
tmA036 466 CALIFORNIA UNIV SANTA CRUZ rn 5,7
A CONCISE EXTENSIBLE METALANGUAGE FOR TRANSLATOR IMPtEI€NTATIOI—flC(U)
*1%. 76 0 L MICHELS N00014—76— C—0662

LASSIFIEO

UUNM~~~~~~~~~
k

~~~~~~~~~~

________________ 

END
OATE

FILMED

i

II



‘ I ~;:~ 
~ 2 8  

~t 2 5

_____  

22
3 O

I I DIH~0

I1I~U8
.25 

~
f fl i.4 ~j i . o

V RF~ O~tJ



)

A CONCISE EXTENSIBLE METALANGUAGE

FOR TRANSLATOR IMPLEMENTATION

Douglas L. Michels

Infotmation Sciences

UnIve~ sity of California
at

Santa Cruz

.-

~~ ~fl~~q 4 ~~~~~~

July 25 , 1976

This research was supported partiall y by Office of  Naval
Research Contract No. NOOO1~+-7h- C-O h82.

_ _ _ _  - - ~~~~—.- - -----—— ~~ .-



A CONCISE EXTENSIBLE METALANGUAGE FOR TRANSLATOR IMPLEMENTATION

/ ~ Douglas L. Michels

Information Sciences

University of California
at

- 
•.. Santa Cruz

Li
July 25 , 1976

ABSTRACT / ~
A class of emitter augmented phrase structure grammars is

defined which can specify simple translations of context free

languages. A self-translating metatranslator for the description

of these translation grammars is described. Several mutually
recursive functions define an interpreter which will execute

grammars as translated by this metatranslator.

The evolution of more sophisticated translations systems is

discussed and extensions to the metatranslator and interpreter

are demonstrated.

A very concise self-describing metalanguage and an inter-

preter which will directly execute its self-description are

presented.

Key word s and phrases:
Translator , Compiler , Translator Writing System , Meta-

language, >lt tacompil er , Self-describing grammar , Interpreter

CR catagories: 4.12, 4.13, 4.20

~~~~~~~~~~~

. .

.

~~~~~~~

— . 5 .



1. Introduction
A LANGUAGE is a set of strings. A METALANGUAGE is a

language for the description of languages. A self-describing
metalanguage is a language which can express its own description .
A RECOGNIZER for a language is a boolean function that when
applied to a string is true if and only if the string is a

member of the language. A translation language is a metalanguage

that can express the mapping of a source to an object language.
A translation language implicitly defines both the source and

object language. A TRANSLATOR is the implementation of trans-

lation mapping. If a null object language is produced by a
translator then it is equivalent to a recognizer. A METATRANS-

LATOR is a translator that maps a translation language to an

object language. A metatranslator that can be described with
its own source language is self-translating . The object language

produced by a translator may be in any form; if it is the

machine language of some computer then the translator is a

COMPILER for that computer. If the object language directs the

execution of a computer program it is an interpretive language

and the program it controls is an INTERPRETER . An EXTENSIBLE

metatranslator is one that can describe translators that have

capabilities it does not itself have.

A very simple self-translating metatranslation language

can be used to evolve arbitrarily sophisticated metatranslators .

The first step towards accomplishing this is to define the

simplest such language , extensible enough to provide for future

evolution. This report is an attemp t to define one such initial

metalanguage ~nd discuss its future evolution . A brief history

of such systems is presented in section 2. In section 3 a class

of translators , adequate for an initial metalanguage, is forma l ly
defined . A metatranslator that maps the description of such

translators to an executable object program is described in

section 4.1. This description is in the form of the source of

language it defines; the self-translation of this description

is also presented . Section 4.2 describes the metatranslator ’s

object language by presenting a recognizer for it in the

L - . 

~~~~~

. -. ,—- ____________

.5-.. — ~~~.

3

metatranslator source language. The object language transla-
tion of this recognizer is also presented. An interpreter

that will execute programs in the metatranslator object
language is functionally defined in section 4.3.

An extended metatranslator can then be created by using
this initial one. A description of the extended metatranslator

written in the source language of the original metatranslator

is given in section 5.1. The translation of this description
is executable on the interpreter for the original object
language. This new metatranslator accepts an extended source

language and produces an extended object language. A recog-

nizer for the extended object language, described with the

extended source language, and the translation of this recognizer
to the extended object language are provided in section 5.2.

The extensions to the interpreter necessary to execute this

extended object language are presented in section 5.3.

In section 6.1 it is demonstrated that a simplified version
of the objection languages produced by these metatranslators is

itself a very simple self-describing metalanguage. A simple

interpreter for this source/object language is defined in

section 6.3.

2. History

Traditionally, computer instructions have been poorly suited to

the expression of solutions to many human problems . To facilitate

the use of computers, programming languages which allow a more

problem-oriented statement of a solution have been created to

provide an interface between human and machine languages. A

translator is a computer program that can translate instructions

in some specified programming language to an equivalent program

in some other form.
The creation of a translator in a machine language or a

general purpose programming language is a difficult and error

prone process. A system which can automatically create a compiler

from some concise description is called a TRANSLATOR WRITING

_ _ _
_ _ _ _ _ _ _ _ _ _

4

SYSTEM (TWS) and many approaches to designing such systems

have been proposed.
Formal language theory has provided convenient techniques

for the definition of a language. Finite grammars can be used

to specify an infinite set of strings which comprise a specific
language [Chomsk y 571 . Algorithms to generate efficiently

implementable recognizers from the grammar for a specific

language have been discovered for several useful classes of
languages [DeRemer 71, Knuth 65, Floyd 631.

