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a.

RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES -.
Members of the faculty who teach at the undergraduate and graduate levels and a number of

professional engineers and scientists whose primary activity is research generate and conduct the
investigations that make up the school’s research program. The School of Engineering and Appiied Science
of the University of Virginia believes that research goes hand in hand with teaching. Early in the
development of its graduate training program, the School recognized that men and women engaged in
research shouid be as free as possibie of the administrative duties involved in sponsored research . In 1959,
therefore, the Research Laboratories for the Engineering Sciences (RLES) was established and assigned the
administrative responsibility for such research within the Schooi.

The director of ALES—himself a faculty member and researcher—maintains familiarity with the
support requirements of the research under way. He is aided by an Academic Advisory Committee made up
of a faculty representative from each academic department of the School. This Committee serves to inform
RLES of the needs and perspectives of the research program.

In addition to administrative support , ALES is charged with providing certain technical assistance .
Because it is not pract ical for each department to become self-sufficient in all phases of the supporting
technology essential to present-day research, RLES makes services available through the following support
groups: Machine Shop, Instrumentati n, Facilities Services. Publications (including photographic facilities) ,
and Computer Terminal Maintenance.

I
I

-. 

- J



— Jr1~j L- 1J L~WU
Unclass ified

SECURITY CLA SS IFICATIOP4 OF THIS PAGE (WP,.n Data EnI.r.d) 
____________________________________

READ INSTRUCTION SR EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
,. ~~ ,~~

— -—- 
- 

2. GOVT ACCESSIO N NO. 3. R ECIP IENT’ S C A T A L O G  NUMBER

1 UVA/5253
,~~3/ME77/1O~~] _________________________

_________ 
ns rsflT i rums. RED4. TITLE fond SubUtl.) __________

‘/
~ 

) Transient Respo;s
Structures, 

~ 

~~~f tinu~~~~~~~s~~cj 
~ aiTechn ic
6. PLRFpRUIN~~~~~~G. RE

j _~~~~~ ~~~~~~~~~~~~~~~~~~~~ . _‘~~~_.____.. -
~~ 0. CONTRACT OR GRANT NUNBER(.)

/ 
~/~

11keY
~~~~~

J
?
4renkowski

/ ~~~~~ ooi4~7s-c~e~~J
~~. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , T ASK

AREA & WORK UNIT NUMBERS

Department of Mechanical Engineering
University of Virginia
Char1ottesvi11e

~ 
Virginia 22901 NR 064—542—6—7—76 (474)

I t .  CONTROLLING OFFICE NAME AND ADDRESS Q~ 
12. REPOWr~~*?u—

Structural Mechanics Program Feb~~ •77 1
Off ice of Naval Research IS~~ .1uu..nsr rASs~71Arlington, Virginia 22217 _______________________________

T4. MONITORING AGENCY NAME I AOORESS(II di ll.v..~t from ControlIhi~ OffIc .) 15. SECURITY CLASS. (of tAt. r.port)

~~~~ 
Unclass ified

15., DECLASSIFICATI ON/DOW NGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of U.S. Raport)

i Approved for Public Release; Distribution Unlimited P

17. DISTRIBUTION STATEMENT (of A. sbat,.c t .nt.r,d In Bt*ck 30, II dJtf.r.IU tro., R.poet) .

-. - 

~~~~~

I
II. SUPPLEMENTARY NOTES

I .
lb. KEY WORDS (Conilnu . on .r.ri. .id. It n.c.oc.~ ond idonUt~ b~

. block rnonb.r)

Transient Response Non—proportional Damping
Modal Solutions
Elastic Solids
Structural Members

A TMAC’t (C—*~~ ~~~,,vm on ~~~~ It ~~~ .osmy ~~~ MmMSfr by block m .boc) ‘

A general theory ~or the dynamic response of linear” damped continuous structured
members is formulated with a modal analysis. T~.I theory applies to elastic or
viscoelastic solids. Proportional and non—prqp~

