 w R
8 0 - | 0 0 8
5 (121)
M 0 0 1 0 M
v S2m, +Sc 0 0 1 v
p 1 "% ¢ g

or,
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— - ~ j
a R & L
8 ]
= [T
¥ (Tyly | (122)
v v
[ 41 L 41

where the superécripts R and L refer to locations just to the right and left,
respectively, of the mass lump (mi) and dashpot (Ci) at x = . The transfer
matrix corresponding to the mass and damping lump at x = X5 [TM]i’ allows the

state variables just to the right of the mass station to be known in terms of

those just to the left. 1In a similar way, the expression for an elastic

section is given by

- r— X 2 i 3" - -
WL o Sl D
1% ity
? Az (Azi)2
=0 B, 4 - s .
g 1 E T 7E.I . AR
i i 4
M 0 0 1 o M
v v 0 0 1 v
i+1 i
bl n N

or,
. .
w g W-}L
5 9
= [T
(Tgly (124)
M M - |
v v
1+1 J1

where Ali, Ei’ and Ii are the length, modulus of elasticity, and moment

L

of inertia, respectively, of the elastic section from xiR to Xi41 °
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The matrix [TE]i transfers the known state variables at xi to state

variables at X With equations (122) and (124) the response in
terms of the deflection, slope, moment, and shear at any location may be
found in terms of the known values at x = 0 by merely alternately multi-

plying mass and elastic transfer matrices down the beam. It is obvious

that variations in the mass densiﬁy, damping foundation modulus, and

moment of inertia can be easily accounted for by merely changing m
o Ei’ and Ii for each transfer matrix. Other effects such as rotary
inertia, shear deformation, in-span conditions, and an elastic foundation
L may also be readily included by introducing similar transfer matrices.
Such catalogues of transfer matrices, including a more thorough treatment
of this approach, may be found in several sources such as Pestel and
Leckie [17], and Pilkey [18]. A listing of the damped frequencies found
for this example are given in Table 1. Using the damped mode shapes
found above, the response may be computed by using equation (120). This
response is shown in Figure 2.

In cﬁnclusion, a simple Euler-Bermoulli beam has been
presented to demonstrate how easily the response may be found using the
general forﬁulas presented in this work. The response may be found for
more complicated loading conditions, and non-homogeneous boundary and
in-span conditions by using the same equations. The approach is identical
to that taken for this simple beam, only the details become a bit more
tedious. In addition, complications such as shear deformation and
rotary inertia are also readily included in the previous analysis. This
is done by modifying the appropriate transfer matrices in the damped
free motion problem and by al:eriﬁg the matrices A; and A; used in the

general formulas.
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Table 1

Complex Frequencies for a Damped Beam with Variable Foundation

Re{Sn} ' (1/SEC) Im{Sn} (CPS)

1,2 |-3.6869335 x 10! | £3.2663992
3,4 |-3.2006817 x 10-! | *2.0436355 x 10°
5,6 |=-3.1172523 x 10~! | £5.7129133 x 10°
7,8 |-3.1291877 x 107! | £1.1176201 x 10

9,10 | -3.1274025 x 10~! £1.8443682 x 10
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Dynamic Response of a Voigt-Kelvin Beam

Consider the undamped Euler-Bernoulli beam shown in Figure 3, which
is composed of a Voigt-Kelvin viscoelastic material. Assume that the
linearly varying distributed load shown in Figure 3 is applied at t = 0

and then maintained at that value for all future time. That is,
q(x,t) =-% H(t) (125)
where H(t) is the Heaviside unit function, which possesses the property
*
H(t) J(t) = J(t) (126)

The dymamic deflection response for this beam is sought for this loading
condition.

The governing equations of motion for a genmeral viscoelastic beam
have been given by Robertson [15]. The equations may be reduced to
one fourth order differential equation when shear deformation and rotary
inertia are neglected. When written in the form of equations (57), the

following values are assigned:

4

D=2(1=v)1 2 Ap =0 (127a)
ax"

Ay = - F = -q (127v)

u= wix,t) U, = GO =0 (127¢)

32 =
L P00 = 72 NREaay
(Pl)x-O,l = (PZ)x-O,z = 0 (127e)
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q(x,t) .

Figure 3 Voigt-Kelvin Beam Under Variable Loading
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The dynamic response of this viscoelastic beam may be found from

equation (73) to be

E Em(t) (
w(x,t) = w_(x,t) + Y (x) 128)
e m=1 Qm -

where ws(x,t) is the quasi-static deflection. For this simple member,
the deflected mode shapes wm(x) and corresponding eigenvalues Xm may
be analytically determined by solving the undamped eigenvalue problem.
That is,

mrx

< m = 0,+1,+2, ... (129)

wm(x) = sin
and

A = G52 /E;: " (130)
so that the corresponding norm may be explicitly determined to be

Qm = pe/2 (131)

Note that since the elastic beam is self-adjoint, only the modes wm(x)
are needed to determine the response. Therefore, in the series portion
of equation (128), only the temporal coefficient remains to be determined.