Several methods have been used to extend these recognition

techniques for use in translation. The recognizer can maintain

a history of the order in which productions of the grammar are

applied, resulting in a canonical parse EWirth 661. The produc-

tion system can be extended to include an optional transduction

rule associated with each production. These rules are applied

in parallel with associated productions , resulting in an Abstrac t

Syntax Tree [Wozencraft 651. Both of these methods result in a

representation of the source program which is then usually
refined with some programming language. Another alternative is

to augment grammar productions with output strings that specify
the strings to be emitted . It has been demonstrated that for

several useful languages this method is capable of direct1-~
generating translations in the form of an assembly language pro-

gram for a language specific interpreter lSchorre 64~ .

McKeeman [76] has suggested a refinement approach to the

construction of translator writing systems . This approach is

based on partitioning the system into several languages , one for

each major component of the resultant translators . Instead of

construction the TWS in its totality, it is to be “evolved” , each

generation a product of the tools created by the previous genera-

tion . The design objective for each generation is the creation

of the most useful tools with which to “evolve” the next generation .

This evolution must begin somewhere. McKeeman ~76~ has named
this basis step a SEED. The seeds of a translator writing svster~
are the tools necessary to create minimal versions of sufficient

translator description languages to describe more sophisticated

A - - . — —- — _____a_.
- 5,— 5 .- —~~~~~ -. . -5- -- -‘--- -- 5 —.--- 5,

- .- 5----— —- — - -~~~~~

-~~~— - - - -~~~~ -~~~ ~~~~~--

5

languages. An ideal seed would have the capability to build

several very simple but significantly different translators.
The seed and the languages constructed with it serve only as

development steps and therefore no optimizations other than

conceptual clarity and extensibility need be considered.

3. Formal Definition of Translation

The translation mapping of a context-free source language

L to an object language 0 can be generated by a context-free

translation grammar T. If G (V
~
,V , S,P) is a context-free

grammar generating L then the translation grammar T =

(Vt,Vfl ,Vd,S,P’), where:

V~ is a finite set of symbols called TERMiNALS .

V is a finite set of symbols called NON-TERMINALS.

Vd is a finite set of symbols called OUTPUTS, or DESTINATIONS . H

V~ , v~ and Vd are mutually disjoint.
is the union of V~ , V~ and Vd and is called the ALPHABET .

S is a distinguished member of V called the start or goal symbol .

P is a finite set of productions such that each production is a

pair (a ,b). The LEFT PART a is a symbol in ~~ and the RIGHT

PART b is a sequence of symbols from the union of and V~ .

P’ is a finite set of productions such that each production is a

pair (a ,b). The left part a is a symbol in and the right

part b is a sequence of symbols from the union of ~~~ V~ and Vd.

The postfix operator will denote the set closure or the

set of all sequences of symbols in a set. For example , \~~
‘
~

represents the set of all strings that can be constructed

from the symbols in the alphabet , including the empty

string . The operator + denotes the set closure with the

exclusion of the empty string .

The set of productions define all possible derivations in T.

For all (a ,b) in P’ and u ,v in V~ , u is derivable from v if u can

_ _ _ _ _ _ 5 -” .-- .

.— - —— - .

~~~~

--

~~
---

~~~~~~~

-- — — A -- -- - - - _~~s___S_~~~~_ —. --— -_ S _ _ _ ~~~~~~~~~~~~ -- 5—

. 5 5 - - -~~~~---~~~~~~~~~-. ~~~~~~~~~~-~~~~~~~~~~~~~~~~~~ — - .-.- ‘ -
5----..~~ .-~~~~~~~~~

6

be created by the substitution of b for any occurrence of a

in v, or in any derivation of v.
Any sequence of symbols derivable from S is a SENTENTIAL

FORM. A sentential form not containing any elements of Vn is a

FINAL SENTENTIAL FORM, that is, no further derivation is possible.

The deletion of all elements in Vd from a final sentential form

will produce a TERMINAL SENTENCE and all such sentences are in

the language L. The deletion of all elements in V~ from a final

sentential form will produce an OUTPUT SENTENCE and all such
sentences are in the object language defined by T. An output

sentence is the translation by T of a terminal sentence if there

exists a sequence in final sentential form from which both the

output and terminal sentence can be produced .

3.1 A Translation .Example

A grammar that will translate infix expressions to prefix

is shown as an example of this class of translation. A trans-

lator M can be described by T = (V t,Vn,Vd,S,P’) where:

v~ = [+,*,a,b~ This is tl~e alphabet of the source language.
V~ = tS ,T,F,11 These are the non-terminal symbols.

Vd
= [P ,X,A ,B) This is the object language alphabet; in

this case it corresponds one for one with

V~ . A symbols were renamed to differentiate

the two sets.

P’ =

This is the set of produccions defining the
translation .

M defines the mapping of ‘a+b*a’ to ‘+a~ ba’. The full
derivation is as follows:

_ _ ~~~~

— .
~~~~~~~~~

— - - .
~~~~

.
--5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

7

Sentential Form Transitional Rule
S Start symbol

T (S,T)
PF +T (T,PF+T)
PF +F (T,F)
PF +XI *F (F,Xl*F)
P1 +XI *1 (F,I)
PA a+XBb~Aa (I,Aa),(I,Bb) Final Sentential Form
a+ 1* a Terminal Sentence Delete all symbols from Vd

PA KB A Output Sentence Delete all symbols from V~
+a *b a Output Sentence mapped back to the corresponding

input vocabulary

4. Translator Implementation

A language for describing translators of the type just de-

fined can be created such that only the set of productians need

be stated. To do this the language must provide a wa’~ to

differentiate the symbols of each vocabulary. Each vocabulary

is then defined to contain only those symbols denoted in the

productions. Certain assumptions , restrictions and conventions

can be asserted to greatly facilitate a top down , deterministic

implementation of such translator descriptions .

No productions may be empty . That is , for all (a,b) in P
every b must be a member of V+.

PL is constructioned from F, the set of productions . Each

element of PL is a list (a ,b1,b2,...,b~); a is some left part

and all b1 are corresponding right parts. That is , all b~
are

included in an element of FL if and only if (a,b
~
) is an element

of P. A translator will be represented by a description of FL ,

such that the first element is the list in which a = S, the

start symbol.