’ortiona1 damping are included.

~~~~ VOWM

SECURITY CLA SS,?(CATTOR OF ThIS PAGE (Bluon Do.. E

w ~~ ~ )473 EDITION OF I NOV 11 IS OBSOLETE 
1JNCLASS tFIEl~

— A



-

LIST OF SYMBOLS

a constant of proportionality for viscous damping

N—square spatial matrix

b constant of proportionality for viscous damping

B bilinear functional

c external or viscous damping coefficient

c~ discrete dashpo t coefficient

C viscous proportionality constant, c a + X~b

Cc] bear ing damping matrix

C temporal coeff icient
m

dA differential area element

dV differential volume element

D N—square matrix linear differential operator

5 N—square algebraic adjoint matrix differential operator

N—square Hermitian adjoint matrix differential operator

(i,j) element in the matrix differential operator D

E modulus of elasticity

E temporal coefficient

f forcing function

f temporal coefficient for classical systems; loading termm for forced normal mode response

F column vector of body forces

F generalized forcing function

temporal coefficient for non—classical systems

G(e) relaxation modulus for viscoelasti.c material

h
m - temporal coefficient
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List of Symbols (continued)

H( t) Heaviside unit f unction

H generalized forcing function for structural member of
viscoelastic material

I moment of inertia taken about the neutral axis

I{S } denotes imaginary part of S
n

.1(t) complex compliance of a viscoelastic material

k Winkler (elastic) founda tion modulus

k. extension spring constant

length of beam

L . spatial matrix differential operator

M bending moment

M norm for forced normal mode responsen
N Normm

viscoelastic material constant

P temporal differential operator

column vectors of non—homogeneous boundary and in—span
condition

q applied loading intensity

temporal coefficient

viscoelastic material constant

Q t emporal differential operator; transverse shear
fo rce on a radial face

classical norm

denotes right—hand side of viscoelastic equation

Re{S~~~} denotes the real pa rt of Sn
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s Laplace transform variable

S denotes bounding surface’ and in—span condition locations

S damped frequency or complex eigenvalue

t time

[T
E
] denotes transfer matrix for an elastic beam section

T~J denotes a beam transfer matrix for a lumped mass and
dashpot station

u(x ,t) column vector of dependent state variables

u(a1, t) prescribed transverse beam deflection at x a
1

u~ denotes 1th element of column vector u(x , t)

u generic symbol used to represent or v~

v colu~~i vector of damped (or non—classical) mode shapes
or eigenfunctions corresponding to the ~th damped
f roquency

v column vector of state variables representing the
quasi—static response

column vector denoting the quasi—static response of a
viscoelastic member

V shear force

w transverse beam deflection

x general point in the multidimensional region;
one—dimensional coordinate direction in a rectangular
coordinate system

Greek Symbols

constant

n

structural damping factor
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5(x—a.) delta function

Kronecker delta

length of section i

.constant for Voigt—Kelvin model

constant related to )~m

dashpot constant in the Voigt—Kelvin model

temporal coefficient

8 slope of beam

K q0
/q
1 
in the Voigt—Kelvin model

X denotes the undamped (or classical) frequency or eigenvalue

generic hyinbol used to represent X
u 

(classical) or S~ (non—
11 classical)

v Poisson ’s ratio

temporal coefficient

IT 3.14159

p mass density
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vi



____________________________________

List of Symbols (continued)

i denotes x x~ axial location

s denotes the quasi—static response

Superscripts

* complex conjugate

(k) denotes kth derivative with respect to x

+ “just to the right of”

— “just to the left of”

R right

L left

1 denotes quantities associated with the classical free
motion problem
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Introduction:

The purpose of this work is to formulate a general theory for the

dynamic response of linear damped continuous structural members subjected

to arbitrary excitation forces. Typical members which are included in

this theory are rods, beams, plates, shells, and rotating shafts. The

damping models to be considered include the traditional viscous dashpot ,

so—called hysteretic (or material or structural) damping, and viscoelastic

material damping.

A general technique for finding the dynamic response is modal

analysis, and it will be used exclusively in the following developments.

This method has been employed extensively for both undamped discrete and

undamped continuous linear systems (see for example, Hurty and Rubinstein

El]1 and Meirovitch (2]). However, when damping is present, the use of

modal analysis has been largely restricted to self—adjoint systems of

equations which may be uncoupled with the classical or undamped normal

modes. Meirovitch [2] presents several examples of such systems which

include structural members with proportional viscous and linear hysteretic

damping. For viscoelastic structural members, Valanis (3] was the first

to propose a suitable modal solution. By assuming that Poisson’s ratio

remains constant, the dynamic viscoelastic problem may be resolved into

a quasi—static viscoelastic problem and a dynamic undamped elastic

problem. Robertson and Thomas (4] used a similar technique which allowed

more general boundary and non—zero initial conditions to be considered.

1Numbers in brackets refer to References at end of paper.
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an example of this technique as applied to a self—adjoint viscoelastic

Timoshenko beam is given by Robertson (5].

When other forms of damping, such as non—proportional viscous

damping , are included in a structural member model the classical modes

cannot uncouple the equations of motion. Hence, modal analysis in the

classical sense may not be used to determine the response. However, for

a discrete system with viscous damping, it has been shown by Foss [6]

that a resolution of the response is possible by using a new set of

orthogonal eigenfunctions. These are the so—called damped modes, which

can be shown to satisfy a different form of orthogonality [61. In a

similar manner, the response of a continuous member with non—proportional

viscous damping was determined by O’Kelley (8] by using the damped mode

shapes. In addition, Caughey and O’l(alley [8] studied the limitations

of modal analysis for this kind of general viscous damping by determining

necessary and sufficient conditions for which the undamped modes can be

used to uncouple the dynamic motion (i.e. proportional viscous damping).

However , few applications have appeared in the literature applying

damped modal analysis to continuous members with viscous damping. For

example, Lund [9] used damped eigenfunctions to find the dynamic response

of a rotating shaft on damped bearings. The approach taken was not

general and it involved a great deal of tedious algebraic manipulations.

Thus far , very little work has been done to generalize any of the

above results to any damped structural member with arbitrary non—

homogeneous boundary conditions, in—span conditions, and non—self-adjoint

equations. This is true even for viscous damping which is the most pop—

ular model because of its mathematical convenience rather than its

2 
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physical exactness. O’Kelley [7 3 did use a general approach to resolve

the dynamic response of viscously damped continuous members , but his

J remarks were restricted to seif—adjoint systems with homogeneous boundary

conditions and no in—span conditions. Meirovitch (2] also considered

self—adjoint systems of equations for both viscous and structural damping

with only homogeneous boundary conditions and no in—span conditions. The

most general formulation was presented by Pfennigwerch [10] and later

extended by Cinelli and Pilkey (lii. However, only undamped continuous

structural members were considered .

In this work, a comprehensive theory is presented for the dynamic

response of continuous damped structural members. A general set of

formulas is derived that explicitly provides the ingredients necessary

to form the modal solution due to arbitrary loadings. These ingredients

include the necessary normal modes (shown to possess the proper orthog—

onality) and the time—dependent uncoupled coordinates. It is shown

that a very general type of problem can be resolved with this approach.

That is, linear structural members can be self—adjoint or non—seif—adjoint,

possess homogeneous or non—homogeneous boundary conditions, or have

in—span conditions such as in—span supports. In addition , members

with two or three independent spatial variables may be treated as easily

as those with one spatial dimension. Knowing only the differential

equations of the structural member , the dynamic response is explicitly

written out , thus avoiding the tedious algebraic manipulations which are

now required when solving for a particular member. Finally, this

general approach also exposes the mathematical limitations imposed by

the physical model which prohibit the uncoupling of some damped structural

members.

3
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General Formulation for the Dynamic Response of Continuous Structural
Members with Viscous Damping

The starting point of this general formulation is the governing

differential equation of motion of the structure. The class of viscously

damped structural members to be considered may be defined by the following

equation of motion:

2
Du( x , t)  = ~ A . (x) 3 .u(x,t)—F(x,t) (la)

j=l ~

with initial conditions:

u(x ,0)u0(x) ; au(x,O) = ~i0
(x) (lb)

and the time—dependent boundary and in—span conditions,

L~u(x~t) = P~ (x~t) on S, the~body surfac e (lc)
and in—span locations

where ,

F(x ,t)  = N—dimensional column vector of body forces

D(x) , Li(x) = N—square spatial matrix linear differential operators

A~ (x) = N—square spatial matrix

P~ (x~t) N—dimensional colun~i vector of non—homogeneous
boundary and in—span conditions

u(x ,t) N—dimensional column vector of dependent State variables

u
0

(x) , ’i0
(x) = N—dimensional vectors of prescribed state variable

initial conditions

a j —

and x represents the independent spatial coordinates x1, x2, and x 3.

4
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Since equations (1) are matrix equations, they represent N distinct

governing differential equations of motion and their associated boundary ,

I - in—span, and initial conditions. Note that lumping the boundary and

in—span conditions into one equation (equation (ic)) is reasonable be-

cause boundary terms may really be considered in—span conditions at

the boundary of the member. Furthermore, the case of homogeneous

boundary and in—span conditions may be considered to be a special case

of this development wherein P .(x ,t) is set equal to zero.

In order to determine the transient response using a modal analysis,

normal modes of the structural member must be known . Depending on whether

J the member possesses non—proportional , propor tional , or no damping , the

normal modes used in the modal expansion will be different. It has been

shown by Caughey and O ’Kelley (81 that damped continuous l:’.cear systems

can be uncoupled by either undamped or damped modes and these constitute

two mutually exclusive classes of problems. Systems which require only

undamped modes for uncoup..ing are called classical and all others are

non—classical. Necessary and sufficient conditions have also been formu-

lated to cetermine when a viscously damped self—adjoint linear continuous

system is classical or non—classical [83.

Solution of a so—called f ree vibration problem will yield the

normal mo~es and corresponding eigenvalues necessary for modal analysis.

Classical normal modes will result if damping is excluded from the free

vibration problem; non—classical modes if damping is included. By def i—

nition , the damped or undamped free vibration problem represents motion

in which all external forces and prescribed deflect ions have been set

equal to zero. When the prescribed conditions occur on the bc undary ,

5
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they are called non—homogeneous boundary conditions. Otherwise, they

constitute in—span conditions. A member undergoing free motion will

vibrate due to forces inherent in it , having been set in motion by

prescribed initial conditions.

For an undamped member , it can be shown that the free motion

response has a separable form of solution given by

ix t
u(x , t) = 4,

~L
(
~~

e ~ . (2)

where A is the natural frequency and ~~(x) is the vector of undamped

(or classical) mode shapes. The undamped governing equation of motion is

given by setting the damping matrix A
1 

= 0 in equation (la). By substi-

tuting the solution given by equation (2) into the governing equation,

the undamped free vibration problem is obtained

D* (x) = - (A )
2 A2~~~~~~(X) (3a)

with the boundary and in—span conditions

L
i~~

(x) = 0 on S (3b)

It will be sho~zn that only the classical modes t1~~(x) are needed to

express a modal series solution of equation (1) for undamped or pro-

portionally damped systems .

Guided by equation (2 ) ,  when a member has non—proportional viscous

damping the damped free motion solution may be assumed to have the form

iwt — y tn nu(x,t) = v (x) e e (4)

6
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where e represents the temporal decay due to damping in the struc-

tural member. By defining the complex frequency to be

S — — y +iu~ (5)
n n n

equatiQn (4) may be written as

S t
u(x,t) v (x) e ~ (6)

in analogy with equation (2). Now S and V
n

(X) represent the eigenvalue

and vec tor of mode shapes, respectively, corresponding to the damped

structural member. Note that in contrast to the undamped member , the

eigenvalues and mode shapes are complex—valued for underdamped structural

members.

As was done for  the undasiped case , the damped free vibration

problem may now be derived by substituting equation (6) into equation

(la) and setting all applied loadings equal to zero. This results in

the equation

2
Dv (x) — ~ (S )

~ A4 (x)v (x) (7a)
U

with the boundary and in—span conditions

L~v (x) 0 on S (7b)

Equations (3) and (7) constitute eigenvalue problems . The undamped

free vibration problem led to equation (3 ) ,  which for self—adjoiri t

systems is a higher—order generalization of the traditional Sturui—

Liouville boundary value problem. When damping is included in the free

7
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vibration problem, a non—classical eigenvalue problem results in which

the eigenvalue appears non—linearly. Regardless of whether the system

is classical or non—classical, it will be assumed that the solution con-

sists of a denumerably infinite set of eigenvalues and eigenfunctions,

which are complete. Also since repeated eigenvalues are of limited

practical use, only zero multiplicity will be considered in this work.

Hence, the corresponding eigenfunctions will be assumed to be linearly

independent .

The previous undamped and damped free vibration problems may be

combined into the single general form:

2
flu (x) ~ (~ l)~~~~~~0.z )

~ A (x) u Cx) (8a)
n n j  n

with the boundary and in—span conditions

Liu (x) — 0 on S (8b)

Here u and 
~ 

are the eigenfunccion and eigeuvalue which can be classical

or non—classical, depending on whether damping is included in the free

motion problem. That is, assign the following significance:

Undamped Free Motion

—

L(v ,S )
~ 

Damped Free Motion

Also, for no damping set ~ 2 and when damping is present assign ~ — 1.

The remaining discussion in this work will use this notation whenever

possible to enhance the general approach underlying this work.

1 

8



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~ 
_ _  

- -

I
Associated with both the undamped and damped eigenvalue problems ,

an adjoint eigenvalue problem may be described. Using the general

notation in equation (9), the adjoin t problem takes the form

2
D ii (x) 

~ 
(— 1) (~i ) ~ A

1
(x) ü (x) (lOa)

j -
~~

with homogeneous adjoint boundary and in—span conditions

L~ u ( X ) = 0 on S (lOb)

where

D(x) , Li(x) N—square algebraic adjoint spatial matrix linear
differen tial opera tors

A~ (x) — N—square algebraic adjoint spatial matrix

ü (x) N—dimensional column vector of algebraic adjoint
eigenfunctioris corresponding to the nth eigenvalue,
either classical or non—classical (see equation (9)).

The eigenvalue of the original free vibration problem is also the eigen—

value of the adjoint problem, for both undamped and damped cases (see

References (12) and (13)). Note that in equation (lOa) the matrix A .(x)

has been restricted not to be a differential operator; therefore, the

algebraic adjoint A~(x) is equivalent to the transpose of A~ (x).

The adjoint operator and the adjoint boundary and in—span conditions

denoted by D(x) and L~~(x) in equation (lOa) are not known a priori from

the original statement of the eigenvalue problem. However, these

operators are formally shown to exist by the use of various forms of

the Green ’s identity. One form which is valid for homogeneous boundary

conditions and no in—span conditions is given by

9
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<u , D u > — < u , D u > 0  (11)n m a a

where the notation <~i , D u > denotes the inner product ,a

<~~, D u > —  f ~i (Du)dx (12)n m n mdomain

and u and ~i represent either the classical or non—classical vector ofm n
mode shapes and the associated vector of adjoint modes , respectively.

When in—span conditions are present , it can be shown [131 that the

Green ’s identity takes the form ,

D u >  — <u , D u~> + B(~~ , u )  (13)

where B ( u , U
m

) is a bilinear function of the state variable vectors

Urn and which represents the boundary term and in—span condition at

each location. Note that the eigenfunctions u and ü must be differenti-
m n

able to the extent demanded by the operators D and 0 when no in—span

conditions are present. Otherwise, these functions need only be

differentiable at all locations not coinciding with the in—span conditions.

Using the proper form of the Green’s identity, it may be used to

identify the adjoint free vibration problem for  any classical or non—

classical structural member. Briefly, the left—hand—side of equation (13)

is formed , and then integrated by parts so that the operator 0 and

bilinear functional B are identified for any member. Several practical

illustrations of deriving equations (10) are provided in Reference E131.

Note that in general, the solution of the adjoint problem given sym bolically

by equation (10) will be different from that of the original free motion

10
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I in equation (8). However, when the problem is self—adjoint these two

solutions will be identical. The advantage of this is obvious : only

one eigenvalue problem mus t be solved . Moreover , an orthogonality

I relation which involves only the original eigenfunctions is needed to

uncouple the transient response.

I The modal analysis solution of a dynamic vibration problem is

characterized by the form

I
u(x,t) ~ %

( t)u (x) (14)

i 

m ] .

where u(x , t) is the vector of state variables describing the deflection

and internal forces present in the member at any given location and time.

The normal modes or eigenfuzictions u (x) will be assumed to be known.( m

In the classical case , u (x) can often be determined analytically in

I closed form for many simple members [2] .  However , when non—proportional

damping is present in a structural member an analytical expression for

1 the eigenfunctions cannot be found and instead a numerical technique must

be used. When the structural member has one spatial direction, transfer

matrices are particularly well—suited to providing an accurate means of

I solution. A description of this technique for numerically evaluating

the eigenfunctions will be given in a later section.

I In this work, it is assumed that the modal ser ies solution given by

equation (14) is convergent for all physically admissible problems.

Furthermore, it will be assumed that the series is uniformly convergent

I except at locations where discontinuities exist such as in—span supports.

At these locations , the series may or may not converge. Hence, it may

_ _ _ _ _ _ _  
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be concluded chat the dynamic response will be determined if the proper

aigenfunctions are shown to be theoretically orthogonal , and the so—called

normal coordinates q
m
(t) can be found via an uncoupled differential

equation for each rn—coordinate.

To find the dynamic solution of a general damped structural member

using modal analysis, an orthogonality relation must be ~hown to exist

between the eigenfunctions. Because both the classical and non—classical

free vibration problems can be non—self—adjoint , orthogonality will be

shown to prevail between the vector of original eigenfunctions u
m
(X)

and the associated vector of adjoint functions u (x). This is

commonly referred to as a biorthogonality relation. When the free motion

problem is seif—adjoint , the biorthogonal form reduces to an orthogonality

condition between the original elgenfunctions only. In this work both

forms will be referred to as an orthogonality relation.

To derive the general orthogonality relation , begin with the form

of Green’s identity given in equation (11). Note that even if the member

possesses in—span conditions, the extended Green ’s identity in equation

(13) reduces to the homogeneous form by B(ü
n
,um
) — 0. Substitute equations

(8a) and (lOa) into equation (11) to give

< 
~n~

Aj%i> - ~~ )i < U
rn~

A
j

U
U 

> I 0 (15)

Another form of the Green ’s identity may be given by

<u~~ A~ ü >  <Ü
n~

A
j

U
m

> j — 1,2 (16)

12
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I
I
I which is valid for ~~~ a matrix of scalar spatial elements. A c.o on

inner product may now be factored out of equation (15) by applying

I equation ( 16), so that equation (15) becomes

I 
~~ ~~~~~~~~~~~~~~ 

- (~~)i] <~~~A~u >  - 0 (17)

The form of the orthogonal relation depends on whether the system is

classical or non—classical. Considering the former case, let ~ = 2 and

u (x) and ~i take on the values given by equation (9). Then equation

1 (17) may be rewritten as

(8 —8 ) <
~n~

A2~m
> —O (18)

I where 8 A2. When 8 # 8 the inner product must be zero to satisfy

equation (18); otherwise, it does not vanish. Thus, the orthogonal

relation for classical systems may be expressed in the form:

I <
~ n

A2*tn> — (19)

- where Q~ represents the classical norm given by

I — <~~,A~~~> (20)

and ~S is the Kronecker delta. Note that in the unlikely event that
nut

I the norm is zero , the vector of adjoint eigenfunctions ‘