To find En(c), recall from equations (84a) and (98) that

E (c) + a2geg = —1 32 ; v_(J*q) dx] (132)
m m m 2 2 m q =
A2q 2t

56




where a = b = 0 since the beam is undamped. In addition, the initial
values, Em(O) and ﬁm(O) given by equations (86) and (87), are zero
because the initial conditioms Y, and 60 are zero. Introduce equations
(125), (129), (130), and (131) into the above expression to arrive at

.. 2 * i L ..
E + \G*E_ J(t) (133)
where equation (126) has been utilized. Eliminate the time variable in

this expression by taking the Laplace transform to obtain

—1)Bp 4 o
2(-1) & (134)

szﬁm + 225G EM = - s2J
= - (mm) SEI

where the initial conditions of the complex compliance vanish since they 3
are proportional to Em(O) and ém(O)k Solve for the Laplace transform

of Em(t) (i.e. Em(s)) to obtain

PR, . S— : (135)

-s3JL '
e |
(xm + s°J))

where for convenience

oy

- (mw)SET

The Laplace transform of the complex compliance for a Voigt-Kelvin

material [19] is given by

where
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K = qo/q1 (138)

and 9 and q; are the spring and dashpot constants in the Voigt-Kelvin
model. Introduce equation (137) into equation (135), and after some

rearrangement arrive at the expression

12
“m ik 1
* E—'[(s-rl)(s—rz)] s :; [s + «

1} (139)

s
n " " In {(s-rl)(s-rz)

where

-Aqu %
/ 2
ry,r2 = ? z EE qfxm - 4q0 (140)

and where the method of partial fractions has been utilized. Using a
table of Laplace transforms, Em(c) may be found by inverting equation

(139) which leads to

1 rt rat
Em(c) = -Lm [———— (110 - rje )
Xm Xmgl-4qo
(141)
Am ot it 1 o %t
- (e -e )-= ]
K¥y2 2 2

Afqi-4q
m-l (o}

This is the expression which was sought for Em(t). 'Since it can be
evaluated from this equation, all the ingredients needed for the series
portion of the solution in equation (128) have been found in closed
form. To determine the quasi-static part of the response in this equa-

tion, make use of a so-called correspondence principle. That is, as

-
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Flugg [20] explains, the static deflection of a viscoelastic member may
be found by finding the deflection of the corresponding elastic member
and then replacing the modulus of elasticity (E) by the ratio of poly-
nomials Q(s)/P(s). Here Q(s) and P(s) are the Laplace transforms of the
temporal differential operators P and Q, introduced in equations (135).
In general, to find the quasi-static response ws(x,t), utilize this
correspondence principle for each time step. For this case it will be
shown that this principle need only be applied once, since the load is
constant for all time. From elementary strength of materials, the

static deflection of an elastic simply supported beam is

w(x) = [3x* - 52222 + 224] (142)

g S
180 EI

Now replace q and E by (x/2) i-and Q(s)/P(s), respectively, to obtain °

1
180 Iq,

1
s(k +

;s(x,s) = ( s)) [3x5 - 5x322 + 2x24] (143)

which is the Laplace transform of the quasi-static deflection. Note

that for a Voigt-Kelvin solid (19],

AL - g (x + 9) (144)
P(s) '

equation (143) may be easily inverted to give for the quasi-static

deflection response,

5 - 5%3g2 + 2%
180 IZqo

B S B

ws(x,t) = (3x ) (145)
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which decays as time grows since x > 0. Hence, the solution of a Voigt-

Kelvin beam given by equation (128) has been determined. It is apparent

that many other methods of solution of equation (132) could have been
pursued. For example, had J(t) been experimentally determined, a
numerical solution of equation (132) would have been attempted. Or,
this experiment#l data could be fitted to a more complicated but more
realistic model. However, for more complicated viscoelastic models, a
drawback to the previous method of solution is that an inverse Laplace
transform of a complicated function has to be taken. In most cases of
this sort, a numerical inverse Laplace transform would probably be

warranted.

Summary

It has been shown in this work that a general theory for the
dynamic response of linear damped continuous structural members may be
formulated using a modal analysis. A general set of formulas was
derived to provide the ingredients needed to construct the dynamic
response. The ingredients included a statement of the free vibration
problem and a determination of the orthogonality relation and the
uncoupled temporal coefficients. As shown in the previous chapters,
these elements of a modal solution were found in terms of the (assumed
known) governing equations of the member. Therefore, the dynamic
response can be explicitly Qrit:en out by merely inspecting the govern-
ing equations. And since these formulas apply to self-adjoint as well
as non-self-adjoint structural members with or without non-homogeneous

boundary and in-span conditions, the dynamic response of the most general
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type of structural member may be found. When uncoupling was not
possible, another advantage of this general approach became apparent by
exposing the mathematical limitations imposed by the physical model.

This work was divided into three distinct sections, depending on
the type of linear damping present in the structural member. Viscous,
viscoelastic, and hysteretic damping were treated. The formulas derived
for the ingredients in a modal expansion are summarized in Table 2. All
the formulas needed for each form of damping are not explicitly shown for
the sake of clarity. The leng;hier formulas are only referenced in this
table, where parentheses denote the primary equations for the terms in
the dynamic response. As can be seen from this table, knowing only the
solution of the free vibration problem (i.e., @n and Xn o v and Sn)
the dynamic response may be readily determined. These formulas are
applicable to damped (or undamped) self-adjoint and non-self-adjoint
structural members with arbitrary loading, non-homogeneous boundary and
in-span conditions, and initial conditions. In all these cases, the
general formulas are applied in exactly the same way to find the dynamic
response.

In summary, a comprehensive th;ory has been presented for the
dynamic response of linear continuous damped structural members. The
formulation depends only on the equations of motion and is independent
of the specific structural member. Hence, the dynamic response of a wide

class of linear structural members may be determined by the same theory.
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