An ordering on the alternative right parts in e~’ch element

FL is defined to guarantee that if two possible derivations have

terminal sentences , such that one is a right subst:ing oi the

other , the longer will he listed first. For all 1 in in P1,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _



Fr _ ., , ‘

~~~~~~~~~~~

“ _

~~~~~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~

8

and b, b’ in V+, if b , b ’ are right parts in 1 and b precedes
b ’ then for all u, u’ elements of V~+ such that u and u ’ are
derivable from b and b’ respectively there exists no u ’ =

ur where r is in V*.

Languages cannot be specified which allow left recursion.
This would result in an infinite recursion in a top-down left to
right parse. If for any v in V~ and any u in V*, vu is derivable
from v then the grammar allows left recursion.

A production is capable of deriving an arbitrary number of
repetitions of a particular terminal sequence. If the specifica-

tion of a ter ’inal sequence follows a specificiation allowing an

arbitrary repetition of the same sequence then there is no

deterministic left to right parse . That is , for all productions
(a,b) in P there must not exist any sequence umcv derivable

from b , and cv derivable front m , where u, m , and v are in V~
and c is in V~+.

4.1 A Simple Translation Language
A Metalanguage, utilizing a limited character set , can be

defined for the syntax and translation of an emitter augmented ,

phrase structure grammar. The notation is similar to BNF

Naur 60~ , however terminals and output svn~bels are quoted with

non-terminals being single characters. The vertical bar (I)
will be used to separate alternative right parts in an element

of PL. The left part will be separat .d from the alternative

right parts by an equal sign (=). Juxtaposition will denote

the concatenation of definitions , Single quotes (‘) will de-

limit elements in V~+. Brackets (, ‘ ) will be used to delimi t

elements of Vd+. Normal parentheses can he used to alter the

implied operator precedence and to reduce the number of produc-
tions required by allowing the factoring of rules.

Literal strings may be of arbitrary length . This creates

a problem if a string must contain a single quote (‘), which is
the literal delimiter. To solve this the production ‘I ’ is

ordered to test for a single quote as the first character of a

literal string ; if one is found it is assumed to be the entire

~~~~~~~~~ ~~~~~~TJ:  Ji~ ii~~_~~~~~~


-. -~~~~~~~~~ ~~- .-~~- . .-~~~~~ . - —

~

—

~~~~~

-

~~~~~~~~~~

—

9

string and must be followed by the terminating single quote .
A single quote in any other position of a literal string is
assumed to be the terminating delimiter of that string .

The infix to prefix translator of section 3.1 is rewritten

in the syntax of this metatranslator as an example. The terminal

and output vocabularies are the same as they can be differentiated

by their delimiters .

BEGIN GRAMMAR
T = [+1 F ‘+ ‘ T

F = [*1 I ‘*‘ F
f I

I = [a~ ‘a’

I [bi ‘b’

END GRAMMAR

The translation language describing this notation and its

translation is expressed in its own language. Multiple blanks

and end of lines have no meaning in the language. They have
been used here to improve readability and should be ignored .

A realistic treatment of multiple blanks is demonstrated in the

translation language of section 5.1.

BEGIN GRAMMAR
G = ‘BEGIN GRAMMAR ’ R ‘END GRAMMAR’
R = L ‘ ‘ A ‘ ;‘ R

I L ‘= ‘ A ‘ ;‘

A = [f 1 C ’~~’ A
I C

C = [& 1 I ‘ ‘ C
1

I ~~~ (~~~ r,,t~
~

) 1 ! ,

‘ [‘ (o ‘] ‘ r>i ~~) ‘1’

- - ~~~~~~ ~~~~~ ~JT~~~ ~~~

10

‘(‘ A ‘) ‘
r :1 L

S = r~ ”~ (L t T I [~~) 5
~“ 1(L fl’ £11

O = [&> 1 (L I ‘ ‘ ‘ [‘1) 0
1 [>1 (L I ‘ ‘‘ [‘ I)

L = ‘A ’ rA l ‘B ’ [B1 ‘C ’ [CI ‘D’ ED ‘E ’ [El ‘F ’ rF~‘G ’ [G~ ‘H ’ [H 1 ‘I ’ [Il ‘J ’ [JI ‘K’ [KI ‘L’ ~L 1
‘M’ [MI ‘N ’ [NI ‘0’ [01 ‘P’ [P1 ‘Q ’ [QI ‘R ’ [RI
‘ S ’ ESI ‘T’ [T1 ‘U’ [Ul ‘V ’ [VI ‘W ’ [WI ‘x’ [xl

‘ [Y 1 ‘~~ ‘ [Z ~
¶ 1 ~ (~ V (~ ~

) ‘t j l [f n ‘& ‘ [&1 1 > 1 r>~~~ ~ ~ -
~ i , ’)~ [t

”).l ‘ ‘ r ~‘ t ’ [[1 ~ *1

END GRAMMAR

The self-translation of the above translator description

is as follows:
(Paragra phing has been added to improve readability . The actual

machine language, as defined by the translator and accepted
by the machine, would be a continuous string of characters.

The only significant blank is one which follows a “

C &&“B&”E& ”G&”I& ”N&” &“G&”R& ”M&”M&”A “R
&:R

&‘ ‘E&’ ‘N& ’ ‘D&” &‘ ‘G& ’ ‘R& ’ ‘A& ’ ‘M&’ ‘M& ’ ‘A ’ ‘R
R f & : L

&:A
&“ ;

:R
&:L

=

&:A,,
A ~6~> J

:A

C I &>&
&: I

:C
:1

ii -:~~~~~~i~~::~~~ ~~~~~~~~~~~~ _ _

“W ~~ ~~~~~~~~~~~~ ‘ -‘ ‘~~~~~~~~~ , --- .--‘-- -——--——‘ .- - ~~~~~~ —-,----—- ----- .~ , —.-— -.-—— -... ‘ .--—-- - --,- . - . - - --- -

11

I f&” ’&f &“

>‘

:S,,
&“ I

&~ :0
&“ I

&>>

“1
&“ (

&:A
U)

:L
S I &&>&

>“&f
&“ ~1
>1

:S
&> ‘,

I : L
&“ I

> 1
O f &&>&

>>
&I :L

>
,

:0
&>>
f :L

>‘

L “A>A “B>B “Cl’C “D>D “E>E “F>F “G>G “H>H “1>1 “J>J “K>K “L>L
“M>M “N>N “0>0 “P>P “Q>Q “R>R “S>S “T>T “U>U “V>V “W>W “x X
“Y>y “z>z “=>= “ ;> ; “(>(“)>) “f > “&>& “>>> “ : >: “ >“

“[> [

4.2 The Object Language
The output of the metatranslator described by section 4. 1

is a program executable by the interpreter defined in section
4.3. This obj ect languac’e is a context-free language and a
recognizer for it can 1’ . ,escribed in the syntax of the section
4. 1 metatranslator.

Ii~
-- --

. 5-S-- __~- - - -. .fl fl% ~~~ - ~~~~~~~~~~~~~~~~~~~~

- .—.—~~- -—— A -
- - - -—~~~~~~~~~ ---- --- ,~~~~~ -. —---- .—.-—. -‘ ‘~~~~~~

. . - -~~~~- ----— 5 ~~ .. . - - -

12

BEGIN GRAMMAR
G L R G

I L R

R ‘ : ‘ L
‘&‘ R R
‘ I’ R
‘>‘ L
~~ L

L = ‘A ’ ‘B ’ ‘C ’ ‘D ’ ‘E ’ ~~ ‘C ’ ~~ ~~~~ ‘J ’ ‘K ’
~~~~ ‘M’ ~~ ‘0’ ‘P’ ~~ ~~ ‘S ’ ‘T ’ ‘U ’ ‘V t
‘W ’ ‘X ’ ‘Y ’ ‘Z ’ ‘& ‘ ‘fl ‘ : ‘ ~~~~ 

~~~~~~ 
1 (1