~~~~ 

may be replaced

by its complex conjugate. The functions and would then be orthogonal

I in the so—called Hermitian sense.

For non—classical systems, a 1 and u and i become v andn n n

S , the vector of damped eigenfunctions and correspnding complex 



eigenvalues in equation (15). After applying the same argument that led

to equation (19), non—classical orthogonality may be expressed by

(S —S ) ((S +S ) <~~ ,A2v > + <* ,A1v ] 5 N (21)
rn n m a a m n m mart

where now N is- the non—classical norm given by

N 2S <~~
- ,A2v > + <~ ,A1v > (22)n f l U  n n n

Note that A 1 and A2 may contain complex elements and therefore, both

norms, N
~ 

and Q ,  may be complex—valued .

To complete the modal solution as given by equation (14) the

uncoupled coord inates q~ (t) must be determined . This is accomp lished by

transforming the governing equation of motion into art uncoupled differ— 
—

ential equation. Uncoupled here means that a different equation exists

for each m—eigenvalue, independent of all cther values. To effect this

transformation, begin with the Green’s identity in the general extended

form —

<~i ,Du> — <u,D ~i > B(ü ,u) (23)m m

This equation is valid for a member with non—homogeneous boundary conditions

and in—span conditions (B # 0) as well as for  homogeneous boundary and in—

span conditions (B — 0). Substitute equation Cia) and (10a) into the above

equation to obtain -

2 ’ 2
~ ~ <Urn~A u> — ~ (_1)(a_l)(~m)

i <u,A ~i >

j c z  jut

(24)
<u , F> + B(ü ,u)tn

14 
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The bilinear form, once identified for a par ticular example , will retain

its form. By applying the following form of the Green ’s identity,

<u~Af1 > — <
%i ’~~ j

”
~
> j  — 1,2 (25 )

equation (24) may be rewritten as

~~~~ 

<Ü
m
A
i

U> - 
a

m 
<Ü
m~

A
j
U>

(26)

<~i ,F> + B(u ,u)rn m

To reduce this equation further , the value of a must be known . For a

classical system, a = 2 and ü and ~.i are replaced by the adjoint classi-

cal mode shape ii, and the corresponding eigenvalue A .  Noting these

changes and expanding the sum, equation (26 ) becomes

~2 + ( A ) 2 ] <
~tn~

A2I~
> +

- - (27)
— <

~
‘m’~

’> + B(~I, ,u)

A co on inner product may n o t - b e  factored out due to the presence of

the damping term A1. At this point the proportionality assumption must

be invoked,

A j u aA2 u — b D u  (28)

where a and b are constants of proportionality. That is , the damp ing

terms (A1) are assumed to be proportional to the mass (A2) and/or

15
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stiffness (D) of the member. Another form of this condition may be

found by multiplying equation (28) by tP and integrating over the

domain to obtain

<*m~
A1U> — a <*m~

A 2~
L> — b <t

~
!
m~
Du> (29)

Apply the extended Green ’s identity to the last term on the right—hand

side and then substitute the classical form of equation (lOa) into

equation (29). After some rearrangement obtain the equation

= (a+bA 2)

- (30)
— b B(~~ ,u)

With this form of the proportionality assumotion , return to equation

(27). After substituting equation (30), obtain the equation

+ (a+b A 2) 
~m 
+

= <
~
‘m’~~

> + (l+ba)B(~~~,u) (31)

— F (t)

where () — 
~( )/at  and where 

~ 
has been assigned the value

(32)

Note that is a function of time alone because the spatial variables

have been eliminated by the definite integral. The solution of equation

(31) may be easily found to be

16
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I
— A c t A C

~~
(t) e ~ [cos a

~
t + 

m sin a t ]

— A C t  sin a t
+ e m rn 

a 
rn 

~ ~~~~ 
(33a)

~ (t..-’r) sin a (t— -r)
+ l F t (~r ) e  m m  m

J m  a
0

where

ç A (&..+bA ) (33b)m 2 A

and

a — A 
— C

2 (33c )

where the initial conditions, ~~(0) are given by equation (32) by re—

placing u by u
0 

and u~, respectively. Note that as a special case of a

classical system, equation (31) may be used to represent an undamped

member. For this case, set a b a 0 in equations (31) and (33) and

continue to use equation (32).

In an identical manner, an expression for the normal coordinates

for a non—classical system can be derived. Beginning with the general

equation (26), let a — 1 and and urn then become the adjoinc non—

classical mode shape and the complex elgenvalue, respectively. When

these changes are introduced into equation (26) and the sums are

expanded, it may be expressed as

4- 17
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(3_S
m
) <

~m
,A1u> + (3+S

m
) <v ,A2u> I

(34)
a <~~ ,F> +B (’ ,u)rn

The term in square brackets is a function of time alone so that it may

be represented by the variable

= <
~m~~1U> + <

~m~
A2~~

1> + S <
~m~~

’2
~
’> (35)

Using the above definition , equation (34) may be written as

— S n
~ 

a <~~ ,F> + B(~~ ,u) (36)

This equation is essentially an ordinary , first order , uricLupled dif—

ferential equation which has the solution

= e
Sm

t 
fl (O) +

Jt
e
S
m
(t_r) 

[ <~~~~ ,F + B(~~~,u ) ]  d’r (37)

and ~~(O) is found by evaluating equation (35) at t — 0.

The solutions given by equations (33) and (37) represent the

first step in f inding the uncoupling coord inates ~~~t) necessary to com-

plete the modal solution given by equation (14). To avoid confusion,

let q (t)  assume the valuesm

(fm(t) Classical Systems

q ( t) 
. (38)

Lg~ (t) , Non—Classical Systems

18
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I
itt equation (14). Considering first the non—classical systems, recall

that the ultimate goal is to find g (t) in the series solution ,

I a

g (t)v (x) (39)

Since both and g are functions of time alone, a relationship

I between them is sought. For no in—span conditions equation (39) is

assumed to be uniformly convergent. When in—span conditions are present ,

I discontinuities of some of the state variables will occur at these loca—

I tions. However, at all other points along the member , the modal expan-

sion may be assumed to remain uniformly convergent. That is, the state

variables will be assumed to be continuous throughout all subintervals

which are punctuated by these ciscontinuities. Such functions are often

referred to as sectionally continuous. For any well—defined physical

I problem, this modal expansion may converge very slowly or even diverge

at these points of discontinuity . However, the analyst is frequently

1 not interested in the response at precisely these points so that the

formulation in equation (39) is still useful as long as these loca-

tions are excluded from the analysis. Then, at all points for which

the series is uniformly convergent, it may be differentiated with respect

to time. Guided by equation (37), g (t) will have an exponential form

so it follows that

— ~ S~~~(t)v~(x) (40)
tu l

Substitute equations (39) .ind (40) into the definition of i~~(t),

then by assuming that the integral of an infinite series is equivalent

L .~~~~~~~~~~~.. 
~~~~~ _ _ _ _ _ __ ~~~~~~~