~~~~1t  I t I [ t  I] I  1 1  l ;I t J ç I

END GRAMMAR

The object language as described contains five prefix opera-

tors. The ‘& ‘ is a binary concatenation operator , it has the

value TRUE only if both of the operands which follow it are true.
The f ’  is the binary alternation operator , it has the value TRUE
if either of the operands following it are TRUE. If the first

is TRUE the second is not tested. If the first if FALSE both

input and output strings are restored to their pre-test value
befor e tes ting the second. The ‘ : ‘ is a unary non-terminal

operator ; it has the value TRUE if the rule labeled by its

operand is TRUE. The “ is a unary terminal operator; it has

the value TRUE if the current character of input is the same as

its operand and the input is advanced one character. The ‘> ‘

is a unary operator and always has the value TRUE. The character

following it is appended to the right of the current output string .
A translation of the above gramm ar according to the meta-

translator of section 4.1 would be:
(Again paragraphing has been used to improve readability.) 

— — . S - “~~~ ~
‘___ _

L. -5’ .’ . ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -5-_---.-—,_. ,. ____



13

C J &:L
&:R

:C
&:L

:R
R t&” :

&:R
:R

I &“ I
&:R

:R

&“,,

:L
1~ ‘‘A ‘‘B ~~~ ~~~ ~~~ ‘‘F ~~~ t I j .j I~ —~ I t

j  ~~~~ ~ ‘‘i’.i I ‘‘Nj ~~ ‘‘P I ‘‘Q ‘‘R ‘‘S ‘‘i’
‘‘V ‘‘W ‘‘K ~~ “Z ~~~ ‘‘I ~~~ f l I t  ‘‘> ~I( t~~) 

t~ I f~1 ,, I ‘‘ = ~‘ ; ‘‘~~

4.3 The Translator Interpreter

An interpreter that will execute the object language of

section 4.2 and perform translations as formalized can be defined

in terms of several mutually recursive functions.

The object language program, the input , and the output can

each be considered to be a finite sequence of characters or a

STRING. To facilitate the definition of the machine , some primi-

tive operations on strings will be defined .

Str ing Operations :

First: STRING -> STRING

First (S) is the single left-most character of S.

Rest: STRING -> STRING

All but the left-most character of the string .

Concat: STRING x STRING -> STRING

S = concat (first(S) ,rest(S))

-- - —5- T 1 i ~i 1~~I~~ ~~



14

Equal:  STRING x STRING -> BOOLEAN
Equal (Sl ,S2) is TRUE if and only if Si is identical to S2 .

Three sets of strings are of interest:

STRING(i) - Strings of object code executable by an interpreter.

STRING(s) - Strings in the source language of a translator

defined by an element of STRING(i).
STRING(o) - Strings in the object language produced by a tram-is-

lator defined by an element of STRING(i).

Functionality and function of interpreter definition functions:

Machine: STRING(i) x STRING(s) -> BOOLEAN x STRING(o)

(RECOGNIZE ,OUTPUT ) = Machine ( GRAMMAR ,INPUT )
If INPUT is described by GRAMMAR then RECOGNIZE is TRUE and
OUTPUT is the object program produced when GRAMMAR is app lied
to INPUT.

Test: STRING(i) x STRING(i) ~ STRING(s) ->  BOOLEAN

Test (GRAMMAR ,RULE,INPUT) is TRUE if any left-most substring
of INPUT is recognized by RULE. RULE is always a substring of

GRAMMAR .

Remaining: STRING(i) x STRING(i) x STRING(s) -> STRING(s)

Remaining (GRAMMAR ,RULE, INPUT) is the substring of INPUT

remaining after the substring recognized by RULE has been

removed .

Emit: STRING(i) ~ STRING (1) ‘
~ STRING(s) -> STRING(o)

Emit (GRA MrIAR ,RULE , INPUT ) is the translat ion of the substring
of i~ r ir r  recognized by RULE .

IL. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



15

Skip: STRINC(i) - ‘-~ STRING(i)

Skip (RULE) is the substring of RULE remaining after the

leftmost operator and its operands have been removed.

Find: STRING(i) x STRING(i) - >  STRING(i)

Find ( GRAMMAR ,STRING) is the subs tring of GRAMMAR labeled
by the first character of STRING.

A recursive defini tion of these functions :

Machine (G ,I) =

IF Test (G ,rest(G),I) AND equal (Remaining(G ,rest(G),I),NULL)
THEN

(TRUE ,Emit (G , res t (G)  ,I)
ELS E

(FALSE ,NULL)
END Machine

Test (G,R,I) =

CASE first (R) OF
‘ : ‘ : Test (G,Find(G,rest(R)),I)
‘&‘ : I f  Test (G , res t (R) ,I)

THEN
Test (G,Skip(rest(R)),Remaining(G,rest(R),I))

ELSE
FALSE

‘ I’ : IF Test (G,rest(R),I)
THEN

TRUE
ELSE

Test (G ,Skip( res t (R))  , I)
‘ > ‘ : TR UE

equal ( f i r s t ( r e s t ( R )) , f i r s t (I ) )
END CASE

END Test

Remaining (G ,R I) =

CASE first(R5 OF
Remaining (G,Find(G ,rest(R)),I)
Remaining (G,Skip(rest(R)),Remaining(G,rest(R),I))

‘ f ’  : IF Test(G ,rest(R),I)
THEN

Remaining(G ,res t(R) ,I)
ELSE

Remaining(G,Skip(rest(R)) ,I)

‘“‘ : rest(I)
END CASE

END Remaining



- -‘~ - -- -.-~~~~~~ --- .- 5- -. -~~~~~-‘~~~~~~~~
-“

~~~~~~
--- ‘ . ‘ - - - - -—~~~-. ~~~~~~~~~~~~~~~~

16

Emit (G,R,I) =

CASE first(R) OF
‘ :‘ : Emit (G ,Find(G,rest(R)),I)
‘& ‘ : Concat(Emit(G ,rest(R) ,I) ,Ernit(c ,skip (rest (R)) , Remainj ng

(G ,rest (R) ,I)))
IF Test (G ,rest(R) ,I)

THEN
Emit (C,rest(R),I)

ELSE
Emit (C Skip(rest(R)),I)

first(rest(R)j
NULL

END CASE
END Emit

Skip (R) =

CASE first (R) OF
‘:‘ : rest(rest (R))

Skip(Skip(rest(R)))
Skip (Skip rest(R)))
res t(rest R

‘“‘ : rest~ res t R
END CASE

END Skip

Find (G,R) =

IF equal (first(G),first(R))
THEN

rest(G)
ELSE

Find (Skip(rest(G)) ,R)
END Find

5. Extensions to the Metatranslator

A metatranslator written in the language of section 4.1 can

translate an extended translation language. This extended language

will allow identifiers representing symbols in V~ to be of arbi-
trary length. It will also permit the use of the postfix operator
‘* ‘ to indicate zero or more repetitions of the preceding rule.

This translator and the interpreter necessary to execute the
programs it produces can be used to create translators for more

interesting languages. They also serve as an example of using an
existing metatranslator to evolve a more complex one.

h~
- -~-. ~~~~~‘.:a .~~~~~~ P5 - S - - “ - ~~~~ - C ’ t ’ -~~~~~~~

- .-~~~~~ . 5 —~~~~--- --- . -- ~~~ ---—

_ _ _ _ 5
— — - — - .

17

5.1 The Extended Metatranslator

A description of an extended metatranslator is presented

in the syntax of the metatranslator described in section 4.1.

Multiple blanks are taken into consideration. The end of line

is ignored .

BEGIN GRAMMAR
G = ‘BEGIN GRAMMAR ’ R B ‘END GRAMMAR ’
R = D ’= ’ A ’ ; ’ R

D B S B
S B
B

A = LI I C ‘ I ’ A
I C

C [& I K C
1 1 K

K [*] N ~~~~

N B I B
lB
I

I ‘ ‘ (5 J [UI])
‘ (‘ A ‘)
‘
~~~
‘ ( 0 I ‘[‘  [>1 [II ) ‘I’