_ _ _ _
~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _~~~~~~~~~~~~~~~~ i _ _ _ _
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to an infinite series of the integrals , this equation may be r ewritten

as

n~(t) = g~ N~n~
A1Vm

> + S
m 

<
~n~

A 2~
1
m
>

(41)

. +S <~~~ ,A2v> ]
- n U m

Using non—classical orthogonality and the associated 
norm in equations

(21) and (22), equation (41) becomes

fl (t)
g~ (t) 

— 

~~~~~~~~~~~~~ 

(42)

Since n
m
(t) is known from equation (37), g~(t) is also known . Hence,

the dynamic response may be written out as shown in equation 
(39).

For the classical system, the same procedure may be followed to

give

(t)
a ____ 

(43)

a, well—known result for undamped structural members. The modal 
solution

then takes the form

a ~~ (t)

u(x,t) a ~~ *m
(X) (44)

In summary, the dynamic response of any structural member with

equations of motion given by equation (1) may be found by applying

either of the following two series:

20 
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I

a 
~ (t)

~L. ~~ ~~~~ 
Classical (45a)

u(x,t)

J a

I ~ 
v (x) , Non—Classical (45b)

Lrn ai
where ~~ (t) and~~ (t) are given by equations (33) and (37), respectively.

I
Acceleration Method of the Dynamic Response of Continuous Structural

j Members with Viscous Damping

In the previous section, the dynamic response of a completely

general viscously damped structural member was formulated as an

infinite ser±es solution. This form of the solution is often referred

to as the displacement method. The advantage of this approach lies in

that it will usually converge to the response with only a small number

of terms. If the series solution requires many terms, it is often pos-

sible to overcome the slow convergence by modifying the displacement

solution. Otte technique which may be used to achieve this goal is

called the acceleration method. In this section, this form of the

modal solution will be derived for a structural member with proportional ,

non—proportional, or no viscous damping.

Acceleration Method for Proportionally Damped Structural Members

The structural member treated in this subsection possesses the

so—called proportional damping, which satisfies the condition given in

equation (30). When a b a 
~ the member is undamped , and so undamped

members uiay be considered to be a special case of proportional damping.

21. 
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As mentioned in the previous section , proportionally damped

structural members are categorized as classical systems. Hence, only

the undam-ped modes are required to uncouple the dynamic response which

is given by equation (44). Recall that the uncoupling coordinates

to obtain U -

— ~~~~ [~~ + (a+bA ) 
~ 

— F ]  
- 

(46)

Substitute this equation into equation (44) and arrive at the expression

.1.
a a

u(x,t) — 
m ~ — 

m 

~~m 
+ (a+X2b) Sn1 (47)

m 1  A 20 ~~l X 2Q
m m

The first term on the right—hand side of this ~equation is a function

of the spatial and temporal variables. However , time only enters

through the generalized forcing function F~ which represents applied

loadings and non—homogeneous boundary and in—span conditions. Because

these are prescribed, F~ may be determined at every instant of time

for which this first term may be considered to be a function of x

alone. With this understanding, define this expression as a static or

quasi—static term, given by

- a

vt .. ~ m m  
. (48)

X Q

For additional convenience, define

C~(t) - - + (a+b X 2) 
Sn1 (49)

22
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so that Equation (47) may be rewritten as

a C
t(t)

I u(x,t) — V + 

~ ~~~~ 
(50)

rn 1  ~-m

I Note that u(x,t), vt, and 4i x) are column vectors representing the

dynamic static, and classical mode state variables of the member ,

I respectively.

i The underlying goal of the acceleration method is to extract a

static solution from the modal expansion. In effect , the acceleration

I solution achieves a “jump” on the dynamic response by beginning with

the static solution. To define the terms in equation (50) in greater

I detail, a specific solution form is needed. Recall the solution for

I ~m
(t) given by equation (33). To extract the static solution, integrate

the last term in equation (33a) by parts twice. Substitute the resulting

I equation into equation (45a) , and then compare this expression with

equation (50) for determining u(x,t). In this way, the alternative

expression for C
m
(t) may be identified as

C2F
t(t) —X C t C A F (0)

C
t
(t) — 

UL m — 
+ e in ~ (cos a t + m m sin a ti (~ 

(0) - 
m

in 
(l—C 2)X2 in a

m m in 
a2

in

4.
—A ~ t sin a t dF (0)
m m  in 1 in+e f~~(0) — — 3 +

a2 (51)

- 
1 

1

~~ 
{(.i. + (a + bX 2) L + ~ )2] F (t)

a2 dt2 in dt m m  m
m U

— X  c~ (t—t) sin a (t—r)
e 

a
in dt
m

23 

---- —- ---U -~~~~ 
—-U- - - --U-  -- ---- - - - - -- -—- — — - - - - -

~~
---- - - - U -  -

~~
- - - — --——--- 

~~
— - - .--

~
---- - -U- —-



U~ -.- --—__ _ _~ _____ —---U—-_ _ _ _ _ _ _ _ _ _ _  --

To summarize, an alternative solution of the transient response problem

has been derived in equation (50) . The static solution , v~ is obtained

from equation (48) and the temporal coefficient C~ (t) is given in

equation (51). Note that v~ may also be found by solving equations

(1) in which u — v and A1 = A2 — 0 by any suitable method.

As special cases of the above acceleration solution, note that if

the member was undamped merely setting 
~m 

equal to zero (a = b — 0) and

a = would allow uncoupling of the response. In addition , the case

of the homogeneous boundary conditions and no in—span conditions would

affect only the value of the generalized force term defined in equation

(31). That is, set B(tS, ,u) equal to zero.

Acceleration Method for Non—Proportionally Damped Structural Members

The assumption of proportional damping is relaxed in this sub-

section. Hence, the dynamic response of such structural members will

be uncoupled with the non—classical or damped mode shapes. Recall

that for general viscous damping the uncoupling coordinates n (t) are

found by solving equation (36). To find the acceleration method for

this case, begin by solving this equation for n (t):

n (t. ) — (~ 
— F )  (52)

Where the non—classical form of the generalized forcing function ,

F
m(t) 

a < ~~~~ , 7 > + B(* ,u)

has been employed. Upon substitution of equation (52) into equation

24
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(45b), obtain the expression for the dynamic response

a v p  -

I u(x,t) 
~ S N  + ~ S N  (54)

tn—i m m  ni”]. m m

I In identical fashion to the previous subsection, the first series in

this equation may be recognized as being quasi—static so that it may

I be rewritten in the form

I a C (t)
I u(x,t) — v3 + v ( x) (55)

m—l m

I
where v is the static solution for the non—classical system.

I Following the pattern of the previous subsection, the solution

for the temporal coefficient n
~~

(t) in equation (37) is integrated by

parts~ twice to extract the static portion of the response. Then the

I resulting equation for fl (t) is substituted back into the displacement

modal expansion in equation (45b). This equation is then compared with

I equation (55), the static portion of the solution is identified , and

the coefficient C (t) is given by

dF (t) S t  dF (O)

I Cm(t) - 
- ~i_ + e ~ ~t 

+

F (0)

~~ 
+~~~(O] +

t Sm
_ t )  

d2F
J e  

in dT
s2 dt20

25
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Hence, the acceleration form of the modal solution is given by equation

(55) where C (t) is found from the above equation . No simplifying

assumptions have been made in this derivation, so that the structural

member can possess general (non—proportional) viscous properties, have

time—dependent non—homogeneous boundary and in—span conditions , and

accept any arbitrary loadings. For a structural member fr ~r which the

usual modal expansion is prohibitive because of the many terms needed

for adequate convergence, this acceleration form of the solution may

still provide a viable means of finding the dynamic response using

modal analysis.

Dynamic Response of a Viscoelastic Structural Member on a Proportional
Viscous Foundation: Part I

In this section the response of a general viscoelastic structural

member will be found using modal analysis. The constitutive relation

to be used will be of the hereditary integral variety. However , it can

be shown that the final solution may be altered to allow a differential

operator form of the material law to also b.e used (see Reference {13]).

As mentioned previously, Valanis (3] was the first to resolve the

solution of such a general “viscoelasto—kinetic” problem into a

superposition of a viscoelastic quasi—static and a dynamic elastic

solution. This section will go beyond the work of Valanis and others

(Rober tson, (4],(5] etc.) by considering a more general approach

applicable to both self—adjoint and non—self—adjoin t systems, which

may also possess a proportionally damped viscous foundation (herea f t e r

a viscoelastic member on a viscous foundation will be referred to as a

26
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*damped viscoelastic structural member) . In addition , non—homogeneous

surface tractions or internal forces , such as shear forces or moments,

may be included in—span or on the boundaries of the member. However,

prescribed displacements on the surface are restricted to be homogeneous.

This limitation . has also been used by Valanis (3]. It will be shown

in this section that this restriction is necessary to uncouple the

dynamic response of viscoelastic structural members using the general

approach involving the Green ’s identity.

The starting point of this general formulation will again be the

differential equations governing the motion of the member given by

2
G*Du(x,t) — ~ A (x) 3~ u(x~t)  — F(x ,t) (57a)

i—i ~

with the initial conditions,

u(x,0) — u0 (x) ;  ~u(x ,0) — ~i0 (x) (57b)

and the time—dependent boundary and in—span conditions,

G*L~u(x ,t) — P~ (x ,t)  on S (57c)

where P~ (x~t) is a vector containing the prescribed non—homogeneous

surface tractions and homogeneous prescribed displacements. The

notation used for viscous damping remains unchanged for the general

viscoeiastic problem. Hence , proportional viscous damping, such as

found in a founda tion , is included in the matrix A 1 (x). In addition ,

*In fac t , it can be shown (13] if the viscous foundation is non—
propor tional , a modal solution is not possible.
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equation (57c) contains all boundary conditions including the non-

homogeneous displacements. Although the prescribed displacements do

not involve G*, equation (57c) can be used to represent these boundary

conditions because they ar e homogeneous and G is a monotonically

decreasing function of time. Note that equations (57) apply only to

a linear isotropic viscoelastic material , defomming under isothermal

conditions with a constant Poisson’s Ratio, and which is incompressible .

Nevertheless, this general form of the equations of motion describe a

wide class of viscoelastic members on a proportionally damped viscous

foundation. An example of such a structural member will be shown to

fit this general theory in the Applications section.

Recall that the solution of a general seif—adjoint vi~coelastic

member has been given by Valanis to be a superposition of a quasi—

static viscoelastic and a dynamic elastic solution . Guided by this

observation and the fact that the viscous damping is restricted to be

propor tional , it is presumed that the undamped mode shapes may be used

to uncouple the response of any complicated member . Recall from a

previous section that the classical eigenfunctions were found by con-

sidering the undamped free vibration problem given by equations (3). In

addition , the viscoe].astic member may be non—self—adjoint, so that a

biorthogonality relation will be needed in deriving the elastic modal

expansion. Hence, use wili be made of the adjoint undamped free motion

problem given by equations (10) along with equation (9). Because the

elastic undamped free vibration problems are identical to the proportional

viscous dampin g case , the orthogonality relation given by equations

(19) and (20 is also unchanged.

28
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Assume that the solution of the general viscoelastic dynamic

problem may be expressed in the usual modal series form,

u(x ,t)  - 

~ 
h ( t) * (x) (58)

The classical eigen functions , * ( x) ,  can be easily fo und for a variety

of structural members. Thus, only the temporal coefficients h (t) need

to be determined to complete the modal solution . In order to derive

an uncoupled equation for these coefficients, proceed as follows. The

Green ’s identity, in extended form, may be written as

< ;,D(G*~.z) > — < (G*u), D~4, ~ B(~~ ,(G*u))  (59)

The term, (G*u ) ,  is really a function of both the spatial and temporal

variables and its use in equation (59) is valid if it is differentiable

to the extent demanded by the operator D. This is assumed to be the

case. The bilinear form B(~P ,(G*u)) is determined in exactly the same

way as for the elastic member. That is, the inner product < ~~,D(G*u) >

is fo rmed and then integrated by parts with respect to the spatial

coordinates. Note that the appearance of G does not effect the inte-

gration by parts because C is a function of time. The boundary and

in—span conditions are then grouped to form the bilinear functional

B(~j, ,(C*u)). Since the prescribed displacements on the boundary are

zero , this bilinear form contains only the non—homogeneo us surf ac~
tractions which involve the relaxation modulus G(t). In fact , it is

this form of B(~, ,(G*u)) that prohibits non—homogeneous displacements

from being prescribed on the boundaries because these may not be expressed

in the form G*u.

29
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Before returning to equation (59), note that a proper!y of the

convolution is that -

G*(Du(x,t))  — (Du(x ,t))*G (60)

where Du(x,t) may be treated as an arbitrary function of x and t.

Since D is a spatial differential operator it does not effect C, a

function of time, so that

C*Du = Du*G = D(u*G) = D(G*u) (61)

With this equation, the governing equation of motion, equation (57a)

becomes

2
D(G*u ~ A~ (x) 3 .u(x,t) — F(x ,t) (62)

j=l 
- 

- :

Now substitute equations (lOa) and (62) into the Green ’s i d e n t i t y  in

equation (59) to obtain

a < li ,A1u > + a2 < ~~,A2u > + A 2 
< (G*u), A2*

- (63)
— < -~i ,F > + B(~, ,(G*u))

Noting the homogeneous form of the Green ’s identity,

-c (G*u), A2$ > — -c 4, ,A2(G*u) > (64 )

and that C is a function of time, it follows that

< (G*u ) , A24~ > — G* < Ii
~~
,A2u > (65)

30
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Using equation (65) in equation (63) gives

a2 < 4’
~~ 

A2u > + 3 < ~I , A 1u > + ( A ) 2 G* < ~~,A2U

— < ~i ,F > + B(~~ ,(G*u ))  (66)

by using the propor tionality condition in equation (30) , a common

inner product may be factored out of equation (66) to give

~~
(t) + (a + bA 2) 

~m 
+ ( A ) 2 G*~

— (67)
= < ~, ,F > + B(4 ’ ,(G*u))  + b 3B(~’ ,u)

where ~~(t) has been def ined as before in the viscous damping case in

equation (32). Likewise, the generalized initial conditions , and

~~(0) are - found from this equation at t = 0. The coeffici~nts h~
(t)

are found as before for undamped members to be

h
~
(t) ç~(t) (68)

where 
~~~