S ~ [&“] ( L I ‘
~~~

‘ [1] I ‘ ‘ E I) S
I [‘fl (L I ‘1 [1] I ‘ ‘ [I)

O ~ [&“I (L I ‘‘‘ ~‘I I ‘ ‘ [1) ~I ~“I (L I ‘‘‘ [I I ‘ ‘ [I)
V L&”] L V

I [“I L
L ‘A ’ [Al ‘B’ [B] ‘C ’ [Cl ‘D’ [DI ‘E ’ [El ‘F ’ [F 1

‘C ’ Ccl ‘H’ [HI ‘I’ [I I ‘J’ [JI ‘K ’ [KI ‘L ’ [L~‘M ’ [Ml ‘N ’ [NI ‘0’ [0] ‘F’ [P1 ‘Q ’ [QI ‘R ’ ER1
‘s ’ [Si ‘T’ [TI ‘U ’ [U] ‘V ’ [Vi ‘W ’ [WI ‘X ’ [x ~‘y ’ [y l ‘z ’ [z] ‘= 1 1=1 ‘; ‘ C ;] ‘ç ’ r ç i ~~ [)1

‘I ’ C f I ‘& ‘ [&] ‘ ‘ ~:I ‘> ‘ [>1 ‘‘ ‘ ~
‘ I ‘ C ’ [[1

‘*‘ [*]

_ _
-- - - -—...—.~~--5

_ _ _ _ _ _ _ _ _

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— -~~~~ _ _  - -~~~

18

B = ’ ‘ B

I ’ ’
END GRA MMAR

5.2 An Extended Object Language

The metatranslator just defined produces an extended object
language. This is required to support the language extensions
now defined. A recognizer for this object language, in the
language of the translater defined in section 5.1, follows :

BEGIN GRAMMAR
GRAMMAR = STRING RULE GRAMMAR

I STRING RULE

RULE = ‘ :‘ STRING
‘& ‘ RULE RULE
‘ I ’  RULE RULE
‘> ‘ LITERAL
“ LITERAL
‘*‘ RULE

STRING = ‘& ‘ LITERAL STRING
I “ LITERAL

LITERAL = ‘A ’ ‘B ’ ‘C ’ ‘D ’ ‘E’ ‘F ’ ‘C ’ ‘H ’ ‘I’ ‘J ’
‘K ’ ‘L’ ‘N ’ ‘N ’ ‘0’ ‘Pt 

~~ ‘R ’ ‘S ’ ‘T’
‘U ’ ‘v ’ ‘w ’ ‘x ’ ~~ ‘z ’ ‘& ‘ I f

~ 
I~~~ t

~> t ( t  1 ) 1  I I ~~~I t  I [ t  ~~~~~~ ,
=~ ~~~~~~ 

,_
~
.,

END GRAMMAR

There are two extensions in this object language. The first

is the addition of the unary ‘*‘ operator. This operator always

yields the value TRUE, it specifies that the rule on which it

operates be applied to the input repeatedly until it becomes false.
Both the input and output strings are restored to their values
previous to the evaluation of the rule that yielded the value

FALSE. The second extension is a change in the meaning of ‘ : ‘

operator. Instead of operating on single character names, the ‘ : ‘

will operate on strings which are defined with ‘& ‘ and “
operators. /

- —--—-5-—.-—- - a . ,.- ,A ,... ... - - -..-.~ a 4.S. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . .



19

The translation of the object language recognizer by the
translator of section 4.1 is shown. The language recognized
by this granm~tar is executable on the interpreter  of section 5 .3
(paragraphing has been added).

&“G&”R&”A&”M&”M&”A ”R f&:&”S&”T&”R&”I&”N”c
&:&“R&”U&”L”E
&“C&”R&”A&”N&”M&”A”R

&: &“S&”T&”R&”I&”N”G
&“R&”U&”L”E

&“R&”U&”L”E f&”:
&“S&”T&”R&”I&”N”G

&: &“R&”tJ&”L”E

I &“I
&: &“R&”U&”L”E

&“L&”I&”T&”E&’ ‘R&”A”L

&“R&”U&”L”E
&“S&”T&”R&”I&”N”G

&: &“S&”T&”R&”I&”N”G
&“S&”T&”R&”I&”N”G

&“L&”I&”T&” E&”R&”A ”L
&‘‘1..&’’I&’”r& ’’E& ’’1~.6~’’A ’’L I ’’A I ’’B I ’ ’ C I ’’ D I ’ ’ E I ’ ’ F I ’’G I ’ ’ I—l I ’’I I ’ ’J I ’ ’ K f ’ ’ L l ’ ’ M l ’’ N

I’’O ‘‘PI ’’Q( ‘‘R f ‘‘S I ’ ’T f ’’u f ’’V~’’w I ’’ x j  ‘‘~~
‘ f ’’ z f ’ ’ &

I ‘‘ I’’ : ‘‘ i’ I ‘‘>~I’’ ( I ‘‘) I’’ I’’ I’’ C I’’ ~ I ‘‘= I’’ ; ‘‘*

As this object language is not compatible with the previous

obj ect language, it is appropriate to provide a conversion
translator from the object language of section 4.2 to the

language of section 5.2. This conversion translator is written

in the translation language of section 4.1, hence its trans-

lation is executable on the interpreter of section 4.3.

- 
~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~5’5.-~~~~~~~~~~~ - 

.-~~~~ - - -~ ~~~ ~~~~~~~~~

20

BEGIN GRAMMAR
C = [“I L R G

[“ 1 L R

R C : ”] ‘ : ‘ L
[&I ‘& ‘ R R
[Ii ‘ f ’ R R
[>1 ‘ > ‘ L
[U] ~~~~ L

L = ‘A ’ [A] ‘B ’ [BI ‘C’ [CI ‘D’ [Dl ‘E ’ [El ‘F ’ [Fl
‘C ’ [GI ‘H’ [HI ‘I’ ~~ ‘J ’ [J1 ‘K’ [KI ‘L’ [LI
‘N’ [MI ‘N ’ [N] ‘0’ [01 ‘P’ [F] ‘Q ’ [Q i ‘R ’ [RI
‘S’ CS] ‘T’ [TI ‘U’ [U1 ‘V ’ [Vi, ‘W ’ [W~ ‘x ’ [x l
‘Y ’ CY ’ ‘z ’ IZ~ ‘~~~‘ r= -i ‘ . ‘ 1.1 ~~ I1~ 1

~~ [)1
‘I’ [I] I

&
t ~

:
&~ • ~

I
>

i F>i ~~~~~~ r”~ ‘ ‘ 1 1

‘E ’ E~ I ‘ I ’ fli ‘
~~~~~

‘ 

~~ ‘ ‘ ‘  ~~~~ 

-

END GRAMMAR

5.3 The Extended Translation Interpreter

A new interpreter is defined that is an extension of the

old, and will implement the extended object language.

An additional function to compute the string that would

be recognized by a specific rule is named Literal and has the
following functionali ty:

Literal: STRING(i) -> STRING

All other functions have the same functionality and purpose

as in the original machine.

The Functional Definition of the Extended Machine:

Machine (G,I)
IF Tes t (G ,Skip(G),I) AND equal (Remaining (G,Skip(G),I),NULL)

THEN
(TRUE ,Emit (G ,Skip(G),I)

ELSE
(FALSE ,NULL)

END Machine

- - - - - - - - - * — -  - - -~~~~ - — - - - -r

A - - . _ .. _ _ _  —— .———-——-— _ —-— . -——-—.——————-———--—— . ~~~~~ — — s - .- - - -  ~~~~~~~~~~~~~ ______



21

Test (G,R ,I) =

CASE First (R) OF
Test (G,Find(G ,rest(R)),I)
IF Test (G,rest(R),I)

THEN
Test (G,Skip(rest(R)),Remaining(G ,rest(R),I))

ELSE
FALSE

‘j ’  : IF Test (G,rest(R),I)
THEN

TRUE
ELSE

Test (G,Skip(rest(R)),I)
TRUE
equal ( f i r s t ( re st ( R) ) , f ir s t ( I ) )
TRUE

END CASE
END Tes t

Remaining (G,R ,I) =

CASE f i r s t (R)  OF
Remaining (G,Find(G,rest(R)),I)

‘& ‘ : Remaining (G,Skip(rest(R)),Remaining(C,rest(R),I))
‘I ’  : IF Test(G , res t (R) ,I)

THEN
Remaining(C ,rest(R) ,I)

ELSE
Remaining(G ,Skip(rest(R)) ,I)

I
rest(I)
IF Test (G ,rest (R) ,I)

THEN
Remaining (G ,R ,Remaining (G , r e s t ( R ) , I) )

ELSE
I

END CASE
END Remaining

Emit (G ,R , I) =

CASE F i rs t (R)  OF
‘ :‘ : Emit (G,Find(G ,rest(R)),I)
‘& ‘ : concat(Emit(G ,rest(R),I),Emit(G,Skip(rest(R)),Remaifliflg

(G ,rest(R),I)))
IF Test (G ,rest(R) ,I)

THEN
Emit (G,rest(R),I)

ELSE
Emit (G .Skip(rest(R)),I)

‘
~~~~~

‘ : f i rs t (r e s t(R) ’
‘ ‘‘ ‘ : N~1~T.IF Test (G , r e st (R) ,I ’)

THEN
concat (Emit(G ,rest(R),T) ,Emit (G ,R ,Remaining(G ,reSt(R),I))

L

ELSE
NULL

END CASE
END Emit —

_ - -
-5

- ~~~~~~~~~~~~~~~~~~~~~~~~~~

22

A

Skip (R) =

CASE first (R) OF
Skip(rest(R))
Skip(Skip(rest(R)))

‘ I ’ : Skip(Skip(rest(R)))
rest(rest (R))

‘“‘ : rest(rest(R))
• ‘~~ ‘ : Skip(rest(R))

END CASE
END Skip

Find (G ,R) =

IF equal (Literal(G),Literal(R))
THEN

Skip (G)
ELSE

Find (Skip (Skip(G)),R)
END Find

Literal (R) =

CASE first(R) OF
‘& ‘ : concat (Literal(rest(R)), Literal(Skip(rest(R))))
‘“‘ : first(rest(R))
END CASE

END Literal

6. A Minimal Recognizer

The graxmnars and interpreters presented in this paper are
a result of extending a much simpler grammar and interpreter. The

initial self-describing grammar and compatible interpreter were

designed as an answer to the question , what is the simplest

mechanism necessary to implement the recognition of interesting

languages? A simple Metalanguage is proposed . The grammar

which defines this language is self-describing and is interesting

because it is extremely concise.

This class of gran~nars can be formalized as a triple , G =

(V t , S ,P) where:

is a finite set of symbols called terminals.

S is a distinguished symbol not in Vt .
The union of V~ and S will be called V.