(t)  is found from equation (67). Note that although ~~ (0) has

the same form for elastic and viscoelastic members , the solution for

~~(t) will in general be different , due to the G*~ term in equation

(67). These solutions coincide when G* reduces to unity, i.e. the

viscoelastic member becomes elastic.

Although a solution of the viscoe].astic dynamic problem may in

principle be given by equation (58), this form of the modal solution

is seldom used because of its poo r convergence qualities, in fact , most

~~~~~~~~~~IIIT :: IIIT 1dT~~

T

~~I1 I1

~~~~~

0

~~~L~



Therefore, attention will be focused on the more rapidly converging

acceleration (or Williams) method for a general viscoelastic structural

member.

The acceleration form of the modal solution may be derived by

following the steps used in the previous section. Begin by rearranging

equation (67) into the form,

= — 
1 ~ + (a+b A2) ~ — H 1 (69)in (A )2 ~ in in
in

where H is the generalized force term given by

H (t) = 

f
~1 F  dx + B(~~~ (G*u) )  + b B( 1 ,u) (70)

Taking the convolution of both sides of equation (58) and using equation

(68) gives

a (G*~ )
C*u — ~ ~~~~~~~

-
~~

— tj, (x) (71)
m-l “in ~

assuming the su ation and convolution may be reversed. Now introduce

equation (69) into (71) and after some rearrangement obtain

a
G*u =  V

‘
~ 2Qm-l Am in

(72)

- ~t~in 
~~~~ 

+ (a+b A 2 )
rn—i A 2Qm m
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The first term in equation (72) is the static contribution to the vis—

coelastic solution. As Valanis (3] and Robertson and Thomas (4] have

pointed out, a dynamic viscoelastic problem has a solution of the form

a E ( t)
u(x ,t) = ;5cx,t) + 

m~ l ~m 
* (x) (73)

where v is the quasi—static viscoelastic solution. Equations (72)

and (73) are equivalent by letting

a

G*~~~= ~ (74)
rn—i A 2Qm m  -

and

G*E — - 

m~1 t~ 
+ (a+b A2) (75)

Then equation (72) becomes

a

G*u — G*v + ~ (G*E ) (76)
ma]. in

which implies equation (73). A more thorough understanding of the terms

in equation (76) may now be undertaken. The Green’s identity may be

expressed in the form

< 

~
‘n’ 

D(G*V )  > — < (G* ), D*> + B(~, ,(G*v ) )  (77)

Substitute equations (lOa) and (74) into this equation to obtain

-
~~~~~~~~~~~ - 
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~~~~ D(G*
5
) > — — 

~~~ A2Q [Ha
t <

- (78)
+ B(~, ,(G*v ) )

where integration of the series is assumed to be equal to a series of

the integrals. Using the orthogonality relation for undataped systems

and in view of equations (61) and (70), equation (78) becomes

< *rx~ G*~~~~ = — — B(~~,(C*u))

(79)
— b 3 B (~~ ,u) — ~*(~p ,  (G* ))

The bilinear forms in the above equation contain contributions to the

generalized forcing function from the non—homogeneous tractions on the

surface. In particular, the form B(~~ , (G*u)) contains the non-

homogeneous surface tractions as given by equation (57crn). Therefore ,

B(* , (G*v)) implies that the same boundary and in—span conditions

apply to 
~ 

when damping is absent (b — 0). In addition , a differential

equation valid throughout the volume is implied by the remaining two

terms in equation (79). That is , the following boundary value problem

may be reduced from equation (79) :

G*DG (x , t)) — — F(x ,t) (80)

with boundary and in—span conditions

G*tiv ( x , t) — P~(x~t) on S (81)
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which when solved will yield the quasi—static response of a viscoelastic

member used to obtain the complete dynamic response as shown in equation

(73). Note that this solution is quasi—static in the sense that v
5 
is

a function of x alone which is to be found for each instant of t ime .

To complete the acceleration form of the solution , an uncoupled

equation for E (t) must be found. Substitute the series representation

in equation (73) into the governing equation of motion , equation (57a) .

This gives

G*D~~ + G*D (J1 E~~i ) =

(82)

+ A ( 
~ 

+ A~~ + A2 ( 
~ 

-
~~

rn-i tn-i

where it is assumed that the infinite series converges at all points of

interest. The first term - in equation (82) is equal to —F which can

be cancelled from either side of this equation. Premultiply by i~i~~~~

then integrate over the volume to obtain

< 
~~~~~~~ 

A 1v 5 > + < *rL~ 
A1’4, > + < 

~
‘n’ 

A2v5 
>

(83)

+ 

m l  ~~~~ 

< 
~~ A21b > J (G*E ) < U~~, D* >

Note that the validity of reversing the convolution and the su~~ation

sign has been assumed. Apply equation (3) to the above equation and

then use the orthogonality relation for undamped members to find

35
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E (t) + (a+bA2)E + A2(G*E ) — R (t) (84a)
in m m  m in in

where

R (t) — — 

~~ 
[< it,~ ,A1 5 > + < itI ,A2 (84b)

and where the proportionality condition in equation (30) has been

employed. Note that the condition B(iP , ~~) = 0 has also been used.

The initial condition for E (t) may be found by premultiplying the

initial condition form of equation (73) by it ,A2 and then integrating

over x to give

- - E (O) -

-c i t , ,A u(x ,0) > = < i p , A2 ( x ,0) > + < ~~~,A~~I4J > (85)
m=l in

After applying undamped orthogonality , the generalized initial conditions

are

E
~

(O) = [< it.’ ,A2u 0 (x) > — < it.’ ,A2 ( x ,0) >1] (86)

and similarly,

Ern (O) — [< it, ,A2ii0 (x) > — < it.’ ,A2 ( x ,0) >1 (87)

An alternative form of the right—hand side of equation (84a) may

be f ound which incorporates the complex compliance .1(t) of the visco—

elastic material. With this form , either the experimental or modeling

information of a given material may be easily included iri the solution

for E
~
(t). Begin by applying the proportionality condition in equation

(30) to give

36
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~~~~~~ 
> — (a+bA 2) < ; ,A2v > — b B(tt, ,~ ) (88)

I Substitution of this condition into equation (84b) leads to

R~ 
— — [c 3 + 3~~) -c it, ,A2 > b 

~~~m’ s~] 
(89)

where R denotes the right—h and side of equation (84a) , and c
~ 

is the

proportionality constant , (a+X 2b). The inner product may now be trans-

formed by use of the Green ’s identity into

< *~~~AZV5 
> < l

~s~
A2it.’m 

> (90) 
- 

-

Using equation (l0a) in equation (90) gives

< it, ,A2v > — < (91)

Now apply the extended Green ’s identity,

< “s’~~
’m 

> — < *rn~~~s 
> + B(it, ,;) (92)

to obtain from equation ~9l) the result,

c ;, A2; ,. — — -
~~~~~ < I t , ,D > — ~~ B(tt, ,~~ ) (93)

The term Dy
5 
may now be transformed by taking the Laplace transform of

equation (80)

- 

sGD 5 —F (9L)

37
8 

. r . - - - -~~- - - -~~-~ 
~~~~~~~~~~~~~~~~~~~~~~~~



P
u’,- — - — —--— -

~~ 

— 
~~~~~ 

- - - --- - - --U— -----—- — - -U-..’

where the bar represents the corresponding transf ormed variable and

G*f s G f  (95)

Equation ( 94) may be easily solved for to obtain -

Dv — —- = — s J F  (96)
S — -sG

where the relation between the Laplace transforms of the complex

compliance J and the relaxation modulus G has been used. Taking the

inverse Laplace transform of equation (96) gives

Dv _ J * F  (97)
5

Finally, substitute this equation back into equation (93), which when

placed in equation (89) leads to

((c 3+32) r - - _ 1
R — 

A2 ~~~~~ 
* F > —

in 
.~~~~~~~~ (98)

—b B(ip ,v5
)

This is the alternate form for the right—hand side of equation (84a)

which was sought. This form of R (t) involves directly the complex

compliance .1 of the viscoelastic material. When substituted back into

equation (84a) the solution for E~ (t) may now be foun d by taking several

approaches. If a known viscoelastic model composed of springs and dash—

pots has been selected , the compliance will be known once the model

pa rameters have been defined . These parameters may be prescr ibed a

pr iori or , chosen by fitting experimental data to the model (14]. In

addition, experimental data may be used direct ly in equation (98) without
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I any reliance on a particular model (15], in which case equation (84a)

may be solved by Laplace transforms, which may be inverted analytically

for simple models. An example of how this procedure may be carried out

for a Voigt—Kelvin material will be shown subsequently. Otherwise, a

numerical inversion process may be needed. Another approach which may

be taken in finding the coordinates E
~
(t) from equation (84a) has been

- suggested by Valanis (3]. When a Laplace transform of equation (84a)

has been taken, a Voltera integral equation of the second kind results.

Then , any number of techniques may be used to solve this integral equa—

I tion. Note that if the usual normal mode approach had been undertaken,

i the above continents on how to f ind E ( t) may be applied unchanged in

determining 
~~
(t) in equation (67) .  However , as mentioned previously

I the acceleration method’ s more rapidly convergent solution makes solving

the additional quasi—static problem worth the trouble , since 
~ 

may

be found easily for many structural members by using a correspondence

I principle.

To suximiarize breifly, the dynamic response of a viscoelastic

I structural member on a proportional viscous foundation may be formally

expressed by

a E (t)
u(x ,t) — ;~ (x , t) — 

~ i t , (x) (99)
m 1  “in

I where itl~
(x) and are the corresponding undamped elastic member eigen—

functions and norm, respectively. The temporal coefficients may be

I found by solving

I E (t) + (a+bA 2)± + X 2 (G*E ) R (t) (100)

I 
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and R(t) may take on either of the two forms as given by equations

(84b), or (98). As special cases, when a = b — 0, a viscoelastic

member without a damped foundation may be examined, and when the bilinear

form is absent the member possesses homogeneous boundary and in—span

conditions. 
-

Forced Response of a Structural Member with Linear Hysteretic Damp in g

In this section, the concept of hysteretic damping will be explored

for the purpose of finding the forced response of structurally damped

structural members. The hysteretic damping to be considered is linear;

hence, the standard assumed solution of modal analysis will again be

employed. Both seif—adj oint as well as non—seif—adjoint systems will

again be considered.

Consider a continuous structural member with linear hysteretic

damping governed by the following equation of motion :

2 -

Du(x ,t) — ~~ A~ (x)3~u(x~t) — f (x)e~~t (lOla)
- i—i

with the boundary and in—span conditions,

L~u(x~t) = Pj (x)e~~t on S (lOib)

where f(x) and P~(x) are vectors of functions which represent the

spatial variations of the forc ing function , and boundary and in—span

conditions, respectively. Note that the temporal portions of the

excitation functions are harmonically oscillating with a driving

40
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I frequency ~l, which is a simplification of F(x ,t) given by equation (la) .

The initial conditions are zero because interest is focused on the steady

I state response , or the particular solution of the differential equation.

Based upon the form of the forcing function and boundary condi—

I tions , the steady state response sought will also be harmonic with

i frequency ~2. This is identical to a single degree of freedom system,

since all points in the member are oscillating in phase. Hence

I
(u,t) — 3u — i~2u(x , t) (102)

which when substituted into Equation (lOla) yields

Du(x , t) i~2A 1u + A232u — f (x)e~~
t (103)

I This matrix equation represents the governing equations of motion of a

structurally damped member undergoing steady state mot ion. As before ,

I the goal is to determine the proper modal expansion which gives the

response. This entails defining the modes and orthogonality condition ,

and the uncoupling coordinates. It will be shown that only the undamped

I modes ar e needed to resolve the solution so that the response may be

written as

a

u(x,t) — ~ q (t)iti (x) (104)
m-l

Hence , the coordinates q (t )  must be determined to complete the steady

state response .
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Once again the starting point of the general formulation is the

extended Green ’s identity,

< — < u,Dit, > B(it, ,u) (105)

Since A1 and A2. are restricted to be only functions of x, (or at- best,

spatial matrix differential operators with homogeneous boundary condi-

tions) B(* ,u) contains all the elastic non—homogeneous boundary and

in—span conditions of the member. Substitute the classical free vibra-

tion problem (equation (3a)) and equation (103) into the above identity

and after some rearrangement obtain

a2 < i t ,  ,A2 u < + i ~2 > i t ,  ,A1 u > + X 2 <~~~ ,A2u >

(106)
— < ~~~~~~~~~~~ + B (tt, ,u)

where the classical form of equation (25) has been used. Note that the

imaginary unit i makes the operator complex. However , by foregoing the

Hermitian norm the Green’s identity remains the same for both real and

complex operators. That is, the imaginary unit is effectively treated

as a constant. By defining 
~~~
(t) as previously (see equation (32), the

above equation may be rewritten as -

ç(t) + x + i~ c it, ,A1u > 
(107)