_ _ _ _ _ _ _ _ _ _ _ _ _


~~~~~~~~~~~~ •— - - . -s~~~~~~~ -s- 

23

p is a f in i te  set of productions , where a production p is a

finite sequence of symbols in V+. For all p in P find
u, v elements of V+. u is derivable from v if u can be

created by the substitution of p for any occurrence of S
in v or any derivation of v.

The productions of P can be represented as p1 p2 1 p 3 1
The same implementation restrictions apply to this class

of recognition grammars as apply to the translation grammars

of section 3.

6.1 An Expression Language for Recognizer Description

A translator defined in the language of section 4.1 defines
an expression language for this class of grammars , as well as
the translation of this language to the object language executable

by the interpreter , defined in section 6.3. The symbol ‘ . ‘ will
be used for S.

BEGIN GRAMMAR
G = A  ‘ ; ‘ -

A = CII C ~I ’  A
I C

C = [&i N C
I N

N = ~ I ‘ ‘ L ‘ ‘
A ‘) ‘

-‘ , I

L =  ~~~~ I ~~~~ ~~~~~~~~~~~~~~~~~~~~ -
> ‘‘‘‘ ~ .

1 >~~~ .~~~~;
END GRAMMA R

--5— -- - -  - A- - - ~~~ a— - -- — - _-r’- -J-.

____________



- - - 5 - - - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

24

6.2 The Recognizer Object Language

The obj ec t language produced by the translator described
in section 6.1 is described in the metatranslation language of
section 4.1. This object language is only capable of describing

recognizers

BEGIN GRAMMAR
S =

‘& ‘ S S
‘ F ’  S S
~ II~ ( I & I f ~~~~~ I f t I I I f I ~~~~~)

END GRAMMAR

This same recognizer is described in the syntax of the
metatranslator described in section 6.1.

I I f I ~~~~~~~~~
f

I f I f t I ! I ( t ~~~ I 1 t f I  I I I~~~~~~~~~~ ) ;

The translation of the above recognizer by the metatrans-

lator of section 6.1 is presented. It is in the object language

executable by the interpreter of section 6.3. As it is a

recognizer for this object language it will recognize its own
description . That is, this object language program is a
self-describing metalanguage that is also capable of the

descript ion of any language describable by the metatranslator
of section 6. 1.
(paragrap hing added)

I’

&.

&.
U

I ‘‘



-- -—— —~ - - - - —----~~~~~~~- — —  -s - - - ---—--- - ---—-s -- ••-——— - - -.—---~ —----—-- - - _ _ • • ~~~~~~~~~~~~~~~~~
• -

25

6.3 A Recognition Interpreter

This interpreter is a much simpler version of the original

interpreter presented in section 4.3. The Emit function has
• been removed and the functionality of Machine has changed to:

Machine: GRAMMAR x INPUT -> RECOGNIZE

• The definition of A Recognition Machine:

Machine (G,I) =

IF Test (G,G,I) AND equal(Remaining (G,G,I) = NULL)
THEN

TRUE
ELSE

FALSE
END Machine

Test (G,R ,I) =

CASE first (R) OF
‘ . ‘ : Test (G,G,I)

IF Test (C ,rest(G),I)
THEN

Test (G,Skip(rest(R)),Remaining(G ,rest(R),I))
ELSE

FALSE
IF Test (G,rest(R),I)

THEN
TRUE

ELSE
Rest (G,Skip(rest(R)),I)

equal (first(rest(R)),first(I))
END CASE

• END Test

Remaining (G,R I) =

CASE first (Rj OF
‘ . ‘ : Remaining (G,G,I)
‘& ‘ : Remaining (G,Skip(rest(R)),Remaining(G ,rest(R),I))
‘ I ’  : IF Test(G ,rest(R) ,I)

THEN
Remaining(G , res t (R)  , I)

ELSE
Remaining(G ,Skip(rest(R)) ,I)

‘“‘ : rest(I)
END CASE

END Remaining

—~~~~~‘~~ T1T 1TTT1T ’~~I~ —~



________________ - -  ~~~~~ • 5-~~~~~~~ -s~~~-5-5-5-s-5-s-s-s-5•-s . -~~~~~

26

Skip (R) =

CASE first (R) OF
rest (R)
Skip(Skip(rest(R)))

‘ I ’  : Skip(Skip(res t (R)) )
‘“‘ : rest(rest (R))
END CASE

END Skip

7. Conclusions

A class of grammars has been defined for which a translator

can be concisely stated and simply implemented . This class of

graimnars is sufficiently powerful to allow the definition of more
expressive languages. Although the defini tion of the trans-
lation interpreter is by no means efficient, more practical
implementations with equivalent functional properties have
been conceived. Efficiency is of minor concern because the

primary reason to create a very simple translation system is

the construction of intermediate tools for the fabrication of

some specific translator.
An interesting language for which to create a translator

and corresponding interpreter would be a language similar to the

recursive algorithmic notation used to describe the translation
interpreters. Once this is done, extensions to the translator

necessitating modifications to the interpreter could be more

easily implemented.
Techniques to facilitate the creation of powerful problem

oriented languages will continue to be investigated . Limiting

the problem to finding the smallest useful yet implementable

system has provided several important insights , as well as a

possib ly fertile seed for the future “evolution” of a sophis-
ticated translator writing system.

- - s  ~~~~~ — —. .~~- - - - —~~--- - - - - -- .-—

- _ _ _ _  ~~~ -----~~~~~~ --—-A- -- -~~— ~~~~~~~~~ _ •



Acknowledgements:
The results presented in this paper are the product of

my involvement with Bill McKeer~ Ys research group on “Zen and
the Art of Translator Imp lementation”. The group meetings and
discussions with individual members were invaluable to the

formulation and refinement of this material. Many other UCSC

faculty members and students provided helpful insights and
suggestions. I would like to express particular gratitude to
Bill McKeeman, Jim Horning, Frank DeRemer, Frank Frazier, Bill
Fitler and Dan Ross for all of their time and energy. I would

also lik e to thank the Information Science Department at UCSC
for providing an environment conducive to individual research

• at an undergraduate level.

-- - -- — ~- a.J~~~..i. 
- * - - * -‘—5---- — -——-5— 

--5.- _



- - - s  - -

28

References:

~chomsky 571 Chomsky, Norm , Syntactic Structures, Mouton and

Co., The Hague , The Netherlands (1957).
CDeRemer 71] DeRemer , F. L., “Simp le LR(k) grammars”, Corn.

AcM, 14, No. 7, 453-460 (1971).

[Floyd 631 Floyd , R. W., “Syntactic Analysis and Operator
Precedence ,” JACM, 10, No. 3, 316-333 (1963).

CHopcroft 69] Hopcroft , J. E., and Ullman , J. D., Formal

Languages and Their Relation to Automata , Addison-
Wesley , Reading , Mass. (1969).

• EKnu th 65] Knuth , D. E., “On the Translation of Languages from

left to Right ,” Informatio n and Control, 8:6,
607—639, (1965).

T
McKeeman 76~ McKeeman , W. M. , Private Communication , (1976).

[Schorre 64~ Schorre , D. V . ,  “A Syntax Oriented Compi l er

Wri ting Language,” 1964 AC~’-~ Nationa l Conference (1964) .
‘ Wirth 66~ Wirth , N., and Weber , H. “Euler: A Generalization of

Al gol 60 and Its Formal Definition ,” CACM, 9:1 , 9 : 2 ,
(1966) .

[Wozencraft 691 Wozt-ncr .-ift, J. M., and Evans, ~~. ,  Jr. Notes

on Program Linguistics , Dept. of Elec . Eng., Mass.

Inst. of Tech., 3mhri dge , Mass., (l~ 69)

& _ _  

-.-- -
~~~~~~~~~ - - --—-~~~~~~~~. - - - -~~--  -

— -
- - - - - - - - - -------——-——-———--------.—-—..

~~~~
• -- .—----- — - -5

~~~
-- - --5— — -5- - -5—— - - - -5—

~~
-5 -----5 -•