— < 
~~~~~~~~~~ + B (it, ,u)
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This expression is not yet uncoupled due to the A1 term. A proportion-

ality condition must be invoked, which for hysteretic damping , may be

called proportional structural damping. Recall that for a single

degree of freedom system , an equivalent viscous damping coefficient can

be defined for hysteretic damping which is proportional to the stiffness

and inversely proportional to the driving frequency . For a continuous

member , a similar equivalence may be established so that

A1 u — ~~~Du (108)

where Meirovitch refers to y as the structural damping factor (16].

Using this condition leads to

(109)
—iy B(it, ,u)

which after employing classical free vibration gives

i~2 < *~
,A1ti > iA 2y < > —iyB (it, u) -

(110)
— L < 4, ,A2u > — iyB (ip ,u)

Thus equation (107) becomes

+ X2(l + 1.y) 
~ 

— e~~
t < t, f(x) >

- 
(111)

+ (1 + jy) B

43

~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _



-U------ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ‘- --U — ---U-U-U---,- - -

This equation is identical in form to an uncoupled equation for a SDOF

system with hysteretic damping. The solution for non—homogeneous

(time—dependent or constant) boundary and in—span conditions may be found

easily. For example, if the boundary and in—span conditions are separable

such that the right—hand side of the above equation may be written as

— (< t , ,f(x) > + (1 + iy) B (it, ,tJ(x)] e~~
t (112)

f ~~~~
the solution for ~ (t) is given by = (113)

x 2 (l  + ly) —

in

This is the particular solution of equation (ill) since it is assumed

that all initial condition transients have died out. Since classical

orthogonality was used , q (t) in equation (104) may be shown to be

~ (t) 
-

q~ (t) — (l14~

so that the steady state response may be readily found. This result is

identical to that obtained by Meirovltch [16], except that this formulation

now includes non—seif—adjoint systems, non—homogeneous boundary and in—

span conditions , as well as incorporating the very powerful matrix

differential operator notation .

Applications:

In this section will be presented several applications of the

general dynamic theory to typical damped structural members. One objec-

tive of presenting these examples is to illustrate in detail ‘~sage of

the general formulas provided in previous chapters. However , these

44
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formulas provide the dynamic response in terms of some quantities which

have been assumed to be known. For example , the solution of the damped

free vibration problem was not actually solved but merely represented

symbolically by the vector of eigenfunctions V and the correspond ing

eigenvalue S .  . Hence , another goal of these examples is to demonstrate

how the response may be calculated for some simple damped structural

members. It will be shown that transfer matrices may be easily coupled

to a modal analysis of structural members which possess one independent

coordinate. The dynamic response is computed for two typical members , a

beam on a non—proportional viscous foundation, and a viscoelastic beam.

Since no similar results could be found in the literature, these cases

will be presented as~ benchmark examples. For more complicated members ,

the response will be theoretically formulated arid then compared with

available theoretical results. The intention here is to show how the

general formulas presented in this section lead to the dynamic response

without the involved algebraic manipulations taken in the past. Whether

the applications are numerical or theoretical , these examples are

intended to be illustrative rather than comprehensive. Therefore, com-

plexities in a structural member which may be treated without confusion

in theory but are tedious in prac tice , will be avoided to demonstrate

clearly the methodology of finding the dynamic response.

Cantilever Beam on a Damped Viscous Foundation

Consider the uniform cantilever beam shown in Figure 1, which is

resting on a stepped damped foundation . The value of the mass density

45
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(p ) ,  modulus of elasticity (E), moment of iner tia ( I ) ,  length (i),

and viscous foundation coefficient (c) are

p = .002301 lb — sec2/in2

E — lO x lO6 psi

I .7854 in (115)
— 100 in

çOOll5O5 lb—sec/in 2 for x < 50 in
c

l~0Ol7257 lb—sec/in 2 for  x > 50 in

The force P applied at x=100 in. is a static load of 20 lbs. At t = O~ it

will be removed and the previous formulas will be used to find the resulting

transient response.

The equations of motion governing this member have been introduced in

equations (1). The matrix differential operators are given by

0 0 
•
0 —

~~~~~~~~

O 0 - - ~~~~~ 1
o — (ll6a)

a 10 3x El

1 0 0 -
3x

—c 0 0 0 p 0 0 0

O 0 0 0 0 0 0 0
A 1 — ; A2 — (116b)

O 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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-g W

- $
— (116c)

M

V

In addition, the forcing function F(x ,t) is set equal to zero and the

initial condition vectors are

Wa 0

u (x) = 

[O

~ ~~(x) (117)

where w
0 
and are the static deflection and rotation due to P given by

= -
~~~~~~~~ 

(Z—x/3) (118)

a~~~~~ (. ... 2) (119)

Note that the proportionality condition given by equation (30) is not

satisfied by the ifariable damped foundation. However , this stepped

foundation does riot intefere with the self—adjoint property of this

member. Therefore, the damped adjoint eigenfunctions v are not needed —

to determine the response. For this case, use of equations (22), ( 3 7 ) ,

and (45b) leads to the deflection response.
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P 1 S tw(x,t) — 

~~~~~~~~ 1. 1 I e mm~’l
2S P JL (w)2dx + 

J
~c(w ) 2dx

(120)

J (c+S p ) (x~L - x~/3) dx

l
)W

(X)

In this expression S~ is the complex eigenvalue and w is the deflected

mode shape , both of which are found from the damped free vibration prob—

lam. This free motion problem may not be solved analytically. Rather ,

a numerical technique must be employed. Since this beam possesses one

independent coordinate direction , transfer matrices may be used. For

further simplicity, approximate the continuous member by dividing it

into massless elastic sections punctuated by mass lumps (stations). The

damped foundation is also concentrated into discrete dashpots located at

the mass stations. For example, this leads to the equation,

R Rw 1 0 0 0 w

0 1 0 0 8
— (121)

M P 0 1 0 M

V S2m +Sc 0 0 1 V
i i i 

—

or ,
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i (122)

M M

_
V
. i .

V
. i

where the superscripts R and L refer to locations just to the right and left ,

respectively, of the mass lump (m i) and dashpot (ci) at x x~ . The transfer

matrix corresponding to the mass and damping lump at x = x .,  (TM]i, allows the

state variables just to the right of the mass station to be known in terms of

those just to the left. In a similar wa’r, the expression for an elastic

section is given by
- 

L -(Au )2 R
w 1 A2.1~ 

~~i~i 6E .Ii 
w

(U) 2

a — 0 1 E l  2 E 1  (123)
i i  i i

M 0 0 1 M
~
.
i M

v
~~~~1 

v 0 0 1 V~~

.or ,

I.. L
U U

a a
- (T IE i (124)

M M

.

V

. i+l ,

V
_ i

where ~~~ ~~ arid I~ are the length , modulus of elasticity, and moment

of inertia, respec tively, of the elastic section from :ci
R 

to x
~+1

1
~
.
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The matrix (TE]j transfers the known state variables at x~ to state

variables at x~~1. With equations (122) and (124) the response in

terms of the deflection , slope, moment, and shear at any location may be

found in terms of the known values at x — 0 by merely alternately multi-

plying mass and elastic transfer matrices down the beam. It is obvious

that variations in the mass density, damping foundation modulus, and

moment of inertia can be easily accounted for by merely changing mi.

ci, ~~ and I~ for each transfer matrix. Other effects such as rotary

inertia, shear deformation, in—span conditions, and an elastic foundation

may also be readily included by introducing similar transfer matrices.

Such catalogues of transfer matrices, including a more thorough treatment

of this approach , may b-e found in several sources such as Pestel and

Leckie (17], and Pilkey (18]. A listing of the damped frequencies found

for this example are given in Table 1. Using the damped mode shapes

fo und above , the response may be computed by using equation (120). This

response is shown in Figure 2.

In conclusion, a simple Euler—Bernoulli beam has been

presented to demonstrate how easily the response may be found using the

general formulas presented in this work. The response may be found for

more complicated loading conditions, and non—homogeneous boundary and

in—span conditions by using the same equations. The approach is identical

to that taken for this simple beam , only the details become a bit more

tedious. In addition, complications such as shear deformation and

rotary inertia are also readily included in the previous analysis. This

is done by modifying the appropriate transfer matrices in the damped

free motion problem and by altering the matrices A 1 and A2 used in the

general formulas .
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Table 1

Complex Frequencies for a Damped Beam with Variable Foundation

n S

Re{S } (1/SEC) IntCS } (CPS)

1,2 —3.6869335 x 10~~ ±3.2663992

3,4 —3.2006817 x 10_ i ±2.0436355 x 101

5,6 —3.1172523 x 10_i ±5.7129133 x 101

7,8 —3.1291877 x lO 1 ±1.1176201 x 102

9,10 -3.1274025 x 10— 1 ±1.8443682 x 10
2
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Dynamic Response of a Voigt—Kelvin Beam

Consider the undamped Euler—Bernoulli beam shown in Figure 3, which

- 
is composed of a Voigt—Kelvin viscoelastic material. Assume that the

linearly varying distributed load shown in Figure 3 is applied at c = 0

and then maintained at that value for all future time. That is,

q(x,t) = -
~~ 

H(t) (125)

where H(t) is the Heaviside unit function, which possesses the property

*H(t) 3(t) = 3(t) (126)

The dynamic deflection response for this beam is sought for this loading

condition.

The governIng equations of motion for a general. criscoelastic beam

have been given by Robertson (15]. The equations may be reduced to

one fourth order differential equation when shear deformation and rotary

inertia are neglected. When written in the form of equations (57), the

following values are assigned:

o — 2(1 — v )I — A 1 — 0 (127a)
a

A2 — —p F — —q (127b)

u = w(x,t) up — u
0 

0 (127c)

(Li)~~o~~ 
— 1 (L2)~.o~~ 

— 
~~~~~~~~ 

( 127d)

— 

~~~~~~~ 
— 0 (l27e)
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Figure 3 Voigt—Kelvin Beam Under Variable Loading
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The dynamic response of this viscoelastic beam may be found from

equation (73) to be

~ E ( t)
w(x,t) — w9(x,t) + ~~(x) (128)

rn—i m

where w (x,t) is the quasi—static deflection. For this simple member,

the deflected mode shapes 
~m (x) and corresponding eigenvalues A may

be analytically determined by solving the undamped eigenvalue problem.

That is,

sin m 0,±l,t2, ... (129)

and

X — (~!L)2 /i? 
- 

(130)

so that the corresponding norm may be explicitly determined to be

— p9./2 (131)

Note that since the elastic beam is self—adjoint , only the modes ~~ (x)

are needed to determine the response. Therefore, in the series portion

of equation (128), only the temporal coefficient remains to be determined.

To find Em(t)~ 
recall from equations (84a) and (98) that

1 32 (~E (t ) + A 2G*E — — ( tji (J*q) dx] (132)m m m A 2Q 3t2 -‘m m  0
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where a — b — 0 since the beam is undamped. In addition, the initial

values, E (O) and 
~m
(0) given by equations (86) and (87), are zero

because the initial conditions u0 and are zero. Introduce equations

(125), (129), (130), and (131) into the above expression to arrive at

I
~,, ~~~~

E + X2G*E — .1(t) (133)m m m (mir)5E1

where equation (126) has been utilized. Eliminate the time variable in

this expression by taking the Laplace transform to obtain

_ _ _ _ _s2E + A2s~ — — 
2(—l) ~- ~~~ (134)m m (mir)5E1

where the initial conditions of the complex compliance vanish since they

are proportional to Em(O) and Em (O)~ 
Solve for the Laplace transform

of E (t) (i.e. E (s)) to obtain

—s 33JL
m (135)

m (X2 +s3
~)

where for convenience

2’L — (136)
m (mtr)5E1

The Laplace transform of the complex compliance for a Voigt—Kelvin

material (191 is given by

~~~~~~~~~~~ 1
(
1 1 (137)

q
0 

$ (c + s)

where

- - --U--U------  



= q
0/q1 

(138)

and and q 1 are the spring and dashpot constants in the Voigt—Kelvin

model. Introduce equation (137) into equation (135), and af ter some

rearrangement arrive at the expression

12
— 

- 1 1 1
E — — L C + —

~~~
- [ ] — — 

( U (139)
m m (s—rj)(s—r2) K (s—r1)(s—r2) K2 S + K

where

—X q1 A
— ~~~~~ /q2~~ — 4q0 (140)

and where the method of partial fractions has been utilized. Using a

table of Laplace transforms, E (t) may be found by inverting equation

(139) which leads to

r~ t r~ t
E Ct) — —L ( 

_________ 
(r~e — r2e )m m A v ’A~q~—4q0

(141)

A r2t r1t — Ktm l e
— 

_ _ _ _ _  
(e — e  ) — — ]

K 2K X2q2—4qm l  0

This is the expression which was sought for E (t). Since it can be

evaluated from this equation, all the ingredients needed for the series

portion of the solution in equation (128) have been found in closed

form. To determine the quasi—static part of the response in this equa-

tion, make use of a so—called correspondence principle. That is, as
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I Flugg (20) explains, the static deflection of a viscoelastic member may

be found by finding the deflection of the corresponding elastic member

I and then replacing the modulus of elasticity CE) by the ratio of poly—

nomials ~ (s)/~~(s). Here ~(s) and p(s) are the Laplace transforms of the

temporal differential operators P and Q, introduced in equations (135).

I In general, to find the quasi—static response w(x,t), utilize this

correspondence principle for each time step. For this case it will be

I shown that this principle need only be applied once , since the load is

constant for all time. From elementary strength of materials, the

static deflection of an elastic simply supported beam is

w(x ) = El (3x~ 
- 5x2i2 + 2Z~] (142)

1. — —Now replace q and E by (x/t ) — and Q(s) /P (s) , respectively , to obtain

I 
_ _ _  _ _ _(x ,s) = l80

1
1Lq 1 ~S(K ~ 

— 5x3t2 + 2xtL4 ]  (143)

which is the Laplace transform of the quasi—static deflection. Note

that for a Voigt—Kelvin solid (19],

— q1 (c + s) (144)
P(s)

- equation .(l43) may be easily inverted to give for the quasi—static

deflection response ,

w (x,t) = (3X 5 

l

3

~~q 
2x1 ) (1 - e~~t) (145)
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which decays as time grows since K > 0. Hence, the solution of a Voigt—

Kelvin beam given by equation (128) has been determined. It is apparent

that many other methods of solution of equation (132) could have been

pursued. For example, had 3(t) been experimentally determined , a

numerical solution of equation (132) would have been attempted. Or,

this experimental data could be fitted to a more complicated but more

realistic model. However, for more complicated viscoelastic models, a

drawback to the previous method of solution is that an inverse Laplace

transform of a complicated function has to be taken. In most cases of

this sort, a numerical inverse Laplace transform would probably be

warranted.

St.munary

It has been shown in this work that a general theory for the

dynamic response of linear damped continuous structural members may be

formulated using a modal analysis. A general set of formulas was

derived to provide the ingredients needed to construct the dynamic

response. The ingredients included a statemen t of the free vibration

problem and a determination of the orthogonality relation and the

uncoupled temporal coefficients. As shown in the previous chapters ,

these elements of a modal solution were found in terms of the (assumed

known ) governing equations of the member. Therefore, the dynamic

response can be explicitly written out by merely inspecting the govern-

ing equations. And since these formulas apply to seif—adjoint as well

as non—seif—adjoint structural members with or without non—homogeneous

boundary and in—span conditions, the dynamic response of the most general

60

_ _ _ _  _ _ _ __ _ _ _ _ _ _ _ _ _



- ~~~—_ _-~~~~~ _ U- _U- — - - _ _ - - --.-- - - -—-- .- — ---. ----— ---—-- —-~~~~~~~~~~~
-- _ _____________________

I
type of structural member may be found. When uncoupling was not

possible, another advantage of this general approach became apparent by

exposing the mathematical limitations imposed by the physical model.

This work was divided into three distinct sections, depending on

the type of linear damping present in the structural member. Viscous,

viscoelastic, and hysteretic damping were treated. The formulas derived

for the ingredients in a modal expansion are summarized in Table 2. All

the formulas needed for each form of damping are not explicitly shown for

the sake of clarity. The lengthier formulas are only referenced in this

table, where parentheses denote the primary equations for the terms in

the dynamic response. As can be seen from this table, knowing only the

solution of the free vibration problem (i.e., ‘~ and A or v and S )n n a

the dynamic response may be readily determined. These formulas are

applicable to damped (or undamped) seif—adjoint and non—seif--adjoint

structural members with arbitrary loading, non—homogeneous boundary and

in—span conditions, and initial conditions. In all these cases, the

general formulas are applied in exactly the same way to find the dynamic

response.

In summary , a comprehensive theory has been presented for the

dynamic response of linear continuous damped structural members. The

formulation depends only on the equations of motion and is independent

of the specific structural member. Hence, the dynamic response of a wide

class of linear structural members may be determined by the same theory.
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UNIVERSITY OF VIRGINIA -

School of En gineering and Applied Science •0

The University of Virg inia ’s School of Engineering and Applied Science has an undergraduate -

enrollment of approximately 1,000 students with a graduate enrollment of 350. There are approx’mately
120 faculty members, a majority of whom conduct research in addition to teaching.

Research is an integral part of the educational program and interest s parallel academic specialties. 
-

These range from the classical engineering departments of Chemical , C i v i l , Electrical , and Mechanical to
departments of Biomedical Engineering, Engineering Science and Systems , Materials Science, Nuclear
Engineering, and A pp lied Mathematics and Computer Science. In addition to these departments , there are
interdepartmental groups in the areas of Automatic Controls and Applied Mechanics. All departments offer
the doctorate; the Biomedical and Materials Science Departments grant only graduate degrees.

The School of Engineering and Applied Science is an integral part of the University (approximatel y
1,400 full-time faculty with a total enrollment of about 14,000 full-time students) , which also has
professional schools of Architecture , Law , Medicine , Commerce , and Business Administration . In addition , - .
the College of Arts and Sciences houses departments of Mathematics , Physics , Chemistry and others
relevant to the engineering research program. This University community provides opportunities for -

interdisciplinary work in pursuit of the basic goals of education , research , arid public service. .. F
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